
TINNBRE: A TIMBRE-BASED MUSICAL AGENT

Andrea BOLZONI(https://orcid.org/0000-0003-0370-9122)1, Balandino DI DONATO(https://orcid.org/0000-0001-6993-2445)
2, and

Robin LANEY(https://orcid.org/0000-0002-9319-8209)
1

1The Open University, Milton Keynes, United Kingdom
2Edinburgh Napier University, Edinburgh, United Kingdom

ABSTRACT

In this paper, we present tiNNbre, a generative music
prototype-system that reacts to timbre gestures. By tim-
bre gesture we mean a sonic (as opposed to body) ges-
ture that mainly conveys artistic meaning through timbre
rather than other sonic properties. The system is designed
and developed to be used in free improvisation and com-
position. Our prototype is powered by a neural network
trained using a supervised learning approach on a set of
sonic gestures representing the stimulus (or input) and a
correspondent set of sonic gestures representing the reac-
tions (or output). This model is then used to explore and
generate new musical material. Here, we present an infor-
mal evaluation of our system, based on two use cases. In
the first, the system is trained using MFCC analysis, while
the second uses Constant-Q Transform spectrum. Partici-
pants were asked to rate our system’s generated audio, par-
ticularly in respect of timbre. Results showed that although
tiNNbre has been tested offline, it fosters timbre-rich inter-
action with the sonic materials and the co-creation process.
Broadly speaking, musicians preferred the results obtained
using the second system other than for purely percussive
gestures.

1. INTRODUCTION

In the last few decades, several computer-aided composi-
tion tools and improvising systems have been researched
and produced to support musicians’ creativity [1]. In the
field of Music and AI, we are particularly interested in ex-
ploring the use of musical agents that can learn, from an
existing dataset of sonic materials or an input signal, how
to react to timbre gestures and generate an outcome that is
effective in respect of the training data. Our approach is
not focused on a specific piece, performer or performance,
but aims to define a general framework where musicians
can freely explore and interact with the reactions yielded
by the system.

In this work, we adopt the concept of “musical agents” as
“artificial agents that tackle musical creative tasks, par-
tially or completely” [2]. Systems built on this principle
can learn how to react to a sonic stimulus, either off-line

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

or in real-time, through the analyses of a symbolic corpus,
which is a representation of sonic corpus through a series
of descriptors, for example, MIDI notation or meta-data.
With this in mind, we prototyped tiNNbre utilising Deep
Learning for its capability to extract complex features, in
particular for mapping inputs given to a system to an ex-
pected output. Drawing on recent employments of Deep
Learning in audio synthesis, we propose two different sys-
tem prototypes that reacts to timbre stimulus by generating
new audio materials.

With this approach we aim to create a system that sup-
ports musicians in free improvisation and electronic mu-
sic composition, placing timbre at the centre of the music-
making process. To satisfy our musical aims, our first ob-
jective is to prototype tiNNbre as a system that can learn
from a sound corpus how to react to timbre gestures, and
establish a sense of interaction between the AI and the mu-
sician. The system has been tested remotely off-line, but
will soon be coded to be used in real-time during music
performance. In particular, the contribution will be the
ability of the system to convey and interact through com-
plex timbre-based perceptive features, thus providing new
ways to engage creative and collaborative experiences be-
tween human and machine.

The following sections include a review of the relevant
literature, a description of the system, and an evaluation
of our prototype through a short survey we ran with five
musicians.

2. BACKGROUND

2.1 Co-creative music systems

The Continuator [3] is a Markov-based system able to learn
a musician’s style from a MIDI dataset and play in the
same style. Furthermore, it can learn from a musician
while playing and continue an unfinished phrase in the
same style. OMAX [4] is a system based on Factor Or-
acle, a model that represents sub-phrases in a sequence of
symbols. It can play in "free-mode" and "beat-mode". In
"free-mode", no musical structure is expected. The musi-
cian plays freely, the phrases are analysed and organised
as sequences of symbols by the Factor Oracle model, and
the system plays back phrases re-built from the database.
The "beat-mode" is based on a metric/harmonic structure,
where the style extracted by the human musician is put into
relation to the structure, and the phrases played back by
the system are put back into context with the time step the
structure was played in. Improtek [5] builds upon the gen-

