
\.

':

I

Integrating Measurement Techniques in an Object-Ori~rited
. Systems Design Process

Philippe Li-Thiao-Te

A thesis submitted in partial fulfilment of the requirements of Napier

. University for the degree of Doctor of Philosophy

December 1999

Supervisors:Prof~ Jessie Kennedy and Dr~ John Owens, .

Date of viva: April 20th, 2000

Internal examiner: Dr. Pete Barclay

External examiner: Dr. Dilip Patel

Napier University, School of Computing, Edinburgh, Scotland

Acknowledgements

I wish to express my thanks and acknowledge the assistance to people without whom this thesis

would not exist.

Firstly thanks are due to my supervisors Prof. Jessie Kennedy and Dr. John Owens, both lecturers

of Napier University, Edinburgh, Scotland. I am most grateful to Jessie for her patience, for her

valuable insights in Object-Oriented modelling and database areas. Many of our intense

discussions provided me with focus in my research work and her thorough proofreading and

corrections have contributed to the accuracy of content and style of the thesis. Overall, her support

throughout the year has made this work enjoyable and possible. I would like to thank John for his

valuable advice and for sharing his in-depth knowledge in various areas of object technology. His

guidance on the aims and directions of the thesis permitted me to tackle the obscure and

controversial object-oriented mechanism of method redefinition.

I offer especial thanks to Prof. Mike Jackson of Wolverhampton University for numerous

discussions, useful feedback and criticisms on various aspects of Object Oriented design as well as

the measurement technique areas. His views on many parts of the thesis have helped my

understanding of the obscure issues since the early days of this work. I am also grateful to my

internal and external examiners, respectively Dr. Pete Barclay of Napier University and Dr. Dilip

Pate! of South Bank University, for their valuable comments which contributed to the

improvement of the overall quality of this thesis.

I am indebted in many respects to all the staff, academic, research, support and administrative in

the School of Computing at Napier University which provided me with financial support and time

for writing-up.

I am grateful to all of Arclight Strategy Systems Ltd. staff who gave me support during the last

phases of the writing-up.

I would like to thank my friends for their support and for the many distracting discussions that kept

me alert and aware of numerous aspects of life. Particular thanks are due to Alan Gamy for his

endless cynicism, Cedric Raguenaud for his strong views on a non Object-Oriented world, my

cousin Jean-Luc Haw-Kwan-Yuen for his perspectives on a simple life in a complex society!

I would like to offer warm thanks to my fiancee Agnes LaY, so far but so close, who accompanies

me and fills my life with happiness.

Finally and most of all I would like to thank my family for their forbearance and their support

during these long years away from home. I am most grateful to my parents and my sister Brigitte

and her family for giving me inspirations and strength throughout my life.

-2-

I have special thoughts for late members of my family whom I missed from the outset of my

studies. Especially, I have found memories for my grandad Koung-Koung who taught me honour,

loyalty, respect and proudness in life.

Thank you to you all. Edinburgh, 19th December 1999

The next section gives the same acknowledgements in French.

- 3 -

Remerciements

Je voudrais remercier et exprimer rna reconnaissance aux personnes sans qUI cette these

n'existerait pas.

Tout d'abord, je dois remercier mes directeurs de these Prof. Jessie Jennedy et Dr. John Owens,

respectivement maitre de conferences et professeur a "Napier University", Edimbourg, Ecosse. Je

suis particulierement reconnaissant a Jessie pour sa patience et ses idees pertinentes aussi bien en

conception orientee-objets que dans Ie domaine des bases de donnees. D'innombrables et intenses

discussions m'ont permis de me concentrer sur mon travail de recherche et ses meticuleuses

relectures accompagnees de corrections ont contribue a la rigueur du contenu et du style de cette

these. Plus generalement, ses encouragements durant les annees ont rendu ce travail agreable et

possible. Je voudrais remercier John pour ses recommendations et pour avoir partage avec moi sa

connaissance approfondie dans divers domaines des technologies orientees-objets. Ses conseils

concernant les objectifs et la direction de la these m'ont permis d'aborderl'ambigu et polemique

principe de redefinition des methodes dans les systemes orientes-objets.

J'offre des remerciements speciaux au Prof. Mike Jackson de "Wolverhampton University" pour

les discussions, les commentaires et les critiques sur de nombreux aspects de la conception

orientee-objets mais aussi du domaine des techniques de mesures. Ses opinions sur plusieurs

parties de cette these m' ont aide a com prendre les problemes les plus difficiles depuis Ie debut de

ce travail. Je suis aussi reconnaissant a mes ~xaminateurs interne et externe, respectivement Dr.

Pete Barclay de "Napier University" and Dr. Dilip Patel de "South Bank University", pour leurs

precieux commentaires qui ont contribue a l'amelioration de la qualite generale de la these.

Je suis reconnaissant au personnel, academique, chercheur, support technique et administratif du

departement "School of Computing" de "Napier University" qui m'ont finance et accorde du

temps pour l'ecriture de la these. Merci a tout Ie personnel d"'Arclight Strategy Systems Ltd."

pour m 'avoir soutenu pendant les dernieres phases d' ecriture de la these.

Je voudrais remercier mes amis pour leur support et pour les nombreuses discussions divertissantes

qui m' ont permis de rester attentif et au fait des divers aspects de la vie. En particulier, merci a
Alan Garny pour son interminable cynisme, a Cedric Raguenaud pour ses vues determinees sur un

monde non-oriente-objets, a mon cousin Jean-Luc Haw-Kwan-Yuen pour ses perspectives d'une

vie simple dans une societe compliquee!

Je voudrais offrir des remerciements les plus chaleureux a rna fiancee Agnes Lat, si loin mais si

proche, pour m'accompagner et remplir rna vie de bonheur.

Finalement et plus que tout, je tiens a remercier toute rna farnille pour leur patience and leur

soutien pendant ces longues annees loin de la rnaison. Je suis reconnaissant a rnes parents, rna

soeur Brigitte et sa farnille pour me donner l'inspiration et la force tout au long de rna vie.

-4-

Des pen sees speciales vont aux regrettes membres de rna famille que j'ai beaucoup manque lors de

mes etudes. Particulierement, j'ai de chers souvenirs pour mon grand-pere Koung-Koung qui m'a

enseigne honneur, loyaute, respect et fierte dans la vie.

Merci a vous tous. Edimbourg, Ie 19 Decembre 1999

- 5 -

To my parents

-6-

Abstract

The theme of this thesis is the assessment of quality in class hierarchies. In particular, the notion of

inheritance and the mechanism of redefinition from a modelling perspective are reviewed. It is

shown that, in Object-Oriented languages, controversial uses of inheritance can be implemented

and are subject of debate as they contradict the essence of inheritance. The discovery of an

unexpected use of the method redefinition mechanism confirmed that potential design

inconsistencies occur more often than expected in class hierarchies. To address such problems,

design heuristics and measurement techniques are investigated as the main instrument tools for the

evaluation "goodness" or "badness" in class hierarchies. Their benefits are demonstrated within

the design process.

After the identification of an obscure use of the method redefinition mechanism referred to as the

multiple descendant redefinition (MDR) problem, a set of metrics based on the GQMlMEDEA

[Bri&aI94] model is proposed. To enable a measurement programme to take place within a design

process, the necessary design considerations are detailed and the technical issues involved in the

measurement process are presented. Both aspects form ~. methodological approach for class

hierarchy assessment and especially concentrate on the use of the redefinition mechanism.
. .

As one of the main criticisms of the measure~ent science is the lack orgood design feedback, the

, analysis and interpretation phase. of the metfics results is seen: as a crucial phase for inferring,

meaningful conclusions. A novel· data interpretation framework is pr~posed' and includes the use of

various graphical data representations and detection techniques. Also, the notion of redefinition

profiles suggested a, more generic approach whereby a pattern profile can be found for a metric.

The benefits of the data interpretation method for the extraction of meaningful design feedback

from the metrics results are discussed.

The implementation of a metric tool collector enabled a set of experiments to be carried out on the

Smalltalk class hierarchy. Surprisingly, the analysis of metrics results showed that method

redefmition is heavily used compared to method extension. This suggested the existence of

potential design inconsistencies in the class hierarchy and permitted the discovery of the MDR

problem on many occasions. In addition, a set of experiments demonstrates the benefits of example

graphical representations together with detection techniques such as alarmers. In the light of

facilitating the interpretation phase, the need for additional supporting tools is highlighted.

This thesis illustrates the potential benefits of integration of measurement techniques within an

Object-Oriented design process. Given the identification of the MDR problem, it is believed that

the redefinition metrics are strong and simple candidates for detecting complex design problems

occurring within a class hierarchy. An integrated design assessment model is proposed which

logically fits into an incremental design development process. Benefits and disadvantages of the

approach are discussed together with future work.

-7-

Table of contents

Table of contents

GLOSSARY OF TERMS, ABBREVIATIONS, NOTATIONS AND TRADEMARKS 15

1. INTRODUCTION .. 19

2. BACKGROUND ... 25

2.1. INHERITANCE AND ASSOCIATED PROBLEMS ... 27
2.1.1. Use of inheritance 27
2.1.2. Class hierarchy organisation ... 28
2.1.3. Subclassing, subtyping or specialising ... 29
2.1.4. Usability and extensibility .. 31
2.1.5. Property inheritance scheme definition 34
2.1.6. Property ownership transfer 35
2.1.7. Encapsulation: visibility and accessibility of properties .. 36
2.1.8. Consequences of encapsulation on the inheritance scoping control .. 38
2.1.9. Common inheritance design mistakes .. 41

2.2. ON THE NOTION OF REDEFINITION ... 47
2.2.1. The redefinition principle ... 48
2.2.2. Conditions for realising method redefinition .. 49
2.2.3. Descendants' heritage extent (hierarchy collapse) .. 50
2:2.4. The main redefinition variants ... 52
2.2.5. Remark on super method calls .. 53
2.2.6. Disinheritance and inheritance refosal .. 54

2.3. HEURISTICS OR GUIDELINES FOR OBJECT-ORIENTED DESIGN .. 56'
2.3.1. Definition and purpose 57
2.3.2. Interpretation. .. : ' 58
2.3.3. Example of heuristic's application. ... 60

2~4·. ASSESSMENT TECHNIQUES : : : 63
2.4.1. Roles of technical measurement ... 64
2.4.2. Software quality model ... 65
2.4.3. Properties of software measures : ... 67
2.4.4. Internal quality factors of 00 design ... 68
2.4.5. Data availability and metrics collection ... 70
2.4.6. Metrics interpretation ... 71

2.4.6.1. Remark on the dependencies between metrics .. 74

3. ASSESSING THE PROPERTIES INHERITANCE SCHEME FOR THE MULTIPLE
DESCENDANT REDEFINITION PROBLEM IN OBJECT -ORIENTED SYSTEMS 76

3.1. METHOD REDEFINITION: USES AND ABUSES .. 79
3.1.1. Method redefinition in class hierarchies .. 79
3.1.2. Multiple descendant redefinition (MDR) problem .. 80
3.1.3. Example inheritance hierarchy that avoids the MDR problem .. 81
3.1.4. Descendants heritage extent for the MDR problem .. 84

3.2. MEASURING REDEFINITION IN OBJECT-ORIENTED SYSTEMS ... 85
3.2.1. The method redefinition assessment ... 85
3.2.2. Percentage of redefined methods per level within a hierarchy (PRMH) 87

3.3. DESIGN CONSIDERATIONS FOR INHERITANCE ASSESSMENT ... 88
3.3.1. Methodological approach for class hierarchy assessment.. ... 89
3.3.2. A design information repository with metaclass facilities .. 90
3.3.3. Class analysers 94
3.3.4. State transition diagram for the method redefinition mechanism 99

3.3.4.1. Remark: method redefinition and unexpected message sends ... 102
3.3.5. Behavioural inheritance analysis ... 105

3.3.5.1. Experiments on the Collection cIass .. 106
3.4. MECHANISMS FOR DATA INTERPRETATION OF METRICS FOR OBJECT-ORIENTED SYSTEMS108

3.4.1. Introduction .. 108
3.4.2. Motivation and approachfor interpretation ... 109
3.4.3. Metrics interpretation framework 111

3.4.3.1. Designers' perceptions and decisions .. 112
3.4.3.2. Raw data representation .. 113
3.4.3.3. Profile analysis and design feedback ... 116
3.4.3.4. Factors affecting the interpretation process ... 118

- 8 -

Table of contents

3.5. CONCLUSION ... 119

4. METRIC TOOL COLLECTOR AND IMPLEMENTATION ISSUES ... 120

4.1. INTRODUCTION .. 120
4.2. REQUIREMENTS ... 121

4.2.1. Features 121
4.3. ANALYSIS AND DESIGN OF THE METRIC COLLECTOR TOOL.. .. 122

4.3.1. Class lineage and parsing strategies .. 122
4.4. ARCHITECTURE ... 124
4.5. USER INTERFACES ... 126

4.5.1. The System Metric Browser .. 126
4.5.2. Metrics derivation .. 127
4.5.3. The method profiles manager ... 128

4.5.3.1. The method profiles browser ... 130
4.5.4. The definition of ranges for the alarmer 133

4.6. CONCLUDING REMARKS .. 135

5. EXPERIMENTS ... 137

5.1. OVERVIEW OF THE METHOD REDEFINITION PROFILES USING THEPRM METRIC 138
5.2. SMALLTALK OBJECT HIERARCHy .. 141
5.3. COLLECTION BRANCH AND STREAM BRANCH ... 142
5.4. WINDOWBUILDERPRO/V BRANCH ... 144

5.4.1. GraphicObject branch 145
5.5. T-GEN SYSTEM .. 146

5.5.1. T-gen system redefinition profile ... 148
5.5.2. T-gen: TreNode branch redefinition profile .. : .. 149
5.5.3. T-gen: AbstractScanner branch redefinition profile ... 151

5.6. . CUMULATIVE MEASURE FOR THE COLLECTION, STREAM, OBJECT

AND GRAPHIC OBJECT BRANCHES : .. ; ... : 153·
5.7. EFFECTS OF THE T-GEN SYSTEM ON THE SMALLTALK HIERARCHY ; .. 156
5.8. EFFECTS OF THE T-GEN SYSTEM ON THE COLLECTION BRANCH REDEFINITION PROFILE 1~7
5.9. METRIC RESULTS VISUkLISATION AND INTERPRETATION .. 159

5.9.1. Surface bar charts .. : 160 .
5.9.2. Surface charts ... 161
5.9.3. Addition bar charts ... 162
5.9.4. Radar charts ... 162
5.9.5. A colour coded range bar charts .. 163
5.9.6. Visualisation uses ... 164

5.10. THE CONCEPT OF "ALARMERS" .. 165
5.11. DATA INTERPRETATION SYSTEM ... 168
5.12. CONCLUSION OF THE EXPERIMENTS .. 168

6. DISCUSSION AND CONCLUSION _._ .. 172

REFERENCES ... 187

A. APPENDIX ... 200

A.l. HEURISTICS' CLASSIFICATION ... 200
A.2. DETAILED DESIGN OF THE MAIN COMPONENTS OF THE METRIC PROTOTYPE TOOL.. 201

A.2.1. Basic metrics repository ... 201
A.2.2. Dictionary structures for metrics .. 202
A.2.3. A persistent repository structure .. 204
A. 2. 4. The profile manager ... 206
A.2.5. The metric engine 208
A.2.6. The hierarchy browser and profile manager designs ... 208
A.2. 7. The method profiles browser .. 213

A.3. REMARKS ON THE CONSEQUENCES OF THE ENCAPSULATION MECHANISM 214

-9-

List of figures

List of figures

Figure 1.1: Objectives of the research work ... 22

Figure 1.2: Measure of level of redefinition in the Smalltalk Object hierarchy ... 23

Figure 2. 1: Subclassing (1), subtyping (2) and specialisation (3) hierarchies 30

Figure 2.2: Class properties 35

Figure 2.3: Transfer of property ownership in an inheritance hierarchy ... 36

Figure 2.4: Example of transfer of property ownership .. 36

Figure 2.5: Property modifiers in 00 programming languages ... 37

Figure 2.6: Stream hierarchy with multiple inheritance ... 40

Figure 2. 7: Traversal paths for single and multiple inheritance .. 4 I

Figure 2.8: Coupling with instance variable ... 44

Figure 2.9: Coupling with method .. 44

Figure 2.10: Coupling with method signature 44

Figure 2. I 1: Coupling with inheritance .. 45

Figure 2.12: ENGINE class ... 45

Figure 2.13: ENGINE hierarchy .. 45

Figure 2; 14: Expected descendant heritage extent 5 I

Figure 2. 15:, Part of the Smalltalk Collection branch .. 52

Figure 2. 16: Different types of methods redefinition .. 53

Figure 2.17: Three possible designs for the class Person 60

Figure 2. 18: Mapping and modelling gap ... 61

Figure 2. 19: A company information system ... 62

Figure 2.20: The GQMlMEDEA model .. 66

Figure 3. 1: Object-oriented design assessment model.. 77

Figure 3.2: Smalltalk hierarchy redefinition profile ... 80

Figure 3.3: Life history of the includes: redefined method in the Smalltalk Collection branch 81

Figure 3.4: MDR and code duplication in the Stream class hierarchy .. 82

Figure 3.5: Stream hierarchy using mixins classes ... 83

Figure 3.6: Descendant heritage extent with MDR anomaly. ... 84

Figure 3.7: Complexity metrics at hierarchy level .. 87

Figure 3.8: Meta-model of main 00 concepts .. 91

Figure 3.9: Tree parsing strategy ... 95

Figure 3.10: Name space collisions with multiple inheritance ... 96

Figure 3. I 1: Class wrapper .. 97

Figure 3. 12: Hierarchy wrapper ... 98

Figure 3. 13: State-chart diagram for method redefinition .. 100

Figure 3. 14: Expected method invocation ... 102

Figure 3. 15: Examples of unexpected method invocations ... 103

Figure 3. 16: Distant MDR scenarios .. 104

Figure 3. I 7: Method life history representation 105

- 10-

List of figures

Figure 3.18: Method life history for the Collection branch 106

Figure 3.20: Analysis, interpretation and interactions ... 113

Figure 3.21: Data representation 114

Figure 3.22: Profile analysis ... 116

Figure 3.23: Interpretationfactors ... 118

Figure 4.1: Levels of derivation 123

Figure 4.2: Parsing strategies in class hierarchies ... 124

Figure 4.3: Metric collector tool architecture 125

Figure 4.4: Roadmap for user interfaces presentation 126

Figure 4.5: Prototype metric tool main window ... 127

Figure 4.6: Redefinition metric at system level .. . 128

Figure 4.7: Method profile list manager ... 129

Figure 4.8: Redefined methods browser 130

Figure ,4.9: Features of the methods browser ... 131

Figure 4.10: Method senders .. 132

Figure 4.11: Method implementors 133

Figure 4.12: Alarmer ranges definition 134

Figure 4.13: Syst(j!m Metric Browser with alarmer display ... 135

Figure 5.1: PRM for the Smalltalk Object hierarchy 139

Figure 5.2 (a) and (b): PRM for the WindowBuilder ProN and T-gen systems 139 , ,.

Figure 5.3 (a) and (b): PRM for the Collection and Stream branches .. 139

Figure 5.4: PRMfor ihe GraphicObject bran~h ... ~ 139

Figure 5:5 (a) and (b): PRMfor the TreNode and AbstractScanner branches .. 140

Figure 5.6 (a) and (b): PRMfor the Object and Collection hierarchies with the T-gen system installed. 140 .'

Figure 5. 7: PCRM and PEM for the Object hierarchy ... 141

Figure 5.8 (a) and (b): PCRM and PEMfor the Collection and Stream hierarchies 142

Figure 5.9 (a) and (b): Collection branch at OfT = 3 and FifeStream at OfT=4 143

Figure 5.10: Collection method profile .. 144

Figure 5.11: PCRM and PEM for the WindowBuifder ProN ... 144

Figure 5.12: PCRM and PEM for GraphicObject branch ... 145

Figure 5.13: GraphicObject method profile .. 146

Figure 5.14: T-gen: ftemSet class redefinition profile ... 148

Figure 5.15: PCRM and PEMfor the T-gen system ... 149

Figure 5.16: T-gen: PCRM and PEMfor the TreNode branch ... 149

Figure 5.17: TreNode method profile .. 151

Figure 5.18: T-gen: PCRM and PEM for the AbstractScanner branch ... 152

Figure 5.19: AbstractScanner method profile 152

Figure 5.20: Cumulative PRMfor the Collection branch ... 153

Figure 5.21: Number of classes per OfT level 153

Figure 5.22: Number of methods per OfT level 154

Figure 5.23: Cumulative PRMfor the Object branch ... 154

Figure 5.24:Cumulative PRM for the GraphicObject branch .. 154

Figure 5.25: Subset of GraphicObject subclasses branch at OfT=3 ... 155

- 11 -

List of figures

Figure 5.26: Smalltalk Object hierarchy with the T-gen system installed. .. 156

Figure 5.27 (a) and (b): PCRM and PEM for the Collection hierarchy with the T-gen system installed .. 158

Figure 5.28 (a) and (b): Surface bar profiles for the Object and GraphicObject branches 160

Figure 5.29 (a) and (b): Surface profiles for the Object and GraphicObject branches 161

Figure 5.30 (a) and (b): Addition bar charts profiles for the Object and GraphicObject branches 162

Figure 5.31 (a) and (b): Radar charts profiles for Object and GraphicObject branches 162

Figure 5.32 (a) and (b): Colour coded bar for the Object and GraphicObject branches 163

Figure 5.33: Data interpretation system ... 168

Figure 6.1: Modelling and assessment tasks ... 181

Figure 6.2: Incremental Design and Assessment Process ... 184

Figure 6.3: Integrated model for design and assessment .. 184

Figure A.1: Dictionary of redefined methods per class ... 202

Figure A.2: Dictionary for the total number of methods per class .. 203

Figure A.3: Dictionary for replaced and extended methods 204

Figure A.4: Persistent repository model 205

Figure A.5: Profile manager model 206

Figure A.6: The hierarchy browser and profile manager designs : 208

Figure A. 7: Metric engine model 209

Figure A.8: The method profiles browser design .. 213

- 12-

List of tables

List of tables

Table 2.1: Identification of objects from textual specifications ... 61

Table 2.2: GQM levels .. 65

Table 3.1: Class designfeatures ... 93

Table 3.2: Attribute design features .. 93

Table 3.3: Method designfeatures .. 94

Table 3.4: Inheritance paths table 95

Table 3.5: State transition table for method redefinition .. 10 1

Table 3.6: Smalltalk Express Object branch redefinition profile 115

Table 5.1: List of assessed hierarchies 138

Table 5.2: Example of equally distributed ranges ... 163

Table 5.3: Summary of visualisation types .. 165

Table A.l: Smalltalk metaclass information. : ... 201

Table A. 2: Allowed property modifiers for a redefined method in Java ... 214

- 13 -

Conference papers

Conference papers

[Ltt&aI97a]

P. Li-Thiao-Te, J. Kennedy and J. Owens, "Mechanisms for Data Interpretation of Metrics
for 00 Systems", TOOLS Asia '97 Conference proceedings, Beijing, China, Sept. 1997.

[Ltt&aI97b]

P. Li-Thiao-Te, J. Kennedy and J. Owens, "Assessing Inheritance for the Multiple
Descendant Redefinition Problem in 00 Systems", OOIS '97 Conference proceedings,
Brisbane, Australia, Nov. 1997.

- 14-

Glossary of terms, abbreviations, notations and trademarks

Glossary of terms, abbreviations, notations and trademarks

Object-oriented technology introduced many concepts which have been interpreted differently

with the research community. This section describes the meaning given to the technical terms used

in the thesis so as to avoid confusion. For convenience, the "Smalltalk notation" will be adopted in

most cases unless differently stated.

Terms

• Originally, properties or attributes were used to describe characteristics of entities e.g. Entity

relationship model [Chen76]. In the 00 paradigm, it is commonly understood that they

represent both the instance variables and behaviour of the class.

• A behaviour or service for a class corresponds to a:

method in Smalltalk and Java,

member function in C++,

feature in EiffeI.

• An instance variable in Smalltalk is the same as a local variable in C++ within a class

definition.

• A class variable in Smalltalk is the equivalent of a static variable in C++ within a class

definition.

• The declaration of the method name and arguments list is referred to as the signature of the

method. For typed systems, it also encompasses the return type of the method.

• Method redefinition is also known as method overriding. Name overloading is different than

redefinition in that it refers to the different signatures for the same method which are bound at

run-time.

• A pure virtual function in C++ is known as deferred function in EiffeI.

• A settor or gettor designates a method which, respectively, sets the value of an attribute or gets

the value of the attribute.

• Methodology: An organised, documented set of procedures and guidelines for one or more

phases of the software life cycle e.g. analysis or design. Many methodologies include a

diagramming notation for documenting the results of the procedure; a step-by-step "cookbook"

approach for carrying out the procedure; and an objective (ideally quantified) set of criteria for

determining whether the results of the procedure are of acceptable quality.

• The term process is understood as a defined set of activities to undertake to realise an objective.

- 15 -

Glossary of tenns, abbreviations, notations and trademar1ls

• The Smalltalk image refers to the Smalltalk class library and some applications. When

Smalltalk is started, the Smalltalk executable system uploads the image in memory. An image

mainly consists of two files: the sources.sml file that contains all the source code and the

change.log that holds all recent user changes to the image. For any code changes, the system

re-compiles the source code into byte code that can be executed by the Smalltalk virtual

machine [GoIRob85].

Abbreviations

• API: Application Programming Interface

• CASE: Computer-Aided Software Engineering

• DIT: Depth of Inheritance Tree

• ER: Entity-Relationship

• IDE: Integrated Development Environment

• OMT: Object Modelling Technique method created by Rumbaugh [Rum91].

• 00: object-oriented

• OOD: object-oriented design

• OOM: object-oriented modelling

Notations

• Level in inheritance

By convention, the depth of inheritance is numbered from the root class to its leaves starting from

O.

• Class property description

A description of a class, at depth of inheritance I can be defined as the description of its properties

i.e. CI={variables, methods} where variables = linst1, inst2, ... , instnl and methods =

<mth10, mth20, ... , mthnO>

- 16 -

Glossary of terms, abbreviations, notations and trademarks

Example:

The notation C2={linstA, instBI. <mthA(), mthB(»} means that a class C is situated at level 2 in

the hierarchy, holds 2 instance variables instA, instB, and two instance methods mthA(), mthBO.

The parameter list will be given when necessary.

• Class property description with inherited features

There will be cases where some or all inherited properties have to be shown for a class. The

purpose of inserting inherited features in the notation will be mainly used to describe methods

which are redefined in a subclass. Thus, a class holding inherited methods i. e. methods defined at

least once in one of its parents will be noted

c = {[inheritedVariables], variables, [inheritedMethods], methods}

where

inheritedVariables= lIinst1, inst2, ... , instnll, inheritedMethods = «mth1(), mth20, ... ,

mthnO»

and inheritedVariables n variables = 0, inheritedMethods n methods = 0. The "[...]"

denotes the fact that the properties are optionally mentioned when using the notation. When a

notation contains inherited methods i.e. « ... », the listed methods physically exist in the subclass

which means that those methods are the ones redefined and therefore inherited. Redefined methods

constitute part of the additional properties of a class.

• Properties access adornment

The Rational Rose 98 1 case tool defmes access adornments to specify the type of access allowed

between classes, as well as on attributes, operations and roles. There are four types of access

adornments: public, private, protected, or implementation and are represented with the graphical

symbol appearing in front of the properties as follows:

......•............................. _-...................................... ~
Access Adornm ent Keys !

.. ·················1
;public !

~rivate
~rotected

~mplemented

Public: Public access means that the members of a class are accessible to all clients.

1 Rational Rose 98, Rational Enterprise Edition, Copyright ©! 1991-1998, Rational Software Corporation, All Rights Reserved, Portions

©!, 1992-1998, Summit Software Company, http://www.rational .com

- 17 -

Glossary of terms, abbreviations, notations and trademarks

Protected: Protected access means that the members of a class are accessible only to subclasses,

friends, or to the class itself.

Private: Private access means that the members of a class are accessible only to the class itself or

to its friends.

Implementation: Implementation access means that the members of a class in a package Pare

accessible only by classes that import the package P.

• Inheritance relationship

If a class B is a subclass of A, the inheritance relationship is denoted B < A; therefore the depth of

inheritance of A < depth of inheritance of B.

Trademarks

• Sun Microsystems, Java and Java Development Kit are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries. http://www.sun.com.

• IBM® is a registered trademark of IBM in the United States. http://www.ibm.com.

• Microsoft, PowerBuilder, Microsoft Foundation Class' (MFC), Windows, PowerPoint, Excel,

the Wizard function and Object Linking and Embedding are trademarks or registered

trademarks of Microsoft. http://www.microsoft.com.

• ENVY is a registered trademark of Object Technology International Inc. (OTI).

• Rational and Rational Rose are registered trademarks of Rational Software Corporation in the

United States and in other countries.

• Eiffel and Design by ContraceM are trademarks of Interactive Software Engineering.

• Borland® C++ is a registered trademark ofInprise Corporation

• ITASCA is a registered trademark of IBEX Computing SA

• Franz and Allegro CLOS language are registered trademark of Franz®, Inc.

http://www.franz.com

- 18 -

1. Introduction

1. Introduction

"Teaching kids to count is fine, but teaching them what counts is best" - Bob Talbert

The design of software applications using object-oriented (00) concepts and techniques is a

challenging process where creativity, risk, uncertainty, experience, judgement and good sense

predominate. Many factors determine the success of application development. Current 00 design

methods provide the designers with a logical and progressive set of tasks and techniques

permitting the discovery of many candidate design solutions to a problem. However, there are still

no reliable ways or "no teachable step-by-step rules" [Mey97] for producing good design. In the

final decision making process, the designers' experiences and knowledge determine the choice of

the design solution. This choice reflects the degree of satisfaction of the requirements and criteria

of the problem, thus the notion of design trade-off. The design choices directly affect the future of

a project.

Object technology provides designers with invaluable concepts and techniques that improve the

software development process. Examples of benefits include a better capture and modelling of the

business. requirements. Similarly, the software applications produced gain benefits from their

degree ofreusability, maintainability and adaptability to new requirements. Overall, such benefits

reduce the cost of the development. To date, the current push for object technology on the market

is significant. In many areas of computing such as object-relational databases, knowledge

management or Internet based applications, the adoption of 00 design methods and 00

programming languages have proven useful in building successful software applications. How

reproducible those experiences are in a different context is unknown. Software engineers have also

learned from unsuccessful experiences. Although object-oriented software development has

existed for decades, several fundamental aspects of object computing are, however, still the subject

of debate and are actively researched [AskBer92, Sho&aI93, Web95]. Essentially, the issues relate

to the appropriateness of the 00 concepts to tackle complex requirements of business applications.

Architectural issues are one of the major aspects of software design. For software to be modular,

one possible approach is to decompose complex problems into simpler sub-problems. In such a

way, the identification of modules is made easier and the important 00 aspect of separation of

concerns is realised. The fundamental unit of construction in 00 design methods is the notion of

object. It combines data and behaviour into a coherent entity. Each object represents a unique

concept in the real world. When objects are assembled together, coherent abstractions of real

world problems are formed and the co-operation between objects permits the realisation of the

features of the application. The abstractions of an 00 model are discovered during the

generalisation process. Overall, abstraction in an object model contributes to the desired

extensibility and reusability aspects of the components.

- 19-

1. Introduction

Inheritance is the 00 concept that permits the abstraction of objects. From a conceptual point of

view, inheritance is the mechanism by which a class referred to as asubclass conforms to another

class, its superclass, thereby forming a class hierarchy. Conceptually, the subclass can be seen as a

specialisation of its parent class. Pragmatically, from a software engineering perspective, authors

have also expressed inheritance as a mechanism for code sharing and code reuse. In a class

hierarchy, the parent classes provide properties that are inherited by their subclasses. Although it is

generally recognised that inheritance is one of the major aspects of 00 modelling, it is also one of

the most difficult to master. In particular, the mechanism of method redefinition is problematic and

raises many conceptual design issues in the context of the class hierarchies.

The various proposed models of the concept of inheritance [Tai96] have undoubtedly affected its

essence. It is the obscure uses of inheritance that raise alarms concerning its interpretation and

validity. To date, the various interpretations are still subject of debate and the characterisation of

good uses of inheritance is problematic. Clearly, the design process requires the application of

skills and experience from the designers, When 00 models present unconventional or suspect uses

of inheritance, the reuse, the extensibility and the maintainability of such models are compromised.

It should be noted that the advent of 00 programming languages has also contributed to the

disagreement on the correct use of inheritance. One possible approach to tackle such a problem is

to reduce the risks for such suspect uses. To do so, guidelines also referred to as recommendations

or heuristics [Fir95, Rie96, Rum96] have been proposed in order to identify and to expres~ the

"good uses" of inheritance. In general, heuristics appear as short textual description of the

appropriate usage of the 00 concepts. Although a heuristic may be conceptually understandable,

the verification that an 00 model satisfies it is difficult. Technically, depending on the nature of

the heuristics, suitable verification methods do not always exist. The area of measurement

techniques addresses such problems and is still actively researched. Ideally, 00 design methods

aim at providing techniques or principles for the evaluation of "goodness" or "badness" of an

object model.

Assessing a design is difficult. Measurement science has suffered from criticisms concerning its

usefulness [Bas&aI95, Bou89, HarNit96, HitMon95a, Kow93]. Nevertheless, it is generally

recognised that measurement techniques are beneficial for tackling issues during the software

development life cycle. Assessment methods can be used for quantifying a particular design

aspect. Most of the founded criticisms in the literature concern the correctness of the metrics

themselves [Fen91]. The difficulty of acceptance of assessment technique; from the developers'

community is due to the additional burden involved in putting a measurement programme in place.

Also, unclear or non-meaningful feedback from the analysis of metrics results does not encourage

the use of such techniques. However, it has been generally recognised that traditional metrics

2 Assessment and measurement techniques will be interchangeably used but the latter term will imply the use of metrics as the

underlying technique.

- 20-

1. Introduction

[Fen91] are not appropriate to the assessment of many aspects of object technology due to the

fundamental differences. Recent experiments with novel set of metrics [Bri&aI94, Hen96, Kem96]

have therefore demonstrated the usefulness of the metrics in an 00 context and emphasised the

need for further research. Again, it should be noted that the fast moving industry of object

technology has not favoured the adoption of measurement techniques during the design process.

Often, designers still rely on experience and "feel" for the evaluation ofthe quality of the design. It

is believed that the provision of adequate measurement tools will embody the designers'

experience and knowledge and thereby, will enable a smooth integration of measurement

techniques as part of the crucial design process. To do so, the quantification of the level of

goodness of an 00 model necessitates a clear understanding of the recommended uses of the

object concepts as well as the identification of the context in which unusual uses of the concepts

may arise. Such issues can be addressed by heuristics and the derivation of appropriate metrics on

the object model is expected to shed light on potential unseen complexities of the design.

Another important aspect of measurement techniques relates to the final phase of a measurement

programme: the analysis and interpretation phase [Bou89, BriCuc98, Ebe92, Hen96, RosHya96].

In the current literature, this area has seldom been addressed although fundamental to the overall

process. Usually, the derivation of metrics produces large data sets which require relevant analysis

methods without which meaningful conclusions cannot be extracted. Often, graphical

representations of the raw data sets facilitate the analysis process as unusual curves or charts may

indicate potential problems. However, it is believed that such a process can be further enhanced in

two ways:

• The use of various types of graphical representations. Often, metrics results are represented as

bar charts or curves but many other types of representations may also be appropriate. The

identification of characteristics of each may guide the process of interpretation to the desired

conclusions on the design.

• The use of various functions for narrowing down large data sets facilitates the analysis

process. Typically, when the conditions on which a problem appears have been identified, it is

interesting to isolate only the metrics results concerned.

In order to tackle the problem of evaluation of quality of an object model, this research work

envisages measurement techniques as the main instrument for design evaluation.

- 21 -

~bje .. -oriented de~gn I

I Heuristics/Guidelines JI-----....,l

r-i Measurement techniques l

r Integrated Object-Oriented Design and Assessment Process I
Figure 1.1: Objectives of the research work

1. Introdudion

Figure 1.1 depicts the objectives of the work. To date, object oriented design methods, design

heuristics and measurement techniques form three separate areas of research. This thesis aims at

reviewing the main design aspects and factors relevant to the problematic evaluation of internal

quality factors of an object model. In particular, the case of inheritance is investigated. The

definition of an appropriate measurement plan is presented and it is demonstrated how the use of

metrics on sample object-oriented models sheds light on the complexities involved in the design of

class hierarchies. This work identifies the fundamental conceptual and technical issues for the

creation of such structures. In parallel, the experiments with measurement techniques contribute to

the definition of a possible integration of these techniques within the design process.

The motivation of this work originates from the following facts:

1. The use of inheritance is desirable in software applications. 00 methods have largely

illustrated their benefits in a learning context [Boo9l, Boo94, Emb92, Fir95, Gra94,

HenEdw94, Mey88, Mey97, Rum91 , Wi196]. Nevertheless, its various uses, sometimes

contradictory, still generate debate amongst research and industry.

2. From a technical point of view, the control of the property inheritance scheme in class

hierarchies is complex and difficult [AdaMoI95, Bou89, Mey97, Sei96, Ste&aI96, Tai96,

Web95]. To date, the concept of inheritance seems to have lost its original meaning to comply

with the requirement needs.

3. Emerging experiments [Bri96, BriCuc98, ChiKem94, Dum&al95, HarNit96, Kem96] and

popularity for measurement techniques seem to indicate that they represent strong candidates

for contributing to the design process [Avo94, BarSwi93, Bas&al94, Bas&a195, Bri&aI95,

Bri&aI94, CheLu93, ChiKem9l, Hen95, Hen96, Hit95, HitMon95b, LewSim98, Lew95a,

LiHen93, LorKid94, RosHya96, Whi97]. In particular, there is a need for further investigation

of assessment techniques for the inheritance concept.

4. Language designers have produced powerful and expressive features that manipulate

inheritance in ways which are sometimes questionable. The modelling gap between

fundamental design concepts and the features of programming languages still raises alarms on

the conceptual validity of a design solution [ArmMit94, Bou89, McKMon93, PapLeJ97,

Rie96, Sho&al93, Whi96a]. Designers expect a design to be reusable and maintainable;

however, there are no methods that guarantee such criteria.

- 22-

1. IntrodJction

To illustrate the benefits of the use of measurement techniques, Figure 1.2 shows an example of

typical expected metrics results. This result has been extracted from chapter 5 and the detailed

analysis can be found there.

The use of measurement techniques for the assessment of an object-oriented design enables the

discovery of unseen behaviour or unclear design situations. The derivation of appropriate metrics

for the design ought to guide the designers to satisfactory indications or directions for

improvement of the characteristics assessed. Thus, measurement techniques give opportunities to

determine the level of goodness or badness of the design.

Figure 1.2: Measure of level of redefinition in the Smalltalk Object hierarchy

In Figure 1.2, the two bar charts represent the redefinition activity within the Smalltalk Object

class hierarchy. The measures taken are for two types of method redefinition: extended methods

(PEM) and replaced methods (peRM). Clearly, the evolution of the redefinition activity down the

levels of hierarchy can be seen. In particular, the amount of peRM is much higher than the

amount of PEM. Such a situation is unexpected and suggests further analysis of the peaks of the

peRM The technique for metrics results analysis is detailed in section 3.4.

The thesis is organised into six chapters, plus "Glossary", "Terminology", "References" and

"Appendix" sections. Chapter two provides a background literature review describing the relevant

aspects of the concept of inheritance, the method redefinition mechanism, the area of heuristics

and the measurement process. The definition of inheritance is reviewed and it is shown how its

various interpretations affect the underlying property scheme. The identification of factors that can

potentially produce inheritance misuses is sought. The description of the method redefinition

mechanism clarifies the various ways of using the technique. Then, the investigation of heuristics

and guidelines for object-oriented design sheds light on the correct ways of using 00 concepts.

Finally, to demonstrate the benefits of measurement techniques, the roles and the key practical

aspects for building and using a measurement programme are highlighted.

Chapter 3 outlines the motivation for assessing the property inheritance scheme. Given the

multiple interpretations and misuses of inheritance and the redefinition technique, a conceptual

design problem referred to as the multiple descendant redefinition problem is identified. In order to

- 21 -

1. Introduction

assess the inheritance characteristics of an object model, a methodological approach for class

hierarchy assessment is described. Then, based on the GQMlMEDEA software quality model, a

new set of metrics is proposed to measure redefinition in 00 systems. Finally, a metrics

interpretation framework is presented to tackle the lack of current assessment techniques

concerning the extraction of meaningful feedback from metrics. In particular, an analysis and

interpretation technique details the benefits of using various graphical representations to represent

metrics results. It is shown how the discovery of unseen phenomena is facilitated and contributes

to the extraction of satisfactory conclusions.

Chapter 4 presents a prototype of a metric collector tool that embodies the features for the

derivation of the redefinition metrics. A brief analysis, design and architecture of the tool are given

together with other implementation issues. This prototype tool enables the automatic derivation of

the metric on class hierarchies, thus demonstrating the usability and applicability properties of the

metrics. The user interfaces are described and implementation issues for the Smalltalk language

are discussed.

Chapter 5 gives details of the experiments using the redefinition metrics. In particular, it is shown

how the analysis of the results permits the detection of unexpected redefinition problems. Various

graphical representations are investigated and the characteristics of each are outlined. In addition, a

simple example of a detection technique is presented.
" . ~

Finally, chapter 6 discusses and concludes the thesis. An integration model of the design process

and assessment techniques is proposed and the potential benefits are presented. Further work

envisions a promising future for the science of measurement within an object-oriented design

process.

- 24-

2. Background

2. Background

"The future has a way of arriving unannounced" - George F. Will

"Experience is the name so many people give to their mistakes" - Oscar Wilde

Advances in object technology have helped many aspects of the design process in software

development methodologies. Object-oriented methods aim at capturing and formalising the

knowledge for designing good quality software. Although object concepts seem well understood

and have proved beneficial, obtaining an acceptable and good object model is non-trivial.

Designing software remains hard. For years, a considerable amount of research literature has

discussed the concepts of object technology [Bo091, Bo094, Emb92, Fir95, Gra94, HenEdw94,

Mey88, Mey97, Rum91, Wi196]. Using object-oriented technology for design reflects the natural

desire of the industry and research community to manipulate concepts which seem appropriate for

solving real-world problems. However, the impedance mismatch or modelling gap between the

object concepts and the features of 00 programming languages has recently changed the view of

some authors of design methodology [Eli95, Liu96, Whi97]. "Is C++ a high-level' or low-level

language? It depends how you use it!" stated Coplien [Cop92]. Implementation considerations

should be made in the design phase and not left to the programmer's own decision. This nlOdelling

gap has affected the design process in two ways:
I

• Considering both object concepts and the various implementations of the concepts in languages

leads to many alternative choices for the object model, thereby making design decisions

difficult.

• To keep the flexibility and "informality" of design activities for building various candidate

object models to a single problem, assessment techniques have been studied and have shown to

be promising as a design assessment aid towards the choice of the best suitable object model

i.e. the most appropriate trade-off.

Software design is an art therefore it can be assimilated as a creative process. Meyer stated that in

advanced software design there is no substitute for fresh thinking and creative insights [Bo094,

Cha&aI92, Col&aI94, Gam&aI95, Gra94, HenEdw94, Lew95b, Mey97, Rie96, Rum91]. Software

methodology provides us with good advice from past experiences. Rather than a strict guide to

design, methodologies propose flexible and general guidelines for software design. When good

quality software is obtained, implicitly, this pre-supposes that the "goodness" of a design can be

recognised from its "badness". From a designer's viewpoint, badness seems to appear easier to

recognise because of the currently known pitfalls [Web95] or obstacles [AskBer92] occurring

during software development.

- 25 -

2. Background

The following list describes the generally accepted characteristics for "good" software

applications:

• Usability: features of the software should meet the requirements and be usable.

• Maintainability: developed features should be as easy as possible to maintain with a minimum

of disturbance.

• Evolution: related to maintainability and reusability, the software should be open and flexible

enough to evolve with new requirements.

• Reusability: in a general sense, designers ought to reuse existing abstractions with minimum of

effort.

• Reliability or robustness: software applications should work in various circumstances i.e.

expected and unexpected situations should be tackled and the behaviour of the system should

work in a deterministic manner. In the case of unpredictable events, recovery mechanisms

should be provided.

Although most of the above criteria are desired when buildirigapplications, past experiences have

shown that during design, there has to be a trade-off. The first reason for this comes from the fact

tl1at not all the criteria may be satisfied at the same time. The second reason 'is that the choice of

the criteria to be satisfied mainly affects the overall cost of the development. Software engineering,

which has existed for nearly four decades endeavours to bring solutions to this software dilemma.

It is noticeable that problems that were qualified as complex in the past generally become more

understood or solved with time.

In order to tackle the problem of assessment of an 00 design, this background literature covers

two main topics as follows:

1. Inheritance and method redefinition: section 2.1 presents the notion of inheritance and

illustrates the problem of designing and identifying a correct class hierarchy. It is shown how

inheritance shifts from its formal definition and can be interpreted differently in 00

programming languages. As one of the main aspects of inheritance in a class hierarchy is the

behavioural aspect, a detailed description of the important mechanism of method redefinition

is given in section 2.2.

2. Heuristics and assessment techniques: section 2.3 explains how and why the problem of

assessment of object models can be tackled by the technique of heuristics during the design

process. Section 2.4 describes the area of assessment techniques and highlights its potential

benefits for the improvement of the quality of 00 designs. A software quality model presents

the various aspects to be considered if a measurement plan is desired.

