
RESEARCH Open Access

Scalability analysis comparisons of cloud-
based software services
Amro Al-Said Ahmad1,2* and Peter Andras1

Abstract

Performance and scalability testing and measurements of cloud-based software services are necessary for future
optimizations and growth of cloud computing. Scalability, elasticity, and efficiency are interrelated aspects of cloud-
based software services’ performance requirements. In this work, we use a technical measurement of the scalability
of cloud-based software services. Our technical scalability metrics are inspired by metrics of elasticity. We used two
cloud-based systems to demonstrate the usefulness of our metrics and compare their scalability performance in
two cloud platforms: Amazon EC2 and Microsoft Azure. Our experimental analysis considers three sets of comparisons:
first we compare the same cloud-based software service hosted on two different public cloud platforms; second we
compare two different cloud-based software services hosted on the same cloud platform; finally, we compare between
the same cloud-based software service hosted on the same cloud platform with two different auto-scaling policies. We
note that our technical scalability metrics can be integrated into a previously proposed utility oriented metric of
scalability. We discuss the implications of our work.

Keywords: Measurement, Performance, Scalability, Software-as-a-service (SaaS), Metrics

Introduction
Cloud-based applications are increasing rapidly as host-
ing cost have been reduced and computing resources be-
come more available and efficient. In order to maximize
the scalability and performance of any software system,
it is essential to incorporate performance and scalability
testing and assessment into the development lifecycle.
This will provide an important foundation for future
optimization and will support the Service Level Agree-
ment (SLA) compliant quality of cloud services [1, 2].
There are three typical requirements that are associated
with the performance of cloud-based applications: scal-
ability, elasticity, and efficiency [3, 4].
In this study, we adopt technical definitions of these

performance features, which were identified by Lehrig et
al. [5]. Scalability is the ability of the cloud layer to increase
the capacity of the software service delivery by expanding
the quantity of the software service that is provided. Elasti-
city is the level of autonomous adaptation provided by the
cloud layer in response to variable demand for the software

service. Efficiency is the measure of matching the quantity
of software service available for delivery with the quantity
of demand for the software service. However, we note that
alternative, utility-oriented (i.e. economic cost/benefit fo-
cused) approaches are also used in the literature for the
conceptualization and measurement of these performance
aspects of cloud-based services [6, 7]. Technical scalability
measurements and testing is key to assessing and measur-
ing the performance of cloud-based software services [1, 8].
Both elasticity and efficiency aspects depend on scalability
performance.
Cloud Computing, auto-scaling and load-balancing

features provide the support for cloud-based applications
to be more scalable, which allows such applications to
be able to deal with sudden workload by adding more of
instance(s) at runtime. Furthermore, as cloud-based ap-
plications are being offered as Software as a Services
(SaaS), and the use of multi-tenancy architectures [9];
emphasizes the need for scalability that supports the
availability and productivity of the services and on-de-
mand resources.
A relevant systematic literature review reports, only a

few research works (e.g. project reports, MSc theses)
which try to address the assessment of technical

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: a.m.k.al-said.ahmad@keele.ac.uk
1School of Computing and Mathematics, Keele University,
Newcastle-under-Lyme ST5 5BG, UK
2Faculty of Information Technology, Philadelphia University, Amman, Jordan

Journal of Cloud Computing:
Advances, Systems and Applications

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and
Applications (2019) 8:10
https://doi.org/10.1186/s13677-019-0134-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-019-0134-y&domain=pdf
https://orcid.org/0000-0003-1144-3053
http://orcid.org/0000-0002-9321-3296
http://creativecommons.org/licenses/by/4.0/
mailto:a.m.k.al-said.ahmad@keele.ac.uk

scalability of cloud-based software services [5]. However,
recently a number of publications addressed the tech-
nical measurement of the elasticity of cloud-based
provision of software services [5, 10]. On the other hand,
other recent publications address the scalability of
cloud-based software services from utility perspective
[5–7, 11].
In order to try to improve the scalability of any software

system, we need to understand the system’s components
that effect and contribute to scalability performance of the
service. This could help to design suitable test scenarios,
and provides a basis for future opportunities aiming to
maximize the services scalability performance. Assessing
scalability from utility perspective is insufficient for the
above purpose, as it works from an abstract perspective
which is not necessarily closely related to the technical com-
ponents and features of the system.
In this paper, we use technical scalability measurements

and metrics for scalability [12] of cloud-based software ser-
vices, inspired by earlier technical measures of cloud elasti-
city [13–15], this work is extended from previous works [12,
16]. We demonstrate the metrics application using two
cloud-based software services (OrangeHRM and/or Media-
Wiki) run through the Amazon EC2 and Microsoft Azure
clouds. We perform three comparisons, the first one be-
tween the same cloud-based software service hosted on two
different public cloud platforms. The second comparison is
between two different cloud-based software services hosted
on the same cloud platform. The third comparison is be-
tween the same cloud-based software service hosted on the
same cloud platform with different auto-scaling policies.
We show how the metrics can be used to show differences
in the system behavior based on different scaling scenarios.
We discuss how we can use these metrics for measuring
and testing the scalability of cloud-based software services.
The rest of the paper is organized as follows: Related

work section presents related works. A description of our
approach to measuring the scalability of cloud-based soft-
ware services and our metrics based on this measurement

approach are presented in Scalability performance meas-
urement section. Experimental setup and results Section
presents our experiments and analyses using two different
usage scenarios, and three sets of comparisons to demon-
strate the measurement approach and metrics results. Next,
we discuss the implications and importance of the ap-
proach and metrics in Discussion section. Finally, we
present our conclusions and future works in Conclusions
and future work section.

Related work
Related reviews [17, 18] highlight scalability and perform-
ance testing and assessment for cloud-based software ser-
vices, as promising research challenges and directions.
Another related mapping study [19] highlights that the
majority of the studies in software cloud testing present
early results, which indicates growing interests across the
field and also the potential for much more research to fol-
low the early results.
A relevant systematic literature review [5] covers cloud

performance assessments and metrics in terms of scaling,
elasticity, and efficiency. Highlights of their key findings
are: most of the reviewed papers focus on elasticity, and in
the term of scalability, they report that the papers were ei-
ther early and preliminary result or initial ideas of research
students. The review [5] provides the definitions of the
key performance aspects (scalability, elasticity, and effi-
ciency) which have been adopted in this study. Other
similar recent surveys [20, 21] focus primarily on cloud
service elasticity.
The majority of the studies focus on measuring the

elasticity of cloud services from a technical perspective
[4, 10, 15, 22–26]. For example, Herbst et al. [4] sets a
number of key concepts that allows measuring cloud
service elasticity in technical term (see Fig. 1) such as
the quantity and time extents for periods of time when
the service provision is either below or above what is
required by the service demand. Elasticity measures
defined by [4, 22] is: the timeshares and average time