url:https://orcid.org/https://orcid.org/0000-0003-0370-9122
url:https://orcid.org/https://orcid.org/0000-0001-6993-2445
url:https://orcid.org/https://orcid.org/0000-0002-9319-8209
http://creativecommons.org/licenses/by/4.0/


eration model presented in OMAX [4], and introduces the
concept of "scenario". In the form of long-term constraint,
the scenario defines a musical context, e.g. a harmonic
progression for a jazz improvisation explored while per-
forming with a musician. VirtualBand [6] is a system that
can learn, from a corpus of MIR features, how a human
musician reacts to another human musician in a particular
musical style. The models obtained are used to control vir-
tual musical agents that interact, in real-time, with human
musicians.

2.2 Timbre and timbre-oriented co-creative music
systems

Timbre is defined as the feature that lets us distinguish
two sounds with the same pitch and intensity [7]. We
can distinguish two different acoustic instruments that play
the same note at the same intensity. After a comprehen-
sive survey of AI methods in algorithmic composition,
Fernandez and Vico state that “algorithmic composition
automates (to varying degrees) the various tasks associ-
ated with music composition, such as the generation of
melodies or rhythms, harmonization, counterpoint and or-
chestration” [1]. Nevertheless, some music styles – such
as free-improvisation, acousmatic and contemporary elec-
tronic music – use timbre as a key sonic feature in their
narrative. In this context, we embrace Heller’s definition
of timbre: “timbre is a kind of executive summary of the
distribution of amplitudes of the various partials in a com-
plex tone” [8].

Hsu [9] speaks about the relevance of timbre in free im-
provisation and his experience with the saxophonist John
Butcher, known for his innovative work with saxophone
timbre. Hsu created a system driven by timbral feature en-
velopes of an input sound, which are then mapped into pa-
rameters of different sound synthesis and processing, such
as filtered noise, waveguide-based clarinets, and metallic-
sounding comb filters. Yee-King proposes a musical agent
that employs additive synthesis and frequency modulation
synthesis to adapt the timbre of the musical agent to the
timbre of the human musician [10]. Other systems are
based on sound-corpus processing, and concatenative syn-
thesis. CataRT [11] is a real time sound synthesis sys-
tem that lets us explore, and re-synthesise a sound cor-
pus through its audio descriptor space. Similarly, Ear-
Gram [12] rearranges an audio corpus with concatenative
synthesis, but through generative strategies.

2.3 Deep Neural Networks and audio synthesis

Recently, many different generative audio systems using
Deep Learning have been proven to be very effective.
Wavenet [13] is a deep neural network used for text-to-
speech and music generation. It generates the audio wave-
form directly. DDSP [14] employs an autoencoder archi-
tecture, introducing components that improve the capabil-
ity of this architecture to synthesize audio. Tatar et al. [15]
propose a new audio synthesis method using Deep Learn-
ing, called Latent Timbre Synthesis (LTS). They aim to
provide composers with a tool that interpolates and extrap-
olates the timbre of different sounds, acting on the latent

space of a Variational Autoencoder.
We aim to explore the possibilities given by this body of

works, particularly focusing on Latent Timbre Synthesis
[15], in the context of a co-creative musical agent.

3. METHODOLOGY

Before we outline our methodology, we define some ter-
minology. We use dataset to refer to all features extracted
from sonic material used to train the system through a su-
pervised learning approach [16]. Our datasets are made
of input audio analysis features, which we call stimulus;
and, output audio analysis features, which we call reac-
tions. Likewise, when using the model, we use stimulus
to refer to the input data and reactions to refer to the out-
put generated by the system. Furthermore, since Godøy
defines a sound-related gesture as movement in sound, a
trajectory shape in time and space [17], similarly, we de-
fine a timbre gesture as a sonic event that is characterized
by a trajectory shape in time and timbral space.

The system design consisted of three phases: system de-
velopment, testing, and user evaluation. During develop-
ment, different pair of analyses techniques and neural net-
work architectures were tested. Two of them have been
chosen, and in the testing phase hyperparameters have
been set to optimize performance. Each test aimed to eval-
uate, both on the aesthetic and the numerical sides, the
stimulus/reactions mapping realised through our system.
Finally, a user evaluation has been performed. The eval-
uation criteria were the effectiveness of the two different
techniques to yield timbre-based reactions to stimulus (see
sections 4.1 and 4.2). Effectiveness is used to refer to the
system’s capability to vary the reaction at different stimu-
lus changes and the sonic quality.