- 26-

2.1. Inheritance and associated problems

2.1.1. Use of inheritance

2. Background

"Systems are not born into an empty world" - Bertrand Meyer [Mey88]

The inheritance mechanism is one of the key features for the extensibility and reusability aspects

of object-oriented systems [Bo094, CapLee93, Fus94, Gam&aI95, HenEdw94, Mey88, Mey92 ,

00P93, Rum91, Sha92]. The concept of inheritance was introduced nearly 30 years ago in the

Simula language [DahNyg66]. It has since become the core concept of the 00 paradigm and one

of the most controversial topics of research for the last decade.

Many researchers have shown that the use of inheritance In 00 systems is still very low

[HarNit96, Kem96]. It is suggested that the main reasons for this current state might be "the

culture of the developer", the performance considerations, the complexity of its use and the

amount of effort needed for maintenance and control of such systems. Inheritance has not been

fully investigated. Class hierarchy design necessitates a great effort of creativity and the main

difficulties lie in the fact that future additions of classes should be taken into account [Kem96,

Rum96]. Whether those characteristics are predictable or not influence the shape and structure of .

the hierarchy [Fir95].

Recently, a variety of models of inheritance have been well described by Taivalsaari [Tai96].

Although they offer a vast extent of expressiveness, all of the different mechanisms are still subject

to conceptual design inconsistencies [ArmMit94, CapLee93, Fir95, Sei96]. In order to reuse the

features of classes, designers face the problem of property (attribute and method) reuse [Dev96,

KosVih92, Rum96] and method redefinition. The latter is a powerful mechanism that permits

behavioural flexibility in a class hierarchy however, it can also introduce inconsistent design

situations if wrongly used [Dev96, KosVih92, Mey88, Rum96, Sei96, Tai96].

Different languages allow different control structures and mechanisms to support reusability and

extensibility. Conceptually, the idea of achieving reusability is not new. In any type of approach to

a problem, the rule of thumb is "not to re-invent the wheel". The term "reuse" has generated a lot

of discussions within the research community as well as in industry. The promise of object

technology lies, for a major part, in the reuse of the existing code. Code reuse takes its origin from

the fact that a portion of code could be isolated and reused in another context. Thus, from a

simplistic point of view, reusability is seen as code reuse. Programming is similar to any type of

engineering process whereby factorisation and generalisation are necessary steps in order to obtain

consistent and generic "modules". Lalonde and Pugh [LalPug91] claim that hierarchies are

different structures depending on the notion of subclassing, subtyping or the is _a relationship used

when designing. Hierarchy design is always guided by rules or recommendations that are

described in 00 methods.

- 27-

2. Background

The validity of a class hierarchy is one of the most difficult tasks to assess. One can argue that a

system is considered good when it is functionally correct. In such cases, the appropriate strategy to

ensure the validity of the system is a rigorous testing strategy. This area of testing is beyond the

scope of this thesis; however, testing and measurement techniques could act as complementary

techniques. Evaluating the quality of a class hierarchy also concerns the evaluation of its structural

and behavioural organisation. An approach to assess a class hierarchy for criteria such as

reusability, extensibility and conformance can be tackled by measurement techniques [Bas&aI95,

Bri&aI95, ChiKem94, Dum&aI95, Hen96, LorKid94]. Although there are common requirements

and expected features of class hierarchies [AdaMoI95, Mey88, Tai96], the variety of inheritance

models lead to different class organisations due to an emphasis on particular criteria to be

achieved. Thus, the existence of different approaches to class hierarchy evaluation. Compilers

already encompass technology to detect design errors such as type checking in strongly typed

languages such as C++. The principle of substitutability or conformance i.e. the type of a subclass

should conform to the type of its parent(s), is then ensured.

Given that the aims of this thesis are to assess a particular aspect of inheritance i.e. the method

redefinition principle, sections 2.1.5 and 2.1.6 cover the property inheritance mechanism. As a

class hierarchy is the main structural organisation· using the full potential of the inheritance

relationship, ernphasis will be put on the issues involved iri designing such an architecture as well

as the possible ways of evaluating its design quality factors. However, it is important to consider

different aspects of inheritance which are necessary for better assessment. In particular, attention

will be paid to the "inheritance scoping control", as it is the core mechanism permitting the

expected benefits of 00 technology. Similarly, it will be interesting to look at the recognised

design problems associated with the use of inheritance. If it is possible to clearly identify typical

problems, it will be easier to detect and correct them.

In the next section, the study is mainly based on current 00 programming language constructions

although not losing sight of a more theoretical view of the inheritance concept. The reason for this

lies in the variety of possible constructions offered by languages. Although being design

considerations, current 00 methods do not encompass a description of those constructions as they

are often language specific. For instance, in Eiffel, it is possible to specify invariants, assertions

and the list of client classes that are allowed to use the class properties. This creates the semantic

modelling gap between 00 methods and 00 programming languages.

2.1.2. Class hierarchy organisation

The construction of class hierarchies still remains a problem due to the constraints involved and

the required criteria. The inheritance relationship is used in order to strongly couple classes in a

parent-child scheme. Although property inheritance constitutes a powerful mechanism for

achieving reusability and flexibility, it can also introduce inconsistencies in design that infringe the

·28·

2. Background

essence of inheritance. When developing an 00 application, it is common to use libraries of

classes which provide general functionalities to a specific domain. Usually, a class library,

organised as a tree hierarchy, becomes part of the system developed. The main function of class

hierarchies is to provide the developer with an organised set of reusable and extensible classes. For

instance, all programming languages encompass such libraries for managing widgets, networks,

collections, etc. In the Borland™ C++ integrated development environment, the hierarchy is known

as the Object Windows Library (OWL) and provides the developer with the windows management

API. Microsoft™ and Sun Microsystems, Inc. have equivalent libraries respectively called the

Microsoft Foundation Class (MFC) and the Java Foundation Class (JFC)/SWING [Sun99].

In a class hierarchy, the classes newly added to a hierarchy extend and inherit from the classes

present in the hierarchy. The Smalltalk class hierarchy provides a single-root class called Object

and does not support multiple inheritance. Single inheritance simplifies the architecture of a

system and makes the maintenance easier, whereas the use of multiple inheritance involves

additional problems such as name space conflicts. Although it is possible to find equivalent

solutions to single inheritance structures, the benefits of code reuse may be compromised.

Inheritance in 00 systems provides a feature dispatching mechanism that allows the sharing and

selection of the code.

In many occasions, real-world objects have common behaviours but are realised in different ways.

For example, consider the two classes Bag and OrderedColiection, ,which are both structures for

storing elements. A bag contains elements with no particular order as opposed to an ordered

collection of elements which is indexed on a key. Both classes have the same behavioural

semantics of adding elements in the structure but in the case of an ordered collection, a key must

be provided in order to record the position of the element in the structure. Therefore, the

implementations are different but the interfaces can be the same.

Unfortunately, class organisation is problematic as many viable design solutions may be

discovered depending on how the notion of inheritance is used. The following sections describe

three main categories of inheritance uses that raise the problem of correctness and appropriateness

of each.

2.1.3. Subclassing, subtyping or specialising

Different class hierarchy organisations can be designed depending on the model of inheritance

used. Taivalsaari [Tai96] showed that three completely different tree hierarchies can be drawn

depending on the relationship used for design.

- 29-

2. Background

(1) (2) (3)

Figure 2.1: Subclassing (1), subtyping (2) and specialisation (3) hierarchies

In Figure 2.1, the three possible hierarchy organisations are shown. Each of them represents a

possible use of inheritance for modelling the different kind of Collection classes.

Subclassing refers to an implementation mechanism where the purpose is to share code. For

example, the Smalltalk class hierarchy h~s. been criticised for its non-conventional use' of

inheritance i.e. implementation inheritance. When the addition of new classes in the hierarchy (i.e.

subclassing) is done because the parent class-holds the required services without consideration for

. other services which might not apply to the new class' instances, the new class does not conform

to its parent class. Thus, as the new class inherits all unwanted services from its parent class,

incorrect calls can take place, and potential exceptions can be raised. In all weak-typed languages,

this kind of inheritance is possible to implement. Implementation inheritance as discussed by

Meyer (see inheritance taxonomy detailed in [Mey97]) can be referred to as a legitimate case of

use of inheritance. Meyer emphasised that implementation inheritance is conceptually valid as

long as the subclass still conforms to the parent class. Recall that one of the criticisms concerning

implementation inheritance relates to the fact that a subclass would conform to only some of the

parent's properties, ignoring the remaining although inheriting them. In a better design situation,

the parent would have cancelled the unnecessary properties for its children. However, assuming

that a type equals a class, such non-conformance of classes in a hierarchy can be detected at

compile time.

Subtyping refers to a substitutability relationship between a subclass and its parent class. This

directly relates to the type of 00 programming languages. Languages dictate the development

spirit as they belong to two main categories: weakly typed and strongly typed systems. Strongly

typed languages claim that the development of more reliable applications is possible while weakly

3 Note that the described categories represent only a subset of Meyer's inheritance taxonomy [Mey97], relevant to the analysis.

- 30-

2. Background

typed languages have a high productivity rate with not much overhead. The type-check is done at

compile-time for the former while an exception would be raised at run-time for the latter. Until

now, the commercial market has been mainly interested in strong-typed languages such as c++
and Ada. However, interpreted languages such as Smalltalk usually offer a rapid development

environment where software applications can be quickly prototyped and tested. One noticeable

difference between the two categories of languages relates to the inheritance hierarchy structure.

Although two hierarchies may be different, they may satisfy the same requirements. This

emphasises the fact that the goodness of a class model (e.g. class hierarchy) is difficult to define as

well as difficult to realise.

Specialisation inheritance respects the conformance rule. A child class is _a particular type of the

parent class, therefore a specialisation of the parent. Another way to describe this mechanism is to

consider a subclass as a subset of its parent classes whereby all features of the parent apply to .all

its heirs. Conceptually, specialisation inheritance pennits a clear categorisation of objects

regarding their intrinsic properties; therefore it encourages the use of abstraction.

Note that the root class, in a single-rooted inheritance tree must be the most abstracted class in the

hierarchy. Smalltalk's root class4 encompasses all the generic behaviour inherited' by all the

subclasses. A single-rooted approach for a class hierarchy incurs some problems for the

management of the classes. For example, when developing an application with Smalltalk, the

library classes and the application classes are built within the same class hierarchy. This non

separation of provided or newly built classes makes the release of an application difficult.

These different categories of class hierarchies may impose severe restrictions on some aspects of

the future development of the hierarchy. More research is necessary in this area in order to clearly

identify all possible effects and problems incurred by the use of a particular category. It is,

however, possible to evaluate the "goodness" of a class hierarchy regarding two crucial aspects:

usability and extensibility. This is described in the next section.

2.1.4. Usability and extensibility

Two main quality factors are the usability and extensibility of class hierarchies. The notion of

extensibility refers to the capability of adding new features to a class or new classes to an existing

class library. New classes are seen as specialised versions of their parent classes. An inheritance

relationship indicates a strong form of coupling between the classes where common behaviours are

shared. This kind of use relates to a functional-orientated approach whereby the use of a class is

4 Many recent discussions from the X3J20 committee for Small talk [X3J96] standardisation has raised the question of having a class

hierarchy inherit from nil instead of the Object class. This would enable the creation of many class hierarchies rather than a single

rooted hierarchy.

- 31 -

2. Background

accepted when the required functionality exists regardless of the conceptual correctness of the

classes.

The major difficulty when using a class hierarchy depends on the level of depth of the tree. The

deeper the level, the more difficult the understanding and use of the classes. This is where the

concept of inheritance is paradoxical in the sense that, in theory a class hierarchy should be deeper

because it increases the general level of abstraction, but in practice it rapidly becomes difficult for

humans to master deeper levels in the hierarchy. Therefore, there is a large burden for the user if

attention is not paid to building hierarchies where child classes conform to parent class(es).

Although the level of difficulty can be defined differently among designers, current commercial

class hierarchies are not straightforward to approach and this raises the need for further research in

making efficient use of complex hierarchies. For instance, suppose that it is required to extend a

particular branch of a hierarchy which is already deep (Riel [Rie96] considers a level deep when it

reaches the magic number seven), it becomes difficult to understand behaviour of each class in the

branch.

With the concept of a class contract [Mey88, Ste&aI96], emphasis is put on the specification of

the interfaces of the class. If each class encompasses a high number of publicly available methods

which are inherited down the branch, the final concrete class from which extension is planned

becomes difficult to understand. Indeed, the first step to extend the hierarchy is to localise the

correct class from which it is relevant to subclass the new class to be added. A quick look at the

class names in a particular branch should already pinpoint interesting classes to reuse. A simple

approach is to "look-up" classes higher in the hierarchy in a bottom-up fashion. Briefly, starting

from the closest parent from which a derivation is desired, it is possible to scrutinise the class in

order to find desired abstractions. Thereafter, the same approach for higher classes in the hierarchy

can be taken. In the case of multiple inheritance, a multiple descendant path has to be studied with

attention to possible conflicts such as the name space conflicts from repeated inheritance [Mey88].

Whenever a new class is introduced in a hierarchy, it should conform to all ancestor classes.

Without tool aids such as class hierarchy browsers in IDEs, it is difficult to understand classes

from an existing hierarchy. If CASE tools are used, the designers' task becomes easier because of

the graphical representation of an object model.

Other problems of class reuse and extensibility relate to a psychological issue. One of the

heuristics provided by Riel [Rie96] states that the design of a branch of a hierarchy should be

given to a single architect designer. This comes from the fact that developers tend to implement

their own versions of programming code as soon as there is a suspicion of possible unreliability of

existing code. In many cases, it appears that re-implementing code is much faster than trying to

understand and modify what has previously been done. Indeed, this is not recommended, but it

happens for many reasons:

- 32-

2. Background

• Programming practices of each developer: everyone has his own style of programming e.g.

syntactical language construction or presentation, algorithmic preferences, etc.

• No available documentation explaining previous class behaviour and semantics.

• Complex dependencies between classes: if classes are strongly coupled, it is very difficult to

understand the general behaviour of one single reference to an interface. Also, this refers to the

problem of undesired side-effects generated by method dependencies.

Class addition is one way of extending class hierarchies. Another possibility of extension can be

done within an existing class itself. Typically, the extension of a class interface broadens the

behaviour of the class. The higher a class is in the hierarchy the more abstract it is, which means

that the behaviour must also be abstract enough so that it will be relevant to all subclasses,

otherwise the conformance rule is broken. For this reason, deletion or modification of the

behaviour of an existing class is highly critical as other client classes might rely on the deleted

behaviour or expect a different behaviour. These class and hierarchy management issues are

studied in the schema evolution research area for databases. Further details can be found in

[BanKim87, Bar&aI93, Ber91, Cas93, CheLee96a, Dic95, Gib90].

The support for reusability and extensibility through inheritance· is different across object-oriented

programming languages. It relies on the type of inheritance scheme used (see section 2.1.3).

Consider a class A in the Smalltalk hierarchy:

Object subclass: #A

instanceVariableNames: II

classVariableNames: II

poolDictionaries: II

Class A is declared as a subclass of the root class Object, therefore A inherits all variables and

methods that the Object class holds. There is code reuse as soon as the subclass A uses inherited

behaviour. In Smalltalk, there is no declarative construction which forbids a subclass to inherit

from a parent's property. With the various constructions allowed in programming languages, it is

possible to introduce conceptual inconsistencies particularly when using inherited redefined

methods. The incorrect use of redefinition leads towards incorrect classification and furthermore to

an incorrect behavioural inheritance [ArmMit94, Hen96, Mey97, Rum96].

Given the possible uses of inheritance in class hierarchies described above, the next section

presents a formal definition of inheritance and highlights the implicit property inheritance scheme

suggested by the definition. It is precisely the way the property inheritance scheme is used that

enable the designers to produce conceptually orthogonal class hierarchies.

- 33 -

2. Background

2.1.5. Property inheritance scheme definition

Inheritance is the main mechanism which supports the realisation of criteria such as reusability and

flexibility [Hen94, New&aI96]. An addition of a class to an existing class hierarchy specialises a

branch of the tree, thereby extending it. By inheriting features from ancestor classes, reusability is

also achieved. However, there exist many models of inheritance and the correct application of any

model is debatable [LiHen93, Sei96]. The formal definition of inheritance is characterised as

follows [BraCoo90, Tai96]:

(1) I C = P $ LlC I
where a new class C is shown as a combination ($) of a set of properties inherited from an

existing class P and the new properties (Ll) which make C a specialised version of P. In this

equation, the relation superclass/subclass is assumed to be transitive, therefore P includes all

cumulated properties from its own parents. However, the inheritance scheme of properties from

parent class to child class is open to many interpretations. Taivalsaari [Tai96] explained that P

represents the properties inherited from an existing object or class where, in fact, C is able to

inherit from many classes either in the same descendant branch or multiple branches if in a

" multiple-inheritance situation. It is generally accepted that the deeper a class is in a hierarchy, the

more difficult the control of inheritance becomes. Therefore, leaf classes are more subject to bad

design than their parents are.

To illustrate how the properties are inherited in equation (1) according to the definition of

. inheritance, the set of properties of a subclass SubCls of a class Cis becomes:

(2) SubCls = Properties (Cis) $ Properties (SubCls)

where

SubCls < Cis i.e. SubCls is _ a subclass of Cis,

Properties (class) = { inst I inst E <Attributes>, mth I mth E <Methods>}

Properties (class) is the set of attributes and methods of a class i.e. <Attributes> and

<Methods> respectively refers to the set of possible instance variables and the list of methods in

the class.

Introducing the origin of properties in (2) gives:

(3) SubCls = Propertiesinherited (SubCls) $ Properties (SubCls)

where Propertiesinherited (SubCls) = { X I X E Properties (Cis), X is publicly available to

SubCls},

From (2) and (3), a subclass SubCls is a combination of its inherited properties and its currently

defined ones. (3) introduces properties overlapping in the definition when reuse of properties is

achieved.

- 34-

2. Background

Class
Properties redefined (SubCls) b PropertieStnhelited (SubCls)

Properties redefined (SubCls)
= { x I x E PropertieStnhelited (SubCls),

x is replaced, extended or realised }

Figure 2.2: Class properties

Propertiesredefined(SubCls) are the (inherited) redefined properties as opposed to

Properties inherited (SubCls) which is a superset including the ones accessible and used without

modification. Because of the variety of possible modifications to a property such as complete

redefinition, extension or realisation, there is a possible source of incompatibility between a class

and its subclass. As stated by Taivalsaari, inheritance use does not guarantee a conceptual

specialisation intention. The mechanism of redefinition has been criticised [ArmMit94, Fir95,

KosVih92, Mey88, Rum96, Tai96] for not bearing any kind of semantic relationship with its initial

implementation, especially when the method is completely overridden. Unfortunately, the

inheritance "scoping" contro! facility does not prevent this conceptually inconsistent situation.

Indeed, a non-strict is_a policy is more likely to introduce unsubstitutable classes and is .. used

either for convenience reasons or because it uses_a parent class property.

This section reviewed the formal definition of inheritance and showed the implications of the

definition with regard to the property inheritance scheme. It becomes clear that property

inheritance is a key aspect to the assessment of class hierarchies. The next section describes the

property ownership transfer and the consequences on the design.

2.1.6. Property ownership transfer

As seen in the previous section, the property inheritance scheme states that properties of a parent

class should be inherited by all its heirs whatever the level in the hierarchy. In a child class,

visibility and accessibility of a property is defined in the parent class. This means the child class

is then able to change the property values i.e. public inheritance of properties implies a property

ownership transfer from the parent class to the child class (Figure 2.3). Due to application

requirements, e.g. business rules, restrictions have been added to this notion of inheritance. Not

all properties of a parent class can be inherited by its subclasses. The representation of a real

world entity by an object often necessitates hiding some of its properties from other interacting

objects i.e. encapsulation. This facility permits an object to manage internal properties for its own

purpose. In 00 programming languages, attributes declared as private can only be accessed

within the class where it has been defined. Private attributes are not inherited by heir classes. The

5 The process of declaring appropriate modifiers to a class, an attribute or a method will be referred to as the inheritance scoping control

facility.

- 35-

2. Bad<ground

main variants of property inheritance features of four 00 programnring languages are described

below. It is important to note that all possible features allowed by programming languages are

subject to design problems when not used correctly.

concrete classes

concrete classes
with their accumulated
properties

Figure 2.3: Transfer of property ownership in an inheritance hierarchy

In 00 programming languages, the transfer of property ownership (Figure 2.3) is realised

by the application of property modifiers to the property. The next section presents various

encapsulation schemes offered by programnring languages and illustrates their fimdamental

differences.

2.1 .7. Encapsulation: visibility and accessibility of properties

varA
varB

" varA, varB "
varC. V8IO

Figure 2.4: Example of transfer of property ownership

In 00 languages such as e++, Eiffel or Java, there are syntactic control declarations which allow

the control of the scope of the inheritance of the properties from a parent class (Figure 2.3, Figure

2.4). Various control schemes are available depending on the language. Property modifiers can be

applied at class, variable and method level. Although there are exceptions, in most languages the

inheritance of properties is done in a top-to-bottom direction. It is the parent(s) class(es) which

define the properties to be inherited by its heir classes (Figure 2.4). The main three basic property

modifiers are public, protected and private [Str90). In the previous paragraph, public and private

were presented. When the protected modifier is applied to a property of a parent class, only its

subclasses are able to access the property. This mechanism restricts the visibility and accessibility

of a property to descendant classes in a particular branch of the hierarchy.

- 36-

2. Bad<ground

Other types of modifiers exist depending on the language_ For example, in Eiffel, a parent class is

able to define a subset of its subclasses which is going to inherit a particular property as opposed to

all of them. Stopping the inheritance of properties as described in section 2.1.8 is conceptually

questionable as it breaks the transitivity mechanism of inheritance. Although valid reasons exist

for the presence of such modifiers e.g. optimisation, standardisation and security, the mechanism

appears as a language feature issue which conceptually affects the quality of the design.

c++
-public
- protected
- private
- static

Smalltalk
- instance
- class

Class

variables

methods

Java
- friendly
- public
- protected
- private
- final

Figure 2.5: Property modifiers in 00 programming languages6

One of the aims of the authors when developing the Java programming language was to provide a

language for which developers would feel familiar with. For this reason, Java syntax [Tea&a196] is

close to the well-established C language (Figure 2.5). Most of the complexity of the C++ was

removed although retaining the main features. Java claims to improve the flexibility and

maintainability of programs. Note that other modifiers may exist for the illustrated languages,

however, they are not relevant for the purpose of this document.

The following description covers the main arguable modifiers m Java. In addition to these

modifiers, it is possible to define packages, which are viewed as self-contained modules.

Syntactically, a Java class declaration is of the form:

modifiers class newClass

Modifiers does not actually affect the class itself but determine how the class will be handled in

case of addition of new classes or features to classes. Modifiers, in Java, are of different types:

friendly, public, private, protected, final and abstract In C++, when the friendly or public

modifiers are applied to a class, other client classes have a full access to the properties of the

server class. The only difference is that friendly provides access to classes in the same package i.e.

group of classes.

The semantics of some modifiers are controversial because of the consequences of their use. It

becomes difficult to control the whole list of properties together with restrictions imposed by the

modifiers at each level of the hierarchy. In addition, side-effects are easily introduced when classes

are complex. For example, encapSUlation can be violated when attributes of a class are declared as

6 The figure only shows the relevant property modifiers of four 00 programming langages.

- 37-

2. Background

public, giving direct access to subclasses. The correct choice of property modifiers is an important

task when an inheritance relationship is used but also remains one of the arduous design issues.

Some errors can be statically checked by the compiler, or dynamically in the case of an interpreter.

Unfortunately, this has long been seen as an implementation issue. It is arguable that such

problems are directly dependent on the architecture and design adopted, therefore language

features influence and affect the design. Only recently, such considerations have been described as

part ofthe analysis and design methodology [Col&aI94, Mey97, Whi97].

The next sections will show how the concept of inheritance shifts from its definition and why the

design of class hierarchies becomes even harder with the constraints imposed by new types of

information systems.

2.1.8. Consequences of encapsulation on the inheritance scoping control

Controlling the property inheritance scheme

In current software development methodology, little has been described about ways of controlling

the property inheritance scheme. In practice, in a commercial class library, the amount of inherited

properties in the leaf classes is usually high. In consequence, tracking back the different uses and

definition applied to properties in ancestor classes is not straightforward. Often, it is assumed that

properties and behaviours have consistent semantics. The knowledge of the history of inherited

properties is crucial when considering the addition of new classes to an existing class hierarchy.

Possible design errors concerning the conformity of a class to the parent(s) class(es) are then

reduced. It is noticeable how inheritance is still not generally used or accepted in industry.

Cartwright [Car98] stated that only "experts", i.e. persons who know how to control and maintain

complex inheritance structures, were doing so.

When considering the essence of inheritance and its uses [Tai96], designers are facing the dilemma

of using powerful features of languages without being able to completely control the effect of their

use [ArmMit94] e.g. Java language. It can be argued that the control over property inheritance only

adds an additional workload for the designer, as there is no recognised common standard set of

modifiers (Figure 2.5). Instead, each programming language has its own syntactic constructions.

For example, in Smalltalk Express7 there is no equivalent method modifier for the privateS

keyword in C++ or Java. Any method in a class can access any other method declared in another

class. Therefore, at method level, Smalltalk provides the designer with fewer features to ensure

information hiding. Instead, programmers need to keep in the "spirit of 00" and not infringe the

rules, although this is possible. Often, theoretical and conceptual issues are ignored in favour of

'In this thesis, Smalltalk Express™ designates the version based on SmalltalkIV® Win16 and WindowBuilder® ProN provided by

ObjectShare®, a Division ofParcPlace, http://www.objectshare.com

• In Small talk, all instances variables are defined as private whereas instance methods are publicly inherited.

- 38-

2. Background

pragmatic solutions [Tai96]. This situation has been generally recognised as an arguable use of

inheritance as prediction and extension of an existing class hierarchy becomes difficult and un

maintainable. Clearly, there is a need for additional control of the property inheritance scheme.

Abstracting for controlling inheritance

Conceptually, classification techniques imply the existence of a category of classes with

similarities from a structural and behavioural viewpoint. Therefore, it is sensible to have such a

property inheritance scheme in order to cover a wide range of real-world problems. If a class holds

methods which are to be inherited by some branches and not others, it might suggest a classic

design problem where the parent class represents more than one concept, therefore containing

methods which might not apply to all of its subclasses. On the contrary, it is recommended to use

abstract methods (also called deferred in the Eiffel terminology) in a class where only the interface

of the methods is provided and all subclasses are forced to give their own implementation. This

type of inheritance is called reification inheritance. In such cases, methods in subclasses of the

same class usually have different implementations i.e. polymorphic methods. In Smalltalk,

declaring a method as abstract is not done via a modifier. Instead, the body of the abstract method

contains the implementedBySubclass message which has the same effect (see example below)., .

Object subclass: #Test

instanceVariableNames: "

classVariableNames: "

pool Dictionaries: "

Test instance methods

realised Method

Aself implementedBySubclass

For leaf classes, the immediate advantage is to reuse and extend the inherited properties. Often

seen incorrectly as a simple code reuse mechanism, abstraction is a conceptual technique

permitting the extraction of similarities from objects to form new coherent abstractions. Where a

class contains one or more abstract methods, the class is referred to as an abstract class. By

consequence, instantiation of an abstract class is prohibited. Introduction of abstract classes in a

hierarchy is recommended. However, deep class hierarchies are still difficult to manipulate due to

the many levels of depth. Often, this results in cases of ignored inheritance, especially when

considering incremental development of classes. Nevertheless, it is generally recognised that the

support for adequate documentation and tools reduces the risk of unusual inheritance situations.

- 39-

2. Bad<ground

Case of multiple Inheritance

In 00 languages that support multiple inheritance such as Eiffel, the publicly declared properties

of all the parent classes are inherited by the subclass. Although the concept is sufficiently

expressive to represent some categories of problem, the use of multiple inheritance generates

obscure design problems concerning the property inheritance scheme. One of the most studied

problems concerns the name spacing issue. When a subclass inherits from two parents (or more),

all inherited properties should be accessible by the child class. If the parent classes contain

properties with the same name, a conflict has to be resolved and the subclass has to decide which

of the properties to inherit. In some development environments, the compiler statically checks for

such problems and a default inheritance scheme may be provided when potential conflicts arise.

Consider two base classes LIST and ARRAY which both define two features: print and show.

With Eiffel, it is necessary to use the renaming mechanism to prevent name clashes.

class FIXED_LIST [T] export ...

inherit

LIST rn rename print as printList, show as showList;

ARRAY [T] rename print as printArray, show as showPrint

feature

... specific features of linked-size lists ...

end - class FIXED_LIST

Figure 2.6 illustrates another classic example of use of multiple inheritance. In a class library, the

Stream branch provides a framework for managing data structures, input and output

functionalities, sequential and random accesses. Intuitively, a ReadWriteStream class would

make use of multiple inheritance and inherit from both the ReadStream and WriteStream

classes. Then, a FileStream inherits from the ReadWriteStream, thereby all its parent's

properties.

Figure 2.6: Stream hierarchy with multiple inheritance

Graphically represented in Figure 2.7, a new added subclass cumulates all properties of all its

ancestor classes along the different branches.

- 40-

2. Bad<ground

Single inheritance path Multiple-inheritance paths

Figure 2.7: Traversal paths for single and multiple inheritance

Therefore, name space conflicts arise not only from the direct parent classes to the child class but

from all ancestor classes.

In general, the levels of depth in class hierarchies affect the control of inheritance. Paradoxically,

the abstraction technique promotes such a situation, thereby making the design of class hierarchies

problematic. The next section illustrates the most common inheritance design mistakes. This is

intended to present the underlying design issues and the recognition of good design practices.

2.1.9. Common inheritance design mistakes

Over the past decade, many authors have presented cases of misuse of inheritance. Most of them

argue the conceptual validity of non-conventional ways of implementing the inheritance

relationship [AdaMoI95, ArmMit94, Fir95, KosVih92, LalPug91, PapLeJ97, Web95, Wil96]. The

main reasons given are that they affected one of the criteria such as maintainability, reusability or

flexibility of the design. In most cases, the conclusion was that the arguable inheritance case

presented impacts the overall cost of the development in terms of future evolution of the design.

Rather than an exhaustive list of inheritance design mistakes, this section describes the main

example problems and highlights the design attributes which are of interest in an assessment

perspective. Also, it helps at recognising the classic design pitfalls for the identification of

problems during a measurement programme.

One of the major problems in software development is, for any designer, to keep in mind all

possible dependencies between components in the architecture. Meyer stated that modules should

be understandable by themselves. If a component requires the knowledge of other information in

other modules, it clearly shows that they are dependent on each other. Therefore, the change of one

component might also require the change of the other i.e. they are dependent on each other.

Although not recommended, as modules or objects rely on each other for communicating

information, dependency or coupling exists. The issue is to control it. To help the designer, tool

support is clearly desired [Bri96].

- 41-

2. Background

Another example of design issues concerns the paradox between what could be understood as an

optimisation task and design tricks or tips. When a class relies on information given by another

class, messages are sent back and forth according to the classic client-server model. An alternative

design choice would be to make the information available in the original class, so that no messages

are exchanged between objects. The reason suggested for such a choice is the possible gain in

performance and context switching. This is a wrong design choice as the eventual benefit depends

only on the internal architecture and algorithm of the compiler or interpreter. In addition, the

original class might no longer constitute a single abstraction and possible duplication of

information is likely to happen. Clearly, the design results in code of obscure quality. Often,

common design inheritance mistakes are mainly due to the side-effects produced during

incremental refinement and development of the classes. Examples of common design mistakes,

identified in many 00 methodologies [HenEdw94, Mey88, Rum91, Web95], are illustrated below.

• Breaking encapsulation: when a child class inherits from a parent class, the child class has

direct access to all inherited properties including instance variables of its parent. Amongst other

use of inherited properties, an instance of the child class is able to directly manipulate the value

of an . inherited attribute. As recommended by any 00 method, acces.s to a private instance

variable should alway~ be. done by accessor, gettor and settor functions.

• Concept and implementation: tree hierarchies have been widely used to mainly represent four

abstraction principles: .

* . Generalisation/Specialisation.

* AggregationlDecom position.

* Classification/Instantiation.

* Grouping/Ungrouping.

The inheritance relationship definition validates the first case only. Often theis_a relationship

has been mistakenly used instead of the has_a relationship (aggregate components) or

is_implemented_using relationship (behavioural reuse facility). Although the representation as

a tree hierarchy is conceptually valid, the relationship between the classes is fundamentally

different. Consider the example below where a STACK class is declared as a subclass of the

LIST class.

Object subclass: #LlST

instanceVariableNames: 'listOfElement'

classVariableNames: II

pool Dictionaries: II

STACK subclass: #LlST

instanceVariableNames: 'top bottom currentPointer '

- 42-

classVariableNames: "

poolDictionaries: "

2. Background

A better design alternative defines the LIST class as an aggregate of the STACK class:

Object subclass: #STACK

instanceVariableNames: 'top bottom currentPointer listOfElement'

classVariableNames: "

poolDictionaries: " I

STACK instance methods

initialise

listOfElement := LIST new.

In his taxonomy of inheritance, Meyer [Mey97] refers to the first example as facility

inheritance. He argued that this solution is perfectly viable and conceptually acceptable if all

the behaviour provided by the LIST class can be applied to the instances of the STACK class.

Meyer identified two forms of facility inheritance:

* Constant inheritance: in which the parent yields constant attributes and shared objects.

* Operation inheritance: in which it yields behaviour.

• Class coupling generates dependencies: any type of coupling between classes implies class

dependencies. Lakos [Lak96] mentioned that for compiled languages, "a component y depends

on a component x if x is needed to compile or link y". Many forms of coupling exist

[HitMon95b] and sometimes, they generate hidden side-effects problems. For example, in the

Lisp-based ITASCA ™ Distributed Object Database Management System [Ibe94], the

declaration of a class and its attributes has the following syntax9
:

(def-class DEPARTMENT

:document

:superclasses

:abstract

"Department class" ;; comment about the class

(ROOT) ;; parent class

NIL)

(change-attribute 'DEPARTMENT 'Group :classp NIL

:document "Instance variable Group"

: inherit-from NIL

:composite T

:dependent T

:domain '(set-of COMPUTING-GROUP)

:init NIL)

9 ITASCATM API is based on the Allegro CLOS language, Franz®, Inc.

- 43-

2. Bad<ground

In the above example, an instance variable named Group, of the DEPARTMENT class is of

type COMPUTING-GROUP. The COMPUTING-GROUP class is declared as dependent

aggregate (:composite keyword) of the DEPARTMENT class. In other words, all component

aggregates (instances of COMPUTING-GROUP class) depend on their container part

(instances of DEPARTMENT class). By consequence, a deletion of an instance of the

container implicitly deletes the aggregate objects as well. This dependency mechanism is

indeed dangerous if the contained objects should exist independently of the container objects.

Coupling can be categorised in three groups [HitMon95a]:

* instance variable relationship: in a client-server model:

Client

Server varA;

Figure 2.8: Coupling with instance variable

In Figure 2.8, the simplest form of coupling is done in declaring an instance variable: Server

varA; in the Client class i.e. aggregation.

* behavioural relationship:

Figure 2.9: Coupling with method

In Figure 2.9, methods declare local variables of a particular class type. Although the scope of

the local variables lasts only during the execution of the method, a coupling is nevertheless

established.

A variant of the behavioural relationship is realised through the method signature:

Figure 2.10: Coupling with method signature

- 44-

2. Bad<ground

In Figure 2.10, the coupling is realised in the declaration of the passing parameters. In order for

the method to understand the argument types, the types are also declared within the method 's

signature.

* inheritance:

Server

Int varA;

Client

Figure 2.11: Coupling with inheritance

In Figure 2.11, when a class inherits from a parent class, it also inherits all the publicly declared

properties. This type of coupling is qualified as strong coupling as opposed to weak coupling.

• Classification or objectification: the problem of finding the best classes is still one of the

major problems of OOD. Many methods propose an object-centred view to start off the design

and apply abstraction wherever needed in order to extract potential classes. Alternative choices

are always possible and the decision depends on the context and the specifications of the

problem. For instance, there is sometimes hesitation in choosing between different constructs

such as the use of an attribute or a class. Consider an ENGINE class modelled as follows:

Engine

I~'-model : string
year : Integer
engineSlze : Integer
engineType : r'Car", "Plane", "Amphibian")

Figure 2.12: ENGINE class

Alternatively, it is possible to create as many classes as types of engines and declared each of

them as subclasses of a more abstracted ENGINE class:

Engine

I
make : string
model : string
year : Integer

englneSlze : Integer

Figure 2.13 : ENGINE hierarchy

- 45 -

2. Background

The design choices arise when the classification can be made depending on many factors.

Meyer stated that a common mistake is referred to as the taxomania mistake. A simple boolean

or enumerated attribute such as a car's colour, is used as an inheritance criterion even though

no significant feature variants depend on it.

• Data-centered or functional-centered: traditionally, designers were concerned with the data

structures of entities, particularly for database schema design [Chen81]. With the introduction

of object technology, the consequence was that resulting classes were used merely as a facility

for encapsulating data structures with little behaviour attached, therefore giving no additional

benefits from the traditional view. On the contrary, when the emphasis was functional-centred,

the resulting classes were more used as a grouping unit facility and did not reflect a real-world

object. Abstractions were not captured and objects were seen as a set of procedures.

• Class size and class abstraction: the size of a class should not be relevant when building a

model. However, it can be used as a good indicator of excessive or non-effective class design.

For example, if a class size, in terms of number of methods, is higher than the average number

of methods, for the whole set of classes in the system, this might indicate a potential wrong

decomposition of the class considered. In such cases, the class might do too much. On the

contrary, when a class includes a small number of methods, it might indicate a strong

dependency with other classes. Often, such classes require to be redesigned as they may capture

many abstractions or none at all. Such problems relate to the notion of class cohesion. In the

case of base classes, the application of generalisation is done in a bottom-up fashion and

common properties should reside in classes situated in the top part of a hierarchy. If a class

holds many abstractions or is not refined enough, it probably contains a subset of properties

which would not be applicable to all its subclasses. A consequence of such a situation is that

the cancelling of property inheritance, also called disinheritance is likely to happen in lower

classes.

• Inheritance or delegation: inheritance is one possible mechanism to share information

between objects. The delegation mechanism is another possible way to achieve the same

although the underlying semantics is based on a client-server model as opposed to the

inheritance model. Due to the similarity of the resulting consequence of both mechanisms, a

common mistake is to use inheritance when delegation was appropriate and vice-versa. For a

caller object, the delegation mechanism consists of requiring other object capabilities to realise

a wanted task which will return the result back to the caller once completed.

- 46-

2. Background

• Inherit or disinherit: Firesmith [Fir95] recommends that no cancellation of inheritance of

properties should be done in a class, also referred to as uneffecting properties in the Eiffel

terminology. This feature is contraditory to the notion of inheritance. On one hand, inheritance

proposes the heritage of properties and, on the other hand, it is possible to not inherit as well.

Dealing with disinheritance constitutes an entire part of the design process and contradicts the

natural mechanism of class hierarchy extension. During implementation, the detection of

cancelled properties is not straightforward without any tool support.

Although arguable, the notion of inheritance, in object technology, has been considered as one of

the major novelties introduced to software development. The notion of redefinition of properties

has contributed to its inherent complexity and difficulty to control the property inheritance scheme.

Instead of purely and simply inheriting existing behaviour from a parent class, the child class has

the possibility of mutating the behaviour's internals in order to adapt it to its own purpose. The

next section gives a presentation of redefinition where the main categories are highlighted and will

serve as. basis of study for the remaining part of the thesis.

2.2. On the notion of redefinition

"Children have more needs of models than of critics" - Carolyn Coats

Why redefine if inherited?

Redefinition is the fundamental mechanism that provides the mutability and adaptability aspects of

methods in class hierarchies. When the inheritance relationship is used between classes, the

subclasses of a parent class can use, extend, replace or ignore the set of behavioural properties

defined in all its parent classes. In the case of replacement of the behaviour, this is referred to as

the method redefinition mechanism. Redefinition can generate many behavioural and conceptual

inconsistencies in a class library. The mechanism is still controversial [Mey88, Rum96, Tai96] and

there is a lack of understanding on the full effect of the mechanism on the overall class hierarchy.

Use of redefinition

In the literature, method redefinition is generally described as a syntactic language feature [Bo094,

Gra94, HenEdw94, Liu96, Mey88, Rum96, PapLeJ97] rather than a design concept. To date, the

implications of use of method redefinition are unclear. This thesis addresses such problems in

focusing on a conceptual description of redefinition and in providing the methodology and tools to

analyse the behavioural aspect of class hierarchies.

In current 00 methodologies, designers rely on lists of guidelines to validate the use of

redefinition. In theory, designers should ensure that the semantics of a method remain the same if

- 47-

2. Background

changes are made to its implementation. Often, the examples of method redefinition relate to an

illustration of the concept of polymorphism [Mey88].

An example list of Rumbaugh [Rum91]'s recommendations on redefinition is as follows:

• Query operations should not be redefined.

• A redefined operation should not restrict the semantics of the inherited operation.

• Redefining operations should never change the protocol or the underlying semantics of the

inherited operation.

• Separation of interface from implementation should help in detecting useful redefinition.

• If all inherited methods are redefined, the subclass is wrongly subclassed.

• If no redefinition is used, it suggests that polymorphism is non existent.

To date, designers can only rely on such guidelines, similar to the above-mentioned, for using the

redefinition feature. Although a detailed description of the mechanism can be found in case study

examples, there is a lack of methods for the validation of its use in class hierarchies when many

levels of depth are present. Firesmith described a set of inheritance guidelines which gives

practical advice concerning a class hierarchy design [Fir95]. However, in practice there are no

guarantees that a given case of method redefinition is correct. A system can actually work without

satisfying the guidelines or essence of inheritance. Design rules exist, but there are still various

problems for which only designer's experiences and intuition help. In those cases, it is argued that

assessment techniques come into the scene and are able to provide useful help in identifying and

understanding the problem and suggesting design improvement directions.

This section analyses the different redefinition categories in the view of identifying the essential

quality attributes to be considered within the measurement plan. Emphasis is given to the

identification of possible uses of redefinition and the reasons why the mechanism may generate

conceptual design problems. Also, it is essential to understand the consequences of use of

redefinition in order to recognise potential caveats in complex structures such as class hierarchies.

2.2.1. The redefinition principle

"Redefinition is an important semantic mechanism for providing the object-oriented brand of

polymorphism" - Bertrand Meyer [Mey88]

The basic principle of method redefinition is simple. In a class hierarchy, any class which has one

or many parent classes inherits the properties of its nearest parent and, by transitivity of

inheritance, the ones from further ancestors. In a multiple inheritance case, the parents are situated

in different branches (see section 2.1.8). Method redefinition is a syntactic programming language

- 48-

2. Background

facility that preserves the original method name when the body changes. Conceptually, one of the

main reasons for using redefinition is to provide the flexibility of defining a different

implementation if needed, thus the ability for an original method to hold many forms in many

subclasses of the same parent class. Such methods are calledpolymorphic. At run-time, the correct

behaviour will then be dynamically bound to the object which receives the message (the receiver).

The principle of redefinition is also referred as name overloading or overriding as it exists in Algol

68 or Ada. Notice that the renaming mechanism provided by the Eiffel language is different from

redefinition. The idea is simply to provide aliases to the same inherited feature. It is a syntactic

mechanism which prevents name conflicts in a multiple inheritance situation.

The change of the semantics of the behaviour when using method redefinition is the fundamental

issue. Meyer claimed that this situation is contrary to the spirit of redefinition and provides the

concept of assertions to tackle the semantic problem. Constructions such as preconditions and

post-conditions are effective ways to realise the specified contract and ensure that any subclasses

inherit the correct behaviour.

The next section gives the necessary conditions that enable method redefinition to take place.

2.2.2. Conditions for realising method redefinition

In order to realise method redefinition, there must be an inheritance relationship defined between

two or more classes. Suppose that a superclass AParent is defined as

AParent = {10L <mthlnParent>},

then a subclass would be defined as

AChiid = {10L «mthlnParent», <mthlnChild>}

where mthlnParent is inherited and mthlnChild an additional feature of AChild.

From the formal definition of inheritance and the property ownership transfer given in sections

2.1.5 and 2.1.6, a method can be redefined only if it is first inherited.

Thus, for a class C = {10L «m», <0>}, m is inherited if and only if:

• m is defined in, at least one of its superclass(es).

• m is publicly accessible by the methods in C.

If a method m in a class C is redefined, it can be considered as a new property of the class as it

physically extends or replaces the original method. In the case of methods originally declared as

abstract, the subclass must provide the body of such methods, thus a completely new property for

the subclass.

- 49-

2. Background

A method m of class C is redefined if and only if:

• m is an inherited method (1),

• m(C) signature is the same as in its original definition (2jO,

• m(C) implementation is either, replaced, extended, or provided (3).

If mthlnParent is redefined in the class AChild, then the class becomes:

AChild = {101. <mthlnParent, mthlnChild>}

The parameter listll and body of the methods may have changed. Therefore, the mthlnParent

method is considered as a new method for the class with the particularity of inheriting a portion or

none of its parent's definition. Usually, redefined methods add specialisation to a class, thus

enhance its behavioural aspect.

In a class hierarchy, it is expected that methods would be mostly reused or extended. By

consequence, the leaf classes are potentially inheriting a large number of methods. This is

graphically illustrated in the next section.