Fig. 1 Key concepts for measuring elasticity

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 2 of 17

lengths in under-provisioned and over-provisioned states;
the amounts of the over-provisioned and under-provi-
sioned resources per time unit; the averages of the excess
and lacking resources; and the jitter, which is the number
of resource adaptations during a specific time of provi-
sioning the service. The up-elasticity and the down-elasti-
city metrics are defined as the reciprocal value of the
product of the average under-provisioned/over-provi-
sioned time length and average lack of resources. Further
elaboration [23] that extended the above metrics intro-
duced other factors and ways such as reconfiguration
time, functions of resource inaccuracy, and scalability.
From the utility-oriented perspective of measuring and

quantifying scalability, we note the work of Hwang et al.
[7, 11]. Their production-driven scalability metric in-
cludes the measurement of a quality-of-service (QoS)
and the cost of that service, in addition to the perform-
ance metric from a technical perspective [7, 11]. This
approach is useful from a utility perspective, as it de-
pends on multiple facets of the system (including cost
measures), it is improbable to be able to provide useful
and specific information in terms of contribution of sys-
tem components to scalability in a technical perspective.
Technical-oriented measurements or metrics for cloud-

based software scalability research are limited. Such as [4]
provides a technical scalability metric, however, this is a
rather elasticity driven metric which measures the sum of
over- and under-provisioned resources over the total
length of time of service provision. While, Jayasinghe et al.
[13, 14] provides a technical scalability measure in terms
of throughput and CPU utilization of the virtual machines,
but the work does not provide a metric or measure. Jamal
et al. [27] describe practical measurements of systems
throughput with and without multiple virtual machines
(VMs), without clearly formulating specific measurements
or metric of scalability. Gao et al. [15] evaluate software as
services (SaaS) performance and scalability from the cap-
acity of the system perspective, by using the system load
and capacity as measurements for scalability. Another
recent work [28] focuses on building a model that helps to
measure and compare different deployment configura-
tions in terms of costs, capacity, and elasticity. Brataas et
al. [29] offered two scalability metrics, one based on the
relationship between the capacity of cloud software ser-
vices and its use of cloud resources; the second is the cost
scalability metric function that replaces cloud resources
with cost, in order to demonstrate the metrics, they used
CloudStore application hosted in Amazon EC2 with dif-
ferent configurations. In an earlier work, [30] provides a
theoretical framework of scalability for mobile multi-agent
systems, however, which remains limited to theory and
modeling results.
In terms of comparisons, we note that [13, 14] com-

pared the performance and scalability of two

applications (RUBBoS and/or Cloudstone) on three pub-
lic clouds (Amazon, Open Cirrus, and Emulab), and
three private clouds that have been built using the three
mainstream hypervisors (XEN, KVM and CVM). As we
mentioned above the comparison were based on CPU
utilization and throughput without providing any metric
or measure. Similarly, Hwang et al. [7, 11] introduces a
set of experiments involving five benchmarks, three
clouds, and set of different workload generators. Only
three benchmarks were considered for scalability mea-
surements, the comparison was based on the scaling
scenarios, and what the effect on performance and scal-
ability. Gao et al. [15] run the same experiments in two
different AWS EC2 instance types, one with load-balan-
cing and one without. While Vasar et al. [31] introduces
a framework for testing web application scalability on
the cloud, run the same experiments settings to measure
response time on three different EC2 instance types.

Scalability performance measurement
Scalability is the ability of the cloud-based system to
increase the capacity of the software service delivery by
expanding the quantity of the software service that is
provided when such increase is required by increased
demand for the service over a period of time during
which the service is exposed to a certain variation in
demand for the service (i.e. a demand scenario) [5]. Our
focus is whether the system can expand in terms of
quantity (scalability) when required by demand over a
sustained period of service provision, according to a cer-
tain demand scenario. We are not concerned with short-
term flexible provision of the resources (elasticity of the
service provision) [22]. The purpose of elasticity is to
match the service provision with actual amount of the
needed resources at any point in time [22]. Scalability is
the ability of handling the changing needs of an applica-
tion within the confines of the infrastructure by adding
resources to meet application demands as required, in a
given time interval [5, 32]. Therefore, the elasticity is
scaling up or down at a specific time, and scalability is
scaling up by adding resources in the context of a given
time frame. The scalability is an integral measurement
of the behavior of the service over a period of time,
while elasticity is the measurement of the instantaneous
behavior of the service in response to changes in service
demand. Furthermore, we are not concerned with the ef-
ficiency of the cloud-based software services delivery,
which is usually measured by the consumption of re-
sources (i.e. cost and power consumption) required to
complete the desired workload [5].
The increase of cloud capacity usually happens by

expanding the volume of service demands served by one
instance of the software or by providing a lower volume

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 3 of 17

of service through multiple instances of the same soft-
ware, or a combination of these two approaches. Gener-
ally, we expect that if a service scales up the increase in
demand for service should be matched by the propor-
tional increase in the service’s provision without degrad-
ation in terms of quality. In this work, the quality of the
service may be seen for example in terms of response
time.
The ideal scaling behavior of the service system

should be substantial over a sufficiently long time-
scale, in contrast with cloud elasticity that looks at
short-term mismatches between provision and de-
mand. If the system does not show ideal scaling be-
havior, it will increase the volume of the service
without changing the quality of that service. Ordinar-
ily, real systems are expected to behave below the
level of the ideal scaling and the aim of scalability
testing and measurements is to quantify the extent to
which the real system behavior differs from the ideal
behavior.
To match the ideal scaling behavior, we expect that

the system will increase the quantity of the software
instances proportionately with the rise in demand for
the software services, i.e. if the demand is doubled, we
would ideally expect the base number of software
instances to also double. We also expect that the system
maintains quality of service in terms of maintaining the
same average response time irrespective of the volume
of service requests, i.e. if demand was increased by 25%,
we would ideally expect no increase in average response
time. Formally, let us assume that D and D’ are two ser-
vice demand volumes, D’ > D. Let I and I′ be the corre-
sponding number of software instances that are
deployed to deliver the service, and let tr and t’r be the
corresponding average response times. If the system
scales ideally we expect that for any levels of service de-
mand D and D’ we have that

D0=D ¼ I0=I ð1Þ
tr ¼ t0r ð2Þ

Equation (1) means that the volume of software in-
stances providing the service scale up linearly with the
service demand. Equation (2) means that the quality of
service, in terms of average response time, remains the
same for any level of service demand.
In order to measure the values of I and tr the system

must perform the delivery of the service over a period of
time, such that short-term variations corresponding to
system elasticity do not influence the measurements.
This means that the measurements should be based on
an average number of software instances and average re-
sponse time measured regularly (e.g. every second) dur-
ing the execution of a demand scenario following a

particular pattern of demand variation. The same demand
pattern should be executed multiple times to get reliable
averages.
Demand scenarios may follow certain patterns ex-

pected to test the scalability of the system in specific
ways. Two kinds of demand patterns that appear as nat-
ural and typical choices are the steady increase followed
by a steady decrease of the demand with a set level of
the peak, and the stepped increase and decrease, again
with a set peak level of demand. The second scenario is
a stepped increase and decrease, again with a set peak
level of demand; with this scenario, we schedule to start
with 10% of the demand size, then stepped increase 10%
through time, while stepped down 10% through time.
These two demand scenarios are shown in Fig. 2. The
purpose of having two scenarios is to see how the auto-
scaling service (services that automatically help to
ensure that an application has the proper number of
ainstances dynamically, can handle the workload during
runtime [33, 34]) handles cloud-based software services
with different patterns of growth of workloads and to
verify that the cloud resources covers the target system’s
needs without experiencing a drop in performance. A
demand scenario is characterized by a summary measure
of the demand level, which may be the peak level or the
average or total demand level. This characteristic of a
demand scenario is denoted as D.