Each dataset is made of five pairs of stimulus/reactions:
A, B, C, D, and E. For the pairs A, B, and C, stimulus and
reactions are timbre gestures, in D the stimulus is a timbre
gesture but the reaction is silence, and in E stimulus and
reaction are both silence. Each gesture, and the silences,
last 3 minutes. They have been recorded separately, and
then concatenated in two audio files of 15 minutes each,
one for the input and one for the output. The two audio
files were sliced in analyses windows to extract the audio
features. We used 3-minute recordings to give musicians
the opportunity to explore the chosen timbral gesture in
depth, thus producing useful data for training the model.

The audio files are mono, with a 44100 Hz sampling rate
and 16 bit depth. The dimension of the dataset is calculated
as in Equation 1, where 𝑛 is the dimension of the dataset,
𝑓𝑠 is the sampling rate in Hz, 𝑙𝑡 is the length in seconds of
the dataset, and ℎ the dimension in samples of the hop size
used in feature extraction.

𝑛 =
𝑓𝑠 · 𝑙𝑡
ℎ

(1)

The stimulus and the reactions are then stored in two ma-
trices of dimension 𝑚 · 𝑛, where 𝑚 is the length of the
feature vector, and 𝑛 is the dimension of the dataset.

Given the stimulus matrix 𝑋 made of 𝑛 vectors 𝑥, and
the reaction matrix 𝑌 made of 𝑛 vectors 𝑦, the mapping



between stimulus and reactions is as in Equation 2:

𝑦𝑡 = 𝑓(𝑥𝑡) for 𝑡 = 1, . . . , 𝑛 (2)

In other words, each vector at time t in the input is
mapped to the vector at the same time t in the output, where
t represents the onset of a feature extraction window. Thus,
the system doesn’t take account of history.

4. THE SYSTEM

4.1 Version 1

The first version of tiNNbre was built using MuBu tool-
box [18] in Max/MSP 1 for feature extraction and audio
synthesis, and Tensorflow [19] framework in Python to
train the neural network model. Data between the two
pieces of software were shared via Open Sound Control
(OSC). An overview of the system architecture is shown in
Figure 1.

With MuBu, we extract the Mel-frequency cepstrum
(MFCC) features from the stimulus and reaction audio
materials. We choose MFCC features for their efficacy
in representing the power spectrum of sounds [20]. 13
MFCC coefficients are extracted with Fast Fourier Trans-
form (FFT) with window size of 1024 samples, and hop
size of 512 samples.

A neural network is then trained using these data. The
neural network has an architecture of an input layer of 13
neurons, three dense layers of 512 neurons, and an output
layer of 13 neurons. The reaction MFCCs are also clas-
sified in a multi-dimensional binary search tree, using the
Max/MSP external mubu.knn [18].

At runtime, we extract MFCCs from the audio input and
send them to the model. Each MFCC vector yielded by the
model is fed to mubu.knn that supplies the marker of the
closest MFCC vector in the reaction corpus. Then, the con-
catenative synthesis external mubu.concat~ plays the au-
dio sample corresponding to the marker. To be consistent
with the window and hop size of the FFT used to extract
MFCCs, the grains have length of 23 ms, and period of 12
ms.

This architecture has been chosen with a trial and error
approach. We tried less and more layers, and less and more
neurons for each layers. Even if the results of configura-
tions similar to the one chosen weren’t significantly worse,
the chosen one gave the best results.

4.2 Version 2: Spectral analysis and re-synthesis

The second version has been developed in Python with the
Librosa library [21] for audio analyses and re-synthesis,
and the Tensorflow framework for generating the neural
network model (see Figure 2).

Here, we aim to train a model with audio spectrum data.
As proposed in [15], we extract from the input and audio
corpus the Constant-Q Transform (CQT) [22], a wavelet
transform with a constant ratio between the centre frequen-
cies of the bins and their bandwidth. As suggested by Tatar
et al. [15], we used a hop-size of 128 samples, 48 bins per

1 https://cycling74.com

Figure 1. Architecture tiNNbre version 1

octave for 8 octaves, and a minimum frequency of 32.7 Hz.
Therefore, each vector is made of 384 coefficients. We
found, although this solution considers a spectrum range
from 32.7 Hz to 8371.2 Hz, thus losing anything above
8371.2 Hz, this to be the optimal configuration. Using a
hop-size of 256 samples, 24 bins per octave for 9 octaves,
and a minimum frequency of 32.7 Hz was a better configu-
ration to reproduce the attack of percussive sounds. How-
ever, it produced heavy sonic artefacts when re-synthesized
after going through the neural network pipeline.