2.2.3. Descendants' heritage extent (hierarchy collapse)

Suppose that a branch of a hierarchy collapses. Instead of having many classes in the branch, an

equivalent behavioural construction would be to regroup all the methods from all classes in the

branch into a single larger class. This process is known as flattening [Hen96]. In the flat class, all

methods are unique and for the ones redefined within the branch, only the latest version appears. In

the Eiffel development environment [Mey&aI95], there exists one such functionality that helps the

designer to browse and understand the class's internals: the flat form view. Amongst other

features, a class, in its flat form representation, displays the list of inherited properties from all its

ancestor's classes within the same level. Therefore, a list of accessible features and their origin is

made available in the flat form view, facilitating the search for suitable class properties. It should

be noted that the flat form only displays the latest version of its properties, redefined or not.

Therefore, all intermediate implementations are not shown. This method is sometimes convenient

for assessing behavioural characteristics of the hierarchy.

In Figure 2.14 the extent of the expected descendant heritage is modelled for the Child class.

When a class inherits properties from its parents, all of them are virtually present in the class plus

the delta parts: x and y. In an is _ a relationship, part of the inherited properties is reused without

modification and another part is redefined.

10 In C++, name overloading permits a redefinition of the parameter list only.

II Note that, in Smalltalk, as the name also defines the parameter list, only the body is allowed to change in the case of a method

redefinition.

- 50-

-Fi.gure 2.14: Expected descendant heritage extent

Example of code for inheritance reuse and extension

class C1 {

public:

int add5(int n) { return (n += 5); }

}

class C2 extends C 1 {

public:

}

int exponentM(int n, int m) { return ((super add5(n))"m); }

int square(int n) { return ((add5(n))"2); }

int cube(int n) { return ((add5(n))"3);)

int add5(int n) {

if (n < 0) n = 0;

r.etum{ super-add5fA) t;
}

~ 2. Background

The addSc10 method is publicly inherited in the class C2, therefore reusable. The measure of

amount of reuse in 00 systems strictly depends on the definition attributed to the tenn "reuse".

Code reuse can be interpreted in difierent ways. One possible measure of reuse is to simply count

the number of times an inherited method is referenced within each of the subclasses. In the above

example, the add5c10 method is called twice in the class C2. The method calls are detected by

the keyword super which means that the parent's method is called. However, the counting

strategy does not specify whether indirect calls should be included or not. Indirect calls are made

through intennediate methods such as the ones in the squareO and cubeO methods. Counting

such calls would raise the number of calls to the inherited add50 method to four. Such situations

demonstrate, for the reuse criterion, how ambiguous an empirical evaluation could be when its

definition and semantics do not cover a particular case. Another important case is the fact that

add5c20 redefines (in this case, extends) the inherited implementation. Therefore, it is arguable

- 51 -

2. Badlground

that such a redefmed method can be considered as a new method to the class C2, In which the first

counting method remains valid.

The above code example and Figure 2.14 illustrated the use of redefinition in the case of

extension; however, there exist other redefinition categories. This is detailed in the following

sections. As the aim of this thesis is to assess the different uses of inheritance and its correctness,

emphasis will be given to the redefinition categories that present potential problems from a design

perspective.

2 .2 .4 . The main redefinition variants

Despite its very important role in a class hierarchy design process, the term redefinition is actually

used in a confused way. Sometimes, it is referred to in the sense of method extension and othet

times in the sense of method replacement. Although, in both cases, the method is effectively

redefined, their aims diverge completely. Method extension permits the reuse of the inherited

property whereas method replacement stops the heritage of a parent property by not using it and

replacing completely the inherited implementation with a new one. Method replacement seems

intuitively unnatural unless as used in the case of a polymorphic method. For example, consider

the following Smalltalk Colfection branch:

Figure 2.15: Part of the Smalltalk Collection branch

The add: method of the class Collection is declared as abstract, therefore it is necessary for the

subclasses to provide the implementation of the class. In such a case, redefinition is correctly used.

In order to assess the "goodness" of a class hierarchy in terms of criteria such as coupling,

cohesion, reuse or inheritance, it is important to understand and define what characteristics are to

be measured. The hypothesis is that a high level of redefinition or its variants suggests a possible

conceptual design problem in the hierarchy e.g. a class which was wrongly subclassed. The

redefinition of a method will be assessed regarding its main variants [Lew95b] described in Figure

2.16.

- 52-

2. Badlground

Redefinition variants
» complete redefinition
}> extension -----
}> realisation

Figure 2.16: Different types of methods redefinition

The SUPERCLASS's methods are assmned to be publicly inherited. In SUBCLASS, the first

case of the redefinition variants depicts an arguable case of inheritance where a complete

redefinition of a method is done. Whereas the last two cases, extension and realisation, represent

the recommended use of property inheritance. Cancellation of methods is an example of complete

redefmition that restricts or stops the inheritance scheme. An extension to the implementation of

methodB permits the reuse of inherited code and the addition of extra code which makes the

subclass a specialised version. It should be noted that all cases of inheritance fall under one of the

different types of method redefinition mentioned.

2.2.5. Remark on super method calls

This section highlights the fact that the type of calls to inherited methods may greatly affect the

control of the behavioural inheritance.

When defining an is_a relationship between two classes and providing that the parent class does

not restrict the scope of inheritance, the subclass is offered the possibility to accept or refuse the

parent's properties. In Smalltalk, a reference to the superclass properties is done by addition of the

pseudo-variable [GoIRob85] super in front of the property referenced. The default inherited

feature called is always the one which was lastly defined or redefmed in one of the superclasses.

Thus, if many versions of the same feature exist in the descendants, the latest implementation is

used. This will be referred to as the direct inherited property as opposed to other versions defined

higher in the hierarchy. Note that the expressions direct or immediate classes will be used as

opposed to further or distant classes. It is the method-lookup mechanism [GoIRob90, Riv96] which

allows the execution of the correct version at run-time.

In the C++ language, is it possible to call any publicly declared property of a superclass using the

scope operator e.g. classTest::methodAO. Thus, if a method has been redefined many times in

subclasses, any of the implementations can be recalled from the leaf class in specifying the above-

- 53 -

2. Background

mentioned scope operator which is, in fact, the class name followed by the property name,

separated by two semi-colon characters. These types of calls that clearly deviate from the expected

inheritance scheme adds complexity to the understanding of the overall class hierarchy, thereby

compromising its reusability or maintainability. The previous situation also illustrates a case where

the complexity of the coupling between the parent and child classes is increased. This has been

recognised as one of the major problems of inheritance hierarchies [Bri&aI95, ChiKem91,

ChiKem94, HarNit96, Hen96, Hit95, LorKid94, Mey88, Whi97]. The less coupling between

classes, components or modules, the better. Further research is needed in this area and is outwith

the scope of this thesis.

The next section describes one of the most debatable cases of inheritance which is referred to as

disinheritance. This study is crucial for the understanding of the design characteristics that are

involved in a measurement programme.

2.2.6. Disinheritance and inheritance refusal

Two problematic cases of property inheritance arise when a parent class disinherits its child classes

or when the child classes refuse the inherited properties from its parent classes. A conceptual

approach is taken in this section in .order to shed light on the reasoning behind such situations. It is

argued that such cases of inheritance use are one of the main causes for complex inheritance

hierarchies and are often related to fundamental design problems.

Inheritance aims at propagating ancestors' properties. If the properties are required to be known

only by the class or by a subset of its heir classes, the access and visibility of the properties are

controlled by the encapsulation mechanism. However, such inheritance situations can be disturbed

by explicit or non-explicit restrictions as described below:

• Parent classes impose restrictions for future child classes: the Eiffel language provides a

particular construct which allows, in a class, explicitly naming the heirs for which a set of its

properties will be made available.

class EMPLOYEE

export {MANAGER, DESIGNER} salaryGradeA end

end

In the above example, the salaryGradeA method will be accessible to only the MANAGER

and DESIGNER subclasses of EMPLOYEE. The main benefits of such constructs bring rigour

to the specification of a class. The property inheritance scheme is explicitly stated within the

class. However, it also adds additional complexity for the management and control of

behaviour in a class hierarchy. Exporting properties to only a subset of classes simply means

that the concerned properties are not relevant or even not applicable to the other remaining

subset, thus suggesting a design subclassing problem. One classification might satisfy one

- 54-

2. Background

criterion while violating another criterion, most of the times because of particularities which

prevent obtaining a satisfying design. For example, the case of an ostrich being a bird or not

(i.e. OSTRICH is_a BIRD?) has been studied by many authors. The peculiarity of an ostrich

not being able to fly but still being categorised as a bird in animal taxonomy raised the

problem. Meyer proposed a solution using an inheritance construct whereby pre-conditions are

applied to properties. To simplify, an ostrich would not satisfy the pre-conditions required for

the fly method, thus the method would not be accessible to ostriches. By consequence, the

evaluation of the goodness of inheritance use should also take into account those particularities

when interpreting the values obtained from metrics. The assessment of redefinition is part of

the design trade-off.

• Child classes refuse a visible and accessible property of its parent class: this can be

achieved in two ways:

* Ignoring inherited features: in this case, the features are simply not used i.e. not referenced

in the class. Usually, in a class hierarchy, the leaf classes are the classes which encompasses

all the knowledge given by the ancestor's classes. In this perspective, intermediate classes

are just passing inherited properties to future subclasses and finally to the leaf classes.

However, if an inherited property does not conform to an intermediate class e.g. a method

which does not apply to instances of the· class, the inheritance relationship might be

questionable. Such situations do exist in current class libraries. This clearly illustrates the

dilemma between the intrinsic genericity aspect of class libraries and the specificity aspect

required to produce a solution to a design problem (see section 2.1.3).

* Redefining the property: this category of redefinition is of particular interest for this work. If

many cases of complete method redefinition exist in a subclass, it suggests a potential

design problem whereby the subclass might not hold a correct inheritance relationship with

the parent class, therefore a case of a class wrongly subclassed. Incremental development

sometimes leads to inheritance complications and difficulties in controlling the extent of

multiple changes of a method's implementation down a branch of the hierarchy. For

example, it is common to add new methods at higher levels of the hierarchy, so that all the

subclasses can benefit from the new method introduced. Assuming that the semantics of the

method remain the same for all its descendant classes, different implementations might still

be needed. In fact, the property redefinition happens because the parent class does not

provide the desired behaviour, thereby requiring the replacement of the inherited

implementation. It is precisely the difference of semantics between the parent and the

replaced method's implementation that poses the fundamental design issue. The "Design by

contract" methodology [Mey97, Ste&aI96] aims at tackling such problems.

- 55 -

2. Background

Clearly, there exist design solutions which fit the requirements but contradict inheritance.

Therefore, this strongly suggests that inheritance is not always the most appropriate concept for

solving certain business requirements.

While the above described redefinition models provide a flexible way to address particular design

problems, they may also introduce inconsistencies in the design. The remaining part of this thesis

investigates possible approaches to evaluate the correctness of a design regarding design

inconsistencies that are introduced by unclear uses of the method redefinition mechanism. Given

that a design solution may satisfy some of the design criteria while compromising others, it is fair

to search for the best compromise, and admit that a design may not satisfy 100% of the criteria

required during the assessment of the design.

This section introduced the main redefinition variants and their respective properties. They

constitute strong candidate subjects for the assessment of the behavioural aspect in class hierarchy.

Rating the presence of each category gives indications of the type of redefinition used as opposed

to what is theoretically expected or recommended.

It can be argued that obscure uses of inheritance ought to be detected at design phases; however,

this is not straightforward due to the inherent complex hierarchical structures that inheritance

produces.

In the previous sections, the inheritance mechanism has been presented. In order to build a

measurement plan to assess the correctness of inheritance uses, it is essential to recognise what

constitute good, bad, expected or unexpected uses. Heuristics address such issues in

recommending appropriate uses of object concepts and in helping the design decisions for trade

offs. Heuristics are investigated as a means to identify correct and incorrect uses of method

redefinition and are aimed at providing suggestions where design improvement is possible. In

section 3.4, it is also shown how the interpretation of metrics can be based on existing guidelines

to address identified design problems.

2.3. Heuristics or guidelines for object-oriented design

A consequence of the major hurdles [AksBer92] encountered during the design phase concerns the

capture of the rules of 00 design called heuristics or guidelines i.e. recommendations on the

correct use of an aspect of object concept or mechanism. In general, heuristics describe the what

without telling the how or why. Heuristics are orthogonal to a methodology in the sense that they

exist as a repository of good advice to be used as a checklist. This repository usually comes from

the extraction of all rules and constraints recommended in a methodology to form a summary

synthesis.

Given the multiple inheritance models (section 2.1.3), an assessment of inheritance requires further

precisions on the intention of the designer e.g. the inheritance model, the problem tackled and the

- 56-

2. Background

expectations. These expectations may originate either from the 00 methodology or announced by

the designers. In our case, if it were to assess the method redefinition mechanism, one would state

not only the goals of the assessment but also what is considered as good or bad. To do so, the

heuristics constitute a possible approach for the designer to state the hypothesises, assumptions or

general recommendations regarding the subject assessed. Reference to such heuristics is valuable

as a design aid tool; however, it requires to be supported by a quantitative process that permits the

validation or invalidation on the correctness of the design.

This section gives a general overview of heuristics. It is shown how the technique can be used as a

design technique, thereby providing an opportunity for defining the intended uses of inheritance.

The benefits, applicability and restrictions of heuristics are outlined.

2.3.1. Definition and purpose

Guidelines for 00 design are, by definit~on, aimed at guiding the process of design. Sometimes,

they are referred to as principles although this term implies strict respect for the topic described. A

basic definition of heuristic is as follows:

Heuristic [FoI97]:

A rule of thumb, simplification or educated guess that reduces or limits the search for

solutions in domains that are difficult and poorly understood. Unlike algorithms,

heuristics do not guarantee optimal, or even feasible, solutions and are often used

with no theoretical guarantee.

From a software engineering viewpoint, it is surprising why the interest for guidelines has

increased from the birth of the 00 paradigm. One could question if there is a need for those design

guidelines as all details should be already explained and examined in the 00 methods. A first

answer can be found in observations made from past experiences. As many factors may influence

the profile of an 00 model, it is the designer's responsibility to ensure the best possible

compromise for a good 00 model. Each design solution corresponds to a particular design

problem space. This is the reason why designers ought to capture the commonalities between each

design context, so it can be reproducible. Such difficulties are reflected in the design decision

making process. Thus, heuristics originate from the intention of designers to describe good uses of

the 00 concepts. For instance, the use of abstraction or generalisation varies according to the

designer. When many approaches exist to solve a design problem, designers can rely on heuristics

to guide their decisions. Riel [Rie96] described his work as an attempt to capture this subconscious

list of heuristics which guru designers use to "validate" their design. If the heuristics pass, then the

design feels right, and vice-versa. Note that in any cases, humans' mistakes still represent one of

main sources of errors. Heuristics may also state the conditions under which the application of a

technique or a mechanism will exhibit good quality factors. In general, heuristics are considered as

part of 00 design methods although they may not be specifically referred to as heuristics.

- 57-

2. Background

The development of large software systems provided experience in producing lists of guidelines

for good design. Even though they remain textual explanations, their application whilst building

models help increase the level of quality of applications with respect to reusability and

maintainability [Fir95]. Heuristics for 00 design are categorised according to the various aspects

found in 00, and often address unclear or imprecise design features i.e. use of the inheritance

relationship for subclassing or subtyping. Recently, Riel [Rie96] proposed more than sixty

heuristics which cover most aspects of 00 design from objects, classes, the different kind of

relationship to a complete 00 model. The author even mentioned that the heuristics provided are

to be only considered as rules of thumb and not as rules which must be followed. Those heuristics

exist for the sole purpose of warning when the design does not satisfy a given one. However, the

decision will always be up to the designer for further actions if judged necessary.

The main characteristics of design heuristics are outlined below:

• Non-formal.

• Language dependent or independent.

• Rely on observations from past experiences.

• Outline the main idea of a concept.

• Give an interpretation on the proper use of a technique or mechanism.

• Non-compulsory.

In general, heuristics are recognised as good indicators of anomalies or infringement of design

principles. For example, a class hierarchy that is extended in width rather than in depth illustrates

that the inheritance mechanism is used in only one particular aspect and that redundancy of

services might appear in the subclasses. Ultimately, design guidelines provide directions to tackle

design problems.

Examples of heuristics' classification from different authors can be found in the Appendix.

Heuristics may be used in a wide range oftopics from conceptual design to programming language

constructs. However, one particular limiting aspect of heuristics is that they may be subject to

various interpretations. In such a situation, their application may also be compromised. The next

section relates such issues.

2.3.2. Interpretation

On one hand, heuristics' informal description underlines the fact that they should be manipulated

as good design advice rather than strict rules. On the other hand, the definition also specifies that

they may be open to many interpretations. In general, heuristics recognise the good or bad

practices in design but do not suggest approaches to reach that aim. Heuristics that encompass a

- 58 -

2. Background

subjective characteristic are particularly questionable. For example, Firesmith's [Fir95] guideline

G-30 states: "Avoid inheritance structures that are too shallow or too deep". It argues that

inheritance hierarchies are considered shallow when they are less than three levels deep and deep

when they more than seven levels deep. Those assumptions are indeed debatable and highly

dependent on the domain and the designer's experience. On the contrary, Kennedy [Ken92]

promoted a deep hierarchy approach based on abstract data types. By following his guidelines, a

designer would not face the important problem of providing too much or too little information

within a class. A deep hierarchy is effectively breaking up the problem into many classes. Another

variation of the same principle for inheritance is given by Riel [Rie96]: "5.4: In theory, inheritance

hierarchies should be deep" and "5.5: In practice, inheritance hierarchies should be no deeper

than an average person can keep in his or her short-term memory". The application of heuristics

still remains difficult because of their open interpretation.

Although valid, heuristics may not be relevant in all design situations as it depends on many

factors such as the requirements and criteria of the application. For instance, consider the

following contradictory guidelines:

• Class coupling is not recommended because it creates a dependency link between the classes.

• . Commonality in data, behaviour and/or interface should be factored out to the higher levels of

the hierarchy.

The second guideline encourages the creation of abstract classes in higher levels of the hierarchy,

therefore is in favour of decomposing and organising the behaviour in appropriate abstract classes.

Creating many levels of abstraction implies an increase in the number of classes in the system. So,

when instances of a class are created, they rely on other information from other classes, therefore a

possible increase of class coupling as well, which is contradictory with the first guideline.

Another difficulty in using heuristics is that exhaustive lists of recommendations seem to be

adopted sparingly in companies and therefore, are under the influence of the practices in that

environment. Frequently, recommendations are made for 00 programming languages in order to

generate some sort of uniform programming culture which makes easy communication between

developers.

Riel [Rie96] argues that the designer does not get a prioritised ordering of the heuristics. Instead,

the sense of priority comes from a combination of the application domain and the user's needs.

Therefore, this suggests that the representation of heuristics should be either problem-based or

characteristics-based, thus encouraging classification. The application of heuristics or guidelines is

mainly requirements and constraints driven.

It is clear that heuristics may not be as beneficial as expected for the reasons that there are no

supporting techniques or tools to verify if the heuristics are realised. To avoid the above

mentioned problem of heuristics' interpretation in this thesis, attention will be given to heuristics

- 59-

2. Bad<ground

that address specific design issues rather than general ones. In such a case, it is believed that

heuristics will permit a fairly accurate description of the problems of inheritance, thereby

facilitating the use of quantitative measures on the design attributes. However, the use of

quantitative measures will not remove the subjectivity aspect of the heuristics, but rather only

provides the basis for development of non-subjective assessment.

The next section illustrates an example use of heuristics.

2.3.3. Example of heuristic's application

Class correctness

Different design solutions exist for the same problem. For example, Rumbaugh proposed that a

single class with appropriate attributes e.g. instance variable of basic type or of aggregate type

should be considered when the potential subclasses do not hold different forms [Rum93].

Person

name:*lng
dateOfBlrth : string
nationality: {BIttI French •••• }
origin : ~. Asian • ••• }

(a)

Person

name:*lng
dateOfBirth : string

has 8

(e)

Person
name : string
dateOfBirth : *lng
origin: {WhItII. Asian •.•• }

/'-r British 1 rrF-"Irel-nch---"l

I J I J

(b)

Citizenship

nationality: (BrltI French • .••)
origin : {WhItII. Asian • ••• }

Figure 2.17: Three possible designs for the class Person

Figure 2.17 shows three different models representing the same information about a person.

Applying Rumbaugh's above-mentioned guideline, the design (a) is preferred because the creation

of two subclasses BritishPerson and FrenchPerson do not add further information to the design

as in design (b). In addition, the same problem occurs for representing the origin of a person. In

fact, a much more flexible design is shown in (c) where the information about any kind of

citizenship is modelled as a Citizenship class and any person holds a link to this information.

Suppose that depending on the nationality of a person, there exists a different set of regulations. A

possible solution to keep track of the regulations would be to store them as behaviour in the class

Citizenship (design (c». The following guidelines are satisfied as well: "keep related data and

behaviour in one place" and "descriptive attributes should be modelled as properties" [Rie96]. The

appropriateness of the Citizenship class (as opposed to an attribute) was justified by the presence

of behaviour for the different nationalities represented. Citizenship class can therefore be used

independently in other contexts, resulting in a de-coupling of information among classes.

· 60 ·

2. Background

Note that, with the help of the heuristics, a model can be successively refined in order to solve the

same problem in improved ways. The first important step before applying heuristics to a design is

to select the relevant ones for the project. Then, a priority order can be attributed to each identified

heuristic within each of the categories.

Modelling gap: translation from textual analysis to design to implementation

It has been generally recognised that in the early phases of the software development life cycle the

transition from the user requirements to the specification phases raises the problem of capture and

comprehension of the users concepts. This has been referred to as the mapping and the modelling

gap problems (Figure 2.18).

I Abstractions If<III.~----- mapping

•
__________ ~~~['-__ B_u_s_in~e_ss __ __J

. concepts

Real world
mapping - _ ... - -.............................. .

B
Computing world

Abstractions ~ mapping modelling 00 language
gap features

Figure 2.18: Mapping and modelling gap

This example illustrates a well-known application of heuristics or guidelines in order to find

relevant objects from a textual analysis task. The early work on the identification of objects in a

system is due to Abbott in 1983 [Abb83]. His idea was to extract the objects and methods from the

textual specification of the problem based on simple rules or guidelines. With a direct mapping of

the grammatical type of words to 00 concepts it is possible to obtain a first object model.

Part of speech
Proper noun
Improper noun
Doing verb
Being verb
Having verb
Stativeverb
Modal verb

Adjective
Adjectival phrase
Transitive verb
Intransitive verb

Model component
Instance
Class
Operation
Classification
Composition
Invariance-condition
Data semantics, precondition, post
condition, or invariance-condition
Attribute value or class
Association, operation
Operation
Exception or event

Example
John
company
lead
is a
has a
have bonus
retires at 65

is able to

Table 2.1 : Identification of objects from textual specifications

Example: Suppose that we want to model a company which employs a certain number of

employees. A manager is able to lead many employees but an employee is responsible to a single

manager. An employee receives a bonus on his work anniversary. In this company, an employee

has the following status: junior, senior, project leader, manager and retires at 65.

·61·

2. Bad<ground

In the above textual specification, the possible objects are shown in Italic while the relationships

are underlined. A possible resulting object model would then be:

employs

Figure 2.19: A company information system12

This section showed that heuristics constitute a useful informal technique to tackle design

problems. Intuitively, it can be claimed that the human s common sense is the first form of

heuristics. Heuristics give indications on the correctness of a design and can be used as a

complementary technique to the design process. Therefore, it is a good candidate technique to

investigate potential misuses of the redefinition mechanism. However, it has been previously

stated (section 2.3.1) that heuristics do not guarantee solutions. The next chapter describes how the

recent subject of 00 design assessment can shed light on many design areas where suspected

problems occur. It is believed that measurement techniques can support heuristics in the sense that

it provides quantitative elements to identify the realisation of a heuristic. Thus, assessment

techniques are envisaged as an approach to the validation or invalidation of the heuristics.

The following section focuses on measurement techniques in a general manner and describes the

current state of research for the assessment of object oriented concepts. In particular, the process of

measurement is detailed with the aim of identifying the different aspects for applying metrics to an

object model. In this thesis, the use of metrics is considered in order to detect design defects using

inheritance and suggest solutions to identified problems.

t 2 Note that some assumptions were made before drawing the object model in Figure 2.19 :

• A manager is an employee. The factorisation of features encourages genericity. Note that, if the manager attributes are to be
represented e.g. salary, benefit and responsibility, an appropriate class would be required.

• The different status can be modelled using an attribute.

• Further generalisation of the model is not required but possible i.e. an abstract Person class could be introduced as the
Employee s superclass.

- 62-

2. Background

2.4. Assessment techniques

"We must know what we are measuring"- Norman E. Fenton [Fen91]

"You cannot control what you cannot measure" - Tom de Marco [DeM86]

Generally, assessment techniques are understood as the evaluation of the quality of a

characteristic/attribute of an entity. Measurement techniques constitute the act of applying metrics

to obtain measures (numerical value). Past experiences from the engineering discipline suggest

that the science of measurement plays an important role in software engineering. However,

software metrics have suffered from a lack of rigour which did not encourage its development and

use until recently. A definition of measurement is as follows [Fen91]:

Definition: Measurement is the process by which numbers or symbols are assigned to

attributes of entities in the real world in such a way as to describe them according to

clearly defined rules.

An intuitive and informal design assessment technique relies on the designer's experiences and

knowledge. Naturally, designers test and validate their designs against the requirements. However,

as a design rapidly grows in size in terms of the amount of features such as class, attributes,

methods, rules, constraints, etc, measurement techniques permit a deeper evaluation of an existing

00 model.

The increased interest in metrics for 00 has been significant for the last five years following the

pioneering work of Chidamder and Kemerer [ChiKem91] with their 00 metrics suite. Whitty's

analysis of 00 metrics literature [Whi96] not only showed that publications in this area have

increased by a factor of nearly 10 from 1990 to 1995 but also that 45% of them concern product

metrics applied to designs or code. Since 00 programming languages encompass ready-made

class hierarchies in their packages, there are opportunities for assessing both external and internal

quality factors of class hierarchies, therefore a better understanding of the meaning and usage of

the inheritance mechanism.

Assessment techniques help managers and designers to evaluate the quality of their projects

[RosHya96] providing that the goals for measurement have been identified and described.

Evaluation can occur at all stages of the development; however, for prediction, measures should be

taken as early as possible in the process. Assessment can also be applied on an implemented

application, therefore falls under the case of a re-engineering or refinement strategy of a current

existing product. In such a case, it is interesting to know what areas need to be re-visited, taking

into account any new requirements. Assessment techniques are divided into three categories of

measures:

• Processes: software related activities which normally have a time factor such as specification,

analysis and design,

• Products: deliverables such as documents, applications or other artefacts,

- 63 -

2. Background

• Resources: any inputs to software production such as personnel, materials, tools and methods.

Although a measurement programme should bring benefits to the matter investigated, it does affect

cost and schedule of the project. Cost issues are outwith the scope of this thesis; however, attention

will be given to planning a metrics programme to be run within a project. As the design phase aims

at producing deliverables in particular an object/class model, most of the rest of this document will

put the emphasis on the product metrics category. Relevant metrics are the ones affecting the

design phase.

In this thesis, the use of measurement techniques is envisaged as a means to assess the goodness of

a class hierarchy with respect to the design criteria and design heuristics. This section explains the

purpose of a measurement process, the expectations and benefits from the use of metrics and how

a measurement plan is created.

2.4.1. Roles of technical measurement

Fenton [Fen91] claimed that measurement has the two roles of prediction and assessment. The area

of prediction relates to project management and comparisons are often made to previous project.

experiences. Fenton considered that prediction should remain the ultimate goal of measurement.

Whitmire [Whi97] added another three roles to measurement and descdbed the following:

1. Estimation: in many software projects, is it essential to identify previous experiences (from

historical and environmental data of existing products) which can help in resolving the current

requirements of the current project. The aim of estimation is to evaluate the resource

requirements for future products.

2. Prediction: as opposed to estimation, prediction looks at values of product measures in

considering values from existing products. Prediction is not so much based on historical and

environmental data.

3. Assessment: from an evaluation perspective, the assessment process aims to compare values

obtained from a product to previously defined values arbitrarily or not chosen as standards,

benchmarks, projects goals, targets or customer requirements.

4. Comparison: the main purpose of comparison is to help in making design decisions i.e. trade

offs. Although assessment ought to compare values as well, comparison only takes into account

measures taken from the product and not from predetermined values.

5. Investigation: in order to support or dismiss a hypothesis, measurement techniques can be used

as a way of investigating unknown attributes or behaviour.

The assessment of software applications is expected to shed light on various quality criteria of a

system. If the prediction of costs is possible, the budget planning process becomes easier and

realistic [VerCor95]. Often, the assessment of the quality factors relies on measures taken from

- 64-

2. 8ackg round

internal factors. For example, assessing the overall reusability of code of a system, the reusability

aspect must be assessed for all sub-levels in the architecture. Further details can be found III

[DeM96, Fen91, HenEdw94, VerCor95], however this topic is outside the scope of the thesis.

The work in this thesis mainly concerns the assessment, comparison and investigation categories.

A presentation of a software quality model is given in the next section to explain the essential

process of creating a measurement plan.

2.4.2. Software quality model

The success of a development and implementation of a metrics programme is based upon the

underlying software quality model used to define the metrics themselves. In the same manner as

for the software development phases, assessment methodologies exist and propose a step approach

model from definition to implementation of a metrics programme. The well-established

Goal/Question/Metric (GQM) [Bas&aI94] model is such a model (Table 2.2).

Level Assessment level Description

Conceptual Goal Objects of measurement
Operational Question Characterisation of the way the assessment/achievement of

a specific goal
Quantitative Metric Evaluation of the object to be assesse,d

Table 2.2: GQM levels

The GQM model describes a framework for developing a metrics programme. It provides a means

of identifying and defining a concise plan detailing all necessary actions to identify, define and

apply metrics, analyse and interpret the results and finally, return feedback to the designer. Figure

2.20 shows the GQM!MEDEA (MEtric DEfinition Approach) [Bri&aI94] which is based on the

GQM model. In this model, the steps are detailed and take into account possible external

interactions or events which might affect the metrics programme.

- 65 -

2. Background

Envirionmental
characteristics

Expert
opinion

Envirionmental
characteristics

Corporate
objectives

Abstractions
+

Context-dflQendent
properties

Metrics

Validated Metrics

Existing
concepts

Figure 2.20: The GQMlMEDEA model

Goal(s)

In many past experiments using metrics, the pragmatic approach raises the problem of validity of

the results obtained by metrics derivation. A consequence of invalidated results is that wrong

interpretation follows and finally unexpected conclusions arise. Validity of metrics is the first

important concern addressed in a software quality model. Thus the danger of metrics is that they

may not produce expected results on the characteristics measured i.e. wrong metrics. A possible

definition of validity of measure is given:

Definition [Bak&al90]:

Validation of a software measure is the process of ensuring that the measure is a

proper numerical characterisation of the claimed attribute

For a metric to be valid, it is generally accepted that the metric should embody a certain number of

properties. The next section concentrates on properties that relate to the 00 concepts.

- 66 -

2. Background

2.4.3. Properties of software measures

Software metrics has suffered from criticisms concerning their real added value in managing and

controlling software development. Nonetheless, when Basili [Bas&aI94] proposed the GQM

approach, he stated that metrics, in order to be effective, must be:

• Focused on specific goals.

• Applied to all life-cycle products, processes and resources.

• Interpreted based on characterisation and understanding of the organisational context,

environment and goals.

It is interesting to note how well these three points summarise the expected properties of metrics.

In the literature where criticisms have been made on the relevance of metrics for software

development, one or more of these points are either omitted or unclear thereby casting doubt on

the validity of metrics. For example, Hitz and Montazeri [HitMon95] categorised metrics

depending on their causal effect on the design process. They argued that attributes can be divided

into three kinds: ''jundamentaf', "auxiliary" and "useless". In short, they stated that attribute

selection often does not consider the first point of Basi Ii's metrics effectiveness criteria. Therefore,

a metric measuring a wrong attribute does not invalidate the correctness of the metric itself. The

SIZE1 and SIZE2 metrics proposed by Li and Henri [Li&aI95] were challenged for their effective

evaluation of costs per class as expected. If the metrics were to be minimised, the classes would be

smaller. Providing that requirements remain the same, the number of classes would rise to fulfil

them, therefore, generating an increase in the overall system complexity which in turn may

increase overall maintenance costs. A metric is causal when a change applied to the attribute

considered generates a different metric result. Therefore, it is expected for a metric to have the

causality property.

In general, it is highly desirable for metrics to be:

• Intuitive (reasonable): when considering the assessment of an aspect A of an object model,

finding related attributes or other aspects which are directly or indirectly related to aspectA

should be intuitive.

• Applicable or derivable: the metric used must be applicable otherwise it is useless.

• Related to the characteristic measured: a measure of both the structure of the data and

process must be included.

• Independent of language: a metric should capture a particular aspect of a concept or a concept

itself, therefore should not depend on its underlying implementation.

• Contained: once defined a metric should be valid in the defined context but not dependent on

conditions for its existence.

- 67-

2. Background

• Basic or composite nature: a metric is either basic or composed with other dependent

metric(s).

• Measures must be consistent: if r is the result of metric m on an entity e, then if e changes, r

should also have changed.

• Represented at least on an ordinal scale of weak order: the metric should be represented on

a quantitative scale and not based on a subjective scale.

• Additive i.e. for two independent structures, the total complexity metrics should be the sum of

complexity of the two individual ones.

• Automatically collected by tools: data collection is a time-consuming and expensive activity,

therefore it is unrealistic to attempt any measurement programme if no tools are available to

facilitate the process.

00 design methods do not include assessment techniques as part of the methodology. Instead,

assessment methods are considered as. additional techniques. The assessment for "goodness" of a

design should be done under different perspectives in order to obtain valuable information for

trade-offs. Thus, a possible definition of a good design is ''providing a set of design requirement

criteria and associated priorities, a good design should mainly satisfy the few important ones

without discarding the others". Unfortunately, current methodologies give a recipe for software

design but there will always be a number of unpredictable error cases. In consequence, there is a

need for a systematic design review process during or after the building of a model. Current design

review methods include testing techniques and assessment techniques. Both these techniques help

in detecting suspect designs once the problems are identified. Open interpretation of a concept

leads to many design choices. To date, it is essentially a great effort of careful programming which

avoids future maintenance costs.

The next section highlights the intrinsic internal quality factors of an 00 design.

2.4.4. Internal quality factors of 00 design

"Quality is relative to the intended use of the system" - [Bar&aI97]

Whilst researchers have focused on various software quality model that enable the construction of

a measurement plan, it is equally important to review the aspects of an 00 design that can be

assessed. Given the software quality model described in section 2.4.2, recognising a good design

necessitates first giving a definition of the qualifier: good. In a first attempt to assess a design, the

designer's intuition plays an important role. Often, knowing that a design 'feels' good or bad

might be easy; however, giving an explanation of the grounds the conclusion was based on is

rather difficult. Typical expressions include:

• "It is good because the classes are reusable? "

- 68-

2. Background

• "It is good because polymorphism is used and common properties have been abstracted? "

• "It could be better because classes are too large. "

• "Should this information be represented as an attribute or a separate class?"

In all cases, the conclusions remain vague and open to different interpretations. Often, this

situation is due to an uncertainty of the attributes to be measured. According to Fenton, the clear

distinction between a) product/process/resource attributes and measures, and b) internal and

external attributes and measures is crucial before the identification of any possible candidate

metric. For example, stating that classes are reusable requires further information on the kind of the

reusability referred to. Is a class reusable because it has subclasses? This is not necessarily true in

the case of implementation inheritance. In order to evaluate characteristics of an 00 design, a

detailed study of the object model and its context is necessary. Current assessment methods are

based on measurement techniques applied to intrinsic characteristics of 00 concepts. Assessing

design characteristics requires the knowledge of the characteristics themselves with regard to the

criteria to achieve. One possible approach is to use existing classifications of 00 concepts in order

to address a particular aspect of the system e.g. the quality factors.

Goodness of internal quality factors relates to the aspects being assessed. First, the 00 aspects

envisaged concern the stated criteria in the requirements. A life-critical application would be

assessed for potential failure of the system. Second, concepts such as coupling, cohesion, reuse,

depth of inheritance, hierarchy structure [ChiKem94, Bri&aI94, LorKid94, Teg&aI95] can be

assessed to detect potential misuses. From a user viewpoint, software is considered good if it

satisfies all the requirements. Internal quality factors concern the architectural, structural and

behavioural design of the software. From a designer viewpoint, an example for which software is

considered well designed is that the introduction of new parts in the system does not disturb the

existing parts. Few papers have described concepts that have been wrongly used and for which

metrics permitted assessment techniques to take place [BarSwi93, Bri&aI95, LiHen93]. In general,

obscure uses of 00 mechanisms relate to either the structural or behavioural organisation of the

classes in the model. Indeed, the architectural issues affect the overall quality criteria of the design.

Thus, the motivation behind the assessment of 00 models at various levels of complexity

including system, class hierarchy or class levels.

In addition, metrics have also been defined for the internals of a class i.e. the instance variables and

methods. Often, in a measurement programme a set of metrics is utilised for various reasons. When

the metrics address related aspects of the design e.g. cohesion and message passing flow, complex

dependencies between the classes may be explained. Tegarden et al [Teg&aI95] proposed that the

characteristics of a good 00 design are identified by means of coupling and cohesion. They state

that metrics can be categorised into two types of coupling: interaction and inheritance and three

types of cohesion (service, class, and generalisation-specialisation). However, they identified four

- 69-

2. Background

possible levels of complexity which are the variables, the methods, the objects and the overall

system.

While the "goodness" of an 00 design can be measured by assessing its internal quality factors, a

major component depends on the understanding and application of concepts provided in the 00

paradigm. Determining a good set of metrics is strongly dependent on the interpretation of the

concept measured. Fenton [Fen91] mentioned that measuring is not enough, one important aspect

in an assessment process is also to state clearly the objectives, goals or specific motivations for

establishing such a measurement programme. If software reuse is to be achieved it is essential that

the structure and behaviour of the class are well designed. One way to tell about the "goodness" of

a design is in recognising its "badness".

So far, the reasons and the process of building a measurement programme have been described.

However, other considerations should be taken into account for the deployment of the programme.

In particular, the next section highlights the dilemma between the desire of measuring at early

stages of the design and the data availability issue. The practical issues in the application of

metrics are explained.

2.4.5. Data availability and metrics collection

Once the measurement programme has been identified and defined for the project, the application

of the programme will start with the data collection phase. Data collection is recognised to be one

of the main problems which can affect the success of the programme. If a metric ought to assess a

particular aspect of the design, then the identification of the necessary attributes/properties related

to the assessed subject should be available. Metrics claim to be implementation-independent (see

section 2.4.3), therefore it implies that the code is not necessary for calculating the metrics. Indeed,

an early assessment of the design, meaning that the information is available, favours early

detection of potential problems. This is not always possible. Due to the incremental development

process, any attributes are expected to evolve during design; thus assessing an unstable element is

not good practice.

Without an automatic metric collection tool, it is unrealistic to perform a measurement

programme. Deriving measures on an object model is purely a counting process. Classes,

properties, data structures, meta-information and so on are parsed and required metric information

is collected, then computed if necessary, and finally stored for later analysis. Not only is an

appropriate measurement methodology necessary, but also tools [Bri96, BriCuc98, Fen91,

LewSim98] are vital for a successful completion of a measurement activity.

To date, most metrication tools rely on source code for extracting measures. It has been criticised

that taking measures when the implementation is done appears too late in the software

development process. This is a valid criticism. Nevertheless, collecting metrics on source code still

-70 -

2. Background

gives much insight into both the design and most importantly, the language features used to

implement a design solution. Often, there are no other choices. Therefore, an assessment of source

code for design features should be considered as a valuable process for detection, investigation or

evaluation purposes.

Current research has focused on the provision of generic tools which would be able to define,

apply and analyse a range of measures in combination. This is still an active research area where

more empirical studies are required in order to classify the different possible measures i.e.

taxonomy of measures. So far, dedicated tools exist for a set of measures, often corresponding to

an author's suite of metrics. Another area of research concerns the application of the metrics across

languages. Languages have different constructs to implement the same concept, therefore different

metrics are needed to cope with the equivalent syntaxes. Sometimes, such mappings are not

straightforward or even possible. For example, metrics assessing multiple inheritance cannot be

applied to single-inheritance languages such as the Smalltalk language.

The integration of assessment tools within CASE tools seems to be the natural solution to provide

designers with complementary functionalities to assess a design while being built. To date, only

few research projects have built specialised metrics tools for assessing internal quality factors of a

design [BriCuc98, LewSim98]. Besides the metrics tool availability problem, the assessment

methodology is still subject to debate. Measurement techniques are, without doubt, beneficial to

designers and, implementors but more empirical experiments are required to validate and quantify

the quality of the measurement experiments themselves. In [Bri96], the main goals. of automatic

data collection tools are identified as:

• Simplification of data collection.

• Minimising the impact on the development schedule.

• Maintaining confidentiality of data.

• Providing value to target audience.

In this research work, the development of a metric collector tool is envisaged to support and

demonstrate the use of metrics derived from an object model. The automation of the metrics

collection process is crucial to the success of the programme.

In as much as the definition of the metrics is important, the analysis and interpretation of the

metrics results is equally important for the extraction of meaningful feedback and possible actions

for improvement. The issue of metrics interpretation is covered in the next section.

2.4.6. Metrics interpretation

The application of metrics to an 00 design aims at providing explanations or directions to the

problem assessed. For instance, the discovery of unseen design problems may confirm the stated

- 71 -

2. Background

hypotheses. The analysis and interpretation of metric results is problematic and sometimes

unclear. Depending on the subject assessed and the purpose of measurement, the metrics results

may not always guide the designers to the satisfactory conclusions. It is believed that such

situations are due to various factors which can be decomposed into the following categories:

• Metrics' definition: the metric definition itself can be the cause of difficulty of interpretation,

particularly when it does not measure the desired characteristic [Fen90, Hen96]. For instance,

the LOC (Line Of Code) metric has been a subject of debate for its use in 00 programming

languages [Fen90, Hen96]. However, it has been generally recognised that the metric was not

appropriate to the object model.

• Identification of the purpose of the metrics: although a metric may be completely valid, it

may not be very useful. Collecting measures is part of the goals of a measurement programme,

suggesting directions and solutions are the main outcome researched. For instance, there have

been many attempts to provide measures on a particular aspect for the resultant software

system. Often, those aspects are high level quality factors such as in the equation

below[Hen96] :

Quality = reliability + availability + maintainability + usability

Where maintainability = understandability + modifiability + testability

It is argued that, metrics assessing an entire system are mostly beneficial if finer-grained

metrics are jointly used in order to suggest more precise indications on where design goodness

or badness occurs. In [Ban97], the proposed hierarchical object-oriented design 'quality

framework relies on the decomposition and relations between high-level quality attributes and

details of the structural and functional design properties.

The goals' definition is the first step of the measurement process [Bri&aI94]. Assumptions

about the characteristic measured are also defined. However, if incorrect assumptions are

made, the interpretation of the metric results is also affected. Usually, assumptions relate to the

interpretation of 00 concepts, and therefore depend on the designer's experience.

• Metrics' derivation: often, because of an unclear description of the metric and its use, the

interpretation of each can be wrong [ChuShe95, HitMon96]. In such a case, the user of the

metric may elaborate many incorrect assumptions when ambiguity arises, thereby affecting the

analysis of the results.

• Metrics' results interpretation: often relying on statistical methods, this does not seem

entirely satisfactory [HarNit96] as the conclusions relate more to a mathematical model than to

a design characteristic. On the other hand, averages or thresholds appear to be useful although

based on an arbitrary choice for the value. The problem of interpretation is that without a

reference or comparison value, the designer is left with an intuitive interpretation. For example,

Henderson-Sellers [Hen96] stated that a first and simple approach is to infer relationship order

-72 -

2. Background

between the values e.g. a system containing 1000 classes is bigger than a system with only 20

classes. Then, the standard deviation of a particular measure from a mean value gives an

indication on how different the measure is compared to an even distribution within a system.

However, it is argued that such an interpretation is not appropriate in some cases. For example,

the fact that a system has 20 methods on average per class would suggest that all classes

should encompass around the same number of methods, otherwise it is considered as suspect.

Note that this example assumes that the classes assessed belong to the same categories. In

general, the inclusion of classes from different categories such as VI classes, facility classes,

control classes, etc in the metric calculation raises the issue of interpretation of the results due

to the fundamental nature of each.

To date, proposed software quality models only cover the first two points above described.

However, it is the interpretation of the metrics results phase that provides the final conclusions,

therefore it is vital for the success of the measurement programme.

Computing an average or a threshold constitutes another research problem for the metric

interpretation. Generally, it involves the derivation of the metric on the entire system in a particular

domain. Metrics for 00 design have suffered from many types of criticism, from lacking a

. theoretical basis, missing the. measurement goals, misleading use when deriving the metric, to

simply a metric derivation collection which is too fastidious [ChiKem94]. The results obtained'

from metrics derived on both C++ and Smalltalk applications [ChiKem94, LorKid94] showed that

interpretation of data are usually consistent across the same language. It is suggested that metric

results exhibit "typical" syntactic language construct profiles dependent on the language used. This

observed fact constitutes one of the main motivations behind the desire of generating a redefinition

profile for inheritance hierarchies. Also, such comparison methods could be categorised in the

benchmarking technique whereby a chosen set of measures is arbitrarily the reference and where

measures obtained from others systems are compared against one or many references.