Fig. 2 Demand scenarios: a Steady rise and fall of demand; b
Stepped rise and fall of demand

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 4 of 17

In general, real-world cloud-based systems are unlikely
to deliver the ideal scaling behavior. Given the difference
between the ideal and the actual system scaling behavior,
it makes sense to measure technical scalability metrics
for cloud-based software services using as reference the
ideal scalability behavior defined in (Eqs. 1 and 2).
In terms of provision of software instances for the de-

livery of the services, the scaling is deficient if the num-
ber of actual instances is lower than the ideally expected
number of scaling instances. To quantify the level of
deficiency we pick a demand scenario and start with a
low level of characteristic demand D0 and measure the
corresponding volume of software instances I0. Then we
measure the number of software instances Ik corre-
sponding to a number (n) of increasing demand levels
Dk following the same demand scenario, we can then
calculate how close are the Ik values to the ideal I*k
values (in general we expect Ik < I

*
k). Following the ideal

scalability assumption of Eq. (1) we get for the ideal I*k
values:

I�k ¼ Dk=D0ð Þ � I0 ð3Þ

Considering the ratio between the area defined by the
(Dk, Ik) values, k = 0,…,n, and the area defined by the
(Dk, I

*
k) values we get the metric of service volume scal-

ability of the system ηI:

A� ¼
X

k¼1;…;n
Dk � Dk−1ð Þ � I�k þ I�k−1ð Þ=2 ð4Þ

A ¼
X

k¼1;…;n
Dk � Dk−1ð Þ � Ik þ Ik−1ð Þ=2 ð5Þ

ηI ¼ A=A� ð6Þ

where A and A* are the areas under the curves evaluated
piecewise as shown in Fig. 3a calculated for actual and
ideal I values and ηI is the volume scalability performance
metric of the system. The system is close to the ideal vol-
ume scalability if ηI is close to 1. If the opposite is the case
and ηI is close to 0, then the volume scalability of the sys-
tem is much less than ideal.
We define the system quality scalability in a similar

manner by measuring the service average response times
tk corresponding to the demand levels Dk. Here, the sys-
tem average response time measures as the average time
that the system takes to process a request once it was
received. We approximate the ideal average response
time as t0, following the ideal assumption of Eq. (2). The
system quality scalability is less than ideal if the average
response times for increasing demand levels increase, i.e.
tk > t0. By considering the ratio between the areas
defined by the (Dk, tk) values, k = 0,…,n, and the area
defined by the (Dk, t0) values we get a ratio that defines
a metric of service quality scalability for the system ηt:

B� ¼
X

k¼1;…;n
Dk � Dk−1ð Þ � t0

¼ Dn � D0ð Þ � t0 ð7Þ

B ¼
X

k¼1;…;n
Dk � Dk−1ð Þ � tk þ tk−1ð Þ=2 ð8Þ

ηt ¼ B�=B ð9Þ
where B and B* are the areas under the curves evaluated
piecewise as shown in Fig. 3b calculated for actual and

Fig. 3 The calculation of the scalability performance metrics: a the
volume scalability metric is ηI, which is the ratio between the areas
A and A* – see Eq. (6); b the quality scalability metric is ηt, which is
the ratio between the areas B* and B – see Eq. (9). The red lines
indicate the ideal scaling behavior and the blue curves show the
actual scaling behavior

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 5 of 17

ideal t values and ηt is the quality scalability perform-
ance metric of the system. If ηt is close to 1 the system
is close to ideal quality scalability. On the other hand, if
ηt is close to 0 the quality scalability of the system is far
from the ideal.
Figure 3 illustrates the calculation of the two scalabil-

ity performance metrics. In Fig. 3a, A* is the area under
the red line showing the ideal expectation about the
scaling behavior (see Eq. (1)) and A is the shaded area
under the blue curve, which corresponds to the actual
volume scaling behavior of the system. The blue curve is
expected in general to be under the ideal red line, indi-
cating that the volume scaling is less efficient than the
ideal scaling. In Fig. 3b, B* is the shaded area under the
red line indicating the expected ideal behavior (see Eq.
(2)) and B is the area under the blue curve, showing the
actual quality scaling behavior of the system. Again, in
general, we expect that the blue curve is above the ideal
red line, indicating that the quality scaling is below the
ideal. We chose nonlinear curves for the examples of
actual scaling behavior (blue curves in Fig. 3) to indicate
that the practical scaling of the system is likely to re-
spond in a nonlinear manner to changing demand.
The above-defined scalability metrics allow the effect-

ive measurement of technical scalability of cloud-based
software services. These metrics do not depend on other
utility factors such as cost and non-technical quality
aspects. This allows us to utilize these metrics in tech-
nically focused scalability tests that aim to spot compo-
nents of the system that have a vital impact on the
technical measurability, and additionally the testing of
the impact of any change in the system on the technical
system scalability. The scalability performance refers to
the service volume and service quality scalability of the
software service; these two technical measurements
reflect to the performance of the scalability of the cloud-
based software services.
Applying these metrics to different demand scenarios

allows the testing and tuning of the system for particular
usage scenarios and the understanding of how system
performance can be expected to change as the pattern of
demand varies. Such application of these metrics may
highlight trade-offs between volume scaling and quality
scaling of the system that characterize certain kinds of
demand pattern variation (e.g. the impact of the transi-
tion from low-frequency peak demands to high-frequency

peak demands or to seasonal change of the demand). Un-
derstanding such trade-offs can help in tailoring the sys-
tem to its expected or actual usage.

Experimental setup and results
To validate the volume and quality metrics, we performed
experiments on Amazon AWS and Microsoft Azure cloud
platforms, we used OrangeHRM and Mediawiki as cloud-
based software services. Mediawiki is an open-source wiki
software system available from https://www.mediawiki.
org, OrangeHRM is an open source human resource man-
agement software system available from https://www.
orangehrm.com. The reason for using these two cloud-
based software services (OrangeHRM and MediaWiki) is
based on the REST-based nature of the applications,
which is highly adopted by cloud and application pro-
viders. As the architecture of these applications support
REST caching to improve performance and scalability; by
caching the data and the code, which will reduce the
amount of time required to execute each HTTP request
and therefor improving response times by serving data
more quickly [35, 36].
The purpose is to check the scalability performance of

cloud-based applications using different cloud environ-
ments, configuration settings, and demand scenarios.
We applied the similar experimental settings for the
same cloud-based system (OrangeHRM) in two different
cloud environments (EC2 and Azure). We have changed
the parameters for Mediawiki, which runs a different
type of instance on AWS EC2 environment. Table 1 il-
lustrates the hardware configurations for both cloud
platforms.
To provide the scaling of the services we relied on the