The neural network architecture is structured in an au-
toencoder manner, and it is inspired by one of the archi-
tectures used in [15]: an input layer of 384 neurons, five
dense layers of respectively 2048, 512, 256, 512 and 2048
neurons, and an output layer of 384 neurons.

Figure 2. Architecture tiNNbre version 2

At runtime, we extract the CQT from the audio input and
send it to the neural network. The CQT data yielded by the
network is then synthesised through the Fast Griffin-Lim
algorithm [23] implemented in Librosa.

5. EVALUATION

We ran a comparative survey between the two versions
with five musicians. These were all professionally trained



musicians. Each musician was required to provide the
sound material for the training of the model and a
pre-recorded improvisation/composition employing all the
four stimulus A-B-C-D 2 . After training the models with
the sound material provided, and generating audio with the
two different implementations of tiNNbre using the pre-
recorded improvisation/composition provided, participants
were asked to answer the following questions, rating them
using a 1-5 Likert scale:

1. Overall, how do you find the system-generated out-
put?

2. To what degree does the sound generated as the out-
put varies at a different input sonic material?

3. As a musician, to what extent do you experience an
interaction between the human musician and the sys-
tem?

4. How likely will you use this system in your music-
making process?

And, they were asked the following open-ended question:

• What are your thoughts on this music extract pro-
duced by the system considering timbrical features
of the sound?

Every musician rated two outcomes of the system, one
for each version for different musicians. Materials rated by
each musician were presented in such a way to avoid that
musicians could be biased by the awareness of the sound
material provided to train the system. The evaluation order
for the audio generated with tiNNbre v1 was:

• Musician 1 rated dataset 2 (Musician 2’s material)
• Musician 2 rated dataset 3 (Musician 3’s material)
• Musician 3 rated dataset 4 (Musician 4’s material)
• Musician 4 rated dataset 5 (Musician 5’s material)
• Musician 5 rated dataset 1 (Musician 1’s material)

And, the one generated with tiNNbre v2:

• Musician 1 rated dataset 3 (Musician 3’s material)
• Musician 2 rated dataset 4 (Musician 4’s material)
• Musician 3 rated dataset 5 (Musician 5’s material)
• Musician 4 rated dataset 1 (Musician 1’s material)
• Musician 5 rated dataset 2 (Musician 2’s material)

5.1 Dataset creation, and audio evaluation

Due to Covid-19 restrictions in 2021 in Italy, the pro-
duction of audio materials by participants and the rating
were not conducted in a controlled laboratory environ-
ment. Generated audio materials and listening activities
were done with musicians already owned instruments and
equipment. We acknowledge that the results described be-
low might differ from those we aim to collect in a future
formal study; yet, we believe that current observations are
worth reporting to the community.

2 Link to all the datasets and generated audio:
https://cutt.ly/WbFR6Wt. Stimulus on the left channel, reactions
on the right channel.

Musician 1 provided sonic materials recorded with a
Nord Piano keyboard as a stimulus and a Nord Piano key-
board and Moog Mother 32 synthesizer as reactions. Mu-
sician 2 played a drum set both as stimulus and as reac-
tions. Musician 3 played a tenor saxophone for both stim-
ulus and reactions. Musician 4 employed different iPad
apps that emulate synthesizers for both stimulus and reac-
tions. Musician 5 played double-bass for both stimulus and
reactions.

After we collected the materials from musicians, we gen-
erated new materials with tiNNbre v1 and v2. Subse-
quently, musicians were given the audio files and the sur-
vey. Audio materials were labelled "Listening 1" and "Lis-
tening 2" for files generated with tiNNbre v1 and v2, re-
spectively. However, to avoid bias, participants were not
made aware of which version of the system generated
which audio.