Lorenz and Kidd [LorKid94] preferred the use of thresholds for their proposed metrics. Thresholds

are also arbitrarily chosen numbers for which a measure is believed to be fair. The usual form of a

threshold is an average, a minimum or a maximum. Still, in this case, the decision on the validity

of a design relies on the comparison of a value obtained against such threshold. Thus, it is arguable

why a metric applied in one context should be the reference for the same metric applied in a

different context. For example, it is irrelevant that all classes in a model should have the same

number of methods as the average case. Such comparisons might only hold in the case of two or

more similar classes representing a slight variation of an abstraction.

One possible approach to tackle the problem of interpretation is In the understanding of the

dependencies between object concepts. As the metrics are applied on the internal features of an

object model, it is interesting to investigate how dependent the metrics are. The next section

investigates such approach and gives insights on the possible interactions between related metrics.

- 73 -

2. Background

2.4.6.1. Remark on the dependencies between metrics

Unsurprisingly, in object technology as in many other technologies, concepts are directly or

indirectly related to each other. The notion of relationship relates to the dependency criteria. Here,

the notion of dependency can be defined as follows:

Dependency between metrics

A metric m 1 is dependent on a metric m2 if and only if there exists a characteristic

c which affects the values of m 1 and also affects the values of m2.

In general, objects that exchange messages are dependent on each other. In the literature, only a

few experiments with metrics for object-oriented systems emphasise this dependency aspect

between the concepts measured [Ban97, HitMon95a]. It is argued that a dependency between

metrics also exists if the respective attributes measured are dependent on each other. Therefore, it

would be possible to exploit such a property to support and facilitate the use and interpretation of

metric results. Based on the knowledge of the dependency factor between metrics, one possible

investigation technique would be to simulate a set of results for one metric and infer the results for

others. Thus, inference of the corresponding design may be predicted.

In a measurement programme, it is common to use a set. of metrics rather than a single one. The

reason lies in the interpretation of the results and feedback for the designers. Usually, the results of

a single metric are not beneficial if considered alone. Adopting a comparative approach permits

drawing conclusions relative to a known entity. Thus, knowing the dependencies between metrics

would facilitate the interpretation of the results. Indeed, it is not predictable how a metric behaves

when derived over a set of applications or even on different versions of the same application.

However, the rules for interpretation of metric results should remain consistent with the original

assumptions and hypothesis described during the metrics definition phase. For instance, in

[Hen96], for the Reuse ratio U and the Specialisation ratio S metrics (see section 5.6), the

following interpretation values were given:

Deep hierarchy Wide hierarchy

U 1- 0

S 1+ 00

The Reuse ratio indicates how inheritance of classes is used. The value obtained is less than 1 but

if it is near 0, it indicates a shallow, broad hierarchy. The Specialisation ratio gives indication

about the width of the hierarchy. For a broad structure, S » 1, and for lots of multiple

inheritance, S « 1.

Thus, the prediction of evolution of a desired characteristic may benefit from the knowledge of the

dependency factors between metrics. Although finding dependencies between metrics constitutes

-74 -

2. Background

another topic of research and out with the scope of this thesis, it is discussed as further work in

chapter 6.

Chapter 3 explains how the use of inheritance in class hierarchies can generate complex design

situations which affect the future of the hierarchy. In particular, the detailed study of the method

redefinition mechanism unveils previously unknown design situations that raise issues on the

overall quality of the design solution. The reasons why such situations are considered as bad

design practices are given, thereby permitting the description of a new heuristic for the identified

problem. In order to assess the behavioural inheritance aspect of a design, the design factors that

influence the design process are reviewed together with the possible forms of method redefinition.

Then, a novel set of metrics is proposed to tackle the identified problem. Finally, a data

interpretation technique is presented and addresses the issue of analysis of metrics results.

- 75 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3. Assessing the Properties Inheritance Scheme for the Multiple

Descendant Redefinition Problem in Object-Oriented Systems

"The purpose of abstraction is to separate behaviour from implementation"

- Barbara Liskov [LisGut86]

Object-oriented design and assessment model: a refocus on the designer

To date, the area of measurement for 00 systems has mainly focused on internal characteristics of

the design such as the number of classes, the number of messages sent and received by a class or

the depth of inheritance. Although these characteristics enable the definition of metrics, this

section emphasises the fact that a refocus on the goals definition phase is needed. An assessment

process should be design-driven and design-centered rather than being metric-centered as is often

the case. If an assessment of an object model is desired, the detection of the pertinent internal

characteristics does not suffice. The definition of the goals of measurement is highly dependent on

the context of the measurement. In Figure 3.1, an 00 design assessment model describes the main

actors participating and influencing the result of an assessment programme. This is often omitted

in the literature. It is believed that this is one of the main reasons why metrics are potentially

misleading .

. To assess software applications, there are three main aspects to consider which are materialised as

a three-layer model shown in Figure 3.1:

1. The object-oriented fundamentals.

2. The human factors.

3. The software development processes and products.

The representation of the three layer object-oriented design assessment (OODA) model in Figure

3.1 principally shows the relationships involved between the major actors of a design process and

the processes themselves. The presence of human factors in the middle layer of the model

emphasises the fact that the role of the designer is the central key to the development. Indeed many

automated tools such as diagramming tools and code generators are helpful tool aids in the design

process, but these remain limited to a set of functionalities where the interaction with the designer

is still required. Similarly, for the interpretation process, the decision-making and the conclusions

are, in general, drawn by the designers. Otherwise, if defined and precise interpretation rules

exists, tools may be able to handle them and infer the corresponding conclusions.

- 76-

3. Assessing the Pr~ies Inhernance Scheme for the MuH~ Desrendant Redefinnion PrOOIem in Objed-Oriented Systems

Object-oriented design assessment model

Object-Oriented fundamentals

relates to

Human factors

corresponds

Software development

understanding
interpretation

production

recommendations

./
has

metries
derivation

design
feedback

Figure 3.1: Object-oriented design assessment model

Figure 3.1 shows the interactions of the different components involved in the software

development process. The first layer is concerned with the fundamental object-oriented concepts.

In this layer, the Guidelines/Heuristics component remains one of the most intuitive and practical

techniques for understanding and using object concepts (see section 2.3). During an assessment

programme, the main goal is to quantify the level of "goodness" or "badness" of the characteristic

measured. In relation to these defined criteria, a set of reference values i.e. threshold values

delimiting the "good" from the "bad", are usually needed when the purpose of the assessment is to

compare results of the same metrics on several parts of the design. The dependency fonction

relationship on the 00 concepts component notifies the fact that an implicit dependency factor ties

concepts together. When the designer is able to capture and understand such dependency factors,

the interpretation of metric results is facilitated.

The middle layer relates to the human factor issues in the process of designing and assessing.

Although all design problems imply different design solutions, there are approaches to recognise

"reusable design chunks" i.e. design patterns [Gam&al95] because of the similar nature of the

problems. The designers judgements and choices are dependent on their own experience and

perception of the concepts. The experience of the designer is shown as a list of features including

the knowledge, the interpretation, the understanding, the level of subjectivity and the habits. All of

these features play an important role in the success and correctness of interpretation of metric

results. If it was intended for a design to have a particular structural and behavioural organisation,

the assessment of the design will indeed reflect this desire in terms of quality criteria. Overall,

- 77-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

conclusions are satisfactory when solutions for design improvement can be obtained from the

assessment of a particular characteristic of design.

The third layer concerns the software design process. In Figure 3.1, the application requirements

and the measurement programme components are included as part of the software development

layer. The 00 design component outlines the fact that the 00 model produced is subject to a

measurement programme providing that the necessary design information for the derivation of

metrics is available and valid at this time. In chapter6, a proposed model for the integration of the

measurement programme within the design process is discussed.

The OODA model emphasises the important role of the designer both in the design and assessment

processes. Moreover, it shows the various tools available to aid the designers when considering the

evaluation of an 00 design. In order to obtain accurate and useful conclusions from an assessment

programme, it is necessary to reduce the number of factors which cannot be quantified, especially

when related to the designer's perception.

Motivation

Given the OODA model, it is clear that the production of an object model depends on the

designer's interpretation and understanding of the object concepts. A possible approach to evaluate

the goodness of an object model is to validate it against suitable design guidelines. This chapter

concerns the study of the inheritance mechanism and the effects expected and produced in a

hierarchy of classes for object-oriented information systems. The reasons why complete method

redefinition infringes the essence of inheritance are discussed. To do so, the design methodology

issues concerning behavioural inheritance are examined. A redefinition metrics set is proposed and

practical experiments demonstrate that the results obtained permit the detection of inheritance

design problems. Appropriate design decisions are suggested.

This work aims at a comprehensive analysis of the extent of the redefinition mechanism using

metrics for object-oriented systems in order to identify a simple methodological approach to the

problem of measurement. It is also aimed at providing guidance as to the appropriate use of

redefinition for improvement of behavioural and conceptual properties of the model. The

information gathered from the metrics is then used in a design-evaluation cycle.

The key contributions are:

~ An identification of design methodology considerations related to inheritance assessment.

~ An identification of design inconsistencies resulting from the multiple method redefinition

problem in a class hierarchy.

~ The proposition of a method redefinition metrics set for assessing inheritance from a

behavioural viewpoint.

- 78-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

~ Empirical validation of the metrics set and results obtained from the Smalltalk class library are

presented.

The next section explains how and why, in some situations, method redefinitions can severely

compromise the reusability and maintainability of the model. In section3.2, a redefinition metrics

set is proposed and aims at measuring redefinition activity in class hierarchies. Section 3.3

provides a methodological approach where further design issues are examined regarding the

assessment of method redefinition in class hierarchies. Finally, in section3.4, a data interpretation

method is proposed for addressing the problem extraction of feedback from the analysis of the

metrics results.

3.1. Method redefinition: uses and abuses

Current use of inheritance has illustrated that the introduction of conceptual inconsistencies IS

possible in a class hierarchy. Based on the analysis of current existing class hierarchies, potential

design problems may arise in an object model due to an unclear use of the method redefinition

techniques. Languages are fundamentally different as each provides different ways of

implementing 00 principles such as encapsulation or method redefinition; thus this

implementation has close equivalents in other languages. As the focus is given to Smalltalk's

implementation of the redefinition concept, it is important to note that such implementation has its

equivalent in other languages; therefore the analysis presented here also applies to other languages.

The context of the problem is outlined and a heuristic is created to capture its essence. It is

explained why such redefinition uses pose major issues for the future maintenance of the

hierarchy. Thereby, the problem's definition sets the scene for the remaining part of the thesis and

serves as the basis for the evaluation of goodness of inheritance hierarchies.

3.1.1. Method redefinition in class hierarchies

A major criticism of redefinition lies in the essence of inheritance itself. The two notions of

property redefinition and property heritage are paradoxical. Surprisingly enough, method

redefinition, including correct and incorrect use, happens more often than expected in a class

hierarchy. For example, the redefinition metric results for the Smalltalk class library (Figure3.2)

show that the amount of redefinition reaches 57.07% at DIT=4 in the hierarchy. On the first three

levels of the hierarchy, the results obtained more than double from one level to another, denoting

high "redefinition activity". One possible reason for such a redefinition profile is the incremental

development of software. A closer look at the implementation of the same method redefined many

times along a branch of the hierarchy revealed that common code had not been factorised. This

phenomenon seems typical of the case of many developers working on the same part of a system

without modifying the others' code (class dependency problem). Chidamber and Kemerer's

coupling between objects (CBO) metric [ChiKem94] permits the detection of weak and strong

coupling. The CBO is recommended to be as low as possible. However, with new design

- 79-

3. Assessing the Prq:>erties Inherttance Scheme for the Mu~~ Descendant Redefinttion PrOOlem in Object-Oriented Systems

techniques such as design patterns [Gam&al95], the dependency between classes present in a

pattern is high as they are strongly dependent (the purpose of a pattern).

Figure 3.2: Smalltalk hierarchy redefinition profile

Smalltalk has been criticised for its implementation inheritance [Rum91, Tai96]. For instance,

cancellation, which is a variant of implementation inheritance, is common in the class hierarchy.

Similarly, Bracha and Cook [BraCoo90] stated that inheritance in Smalltalk is a mechanism for

incremental programming whereby instances of a class may not bear a necessary relationship with

the instances of its subclasses. Again, inheritance is used for convenience reasons and behavioural

compatibility may be ignored. Nonetheless, Taivalsaari [Tai96] acknowledged that the Smalltalk

class hierarchy has its advantages. It is generally recognised that the hierarchy would be more

complex and memory consuming if it was designed in a more conceptual approach. Cook [Coo92]

described some major problems in the Smalltalk hierarchy as follows:

• Inherited methods that violate the subclass invariant.

• Methods that have the same name but completely unrelated behaviours and for which a

generalised specification cannot be found.

• Methods that have the same (or related) behaviour but different names.

All the above-mentioned problems contribute to the introduction of potential design

inconsistencies such as the MDR problem in the class hierarchy. The next section formalises the

unusual case of method redefinition and explains why it is conceptually wrong.

3.1 .2. Multiple descendant redefinition (MDR) problem

The principle of inheritance involves an ownership transfer of features from the parent class to its

subclasses. When a class inherits a method which has been publicly defined, the subclass has the

right to change the property inheritance scheme for itself and future heirs.

- 80-

3. Assessing the Prq>erties Inher~ance Scheme for the Mu~~ Descendant Redefin~ion PrOOIem in Objed-Orienled Systems

Figure 3.3: Life history of the includes: redefined method in the Smalltalk Collection branch

In Figure 3.3, the includes: method is used to test if an element is present in a collection. At first

sight, a representation of the life history of the completely redefined includes: method casts doubt

on the correctness of the design. Although all IndexedColiections are Collections, they do not

test the inclusion of elements in the same manner, as Indexed Collection introduces a key for

access. The solution is thus to redefine the includes: method to cancel the inherited

implementation from the class Collection. Similarly, for Ordered Collection, the same method is

completely redefined again. Clearly, the property inheritance scheme is broken and nothing is

inherited from the parent class. Furthermore, the includes: method has not been originally

declared as deferred and all its subclasses hold completely different forms, an incorrect case of

polymorphism by definition. This situation will be referred to as the multiple descendant

redefinition (MDR) problem. It should be noted that such classification, although conceptually

incorrect can be implemented in any programming language. Further complex method redefinition

situations may also arise when a combination of many super calls exists in the same method.

A definition of MDR is as follows:

In a class hierarchy, consider a class parentC = { <mthAO> } and mthAO declared as public .

• {V'subclassD. V'subclassE I subclassD < parente. subclassE <direct subclassD }

MDR3 iff • subclassD = {«mthAO» }. mthA() is replaced
• subclassE = { «mthA()>> }. mthAO is replaced
• mthAOsubclassD *- mthA()subclassE *- mthAOparentc

where the relation classB <direct classA denotes the fact that classB is a direct subclass of classA

and mthOclassA is read as the method mthO of classA

To illustrate how MDR problems can be tackled in class hierarchies, an example of an alternative

design solution is given in the next section.

3.1.3. Example inheritance hierarchy that avoids the MDR problem

Although the study of solutions to the MDR problems is outwith the scope of this thesis,

suggestions for improvement of a class hierarchy are presented in this section.

Inheritance hierarchies that encompass MDR problems require a re-design of the hierarchies which

usually implies code re-engineering. Many viable solutions are possible to tackle the MDR

- 81 -

3. Assessing 1he Prq:>erties Inheri1ance Scheme for 1he Munpje Descendanl Redefinttion PrOOIem in Objed-Orien1ed Syslems

problem; however it is important to emphasise that they are not straightforward as other related

design aspects have to be considered. For instance, if an alternative solution consists in moving a

method M from a class A to a class B, the consequences of such relocation have to be examined.

As the original property inheritance scheme is affected, subclasses of A may still expect the

inheritance of method M. In general, the presence of MDR problems in a hierarchy indicates a

more broader design problem. Note that potential solutions to the MDR problem also depend on

the language features. To address the problems of the Smalltalk hierarchy mentioned in section

3.1.1, Cook proposed an alternative Collection class hierarchy based on the conceptual

relationships of the classes [Co092]. He demonstrated the use of interface hierarchies and

specification techniques in producing an improved class library structure. Bracha and Cook

[BraCo090] proposed the concept of mixin-based inheritance as a new inheritance model. The

model relies on composition of mixins or abstract subclasses. Separate mixin classes are created to

hold parts of classes that may not be related but sharing a set of common behaviours. In that

respect, mixin classes seem a good candidate for solving the MDR problem. Both techniques of

interface hierarchies and mixin-based inheritance constitute potential candidates to avoid MDR

problems. The latter is used in the example below.

As Smalltalk supports single inheritance, one of the main problems of its class hierarchy is that

code may be duplicated across different classes and by side effect this situation often generates

MDR problems.

contents

contents
"self implementedBySubclass

setToEnd
self position: self readLimit.

contents
"collection copyFrom:1 to: readLimil .

aetLlmlta
"self copyFrom:1 to: self position.

setToEnd
position := O.
readLimit := collection size.

self position: self writeLimlt.

contents
"self copyFrom:1 to: self readLimil

aetToEnd
self position: self readLimit.

setLlmlts
position := O.
readLimit := writeLimlt := collection size.

Figure 3.4: MDR and code duplication in the Stream class hierarchy

- 82 -

3. Assessing the PrqJerties Inheritance Scheme for the Mun~ Desrendanl Redefinnion PrOOIem in Object-Oriented Systems

Figure 3.4 shows the Smalltalk Stream hierarchy which includes two main problems as follows:

• Code duplication due to Smalltalk's single inheritance. The ReadWriteStream class only

inherits from the WriteStream class but as behaviours of the ReadStream class are needed,

duplication of the setLimits method is done.

• Presence of MDR due to the non-full compatibility between ReadWriteStream and

WriteStream. Strangely enough, the setToEnd method is originally declared in the Stream

class although the definition of its body appears to be for the ReadStream class.

WriteStream completely redefines the method and so does ReadWriteStream, giving rise to

the presence of MDR Note that the body of the setToEnd method in ReadWriteStream is

the same as the one originally defined in the Stream class. This situation illustrates a case of

use of inheritance for convenience reasons. Originally declared as abstract in Stream, the

contents method in ReadWriteStream is also suspect as its body is very similar to the one in

ReadStream.

In this particular example, note that multiple inheritance as described in section 2.1.8 represents a

possible solution to the code duplication and MDR problems. However, in the alternative design

solution below, the use of mixins is presented 3. It is believed that mixins represent a better

solution to tackle MDR problems in a wider context.

__ nts

"self impiementedBySubclass
IMIToEnd

"self impiementadBySubclass

I aetLlml": .collection
position:= O.
readUmit := aColiection size.

r----
contents: endP08ltlon

: "collection copyFrom:1 to: endPosition.
I MfroEnd: endPoelt1on

self position: self endPosition.

Figure 3.5: Stream hierarchy using mixins classes

Figure 3.5 shows an alternative Stream hierarchy which introduces two mlXms classes:

StreamMixin and ReadStreamMixin. Design solutions using native Smalltalk capabilities may

be found for simulating mixins, however the model would probably be simpler with the use of real

mixins. In this example, it is assumed that Smalltalk has been extended to include mixins

capabilities as described in [BraCoo90] or [Sch98]. The introduction of mixin classes captures

13 See [BraCoo90] for the details of mixins' implementation.

- 83 -

3. Assessing the Properties Inhernance Scheme for the MuitPie Oesc:end:lnt Redefinnion Problem in Object-Oriented Systems

common behaviours in the hierarchy; however existing classes also need to be altered so that

methods are still accessible. To do so, the Stream class is combined with the StreamMixin class,

ReadStream and ReadWriteStream class with ReadStreamMixin. In the Stream class, the

contents and setToEnd methods are declared as abstract methods, thus encouraging the use of

polymorphism. ReadWriteStream is now treated as another type of Stream for the reasons that it

still inherits the common behaviours from the Stream class but can also be combined with the

mixin classes so that specific behaviours to the ReadStream and WriteStream classes are

available. All subclasses of Stream make use of inheritance for extension and both code

duplication and MDR problems are avoided.

Moon classes appear to be a good candidate for tackling implementation inheritance; however the

cost of a re-engineering process should not be underestimated. Although the alternative design is

conceptually sound, the increase in complexity and amount of code is noticeable.

The next section illustrates the consequences of a MDR problem regarding the property

inheritance scheme.

3.1.4. Descendants heritage extent for the MDR problem

In an extreme situation, suppose that the Parent class completely redefines all the Grand

parent IS methods, and the Child class redefines all the Parent's methods: all versions of the

methods defined in the Parent and Grand-parent classes are lost (Figure 3.6). In the Child class,

no features come from its ancestors although being a subclass.

An MDR heuristic can be formulated as follows:

Providing the hypothesis that the multiple descendant redefinition problem breaks the

properties inheritance scheme in a class hierarchy, a method m from a class C should

not be consecutively and completely redefined more than twice down a given branch. If

such a situation occurs, all versions of method m defined in previous ancestors classes

are lost, thus violating the essence of inheritance.

Properties inherited recovered

Figure 3.6: Descendant heritage extent with MDR anomaly.

- 84 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3.2. Measuring redefinition in object-oriented systems

The method redefinition mechanism can be applied in obscure manner in class hierarchies and is

not always justified [Mey88, Rum91]. In a parent-child relationship between two classes, the

shared methods are the ones defined in the parent class as inheritance is unidirectional. In 3 .1.1, it

was shown that a high rate of method redefinition occurs in the current Small talk class hierarchy

and that such a situation may point to potential design inconsistencies as methods are generally

expected to be extended rather that being redefined. A high rate of completely redefined methods

strongly suggests some behavioural inheritance design problems e.g. MDR problem. This might

indicate that either the parent class has poorly abstracted the methods concerned or the subclasses

are wrongly situated in the hierarchy which obliges the class to ignore inherited properties. On

many occasions, a deep analysis of the class hierarchy source code depicted that suspect methods

can simply lack code factorisation and thereby fall under the case of a complete redefinition

instead of an expected extension. It was suggested that, due to the class dependency problem and

the incremental software development, developers would prefer to re-write their own version ..

Given the MDR heuristic (section 3.1.2) and the design considerations for inheritance assessment

(section 3.2), it is now possible to elaborate a measurement plan that specifically tackle the MDR

problem. The following sections describe the application of the GQM/MEDEA model for building

a redefinition metrics set.

3.2.1. The method redefinition assessment

Current criticisms of 00 metrics are that they only provide hints or clues to the "goodness" of the

design. We argue that a precise identification of suspected problems with valid metrics for its

assessment suggests obvious directions or solutions for design improvement. With the help of the

behavioural analysis technique (section 3.3.5), metrics can be prescriptive.

The approach taken to define the product metrics was based on GQM/MEDEA (Goal Question

MetriclMEtric DEfinition Approach [Bas92, Bri&al94]) which provides practical guidelines for

building metric sets. Nonetheless, this stage remains a difficult process for determining the validity

of the metric. Whilst Ebert stated that "a metric is a criterion to determine the difference or

distance between two entities" [Ebe92], the definition of the criterion itself is subject to

difficulties. Many metrics design models have refined the process by which less uncertainty is

allowed regarding the definition of objectives for a metric. Thus, the very first step in defining a

metric is the "Experimental goal(s) definition" stage, defined as the set of the following topics

[Bri&aI94].

- 85 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

The steps involved in applying the method are:

Step 1: Experimental goal(s)

Object of study: method redefinition mechanism in a class hierarchy

Purpose: detection of MDR anomaly

Quality focus: conceptual design consistency for property heritage

Viewpoint: designer

Step 2: Assumptions

Assumption 1: the deeper a class is in a tree hierarchy, the more complex it is

Assumption 2: the deeper a class is in a tree hierarchy, the more likely the MDR problem

arises

Assumption 3: see the MDR guideline formulated in section 3.1.2.

Step 3 and 4: Relevant measurement concept and product abstractions. The rationale behind the

redefinition metrics set is fairly straightforward and has been emphasised in the

fundamental steps 1, 5 and 6. The abstract properties of the redefinition metrics are

discussed in section 5.10.

Step 5: Define the candidate metrics (see section 3.2.2)

Step 6: Experim~ntal validation of the metrics (see chapter 5)

A precise definition of the goals reduces the chances for the future metric to be incorrect. Brito et

al. [Bri&aI94] established that this stage is fundamental to the whole metric definition process. A

possible means for identification of goals can be tackled in looking at design recommendations or

guidelines. However, in practice, the application of guidelines or heuristics, often in a textual form

[Fir95, Mey88, Rie96, Rum91], is not very easy to accomplish (see section 2.3.3).

Again, the quality of the 00 model is completely dependent on the designer's experience,

understanding and interpretation of the concepts used. At least, guidelines provide a method for

recognising good 00 design standards.

The following redefinition metrics are proposed and explained in the next section:

• PRM: the percentage of redefined methods includes 1) the methods completely

redefined, 2) extended and 3) realised (see section 2.2.4).

• PRMH: the percentage of redefined methods per level within a hierarchy and its

variants (peRM and PEM)

• peRM: the percentage of completely redefined methods. This metric is intended to

assess the first and third cases above mentioned.

• PEM: the percentage of extended methods. This is the second case of redefinition.

- 86-

3. Assessing the PrqJerties Inheritance Scheme for the MuH~ Descendant Redefinnion PrOOIem in Objed-Oriented Systems

3.2.2. Percentage of redefined methods per level within a hierarchy (PRMH)

Current metrics assessing inheritance examine single classes or a system whereas the PRMH

metric evaluates the amount of redefinition level by level. Providing that a class hierarchy is

ideally designed, abstract classes should appear closer to the root of the hierarchy and specialised

(or concrete) classes should be situated nearer to the bottom. The redefinition metrics are aimed at

depicting such a profile. For instance, PRMH 1 metric (Figure 3.7 branch A at level 1) measures

the shaded classes. The PRMH metric can also be applied at the system level as classes are not

necessarily organised in a class hierarchy. For simplicity, we will keep the numbering level

absolute in comparison with the root (class Object) level O. The notation Cm,n gives the location of

a class C, at rank n, for a given level m in the branch, e.g. class B at level 2 of branch A, is named

B2,1' The rank is arbitrarily numbered from 0 to n, n is an integer, from left to right at the

considered level. Note that the rank is used only for a logical identification of the classes at a

specific level in the fonnulas below, but does not imply a notion of ordering in the class hierarchy.

Figure 3.7: Complexity metrics at hierarchy level

The redefinition metric for a class and for a given level m are defined as:

NC

NRM PRMC'= NRM * 100
L PRMCm,n

PRMC=- * l00 n = 1 NPIM PRMH m NIM NC (a)

where N RM is the number of redefined methods, N I M is the number of instance methods, NIM >

0 14
, NC is the number of classes for a given level m, NC > 0, PRMCm,n is the percentage of

redefined methods for all classes Cm.n. In the current calculation of PRMC (first approach), the

equation is a function of the NIM defined locally. However, any class C inherits methods from all

its parents, making them potentially available for use (via the method lookup mechanism). For this

reason, the cumulative redefinition approach to the same calculation is given by the PRMC'

equation (second approach) where NPIM is the number of potential instance methods, NPIM > O.

Indeed, NPIM is expected to increase from top to bottom of a hierarchy, thus, PRMH decreases

when DIT increases. This metric relates to the fact that "off-the-shelf' class hierarchies are

14 Note that classes without methods (e.g. classes that defmes constants only) may exist but are not relevant in this thesis.

- 87 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

abstracted enough to contain a fairly high depth of inheritance and a high number of methods per

class. Consequently, the deeper the class is in the hierarchy, the more it is likely to inherit a high

number of methods. Thus, designers face the problem of finding the wanted information amongst a

high proportion of non-relevant ones. The PRMH in (a) is general. A refined version includes the

redefinition variants:

NCRM NEM NC

PCRM=-- * 1 00 PEM=-*100 r.(PCRM + PEM)
NIM NIM PRMH - n=1 m- NC (b)

where NIM > 0, NC > 0, NCRM is the number of completely redefined methods and NEM is the

number of extended methods.

In general, the interpretation of the redefinition metrics needs to be done in connexion with other

related metrics. For example, consider a class that does not hold redefined methods. The

interpretation is likely to be different depending on the total number of methods in the class.

Due to the inclusion of the DIT metric within the redefinition metric set, the depiction of

redefinition profiles of hierarchies is possible.

In order to detect and thus assess potential design problems such as the MDR problem in a class

hierarchy, it is necessary to· identify the main design aspects that should be considered in a

measurement programme. The concep4Ial and technical issues involved in such an assessment are

explained in the next sections. In particular, it is shown how a state transition diagram describing

the method redefinition states permits the identification of the suspect state transitions e.g. the

MDR problem. A behavioural inheritance analysis is proposed to tackle the problem of localisation

of defective classes in class hierarchies.

3.3. Design considerations for inheritance assessment

"Designing is weighing alternatives, including discovering them in the first place and

eventually rejecting all but one" - Chamond Liu [Liu96]

The MDR problem and the redefinition metrics have been described in the previous section, and

contribute towards the goals of a measurement plan. This section is concerned with the description

of the technical issues involved in the assessment of inheritance hierarchies and thereby the

assessment of the redefinition mechanism. Note that the following mainly constitutes a design

exercise which is directly relevant to the essential aspects of assessment. In order to identify a

methodological approach in a design assessment activity, four categories of design information are

considered:

• The key mechanics for extracting design information from an inheritance hierarchy.

• The definition of the possible method redefinition statuses. This addresses the different type of

methods to assess, and thus a possible direction for finding appropriate metrics.

- 88-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

• An essential behavioural inheritance analysis model which enables the designer to focus on a

particular branch of a hierarchy. An overview of a branch restricted to the desired methods

permits a rapid localisation of suspect classes. This is aimed at supporting the interpretation of

the metric results.

• Specific remarks on the consequences of use of method redefinition to be taken into account

during analysis of the metric results.

3.3.1. Methodological approach for class hierarchy assessment

From a software engineering point of view, satisfying all the requirements for the system is a

requirement but achieving a maintainable, flexible and open architecture is as important if it is to

achieve reusability with reduction of costs for future development. To date, mechanisms in the

object model do not permit full control of the property inheritance scheme [Sei96, Tai96]. In an

inheritance hierarchy, the number of features of a class and the number of levels of depth are

difficult to manage. In class hierarchies such as the OWL, it is not surprising to have a large

number of methods in leaf classes. Note that this may have been what was originally intended.

However, when extension or reuse is wanted, such situations rapidly become a burden for the

designer because of the exhaustive search process for the existence and origin of desired method's

interfaces and implementation. The techniques proposed in the following sections contribute to the

detection of possible design problems appearing in class hierarchies. For example, the problem of

MDR is effectively seen as a side effect of the use of inheritance. In order to tackle the variety and

combination of property inheritance schemes in an object model, it is necessary to be able to assess

methods of a class, at any level of the hierarchy. As a complementary tool for the designer, the

techniques address the reuse or extension of a class hierarchy from a behavioural point of view. To

help designers in pinpointing design defects, the following design methodology approaches are

considered:

• Behavioural inheritance analysis: in class hierarchies, the transfer of ownership (see section

2.1.6) and the redefinition mechanism (see section 2.2.1) constantly change the state and

definition of the original method. In order to have an overview of the history of a particular

method in a class hierarchy, the creation of a method's life history record enables the discovery

of the origin and successive definitions of the method.

• The definition of a metric set: the use of a set of redefinition metrics applied to a branch of the

hierarchy or the whole hierarchy would permit the representation of the notion of redefinition

profiles. One possible way to assess the amount of methods redefined is to isolate branches

within the hierarchy. Particularly, in single-rooted object-oriented systems, the abstractions are

derived from the same root class, therefore the only possible way to isolate them is to consider

the start of a branch at a defined node. Then, on a graphical representation, a depiction of the

- 89-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

redefinition profile would help in the understanding of the general evolution of the property

redefined.

• Interpretation: the identification of potential defect classes can be done using a cross

reference method between the interpretation metric results and the method's life history

technique. Although a redefinition profile may already indicate potential design problems in a

class hierarchy, the precise localisation of a design defect requires the support of additional

method analysis tools described in the section 3.2. Possible useful processing tasks may involve

filtering, graphical representations and data mining.

The next section explores the technical aspects that allow the extraction of information from an

inheritance structure.

3.3.2. A design information repository with metaclass facilities

liTo perform measurements on a program or design, we need to be able to describe the

structure of a program or design in language-independent terms." - Anton Eliens [EIi95]

This section explains how the extraction of design features is possible using metaclass facilities.

Due to the incremental design process, classes and their properties are likely to change during the

course of design. The main problem of early measurement relates, not only to the availability of the

design information but also to the degree of correctness of the information (see section2.4.5). Even

in the case of use of supporting tools such as diagrammatic or CASE tools, the derivation of

metrics implies that metrication functionalities are already implemented within the design tool in

order to share the meta-information generated by the design tool [LewSim98]. Measurement

techniques may be applied at any time in the development process providing that the required

design information is available and consistent.

The following four sub-sections describe the core set of design information that is used within the

metric's calculation algorithm. The purpose of a design information repository is to identify all

design characteristics relevant to a measurement process.

- 90-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Meta-model

Consider the following meta-model which is used to represent the main 00 concepts:

sed-b:J
10 .. *

,-----'----, 0,,*
Class

Property 0 * I InheritanceLink I
~;;;:;;;~~~--t~.::... ___ has ____ -<""':;>j +name: String
I +name: String ~ I I 1 +abstract: boolean

O .. *I'--__ uses~
Modifier

+type: set-of{ keywords}
+keywords: enum = {ABSTRACT, FINAL, FRIENDLY, PRIVATE, PROTECTED, PUBLIC, STATIC, SYNCHRONIZED}

...................................... -.. _ ... ·1
r------~-----~ r--~-__,

Attribule Method
uses 0,,* I---------i

I '+~co~n~ta~lnm~e~n~t: ~en~um~= ~{bY~-~re~fe~re~nc::e,~b~Y ~va~IU~e}~-l;;~- __ -j +abstract: boolean
t- 0,,* +signature: String

+body: String

Figure 3_8: Meta-model of main 00 concepts

In Figure 3.8, classes and properties Le. attributes or methods, are modelled as classes. Instances of

the class Class have instances of the class Property. In a class, the relationships with other classes

are defined by constructing new instances of the other class. For this reason, relationships can be

modelled as instances of the class Property and act as aggregates of instances of the class Class.

The type of a Property object is defined by a possible combination of Modifier objects. The

Attribute class and the Method class both inherit from the Property class. Relationships between

classes can simply be categorised in two groups: the inheritance relationship and all other types of

relationships. Indeed, the latter category can be subdivided in many more groups to differentiate

from a simple association, aggregation, dependency, etc. The containment attribute in class

Attribute notifies the fact that an instance attribute can be attached either as a nested

component/composite objects or as a pointer to a composite object. Another possible way to

describe a relationship between two classes can be done within the body of a method. Local

variables to the method can be temporarily declared of a particular class type (section 2.1.7).

In the meta-model presented above, the interesting design features are the class properties. Clearly,

each of them is a potential metric. For example, for a class, "the number of methods per class" can

be calculated in counting the number of the Method class's instances. Thus, the meta-level design

information provides a description of all design features which can be used by the metrics'

algorithms.

Note that Modifier objects that are incorrect Java modifiers can be defined according to the meta

model. For instance, the value of the variable type may be: {ABSTRACT ABSTRACT} which is

an incorrect Java modifier. A semantic analyser or improved meta-model can detect such error

cases. The purpose of the meta-model is to show how the capture of meta-information can be done.

- 91 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Remarks on the encapsulation aspect

In Figure 3.8, the attribute scopeModifier of the Property class gives the indication of the

property's visibility for the heir classes i.e. encapsulation. The C++'s PUBLIC, PRIVATE and

PROTECTED scope modifiers are the ones described in section 2.1.7. The FINAL property

modifier gives visibility of the property to heir classes but prohibits its redefinition. It is equivalent

to a removal of the property. A peculiarity of the inheritance relationship is that it has been

separately modelled with a self-link, via the InheritanceLink class, on the class Class. The reason

lies in the semantics of inheritance. An inheritance relationship implies a transitive transfer of the

properties from the parent to the child class. It purely deals with the behavioural aspect of two

classes: one is able to use and modify properties from the other one. As opposed to other

relationships, the inheritance relationship acts as a channel for ancestor's property visibility where

the other relationships are mainly resulting from the declaration of variables in a class. It is

basically the use of the two groups of relationships which combines classes together and

communicates via message-passing that provides the expressiveness of the 00 concepts. It is the

combination of different property scopes in a class hierarchy which is essentially responsible for

the complexity of the inheritance scoping control. By consequence, the validity and correctness of

the design is also affected by the property scope modifiers.

Figure 3.8 illustrated some of the desired design features that can be used for the computation of

metrics. As these metrics would constitute the basic metrics, it is, therefore interesting to build a

repository of such metrics based on the collected design information. Indeed, such a repository is

convenient for building more complex metrics. This approach will be considered for building a

metric collector tool.

Detecting a method's original definition

Another aspect of the retrieval of design information concerns the identification of the class's

context such as its references to internal or inherited properties. In particular, to assess behavioural

inheritance, for each class, methods are analysed regarding whether it is a new method for the class

or if it is inherited. In some class browsers such as RationaIRose98®, a class can optionally display

the list of inherited methods as well as the new methods. However, if a method is redefined, its

method name, signature and body appear in the class description as if it is an added method. To

find out if such a method is extended, cancelled or replaced, a finer analysis of the body of the

method is required. For example, if the method reuses inherited methods, calls to the ancestor's

method will be tagged with the keyword super. Note that, unless there is detailed design

documentation, the only way to find such information is unfortunately to wait for the source code

availability. Thus, analysing the references made to other methods, within a particular one, will

enable a finer assessment of the inheritance model used and potential suspect classes and methods.

- 92-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Meta design information

A possible categorisation of useful design information concerning the behavioural assessment of

inheritance is given in the following Table 3.1, Table 3.2 and Table 3.3. The main interest of such

information gathering will serve both the computation of metrics and the suggestion and

localisation of design defects. The designer will rely on the availability of front-end tools to

manipulate the information. Examples of front-end tools include a metrics collector, methods

profiler or persistent storage tools.

Types of meta Characteristics
information for a class

General • Name

• Abstract
Heritage link • direct parent class(es)

• list of ancestor's classes

• list of direct sub-classes
Class internals • list of attributes and related information such as name, type,

scope

• list of internal, inherited methods and related information
such as name, returned object type, signature

Table 3.1: Class design features

. In Table 3.1, description of attributes and methods of a class are included in the list. Note that

Inherited methods are also listed. Some languages provide method look-up mechanisms to infer the

list of all inherited characteristics from ancestors. Either in a designer or from 'an assessment

perspective, it is important to know what a class is i.e. its structure but also what it is capable of i.e.

its behaviour, inherited or not. Heritage links are the relationships which attach a (many) parent(s)

class(es) to its child classes.

Types of meta information Characteristics
for an attribute

General • name

• scope
• defined in class

Category • instance attribute

• class attribute
users of • list of internal methods referring to the attribute

Table 3.2: Attribute design features

In Table 3.2 the characteristics for attributes are shown. However, as the focus of this chapter is on

behavioural inheritance, only the fact that a method uses one or other attribute is of interest.

Types of meta information Characteristics
for a method

General • name

• abstract

• scope

• defined in class

- 93-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Category

Calls from

Calls to

Use of

• instance method

• class method

• list of internal methods calling or using the current method

• list of internal methods calls including super calls i.e.
inherited methods

• list of internal or inherited instance attributes used

• list of class attributes used

Table 3.3: Method design features

In Table 3.3, the method's interactions are described. Basically, there are two forms of interaction:

• calls_from: interaction between methods are based on a sender-receiver model. The receiver is

able to identify the list of senders.

• calls_to: similarly to calls_from, a method uses other methods as receivers. In this case,

messages can also be sent to inherited methods. The method binding mechanism makes sure

that the correct method receives the message.

Given the above-described list of meta design information, the calculation of metrics becomes

fairly straightforward. The next section describes parsing considerations within a class hierarchy.

3.3.3. Class analysers

Inheritance path isolation

The technical issues involved in the extraction of the design features are covered in this section. To

assess behavioural inheritance in a class hierarchy, parsing of a tree is necessary. In addition to the

design information described in section 3.3 .2, a more detailed analysis of the methods in each class

permits the investigation of the method life cycle or life history down the branches of the tree. The

designer will rely on the presence of supporting tools to extract such information. To understand

the overall effect of the application of scope modifiers to methods in the hierarchy, an isolation of

all possible paths is undertaken. Recall that from a designer's perspective, when (re-)using or

extending the class hierarchy, the main problem is to discover and understand the successive

versions of the same method, especially for bottom classes. It has been generally recognised that

class libraries often encompass more functionalities that an application would really need. Note

that this is a desired characteristic for class libraries. However, Hitchens and Firmage [HitFir97]

stated that the use of a class library is haphazard. With the absence of browsing, query tools or

other mechanisms, the designer must proceed through all the classes with no guarantee of finding

the desired class. If addition of new classes is needed in large hierarchies, one of the consequences

of the situation described above is that classes tend to ignore all un-wanted methods, therefore,

risking non-conformance. Whenever used for pragmatic reasons such as possible savings in code

develop~ent or optimisation purposes, inheritance becomes questionable.

- 94-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Figure 3_9: Tree parsing strategy

In general, a designer is interested in knowing which are the ancestor's inherited properties. To do

so, an isolation of inheritance paths is a possible solution to reveal the desired design information.

Figure 3.9 represents an example class hierarchy. Adopting a depth and top-bottom tree parsing

strategy, the list of possible paths include:

Level 0 1 2 3

Path 1 A 7 B -7 C -7 D
Path 2 A -7 B -7 C -7 E
Path 3 A -7 B -7 C -7 'F
Path 4 . A -7 B -7 G -7 H
Path 5 A -7 B -7 G -7
Path 6 A -7 J -7 K
Path 7 A -7 L -7 M -7 N

Table 3.4: Inheritance paths table

The depth and top-bottom (DTB) parsing strategy allows a chronological construction and

gathering of design information in the table. Different parsing strategies will be used to examine

the behavioural aspects of each of the classes. Note that the parsing strategies mainly concern the

issues involved in developing the metric's calculation algorithm; however, it also depends on the

encapsulation mechanism in place. Designing and assessing a class hierarchy should really be

based on the examination of inheritance paths as a whole. Often, designers only concentrate on

direct (or immediate) parent classes to extend the hierarchy instead of inspecting all previous

ancestors. The knowledge of chronological changes happening to inherited methods is essential to

minimise obscure inheritance uses. Recall that, although not being good practise in a team

development, software engineers tend to leave unclear existing pieces of code as they are and

redevelop their own version for safety reasons, not encouraging reuse. Often, the fear of modifying

someone else's code is not so much due to the code being unclear but due to possible dependencies

on other portions of code.

Notice that in the case of multiple inheritance, the detection of the path with a DTB strategy raises

the issue of name collisions (see section 2.1.8). Consider the following example (Figure 3.13)

where the method m1 0 in class A is publicly inherited in all heir classes B, C, D and E.

- 95-

3. Assessing the PrqJerties Inher~ance Scheme for the Muttp!e Descendant Redefin~ion PrOOIem in Objed-Oriented Systems

Figure 3.10: Name space collisions with multiple inheritance

Using the DTB strategy, the isolated paths are:

A7B7C7D

A7E7D

If a name clashes problem exists i.e. m1 0 is redefined in C, BorE, D inherits only one version of

m10: either the method explicitly refers to the desired definition i.e. originator parent class, or a

default scheme is provided by the support language. Thus, one of the two paths has to be dismissed

for the study of m1 O. When the call to m10 is explicit, the reference to the originator class is

given (see section 2.1.8). When the call to m10 relies on the default scheme provided by the

programming language, the default path is then the chosen one.

While detecting the various inheritance paths is straightforward, assessing if the methods in Dare

redefined necessitates an investigation of the code of methods in D to detect which versions are

explicitly referred to. Otherwise, if the designer relied on the default inheritance scheme to obtain

the desired functionality and to remove the ambiguity, a metric's collector will have to implement

the corresponding algorithm. Technically, a possible solution to discover mUltiple paths relies on

the parsing of the concerned classes for extracting the associated parent and child classes.

However, in languages that provide reflective capabilities such as Smalltalk [GolRob90], parsing

is not necessary as appropriate functionalities permit the discovery of inheritance relationships

between classes.

Class wrapper

This section explains a technique based on wrappers to filter out desired information from an 00

design. A class wrapper would aim at analysing class internals and intercepting its interactions

with other classes. In general, wrappers are used between two applications for intercepting the set

of transiting messages. For example, the tcp_wrappers [CheBel94] are a set of API functions that

shadow the real functions based on tcp communications e.g. telnet, ping, finger, etc. When a client

program initiates one of the cited functions, a corresponding tcp_wrappersJ5 function takes

I S Note that the concept of proxies for web servers provide similar functionalities.

- 96 -

3. Assessing the Properties Inherttance Scheme for the Mun~ Descendant Redelinttion Problem in Objed-Orienled Systems

control, filters out the wanted infonnation and launches the real invoked function. In such a way,

the execution of the wrapper function is completely transparent, does not interfere with the

execution of the real function and dynamically extracts the wanted infonnation. A class wrapper

acts in the same way for static infonnation. The wrapper encapsulates a class in order to extract

meta infonnation such as the class definition and the details of interactions between classes such as

method sender, message sent and method receiver. Note that meta class infonnation such as

messages sent or received, number of parent and child classes or number of methods are possible

candidate metrics themselves [LorKid94].

In Figure 3.11, the design of a possible class wrapper is shown. It includes two parts acting as the

filters for the desired information. Indeed, the filters are configurable in the sense that only the

wanted infonnation would be filtered out and addition or removal of other filters is possible.

ClassC is scrutinised for extracting infonnation such as the list of instance or class variables and

methods, the list of ancestors classes, the list of external methods internally referenced and the list

of external methods which reference internal methods.