Auto-Scaling and Load-Balancer services provided by
both Amazon AWS and Microsoft Azure. Furthermore,
Amazon CloudWatch and Azure Monitor services have
been configured in order to monitor the parameters.
The Auto-scaling polices (the default policies that are of-
fers by the cloud providers when setting up an auto-scal-
ing group) that have been used for the first two set of
experiments are given in Table 2.
In this study, we perform three kinds of comparisons,

one between the same cloud-based software hosted on
two different cloud platforms (EC2 and Azure). The sec-
ond comparison is between two different cloud-based
software services hosted on the same cloud platform

Table 1 Hardware configrations for cloud platforms

Platform Type CPU Credits/hr V-CPU(s) RAM Price ($/ Hr)

Amazon EC2 (London) t2.micro (Linux) 6 1 1 0.0132

t2.medium (Linux) 24 2 4 0.052

MS Azure (UK South) Standard A1 (Linux) 6 1 1.75 0.06

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 6 of 17

https://www.mediawiki.org
https://www.mediawiki.org
https://www.orangehrm.com
https://www.orangehrm.com

(EC2). The third is between the same cloud-based soft-
ware service hosted on the same cloud platform (EC2)
with different Auto-scaling polices. The parameters of
these experiments are listed in Table 3.
For OrangeHRM experiments (hosted on EC2 and

Azure), we simulate the workload using an Apache JMe-
ter script (http://jmeter.apache.org/) and run through
Redline13 services after connecting our cloud accounts
to the service (https://www.redline13.com).
We used Redline13 services by uploading the test

script into our account; which allows us to easily deploy
JMeter test plans inside our cloud domain and repeat
the tests without the need to reset the test parameters
again. This allows efficient extraction of the data. The
experimental data has been collected through both Red-
line13 management portal and the monitoring services
from EC2 and Azure. The service requests consisted of
an HTTP request to all pages and links of OrangeHRM
by gaining login access using the following steps via the
Apache JMeter:

� Path = /.
� Method = GET.
� Parameters = username, password and login button.

We used the Redline13 Pro services to test Mediawiki,
which allows us to test the targeted application by cover-
ing HTTP requests for all pages and links, including get-
ting authentication (log in) to the application’s admin
page. In this paper, we report the behavior of the service
software in response to the most basic service request,
i.e. a generic HTTP request. The JMeter script allows us
to send an HTTP/HTTPS request to the targeted appli-
cation, and parses HTML files for images and other em-
bedded resources (i.e. applets, stylesheets (CSS), external
scripts, frames, iframes, background images…etc.), and

sends HTTP retrieval requests [37]. For our purposes it
was sufficient to issue the simplest HTTP Request, i.e.
logging in to the software service and getting in response
an acceptance of the login request. Figure 4 illustrates
our way to test the scalability of cloud-based software
services.

Experimental process
The cloud resources must be adequately configured to
measure up to the workload in order to achieve efficient
performance and scalability. We considered two demand
scenarios as shown in Fig. 2. The first scenario follows
the steady rise and fall of demand pattern (see Fig. 2a).
The second scenario consists of a series of stepwise
increases and falls in demand as shown in Fig. 2b. Exam-
ples of the two kinds of experimental demand patterns
(users running) are shown in Fig. 5. Figure 5a is an ex-
ample of experiments on Mediawiki in AWS EC2 and
Fig. 4b is an example of experiments on OrangeHRM in
Microsoft Azure. We varied the volume of demand and
experimented with four demand scenarios: 100, 200, 400
and 800 service requests in total.
All experimental settings were repeated 20 times, in

total 640 experimental were conducted. The average
number of simultaneously active software instances and
the average response time for all service requests for
each experimental run has been calculated. In this study,
the system average response time was measured as the
average time that the targeted system takes to process
an HTTP request once it was received. The averages and
standard deviations of simultaneously active software
instances and average response times over the 20 experi-
mental runs have been calculated. The standard devia-
tions are included alongside the averages in the results
graphs.

Measured cloud-based software services result
Results for the same cloud-based software system on EC2
and Azure
To achieve fair comparisons between two public clouds,
we used similar software configurations, hardware set-
tings, and a workload generator in the experiments. To
measure the scalability for the proposed demand scenar-
ios for the first cloud-based software service (Oran-
geHRM) hosted in EC2 and Azure. The average number
of OrangeHRM instances for both scenarios and for the
four demand workloads are shown in Fig. 6. The average
response times for both scenarios and four demand
workloads are shown in Fig. 7. In both figures, the ‘Ideal’
lines show the expected value of average response time,
assuming that the scaling of the software service works
perfectly. The ‘Real’ curves show the actual measured
average response times.

Table 2 Auto-Scaling polices

Auto-Scaling Policies

Add Instance When 80% > = CPUUtilization < +infinity

Remove Instance When 30% < = CPUUtilization > − infinity

Table 3 Cloud-based services, workload, and cloud platform

System service Cloud provider /
Instance type

Workload generator

OrangeHRM Amazon EC2 /
t2.micro

JMeter script run
by Redline13 services.

OrangeHRM Microsoft Azure /
Standard A1

JMeter script run
by Redline13 services.

Mediawiki Amazon EC2 /
t2.medium

Redline13

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 7 of 17

http://jmeter.apache.org/
https://www.redline13.com

We note that there are variations in average response
times for the same cloud-based application hosted on
two different cloud platforms (EC2 and Azure). So we
checked all configurations for instances, Auto-Scaling,
and Load-Balancer services for both cloud accounts, to
make sure that all settings match. We re-ran a number
of tests to make sure that the variations in results are
not caused by configuration differences.
We note that there have been other investigations about

variations in average response times for cloud-based appli-
cations by [38, 39]. There are a number of factors that
could cause variations such as: bursty workload, software
component management strategies, bursts in system con-
sumption of hardware resources, and network latency.
However, all software configurations, hardware settings,
and workload generator are similar in our experiments.
The observed average response time values for Azure

for the stepped rise and fall of demand scenario are

shown in Fig. 7d. Starting from the demand size of 200
the response time increases significantly. Once the de-
mand size reached 800 the average response time began
to decline significantly. In contrast, response time values
for EC2 for the same scenario which shown in Fig. 7c,
have increased gradually with less variation.
We calculated the scalability metrics ηI and ηt for the

two demand scenarios for the cloud-based application
for both cloud platforms. The values of the scalability
metrics are shown in Table 4. The calculated metrics for
EC2 show that in terms of volume scalability the two
scenarios are similar, the scaling being slightly better in
the context of the step-wise increase and decrease of de-
mand scenario. In contrast, Azure shows better volume
scaling in the first scenario (Steady rise and fall) with
around 0.65, while in the second scenario the volume
scaling performance for the Azure is slightly less than
the corresponding performance for the EC2.
In terms of quality scalability, the EC2 hosted system

scales much better in the context of the first scenario,
steady rise and fall of demand, than in the case of the
second scenario with step-wise increase and decrease of
demand. In contrast, Azure shows lower quality scalabil-
ity than EC2 in this respect, with the metric being 0.45
in the first scenario, and 0.23 for the second scenario.
We note from the values of both metrics ηI and ηt for

both clouds that software system performed better with
respect to both volume and quality in the first scenario,
steady rise and fall of demand, which is more realistic
and simpler demand scenario for many cloud-based soft-
ware services. In general, we conclude that OrangeHRM
performed better in Amazon EC2, in the terms of quality
scalability, while performed slightly better in Azure in
the terms of volume scalability for the steady rise and
fall demand scenario. In the case of the variable rise and
fall of demand, the OrangeHRM performs considerably
better on the EC2 than on the Azure.
The big difference in the average response times for

the software system running on the two cloud platforms

Fig. 4 Scalability testing plan

Fig. 5 Typical experimental demand patterns: a Mediawiki/EC2 -
Steady rise and fall of demand; b OrangeHRM/Microsoft Azure -
Series of step-wise increases and decreases of demand