5.2 Results

The neural networks for tiNNbre v1 and v2 have been
trained with 50 epochs, an Adam optimizer [24], and learn-
ing rate 10−4. tiNNbre v1 has been trained with batch size
20, v2 with batch size 100. On a Mac Mini, M1 chip, and
8 GB of RAM, the training of v1 takes 2 minutes and 50
seconds, while the training of v2 takes about 20 minutes.
Considering that we could use much bigger datasets in fu-
ture works, we tried different configurations of v2 archi-
tecture, with the same number of layers but fewer neurons,
for faster training of the network. Unfortunately, all the
different configurations produced sonic artefacts, in partic-
ular high pitched noises.

The output sonic material of tiNNbre v1 has been gener-
ated in ’delayed realtime’, reproducing the musicians’ im-
provisation audio files in Max/MSP. The output of v2 has
been generated offline. With batch size 100, it takes about
7.7 seconds to generate 60 seconds of audio output.

We report the loss and accuracy metrics of both the train-
ing set and the test set in Table 1 and 2, respectively refer-
ring to tiNNbre v1 and v2, where loss measures the mean
squared error between the the predicted outputs and the
expected outputs, and the accuracy measures how many
predicted outputs match the expected outputs.

Tables 3 and 4, report rating values of audio materials
generated using tiNNbre v1 and v2 in relation to the dataset
(D) used to generate the audio and the rating musician
(RM). The tables also show the average (AVG) of those
values. The last column on the right shows the AVG rate
for each question, while the last row the AVG rate for each
dataset. The cell on the bottom right shows the average
rate of all the rates.

6. DISCUSSION

Results from the loss and accuracy metrics evaluation show
that tiNNbre v1 has higher accuracy results, while v2 has
lower loss results. However, the datasets used in the v1
have a different value range from the datasets used in the
v2: in v1 it is made of MFCC features, in v2 of CQT fea-
tures; thus, two different types of data. Since the loss met-



D1 D2 D3 D4 D5
TR Loss 2.3e−2 1.6e−2 1.5e−2 2.1e−2 3.3e−2

TR Acc. 0.62 0.40 0.41 0.64 0.84
TS Loss 2.5e−2 1.8e−2 1.6e−2 2.0e−2 3.6e−2

TS Acc. 0.51 0.32 0.57 0.83 0.89

Table 1. Loss and accuracy metrics, tiNNbre v1. Legend:
D = dataset; TR = Training; TS = Test.

D1 D2 D3 D4 D5
TR Loss 3.5e−4 1.2e−4 4e−4 1.3e−2 3e−4

TR Acc. 0.40 0.31 0.15 0.42 0.50
TS Loss 3.83−4 1.4e−4 4e−4 1.3e−2 4e−4

TS Acc. 0.40 0.31 0.15 0.43 0.50

Table 2. Loss and accuracy metrics, tiNNbre v2. Legend:
D = dataset; TR = Training; TS = Test.

ric measures the mean squared error, it should not be used
to compare the two versions of the system. Instead, we can
compare the accuracy performance between the two differ-
ent versions. Accuracy does not seem to be related to the
evaluation made by musicians: v1 has a higher accuracy
than v2 (see Tables 1 and 2); v2 received a higher rating by
musicians (see Tables 3 and 4). Furthermore, it seems that
none of the evaluation metrics is related to musicians’ eval-
uations. Despite good user evaluation, in general accuracy
turned out to be low. It could be related to the difficulty of
the neural network to exactly reproduce the vectors used in
training.

Comparing the overall ratings, we can see that musi-
cians preferred materials generated with tiNNbre v2. An-
other relevant aspect is that all audio materials generated
with v2 were rated higher than v1, except those generated
with dataset 2. Dataset 2 is made of percussive sounds,
thus confirming the issues encountered in the development,
where we looked for CQT parameters that could better re-
synthesise the attack of percussive sounds.

The answers to the open-ended question raised doubts
from musicians about the effectiveness of the sounds gen-
erated by the system with the datasets used to train the
neural network. For example, Musician 3 wondered if –
where the system produced silence with tiNNbre v1 trained
with dataset 4 – “the reaction was intentionally a silence
or if it is caused by the fact that, below a certain dynamic
threshold, the system does not yield any reaction”. About
the sounds generated with tiNNbre v2 trained with dataset
4, Musician 2 commented on his perception of the mid-
dle section, in which there is no reaction by the system,
but he decided to give a high rating anyway, assuming that
the silence was the correct reaction. We know that silence
matched the expected reaction, but we understand that it
could have been confusing for a musician during the evalu-
ation process. However, at this stage, we didn’t want them
to be conditioned by knowing the sonic materials used to
generate the datasets, and we consider these answers valu-
able for future evaluation methodologies we will employ.