Figure 3.11: Class wrapper

A class wrapper may exist under the fonn of a set of API functions, therefore they could be closely

integrated with a metrics collection tool. Collaboration for infonnation exchange can take place

between the client metrics tool and the wrapper functions.

Hierarchy wrapper

In Figure 3.12, the technique of class wrappers is extended to a branch of a class hierarchy.

Particularly for the assessment of behavioural inheritance, it is interesting to isolate a branch of the

hierarchy for a detailed study. A hierarchy wrapper would mainly rely on infonnation provided by

the class wrapper at a lower level; however, the filters would provide infonnation on all classes of

- 97-

3. Assessing the Pr~ies Inher~ance Scheme for the Mu~PIe Descendant Redefin~ion PrOOIem in Objed-Oriented Systems

the branch instead of a single one at a time. In such a way, comparison and use of the design

information are made easier either for design analysis or for deriving metrics on the hierarchy.

Figure 3.12: Hierarchy wrapper

It may be useful to build a design repository which would be persistent Such a repository would

include all characteristics for each class of the branch together with their relationships with other

classes. This implies that the hierarchy wrapper can be invoked independently of a client program.

Alternatively, like for the class wrapper, the hierarchy wrapper would be closely integrated with

the collection tool for dynamically extracting information "on the fly" . The benefits of having

hierarchy level information as opposed to class level information is that the analysis of inheritance

paths is possible, therefore the history of method changes down a branch can be followed. Also,

due to the consequences of property modifiers, the detection of cancellation of methods permits

the suggestion of potential wrong subclasses.

To date, the concept of wrappers has not been applied in the context of a measurement programme.

For the purpose of assessing class hierarchies, the technique is convenient and permits an

encapsulation of the two levels: class or (branch ot) hierarchy.

The next section concentrates on the different method states when being redefined. A state

transition diagram is used to illustrate the relevant transitions.

- 98-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3.3.4. State transition diagram for the method redefinition mechanism

The assessment of the mechanism of redefinition requires a deeper analysis of the methods present

in the hierarchy. The tracking of the evolution of method status becomes essential from an

assessment perspective. This section introduces a state transition diagram that captures the possible

states of a method when being redefined down the hierarchy. A set of expected and unexpected

transitions is explained.

In most 00 methods literature, the mechanism of inheritance is illustrated in examples involving a

parent and a child class. Although the case of multiple inheritance involves many parents, the

coupling effect is still shown for the pair of parent-child classes. Managing many levels of depth

requires an overview of the whole hierarchy or at least a separate view of the branches. Due to the

transitivity of the inheritance relationship, for each of the inheritance paths, publicly declared

properties are passed from one level to the next level of depth down to the leaf class. For this

reason, correctly extending an existing hierarchy requires a good knowledge of the design of

ancestor classes. This adds an additional burden for the designer in the case of off-the-shelf class

hierarchies. Three main factors affect the designer'S choices when looking for appropriate

abstractions in existing hierarchies:

• Class complexity vs. depth: the behaviour of classes increases in complexity when many levels

of depth are involved. In the case of commercial class hierarchies, the decision for extending

the hierarchy is often based on a limited number of factors due to the size of the hierarchy and

the number of possible dependencies. The consequence is that the chance for wrongly extending

inheritance is higher.

• Accumulated inherited properties: the size of accumulated inherited properties may become

un-manageable by designers if the classes encompass a large number of methods. This directly

affects the decision for the solution design and often induces ignored inheritance in the

hierarchy.

• Class and behaviour documentation: the availability of a comprehensive description of the

classes and behaviour is always desirable but not present in many cases, thereby making the

reuse of the classes difficult. The existence of examples is a crucial factor to the understanding

of the existing classes and associated methods. The Javadoc ™ software tool from Sun

Microsystems™ directly addresses this point. Given that pre-defined tags have been inserted in

the Java source code, Javadoc formats the public API into a set of HTML documents, thereby

providing the detailed description of classes and methods in a standardised way.

For a class, for each attribute and method, the scope modifiers define the encapsulation of the

class, thus future heir class visibility. Inherited properties mean that they have been declared as

either public or protected in the parent class. In such cases, various changes can be done to the

implementation of an inherited method. In order to visualise the effect of change of state of

methods from a parent class to a child class, a state chart diagram is used in Figure 3.13 (see

- 99-

3. Assessing the Prq:Jel\ies Inhernance Scheme for the MuHpe Descendant Redelinnion PrOOlem in Objed-Oriented Systems

section 2.2.4 for a description of redefinition variants). From an assessment perspective, the change

of state of methods from one level to the next level permits accurately following their evolution in

the branches of the hierarchy. The method's state refers to the changes happening to an existing

method between its version in a parent class to the version in one of its child classes.

Figure 3.13: State-chart diagram for method redefinition 16

In Figure 3.13 all possible state transitions of a method are represented. Six different states are

listed:

• Deferred: when a method is in a deferred state, the only next possible state is being defined.

Eiffel refers to the action of providing the first method definition i.e. body, as effecting the

method. This is also known as realising the method.

• Defined: it is the first time definition for the method.

• Reused the method is reused without modification.

• Extended: the inherited implementation of the method is reused with addition of new code.

• Replaced: the method is completely replaced, the signature remains the same.

• Cancelled: the method is removed from the child class

• Final: the method is declared as non-modifiable although accessible .

• 6 Note that the two states "CanceUed" and "Final" are treated as a single state as they both are questionable states.

- [00-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

~ Defined Reused Extended Replaced Cancelled

Parent to Child
IFinal

Deferred

Defined

Reused

Extended

Table 3.5: State transition table for method redefinition

The main purpose of the state transition diagram is to detect suspect or unexpected method changes

down the branch of the hierarchy. During the extension of a class hierarchy, different design

constraints may appear whether an existing class library is provided and reused as it is. If so, the

process of investigation of the wanted abstractions (i.e. (set of) classes) constitutes an important

task in the design process. Pragmatically, designers or implementers rely on a localisation of an

appropriate branch of the hierarchy in order to reduce the search range. In current class hierarchies,

abstractions are fairly well-decomposed and organised as branches of the hierarchy. For example,

current graphical interface abstractions also referred to as frameworks are well established and

solve most ofthe needs of information systems requirements.

In this document, the focus is given to transitions (Table 3.5) which might suggest design

problems. Mainly, it concerns methods whose state is either replaced or cancelled. Although Meyer

[Mey97] promotes method overriding under the condition that the semantics remain the same, the

checking of consistency of the semantics is difficult. In detecting the change of state of methods

down the hierarchy, there are opportunities to suggest potential inconsistencies in the use of the

redefinition mechanism.

Clearly, the detection of suspect state transitions is desired; however, it should be noted that further

complex method redefinitions that are not captured by the state transition diagram presented above

could take place. Such complex redefinition cases, often obscure, are presented in the next section.

17 Eitfel provides a construct which fixes and disallows future changes to a method. Such a method is referred to asjrozen and is

equivalent to afinal method in Java. Note that for the transition: Reused to Reused, a frozen or final method can be reused.

- 101 -

3. Assessing the PrqJerties Inher~ance Scheme for the Mu~PIe Descendant Redefin~ion PrOOIem in Objed-Oriented Systems

3.3.4.1. Remark: method redefinition and unexpected message sends

The state transitions for methods described above aim at suggesting potential wrong use of method

redefinition; however, further complications may occur. From an assessment perspective, it is

essential to be aware of such situations that cannot be easily detected automatically. Although a

redefined method may seem conceptually valid, developers are offered many opportunities to

deviate from the inheritance sch~e when implementing the method. Sometimes the context may

require a portion of code qualified as a hack to provide a simple solution to a problem e.g. in the

case of inheritance of somebody else's code. However, a dangerous situation may happen in the

case of careless programming. A redefined method may appear correct from the point of view of

its interface but not from the point of view of its semantics, therefore incurring consequences on

previously made assumptions on the design.

The possible combination of message-passing, the delegation mechanism and the effect of

encapsulation are the main causes of the problem of unexpected messages in the method's

implementation. Message-passing generates dependencies between objects but also affects the

validity of inheritance because of method invocations in non-conventional ways. Such method

invocations results from the hazardous use of directed resends i.e. ability for an overriding method

to invoke the overridden version (Smalltalk-80 has super, CLOS has call-next-method, C++ has

qualified messages using the :: operator [Cha97, Ste90, Str90]). In Figure 3.14, four classes a, b, c

and d with d < C, c< band b < a are represented.

origin a n

l)supercall
b

'1') super call
c r;;

replacement d J) Aomal/extemal call

Figure 3.14: Expected method invocation

Consider class a = {<m(»}, with m defmed as public. Method mb() and Il1cO are extended

methods, therefore an invocation of the ancestor implementation is made via the super call.

Method m is replaced in class d therefore its implementation is completely different from its parent

one and it is expected that the semantics would remain the same. Note that method mdO is entitled

to send messages to other remote methods i.e. internal or external calls. In a redefined method,

three types of invocation are possible: reference to the closest inherited parent IS implementation,

explicit reference to an inherited parent's implementation 18 and other internal or external references

18 Note that the difference between a cJassicsuper call and an explicit super call is that, in the latter case, the ancestor's identifier is

specified in the call, allowing the caller to refer to a specific parent·s implementation of the inherited method.

- 102-

3. Assessing the Properties Inher~ance Scheme for the MuHpe Descendant Redefin~ion PrOOlem in Objed-Orienled Systems

to the class. The combination of those possible references gives opportunities to deviate from the

correctness of the inheritance.

In Figure 3.15, four examples of such cases are given.

ancestora 0

replacement b

a) directed super call

origin a Q ~ ... '\

replacement b 6 I

c 11 ;~::J
d ---)

c) mUltiple super call

ancestor a 0

i
replaoomenl : ! m'

~,
" , \

\
\
\
I

I
I ,

J

~~,

---.-I

" \
I

I

b) directed super call and disinheritance

origin a

replacement b

d)MDR

Figure 3.15: Examples of unexpected method invocations

Legend

a ~

b<_a!
c <direct b

Examples in Figure 3.15 show various uses of method replacement. In case a), mdO and me()

extend their definitions whereas mbO replaces the method. meO issues an explicit super call, not

to the latest inherited implementation (from class b) but to one of its previous ancestor (class a).

Effectively, a previous implementation of method m is wanted for the class c. Thus, maO's

implementation is not available for reuse unless referenced within an explicit super call. Note that

either or both class b or c are considered as suspect classes i.e. abnormal case of inheritance.

The case b) is a variant of case a).I1lcO issues an explicit super call to a method different than the

(inherited and redefmed) method maO i.e. super call to m'aO and mlaO publicly defined in the

superclass a. me() completely changed its original semantics and in addition, it refers to a different

method in one of its superclasses which suggests that maO and m'aO may be variants of each other.

This clearly suggests a design problem as the semantics are different than the original.

In case c), an example of multiple super calls is given. mbO replaces the inherited implementation

therefore no super call appears. In order to extend the inherited implementation, meO issues two

super calls: one as normal and one to the previous ancestor's implementation for code reuse. As

meO reuses maO and mbO implementation, this seems to be a possible way to simulate multiple

- 103-

3. Assessing the Prq:Jerties Inher~ance Sdleme for the Mu~pe Descendant Redefin~ion PrOOIem in Objed-Oriented Systems

inheritance although not a satisfying design. Class c re-establishes the expected inheritance

scheme. Class b is a suspect class.

In case d), an example of MDR is shown. The multiple method replacement implies that maO,

mbO and I11cO are different versions of the same inherited method. Further subclasses to c must use

the directed super call mechanism to reactivate "lost" implementation resulting from previous

method replacement. Given the definition of the MDR in section 3.1.2, the referred parent-child

relationship between band c (Figure 3.15 b» is a direct relationship. However, other unexpected

situations related to the MDR problem may appear and are described below.

Consider Figure 3.16 where two scenarios, referred to as distant MDR, are shown.

origin a 0 origin a I legend ,," , ~:1 a ~ ;
; , /

replacement b ?/ replacement b 0'
,

b <distant a 0
reused b1 ¢ reused b1 d

! ,

reused b2 ? ;1f extended b2 9 , :1
, , ,,"

~ , ,
9 i-, replacement c Q ~- replacement c I " ., , \

I I

! , , I
d 0 --; d 0 -

a) distant MDR b) distant MDR

Figure 3.16: Distant MDR scenarios

Rather than a direct inheritance relationship between the classes band c , they may be separated by

other classes b1 and b2. Whereas b1 and b2 are only reusing mbO (Figure 3.16 a» or reusing and

extending mbO (Figure 3.16 b», a subsequent replacement i.e. meO, raises further design issues.

Intuitively, such complex sequence of calls does not suggest any recognised appropriate use of

inheritance and is not well understood. Such situations may be attributed to optimisation reasons in

class hierarchies i.e. only the behaviour in the leaf classes is completely re-implemented for

performance. Often, these classes are also defined as finalised (see 2.1.7).

The examples of unexpected calls described above demonstrate that designing classes using only

method interfaces does not ensure a correct design. This contradicts the claim of current

methodologies for completely decoupling design issues from implementation. The use of

inheritance and the design of method interfaces rely on assumptions on the inheritance scheme,

which may not hold at implementation phase. More importantly, such situations affect the

maintenance of the application but also distorts metric results as they may be categorised as correct

measures. To prevent hidden method redefinition abnormalities, code inspection is des'ired. The

state transition diagram described in 3.3.4 cannot detect such anomalies either. Currently, only an

analysis of the source code permits the detection of such problems. Alternatively, in a dynamic

event model (see OMT methodology [Rum91]), as the message flow is defined, it reduces the

- 104-

3. Assessing the PrqJerties Inheritance Scheme for the Mu~Pe Descendant Redefin~ion PrOOIem in Objed-Oriented Systems

chance for the problem of unexpected calls. Nevertheless, the design of a class hierarchy with the

intention of code sharing and code reuse is not only an application-solving problem but also a

software engineering activity.

The next section provides a synthesis of the behavioural inheritance analysis technique which is

aimed at providing a visual representation of the method s life history in class hierarchies.

3.3.5. Behavioural inheritance analysis

Providing that an object model is stable i.e. towards the end of the design phase, it is essential to

gather an overview of the architecture and design issues involved for the entire application. This

may be seen as a design validation phase or a final design review phase preceding the

implementation phase. One important aspect for the design of class hierarchies is to make sure that

the semantics of the behaviour are correct for optimising reuse regarding the inheritance use and

the set of requirements for the application. Behavioural inheritance analysis addresses the problem

from the interface point of view. Three techniques have been described in sections 3.3.2, 3.3.3 and

3.3.4:

• Obtaining design information useful for metrics.

• Class analysers and inheritance path isolation.

• State transition diagram for method redefinition.

Using the output of each of the above techniques, the aim is to build a snapshot of the life history

of methods in a particular branch of the hierarchy. For each of the classes of each path of a

hierarchy, the method is analysed to record the evolution of its state. A possible representation is to

reproduce an image of the concerned hierarchy with addition of method s state to provide an

overview of the method IS life history.

Figure 3.17: Method life history representation

In Figure 3.17, an exact reproduction of the concerned branch of hierarchy is used to show

additional information about the methods. Thus, the top class is the main parent class fqr all

isolated paths found. Recall that the idea for studying a branch is interesting because it captures a

set of related concepts such as the Collection branch, the Stream branch or the WindowManager

- 105-

3. Assessing the Prq>erties Inherttance Sdleme for the Muttpe Descendant Redelinttion PrOOIem in Objed-Oriented Systems

branch. For each method defined in the main parent class, all the paths are scrutinised to show how

the method evolves further down the hierarchy. For a particular branch of the hierarchy, the

method states are recorded in each class in the following form:

method name » state

with state = {deferred, defined, replaced, extended, cancelled} (see section 3.3.4)

A behavioural analysis may only concern a subset of methods which have to be evaluated,

therefore, not all existing methods in the class may be displayed. Recall that methods simply

reused in a class except for the case of super calls are not shown as it requires a detailed parsing of

the code for detecting such cases. Therefore if a class does not show a method, it does not mean

that it is not used. Various possible ways of use or reuse include aggregation, inheritance, message

passing or arguments of methods that cannot be detected by previously described techniques. Thus

showing a limitation of the behavioural analysis technique.

An example of use the technique is illustrated in the next section.

3.3.5.1. Experiments on the Collection class

In Figure 3.18, the example given in section 3.1.2 is revisited. Only the relevant methods from the

Collection class are shown. To obtain the hierarchy below, the designer will rely on a tool and

therefore additional filtering mechanisms to organise the information e.g. one method at a time,

only replaced methods or a specific isolated path, are possible.

Figure 3.18: Method life history for the Collection branch

The representation of the class hierarchy together with the method s status permits an overall view

of the life history of the method. This representation clearly pinpoints the problem of MDR in the

inciudes:Coliection and add: Collection methods. Although originally declared as abstract methods, in

- 106-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

most paths the methods are completely redefined. The few exceptions concern the add: method in

the classes MethodDictionary, System Dictionary and SymbolSet. Particularly, the path

Collection, SetDictionary, IdentityDictionary and MethodDictionary raises attention. All

versions of the add: method have been replaced except that in the leaf class where the method is

extended. Having a case of MDR and an extended method in the leaf class suggests that

inheritance is used for sharing of other methods not shown here. Although all classes in the same

path seem to be structurally similar, the semantics seem to be different according the evolution of

the add: method.

Another interesting case concerns the grow: and do: methods. The grow: method is firstly defined

in the IndexedColiection class. Then, subsequently replaced in OrderedColiection and finally

extended in SortedColiection. Besides the fact that the method has been replaced once, not

enough arguments allow us to conclude that it might be a problem. On the contrary, the fact that

the method is extended in the leaf class gives it credit. The case of the do: method is the opposite.

After being replaced, then extended, it is again replaced. This raises a "design alarm" for potential

incorrect interface design. Notice that if a method is declared as deferred in a parent class, the first

replacement is a correct use of the redefinition mechanism (see section 3.3.4, Table 3.5 for the

recommended transitions).

Design decisions are not possible· at this stage, as other methods in the classes should be

considered. This is the reason why measurement techniques will complement such analysis. For

example, given a ratio of replaced methods compared to the number of extended methods gives an

indication on how the redefinition facility is used in the model.

Following the description of all design considerations relevant to the assessment of inheritance in

the above sections, the interpretation and understanding of use of the inheritance relationship and

the method redefinition were clarified. This reduces the chances for ambiguities, and thus enables

the delivery of an appropriate measurement programme.

In a measurement process, not only the definition and derivation of the metrics are important. In

the literature on measurement, the topic of interpretation process is little described. Paradoxically,

it is generally agreed that without a good design feedback from the analysis of the metrics results,

a measurement programme may fail. The next section proposes a novel data interpretation

framework for the assessment of 00 models. Emphasis is given to the necessity for generating

sensible feedback to the designers. In addition, the data interpretation framework aimed at being

integrated as the final process within the GQM model.

- 107 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3.4. Mechanisms for data interpretation of metrics for object-oriented systems

"There are as many scientific methods as there are individual scientists"

- Percy W. Bridgman, On "Scientific Method"

3.4.1. Introduction

Measurement techniques are valuable and troublesome design tools at the same time [Av094,

Bo089, BinSch96, Bri96, ChiKem91, KosVih92, McKMon93]. The analysis and interpretation

method used is an important component in the measurement process. More than a simple data

retrieval and representation mechanism, the analysis and interpretation technique should be

designed to illustrate a few particular aspects of the feature assessed [Ebe92]. Because of the

relative immaturity of the 00 metrics research field, little research has been done on the

interpretation and analysis of metric results, making meaningful design decisions difficult. For

example, in the depth of inheritance (DIT) metric, Chidamber and Kemerer interpreted the

possible results as, "top heavy" (too many classes near the root) or "bottom heavy" (many classes

near the bottom of the hierarchy) designs. However, whether a class hierarchy falls under one or

the other case seems arbitrary, and thus subjective.

Measures are only significant if th~y are objective and repeatable. Metrics that require subjective

assessment where a range of complexity values are 'arbitrarily affected have been recognised to

have no scientific validity [Hen96]. Complexity values may be used for attributing weightings to

the metrics. Instead, it is preferable not to take into account subjectivity that makes the data

interpretation difficult. Stating that a design is good is only valid with respect to particular criteria.

One such criterion might be the non-dependency of classes to other classes, which exhibits a low

level of class coupling. In addition, the qualifier "low-level" must be related to a hypothetical

average or threshold for the particular metric under consideration. Interpretation of data relates to

the goals and assumptions stated for the concerned metric. For example, an assumption concerning

the DIT metric is that the deeper a class is in the hierarchy, the greater the number of methods it is

likely to inherit, therefore the more complex it is likely to be. So, a typical DIT curve would

decrease rapidly on a number of classes per DIT graph. Currently, the metric results analysis is

carried out in a pragmatic way. Outstanding patterns or phenomena drive the process. Often, a

graphical display provides assistance for quick and easy feedback over a table of numbers.

Although the area of representation and visualisation constitute separate topics of research, they

strongly relate to the interpretation techniques used in a measurement programme. To date,

emphasis has been given to the early stages of the measurement programme. A consequence of

this is that metrics have been criticised for collecting large amounts of data without any suitable

methods for analysing the data afterwards, making them useless [Fen90].

- 108-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Currently, the interpretation of metric results rely on one possible understanding of the 00

concepts, which is the reason why the emphasis is put on the early goal definition stage for a

candidate metric. In general, most authors use statistical methods in addition to empirical analysis

methods but others have emphasised the need for more appropriate techniques [Abb&aI94,

Bak&aI90, Bar&al93, Bas&aI94, Bou89, Bri96, BriCuc98, Hen96, RosHya96]. Clearly, the

difficulty of interpreting metric results asks for complementary analysis techniques. This section

argues that, depending on the characteristic assessed, the combination of a dedicated analysis and

interpretation technique and the use of appropriate graphical representations procure additional and

better quality information feedback from the metric results. In addition, other supporting tools for

pre-processing and data analysis may be required. For example, trigger rules that characterise a

particular phenomenon on a given curve can be defined and automatically detected. As the

"goodness" in a design is subject to disagreement because it depends on the interpretation of each,

appropriate analysis and interpretation techniques must take into account the variety of

characteristics assessed, the environment and the purposes of measurement. Thus, the efficiency

and relevance of metrics relates to the amount of feedback produced about the design and the

suggested ways for improvement.

The methodological issues involved in the interpretation process are defined as follows:

~ A description of examples of convenient data visualisations for a collection of metric

results. The benefits and drawbacks of each are highlighted.

~ An exploration of possible utilisations of pattern profiles with regard to the intrinsic

properties of the data visualisation type.

~ A novel interpretation framework is proposed. The detection of particular design problems

is realised using an "alarmer" technique and triggered conditions.

The following sections propose a data interpretation method based on pertinent visualisation of a

data set obtained from the method redefinition metrics for object-oriented systems. The data

interpretation method aims at facilitating the metric results interpretation, the design problem

identification and constitutes a means of deducing design decisions. It is discussed how this

method constitutes a solution to re-injecting design information in an object-oriented model. This

work aimed at the generalisation and integration of the data interpretation method within a design

evaluation cycle framework.

3.4.2. Motivation and approach for interpretation

In the current literature on assessment methods for 00 systems, the importance of extracting

design information feedback from metric results [Hen96, LorKid94, Whi97] has been highlighted.

However, to date, emphasis is still given to the correct definition of metrics and the goals for

which they are defined. Then, the data obtained from derivation of metrics are empirically studied.

- 109-

3, Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

The data visualisation method presented in this section is based on the idea of metric profiles. Any

deviation from this "norm" will suggest potential inconsistencies which correspond to specific

design problems. However, the deduction of conclusions from raw data obtained from metrics is

not straightforward. One way to tackle such problem is to provide a complementary method or

technique for designers to facilitate the measurement process.

Three main aspects are considered in our analysis and interpretation method as follows:

1. In general, raw data are pre-processed before being analysed. The nature of the processing

function is chosen depending on the type of results expected. For instance, only a range of the

values may be relevant at a time, or the values may be more suitable for reading on a

logarithmic scale. Any transformation of the raw data contributes to the overall method for

analysis.

2. The use of graphical representations directly depends on the type of values returned by the

metrics and the purpose of measurement. Based on the assumption that different visual

representations are able to express different aspects of a measure, considerations have been

given to the investigation of a set of representations applied to the same set of results. Such

experiments enable the interpretation of the metric results from different angles.

3. The need for additional interpretation aid tools such as searching or querying facilities aJso .

. . contriblltes to the interpretation process. When the graphical representation includes a large

data set, details are not necessarily obvious the human eye. To un-clutter the,;graphic with
?~

unwanted data, several techniques can be used e.g. zooms, filters, triggers, data tr~nsformation.

Identified and recognisable patterns for a profile can then be detected automatically e.g.

increase of rate by a factor of x. However, from an investigation point of view, the designer

may not know in advance what to expect concerning the characteristics of the metric profile.

In such a case, it is likely that the needs for appropriate tools are only identified during the

interpretation process. Such methods, similar to a "data mining" activity, are usually dedicated

to a specific purpose contributing to the interpretation of the behaviour observed.

Interpretation techniques are highly dependent on the properties of the attributes assessed. The

interpretation stage is only part of the measurement process, it is nevertheless, crucial for the

delivery of the expected benefits. Recall that the outcome of a measurement program can be either:

• Expected. In such a case, it means that the result obtained is expected to match the predicted

result. Providing that the notion of "goodness" or "badness" is defined, the difference between

the values gives indications on the quality level of the attribute. Expected results permit the

confirmation of general hypothesis such as:

"due to the abstraction level of classes situated near the top of a class hierarchy, the

deeper a class is, the higher the level of redefinition"

- 110-

3. Assessing the Properties Inheritanoe Scheme for the Multiple Desoendant Redefinition Problem in Object·Oriented Systems

"for a DIT level, a high level of redefinition may suggest a potentially design problem in

the current level and parent levels affecting the understanding, maintainability and

extendibility of the class hierarchy"

or more specific ones such as:

"a redefinition level higher than 50% indicates a potential MDR problem arising at the

considered DIT in the hierarchy"

"the ratio of extended methods compared to the total redefined methods gives evidence

of a class reusability"

"a method redefinition rate increase> 30% suggests the presence of the MDR problem"

Note that the above mentioned thresholds may be based on existing benchmarks.

• Unexpected. In such a case, the interpretation is open to suggestions arising from the

observation of the metric results obtained. An empirical study the profile obtained ought to

discover particular patterns for further investigations.

Whether the metric results are expected or not, the desired feedback provides explanations or

suggestions for improvement concerning the observed profile.

In section 3.4.3, a novel interpretation framework is presented and used for the evaluation of

different types of graphical representation. The framework addresses the lack of the GQM

approach for the analysis of the metrics results.

3.4.3. Metrics interpretation framework

liThe capability to qualify a process or product with measurement data is limited by the

abilities of the analysts." - Henderson-Sellers

Goodness and badness are two possible quality design attributes. Inevitably, a design always

shows weaknesses regarding some particular 00 aspects while presenting strengths in other

aspects. The area of measurement contributes to the design decision process and helps in the

identification of recognisable design anomalies. Often, comparison is adopted as the technique for

interpreting metrics results. However, as stated in [Ban97], the designer should make sure that the

metrics values are comparable at first. To compare an aspect to another, they must be related to

each other i.e. variants or serving the same purpose. In addition, they must be in related context

e.g. similar conditions for comparison. In this thesis, the aim is to assess the various uses of the

redefinition techniques. So, the measures are compared to each other within the same branch of the

hierarchy. When two different branches belong to two different categories (see interpretation given

to systems in sections 5.4 and 5.5), comparison is only made from a general perspective of use of

- IJ I -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

redefinition and conclusions can be drawn regarding the different type of profiles obtained. The

metrics interpretation framework proposed in this section ought to minimise the risk of

incomparable data in guiding the designer for the choice of the correct representations and

interpretation mechanisms.

The proposed metrics interpretation framework is aimed at being integrated in a traditional

measurement process such as the GQM model. In consequence, the given description assumes that

the interpretation phase naturally takes place after the metrics collection phase. In the light of

explaining the crucial stage of data interpretation, it is necessary to re-visit the design and

measurement process to demonstrate the strong dependency relationship involved between the

early stages of design and the final stage of a measurement programme. In a software development

process, the designer's perception is the core element to the success of the realisation of

applications.

In the following sections, the importance of the designer's perception is highlighted. It is shown

how the interpretation framework can .be decomposed in the three following aspects: raw data

representation, profile analysis and design feedback. Details of interactions between different

components of the framework are explained.

3.4.3.1. Designers' perceptions and decisions

An interpretation process is a reasoning activity. As the decision making process is done by the

designer, many factors influence the final decision. The designer's experience is one such factor

(Figure 3.19). If an empirical analysis approach is adopted, the interpretation starts with an

observation phase where an overview of the data is analysed. Then, a more detailed study is

necessary. It is noticeable how the designer's perception or understanding of the underlying 00

concepts affects the conclusions of an interpretation process. For this reason, the knowledge of the

intention of the designer when the candidate design was built is crucial to the interpretation phase.

External subjective factors may also compromise the interpretation as well validating it. For

instance, experiments illustrated in [Abb&aI94, Ban97] proposed to choose evaluators I.e.

designers based on similar experiences to rate a set of aspects of design. The results of the

experiments showed a general consensus on the quality attributed to each design. However, it can

be argued that in such a situation, there exists a degree of subjectivity related to the quantification

of the level and similarity of experience of the designers. The number of years may be one possible

approach to quantify such level. In consequence, in an interpretation process, the less subjective it

is, the better the quality of the conclusion is.

An interpretation process is also based on the understanding of the 00 concepts used. It is

therefore important to relate the designer's perception of a concept with the interpretation of a

measure. This is particularly important in the case of use of an 00 principle that exhibits different

interpretations itself.

- 112-

3. Assessing the Prq>erties Inher~ance Scheme for the MuitPie Descendant Redefinition Prcblem in Objed-Oriented Systems

00 fundamentals

Experience

analysis

r··········-{··· .. · .. · .. · .. ·· · · .. · .. · .. · .. ·· .. · .. Y. .. · .. · .. · .. · .. · .. · .. · .. · · .. -· .. · .. · .. · ·~·· · .. · .. ··l

, Design feedback Raw data '
(suggestions) representation

; ~ profile ~
i analysis i
i ... !~.~~.'P.~~~i!?~1

Figure 3.19: Analysis, interpretation and interactions

The interpretation process can be decomposed into three aspects (Figure 3.19):

• The representation of the raw data set implies that the metric results are not processed before

display.

• The analysis of the profile represents the process by which extraction of the design feedback is

possible.

• Design feedback. Often, this involves a comparison of the metric values obtained against the

assumptions made on the 00 characteristic assessed.

After a presentation of the benefits of graphical data representations, a detailed description of the

profile analysis task is given in the following sections. In particular, the interpretation techniques

focus on the discovery of unknown design features.

3.4.3.2. Raw data representation

To date, most research work on metrics has concentrated on the metrics themselves and does not

exploit the results from different perspectives. The derivation of metrics tends to generate a large

data set as a result Therefore, a graphical representation of raw data is the first natural step.

Instead of a table of plain numbers which might be suitable in some cases, the main benefits of a

visualisation is that it is easy to pinpoint disparities. The evaluation of different representations is

desired in order to identifY the appropriateness of these with regard to the metric chosen and the

design characteristics expected to be interpreted. The suitability of the visualisation type chosen

determines the correctness of the interpretation.

The data representation phase is illustrated by the three components shown in Figure 3.20.

- 113 -

3. Assessing the Prq:>erties Inheritance Sdleme for the Mu"PIe Descendant Redefin~ion PrOOIem in Objed-Oriented Systems

Visual aspect

Raw data
representation

' visuEiI~~P~9t .·'.cjat~~r¢~~ipg :
,··':,,····: tOols>'! .• '"

graphic representations
symbolisms

filters
converters

trigger functions
trigger conditions
alerters

Figure 3.20: Data representation

An advantage of use of graphical representations is that they are not limited to well-defined ones

such as bar charts, surface charts, etc. Several types of diagram may be appropriate for the same

data sets offering the choice of many perspectives. For example, symbolic diagrams [Ebe92] can

reduce information content while increasing readability and clarity. The symbols are arbitrarily

chosen according to the values.

The motivations behind the use of graphical representations for the method redefinition profIle are

manifold:

• Ease of analysis, comparison and interpretation: a visual representation is, in most cases, more

convenient than raw data sets, especially large, in a table. The type of representation or

symbolism used determines the expressiveness of the visual aspects. For instance, in the case

of a ratio values type in a data set, the pie chart is one possible representation.

• The comparison of the redefinition activity for different branches is made easier. A

redefinition profIle can act as an element of reference in a comparison. The investigation of

differences between two shapes indicates similarities or dissimilarities of the design from the

point of view of behavioural inheritance.

Data processing tools:

Sometimes it is convenient to transform raw data (fable 3.6) before it is visualised. Examples of

use of data processing tools can be the extraction of a reduced set of data, the data transformation

into a different scale unit or the conversion of the data into ranges for enabling different

perspectives. A pre-transformation of data is seen as a re-processing stage where the results from

the transformation are expected to exhibit some desired features or peculiarities. The possibility of

hiding or showing a subset of the raw data set is crucial for the analysis and interpretation of the

metric's results. The focus on certain aspects of large data sets permits the discovery of details

- 114 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

which are otherwise unnoticeable. Although rare, data sets may also contain redundant values that

can be removed by a filtering function. As applications evolve in time, it is also possible to see the

effect of changes made between two versions of the same class, branch or system in comparing

different versions of the redefinition profiles. Such comparisons are made easier with the presence

of graphical representations.

DIT Redefinition profile (%)
1 6.48
2 19.39
3 42.15
4 56.03
5 45.54
6 52
7 60

Table 3.6: Smalltalk Express Object branch redefinition profile

The choice of the transformer function is outside the scope of this thesis; however,

transformations in the metrics domain are considered.

Detectors

In general, abnormal or unusual values indicate abnormal or unusual ~e~ign features. The

discovery of such unusual values may be straightforward if visual. As ,the redefinition metrics are

mainly utilised to assess branches of hierarchies, depending on the size of the branch, a fine

detection of potential suspect classes can be done due to the derivation level by level. The

technique of detectors is complementary to data processing tools as the latter can be used as a

filtering system to reduce the amount of data processed. A data interpretation model using

alarmers is presented in section 5.11.

Providing that suitable visualisation of the metric results exists, one possible way to identify

design inconsistencies, for a given characteristic, is to assess the disparities on the graphical

representations. This leads to the notion of pattern profiles. An example of detectors used in the

experiments is the technique of alarmers (section 5.10) which are aimed at specifying and

recognising such disparities. More generally, the identification of conditions under which a

disparity occurs is essential for design problem detection.

Ideally, it is sought to recognise typical pattern profiles which would be classified for a particular

metric and thereby, the corresponding design problems. Suggestions for design improvement

would then be facilitated. A profile should exhibit some expected characteristics or properties

related to the metric considered. An alternative choice is to look at the range of possible chart

types available for evaluating their appropriateness against the concerned metric. Not all graphic

representations are suitable for a given metric, the choice depends on its type, on its properties, on

the characteristics to be measured and on the type of results expected. For example, the

- 115 -

3. Assessing the Prq>erlies Inherttance Scheme for the Munp!e Descendant Redefinttion PrOOIem in Object-Oriented Systems

redefinition metric set measures the amount of redefined methods in a class hierarchy. The

measure is taken level by level in the hierarchy and a percentage is returned for each level.

Therefore, the type of results is discrete which prohibits the use of smooth curves. Instead, visual

representations such as bar charts or scatter plots are the most suitable. Novel visual

representations and symbolism are encouraged for the representation of results, especially if the

properties of a particular phenomenon are known i.e. conditions under which a phenomenon is

likely to appear. Although the drawback of such an approach entails the overall cost of

development of the measurement programme, the main benefits lie in the focus of the dedicated

representation to discover a particular feature of the design which can be detected by the derivation

ofmetrics.

The next section presents the core and final part of the interpretation process whereby the profile

analysis process is explained. Naturally, it is expected that the outcome of the analysis is the

suggestion of potential solutions to the design problems tackled.

3.4.3.3. Profile analysis and design feedback

The analysis of the results is mainly a synthesis activity. In gathering and referring back to the

infonnation found during the entire course of the measurement, the analysis of observations made

from the graphical representation leads towards explanations of the phenomena observed. The

profile analysis and the extraction of design feedback are closely related tasks. Simply, the former

aims at discovering and explaining the profiles obtained while the latter describes the necessary

design actions to be done to improve the design. Figure 3.21 represents the final phases of the

measurement cycle.

Design feedback

deSign decisions
and transformations

Assumptions
Referential
Hypotheses

Profile analysiS

processing tools

...................
.......
patterns
rates
shapes
colours

Figure 3.21: Profile analysis

Metrics collection

J
rules
single/range thresholds
alarms
side effects
dependent metries

- 116 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

John McGregor [McG95] identified three techniques to interpret metric values. The observations

can be based on:

• The rate of changes of the value over iteration.

• The direction of changes of a set of values.

• The standard deviation from the mean of a set of values.

McGregor's techniques are mainly based on the observation of changes occurring to a raw data set.

However, the phenomena observed on a curve can be of different nature. When a design problem

is identified, it may be possible to define the conditions in which the problem occurs. In such a

case, the data set may be processed before display in order to explicitly show the identified

phenomenon on a curve. Therefore, the interpretation process is based on the following two factors

(Figure 3.21):

• The presence of phenomena i.e. noticeable features, which can be either:

* Native: without transformations, the data values exhibit particular visual characteristics

e.g. peak, exponential rate of increase or decrease, minimum, maximum. Note that

outstanding characteristics may be not be visually explicit e.g. not necessarily a peak on a ;:

graph. Notice that the absence of a phenomenon may be the sign of an unusual

characteristic and would required further attention.

* Generated: under some conditions, particular visual characteristics can be generated when

the data is processed beforehand. For example, to obtain a macroscopic view of the data, it

may be useful to show ranges of values instead of all values in a data set. This permits a

reduction of the size of the data set to be displayed on a graphic, therefore facilitating its

reading.

• The notion of interpretation rules is one possible approach to generate design feedback and

suggest actions for improvement. For instance, suppose that in the context of the method

redefinition profile, a threshold value of 40% is arbitrarily chosen as cut-off point. Then, if the

peRM measures show two values that are higher than the threshold on two consecutive levels

of DIT, it could indicate the presence of the MDR problem. Therefore, such a situation

requires the analysis of the source code to discover further information on the causes of the

problem. Note that, in general, threshold values are determined by measurements done in the

past in a similar context and domain. In that respect, benchmarks are commonly adopted

instruments for the interpretation of metrics and determination of "goodness thresholds".

Unfortunately, benchmarks are rare due to the additional cost involved in the measurement

process and the relatively unpopularity and non-maturity of metrics for 00 systems.

- 117 -

3. Assessing the Pr~ies Inher~ance Sdleme for the Multpje Descendant Redefin~ion Problem in Objed-Oriented Systems

A possible definition of an interpretation rule is given as follows:

Interpretation rule:
In a given context of measurement, for a quantifiable aspect of a design attribute, an

interpretation rule permits the logical deduction of the causes of the phenomena

observed on a chosen representation. An interpretation rule indicates or suggests

explanations on the observations of particular phenomenon for a given

representation.

Therefore, interpretation rules constitute a mean for inferring design feedback and suggest

required design actions to the designers. In Figure 3.21, the referential values are values such as

threshold values, averages, minimum or maximum. They are pre-calculated or arbitrarily chosen

for reference. Sometimes, subjective choices based on experience are chosen as referential values.

This area is still argued amongst the research community. However, when the referential values

are well identified e.g. benchmarks, they can be used within detector tools as element of

comparison. In addition, to support the search for a particular phenomenon during the profile

analysis, various investigation tools providing facilities for pattern searching, querying, filtering,

simulation and history of profiles may be considered. Some of the tools are discussed in chapter 5.

An important characteristic of the analysis process is the influence of factors such as the

assumptions, the referential values and the hypotheses defmed earlier in the measurement process.

The interpretation rules tackle such factors in reducing the introduction of uncontrolled factors

during the interpretation. This provides a better degree of accuracy in the conclusions generated.

3.4.3.4.

Design feedback
Actions

Factors affecting the interpretation process

Figure 3.22: Interpretation factors

Figure 3.22 shows the factors affecting the interpretation process. Often ignored in the literature,

these factors .are rarely emphasised for the interpretation process. As expected, the output from an

interpretation process is the generated feedback for design improvement. Interpretation rules

- 118 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

directly correlate causes to effects by identifying the list of factors from the different phases of the

measurement (see Figure 3.22). To experimentally demonstrate the validity of the metrics, the

technique of interpretation rules helps in confirming or refuting the stated hypotheses.

The side-effect factor relates to the interpretation and uses of an 00 concept to solve a problem. In

the case of inheritance, it has been demonstrated that various possible uses of the method

redefinition mechanism affect the solution design. Often, it is the programming language features

that generate unexpected designs referred to as the side-effect factor. The investigation of potential

side effects is beneficial to the interpretation process as it provides explanations on the origins of

the problems. Sometimes, the designers produce "non-conventional" designs on purpose to tackle

a specific problem. For instance, the quality of the design may degrade when code optimisation is

required and hacks may be utilised. If a side effect is known, then the causes of the problem may

be easily understood.

The investigation of dependency relationships between attributes assessed is one possible approach

for discovering the effect of one attribute on the other. When a dependency relationship exists

between two attributes, the corresponding metrics are therefore dependent (see section 2.4.6.1).

Interpretation techniques can then fully benefit from this observation. For example, it would be

possible to discover the logical chain of events between related metric results sets to understand

how the changes to an attribute affects the result of the other. Another example relates to the

redefinition and the encapsulation mechanisms. If the properties of a class are declared as private,

they are not visible and accessible from other classes, therefore, no redefinition is possible for the

subclasses of the class. This implicit dependency relationship between metrics opens various ways

of improving the assessment process. In some cases, it can be efficiently used in a predictive

manner. Suppose that two metrics m1 and m2 are directly related, the knowledge of evolution of

m 1 allows the prediction of evolution of m2 and vice-versa.

3.5. Conclusion

This chapter examined the MDR problem in inheritance hierarchies and proposed a set of novel

metrics for the measurement of redefinition. Details of the technical issues involved in the

measurement programme were given and can be used in a more generic context. The behavioural

inheritance analysis technique is a possible approach for discovering methods life histories

regarding their redefinition status. Finally, a description of a metrics interpretation framework was

given for tackling the problem of metrics results interpretation.

To demonstrate the benefits of the redefinition metrics, the next chapter presents a metric

prototype collector tool that enables automated collection of the metrics. Details of the

requirements, design and architecture are described together with some sample screen shots.

Further details concerning the design of the prototype tool can be found in the Appendix.

- 119-

4. Metric tool collector and implementation issues

4. Metric tool collector and implementation issues

"Not everything countable counts and not everything that counts is countable"

- Norman E. Fenton

4.1. Introduction

The availability of automated tools within a measurement programme is a necessity for the data

collection phase. If metrics were to be applied manually, the task would be very exhaustive and

prone to errors. As the metric collector tool examines the design information, this must be in a

format recognisable by the tool. In general, the design information is available in one of the

following main forms:

1. As a textual document on paper.

2. Within a CASE tool.

3 .. As textual· files used by either.a development environment or directly by a compiler.

In case 1, the use of an automated tool is not possible. Case 2 requires the knowledge of the

format in which the design is stored under the CASE tool. In such cases, a possible solution is to

generate the corresponding implementation in a particular language which in turn, could be

processed in the same manner as in case 3. The programming code still remains a common basis

from which the extraction of design information is possible. If the CASE tools do not support

code generation features, a costly approach would involve the development of an integrated

metrics tool within the CASE tool architecture. In case 3, additional implementation of parsing

tools is required for the derivation of the metrics. For development environments providing

metaclass capabilities, the design information may be directly accessible without the need for

further tool development. Although features like metrics definition, metrics collection and results

visualisation are desired [Bri96], the diversity of environments necessitates dedicated metric tools.

In order to limit the experiments to the demonstration of the applicability and usefulness of the

redefinition metric set, the following aspects guided the design and implementation of the

prototype metric collector:

• A simple metric collection may be limited III functionality and use existing software

applications as much as possible.

• The use of a prototyping language enables rapid development of applications.

• The identification and extraction of design information should be possible at minimum cost.

• The algorithms for the computation of the redefinition metric set should be replicable III

different environment.

- 120-

4. Metric tool collector and implementation issues

• Class libraries are required as subject of study.

This chapter introduces a prototype metric collector tool which:

~ Automates the data collection for the redefinition metrics at class, hierarchy and system levels.

~ Demonstrates possible novel representations.

~ Features a method profiler for the analysis of the method's life history.

~ Provides an example use of the technique of the alarmers.

The next section details the requirements for the prototype metric tool.

4.2. Requirements

4.2.1. Features

The purpose of the metric collector tool is to provide the user with a minimal set of features

facilitating the derivation of the metric redefinition set described in section 3.2. The derivation

process mainly consists of the automation of the data collection for further processing and

analysis. The development of a metrics collector tool emphasises the fact that particular attention

should be given to the feasibility and .cost of suchdevelopmertt within the measurement

programme. To date, few generic metrics tools are extensible and flexible enough to permit an

easy implementation of new metrics [SimLew98]. However, these are still under development.

For the purpose of this thesis, the following features of the prototype tool are considered:

• A browser which permits the display of the design to be assessed: in particular, the

representation of a class hierarchy is required in order to choose sub-hierarchies for assessment.

• Implementation of the redefinition metrics algorithms.

• A method profile analysis tool that permits source code analysis for MDR problem discovery.