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 8 of 17

Fig. 6 The average number of software instances. a OrangeHRM/EC2 – Steady rise and fall of demand scenario. b OrangeHRM/Azure - Steady rise
and fall of demand scenario. c OrangeHRM/EC2– Series of step-wise increases and decreases of demand scenario. d OrangeHRM/Azure– Series of
step-wise increases and decreases of demand scenario

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 9 of 17

Fig. 7 The average response times. a OrangeHRM/EC2 – Steady rise and fall of demand scenario. b OrangeHRM/Azure - Steady rise and fall of
demand scenario. c OrangeHRM/EC2– Series of step-wise increases and decreases of demand scenario. d OrangeHRM/Azure– Series of step-wise
increases and decreases of demand scenario

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 10 of 17

indicates that either the software system is tailored bet-
ter to the provisions of the EC2 system or that the Azure
might have issues with the speed of service delivery for
the kind of service software systems like the Oran-
geHRM (or for some particular kind of technical aspect
of this software system). Both options raise interesting
questions and opportunities for further investigation of
the technical match between a software system and the
cloud platforms on which it may run.

Results for different cloud-based software systems on EC2
We used different software configurations, hardware set-
tings, and workload generator in this set of experiments
to measure the scalability of the two scenarios for both
cloud-based software services that have been hosted in
EC2. We changed the instance type and the workload
generator in order to see the changes in scalability per-
formance when using different and larger experimental
settings. The purpose of this kind of comparison is to
see the effects on the scalability performance using the
same cloud platform while using different types of
instances and workload generators. The average number
of OrangeHRM instances for both scenarios and for the
four demand workload levels are shown in Fig. 6a and c.
The average numbers of MediaWiki instances for both
scenarios and for the four workload levels are shown in
Fig. 8a and b. The average response times of Oran-
geHRM for both scenarios and four demand workload
levels are shown in Fig. 7a and c. The average response
times of MediaWiki for both scenarios and for the four
workload levels are shown in Fig. 8c and Fig. 6d.
We note that in the case of the MediaWiki we found a

case of over-provisioning of software instances, i.e. when
the measured average number of software instances is
larger than what would be expected as ideal perform-
ance according to Eq. (1) – see Fig. 8b. Given that we
found this for the scenario with many stepwise up and
down changes of the demand, a possible reason for this
is the slow or delayed down-elastic response of the cloud
platform. Our volume performance metric does not ac-
count for over-provision as it assumes by default under-
provision. Consequently, the over-provision, in this case,
distorts somewhat the performance metric (increases it).
One way to correct for this is to include a penalty for

over-provisioning. Considering the symmetric nature of
the deviation from the idea (downward or upward) in
terms of its impact on the performance and on the geo-
metric calculations in Eq. (5), we can modify this equa-
tion as follows:

A ¼
X

k¼1;…;n
Dk � Dk−1ð Þ � ðIk � 2 � Ik � I�k½ �þ

þIk−1 � 2 � Ikþ1 � I�kþ1½ �þÞ=2
ð10Þ

where [x]+ represents the value of x if it is positive and 0
otherwise. This change of the calculation avoids the dis-
tortion of the metric caused by potential over-provision.
Table 5 shows the calculated values for the scalability

metrics ηI and ηt for the two demand scenarios for both
OrangeHRM and MediaWiki cloud-based systems. The
corrected volume scalability performance metric, ac-
cording to Eq. (10), for the MediaWiki for the second
scenario is reported in Table 5 in italics.
The calculated metrics show that in terms of volume

scaling the two scenarios give similar performance met-
rics for both systems. The scaling is slightly better in the
context of the scenario with step-wise increase and
decrease of demand for OrangeHRM. In contrast, for
MediaWiki, the performance metrics indicate that the
software performs slightly better in the first scenario,
steady rise and fall of demand than in the second sce-
nario. In terms of quality scalability, both systems scale
much better in the context of the first scenario, steady rise
and fall of demand, than in the case of the second scenario
with step-wise increase and decrease of demand.
Comparing the two software systems running on the

EC2, the metrics show that the MediaWiki runs at a
considerably higher volume scalability performance than
the OrangeHRM in both demand scenarios. The quality
scalability metrics show at the MediaWiki has higher
performance than the OrangeHRM in this respect in the
first scenario and the performances are relatively close
in this sense in the case of the second scenario. One pos-
sible factor behind the different volume scalability perform-
ance is that we ran the MediaWiki on t2.medium virtual
machines, while the OrangeHRM was run on t2.micro vir-
tual machines. Interestingly this difference in the virtual
machines made no major difference to the quality scaling
of the two software systems. In principle, the difference in
the volume scalability performance may point to the pos-
sibility that technical solutions in the MediaWiki system
support more the volume scaling of the system than the
corresponding solutions in the OrangeHRM. A deeper
insight and investigation into the components of these
systems responsible for the performance difference could
deliver potentially significant improvements to the system
with the weaker scalability performance metrics.

Table 4 Scalability metrics values

Cloud Provider Scenario Metric

ηI ηt
Amazon EC2 Steady rise and fall 0.5687 0.9041

Step-wise increase and decrease 0.5882 0.5201

Microsoft Azure Steady rise and fall 0.6532 0.4526

Step-wise increase and decrease 0.5592 0.2372

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 11 of 17

Fig. 8 The average response times and number of software instances for MediaWiki in EC2. a, b Average number of software instances- Steady
rise and fall of demand scenario, Series of step-wise increases and decreases of demand scenario respectively. c, d Average response times –
Steady rise and fall of demand scenario, Series of step-wise increases and decreases of demand scenario respectively