Musicians commented that reactions produced with the
second tiNNbre v2 were more effective than v1. Musician

Q D1 D2 D3 D4 D5 AVG
1 3 4 3 3 3 3.2
2 3 4 3 4 3 3.4
3 2 5 3 2 3 3
4 2 4 3 3 3 3

AVG 2.5 4.25 3 3 3 3.15

Table 3. Musicians’ evaluations, tiNNbre v1. Legend: Q =
Question, D = dataset, and RM = rating musician.

Q D1 D2 D3 D4 D5 AVG
1 4 4 4 4 4 4
2 4 4 5 5 3 4.2
3 4 3 5 5 3 4
4 5 3 4 4 3 3.8

AVG. 4.25 3.5 4.5 4.5 3.25 4

Table 4. Musicians’ evaluations, tiNNbre v2. Legend: Q =
Question, D = dataset, and RM = rating musician.

4 – about the sounds generated with tiNNbre v2 trained
with dataset 1 – found the stimulus and reactions more
consistent, and perceived more sensitivity and adaptabil-
ity of the sonic material proposed as output. Regarding
the sounds generated with tiNNbre v2 trained with dataset
3, Musician 1, comparing it to the other track, wrote: “I
seem to grasp more autonomy between the question and
the answer, without however losing coherence”. Musician
2, about the sounds generated with tiNNbre v2 trained with
dataset 4, found the reaction of the system very effective,
the sounds and timbres being well blended and enriching
the composition.

7. CONCLUSION AND FUTURE WORK

We presented two prototypes of tiNNbre, a timbre-based
neural network musical agent, to foster the co-creative mu-
sic improvisation and composition process. An evaluation
of the two versions of the system showed musicians’ pref-
erence towards the second version, which uses spectral
analyses and re-synthesis and an autoencoder neural net-
work. For this reason, this implementation will be the sub-
ject of the future development of this system. However, the
second version proved to be less effective with percussive
sounds. We will look for better performing spectral anal-
yses and resynthesis for percussive sounds, test different
loss functions, and formally evaluate the impact of differ-
ent architectures in both versions of the system.

In the future, we plan to conduct a study in a laboratory
setting so to gather more reliable data. As the system does
not currently take into consideration the development of
sound gestures over time, as shown in Equation 2, we will
explore a different implementation of tiNNbre using se-
quence modelling, so to test the efficacy of the system in
generating an outcome that takes into account a temporal
sequence.

Acknowledgments

We thank all the musicians that took part to this research,



for their time, experience, and insightful comments.

8. REFERENCES

[1] J. D. Fernández and F. Vico, “Ai methods in algorith-
mic composition: A comprehensive survey,” J. Artif.
Int. Res., vol. 48, no. 1, p. 513–582, Oct. 2013.

[2] K. Tatar and P. Pasquier, “Musical agents: A typology
and state of the art towards musical metacreation,”
Journal of New Music Research, vol. 48, no. 1, pp.
56–105, 2019. [Online]. Available: https://doi.org/10.
1080/09298215.2018.1511736

[3] F. Pachet, “The continuator: Musical interaction with
style,” Journal of New Music Research, vol. 32, no. 3,
pp. 333–341, 2003.

[4] G. Assayag, G. Bloch, and M. Chemillier, “Omax-
ofon,” in Sound and Music Computing (SMC) 2006,
2006, pp. 1–1.

[5] J. Nika, M. Chemillier, and G. Assayag, “Improtek:
Introducing scenarios into human-computer music
improvisation,” Comput. Entertain., vol. 14, no. 2, Jan.
2017. [Online]. Available: https://doi.org/10.1145/
3022635

[6] J. Moreira, P. Roy, and F. Pachet, “Virtualband: Inter-
acting with stylistically consistent agents.” in ISMIR,
2013, pp. 341–346.

[7] M. Campbell, “Timbre (i),” Grove Music Online,
2021. [Online]. Available: https://doi.org/10.1093/
gmo/9781561592630.article.27973

[8] E. J. Heller, Why you hear what you hear: an experi-
ential approach to sound, music, and psychoacoustics.
Princeton University Press, 2013.