• Persistent storage for the metrics results. As the design process is incremental, many stable

versions of the model may constitute viable solutions, therefore, it is interesting to assess these

versions comparatively. Thus, a persistent facility is needed for storing previous measures.

Essentially, it is desirable to be able to store metric results and other possible attributes related

to the measure of the particular design subject being assessed. Therefore, persistent storage

should provide a mechanism for dynamically creating objects with their associated attributes

and then provide functions for retrieval of existing objects. Its underlying model is not of main

importance.

• A data representation tool: the existence of powerful graphic packages on the market will

suffice to satisfy the purpose of the experiments. However, the possibility of dynamic linking

- 121 -

4. Metric tool collector and implementation issues

between the prototype metric tool and the graphic package is envisaged as well as

functionalities for creating novel representations.

• An implementation of an example of detection technique.

In addition, functionalities such as printing, exporting, importing and metrics management

capabilities are also desired. Using the Smalltalk language, a rapid prototype development is

possible. Furthermore, the IDE also provides support for dynamic manipulation of class

hierarchies and user applications. The development is done within a PC-based environment.

4.3. Analysis and design of the metric collector tool

This section highlights the design issues for building the metric collector tool. The redefinition

metrics set assesses the mechanism of method redefinition in a single class, in class hierarchies or

in a system. For the derivation of the PRM, PRMH, PCRM and PEM metrics (see section 3.2),

the internal structure of classes and existing inheritance relationship information are gathered.

Before the derivation of metrics, two main questions need to be answered:

• How can one detect if a method is a newly defined method for a class?

• If a method is inherited, how can one recognise that the method is extended or redefined?

Other states for a method have been described in section3.3.4 but not relevant to the calculation of

the redefinition metrics. An immediate answer to the first question is to check if the method exists

in at least one of its ancestor classes. If it exists, then the method can only be redefined, extended,

reused or cancelled in the subclasses. The fact that an inherited method exists in a class i.e.

presence of its signature, implies that the method is redefined, however two cases may arise: the

method is replaced i.e. completely redefined, or the method is extended i.e. reuse of the inherited

implementation. Note that cases of particular super calls such as directed super calls and

dishineritance (see Figure 3.15 b), section 3.3.4.1) are not considered as a valid extension of a

method from a conceptual point of view.

The next section presents the problem of hierarchy parsing with regard to the derivation of the

redefinition metrics at different levels.

4.3.1. Class lineage and parsing strategies

Several parsing strategies can be envisaged for the search of redefined or extended methods

[Mey97, Riv96, Ste90]. In single inheritance class hierarchies, the lineage of a class can be

examined in local ising the direct parent in a bottom-up fashion and by repeating the process for the

parent class until reaching the Root class, the whole list of ancestors can be obtained. In the case

of inheriting from multiple classes, the correct path is found in analysing the calls to the inherited

method in the current class (see section 3.3.3).

- 122-

4. Metric tool collector and implementation issues

Whether support is given by the development environment or not, the prototype metric tool is

dedicated to the language studied in the sense that specific language syntax is taken into account.

One of the other tasks is then to detect if a method falls Wlder the case of extension. Consequently,

it is possible to conclude that all other redefined methods are either declared as polymorphic or

completely redefined.

Metrics derivation for the different levels

Figure 4.1: Levels of derivation

Figure 4.1 shows the classes of a system. The different shaded areas represent the three different

levels for which the redefmition metrics can be applied. For each level, the list of classes to be

included in the calculation is also shown. The different levels are:

• Class level only the single class is concerned.

• Hierarchy level the user enters the sub-root class name of the hierarchy. Then all subclasses

of the sub-root are included in the computation list.

• System levet the user enters the list of classes in the system.

Note that at system level, the computation of the metrics does not differentiate whether classes

situated at a particular level inherit from the same branch of the hierarchy or not. For example, all

classes at level 1 in Figure 4.1 would be included in the calculation of the metrics although not

inheriting from the same root class (further issues were described in section 5.5).

To realise the different types of searches required by the metric tool, two main parsing strategies

are shown in Figure 4.2.

- 123-

Parsing directions

\t
" !.i
!

Selection of -* ~
classes per ········t······
level

4. Metric tool ccllector and implementation issues

Selection of
current class

Figure 4.2: Parsing strategies in class hierarchies

The calculation of the hierarchy redefinition metrics requires the examination of classes level by

level. To do so, the metric tool selects all classes situated at the same depth in the branch assessed

and then, for each class at this level, examines its ancestors, its children or both depending on the

information researched. The process of parsing is the main activity during the course of the

derivation. The appropriate use of upward or downward parsing direction avoids unnecessary

processing time. For example, in the case of the calculation of the redefinition metric for a class,

downward parsing is not necessary.

For each class to be included in the calculation, an extraction pf the relevant design information

(section 3.3.2) from the class is done. Further details on the utilisation of the Smalltalk language

for the realisation of this process can be found in the Appendix.

4.4. Architecture

The design of applications with object concepts naturally separates concerns into different

abstractions. Based on a Model-View-Controller (MVC) architecture, the metric collector tool

encompasses three main components shown in Figure 4.3 and is entirely part of the Smalltalk

environment. The Smalltalk class librarY 9 therefore provides the main development features of the

language.

19 The SmaJltaIk Express version 2.0.4 was used for the metric tool development and the creation of the user interface was done using

the WindowBuilder ProN GUI builder [ObjSha93].

- 124-

4. Metric tool collector and implementation issues

Controller
Metric collector tool

.•.... .•..•..•..•. .•. .•..•..•..•..•........•.... .•.. - .•. .•..•. .•.•. .•. ••....•..•.....•..•..•..•. .•..•.....•.. - t

Smalltalk class library
............ ••••• •••••••••••·••·••••• .. • .. • .. • .. ··"1

Smalltalk repositories

Figure 4.3: Metric collector tool architecture

The main three elements of the metric collector tool are detailed below:

• The profile manager and the metric engine act as the controllers. The profile manager ensures

that the persistent repository is configured for the storage of method profile objects. The metric

engine processes metric derivation requests.

• The persistent repository structure represents the data model for the method profiles. The

underlying persistency mechanism relies on the Smalltalk environment and its images.

• The user interfaces include the hierarchy browser and the metric result panel.

The benefits of such an architecture for a metric collector tool lies in its simplicity and adaptability

for extension of new features. Three core classes represent the three elements in the architecture.

At the centre of the architecture is the profile manager object. It co-ordinates the despatching of

tasks, ensures that the method proftles are created and returns the results to the display panel

object. Following the object design philosophy, one important aspect of the metric tool's

architecture is that the components are abstract enough to carry out their tasks independently.

Smallta1k applications are "embedded" within the Smallta1k environment. The persistent repository

CPR) is an adapted version of the persistence system used in [Owe95] . Represented as an additional

layer on the top of the Smalltalk class hbrary (Figure 4.3), the PR consists of a set of classes which

provides capabilities for managing persistent objects within the Smalltalk image.

• The analysis and design of the components of the architecture can be found in the Appendix.

However, two of the features of the metric prototype tool: the concept of alarmers and the data

interpretation system, will be illustrated in chapter 5. Both features have been integrated

within the hierarchy and proftle browsers.

- 125-

4. Metric tool collector and implementation issues

4.5. User interfaces

In this section, the user interfaces illustrates the main features of the prototype tool. Decomposed

in four sections: derivation, profile metric managet, method profiles and alarmers, the description

of the tool covers the aspects shown in Figure 4.4.

Derivation

E
Class

Hierarchy
System

System Metric Browser

Profile Metric Manager

Import
Delete

Export
Update
Print
View

Alarmers

L. Range Definition

Method Profiles

~
Flatview

=icaiVieW

Implementol$

Figure 4.4: Roadmap for user interfaces presentation

In Figure 4.4, for each main feature, the available functionalities are presented as a tree. The

following sections describe the metric prototype tool from a user point of view. Explanations about

the derivation process and the supporting tools for analysis are given.

4.5.1. The System Metric Browser

Figure 4.5 shows the main user interface for the metric prototype tool. It includes a hierarchy

browser on the left-hand side panel and a tabular display of metric results on the right hand side of

the window.

- 126-

System metric Toggles alarmer OnlOff

Hierarchy metric

Class metric

Hierarchy browser FixedSizeColiection
Array

CompiledMethod
Slack

ByteArray
FileHandle

Interval
SIring

Calculation options

Current options

4. Metric tool collector and implementation issues

System Metric Browser

Oil ANM (%) PRM peRM PEM
(%) (%) (%)

5.0 14.7058 14.7058 0.0

2 7.666661 50.3607 50.3607 0.0

3 8.6 68.2857 54.0336 2.87114

4 6.33333: 36.1909 24.3125 0.74276

36.'7927 22;5945

Levels in the Average Total Percentage of Percentage of
completely
redefined
methods

hierarchy percentage of percentage completely
methods in of redefined redefined
class per level methqds' methods

Results of the
redefinHion
metrics for the
Collection
branch

Figure 4.5: Prototype metric tool main window

The request for a class, a hierarchy or a system metric is activated either by the Metric menu or by

the first three buttons on the tool bar. The calculation mode is set in the left-bottom panel and the

chosen option is automatically reflected in the status bar. The result panel display, including the

titles and metric results, are only shown after the completion of a derivation request. A function

permits clearing this panel if needed. Note that this functionality only deletes the values in the

browser window but not the corresponding method profile object either in memory or in the image.

For each derivation request, the date of derivation is shown above the status bar and this date is

updated if a new derivation request is made on the same classes.

4.5.2. Metrics derivation

In the case of a system metric request, an instance of the SelectSystemClasses class is created

and the user is asked for the selection of classes to include in the system (Figure 4.6). The list of all

classes in the Smalltalk environment is presented as a flat alphabetical list on the left-hand side of

the dialog box in Figure 4.6.

- 127-

4. Metric tool collector and implementation issues

Redefinition metric for a system

Metrtc results for the T -Goo
system loaded by the profile

manager

Ust cI all classes
currently In the Smalltalk

environment

Name cI the system

Ust cI classes In the
system to be assessed

::::::==~:;;;JI.--.-- Molle the selected
class In the system

C8Iculale the Update the View the Load the list cI Canoet
melrk: for the selected list metric results ctasses for the operations on
system cI classes In for the system name cI the system

the system system entered

Figure 4.6: Redefinition metric at system level

Move all classes
In the system

Remoye the selected
class from the system

RemOYe all classes
from the system

A set of functions is also provided for the management of classes in the system. The metric results

for a system are also stored as persistent method profile objects, thus the presence of a Load

function for the reloading of classes of a system that have been previously stored. Often, it is also

convenient to add or remove classes from the system as it evolves. The Update function permits a

quick modification of the list of classes of the system without having to reselect all classes. The

Derive function requires the computation of the metrics for the selected classes and the VifNol

function returns the stored results without re-computation of the metrics.

In the case of derivation at class or hierarchy level, the input of, respectively, a class name or a top

node class name suffices for the execution of the calculation of the metrics.

4.5.3. The method profiles manager

. To retrieve existing metric results from the persistent repository, it is necessary to load in memory

the corresponding method profile object. A list of these can be browsed using the method profile

list manager in Figure 4.7. The left-hand side panel shows this list and the entry field on the right

hand side permits the manual input of the profile object name.

- 128-

4. Metric tool collector and implementation issues

Method ProfUes Manager

Profile features

Figure 4.7: Method profile list manager

The list of features associated with the profiles is accessible via the buttons. The deletion of a

profile is a physical deletion of the object from the repository. Similarly, on a request of the

Update profile function, an automatic deletion of the object is done before the re-computation of

the metrics. The View/New Profile option calls the method profile browser (see Figure 4.8). Note

that, although the method profiles are used to store and to reload measures on a class a hierarchy or

a system, the activation of methods browsers is only available for measures on hierarchies. The

Export profile functionality is an alternative possibility for saving a method profile. It relies on

Smalltalk's object dump facility that writes a compressed description of an object along with its

referenced structure on disk. An example benefit of the use of such a mechanism is that it allows

saving of different versions of the same method profile objects, therefore enabling a comparative

assessment of the measures. The saved files may also serve as back-ups files as well as being

uploaded in another Smalltalk Express environment providing that the metric tool is available. To

do so, the Import profile facility reads such binary files and permits an easy reloading of the

method profiles into the repository.

Rather than directly print a method profile as the name of the Print functionality would suggest, it

saves the method profiles information in textual files that can be directly reused by other

applications or printed for documentation. This is particularly interesting for the processing of the

results by third party applications in particular graphical applications.

- 129 -

4. Metric tool collector and implementation issues

4.5.3.1 . The method profiles browser

Figure 4.8 shows the method profiles for the Collection branch. Divided in two separate panels:

the upper and lower panels respectively give details about replaced and extended methods. In each

panel, three windows permit the discovery of the methods life history. The left window shows the

whole list of parent classes that exist in the requested branch of the hierarchy. Then, on selection

of any of the classes in this window, the set of redefined or extended methods of the selected class

is displayed in the middle window. For example, in the upper panel, the list of redefined methods

for the Collection class is shown. And finally, on selection of any method in the middle window,

the list of subclasses of the current parent class where the method is redefined or extended in the

hierarchy is shown in the right window. Thus, the method profile browser shows the details of

methods life history as described in section 3.3.5 , thereby permitting the confirmation of the

existence of the MDR problem in suspect classes. For example, in Figure 4.8, it can be seen that

the includes: method is replaced in the branch OrderedColiection < IndexedColiection <

Collection.

List a classes
that includes
replaced
methods

List a
completely

Method proftles for the Collection branch

Number of
methods

~~ --r1:::~::==~·-methods for the 1~~pClIW

current class ! !!-•••• .,~I
List a classes
that includes
extended
methods

List a
extended
methods for the
current class

..

A '" . attli. 'end of the method's name danotes a polymol)lhlc - . .

Figure 4.8: Redefmed methods browser

Number a
classes

List a
subclasses a

the ClmIf1l
class in which

the current
method is

being replaced

List a
subclasses a

the current
class in which

the current
method is

being extended

Note that any methods that have been originally defined as polymorphic are notified by their name

being followed by a '*' character.

In both panels, it is possible to access four additional features on activation of the right mouse

button on any selected method (see Figure 4.9):

- 130 -

4. Metric tool collector and implementation issues

• showList

• showlnheritance

• Dependents

• Implementors

When a detailed search of the use of methods is needed, the first two functions may facilitate the

process of interpretation. For ease of reading, the list of subclasses in the right window can be

shown as a flat list or a hierarchical list e.g. in Figure 4.9, a hierarchical view of the subclasses for

all add: replaced methods of the Collection class is displayed.

Method profiles

~.
s~ , .

Subclasses
represented as
hierarchical list

••• ~!!~~~fJ~~ Subclasses represented as
plain list

:1II8 . m.tthod'in.n~e··llenIBte!I. 1I poi1morphlc method

Figure 4.9: Features of the methods browser

During the course of interpretation, it is interesting to know the list of methods that refer to the

method being studied. In such a case, it is possible to search for the list of classes and associated

methods that refers to a method name20
• For instance, in Figure 4.10, the dependent classes of the

includes: method are displayed in the Method dependencies window.

20 Note that in the Smalltalk tenninology, methods are referred as senders for the reason that the method names act as the messages

between two objects i.e. message-passing mechanism.

- 131 -

Dependents
requests for the
selected method

Method profiles

Figure 4.10: Method senders

4. Metric tool collector and implementation issues

us! of classes
and methods

that are
dependents on

the current
method

The list of dependencies for a particular method mainly indicates how the method is being reused

in other classes. In the Method dependencies window, a class»method format is used to

represent a method of a class that refers to the selected redefined method in the method browser.

Indeed, the list of dependent classes may contain classes not in the branch of the hierarchy being

assessed. The search of such dependencies for all redefined methods down the branch of the

hierarchy sheds light on the various uses of the method, therefore on the reasons why it is being

redefined. Also, it gives useful information if an eventual modification of the redefined methods is

envisaged. Recall that in a class hierarchy, the change of an existing class or method is a difficult

task, as the semantics should remain consistent with its class lineage. The complexity of change

varies depending on how the class or method is referred to in other classes. For example, the total

references of the includes: method equal 187 (Figure 4.10).

Similarly, classes that re-implement a method are referred to as Implementors. In fact, this

functionality gives similar information to the right-hand side window in the method browser,

however an indication of the DIT is also given by the Implementors class list in the form

DIT -+ Implementor

The Senders and Implementors functions can be called from both redefined and extended panels

on selection of a method in the middle window.

- 132-

4. Metric tool collector and implementation issues

Imp/emenrors
requests for the
selected method

Method profiles

Figure 4.11: Method implementors

.. 5

-

List of classes
that implements

the current
method

From an interpretation perspective, it is interesting to detect the list of method implementors

within the branch of hierarchy assessed but also in other branches of the entire class library. In

such a case, if the same method exists in different branches, many other issues have to be tackled

such as the similarity or dissimilarity of the semantics of the method particularly if the method is

being redefined in all branches. This problem constitutes other design issues that are not covered in

this thesis although the discovery of such problems is possible.

4.5.4. The definition of ranges for the alarrner

To set-up the ranges used by the alarmer, the getAlarrnRange: method creates an instance of the

AlarrnerRange window that allows the user to manually input the values of the seven ranges

(Figure 4.12). Recall that the entered values defme seven ranges of percentages and each of the

ranges corresponds to a different colour range bar.

- !33-

4. Melric tool collector and implementation issues

Alanner range definition

Ranges delliilQon f!l,~ t/le .
Fn,m .. Til

~Rge l: ~;O"j l~ljl9 ·
Ra.e: 2:. p:;~.:=. ===9l p·K
RMge3: : FB: 1 .~ I41;s,
RUie. 4: : ~z, I}S.1I9
Raw"': 5: ~, . 1 /H~99·
RaqC 5;.: ~8 · 1·\13.99
RII* 1:· ~~ . I. '.0 .

. -
Figure 4.12: Alanner ranges definition

Range definition
option

Definition of range
vatues for the

atarmer display

Figure 4.13 shows an example of results obtained from the Collection branch. The different colour

range bars are displayed directly underneath each metric value providing that the alanner function

has been tagged on (Figure 4.5). Note that the colour range bars themselves are previously defined

and associated with the different ranges defined. In the current version of the tool, the range bars

are bitmaps that can be redefined for different colours or shapes. However, the association is

presently hard-coded for the purpose of the visualisation experiment.

- 134-

4. Metric tool collector and implementation issues

System Metric Browser with alarmer display

~~ ib.tCle __ in~hy. Contttlon · __ illll-..
'aoitg
"'ndc::xl!'tieoOCdion

· ~tlZt:(:"Il~Il~.
·Mrily . . .

'com'pu..;dYe"o~
:S1ad;
~.

J'ilefI~1e
IIIIftvat
·s.tnt .

Dpui;;BYtcSlriftg ""
Deiable~IR~~

.SYJRhof
~emdCOUedflla
. Gr.ph '

DireetetIGraPTt
lIiIN:l~ '
FriStFolleWGreph

r lnlllt!rltaQtr;i" Cak:ul ... 1Ii:i
®Ne«H:umiaidw:
C CaIR..t.IM

orl

:1

2

:;f

"
"!j

," i.

J

ANN"

6,8

7i~~~~1

7,~m~: "

4.9Z30Z-I

1,75

PRW

"" .~

~ "~ .~"
"~ .~ .~

:it·631~ ~ ~

~ .~ .~

. "c::=::J "C::=::J r:::::::::::J

" c::=::J • t::::::J "c::::::J

r 0p1i.ns-------... Metrics dC:t1Yc1l an: Jaa 13; 1999 '
I [JClaHftltforiSaticm
! O~das.ses , .

...-----,..,.. _-------
"_~ ~......:: ~ ,,..,.,'"'"'w;..;,......., __ ~,,_''''',..,.,, ~ __ ~'~,,~,~ 1 ''''~_ ,~ <, ~~_,~,,~J

Figure 4.13: System Metric Browser with alarmer display

4.6. Concluding remarks

Alarmer colour
range bars

The metric prototype tool benefits from an integrated interface where the class hierarchy

component is visualised together the metrics results. Therefore, is it possible to immediately relate

the analysis of the results to the relevant classes in the hierarchy. If further analysis of the

hierarchy is required, the Smalltalk class hierarchy browser provides additional features. Recently,

the development of such metric collector tools or code analysis tools for programming languages

such as e++ or Java appears popular in indus1:r'i l
. As software applications are increasing rapidly

in size due to the complexity of the business requirements, it seems natural that such metrics

analyser tools are being developed as well.

One of the main requirements for the metric prototype tool is the importance of support provided

by the development environment for both the accessibility to meta-information but also for a rapid

implementation of the tool. Only the class library integrated within the Smalltalk Express

21 JavaOocGen is a Java static source analysis, JavaSQA is an Object-Oriented program quality assurance tool and JavaStructure is

a structure analysis and diagramming tool for Java source code. These tools are developed by International Software Automation, Inc.,

http://www.softwareautomation.com. 1999. PC-Metric for C++ (PC version) and UX-Metric for C++ (SunOS version) are source code

analysis tools for c++ and are developed by SET Laboratories, Inc.P.O. Box 868 Mulino, OR 97042.

- 135 -

4. Metric tool collector and implementation issues

environment and the WindowBuilder ProN class library were required. Although portability was

not an issue, the specific part of the metric tool lies in its interfaces, therefore they depend on the

supporting GUI class libraries. The core classes in the remaining part of the metric tool

architecture use fairly standardised functionalities that are supported in many Smalltalk flavours,

therefore facilitating the portability of the tool.

An important feature of the tool without which the collection process would become rapidly

cumbersome relates to the persistence of objects. This is realised with native features of the

Smalltalk environment and saved within its image, all objects in the system including the method

profile objects are only physically updated if an explicit Save command is requested or when

exiting the environment. The Save command acts like a 'commit' command in a database in the

sense that all existing objects in memory are saved in the image. Although this behaviour remains

consistent with the Smalltalk procedures, it may also be constraining in some cases. For instance,

if unwanted changes occur in the class library and new method profiles are expected to be saved,

the changes must be undone before requesting objects to be saved. In most cases, the existing

procedure is sufficient for tackling the main issues with the metrics.

Concerning the graphical representation functionalities for the. metrics results, the Microsoft

ExceFM 97 package was used with the exception of the implementation of the colour-coded

representation within the prototype tool. By consequence, the creation of the graphical

representations requires the metrics results to be transferred within the Excel worksheet. This

process was manually done in the existing version of the prototype tool. Indeed, an·automatic

transfer would remove all the necessary manipulation. This is possible with the use of the

Microsoft Object Linking and EmbeddingTM (OLE) technology and is envisaged as further

development.

Overall, the metric prototype tool demonstrates that the redefinition metrics set is derivable.

Automatic metric collection is possible at class, hierarchy and system level as expected. In

addition, the implementation of a possible method profile browser gives insights on the problem of

MDR, therefore generating feedback on the subject assessed. The experiments with the

redefinition metrics are described in the following chapter and illustrate the applicability and

benefits obtained from the analysis of the metric results.

- 136-

5. Experiments

5. Experiments

The aim of this experiment is to demonstrate that the redefinition metrics are derivable and

produces results that may suggest potential design problems. Given the description of the

metaclasses' facilities for design information extraction in section 3.3.2, the experiments were

carried out on the Smalltalk Expres~2 class library [GoIRob85] and a third-party application called

T-gen. The reasons behind such choices originate from the following factors: the size of the

software applications or class libraries, the presence of inheritance and the availability of the

source code. As the measures were taken on existing applications or class hierarchies, the design

details are not known apart from a high conceptual level understanding of the subjects assessed. As

a class hierarchy may cover many distinct abstractions in different branches e.g. Collection and

Stream branches, it is desired to assess these different branches in isolation. By consequence, the

same above-mentioned factors affected the choice of the relevant branches for assessment.

The experimentation is conducted as a five-stage process:

1. Collection of the metrics for the different branches

2. Analysis of the general PRM23 metric for the different branches.

3. Analysis ofthe PCRM and PEM metrics for each of the branches orsystem.

4. Investigation of various. graphical representations for the metric results.

5. Implementation of a simple example of a detection technique called the alarmer'technique.

This chapter demonstrates how a high level of method redefinition suggests the existence of design

problems such as the MDR problem. In the first part of the experiment, only the general PRM

metric is considered. The metric gives an overview of the redefinition profile for the class

hierarchy. As the redefinition metrics set is a novel set of metrics, no previous results, benchmarks,

thresholds or profiles exist, therefore the interpretation of the results can only be supported by the

detailed analysis of the class hierarchy and the available code. Ideally, the access to design

documents would shed light on the interpretation of the profiles. The shape of the curves obtained

is the main guideline for interpretation. It is aimed at recognising pattern profiles that illustrates a

specific aspect of the design e.g. "normal curve", "curve suggesting an MDR problem".

In the second and last part of the experiment, the previous results are further discussed with the

derivation of the PCRM and PEM metrics for the same branches. The finer-grained results i.e.

ratios between the amount of replaced and extended methods, give opportunities for a better

22In this thesis, Smalltalk ExpressT'" designates the version based on SmalltalkIV® Win16 and WindowBuilder® ProN provided by

ObjectShare®, a Division ofParcPlace, http://www.objectshare.com

23 The percentage of redefined methods (PRM) metric is obtained in calculating thePRMH for every level in the class hierarchy with

Iinearisation of the inheritance graph i.e. no duplicates in the ancestors' list for a class.

- 137-

5. Experiments

interpretation of the design assessed. In general, when an unusual phenomenon in the profiles

suggests further clarification, the designers ought to refer to the design considerations for

inheritance assessment24 described in section 3.2. Ultimately, references to the source code are

needed in order to pinpoint precisely any potential defects.

Also, a simple detection technique called the "alarmer" technique is used for the identification of

suspected design problems occurring under certain conditions. It is shown how the evaluation of

different possible visualisations for a set of metric results not only suggested potential design

problems but, depending on the type of visualisation, the same data set can reveal different

characteristics.

The list of hierarchies assessed in the experiment is shown in Table 5.1. As previously stated, one

of the main criteria for the choice of the hierarchies presented in the experiment relates to the

number of classes in the branches or in the systems.

Type of subject assessed No. of Description
Classes

Object hierarchy 427 Root of the Smalltalk class library and other
third-party classes

WindowBuilder ProN system . 144 GUI builder for Sinalltalk Express
,T -gen system 116 . Lexical parser.
Collection branch 25 Set of container classes
Stream branch 5 Set of Input/Output stream classes
GraphicObject branch 40 Set of classes for window management
TreNode branch 38 Subset of classes of the T-gen system·
AbstractScanner branch 10 Subset of classes of the T-gen system
Object hierarchy with the T- 549 Smalltalk and T -gen classes
gen system installed
Collection hierarchy with the T- 34 Collection and T -gen classes
gen system installed

Table 5.1: List of assessed hierarchies

Graphical representations of the raw metrics results are generated by the Microsoft Excel97©

package. On the below figures, the PRM metric is represented on the x-axis and the DIT level on

the y-axis. Note that the maximum DIT shown on the graphics is 7 as no hierarchies include

further levels.

5.1. Overview of the method redefinition profiles using the PRM metric

This first part of the experiment outlines an overview of the metric results for the selection of

hierarchies described in the previous section. The initial analysis of the method profiles obtained

suggests potential recognisable patterns on the use of redefinition for the assessed hierarchies. It is

24 The method profiler in the prototype metric collector tool is an adapted version of the behavioural inheritance analysis method

(section 3.3.5).

- 138-

5. Experiments

also aimed at discovering unusual characteristics in the method profiles that would suggest good or

bad use of method redefinition. Overall, the grouped presentation of the results gives a ' feel' of the

use of the redefinition mechanism in the hierarchy.

Figure 5.1: PRM for the Smalltalk Object hierarchy

Window Builder ProN system (%)

l-e 4
. ~3.85

62.37 6

0 20 40 60 80 0 10 20 30 40

Figure 5.2 (a) and (b): PRM for the WindowBuilder ProN and T-gen systems

Smalltalk Stream Branch (%)

Figure 5.3 (a) and (b): PRM for the Collection and Stream branches

Figure 5.4: PRM for the GraphicObject branch

- 139-

5. Experiments

T-gen: TreNode branch (%) T-gen: AbstractScanner branch (%)

2

~

0 . ;!,!i:1 I_PRM p,
~.1

I- 2
0 26 05

4 20

o 20 40 60 80 o 10 20 30 40

Figure 5.5 (a) and (b): PRM for the TreNode and AbstractScanner branches

ObjectIT-gen hierarchy (%) Collectionfr-gen hierarchy (%)

. 6.66
22.08

I_PAM 16.66 II - PRM 1

3
41 .05 46.79

49.8:3
14;1.58

48.88
130.

l-
e 5

7

I- 3 0 ...
27.6 72.57 .. 32 96 5

o 20 40 60 0 20 40 60 80

Figure 5.6 (a) and (b): PRM for the Object and Collection hierarchies with the T-gen system

installed

Figure 5.1 and Figure 5.2 (a) and (b) represents the method redefinition profiles for three of the

largest (> 100 classes) hierarchies assessed. Although these hierarchies are isolated for the

measurement process, they constitute different systems. The other branches assessed are part of the

systems.

Figure 5.3 (a) and (b) show the Collection and Stream classes redefinition metric profiles. They

are generally recognised to be at the origin of similar framework of classes in other programming

languages. Figure 5.4 (a), Figure 5.5 (a) and (b) show three hierarchies of smaller size « 100

classes). The TreNode and AbstractScanner are subset of the T-gen system. In Figure 5.6 (a)

and (b), the method profiles for the Object and Collection hierarchy show the metric results

calculated with the presence of the T-gen system in the Smalltalk environment.

A common pattern that appears in the profiles is that the amount of method redefinition rapidly

increases in the first three levels of the hierarchy, then remains stable for two or three levels and

finally decreases or increases in the bottom levels. As the highest values occur in the middle or

bottom levels of the hierarchy, it indicates that the core redefmition activity is located at these

levels. In the first levels of smaller size hierarchies, it is noticeable that the redefinition activity is

low or even non-existent. Generally speaking, it seems normal that the redefinition activity would

increase as the subclasses are specialised i.e. use of abstraction. This can be explained by the fact

that deeper levels of the hierarchy should include a higher number of classes and as the number of

inherited methods are accumulated at each level, they are also likely to be either used or redefmed.

Naturally, the first overview of the redefinition activity calls for further investigation of the low

and peak values. The following sections give a deeper analysis of the metric results. For each of

- 140-

5. Experiments

the above hierarchies or systems, it is shown how the examination of the high values guides the

analysis of the results to the discovery of unclear design situations. The presence of MDR is

highlighted in most cases. To do so, the PCRM and PEM metrics is derived on the same

hierarchies and illustrations of a pragmatic approach to the problem of localisation of defect

classes in the design are given.

5.2. Smalltalk Object hierarchy

The Object branch represents the whole class hierarchy (single-rooted hierarchy) which comprises

425 classes. The two curves for the PCRM and PEM metric25 enable a clear separation between

two types of method redefinitions: extension and replacement. Surprisingly, most of the methods

are replaced instead of being extended.

Smaatalk Object hierarchy (%)
n

1"~6.34 I I =~ .3 8.16
3 ··'" -'1A.03

!:: • AI 47.48 0
5 7.88

8.25
60

7" u

0 20 40 60

Figure 5.7: PCRM and PEM for the Object hierarchy

In Figure 5.1 , the PRM rate of increase of the Object branch is fairly smooth. The first surprising

feature (Figure 5.7) is the relatively high number of completely redefined methods (PCRM) in the

whole Smalltalk hierarchy. In this initial measure of the Smalltalk redefmition profile, from

DIT=1 to DIT=3, starting with a value of6.34% for the PCRM, the value more than doubles in

the subsequent levels denoting a strong redefinition activity. From DIT=3, PCRM=38.03%, the

next values seem to stabilise until DIT=6 although there is an unusual peak at DIT= 4 with

47.48%. Clearly, the midlevels of the Smalltalk hierarchy yield most of the redefined methods. It

is argued that deeper hierarchies may generate a redefinition activity as high as the one presented

in the experiment. In general, large branches such as the Object branch tend to lessen the

discovery of potential problems. This is due to a leverage phenomenon when a large number of

classes are involved in a measure.

25 Note that the profile for the Smalltalk Object hierarchy in section 5.6 (a) slightly varies from the profile shown in section3 .1.1 ,

Figure 3.2. The differences of measures obtained are mainly due to the evolution of the prototype metric collector between the two sets

of experiments. Indeed, the prototype also lives in the Smalltalk environment, thus influencing the results. The correctness of the

metrics results remains consistent as long as the same version of the prototype is included when assessing various aspects of the

hierarchy.

- 141 -

5. Experiments

Although recommended (see section 2.1.1), more levels implies more abstracted classes spread

over more complex branches of the hierarchy making it difficult to control inheritance. This is also

true for the use of the extension mechanism. If a hierarchy already encompasses many levels of

inheritance, fmding what the abstract classes and methods are, before the addition of new features,

is a necessary and cumbersome task. The need for design aid tools to alleviate some of the

designer's task is then a requirement in the modelling process. In Figure 5.7, note that the low

level ofPEM (13.75%) at DIT=6 is also its maximum. The interesting characteristic ofthePEM

values is that it has a fairly constant increase which indicates a good sign of the use of inheritance.

However, at DIT=7, 60% of the methods are replaced while 0% is extended. This contradicts the

essence of inheritance. Redefinition, which is recommended to be used with care, occurs

frequently at all levels in the hierarchy, and extension, which is recommended, is rarely used. This

raises the question ofthe correctness of the behavioural inheritance design.

In order to further understand the phenomena observed on the curve, it is necessary to consult the

classes present in the hierarchy and the state of their associated methods (see section 3.3 .5). Note

that the Smalltalk class hierarchy comprises of many branches dealing with different aspects of a

generic class library, therefore the results obtained in Figure 5.7 includes classes that may not be

related to each other although part of the hierarchy. The overview of the method redefinition for

the Smalltalk hierarchy sheds light on the way redefinition is done down the hierarchy. However,

to identify the possible reasons for such profile, it is more appropriate to derive the metrics on a

smaller portion of the class hierarchy. In such a way, the measures are done on classes that

participate in the same abstraction. Therefore, the results are not disturbed by the effect of other

classes that not related to the subject assessed.

The following experiments present the isolated branches of the Smalltalk hierarchies.

5.3. Collection branch and Stream branch

Smalltalk Collection Branch (%) Smalltalk Stream Branch (%)

o 20 40 60 80 20 40 60

Figure 5.8 (a) and (b): PCRM and PEM for the Collection and Stream hierarchies

The Collection classes in Smalltalk have been well studied by many researchers [Coo92,

GolRob85, Lew95a] and are particularly known for the conceptual design problems occurring in

leaf classes (see section 3.1.1). A major problem concerns the amount of cancellation of property

inheritance in leaf classes. Smalltalk's inheritance scoping control permits a class to stop the

visibility and accessibility of a method to its subclasses in redefming the method with a body

- 142-

5. Experiments

containing the code self shouldNotlmplement. This situation is often recognised as a source of

bad design. The derivation of the redefinition metric would include the case of cancellation of

properties of a class. Indeed, the precise localisation of the faulty class requires code inspection.

In Figure 5.8 (a) and (b), at DIT=2, no methods are extended. A simple explanation is that all

classes at level 2 have realised the abstract methods, which is normal. The metric profiles illustrate

a case where a peak in a curve permits the discovery of classes highly suspect as they present an

unusual level of redefmition. For example, supposing that a threshold of 40% of method

redefmition should raise an alarm to potential design defects, it would be necessary to take a closer

look at the peaks happening at DIT=3 in Figure 5.8 (a) and DIT=4 in Figure 5.8 (b). A simple way

would be to derive the PCRM metric for each class of the concerned level. In Figure 5.9, it can be

seen that the FixedSizeCollection class holds 100% of methods completely redefined. Such a

result is unusual as none of the parent classes is declared as abstract. Although the percentage of

deferred methods is not shown in the figure, the above-mentioned class seems to be wrongly

subclassed. With the help of the method profiler tool, it is possible to study the hierarchy further.

For instance, Figure 5.10 shows the method profile for the Collection branch. The add: method of

the Collection class is being replaced in many subclasses (right hand side panel) situated at

different levels of the hierarchy, thus illustrating a case of MDR problem. In the bottom panels, it

is also shown that the add: method is only extended in three of the Collection subclasses.

Figure 5.9 (a) and (b): Collection branch at DIT = 3 and FileStream at DIT=4

- 143-

l/' Class mel hods profiler - fi!'!l@l f£3

Profile of the hierarchy: CoUection

onary
FixedSizeColiection
IdentityDictionary
IndexedColiection
OrderedColiectlon
Set
String

IdentityDictilinary
IndexedColiection
MethodDictiilnary
o rd'i:re iI Co I II: ciio n
Set "'." ..

SorteilCliliection
Stack·

lIection

Methods:

17

2

7
Bag
FixedSizeColiection
OrderedColiection
SortedColiection

Set
Dictionary
IdentityDictionary

Subclasses: 3
Method onary
SystemDictionary
SymbolSet

Figure 5.10: Collection method profile

5, Experiments

The PCRM for the Stream branch (Figure 5.8(b) and Figure 5.9 (b» is hi,gh with 40.62% at ~.'

DIT=4, which represents a factor increase of 60% from the previous level. This confirms the

Smalltalk Stream branch's generally recognised design defect. Due to the single inheritance

scheme, the ReadWriteStream class inherits only from the WriteStream class. There is a

duplication and redefinition of methods from the ReadStream to WriteStream. Note that the use

of the method profiler for this branch is not shown but it also reveals several cases ofMDR.

5.4. WindowBuilder ProN branch

WindowBuilder ProN is a GUI builder for SmalltalkN [ObjSha93]. The tool permits the creation

of the user interface including all of the powerful and standard UI elements. In addition to being

entirely visual, the tool generates the necessary Smalltalk code once the design is done. A full

installation of Window Builder ProN includes 144 classes. As the prototype metric collector tool

was built with it, the measures taken for the Object branch included the WindowBuilder ProN

classes as well as the prototype collector classes.

Figure 5.11: PCRM and PEM for the WindowBuilder ProN

- 144-

5. Experiments

GUI builders are now well established with many proprietary products such as The BISS AWT

Framework [Bis97], XForms [ZhaOve97], PowerBuilder@ [Pow98]. All of them are based on

basic interface elements such as windows, scroll bars, text boxes, list boxes, radio buttons. Due to

the advent of graphical development environments, it is generally recognised that GUI builders

cover the essential needs of a large range of information systems. Therefore, the design of the GUI

builder itself ought to be abstracted enough to achieve such requirements, thereby showing a fairly

high redeftnition activity as in Figure 5.11. It is noticeable that the highest measures of redefmition

occur at mid-levels of the hierarchy (DIT=3 and DIT=4) rather than in top levels as previously

seen for the Collection branch (Figure 5.8 (a». Although the PCRM decreases on deeper levels of

the hierarchy (DIT=5 and DIT=6), it remains fairly high with 37.88% and 42.73% respectively.

On the contrary, the PEM ratio is steadily increasing down the hierarchy which suggests that

inheritance is correctly used for specialising the hierarchy by addition of new features. However,

recall that the measures shown on Figure 5.11 are general to the WindowBuilder ProN system.

Complete redefmition or extension may be found only on some branches of the system and not

others. A behavioural inheritance analysis for each isolated path would permit the discovery of

further details of the design.

The next section describes the measures taken for the GraphicObject branch which is part of the

WindowBuilder ProN application.

5.4.1. GraphicObject branch

The GraphicObject branch is , one of the largest branches of the WindowBuilder ProN

application. It includes 40 control interface classes which permit the definition of radio buttons,

check boxes, list boxes, entry fields.

GraphicObject Branch (%)

t-
15

o 20 40 60 80 100

Figure 5.12: PCRM and PEM for GraphicObject branch

Figure 5.12 shows that the first two levels of the branch contains a low amount ofPCRM and

PEM. GraphicObject is the only class situated at DIT=1 , so is the InterfaceObject class at

DIT=2. Such a profile indicates that the two classes provide all the necessary behaviour for future

subclasses, thus the low level of redefinition. The PCRM increases by a factor of21.6 from DIT=

2 to DIT=3. This shows that method redeftnition occurred at the top of the hierarchy, and

questions whether the methods were initially well abstracted. For DIT=3 and DIT=4, the PCRM

- 145 -

5. Experiments

are respectively equal to 74.28% and 71.68%. Considering that this branch provides all the

necessary basic user interfaces elements for windows management, it is expected that most of the

methods in the top classes would be redefined. In addition, each of the interface elements would be

very specialised, therefore including a large amount of methods for reuse by a new application. A

detailed analysis of the classes at DIT=3 is given in section 5.6. A suspect feature is depicted at

DIT=5 in Figure 5.12 with PCRM=1 00 and PEM=O. Considering this level in the hierarchy, it is

surprising that no methods were reused nor extended and that no addition of new methods were

made. The study of the GraphicObject branch method profile (Figure 5.13) reveals that this

phenomenon seems to happen relatively often and concerns a few leaf classes i.e. a single class in

this case. Also, it is possible to detect that many methods present a case of MDR such as the

drawFrameWith:at: method which is defined in the FrameObject26 class

V Class methods prohler - fi!l1l!l1f3

Figure 5.13: GraphicObject method profile

Note that the bottom panels of Figure 5.13 shows the list of methods of the InterfaceObject class

that are being extended in its subclasses producing a PEM=8.96% at DIT=3 and PEM=10.14%

at DIT=4.

5.5. T -gen system

"T-gen is a general-purpose object-oriented tool for the automatic generation of string-to-object

translators. It is written in Smalltalk and lives in the Smalltalk programming environment. T-gen

supports the generation of both top-down (LL) and bottom-up (LR) parsers, which will

26 The FrameObject class is situated at DIT=3.

- 146-

5. Experiments

automatically generate derivation trees, abstract syntax trees, or arbitrary Smalltalk objects. The

simple specification syntax and graphical user interface enhance the learning, comprehension,

and usefulness of T-gen." -- Justin O. Graver [Gra92]. T-gen is made of 116 classes with a

maximum depth of six for the TreNode branch. As the system is a lexical and syntactical parser,

most of the processing does not involve user interaction apart from defining a grammar as input.

As for any other Smalltalk applications, the installation ofT-gen classes, in a general sense,

extends the Smalltalk class hierarchy. Similarly, the redefinition metrics prototype tool (See

chapter 0) application classes are also part of the Smalltalk image. With the Smalltalk

environment, many applications can live in the same image and not interfere with each other.

However, assessing the redefinition mechanism of a system raises some issues concerning the

choice of classes to be included in the derivation of the metrics:

• Isolated classes: the assessment of inheritance is relevant when, by definition, an inheritance

relationship is defined between two targeted classes. If an assessment of application classes that

inherit from the Smalltalk environment is desired, the question is to know whether the latter

classes should be included in the derivation of the metrics. Recall that a branch of a hierarchy

can be identified by locating the top node of the branch, thereby the assessment of such a

branch will examine all possible inheritance paths from the top node class. As the redefinition

metrics assess inheritance level by level, a first approach will only consider the application

classes in the calculation. In such a way, the results obtained from the derivation of the metrics

would only concern the targeted application. A second approach for deriving the metrics is to

consider the whole Smalltalk hierarchy with the application classes installed, so a comparison

would be possible with the original Smalltalk environment.

Isolated classes in an application raise the problem of their inclusion on the calculation of the

redefinition profile for the whole system. For instance, in T-gen, the class Graph inherits from

the OrderedColiection class, the class Stack inherits from the Array class, the class ItemSet

inherits from the class Set, etc. OrderedColiection, Array and Set are part of the Smalltalk

library. In most cases, isolated classes are leaf classes, therefore a measure of redefinition for a

class is one possible solution. In Figure 5.14, the ItemSet class has PCRM=100% and

PEM=O%. Although this result may suggest a design problem at first sight, the detailed study

of its methods reveals that the only three methods in the class: =, hash and isltemSet are

originally defined in the Object class and are not previously redefined in its intermediate parent

classes Collection and Set classes. Thus, the Item Set class should not be considered as

suspect.

- 147-

T-gen: ltemSet class (%)

100

100

50

o
Item
Set

Figure 5.14: T-gen: ItemSet class redefinition profile

5. Experiments

• Foreign classes i.e. classes which belong to the existing library. In general, application classes

extend many existing branches of a hierarchy. Suppose that the application classes derive from

an existing class which has itself many superclasses in the same branch. Many ancestor classes

may act as top node of a branch for hierarchy assessment. For the derivation of the metrics, the

issue is to decide whether to include the parent classes or not. In such cases, there are two

possibilities; including the direct parent only or previous parent classes. In both cases a mixture

of classes from the existing library and the application classes are included in the calculation.

This remains consistent in the sense that an assessment of inheritance is desired, thus the

inclusion of all classes which act as a superclass in a particular branch. Note. that inherited

methods in a class are not necessarily originally defined in the direct parent class but· in

ancestor classes of more abstracted levels as well. The case of the Object class is special as it

represents the root class (see section 2.1.3). Indeed, when the metrics are applied on the whole

Smalltalk class library, the Object class is the top node of the branch. The disadvantage of

including foreign classes in the calculation is that it may affect the values of the results when

the proportion of foreign classes is much higher than the application classes. In a cumulative

approach, this may invalidate the results in making negligible the effect of the application

classes and their properties (see section 5.6) on the metric results.

5.5.1. T-gen system redefinition profile

The classes in the T -gen system are spread over many different branches of the Smalltalk

hierarchy. The T-gen system is made of distinct small size hierarchies with the Object class as a

parent class and isolated classes inheriting from the Smalltalk class library. The derivation of the

redefinition metrics is done in the same way as for the derivation on a single branch of the

hierarchy. In fact, in the calculation of the metrics, classes are processed according to their

superclasses, subclasses and the DIT level they belong to. Isolated classes of a system are included

in the calculation of the metrics as any other classes in the system. In Figure 5.15 a redefinition

profile is represented. In this experiment, the calculation is done on the application classes only i.e.

no inclusion of foreign classes.