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 12 of 17

Results for the same cloud-based software system on EC2
with different auto-scaling policies
We used the same software configurations, hardware
settings, and workload generator in this set of experi-
ments to measure the scalability of the two scenarios for
the same cloud-based software services that have been
hosted in EC2, with different Auto-Scaling policies. The
first set of policies are the default policies that are pro-
vided by EC2 cloud when setting up an Auto-Scaling
group (option 1). We pick out random scaling policies
for the second set of experiments (option 2). The Auto-
scaling policies that have been used for this set of exper-
iments are given in Table 6.
The purpose of this kind of comparison is to see the

effects on the scalability performance using the same
cloud platform while using same types of instances and
workload generators, with different auto-scaling policies.
The average number of MediaWiki instances (Option 2)
for both scenarios are shown in Fig. 9a, b. The average
response times of MediaWiki (Option 2) for both sce-
narios shown in Fig. 9 c, d. The average response times
and number of software instances for MediaWiki in EC2
(Option 1) - see Fig. 8.
We note two cases of over-provisioning of MediaWiki

software instances for both 200 and 400 demand size,
when we used new set of auto-scaling policies – see Fig.
8b. Table 7 shows the calculated values for the scalability
metrics ηI and ηt for the two demand scenarios for Med-
iaWiki cloud-based systems for both auto-scaling pol-
icies options. The corrected volume scalability
performance metric, according to Eq. (10), for the sec-
ond scenario is reported in Table 7 in italics.
In the term of average response time, we note that

there are big differences in the average of response times
for the second scenario as it gradually from 2.035 s for

demand size 100 to 9.24 s for demand size 800. While it
graduates from 1.02 s for demand size 100 to 3.06 s for
demand size 800, for the second scenario- Step-wise
increase and decrease.
We note in term of volume scaling that the experi-

ments of MediaWiki with the second option of auto-
scaling policies, increased 4% and 11% for the first and
second scenarios respectively. While in term of quality
scaling the the values has decresed 4.5% and 10% for the
first and second scenarios respectively. If we draw a
comparison between the two options of auto-scaling pol-
icies, we note that efficiency is increased when we used
the default auto-scaling policies (option 1).

Discussion
The scalability metrics [12] address both volume and
quality scaling of cloud-based software services and pro-
vide a practical measure of these features of such sys-
tems. This is important in order to support effective
measurement and testing the scalability of cloud-based
software systems. These metrics are distinct from elasti-
city oriented metrics [4].
We used two demand scenarios to demonstrate the ef-

fect of demands patterns on scaling metrics. Using more
than one scenario can be used to improve cloud-based
software services to fit specified demand scenario expec-
tations. This can be useful, to track changes in such sce-
narios that trigger interventions in terms of systems
upgrade or maintenance or direct investment of software
engineering resources in the development of focused up-
grades for the system. Demand scenarios combined with
multi-aspects of quality scaling metric can also be used
to determine rational QoS expectations and likely varia-
tions depending on changes in demand scenarios.
Here we use the quality scalability metric defined by

considering the system average response time. Alterna-
tive quality scaling metrics may be defined by consider-
ing other quality aspects of the system such as system
throughput or recovery rate [11]. Expanding the range
of quality measurements provides a multiple factor view
of quality scalability to support the trade-off options in
the context of QoS offerings in the case of service
scaling.
We understand the importance and need for utility-

perspective scalability metric and measurements. There-
fore, our proposed metrics can be integrated into the
utility-oriented scalability metric proposed by Hwang et
al. [11], by combining our metrics as the performance
and/or quality components of their utility-oriented scal-
ability metric. This will allow the analysis of the scalabil-
ity of cloud-based software services from both technical
and production-driven perspectives. The utility oriented
productivity metric (P(Λ)) is given as [11]:

Table 5 Scalability metrics values

Cloud-
Based
System

Scenario Metric

ηI ηt

OrangeHRM Steady rise and fall 0.5687 0.9041

Step-wise increase
and decrease

0.5882 0.5201

MediaWiki Steady rise and fall 0.7556 0.9664

Step-wise increase
and decrease

0.7421
0.7183

0.5012

Table 6 Auto-Scaling polices

Auto-Scaling Policies

Option 1 Add Instance When 80% > = CPUUtilization < +infinity

Remove Instance When 30% < = CPUUtilization > − infinity

Option 2 Add Instance When 70% > = CPUUtilization < +infinity

Remove Instance When 10% < = CPUUtilization > − infinity

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 13 of 17

Fig. 9 The average response times and number of software instances for MediaWiki in EC2 (Option 2). a, b Average number of software
instances- Steady rise and fall of demand scenario, Series of step-wise increases and decreases of demand scenario respectively. c, d) Average
response times – Steady rise and fall of demand scenario, Series of step-wise increases and decreases of demand scenario respectively

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 14 of 17

P Λð Þ ¼ p Λð Þ � ω Λð Þ=c Λð Þ ð11Þ
where Λ is the system configuration, p(Λ) is the per-
formance component of the metric – in our case this is
the volume scalability metric, ω(Λ) is the quality compo-
nent of the metric – in our case this is the quality scal-
ing metric, and c(Λ) is the cost component of the
metric. This leads to a re-definition of the utility-ori-
ented metric as:

P Λð Þ ¼ ηI Λð Þ � ηt Λð Þ=c Λð Þ ð12Þ
We calculated the integrated scalability metric (see

costs in Table 1) for the two demand scenarios for all
cloud-based applications for both cloud platforms. The
values of the utility-oriented scalability metrics are
shown in Table 8 – note that the MediaWiki experi-
ments used more powerful and more expensive virtual
machines than the experiments with the OrangeHRM
on the EC2. Our utility oriented scalability calculations
show that in the case of the systems that we compared
the best choice is to use smaller and cheaper virtual ma-
chines on the EC2. The corrected integrated scalability
metric, based on Eq. (10), for the MediaWiki for the sec-
ond scenario, is reported in Table 8 in italics.
The technical scalability metrics that we used in this

paper allow exploring in more detail the contribution to

the system scalability of various components and tech-
niques used in software systems. By instrumenting the
software system [40] it becomes possible to determine
these contributions and using this information to im-
prove the system. Potentially, different components,
technologies or technical solutions may fit different
degree with the cloud platform’s provisions. The tech-
nical scalability metrics that we used here combined
with instrumentation could allow the identification of
best matches that can improve the system scalability.

Conclusions and future work
In this paper, we demonstrate the use of two technical
scalability metrics for cloud-based software services for
the comparison of software services running on the
same and also on different cloud platforms. The under-
lying principles of the metrics are conceptually very sim-
ple and they address both the volume and quality scaling
performance and are defined using the differences
between the real and ideal scaling carves. We used two
demand scenarios, two cloud-based open source soft-
ware services (OrangeHRM and MediaWiki) and two
public cloud platforms (Amazon AWS and Microsoft
Azure). Our experimental results and analysis show that
the metrics allow clear assessments of the impact of de-
mand scenarios on the systems, and quantify explicitly
the technical scalability performance of the cloud-based
software services. The results show that the metrics can
be used effectively to compare the scalability of software
on cloud environments and consequently to support de-
ployment decisions with technical arguments.
Some interesting scalability behavior has been noted

through the analysis, such as big variations in average
response time for similar experimental settings hosted in
different clouds. A case of over provision state has been
accrued when using higher capacity hardware configura-
tions in the EC2 cloud.
We believe that the technical-based scalability metrics

can be used in designing and performing scalability test-
ing of cloud-based software systems, in order to identify
system components that critically contribute to the tech-
nical scaling performance. We have shown the integra-
tion of our technical scalability metrics into a previously
proposed utility oriented metric. Our metrics can also
be extended, by considering multiple service quality as-
pects and combined with a range of demand scenarios
to support the fine-tuning of the system. Such things
can help the identification of QoS trade-offs, and estima-
tion of genuine scalability performance expectations
about the system depending on demand scenarios.
Future work will include the consideration of other

cloud platforms (e.g. Google Cloud, IBM), demand
workload generators, and other cloud-based software
services, in order to extend the practical validity of the