[9] W. Hsu, “Strategies for managing timbre and inter-
action in automatic improvisation systems,” Leonardo
Music Journal, vol. 20, pp. 33–39, 2010. [Online].
Available: http://www.jstor.org/stable/40926371

[10] M. J. Yee-King, “An automated music improviser us-
ing a genetic algorithm driven synthesis engine,” in Ap-
plications of Evolutionary Computing, M. Giacobini,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 567–576.

[11] D. Schwarz, G. Beller, B. Verbrugghe, and S. Britton,
“Real-time corpus-based concatenative synthesis with
catart,” in 9th International Conference on Digital Au-
dio Effects (DAFx), Montreal, Quebec, Canada, 2006,
pp. 279–282.

[12] G. Bernardes, C. Guedes, and B. Pennycook, “Ear-
gram: An application for interactive exploration of
concatenative sound synthesis in pure data,” in From
Sounds to Music and Emotions, M. Aramaki, M. Bar-
thet, R. Kronland-Martinet, and S. Ystad, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp.
110–129.

[13] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for
raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[14] J. Engel, L. Hantrakul, C. Gu, and A. Roberts,
“Ddsp: Differentiable digital signal processing,” arXiv
preprint arXiv:2001.04643, 2020.

[15] K. Tatar, D. Bisig, and P. Pasquier, “Introducing latent
timbre synthesis,” arXiv preprint arXiv:2006.00408,
2020.

[16] R. Fiebrink and P. R. Cook, “The wekinator: a sys-
tem for real-time, interactive machine learning in mu-
sic,” in Proc. of The Eleventh International Society
for Music Information Retrieval Conference (ISMIR
2010)(Utrecht), vol. 3, 2010.

[17] R. I. Godøy, “Gestural affordances of musical sound,”
in Musical Gestures: Sound, Movement, and Meaning.
Routledge, 2010, pp. 103–125.

[18] N. Schnell, A. Röbel, D. Schwarz, G. Peeters,
R. Borghesi et al., “MuBu and friends–assembling
tools for content based real-time interactive audio pro-
cessing in Max/MSP,” in Proc. of the International
Computer Music Conference, ser. ICMC, Montreal,
Quebec, Canada, 2009, pp. 426–430.

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A sys-
tem for large-scale machine learning,” in 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). Savannah, GA: USENIX As-
sociation, Nov. 2016, pp. 265–283.

[20] H. Eghbal-Zadeh, M. Schedl, and G. Widmer, “Tim-
bral modeling for music artist recognition using i-
vectors,” in 2015 23rd European Signal Processing
Conference (EUSIPCO). IEEE, 2015, pp. 1286–1290.

[21] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music
signal analysis in python,” in Proc. of the 14th python
in science conference, ser. SciPy 2015, vol. 8, Austin,
Texas, USA, 2015, pp. 18–25.

[22] C. Schörkhuber and A. Klapuri, “Constant-q transform
toolbox for music processing,” in 7th Sound and Music
Computing Conference, Barcelona, Spain, 2010, pp.
3–64.

[23] N. Perraudin, P. Balazs, and P. L. Søndergaard, “A fast
griffin-lim algorithm,” in 2013 IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics.
IEEE, 2013, pp. 1–4.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” arXiv preprint arXiv:1412.6980,
2014.

https://doi.org/10.1080/09298215.2018.1511736
https://doi.org/10.1080/09298215.2018.1511736
https://doi.org/10.1145/3022635
https://doi.org/10.1145/3022635
https://doi.org/10.1093/gmo/9781561592630.article.27973
https://doi.org/10.1093/gmo/9781561592630.article.27973
http://www.jstor.org/stable/40926371

	 1. Introduction
	 2. Background
	2.1 Co-creative music systems 
	2.2 Timbre and timbre-oriented co-creative music systems
	2.3 Deep Neural Networks and audio synthesis

	 3. Methodology
	 4. The System
	4.1 Version 1
	4.2 Version 2: Spectral analysis and re-synthesis

	 5. Evaluation
	5.1 Dataset creation, and audio evaluation
	5.2 Results

	 6. Discussion
	 7. Conclusion and future work
	 8. References