- 148-

5. Experiments

Figure 5.15: PCRM and PEM for the T-gen system

Figure 5.15 reveals that, at DIT=6, 33.33% of the methods are extended but none are replaced.

Concerning the PEM curve, the values remain quite low except the presence of the peak at DIT=6.

Contrary to previous experiments, at DIT=2 the PEM reaches 6.87% after being nil at DIT=1. As

many SmaIItalk branches are involved in the T-gen system, no satisfactory conclusions can be

drawn at this point. Again, the measures of the redefinition on a whole system raise the problem of

interpretation. Further investigation for more detailed measures and knowledge about methods

profile are necessary before suggesting any recommendations for improvement. However, it is stilI

possible ~o notice that the level of completely redefined methods is high which suggests possible

presence of the .MDR problem in the system.

As for the SmaIItalk class hierarchy, in the next sections, relevant branches of the T-gen system

have been profiled and presented for further understanding on the use of the redefinition . '

mechanism. Indeed, selected branches ought to have many levels of inheritance in order to be able

to analyse the behavioural aspect of the branches.

5.5.2. T-gen: TreNode branch redefinition profile

The TreNode branch is the deepest branch in the T-gen system with a maximum DIT=6.

Figure 5.16: T-gen: PCRM and PEM for the TreNode branch

In Figure 5.16, no metrics values were found for DIT=1 and DIT=2. Simply, it means that no

redefinition has been found for classes situated at the two first levels. At the first level, an

explanation of such a situation is that the TreNode class is the top node of the branch and has the

Object class as its superclass. Therefore, as the TreNode class itself should provide generic

methods for its subclasses, it acts as a supplier class. In addition, there was no need to redefine

- 149-

5. Experiments

inherited methods from the Object class, thus the nil values. At DIT=2, only a single class exists,

the ParseTreeNode class with four methods defined as non-applicable to instances of the class

i.e. the body of the methods contains:

self shouldNotlmplement

The above body declaration does not impose any conditions on the subclasses of the class but only

on instances of the class. No invocations of the declared methods are allowed by instances of the

class. If such a situation happens, the system redirects a doesNotUnderstand: walkback error to

the sender of the message meaning that an object received a message that it cannot resolve. As no

implementations are provided for the methods, the ParseTreeNode class acts as an abstract class,

however, in such a case, the methods should have been declared abstract as well, with a body

containing:

self subclassResponsibility

or

self implementedBySubclass

As expected, subclasses of the ParseTreeNode class do provide the implementation for the four

methods. Despite the fact that the original author's intention of prohibiting the creation of

instances of an abstract class is correct, abstract methods are seen as a preferred design technique

to ensure the coherence of inheritance.

Although at DIT=3, the peRM is low 11.84% (Figure 5.16), an investigation of the classes

situated at this level reveals that three classes exists: GrammarParseTreeNode,

TokenSpecParseNode and RegularExpressionNode. Looking at the comment for the first two

classes, the author considered them as abstract classes, however, no methods were declared in

those classes. This situation is typically the case where inheritance is used as a mechanism for

separation of concerns more than for the intended mechanism. This does not invalidate the use of

inheritance in this case; on the contrary, its use was probably intended for future development of

the hierarchy. At DIT=4 and DIT=5, the peRM is quite high with 42.47% and 43.14%

respectively. Again, when reaching the bottom classes two phenomena can be expected in a

hierarchy: either the high level of peRM or PEM. Again, the method profile for the TreNode

branch (Figure 5.17) permitted the localisation of suspect classes containing MDR problems e.g.

the ParseTreeNode class at DIT=2.

- 150-

1/" Class methods profller Ii§ll!iil rE3

Profile of the hierarchy: TreNode

i-;;Pa:;-:.r.=.:en"-,,t-7C.:.:la,;,;s=..:s:~ __ -rRc.:.:e:;:;d::=ef::::in:,::;e;=-d .:..:;M,=et;:.:h-70d:..:s:.:...: _4 __ Subclasses: 11
addChlldrenFirst: I . • I .. I I ;g;;

ProductionNode
RegularExpressionNod
RightHandSideNode
TreNode
UnaryRegExprNode

.11

add Children Last:
GrammarNode
ProductionNode
RightHandSideNod
BinaryRegExprNod
CharRangeNode
EnnaryRegExprNDI .
AlternationRange J

UnaryRegExprNodl1$,::
TokenS ecNode ~

Figure 5.17: TreNode method profile

5. Experiments

None of the methods were extended in the first five levels of the branch, then PEM is equal to

66.66% . at DIT=6. As is often the case, only few leaf. classes. exist at deeper levels in the

hierarchy. In turn, this raises the level of peRM or PEM. Here, only a single class realises the

amount of PEM (bottom panels of Figure 5.17). This example illustrates the difficulty of

designing classes that extend the system behavioural capabilities rather than using the redefinition

technique for realising the necessary functionalities. It has been generally recognised that,

designing a well-abstracted hierarchy with use of redefinition for extension requires extra effort

from the designers. Such a task is difficult to realise for the reasons that forward planning of future

enhancement is necessary; however, this is, unfortunately, unknown in most cases. By nature,

requirements are likely to evolve with respect of the business needs. This may be not predictable.

5.5.3. T-gen: AbstractScanner branch redefinition profile

The AbstractScanner branch is another example where no redefinition occurs at DIT=1. This

branch is composed of ten classes on four levels of depth. A peculiarity in Figure 5.18 is that the

redefinition level is constantly decreasing down the hierarchy. In order to better analyse and

interpret such results, a detailed analysis of the behavioural inheritance is required. A high level of

redefinition should always raise suspicions about the design but does not necessarily imply an

incorrect use of the mechanism for all the sub-branches of a branch. Recall that the decision that a

design is bad or good depends on the elements of comparison. For example, consider the three

measures for the branches AbstractScanner (Figure 5.18), TreNode (Figure 5.17) and for the

overall system (Figure 5.15). The AbstractScanner and TreNode branches are the largest

- 151 -

5, Experiments

branches in the system. At DIT=2, as no redefinition activity is taking place in Figure 5.17 and

PCRM=27.3% in Figure 5.15, it seems that the AbstractScanner branch is responsible for

nearly all the redefinition activity with PCRM=27.08%.

Figure 5.18: T-gen: PCRM and PEM for the AbstractScanner branch

Further investigations done with the method profile for the AbstractScanner branch confirms the

presence of the MDR problem (Figure 5.19) e.g. scanToken method in the AbstractScanner

class.

AbstraclScanner 'inil
FSABasedScanner reset
FSABasedScannerWith
HandCodedScanner
OptimizedScanner

FSABase'dScanner
OptimizedScanner
HandCodedScanner

A .. ' character at the end ,of themethod's,name denotes a polymorphic method

Figure 5.19: AbstractScanner method profile

Another reason to carry out such investigations is that attention should be given to the derivation

of the metrics level by level and the leverage effect of classes situated at the same level. For

example, an analysis of the result PCRM=20% at DIT=4 (Figure 5.18) may suggest an acceptable

level of redefinition. However, when examining closely the design at this level, two classes

OptimizedScannerWithOne TokenLookAhead and

OptimizedScannerWithTwoTokenLookAhead exist. In the latter, the class is empty i.e. no

properties are defined, which suggests that the author planned its development for the future. Thus,

- 152-

5. Experiments

it is possible to conclude that the former class has, in fact, a PCRM=40%, which makes the class

more suspect.

In this example of use of metrics, it is shown that the analysis and interpretation of the metrics

results still require the support of additional design or contextual information e.g. source code, to

reach a viable explanation and potential solution to a design problem.

The next experiment investigates the use of the cumulative PRM for three branches of the

Smalltalk hierarchy.

5.S. Cumulative measure for the Collection, Stream, Object and GraphicObject

branches

The second approach for the calculation of the PRMC' metric i.e. cumulative metric (section

3.2.2) relates to the number of potential methods available to a class. If all inherited methods as

well as the new ones defined in a class were to be considered, the ac,cumulation of methods is

likely to increase for classes situated near the bottom of the hierarchy. An experiment done on the

Collection.hierarchy is shown in Figure 5.20 ..

't-
15 3

5

. I lEI PRM 11"'0 ==;0.;=:5:::::;=1 1.5 2 2.5 3 3.5 4

Figure 5.20: Cumulative PRM for the Collection branch

As expected, the values for the PRM metric remain low and even decrease. The Collection class is

situated at DIT=1 and inherits the 155 methods of its parent Object class, giving a PRM=2.64%.

From DIT=3, the PRM decreases. This is due to the fact that most of the classes in the hierarchy

are situated within the first three levels. Figure 5.21 represents the number of classes per DIT

level. Recall that the single root Object class is at DIT=O. The total number of classes in the

hierarchy is 427. Clearly, more than half of the total classes are located nearer the top of the

hierarchy. Therefore, this suggests that, per DIT level, the number of methods may be higher near

the top than the bottom.

Number of classes per DIT level
1

B 4

7

o 20 40 60 80 100 120

Figure 5.21: Number of classes per DIT level

- 153 -

5. Experiments

From DIT=3 to DIT=7, the rate of decrease of number of classes is quite high (nearly or over

50%) from one level to the next. Indeed, the above measures only give an idea of the profile for

the whole hierarchy; however, it shows that the hierarchy tends to have a "shallow shape" rather

than a recommended "deep shape" [Fir95].

Number of methods per DIT level

t-o
1 ~''''''' 956

885
213

4 11::1.

P "51 1
4/U ,

7 -±L

o 500 1000 1500 2000 2500

Figure 5.22: Number of methods per DIT level

Figure 5.22 shows an overview of methods per DIT level. As previously expected, the majority of

methods are situated in classes near the top of the hierarchy. The root Object class (DIT=O)

contains 155 methods. It is noticeable that for DIT=1, the number of methods is 1956 while at

DIT=2, it is only 1885 although the former level contains 67% less classes than the latter level.

This confirms that, in general, top classes usually contain more methods than bottom classes. It

also reflects the fact that more abstracted methods may exist in the first level of the hierarchy.

Thus, for each inheritance path, a portion of this high number of methods in top classes is inherited

in subclasses giving a low level of redefinition when considering the accumulation of potentially

available methods in the calculation (Figure 5.20).

Cumulative PRM for Object branch (%)

B 4 liiiiiiiiif;;P;~;;~·~P~R~M~
o 0.5 1.5 2 2.5

Figure 5.23: Cumulative PRM for the Object branch

Cumulative PRM for the
GraphicObject branch (%)

5 :D:m~1 ~=m8
o 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 5.24:Cumulative PRM for the GraphicObject branch

Figure 5.23 and Figure 5.24 respectively represent the cumulative PRM for the whole Smalltalk

Object hierarchy and the GraphicObject branches. The GraphicObject branch contains classes

- 154-

5. Experiments

related to GUI definition. Similarly, the values of the metric remain low. However, a similarity in

the profiles seems reproduced in the different measures. All the cumulative measures have a

maximum value occurring near the DIT=3 level which suggests that classes located at such level

are critical classes as the redefinition activity increases to its maximum value. For the half bottom

part of the hierarchy, the redefinition activity decreases due to the amount of inherited methods in

bottom classes.

As a general guideline, a high redefinition activity at one level in comparison to other levels

indicates that many leaf classes may exist at the concerned level, requiring the redefinition of

inherited methods. Therefore, there are potential design problems. A refined measure of

redefinition would then indicate the ratio between replaced, cancelled or extended methods.

The cumulative measure of redefinition is useful when considered, at a levell, with:

• The number of methods per classes.

• The number of classes.

If applied on an isolated branch of the hierarchy, a peak in the redefinition profile suggests either:

• A high number of abstract methods in top classes.

• Wrong use of inheritance at the level where the peak occurs.

For instance, in Figure 5.24 for the GraphicObject branch, it is clear that at DIT=3, the high level

of redefinition activity is remarkable and asks for further investigation. As the measure was done

following a cumulative approach, consideration should be given to the number of potentially

available methods per class (Figure 5.22) when interpreting the results.

GraphicObject classes at DIT=3 (%)

a b c d e 9 h

Key
a PButtom
b PComboBox
c PDrawnButton
d PGenericSubPane
e PGraphPane
f PGroupBox
9 PStaticBox
h PStaticGraphic

PStaticText
PToggle

Figure 5.25: Subset of GraphicObject subclasses branch at DIT=3

In order to understand why the redefinition activity rises at DIT=3 for the GraphicObject branch,

an investigation of classes situated at this level is done (Figure 5.25). The redefinition metrics is

then applied on a selected subset of classes (10 out of21) which are relevant to the demonstration.

The list of class names is given in the above legend. All the represented classes contain a level of

PCRM above 73% and a PEM below 12.5%. Four of the classes redefine all their methods giving

a PCRM=100% and PEM=O%. A detailed method life history would then pinpoint problems

such as the MDR. In this particular branch, none of the methods have been initially defined as

- 155 -

5. Experiments

polymorphic. This should raise the suspicion alarm for the designers about the correctness of the

classes and properties.

The following three experiments describe other interesting measures that shed light on the use of

the method redefinition mechanism. In particular, focus is given to the discovery of suspect classes

and the influence of method redefinition in systems that are "embedded" in a class hierarchy.

5.7. Effects ofthe T-gen system on the Smalltalk hierarchy

A Smalltalk application is tightly coupled to the Smalltalk class hierarchy in the sense that the

applications classes derive from the existing class library, thereby becoming part of the hierarchy.

It is then interesting to investigate the effects produced by the presence of a system in the

Smalltalk environment from an inheritance assessment perspective. After installation oftheT-gen

application, the new redefinition profile for the Smalltalk Object hierarchy is as follows (to be

compared with results in Figure 5.7):

ObjecVT-gen hierarchy (%)

3
!::
c 5

20 40 60

Figure 5.26: Smalltalk Object hierarchy with the T-gen system installed

The T-gen system does not seem to have much effect on the Smalltalk redefinition profile. A

slight increase of the values is noticeable for the frrst three levels. Then for the deeper levels, the

values of the peRM decrease due to the leverage effect of less completely redefmed methods in

the T-gen classes for the levels concerned. Similarly, the values of the PEM still increase and are

slightly higher for the frrst six levels and remain at zero at the seventh. Note that, at DIT=6

PEM=17.01 % which represent an increase of 23% compared to its initial value. This seems

directly related to the amount of PEM in Figure 5.16 for the TreNode branch.

Overall, for development environments similar to the Smalltalk environment, knowledge of the

redefinition profile is interesting as it is affected by the following reasons:

• Flexibility for development: direct modification of the code of the native class library is

possible. For instance, extension of existing classes and methods from the Smalltalk hierarchy

is common practice. Indeed, this assumes that the code is available for modification. The

specialisation of code to suit a developed application is a natural and valid process from a

software engineering point of view. The drawback for the Smalltalk hierarchy is that it becomes

more specialised, which may generate problems when more than one independent application

- 156·

5. Experiments

requires to live in the same Smalltalk image. In such cases, careful precautions must be taken in

order to avoid the overriding of methods used by both applications. Usually, the delivery of

Smalltalk applications is done per image, thus avoiding the problem. In languages such as e++,

the native class hierarchies are provided as is. Only extension by new class addition is possible

and only the interface functions are described without code availability.

• A stand alone image: reuse and specialisation. Whether the ratio of newly introduced classes

of an application to the native classes of the library is none, low or high, the effects of the

application classes on the redefinition profile completely depends on the design. Predictions of

the profile depending on the shape of the hierarchy are difficult. However, if the application

class ratio is high e.g. over 50%, the chances of increased dependency level is higher, thus

affecting the overall class hierarchy redefinition profile. In the case of the T -gen system, the

ratio is:

application class ratio = number of classes of the system
number of classes of the native class hierarchy

T - gen class ratio = 116 = 26.85%
432

In comparison, the reuse ratio U [Hen96] and specialisation ratio S (see chapter 2, section

2.4.6.1 for the interpretation of these metric's) are equal to:

u = number of superclasses U for T - gen = 514539 = 27.86%
total number of classes

s = number of subclasses S for T - gen = 5
1
4538 = 3.58

number of superclasses

While 26.85% of the classes are T-gen classes, the reuse ratio is 27.86% which indicates a

shallow depth and a large number of leaf classes. The specialisation ratio is 3.58. According to

Henderson-Sellers [Hen96], ratio values of U and S near 1 suggest a poor design which is not

the case ofthe above values. Although, T-gen has slightly increased the level ofPCRM, it has

also contributed towards a "better" extension profile and a leverage effect on the whole

hierarchy.

5.8. Effects of the T -gen system on the Collection branch redefinition profile

In general, the Collection branch is one of the branches mostly used by applications as it provides

all the facilities for container management. It is then interesting to repeat the previous experiment

on this branch to detect any eventual effects of the T -gen classes on the redefinition profile. The

initial measures of the PCRM and PEM are shown in Figure 5.8.

- 157 -

5. Experiments

Figure 5.27 (a) and (b): PCRM and PEM for the Collection hierarchy with the T-gen system

installed

Figure 5.27 shows the new profile for the Collection hierarchy. Compared to the profile without

the T-gen system installed (Figure 5.8), no remarkable differences can be observed. With the T

gen system installed, the values for the redefinition metrics seem to slightly decrease apart from

DIT=3. Nonetheless, each value of the extension profile decreased as opposed to what had been

previously seen for the whole Smalltalk hierarchy. From the profile, the effects of the T-gen

appear negligible.

Conclusions on the first three stages of the experiments

In any assessment technique, it is important to consider the characteristic's context i.e. any factors

directly or indirectly related to the characteristic, in addition to the characteristic itself and its

eventual influence on other characteristics. Often, to analyse results from a metric, it is necessary

to refer to other metric results to infer any conclusions, design anomalies or directions for solutions

to a problem (see chapter 2, section 2.4.6.1). As mentioned in section 5.5, some design choices

may involve a modification of the class library from which the application derives. Depending on

the modifications, the assessment of the redefinition mechanism and inheritance in general raises

other issues concerning the derivation algorithm. Design modifications concerning the behavioural

aspect of inheritance may be categorised as follows:

• Insertion of a new class as an intermediate parent class. In rare cases, an identification of a new

abstraction may require the addition of a new class in the middle of an already existing branch

rather than adding the new class as a leaf class.

• Modification of code in the existing methods of the class library. This is not generally

recommended unless there is detailed knowledge of the implications of the changes for the

hierarchy.

• Addition or update of new classes or methods to the classes library. This is one of the most

common tasks occurring during design. Depending on how abstract the method is, its addition

may take place at any level of the hierarchy.

• Deletion of classes and methods from the class library is not recommended although possible.

- 158-

5. Experiments

The first two points involve a high level of risk of compromising the conformance of classes to

their ancestor classes. Addition, deletion or update of classes or methods may have consequences

on all subsequent subclasses in the branch. In all cases, the designer must verify that the
,

implications of the modifications do not jeopardise the coherence of the inheritance hierarchy.

The issues concerning the assessment of new classes added to the class hierarchy has already been

discussed in the introduction of section 5.5. In the same manner, changes to the class hierarchy i.e.

existing classes or methods, can be assessed in comparing the redefinition profile for a single class

obtained before and after modifications. Then, to capture an overview of the effects of changes, it

is recommended to generate a redefinition profile for an isolated path or branch of the hierarchy.

In the previous experiments, the metrics results were either displayed in a tabular form or as bar

charts. The graphical representation gave many insights on the redefinition mechanism and

discovery of the MDR problem was possible. The bar chart graphical representation was

expressive enough to suggest potential suspect defects and to reach satisfactory conclusions.

However, in an interpretation process (section 3.4.3), other types of representations may be

suitable depending on the subject assessed, the metrics used and the type of data obtained. The

next section investigates several graphical representations for the metrics results. Then, a novel

type of representation and its benefits .are introduced in section 5.9.5. Then, section 5.10 shows i.

how alarmers can be beneficial for the interpretation of specific phenomena on a metric profile.

5.9. Metric results visualisation and interpretation

Large data sets are generally difficult to interpret. In the previous experiments, the use of the bar

charts has contributed to the interpretation process. It is believed that the use of appropriate

graphical representations facilitates the processing of the metrics results as well as the discovery

of suspect features. Graphical representations permit a rapid depiction of phenomena occurring in

the data set and depending on the data manipulated, a large variety (but not limited to) of standard

graphic types is available and have various benefits. In addition, the combination of pre

processing functions on a data set prior to being visualised enables the detection of specific

occurrences. For example, when only a portion of the data is desired, filtering functions can be

used. In that respect, the purpose of this experiment is to evaluate a range of visualisations for

supporting the interpretation process. In order to experiment with a variety of classical chart types,

Microsoft® Excel97 was chosen as the graphical package application. The same data set i.e. the

redefinition metric results obtained in previous sections, is used in order to keep elements of

comparison consistent. In this experiment, the Smalltalk branches evaluated are the Object and

the GraphicObject branches. These were chosen because they show completely different

redefinition profiles and because potential design problems exist in the latter (see section5.4.1).1t

is hypothesised that graphically displaying a data set using different representations may provide

additional information for supporting the interpretation process. Therefore, the aim of this

- 159-

5. Experiments

experiment was to use different representations for the same data set in order to identify any

interesting characteristics of each.

Note that explanations for the Object and GraphicObject bar charts were presented in section 5.6

and 5.4.1 respectively.

The key contributions of this section are:

• An investigation of various standard chart types in addition to a newly created one for the

visualisation of the redefmition metrics results. The characteristics and benefits of each are

explored.

• The concept of alarmers is presented and illustrates an example of application of pre

processing function on a data set.

• A data interpretation system is proposed for supporting the interpretation process.

5.9.1. Surface bar charts

Figure 5.28 (a) and (b): Surface bar profiles for the Object and GraphicObject branches

Bar charts illustrate comparisons among measures in a data set, while surface bar charts combine

the measures on the same percentage scale in such a way as to find optimum combinations

between two sets of data, thereby highlighting any unbalanced distributions. The detection of such

distributions is interesting for metrics such as the peRM and PEM metrics (both variants of

method redefmition). In Figure 5.28 (b), the general high proportion of peRM compared to the

PEM raises design questions regarding the use of the redefinition mechanism. For the

GraphicObject branch, the extension of methods is poor. This visualisation is convenient for

depicting trade-offs between metrics in a design where the design characteristics are anticipated.

Notice that the join lines at the peRM and the PEM boundary are drawn for ease of reading but

do not define a smooth curve (the metrics results are discrete value sets). Further experiments on

several other branches confirmed that the profiles shown occur on many occasions. An early

analysis suggests two corresponding design problems:

• Methods in top classes are poorly abstracted. A 100% of peRM for the Object branch at

DIT=7 and for the GraphicObject branch at DIT=5 suggests a low level of polymorphic

- 160-

5. Experiments

methods in the top classes. Comparing Figure 5.28 (a) and (b) the visual effect of imbalance is

immediate.

• Leaf classes are wrongly subclassed as they are not reusing inherited properties.

In Figure 5.28 (a), at DIT=6, the apportionment ofPCRM vs. PEM is 73.56 to 26.44% whereas

at DIT=7, the apportion comes to respectively 100 to 0%. This suggests that leaf classes are more

subject to complete redefmition than extension, however to discover the causes of such a situation,

the analysis of the methods appearing at the concerned DIT is necessary. If further analysis of the

measures depicted in the graphical representations is required, the behavioural inheritance analysis

technique described in section 3.3.5 and used in chapter 5 is recommended.

5.9.2. Surface charts

Figure 5.29 (a) and (b): Surface profiles for the Object and GraphicObject branches

The surface charts are used for the same purpose as the surface bar charts, however this

representation is convenient for measures returning non-discrete values. On a scale of 0 to 100%,

the representations of each proportion for each metric illustrate the disparities amongst the result

set. In particular, it is possible to assess the magnitude of change of the measures over the DIT.

This is intended only as an example27 as the redefmition metrics return discrete values and is

therefore unsuitable. Similarly to the surface bar charts, the surface charts quickly outline the

balance between two or more correlated metrics.

27 Notice that the x and y-axis have been interchanged for ease of reading.

- 161 -

5. Experiments

5.9.3. Addition bar charts

Figure 5.30 (a) and (b): Addition bar charts profiles for the Object and GraphicObject branches

The addition bar charts are a variant of the standard bar chart however, many measures can be

"stacked" together on the same bar, thereby showing the relationship of individual measures to the

whole. The contribution of each measure to the total is depicted. The addition bar charts are also

suitable for complementary or related metrics. As completely redefmed and extended methods are

both considered as redefmed methods, the sum of peRM and PEM gives the PRM (Figure 5.30

(a) and (b)). In Figure 5.30 (a) and (b), PRM is shown by the total extent of the bar. The addition

bar chart is considered an enhanced version of the simple bar chart as it makes clear the values for

each of the shown metrics.

5.9.4. Radar charts

Figure 5.31 (a) and (b): Radar charts profiles for Object and GraphicObject branches

The radar charts allow the display of results across many dimensions. Each dimension has its own

value axis radiating from the center point. The lines connect all measures in a particular data set.

The radar charts permit rapid pinpointing of differences in the shape of the profile. In particular, it

is convenient to use this representation when previous experiments have defined, for example,

averages or thresholds for what is considered good or bad. Any disparity can then be depicted

quickly. Again, the join lines are shown for ease of reading but it is possible to take them into

consideration for identification of pattern profiles. When a smooth increasing curve is expected,

the shape of the profile is a spiral. Attention should be taken when interpreting this type of chart as

it can hold large amounts of data of different types e.g. different metrics across different DIT

levels, that can clutter the graphic, and therefore the interpretation. For theGraphicObject branch,

both curves obtained are rather intriguing as the redefinition activity seems to take place only in

- 162-

5. ~rnents

deeper levels of the hierarchy. Intuitively, this is confirmed by the assumption that a class situated

deeper in a hierarchy inherits all methods from its ancestor classes. It is therefore potentially able

to call a high number of possibly unrelated methods, thus explaining the high level of redefinition.

In Figure 5.31 (b), it is clearly seen that dimensions one and two are negligible compared to those

remaining. Given that those dimensions represent the DIT level, it seems fair to conclude that a

redefinition activity is more likely to happen in the bottom of the hierarchy and is due to the

abstraction property of classes at the top. However, the rate of increase of the metrics cannot be

easily pictured in those charts.

5 .9.5. A colour coded range bar charts

Hierarchy Branch : Object

DIT PRII peRil PEII
('!Co) ('!Co) ('!Co)

6.46 6.34 0 .14
1 -==::J m:::::::::J ~

19 .39 18 .16 1.23
2 ac:::::J oc::::::J m:::::::::J

42.16 38 .03 4 .12
3 -=::J -=:::J m::::::::::J

4 iWk::J iIiiIc:::J ~
6 iWk:::::J tiII:::::J ~

52 38 .25 13 .76
6 -=:J -==:J m::::::::::J

60 60 0 .0
7 ~ -=:J c:::::::::::J

HI.rarchy Branch : GraDhh:Ob act
DIT Pltlll PCRM PEII

('!Co) ('!Co) ('!Co)
7 .69 7 .69 0 .0

1 m::::::::::J m::::::::::J c::::::::=:J
4 .3 3 .44 0.88

2 m:::::::J m::::::::::J IIC==:J
83 . 24 74 .28 8 .96

3 ~~m::=:I
81.82 71.68 10.14

4 ~ ~ m:::::::::J
100.0 100 .0 0 .0 6 __ c::::::J

Figure 5.32 (a) and (b): Colour coded bar for the Object and GraphicObject branches

Ranae ADDortion (%) Colour coded bar

0 0 I
1 0.01 - 14 II
2 14.01 - 28 .M
3 28.01 - 42 1M
4 42.01 - 56

i_
S 56.01 -70 i_
6 70.01 - 84 i_
7 84.01 -100

Table 5.2: Example of equally distributed ranges

In this thesis, the colour coded range bar charts have been created to address the issue of rapid

threshold detection for metrics. These are adapted representations of the simple bar charts. In some

cases, the display of ranges of values may be more relevant than the exact values for a particular

data set. For example, metrics results can be compared to a range of thresholds rather than a single

threshold value e.g. the 20% to 25% range. Instead of displaying the exact measures, the aim is to

represent the ranges in which measures occur. To do so, the measures are pre-processed by a filter

function. In addtion, the use of colour for the different ranges gives extra information at first

glance. The coloured bars shown in Figure 5.32 (a) and (b) have been obtained by checking the

pre-defined ranges in which each metric value is situated. The coloured range bars are defined in

Table 5.2. The apportionment has been arbitrarily chosen to be equal but this is not necessary. It is

the responsibility of the designer to define the ranges and thereby the filter function, relative to

- 163-

5. Experiments

predefined threshold values. It is important to underline that this filtering method is not meant to

be compared to a subjective assessment metric although it is based on the same principle as

scaling. Table 5.2 shows an apportionment of a percentage scale into seven ranges, roughly equal

to 100/7. When the proportions are equal, the smaller the proportion is, the closer this

visualisation will be to the equivalent in a bar chart representation. In the example, colour shaded

rectangles have been used to give a gradual effect. It might also be interesting to consider non

equal apportionment of the ranges. In such cases, attention should be given to the grounds on

which the proportions are attributed to prevent subjective interpretation [Hen96]. For example,

adopting a non-equal range strategy for a metric m and, providing that previous statistical

experiments deducted a threshold of60%, only three ranges are necessary. The first range is for 0,

the second from 0 to 0.6 and the third 0.61 to 1. The same principle of colour coded rectangles

can be used to quickly locate defects, thus only three colours would be used in this example.

In the GraphicObject branch, from DIT=2 to DIT=3, the peak (already pinpointed with the bar

chart) appears even more suspect as the PRM increases by a factor of 21.6 suggesting potential

design flaws at DIT=2. Although this visualisation seems similar to the bar charts, but less

accurate, the main idea for such a visualisation is to use it in conjunction with a triggering function

or alarmer.

5.9.6. Visualisation uses

The different types of visualisation described in the prevIOus sections support the metrics

interpretation activity. It is believed that there is a need for integrating those visualisation

techniques in a measurement programme. Further work is needed for identifying and extending the

current recognised representations.

From the observations made on the experiments with the different visualisations, a summary table

is given below in order to categorise and facilitate the choice of one or another. Each of the

graphical representations is usually suited for a particular task i.e. pinpointing a particular

characteristic of the data; therefore it is possible to categorise them depending on the purpose of the

measurement and the task to be achieved. In the following table, for a particular task, the list of

suitable visualisations and associated explanations is given.

- 164-

Task

Data

evolution

Visualisation

• Bar chart

• Surface bar chart

• Surface chart

5. Experiments

Explanation

For the detection of peaks and general evolution of the data

set. Also, identification of the localisation of the problems

has been possible in the case study.

Correlation • Surface bar chart For the detection of disparate uses of an 00 mechanism

Pattern

profiles

Alarmer

• Radar chart
and trade off. It also permits the localisation of design

problems with respect to related metrics. Often, the

emphasis on the realisation of one of the criteria disfavours

other criteria. This phenomenon is measurable and can be

localised by defining the adequate metrics set.

Any charts with For the detection of possible repetitive pattern profiles

restrictions in the corresponding to particular design problems in an 00

case of the alarmer system, the classification of typical profiles for later

reference can be envisaged. This IS currently being

investigated in further work. A catalogue of typical good

and bad profiles for a metric will be considered. Profiles

from different branches are more likely to converge

towards the same pattern as they employ the same object

concept. Chidamber and Kemerer, in their empirical data

collection, showed that the distribution of the results of

their metrics converges even when the sites were different

in terms of domain and 00 programming language used

[ChiKem94].

Colour coded range For finding subset of data or single value within a given

bar chart data set. The triggering mechanism of the alarm is defined

by exact conditions.

Table 5.3: Summary of visualisation types

5.10. The concept of "alarmers"

The concept of an alarmer is simple. Suppose we want to detect any factor increase > 2 between

two consecutive levels in the hierarchy. Any values satisfying the condition is expected to be

pinpointed automatically. This is exactly what the alarmer technique is intended for. If an alarmer

is set on for the GraphicObject branch in Figure 5 .32 (b), only the values of PRM and PCRM at

01T=3 would be found. If it was decided to use the colour coded bar charts for visualisation, only

the two bars at 01T=3 for PRM and PCRM are shown. Indeed, the visual effect of the colour

- 165 -

5. Experiments

coded bar representation is immediate and asks for further analysis. The alarmer has accomplished

its task in pinpointing the disparate results.

The alarmer mechanism

The first desired functionality of an alarmer is that it should provide a means for defining the

behaviour to be detected. A simple form of an alarmer would be to detect a particular expected

value within a set. In such a case, a simple condition function would be sufficient to filter the

initial results set. For instance, this would be useful for comparing metrics results to the traditional

averages or threshold numbers. Suppose that after some statistical analysis of the redefinition

metrics results for a project, a threshold of 40% of redefinition is arbitrarily defined above which

the design is to be re-considered. Therefore the triggering condition is simply:

metricValue >= AVERAGE _THRESHOLD

The algorithm of such behaviour can be specified (example 1).

Example 1:

AVERAGE_ THRESHOLD:= 0.4.

SuspectedValues := Collection new.

(redefinitionAlarmer isOn)

]

ifTrue: [

metricResults do: [:metricValue I
(metricValue >= AVERAGE _THRESHOLD)

ifTrue: [

]

suspectedValues add: metricValue.

RaiseAlarm(metricValue).

In the algorithm of example 1, the AVERAGE _THRESHOLD constant can easily be defined at

run-time in an application. The suspectedValues collection contains the set of defect values. For

this type of alarmer, a simple condition is sufficient to detect the desired characteristic i.e.

(metricValue >= AVERAGE_THRESHOLD). The metricResults is a collection of results

values obtained from the derivation of a metric on a system. metricValue is a local instance

variable equal to an item of the metricResults collection. The raiseAlarmO function can be a

function which manages the presentation process of the alarm under a chosen form e.g. visual

aspect or sound.

However, in the case of an alarmer triggered when the "weighted methods per class (WMC)"

metric [Chidamber94] is greater or equal to 5, the triggering condition becomes a function:

wmc(class) >= AVERAGE _THRESHOLD

- 166-

Then, the algorithm of such behaviour can be specified (example 2).

Example 2:

AVERAGE_THRESHOLD := 5.

SuspectedValues := Collection new.

(redefinitionAlarmer isOn)

ifTrue: [

]

systemToCheck do: [:class I

]

(wmc(class) >= AVERAGE _THRESHOLD)

ifTrue: [

]

suspectedValues add: class.

RaiseAlarm(class).

5. Experiments

The difference in this example is that the triggering condition is now a function and not a single

value. This condition is also tested for each of the classes contained in the systemToCheck

collection of classes.

From the two examples cited, we can ,see that the core element of an alarmer resides in its

triggering condition. In the case of large data sets, complex conditions can be applied. In a general

case, an alarmer makes use of the following main components (Figure 5.33):

• A filter function: when not all metric values are of interest in the whole metric result set, a

filter function can be used to reduce the amount of data processed.

• A transformer function: if the data has to be transformed before application of the triggering

condition, a transformer function e.g. statistical functions can pre-process the metric results set.

• A triggering condition: defines the condition under which the set of values to check are

satisfied.

- 167-

5. ~rnents

5.11. Data interpretation system

Figure 5.33: Data interpretation system

A data interpretation system has been built based on the components shown in Figure 5.33. The

raw data in the model can be directly displayed or pre-processed before being displayed. The

visualiser permits the display of the possible representations. A data transfonner contains a list of

functions pennitting pre-processing of the data set. Typical transfonner functions are filtering and

statistical functions. When the designer has recognised some design problems in the hierarchy, the

alanner engine allows one to define and set up the alann. In some cases, it is necessary to pre

process the data set before setting up an alann for the new metrics set. Thus, the alanner engine

can co-operate with the data transfonner.

The next section concludes the chapter on the experiments.

5.12. Conclusion of the experiments

Currently, one of the main problems that inhibits the development and adoption of 00 metrics is a

lack of tools for supporting their development and use in a general sense. Using the prototype

developed, the experiments demonstrated that the redefinition metrics set is applicable to an

object-oriented design, including designs not necessarily organised as a hierarchy. The metrics

proved successful in the detection of suspect classes and thereby enabling the discovery of design

problems such as the MDR problem. In addition, the graphical representations of the metrics

results for various branches of the Smallta1k class hierarchy gave us insights into the behavioural

aspect i.e. the method redefinition mechanism. The separation of the measures for the peRM and

PEM gave finer-grained indications on the ratios of redefinition at each level of the hierarchy.

In the context where the metrics generate large data sets, it is necessary to have some mechanisms

to quickly filter or re-process the data set in order to facilitate their interpretation. The alanner

technique provides an easy way to detect problems that appears under certain conditions. If the

triggering conditions are satisfied, the suspect values can be automatically pinpointed. The two

. 168-

5. Experiments

aspects of filtering and alarmer functions have been successfully demonstrated and the data

interpretation system integrated within the prototype tool permitted the investigation of the colour

coded range bar chart representation.

Due to the high-level of redefinition activity in some parts of the Smalltalk class hierarchy, it is

possible to conclude that the inheritance mechanism is violated in many respects. To a major

extent, the possible reasons behind such situations can be attributed to the weak type characteristic

of the language. Also, in some cases, the lack of multiple inheritance clearly produces suspect

design situations. Inheritance in current 00 systems is still hazardous. A conceptual gap exists

between 00 modelling constructs and their mapping onto a language. The implementation of an

inheritance relationship between classes using any 00 programming language is actually a real

source of design problems.

Chidamber and Kemerer's [ChiKem91, ChiKem94] early work on 00 metrics proposed a suite of

six metrics for assessing the complexity of an 00 model. Their metrics were applied on C++ and

Smalltalk. For each of their metrics, only simple histograms and summary statistics in a table form

were produced. The interpretation of data relied on comparisons made between the histograms

obtained for both sites. All charts represented the range of metric values (x-axis) obtained against

the number of classes involved (y-axis) for each of the values. No dependency relationships

between the metrics were presented. The authors only suggest that a class hierarchy can be "top"

or "bottom-heavy" i.e. the DIT and the "number of children (NOG)" metrics are correlated. A high

peak in the NOe histogram showed that most of the classes have no child classes. It was suggested

that design practices dictated the use of shallow inheritance hierarchies, and that performance was

the reason given in some cases. A use of surface bar charts might be a good candidate to exhibit

previous observations. In such cases, it would be interesting to measure the number of classes per

DIT level against their average number of children. Conceptually, it is expected the results would

lead to the same conclusions.

In Lorenz and Kidd's [LorKid94] project experience database, only histogram charts were used. In

some cases, this type does not seem appropriate due to the existence of large numbers in the results

set. For instance, they considered the number of message sends metric and represented the

values obtained against the number of methods. They correctly suggested that a rapid drop in

numbers is the typical pattern found. This confirms the assumption that coupling between objects

should be low in order to avoid inter-class dependencies. However, from a bad practice detection

viewpoint, it would be more interesting to find out the methods which are strongly coupled. This

could not be easily shown on the histogram provided as only a few methods are expected to send a

large number of messages. Considering the colour coded range bar chart, an appropriate definition

of ranges would immediately locate such peculiar results for further analysis.

An important area of measurement theory is the interpretation and analysis of metrics results. In

our experiments, the analysis and interpretation process has been strongly supported by the method

profiler feature of the prototype metric tool. In many cases, the precise location of suspect classes

- 169-

5. Experiments

containing methods with the MDR problem has been possible. At this point, it is possible to

suggest that the MDR problem happens for at least three reasons:

» A class is wrongly subclassing its parent class i.e. the class does not satisfy the is a

relationship.

» An incorrect design of interfaces of parent classes.

» A lack of abstraction of the top classes in the class hierarchy.

A possible solution for the first reason is to move the suspected class higher in the hierarchy so the

class would inherit from the early implementation of the method, thereby minimising the chance

for the MDR problem. In return, the class concerned will have to resolve all super calls to the

original parent. This can be handled by the introduction of the original parent class as an aggregate

which is instantiated in a constructor method. The great benefit of this solution is that it can be

executed automatically. Otherwise, a manual intervention of the designer is probably required.

Characteristics of the redefinition metrics

The experimental validation of the metrics confirmed that the metrics measured the desired

characteristics. However; concerning some abstract ,Properties of good metrics mentioned by

Kolewe [Kow93], alternative approache,s are coris.idered for the development of the necessary

validation of the metrics. We shall briefly comment on these characteristics for the redefinition

metric set:

./ noncoarseness: we considered many different programs and were able to find different metrics

results .

./ nonuniqueness: if we consider two classes A and B derived from the same parent class where

the same modifications on inherited methods are done and no added operations are made, we

could find the PRMC is the same for both classes .

./ importance of implementation: we assess a class's internal complexity by looking at its

methods' redefinition. The metric depends on the implementation.

x monotonicity: not applicable for the redefinition metrics as their purpose is not to have a

general value for the whole system. However, we could compute for two classes A and B their

respective PRMC. Assuming that a class C contains all the methods from A and B with no

name space conflicts, PRMHc = PRMHA + PRMHB. For this characteristic, the redefinition

metrics can be extended in order to calculate a mean value of redefined methods for a whole

system.

x nonequivalence of interaction: same comment as previous characteristic.

- 170-

5. Experiments

../ interaction increases complexity: as inheritance is a strong form of coupling and interaction is

implemented via methods in a class, inheriting or adding new methods to a class increases its

complexity, therefore the PRMH vary accordingly. Further verification requires to be done.

x nonequivalence of permutation: not applicable.

As the redefinition metrics are ratios that do not introduce arbitrary weightings or subjective

values, the risk for wrong metrics' definitions is reduced. More importantly, the measures taken at

each level of the hierarchy with the possibility of deriving the metrics on isolated branches

permitted us to assess cross sections of an entire class hierarchy. This enabled a better

understanding of the relevant abstractions in the hierarchy.

The next chapter concludes the research work and proposes a framework in which measurement

techniques are "smoothly" integrated within an 00 design process.

- 171 -

6. Discussion and conclusion

6. Discussion and conclusion

"Things should be made as simple as possible, but not any simpler." - Albert Einstein

"In general, no programming language or language mechanism should be used as a

substitute for creative thinking, or as an excuse for avoiding software design and

architecture. " - Antero Taivalsaari

The work presented in this thesis is concerned with the modelling issues of inheritance. It

investigates the use of measurement techniques for the evaluation of goodness in an 00 model.

Ideally, the integration of metrics within the design activity is sought. Various aspects of

inheritance in class hierarchies have been presented with a particular emphasis on the effects of the

method redefinition mechanism. Based on the GQM process model, a measurement plan which

lead to the creation of a novel redefinition metrics set (section 3.2) permitted the assessment of

inheritance hierarchies. Analysis of the metrics results illustrated that the MDR problem (section

3.1.2) exists in class hierarchies. During the course of the measurement process, it was felt that the

input of design considerations (section 3.2) was essentiaJ to ,the completion of the process.

Experiments with the redefinition metrics were possible .with the creation of a prototype metric

collection tool for the Smalltalk class hierarchy. While the collection of the metric results have

been possible, an appropriate analysis and interpretation ofthem proved difficult.

The main contributions of the work can be summarised as follows:

• In section, 3.1.2, the description of the multiple descendant redefinition problem in inheritance

hierarchies. Different uses of the method redefinition mechanism showed that a model might

violate the definition of inheritance although it may also satisfy the requirements. This re

iterates the debate concerning the fundamental semantics given to the inheritance concept.

• In section 3.3, a description of design methodology considerations and techniques necessary

for the assessment of inheritance, in particular the method redefinition mechanism. The design

considerations describe an approach for identifying and gathering the information that is later

utilised within the measurement process.

• In section 3.2, the definition of a set of candidate redefinition metrics for the assessment of use

of method redefinition in class hierarchies.

• In section 3.4, a proposed metrics interpretation framework based on design methodology

considerations and the method's life history analysis.

- 172-

6. Discussion and conclusion

From a software engineering perspective, the designers benefit from the above contributions in

many ways:

• Understanding of the causes and effects due to the presence of the MDR problem in class

hierarchies. The use of the redefinition principle is still unclear. Papurt and LeJack [PapLeJ97]

described the conditions under which method overriding should be used for three aspects:

final, abstract and polymorphic. However, no consideration was given to the different types of

redefinition. They consider method overriding as a replaced method, according to the

classification given in section 2.2.4. Also, the authors mainly focused on the inheritance

relationship between a parent and a child class but did not consider the life history of a

particular method down a class hierarchy. The detection of MDR anomalies strongly suggests

potential design problems that may compromise the future evolution of the design.

• The use of metrics gives insights into the improvement of the software architecture which is

generally recognised as one of the key points of the design. Therefore, it also contributes

towards the realisation of the requirements. In theory, an object model ought to be free from

programming language considerations. In reality, as ()bject-oriented languages offer a rich set

of features, it would be unrealistic to comple~ely ignore the implementation issues (see

description of experiments in chapter 5). In consequence, these issues· may directly affect the

final design solution. As metrics are generally applied to the source code, all design issues can

therefore be assessed. With the advent of modelling techniques using the concepts of

components [Eng97], improvement of software architecture is made possible.

• One of the interesting aspects of measurement techniques (see section 2.4) is that they can be

used as an instrument for problem discovery. The awareness and understanding of design

problems enlightens the designers on the use of the fundamental object concepts.

Recommended guidelines may be used during the whole design and assessment process.

• The use of measurement techniques not only improves the design solution but also contributes

to the development of the design and measurement process. Further experiments are needed in

this area in order to refine the technique and procedures involved in a measurement plan.