Table 7 Scalability metrics values

Cloud-Based System Scenario Metric

ηI ηt
MediaWiki (Auto-Scaling
policies option 1)

Steady rise and fall 0.7556 0.9664

Step-wise increase
and decrease

0.7421
0.7183

0.5012

MediaWiki (Auto-Scaling
policies option 2)

Steady rise and fall 0.7923 0.9202

Step-wise increase
and decrease

0.8510
0.8217

0.4060

Table 8 Integrated scalability metric values

Cloud-Based System /
Cloud provider

Scenario Integrated
Metrics

OrangeHRM / EC2 Steady rise and fall 38.95

Step-wise increase
and decrease

23.18

OrangeHRM / Azure Steady rise and fall 4.93

Step-wise increase
and decrease

2.21

MediaWiki (Auto-Scaling
policies option 1)

Steady rise and fall 14.04

Step-wise increase
and decrease

7.15 6.92

MediaWiki (Auto-Scaling policies
option 2)

Steady rise and fall 14.02

Step-wise increase and
decrease

6.64 6.42

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 15 of 17

work. We also aim to consider further demand patterns
(such as variable width sudden peaks in demand, sea-
sonal demand) to see the impact of these scenarios on
the scalability performance of cloud-based software ser-
vices. Another aspect of future work will focus on using
whole code instrumentation technique in order to iden-
tify the software system or cloud platform components
that contribute critically to variations in average re-
sponse times for the same cloud-based application with
the similar experimental settings in different clouds.

Abbreviations
D and D’: Service demand volumes; I and I′: The corresponding number of
software instances; QoS: Quality of service; SaaS: Software as services;
SLA: Service level agreement; tr and t’r: The corresponding average response
times; VMs: Virtual machines; ηI: Volume scalability metric; ηt: Quality
scalability metric

Acknowledgements
This research is supported by a PhD scholarship from Philadelphia University
– Jordan for Amro Al-Said Ahmad.

Authors’ contributions
The core of this paper is based on work developed for ASA PhD project at
the University of Keele, supervised by PA. Both authors read, edited, and
approved the final manuscript.

Authors’ information
Amro Al-Siad Ahmad has a PhD in scalability analysis of cloud-based systems
(2019) from Keele University, UK. Prior to his PhD, he obtained bachelor
degree in Software Engineering (2009) from Philadelphia University in Jordan,
and a Master Degree in Computer Science (2014) with distinction from
Amman Arab University, Jordan. He works in the areas of scalability of cloud
computing and software engineering.
Peter Andras has a BSc in computer science (1995), an MSc in artificial
intelligence (1996) and a PhD in mathematical analysis of neural networks
(2000), all from the Babes-Bolyai University, Cluj, Romania. He is a Professor in
the School of Computing and Mathematics, Keele University, UK. He has
published 2 books and over 100 papers. He works in the areas of complex
systems, computational intelligence and computational neuroscience. Dr.
Andras is Senior Member of IEEE, member of the International Neural
Network Society, of the Society for Artificial Intelligence and Simulation of
Behaviour, and Fellow of the Royal Society of Biology.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 December 2018 Accepted: 16 July 2019

References
1. Liu HH (2011) Software performance and scalability: a quantitative

approach. Wiley, Hoboken
2. Atmaca T, Begin T, Brandwajn A, Castel-Taleb H (2016) Performance evaluation

of cloud computing centers with general arrivals and service. IEEE Trans
Parallel Distrib Syst 27:2341–2348. https://doi.org/10.1109/TPDS.2015.2499749

3. Becker M, Lehrig S, Becker S (2015) Systematically deriving quality metrics for
cloud computing systems. In: Proceedings of the 6th ACM/SPEC international
conference on performance engineering - ICPE ‘15. ACM, New York, pp 169–174

4. Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: what
it is , and what it is not. In: Presented as part of the 10th international
conference on autonomic computing. USENIX, San Jose, pp 23–27

5. Lehrig S, Eikerling H, Becker S (2015) Scalability, elasticity, and efficiency in
cloud computing: a systematic literature review of definitions and metrics.
In: Proceedings of the 11th international ACM SIGSOFT conference on
quality of software architectures - QoSA ‘15, pp 83–92

6. Buyya R, Ranjan R, Calheiros RN (2010) InterCloud : utility-oriented Federation
of Cloud Computing Environments for scaling of. In: Hsu C-H, Yang LT, Park JH,
Yeo S-S (eds) Algorithms and architectures for parallel processing (10th
International Conference, ICA3PP 20). Springer, Berlin, Heidelberg, pp 13–31

7. Hwang K, Shi Y, Bai X (2015) Scale-out vs. scale-up techniques for cloud
performance and productivity. In: Proceedings of the international conference
on cloud computing technology and science, CloudCom, pp 763–768

8. Blokland K, Mengerink J, Pol M (2013) Testing cloud services: how to test
SaaS, PaaS & IaaS, Rocky Nook, Inc.

9. Aljahdali H, Albatli A, Garraghan P, et al (2014) Multi-tenancy in cloud
computing. In: Proceedings - IEEE 8th international symposium on service
oriented system engineering, SOSE, 2014. Oxford, pp 344–351

10. Islam S, Lee K, Fekete A, Liu A (2012) How a consumer can measure elasticity for
cloud platforms. In: Proceedings of the third joint WOSP/SIPEW international
conference on performance engineering - ICPE ‘12. ACM, New York, p 85

11. Hwang K, Bai X, Shi Y et al (2016) Cloud performance modeling with
benchmark evaluation of elastic scaling strategies. IEEE Trans Parallel Distrib
Syst 27:130–143. https://doi.org/10.1109/TPDS.2015.2398438

12. Al-Said Ahmad A, Andras P (2018) Measuring the scalability of cloud-based
software services. In: 2018 IEEE World Congress on Services (SERVICES). IEEE,
San Francisco, pp 5–6. https://doi.org/10.1109/SERVICES.2018.00016

13. Jayasinghe D, Malkowski S, Wang Q et al (2011) Variations in performance
and scalability when migrating n-tier applications to different clouds. In:
Proceedings - 2011 IEEE 4th international conference on CLOUD
computing, CLOUD 2011, pp 73–80

14. Jayasinghe D, Malkowski S, Li J et al (2014) Variations in performance and
scalability: an experimental study in IaaS clouds using multi-tier workloads.
IEEE Trans Serv Comput 7:293–306. https://doi.org/10.1109/TSC.2013.46

15. Gao J, Pattabhiraman P, Bai X, Tsai WT (2011) SaaS performance and
scalability evaluation in clouds. In: Proceedings - 6th IEEE international
symposium on service-oriented system engineering, SOSE 2011. IEEE, Irvine,
pp 61–71

16. Al-Said Ahmad A, Andras P (2018) Measuring and testing the scalability of
cloud-based software services. In: 2018 fifth international symposium on
innovation in information and communication technology (ISIICT), Amman,
pp 1–8. https://doi.org/10.1109/ISIICT.2018.8613297.

17. Jennings B, Stadler R (2015) Resource Management in Clouds: survey and
research challenges. J Netw Syst Manag 23:567–619. https://doi.org/10.1007/
s10922-014-9307-7

18. Gao J, Bai X, Tsai WT, Uehara T (2013) SaaS testing on clouds - issues,
challenges, and needs. In: Proceedings - 2013 IEEE 7th international
symposium on service-oriented system engineering, SOSE 2013, pp 409–415

19. Al-Said Ahmad A, Brereton P, Andras P (2017) A systematic mapping study of
empirical studies on software cloud testing methods. In: Proceedings 2017
IEEE international conference on software quality, reliability and security
companion, QRS-C 2017, pp 555–562. https://doi.org/10.1109/QRS-C.2017.94

20. Geetha N, Anbarasi MS (2015) Ontology in cloud computing: a survey. Int J
Appl Eng Res 10(23):43373–43377. https://doi.org/10.1007/s12243-014-0450-7

21. Hu Y, Deng B, Peng F et al (2016) A survey on evaluating elasticity of cloud
computing platform. In: World automation congress proceedings, pp 1–4

22. Herbst NR, Kounev S, Weber A, Groenda H (2015) BUNGEE: an elasticity
benchmark for self-adaptive IaaS cloud environments. In: Proceedings - 10th
international symposium on software engineering for adaptive and self-
managing systems, SEAMS 2015, pp 46–56

23. Bauer A, Herbst N, Kounev S (2017) Design and evaluation of a proactive,
application-aware auto-scaler. In: Proceedings of the 8th ACM/SPEC on
international conference on performance engineering - ICPE ‘17. ACM, New
York, pp 425–428

24. Beltran M (2016) Defining an elasticity metric for cloud computing environments.
In: Proceedings of the 9th EAI international conference on performance
evaluation methodologies and tools. ICST (Institute for Computer Sciences, social-
informatics and telecommunications engineering). ICST, Brussels, pp 172–179

25. Kuhlenkamp J, Klems M, Röss O (2014) Benchmarking scalability and elasticity of
distributed database systems. Proc VLDB Endow 7:1219–1230. https://doi.org/1
0.14778/2732977.2732995

26. Ilyushkin A, Ali-Eldin A, Herbst N et al (2017) An experimental performance
evaluation of autoscaling policies for complex workflows. In: Proceedings of

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 16 of 17

https://doi.org/10.1109/TPDS.2015.2499749
https://doi.org/10.1109/TPDS.2015.2398438
https://doi.org/10.1109/SERVICES.2018.00016
https://doi.org/10.1109/TSC.2013.46
https://doi.org/10.1109/ISIICT.2018.8613297
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1109/QRS-C.2017.94
https://doi.org/10.1007/s12243-014-0450-7
https://doi.org/10.14778/2732977.2732995
https://doi.org/10.14778/2732977.2732995

the 8th ACM/SPEC on international conference on performance
engineering - ICPE ‘17. ACM, New York, pp 75–86

27. Hasan Jamal M, Qadeer A, Mahmood W et al (2009) Virtual machine
scalability on multi-core processors based servers for cloud computing
workloads. In: Proceedings - 2009 IEEE international conference on
networking, architecture, and storage, NAS 2009, pp 90–97

28. Lehrig S, Sanders R, Brataas G et al (2018) CloudStore — towards scalability,
elasticity, and efficiency benchmarking and analysis in cloud computing. Futur
Gener Comput Syst 78:115–126. https://doi.org/10.1016/j.future.2017.04.018

29. Brataas G, Herbst N, Ivansek S, Polutnik J (2017) Scalability analysis of cloud
software services. In: Proceedings - 2017 IEEE international conference on
autonomic computing, ICAC 2017, pp 285–292

30. Woodside M (2001) Scalability metrics and analysis of Mobile agent systems.
In: Wagner T, Rana OF (eds) Infrastructure for agents, multi-agent systems,
and scalable multi-agent systems. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp 234–245

31. Vasar M, Srirama SN, Dumas M (2012) Framework for monitoring and
testing web application scalability on the cloud. In: Proceedings of the
WICSA/ECSA 2012 companion volume on - WICSA/ECSA ‘12, p 53

32. Autili M, Di Ruscio D, Paola I, et al (2011) CHOReOS dynamic development
model definition (D2. 1), Technical report.

33. Xiao Z, Chen Q, Luo H (2014) Automatic scaling of internet applications for
cloud computing services. IEEE Trans Comput 63:1111–1123

34. Amazon EC2 (2019) What Is Amazon EC2 Auto Scaling? https://docs.aws.
amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.
html. Accessed 23 Jan 2019

35. OrangeHRM OrangeHRM REST APIS. https://api.orangehrm.com/?url=/
apidoc/index.html. Accessed 14 Feb 2019

36. Microsoft Azure (2017) Caching. https://docs.microsoft.com/en-us/azure/
architecture/best-practices/caching. Accessed 15 Mar 2019

37. JMeter (2019) JMeter HTTP Request. https://jmeter.apache.org/usermanual/
component_reference.html#HTTP_Request. Accessed 1 Apr 2019

38. Wang Q, Kanemasa Y, Li J et al (2012) Response time reliability in cloud
environments: an empirical study of n-tier applications at high resource
utilization. In: Proceedings of the IEEE symposium on reliable distributed
systems, pp 378–383

39. Butler B (2016) Who’s got the best cloud latency? https://www.
networkworld.com/article/3095022/cloud-computing/who-s-got-the-best-
cloud-latency.html,. Accessed 19 Mar 2018

40. Jayathilaka H, Krintz C, Wolski R (2017) Performance monitoring and root
cause analysis for cloud-hosted web applications. In: Proceedings of the
26th international conference on world wide web - WWW ‘17. International
World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, pp 469–478

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Al-Said Ahmad and Andras Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:10 Page 17 of 17

https://doi.org/10.1016/j.future.2017.04.018
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://api.orangehrm.com/?url=/apidoc/index.html
https://api.orangehrm.com/?url=/apidoc/index.html
https://docs.microsoft.com/en-us/azure/architecture/best-practices/caching
https://docs.microsoft.com/en-us/azure/architecture/best-practices/caching
https://jmeter.apache.org/usermanual/
https://www.networkworld.com/article/3095022/cloud-computing/who-s-got-the-best-cloud-latency.html
https://www.networkworld.com/article/3095022/cloud-computing/who-s-got-the-best-cloud-latency.html
https://www.networkworld.com/article/3095022/cloud-computing/who-s-got-the-best-cloud-latency.html

	Abstract
	Introduction
	Related work
	Scalability performance measurement
	Experimental setup and results
	Experimental process
	Measured cloud-based software services result
	Results for the same cloud-based software system on EC2 and Azure
	Results for different cloud-based software systems on EC2
	Results for the same cloud-based software system on EC2 with different auto-scaling policies

	Discussion
	Conclusions and future work
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