It is believed that the redefinition metrics and its variants are strong and simple candidates for

detecting complex design problems occurring within a class hierarchy.

Metrics, method redefinition and implications

Technically, the implementation of the redefinition mechanism is simple. Based on polymorphic

selection or method body selection [PapLeJ97], different behaviour can be attached to the same

method name and dynamic selection takes place at run-time depending on the object receiving the

message, namely the execution of a method call. This mechanism gives code flexibility to the

programmers. However, rather than a simple implementation exercise, the work presented in

- 173 -

6. Discussion and conclusion

chapter 2.4.6.1 emphasised the fact that the redefinition principle should also be regarded as a

conceptual design tool. In our experience, most of the problems discovered concerning the use of

method redefinition were design issues. To some extent, incremental design development and the

mechanism of encapsulation are the two main reasons which increase the risk of incorrect

redefinition use. For instance, if a designer is not the original author of an existing class hierarchy,

careful attention should be given to the type of inheritance relationships used and the type of

property modifiers for methods in classes. The behavioural inheritance scheme is not

straightforward to understand especially if the hierarchy includes deep levels.

Only recently, CASE tools such as the RationalRose98® design tool support an automated

visualisation of the inherited methods in class hierarchies. In addition to the methods defined by a

class, it is also possible to visualise the list of methods inherited from the ancestor classes.

Although this list does not include detailed information such as the origin of the method and the

state of the method i.e. overridden or not, it is a valuable feature for the designers. Alternatively, in

the recent Java documentation28 format, a detailed textual description of the above is given. This

partly fulfils the need for search mechanisms in class library documentation. It is clear that further

modelling tools are needed to sUPI?0rt the design tasks, in particular for class libraries. In the case

of the method redefinition technique, a possible approach to verify the semantics of the inheritance

relatic)llships is to break down the tasks in two levels of abstraction. For each class, a systematic

check is required for:

• Immediate parent classes and subclasses: in general, class hierarchies tend to be shallow

rather than deep as recommended. Various types of inheritance contradict the conformance of

classes in hierarchies. By consequence, classes tend to reuse behaviour from its closest parent

classes rather than further classes. Thus, verifying that a class conforms to its nearest parent

classes and repeating the process at all levels of the hierarchy guarantees that the inheritance

relationship remains consistent.

• Further parent classes and subclasses: the previous level of abstraction permits a "localised"

verification of the semantics of an inheritance relationship. In addition to this, an overview of

the class hierarchy is also necessary because classes do not necessarily inherit their properties

from their immediate superclasses. In the case of well abstracted hierarchies, it is common to

encounter abstract methods in the root classes which are reused further down the hierarchy.

Therefore, an overview of the resulting effect of encapsulation for a considered class is crucial.

The use of measurement techniques allows the detection of suspected design problems. When a

problem has been identified, there are chances that an appropriate detection method can be found.

In most cases, it is possible to find a pattern of code that corresponds to the design problem.

Therefore, the identification of such patterns permits the discovery of the respective design

28 Java development kit v1.2, Sun Microsystems, Inc. Copyright 1993-1999.

- 174-

6. Discussion and conclusion

problems. For instance, "abnormal" super calls (section 3.3.4.1) may be detected with an

appropriate lexical parser tool. Another example of inconsistencies is the MDR problem. Indeed,

the method profiles obtained from the derivation of the redefinition metrics guided the search for

the MDR anomaly. Also, the analysis of the method's life history for multiple redefinition permits

a localisation of potential suspect classes and methods. In many respects, measurement techniques

represent an additional and valuable asset in the range of available design tools.

Taivalsaari [Tai98] stated that languages should not be a substitute for creative thinking. Therefore

it is legitimate to consider their fundamental concepts and principles in the perspective of design

assessment. Unfortunately, this situation does not encourage the important issue of separation of

concerns between the design and the implementation phases. Similarly, it becomes tempting to tie

design architecture issues to the supporting environment. This is not generally considered

satisfactory.

Chidamber and Kemerer [ChiKem91, ChiKem94] proposed a suite of six metrics for assessing the

complexity of an 00 model. The DIT29 metric is based on the following assumptions:

• A class situated deep in a hierarchy is more likely to inherit a great number of methods, hence .. " .'

increasing its complexity.

• A deep tree involves greater overall design complexity SInce the number of classes and

methods are important.

• A class which is located deep in a hierarchy benefits from the potential reuse of inherited

methods.

The redefinition metrics set adopts these assumptions; however, rather than using the DIT metric

as a stand alone metric, it was incorporated it into the PRMH metric to give a more meaningful

metric. The WMC metric is the weighted method per class which takes into account the static

complexity of methods in a class. If the complexity is equal to one, WMC becomes simply the

number of methods metric. Churcher and Shepperd [ChuShe95] showed that the metric was open

to many interpretations when considering its use with constructors and destructors in C++. In

addition, unlike the PRMH metric it makes no observations as to which methods are inherited and

of those inherited, which are redefined and which are not.

Lorenz and Kidd [LorKid94] included in their metrics set the number of methods overridden by a

subclass and produced an average extracted from tests on project results. However, unlike the

redefinition metrics, it was done at class level only, no metrics were proposed at hierarchy level

and system level. In addition, their metrics are not represented as percentages which clouds

interpretation. For example, ifnumber of overridden methods = 5, the class complexity is not

29 The theoretical basis for the DIT metric came from Bunge's [Wan88] notion of the scope of properties.

- 175 -

6. Discussion and conclusion

the same if the class contains a total of 1 0 methods (50%) or if the class contains a total of 1 00

(5%).

The MOOD (Metrics for Object-Oriented Design) set [Bri&aI95] addresses the evaluation of the

main keypoints of mechanisms of the 00 paradigm. The six metrics are: the method hiding factor

(MHF), the attribute hiding factor (AHF), the method inheritance factor (MIF), the attribute

inheritance factor (AIF), the polymorphism factor (PF) and the coupling factor (CF). MHF and

AHF refer to encapsulation as they detect the amount of hidden attributes and methods. Again, no

differentiation is made in the nature of the methods when deriving their metrics for inheritance.

Thus, because of the possible existence of completely redefined methods within a class hierarchy,

their measure ofMIF and PF are affected and do not assess inheritance in such cases.

Lewis [Lew95a] proposed a set of fine-grained metrics for assessing overloading, overriding and

polymorphism issues. Related metrics are the overridden method references (ORMR), the degree

of method overriding (OMOR), the degree of polymorphism (OP) and the degree of obscured

polymorphism (OOP). ORMR is applied at method or class level and is taken in the general sense

of overriding. ORMR is aimed to be used with OMOR which counts the number of existing forms

of a method in the whole application. OP relates to the justified use of m~thod overriding but OOP

seems to be language-dependent as it is directed at measuring unspecified polymorphic methods.

None of their proposed metrics are considered a~ ratios and no case studies were presented.

Current research on 00 metrics has I,lot yet addressed the multiple descendant redefinition

problem. The proposed metrics set was aimed at the assessment of a class hierarchy from a

behavioural viewpoint and the detection of abuses of the method redefinition mechanism. The

results shown in the experiments revealed that such abuses exist in the current Smalltalk Express

hierarchy, but they are theoretically possible in any language. As suggested earlier this may be

simply due to the inherent incremental development of a class hierarchy, especially when different

people are involved in the development. It should be emphasised that a system can be in a perfect

working state even when containing MDR anomalies. The MDR problem increases the code re

engineering difficulty and affects the natural extension of the inheritance tree which degenerates in

the presence ofMDR (see section 3.1.3).

To support the interpretation of results obtained from the redefinition metrics, additional tools

were required to precisely pinpoint defects in methods. The method profiler realised that task by

providing a life history for each redefined method of each class along a particular branch of the

hierarchy. The analysis of suspect classes was facilitated. A possible approach to further refine the

redefinition metric set is to detect complex redefinition cases described in section 3.3 .4.1.

Although this would provide detailed information about the behavioural aspect, it pre-supposes

that the metric would become language dependent. Again, it can be argued that such complex

redefinition cases can be considered as design or implementation issues. Further work is needed in

this area.

- 176-

6. Discussion and conclusion

Metrics collector tools

Despite the fact that the simple functionalities of the metric tool were enough to demonstrate the

applicability of the redefinition metrics, it is possible to identify a number of future development

areas as follows:

• The tool requires an appropriate versioning system for storing measures on the same subject at

different points in time. This would be particularly beneficial for enabling comparisons on

designs that continuously evolve with time. The current solution adopted is to save the method

profiles as textual files, delete the profile from the persistent repository and finally to re

calculate the metrics when necessary. Indeed, the textual files contain the metric results and

therefore are available for further processing tasks.

• In its current state, the metric collector tool lacks automatic transfer of metric results to a

graphical tool such as Microsoft Excel®. In the experiments, manual copies of the result

values were necessary in order to be processed. A possible solution is to use the Object

Linking and Embedding mechanism provided by the Microsoft Windows ™ environment.

. However, as a possible future development, it is desirable to extend the current functionalities

for the management .and analysis of the m~trics results. For instance, the graphical,.

representations could be done within the same package and further re-processing algorithms of

the metrics results can be developed.

• The development of a metrics' definitions repository is crucial for the extension of the

prototype tool. As proposed in [SimLew98], the work constitutes an entire topic of research on

itself. Similarly, further investigations for a common architecture towards a flexible structure

for metrics repositories are desired.

In conclusion, the metric prototype tool successfully demonstrated that the redefinition metrics is

applicable and that automatic collection of measures is possible. A simple tabular display of the

metric results gave insights on the method redefinition profile of the Smalltalk class hierarchy.

Given the simplicity of the architecture, it was shown that the development of such a tool is

facilitated by the presence of functionalities to extract meta-information. The last of the points

mentioned above showed the need for an improved version of the architecture of the persistent

repository. This confirms the fact that the use of a metric tool collector alone is not enough and

requires support from other tools. It should be emphasised that the discovery of unexpected use of

inheritance was possible when collecting the measures on branches of the Smalltalk hierarchies.

Further investigations and development were needed for the interpretation of the metric results. In

its current state, the metric tool satisfied the original requirements but could be extended for

further functionalities.

- 177-

6. Discussion and conclusion

GQM lacks the pre-assessment and the interpretation phases

Although it seems natural to know what to measure before measuring, the identification of the

appropriate attributes in relation to the purpose of measurement is difficult to establish. Similarly,

past experiments with metrics [Fen90, Fug&aI98, HarNit96, Hen96] clearly illustrate the

problematic issues in interpreting metric results. There is always the risk that correct metric results

may suggest incorrect conclusions or unwanted actions. The problem of interpretation concerns the

techniques or approaches taken for deducing conclusions. For example, the use of arbitrary

thresholds essentially infers three categories of conclusion: the results may be greater, lower or

equal to the threshold. This technique assumes that the comparison with such a value is possible.

However, the interpretation task requires the knowledge of the context of measurement. Values

under a threshold on a curve may not necessarily indicate normality. In the experiments with the

hierarchy redefinition metrics, for a particular level in the hierarchy, an "abnormal" PCRM value

for a class may be leveraged, therefore hidden, by the low PCRM values in other classes. Thus, a

thorough analysis of metrics results obtained together with input from the design task enable the

designers to confirm or refute their initial hypothesises, and thereby take appropriate action.

In [Fug&aI98], the authors describe their experiences in applying the GQM approach in industry.

In addition to the identification of drawbacks in the use of GQM, interesting recommendations and

suggestions ~ere given co~cerning the ~pecialisation of the' approach within a large software

house. It is particularly striking how the authors emphasised the needs to understand the company

business rules before establishing the list of goals for the assessment plan. This was necessary in

order to effectively customise the GQM plan to the company and to avoid unrealistic goals. In the

following example, the basic format of the goal definition is shown:

Analyse the introduction of GQM measurement technology

for the purpose of better understanding

with respect to cosUbenefit ratio

from the viewpoint(s) of the quality organisation and project team

in the following context: experimental sites of the CEMP project

Although their measurement plan mainly concerned the process level, analogies can be drawn with

the work in this thesis where a pre-assessment phase was required prior to the use of product

metrics. In order to define the correct goals and metrics, it is essential to have concise ideas about

the application requirements and the attributes assessed. From the experiments, it is clear that the

assessment of object-oriented models would not be as beneficial without a good understanding of

the design process and the experience gained from previous design exercises. The assessment of

inheritance hierarchies was driven by the aim of discovering unexpected inconsistencies in the

presence of method redefinition. Given the knowledge of possible interpretations of the inheritance

model, it was possible to focus on the method redefinition technique for a behavioural inheritance

analysis.

- 178 -

6. Discussion and conclusion

In [Fug&aI98], an improvement of the GQM process has been realised by inserting an additional

step i.e. the abstraction sheet, which aims at bridging the gap between the goals and metrics

definition stages. To this end, for each goal, the focus, variation factors, hypotheses and the

expected impact of variation factors on the hypotheses are summarised. Abstraction sheets were

found useful in capturing the implicit knowledge about the process or product. Both the method's

life history analysis and the additional abstraction sheets step in the GQM process illustrate how

experimental approaches permit a refinement of the measurement process itself.

The experiments with the redefinition metrics gave us insights into their practical use.

Undoubtedly, the use of metrics is not straightforward as many technical issues are involved in the

process. In fact, it is clear that this process currently lacks design considerations that are geared

towards the definition of an assessment programme. For instance, the redefinition profiles obtained

from different branches of the Smalltalk class hierarchy permitted the identification of possible

pattern profiles regarding the category of classes assessed. However, the interpretation of the

metric results would not be realistic without referring back to the design problem. To date, no

interpretation methods exist concerning the analysis of the property inheritance scheme with the

use of metrics. Pragmatically, it is possible to draw an example list of aspects to review during the

interpretation process:

• The goals of measurement.

• Identification of potential design problems and hidden side effects should be possible.

• Any possible mismatch between the requirements, the detailed design specifications and the

implemented solution.

• The object oriented concepts involved and their multiple interpretations.

• The assumptions made on the design and during measurement.

• The designers' point of view.

Ideally, the designers ought to discover the reasons behind the phenomena shown by the

redefinition profiles. Then, a relation from cause to effect can be established between observed

phenomena, the generated design problem, the context in which the problem occurs and the

possible directions for improvement. In addition, with the new findings, a refinement of the

measurement plan and the metric set can be made.

A proposed additional refinement step as a new stage in the GQM process can be as follows: the

analysis and interpretation step as described in section 3.4.3 appears to be a natural step which

takes place after the metrics definition stage in the GQM process. The interpretation framework is

composed primarily of the three aspects: the raw data representation, the profile analysis and the

designer's feedback. The framework is intended to describe to the different aspects to be reviewed

during the interpretation phase. Although the emphasis was given to graphical representations, it

- 179-

6. Discussion and conclusion

was not intended to cover all possible visualisation techniques. This requires further work and

represents a separate topic of research.

Further work

In order to complement the work presented in this thesis, a number of immediate areas can be

identified as follows:

• The investigation of effects of Java interface mechanism on the use of method redefinition.

• The creation of new types of representations for the results of design metrics for 00 systems.

• The classification of typical pattern profiles. Further tests are needed to explore the possibility

of defining good or bad pattern profiles for these metrics. This new area of research seems to be

promising and should be considered as a part of the software measurement process as well as

the software development life cycle.

• The formalism of specification of the triggering condition for the alarmer.

It is believed that visualisation techniques and the coqcept of alarmers for data interpretation

provide a more expressive approach to interpreting metric results thereby enable the detection of

complex design problems.

From a broader perspective of the project, there is a need for an integrated development

environment whereby measurement techniques are used to assess an 00 model at early stage of

the development and also to be able to re-inject design decisions into the model. Thus, the design

evaluation cycle can be completed and repeated. In summary, "measure to understand, interpret to

decide and transform to improve n. The final section of this thesis opens the way for such

integration. Naturally, the proposed data interpretation model can be seen as part of a measurement

framework model such as "the application of metrics to industry (AMI)" program proposed in

[Row93].

On the integration of measurement techniques in an object-oriented design process

In light of the work presented in this thesis, it is proposed that measurement techniques and the

process of object-oriented design should be considered part of the same development process and

not act as two different tasks as currently is. This thesis cannot cover all necessary aspects

involved in such desired integration. However, having concentrated on one possible use of metrics

to assess inheritance, it is possible to suggest directions for improvement of the current design

process. The main problems encountered during the experiments with metrics were the lack of

similar results from other experiments for comparison. To palliate this deficiency, a refocus on the

goals' definition and the analysis of methods' life history supported by the interpretation

framework enabled satisfactory conclusions on the experiments. This emphasises the fact that a

- 180-

6. Discussion and condusion

good understanding of the design is necessary before the start of a measurement programme

[HenEdw94, Whi97]. The new interpretation model which is part of the measurement process and

presented in section 3.4 directly addresses this deficiency. This work has demonstrated that metrics

are beneficial in many respects; nonetheless, it should be noted that feeding results back into the

design remains difficult due to the necessary effort for potentially re-designing and re-engineering

the code. This would imply additional cost on the overall development; thus the relative

''unpopularity'' of the measurement science amongst the software engineering community. It is

believed that such situations can be smoothly tackled in adopting an iterative and incremental

development approach.

Figure 6.1 depicts an overview of the current situation concerning the interactions between the

modelling tasks and the assessment tasks. Three different layers: the "Requirements', the

"Processes" and the "Deliverables" are represented for the purpose of identifying the interactions

between the modelling and assessment tasks. Due to the relatively recent interest of researchers in

assessment techniques, a clear separation between the two processes exists. Rather than being

integrated at process-level, the assessment activities are co-ordinated at the deliverable level. The

progress of the assessment methods depends on the state of the outcome from the design methods

i.e. the 00 model or the source code.

Modelling tasks

Requirements

Processes

... <D design
characteristics

Deliverables @ application

® data
collection

® feedback

Assessment tasks

... "

. kse~~~~t
' methods

initiation

Measurement
programme

Figure 6.1: Modelling and assessment tasks

• 181 .

6, Discussion and conclusion

In Figure 6.1, a simplified sequence of assessment activities is given by the numbered labelled

arrows:

1. Design characteristics gathering: when the assessment activities start, an informal survey of

the design is done in order to identify the goals of measurement.

2. Measurement programme initiation: the programme is defined and suitable metrics are

identified.

3. The derivation phase corresponds to the application ofthe metrics on the subject attributes.

4. Data collection.

5. The feedback phase is expected once the metrics results are analysed.

Further work is necessary on the identification of core product metrics for the use of object

concepts. The experiments show that a merging of assessment activities and design is necessary in

order to complete the measurement programme. In particular, for maximising the chances for

better decision making from the analysis and interpretation phases, the designer must rely on

previous design decisions. Some example benefits include:

• Until now, 00 design methods do not include any form of evaluation method, thus risking a

mismatch between the requirements and the developed application. Assessment techniques are,

one potential candidate for filling this gap. An integrated model would promote the inclusion

of measurement concerns within the design activities. Systematically assessing a candidate

object model has as a first objective the demonstration that the object concepts are correctly

utilised and secondly that the necessary abstractions and behaviour are adequate to the

requirements. In a different perspective, the choice of the best-suited design amongst a set of

possible candidates may be possible with the use of metrics i.e. quantification of level of

goodness.

• While a measurement plan at design phase may involve additional costs on the overall

development, design problems may be even more expensive to rectify III the future.

Unfortunately, tight development budgets often imply that software development is reduced to

the simple phase of implementation where all the design decisions are made without a real

overview of the essential architectural issues. In consequence, it is not rare to observe that, in

many cases, the complete redevelopment of the software is necessary when new requirements

appear.

• At the current state of research, existing measurement models are flexible and open enough to

be integrated within the design process. In fact, measurement techniques naturally fit into an

incremental development process as illustrated in Figure 6.2.

- 182-

6. Discussion and conclusion

Proposed integrated model

Besides the human and the organisational aspects, the proposed integrated model mainly aims at

providing designers with a simple framework which co-ordinates assessment activities with

design. In all cases, such integration ought to be as smooth as possible in the sense that it should

not disturb or deviate from the design goals. Here, the term "integration" refers to a high-level

integration rather than a detailed description ofthe model. An 00 design process describes a set of

activities, partially ordered and potentially dependent on each other. A measure is a quantitative

element related to the presence of a specific attribute in the object model. Therefore, a possible

approach for integration consists of identifying at what stage of the design process a targeted

attribute appears in the model. Then it would be possible to derive the metrics. However, further

conditions are required before being able to do so. A possible situation where potential wrong

measures can be taken is when the attributes assessed are not in a consistent state. Recall that one

aspect of the design is that it evolves constantly until its final version. As it is during the course of

design that the benefits of the measurement techniques are desired, the start of such a programme

will depend on the state of the object model. Therefore, the identification of the "critical" design

activities, i.e. activities that enable the model to reach a correct and working state, determine if a

measurement plan is possible. In such a case, a guideline may be defined as follows:

Measurement guideline:

The use of measurement techniques during the design process may only be envisaged if:

• All various forms of the abstractions or attributes targeted are identified. Note that the

candidate metrics should only address one particular form of an attribute at a time.

• The identified abstractions or attributes are stable. The stability of an abstraction or an attribute

relates to their correctness during the design phase. An essential condition is that the candidate

object model satisfies the requirements, therefore providing a consistent stable design point.

• The design activities that produce the abstractions or attributes are known. The recognition of

these activities may be not straightforward as the design process itself is not necessarily a strict

sequence of the same activities. However, when the abstractions or attributes are recognised to

be stable, the identification of desired activities is possible.

Given that the process of design is constantly evolving and that the measurement techniques can

be applied at stable design points, a "natural" integration of both activities is possible in the

perspective of incremental development. Here, the term integration can be defined as a co

operation between the two activities based on the exchange of inputs and outputs. Figure 6.2

depicts the integration of an incremental design process with a modified version of the GQM plan.

- 183 -

6. Discussion and condusion

Incremental Design and Assessment Process

/
Stable Goals

OOde~n ~_~~~_~
Measurement

Design validation Programme Initiation

~ L __ (~_~~~}~='I J
Design updates ~ Analysis and

Metrics
definition

Metrics
collection

~
Interpretation

Measurement
co-ordination point ft Design

New requirements "-.,./ information

Figure 6.2: Incremental Design and Assessment Process

An incremental design process is represented as a simple loop sequence of requirement inputs,

design updates and design validation The measurement plan shown in Figure 6.2 is based on the

GQM plan [Bas&al94] and mainly includes the findings from section 3.4.3 for the analysis and

interpretation phase. In consequence, a possible smooth integration simply consists of the insertion

of measurement plans at all identified stable design points in the design process. Thus, a stable

point of the design determines the start of the measurement initiation phase. The point of

integration between design and measurement activities is referred to as the measurement co

ordination point. Basically, the object model produced at this stage becomes the input for the

measurement programme. In return, design feedback is expected as outcome from the analysis and

interpretation phase. As a consequence, the design improvement suggestions serve as inputs, as

well as any new requirements for a new phase of the incremental design. Recall that the designer s

intervention is crucial for a correct analysis and interpretation of the metric results. This is

characterised by the design information input in Figure 6.2. Figure 6.3 shows an overview of the

proposed integrated model.

p---,
Integrated Incremental Design and Assessment Process

Measurement

plan \. I
Phasez "-1

-~ ____ 7

Process input

Process input

Measurement

~ plan I Phase x

,

~ ,

~ • Co-ordination point
Measurement E:J Design activity ;

plan
Phase y - Measurement activity i

~U.h u •••• u.u u ... ,!

Figure 6.3: Integrated model for design and assessment

- 184 -

6. Discussion and conclusion

A simplified example of the incremental design process is pictured in the centre of the diagram

with only three stable points. Each of these boxes hides all the design activities necessary to reach

a stable point. Pictured as separate processes on Figure 6.3 between each of the stable points, a

measurement plan is grafted on the core design cycle. Inasmuch as the design requirements and

issues are being tackled, the important aspect of such integration is that the measurement processes

themselves evolve. Two consecutive measurement plans may not be related depending on the

attributes assessed. If it is the case, a review of the previous plan is necessary to take into account

any new design information. Although the goals may remain the same, the corresponding

attributes to be assessed may have changed due to the changes occurring in the object model.

Sometimes, for the same problem, a different design solution is adopted from one stable design to

the other.

The main beneficial aspect of this framework is that it keeps both processes separate and

independent while co-ordination and co-operation are possible. The model remains flexible and no

constraints are imposed on the design activities. The measurement co-ordination points are the

input and output exchange from the design to the measurement tasks and vice-versa. Details of the

related design information can be found in section 3.2. In many respects, such a model was

unconsciously applied during the course of the experiments in this research work.

The above description of a proposed integrated model of measurement techniques within an

object-oriented design process give us directions for challenging and interesting future work.

Although the general description of the model has been given, further issues have to be tackled

regarding the definition of a concise methodology. For instance, it is believed that profiles such as

the redefinition profile (chapter 5) correspond to particular design situations e.g. MDR problem. A

dictionary of such profiles, in particular for identified design problems, would prove beneficial for

the designers. In the same manner as with a medical doctor, the identification of symptoms would

suggest the causes and effects of the problems. Another promising area of research concerns the

dependencies between metrics (section 2.4.6.1). From a re-engineering perspective, these

dependencies are the key for enabling proactive design feedback from the use of metrics. If the

dependencies were quantitatively defined then it would be possible to predict how the metric

values vary if one or another varies. Therefore, such a technique can act as a simulation instrument

for inferring the corresponding future evolutions of the current object model.

Perhaps the inheritance mechanism itself still deserves more attention since no agreement exists on

the diversity of its application. Clearly, it is the understanding of business problems that drives the

design of languages and therefore, the architecture of the design. For example, the Java language

encompasses such a comprehensive set of class and method modifiers that their combination with

other aspects of the design make it difficult to master. Architectural issues are probably the essence

of the design process and further development of appropriate metrics is also needed.

- 185 -

6. Discussion and conclusion

In conclusion, this thesis presented an illustration of the potential benefits of measurement

techniques regarding the complexities of the concept of inheritance. For years, it has been

generally accepted that measurement techniques are mature enough to take part in an industrial

process. Unfortunately, the reality is still otherwise and experiments within industry are rare.

Perhaps the main causes of such a situation relates to the rapid evolution of 00 concepts for

designing, and the progress of programming languages and other associated technologies for

solving enterprise business problems.

The notion of compromise or trade-off remains the key element in the decision process. However,

all factors influencing the compromise must be known. The complexity of applications and the

development process require the contribution of various resources from designers, abstraction tools

and methods. A design assessment framework is one possible solution to ensure the success of

each of the design milestones. It is a natural desire to evaluate goodness, originality and creativity

in object-oriented design. Assessment techniques contribute strongly to this goal, so let's design

and measure, and vice versa!

- 186-

References

References

[Abb83]

R. J. Abbott, "Program Design by Informal English Descriptions", Communications of the
ACM, Vol. 26, No. 11, pp. 882-94, 1983.

[Abb&aI94]

David H. Abbot, Timothy D. Korson and John D. McGregor, "A Proposed Design
Complexity Metric for Object-Oriented Development", Department of Computer Science,
Clemson University, Clemson, SC29634-1906, 1994. http://www.cs.clemson.edu.

[AdaMoI95]

Jim Adamczyk and Tom Moldauer, "Trading Off: Inheritance vs. Reuse", Object
Magazine, pp. 56-59, September 1995.

[AksBer92]

Mehmet Aksit and Lodewijk Bergmans, "Obstacles in Object-Oriented Software
Development", OOPSLA '92 Conference proceedings, Vol. 27 of ACM SIGPLAN
Notices, pp. 341-358, New York, October 1992.

[AlAsp93]

[Avo94]

A. AI-Janabi and E. Aspinwall, "An Evaluation of Software Design Using the DEMETER
Tool", Software Engineering Journal, pp. 319-324, November 1993.

Jon Avotins, "Defining and Designing a Quality 00 Metrics Suite", Technology of
Object-Oriented Languages and Systems (TOOLS) Conference proceedings, USA, 1994.

[ArmMit94]

James M. Armstrong and Richard.J. Mitchell, "Uses and abuses of inheritance", Software
Engineering Journal, January 1994.

[Bak&aI90]

[Ban97]

Albert L. Baker, James M. Bieman, Norman Fenton, David A. Gustafson, Austin Melton
and Robin Whitty, "A Philosophy for Software Measurement", The Journal of Systems
and Software, No. 12, pp. 277-281, 1990.

Jagdish Bansiya, "A Hierarchical Model for Quality Assessment of Object-Oriented
Designs", Ph.D. Thesis, University of Alabama, Huntsville, Alabama, , October 1997.

[BarSwi93]

G. Michael Barnes and Bradley R Swin, "Inheriting software metrics", Journal of Object
Oriented Programming, pp. 27-34, NovlDec. 1993.

[Bar&aI93]

Patrick Barril, Mahmoud Boufaida and Jean-Francois Brette, "Class Cooperation in a
dedicated Object System: the FORCE Authoring Environment", TOOLS Europe '93
Conference proceedings, pp. 115-123, 1993.

[Bar&aI97]

Mario R. Barbacci, Mark H. Klein and Charles B. Weinstock, "Principles for Evaluating
the Quality Attributes of a Software Architecture", Technical Report CMU/SEI-96-TR-
036, ESC-TR-96-136, May 1997.

- 187 -

References

[Bas&a194]

Victor R. Basili, Gianluigi Caldiera and H.Dieter Rombach "The Goal Question Metric
Approach", Encyclopeadia of Software Engineering, John J. Marciniak, Vol. 1, pp. 469-
476, John Wiley & Sons, 1994.

[Bas&a195]

Victor R. Basili, Lionel Briand and Walcelio L. Melo. "A Validation of Object-Oriented
Design Metrics as Quality Indicators", University of Maryland Institute for Advanced
Computer Studies, Dept. of Computer Science, Univ. of Maryland, Technical Report CS
TR-3443, May 1995.

[BanKim87]

Jay Banarjee and Won Kim, "Semantics and Implementation of Schema Evolution in
Object-Oriented Databases", ACM 0-89791-236-5, pp. 311-323, 1987.

[BecGua92]

Lee Becker and Todd Guay, "Object-Oriented Diagnosis", Journal of Object-Oriented
Programming, pp. 43-52, October 1992.

[BecJoh94]

Kent Beck and Ralph Johnson, "Patterns Generate Architectures",ECOOP '94 Conference
proceedings, July 1994.

[BecGua92]

[Ber91]

Lee Becker and Todd Guay, "Object-Oriented Diagnosis", Journal of Object-Oriented
Programming, pp. 43-52, October 1992. .

Paul L. Bergstein, "Object-Preserving Class Transformations", SIGPLAN Notices, ACM
Press, Vol. 26, No. 11, pp. 299-313,Phoenix, AZ, November 1991.

[BinSch96]

[Bis97]

[Bla92]

[Bla93]

[Boh88]

[Boo91]

[Boo94]

Aaron B. Binkley and Stephen R. Schach, "Impediments to the Effective Use of Metrics
Within the Object-Oriented Paradigm", .OOPSLA '96 Conference proceedings, Workshop
on "00 Product Metrics", Workshop report, 1996.

The BISS AWT Framework, BISS GmbH, http://www.biss-net.com/doc/biss-awt.html.
1997.

Michel Blaha, "Models of Models", Journal of Object-Oriented Programming, Vol. 5, No.
5, pp. 13-18, September1992.

Michel Blaha, "Aggregation of Parts of Parts of Parts", Journal of Object-Oriented
Programming, pp. 14-20, September1993.

Bohem, B., "A Spiral Model of Software Development and Enhancement", IEEE
Computer, March 1988.

Grady Booch, Object oriented design with applications, Benjamin/Cummings, 1991.

Grady Booch, Object-oriented analysis and design with applications,
Benjamin/Cummings, 1994.

- 188 -

[Bou89]

References

Barbara M. Bouldin, "What Are You Measuring? Why Are You Measuring It?", Software
Magazine, Vol. 9, No. 10, pp. 30-39, August 1989.

[BraCoo90]

[Bre96]

[Bri96]

Gilad Bracha and William Cook, "Mixin-Based Inheritance", OOPSLA/ECOOP '90
conference proceedings, Canada, 1990.

Rolf Breuning, "Concept and Implementation of Multiple Inheritance m Smalltalk",
TOOLS Europe '96 Conference proceedings, pp. 185-194, 1996.

Sharmila R. Bristol, "Tools for Object-Oriented Metrics Collection", OOPSLA '96
Conference proceedings, Workshop on 00 Product Metrics, 1996.

[BriCuc98]

Fernando Brito e Abreu and Jean Sebastian Cuche, "Collecting and Analyzing the
MOOD2 Metrics", ECOOP '98, Object-Oriented Product Metrics for Software Quality
Assessment Workshop, Brussels, Belgium, July 21, 1998.

[Bri&a195]

Fernando Brito e Abreu, Miguel Goulao and Rita Esteves, "Towards the Design Quality
Evaluation of Object-Oriented Software Systems", Proceedings of the 5th International
Conference on Software Quality, Austin, Texas, USA, October 1995.

[Bri&a194]

[Cas93]

Lionel Briand, Sandro Morasca and Victor R. Basili, "Goal-Driven Definition of Product
Metrics Based on Properties", University of Maryland Institute for Advanced Computer
Studies, Dept. of Computer Science, Univ. of Maryland, Technical Report CS-TR-3346,
September 1994

Eduardo Casais, "The Automatic Reorganization of Object Oriented Hierarchies",
Building Object Oriented Software Libraries, Eduardo Casais and Claus Lewerentz (Eds.),
FZI-Publication 6/93, Forschungszentrum Informatik Karlsruhe, 1993.

[CapLee93]

[Car98]

[Cha97]

L. F. Capretz and P. A. Lee, "Object-Oriented Design: Guidelines and Techniques",
Information and Software Technology, Vol. 35 No.4, pp. 195-206, April 1993.

Michelle Cartwright, "An Empirical View of Inheritance", Information and Software
Technology, Vol. 40 No. 14, pp. 795-799, ISSN 0950-5849,1998.

Craig Chambers, The Cecil Language, Specification and Rationale, version 2.1, Dpmt. Of
Computer Science and Engineering, University of Washington, March 1997.

[ChaFau92]

Dennis de Champeaux and Penelope Faure, "A Comparative Study of Object-Oriented
Analysis Methods", Journal of Object-Oriented Programming, Mar/Apr 1992.

[Cha&a192]

Dennis de Champeaux, Doug Lea and Penelope Faure, "The Process of Object-Oriented
Design", OOPS LA '92 Conference proceedings, ACM SIGPLAN Notices, Vol. 27, No.
10, pp. 45-62, October 1992.

- 189-

[Che81]

References

Chen, Peter P., "Entity-relationship approach to information modelling and analysis",
Proceedings of the Second International Conference on Entity-Relationship Approach,
Washington, D.C., October 12-14, 1981.

[CheBe194]

Cheswick W.R., Bellovin S.M., Firewalls and Internet Security, ISBN 0-201-63357-4,
Addison-Wesley, 1994.

[CheHua93]

Deng-Jyi Chen and Shih-Kun Huang, "Interface for Reusable Software Components",
Journal of Object-Oriented Programming, pp. 42-53, January 1993.

[CheHun94]

Jen-Yen Chen and Yu-Shiang Hung, "An Integrated Object-Oriented Analysis and Design
Method Emphasizing Entity/Class Relationship and Operation Finding", Journal of
Systems and Software, Vol. 24, pp. 31-47, 1994.

[CheLee95]

Jan-Bon Chen and Samuel C. Lee, "Pursuing safe polymorphism in OOP", Journal of
Object-Oriented Programming, pp. 39-45, March-April 1995.

[CheLee96a]

Jan-Bon Chen and Samuel C. Lee, "Generation and Reorganization of Subtype
Hierarchies", Journal of Object-Oriented Programming, pp. 26-35, January 1996.

[CheLee96]

Jan~Bon Chen and Samuel C. Lee, "The necessary and sufficient conditions of type-safe
polymorphism", Journal ofObject-:Oriented Programming, pp. 33-42, February 1996.

[CheLu93]

J-Y Chen and J-F Lu, "A New Metric for Object-Oriented Design", Information and
Software Technology Journal, Vol. 35, No.4, pp. 232-240, April 1993.

[ChiKem91]

Shyam R. Chidamber and Chris F. Kemerer, "Towards a Metric Suite for Object-Oriented
Design", Object-Oriented Programming: Systems, Languages and Applications
(OOPSLA'91) Conference proceedings, pp. 197-211, October 1991.

[ChiKem94]

Shyam R. Chidamber and Chris F. Kemerer, "A Metric Suite for Object Oriented Design",
IEEE Transactions on Software Engineering, Vol. 20, No.6, June 1994.

[ChuShe95]

Neville I. Churcher and Martin J. Shepperd, "Comments on A metrics Suite for Object
Oriented Design", IEEE Transactions on Software Engineering, Vol. 21, No.3, March
1995.

[ChuLee94]

[Cop92]

C.-M. Chung and M.-C. Lee, "Object-Oriented Programming Software Metrics",
International Journal on Mini and Microcomputers, Vol. 16, No.1, pp. 7-15, 1994.

James O. Cop lien, Advanced C++ Programming Styles and Idioms, Addison-Wesley,
ISBN 0201548550, 1992.

- 190-

[Coo92]

References

William R. Cook, "Interfaces and Specifications for the Smalltalk-80 Collection Classes",
OOPSLA '92 Conference proceedings, Vancouver, Canada, Oct. 18-22, ACM SIGPLAN
Not. 27,10, pp. 1-15, 1992.

[CouRoa93]

Bernard Coulange and Alain Roan, "Object-Oriented Techniques at Work: Facts and
Statistics", TOOLS Europe'93 Conference proceedings, pp. 89-94, 1993.

[Cri&al92]

John Cribbs, Suzanne Moon and Colleen Roe, "An Evaluation of Object-Oriented
Analysis and Design Methodologies", Alcatel Network Systems, SIGS Books, 1992.

[DahNyg66]

[Dav92]

Dahl, o. and Nygaard, K., "Simula, an Algol-based Simulation Language",
Communications of the ACM, Vol. 9, pp. 671-678, 1966.

Tsvi Bar-David, "Practical Consequences of Formal Definitions of Inheritance", Journal
of Object-Oriented Programming, pp. 43-49, July/August 1992.

[DeM86]

[Dev96]

[Dic95]

Tom DeMarco, Controlling Software Projects: Management, Measurement and
Estimation, Y ourdon Press, ISBN 0-131717111, New York, September 1986.

"Hybrid Hell", Directions in desktop development, Section Development, November 1996.

H. Dicky, C. Dony, M. Huchard, T. Libourel, "ARES, Adding a Class and REStructuring
Inheritance Hierarchy", Onziemes Journees Bases de Donnees Avancees, Nancy, France,
pp. 25-42, AugiSep 1995.

[DOD88]

DOD-STD-2167A1498, "The Waterfall model", Defense Systems Software Development,
February 1988.

[Dum&aI95]

[Ebe92]

[Eli95]

[Emb92]

[Eng97]

Reiner R. Dumke, Erik Foltin and Achim S. Winkler, "Measurement-Based Quality
Assurance in Object-Oriented Software Development", OOIS '95 Conference proceedings,
pp. 315-319, December 1995.

Christof Ebert, "Correspondence Visualization Techniques for Analyzing and Evaluating
Software Measures", IEEE Transactions on Software Engineering, Vol. 18, No. 11, pp.
1029-1-34, November 1992.

Anton Eliens, Object-Oriented Software Development, Addison-Wesley Publishers Ltd.,
ISBN 0-201-62444-3, 1995.

Embley, D. W., B. D. Kurtz, and S. N. Woofield, Object-Oriented System Analysis: A
Model-driven Approach, Prentice Hall, January 1992.

Robert Englander, Developing Java Beans (Java Series), O'Reilly & Associates Inc.,
ISBN 1565922891, June 1997.

- 191 -

[Ewi94]

[Fen91]

[Fir95]

[Fo197]

[Foo89]

References

Greg Ewing, Class Inheritance: The mechanism and Its Uses, Bachelor of Computing
Thesis, Monash University October 1994.

Norman E. Fenton, Software Metrics - A Rigorous Approach, Chapman and Hall, ISBN 0-
412-40440-0, 1991.

Donald Firesmith, "Inheritance guidelines" ,Journal of Object-Oriented Programming, pp.
67-72, May 1995.

The Free On-line Dictionary of Computing, http://wombat.doc.ic.ac.uk/. Editor Denis
Howe, <dbh@doc.ic.ac.uk>, 1997.

Brian Foote and Ralph E. Johnson, "Reflective Facilities in Smalltalk-80",OOPSLA '89
Conference proceedings, pp. 327-335, October 1-6, 1989.

[FooOpd94]

Brian Foote and William F. Opdyke, "Life Cycle and Refactoring Patterns that Support
Evolution and Reuse", PLoP '94 Conference proceedings, Monticello, Illinois, August
1994.

[Fug&a198]

Alfonso Fuggetta, Luigi Lavazza, Sandro Morasca, Stefano Cinti, Giandomenico 'Oldano
and Elena Orazi, "Applying GQM in an Industrial Software Factory",ACM Transactions
on Software Engineering and Methodology, October 1998.

[Col&a194]

Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist, Fiona
Hayes, Paul Jeremaes, Object-Oriented Development - The Fusion Method, Prentice Hall
International, 1994.

[GabKem95]

[Gan77]

Gabriel Eckert and Magnus Kempe, "Modeling with Objects and Values: Issues and
Perspectives", ROAD (Report on Object Analysis & Design), Vol. 1, No.5, pp. 20-27,
1995.

C. Gane and T. Sarson, Structured System Analysis: Tools and Techniques, 1ST Inc., 1977.

[Gam&a193]

Erich Gamma, Richard Helm, Ralph Johnson John Vlissides, "Design Patterns:
Abstraction and Reuse of Object-Oriented Design", ECOOP '93 Conference proceedings,
Springer-Verlag Lecture Notes in Computer Science, 1993.

[Gam&a195]

[Gib90]

Erich Gamma, Richard Helm, Ralph Johnson John Viis sides, Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-Wesley Publishing Company, ISBN 0-
201-63361-2, 1995.

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz and X. Pintado, "Class Management for
Software Communities", Communications of the ACM, September. 1990, pp. 90-103.

- 192-

References

[GolRob90]

[Gra92]

[Gra94]

Adele Goldberg and David Robson, Smalltallk-80, the Language and its Implementation,
Addison-Wesley series in Computer science, ISBN 0-201-11371-6, 1985.

Justin O. Graver, "T-gen: a string-to-object translator generator", Journal of Object
Oriented Programming, pp. 35-42, University of Florida, Computer and Information
Sciences, e-mail: graver@ufl.edu, September 1992.

Ian Graham, Object Oriented Methods, Second edition, Addison-Wesley, ISBN 0-201-
59371-8, 1994.

[HadGeo95]

H.M. (AI) Haddad and K.M. George, "A Survey of Method Binding and Implementation
Selection in Object-Oriented Programming Languages", Journal of Object-Oriented
Programming, October 1995.

[HarNit96]

[Hen95]

[Hen96]

Rachel Harrison and R. Nithi, "An Empirical Evaluation Of Object-Oriented Design
Metrics", OOPS LA '96 Conference proceedings, Workshop on "00 Product Metrics",
Workshop report, 1996.

Brian Henderson-Sellers , "00 Metrics Programme", Object Magazine, pp. 73-79, 95,
October 1995. . .

Brian Henderson-Sellers, Object-Oriented Metrics, Measures of Complexity, Prentice Hall
Object-Oriented Series, ISBN 0-13-239872-9, 1996.

[HenEdw94]

Brian Henderson-Sellers and Julian Edwards, BookTwo of Object-Oriented Knowledge -
The Working Object, Prentice Hall, ISBN 0-13-093980-3, 1994.

[HenNyq92]

[Hit95]

FNlMats Henricson and Erik Nyquist, "Programming in C++, Rules and
Recommendations", Ellemtel Telecommunication Systems Laboratories, Document No. M
900118 Uen, 1992.

Martin Hitz, "Measuring Reuse Attributes in Object-Oriented Systems", OOIS '95
Conference proceedings, pp. 19-38, December 1995.

[HitFir97]

Michael Hitchens and Andrew Firmage, "The Design of a Flexible Class Library
. Management System", TOOLS24 '97 Conference Proceedings, Beijing, China, pp. 71-80,

November 1997.

[HitMon95a]

Martin Hitz and Behzad Montazeri, "Measuring Coupling and Cohesion In Object
Oriented Systems", International Symposium on Applied Corporate Computing,
Monterrey, Mexico, October 1995.

[HitMon95b]

Martin Hitz and Behzad Montazeri, "Measuring Product Attributes of Object-Oriented
Systems", In Schafer and P. Botella (eds.), ESEC '95 proceedings, 5th European Software
Engineering Conference, Barcelona, Spain, pp. 24-136, LNCS989, SpringIer-Verlag,
September 1995 ..

- 193-

References

[HitMon96]

[Hop94]

[Ibe94]

[Jac83]

[Ke92]

[Kem96]

Martin Hitz and Behzad Montazeri, "Chidamber & Kemerer's Metrics Suite: A
Measurement Theory Perspective ", IEEE Transactions on Software Engineering, pp. 267-
271, Vol 22, No 4, April 1996.

Trevor P. Hopkins, "Complexity Metrics for Quality Assessment of Object-Oriented
Design", Software Quality Management '94 Conference proceedings, pp. 467-481, 1994.

IBEX Computing SA, "ITASCA Object Database Management System, DBA Manual",
International Business Park, 4eme Blvd, Bat Hera, F-74160 Archamps, France,
http://www.ibex.ch. 1994.

M.A., Jackson, Jackson System Development, Englewood Cliffs, Prentice-Hall Inc., 1983.

Brian M. Kennedy, "Design for Object-Oriented Reuse in the OATH Library",Journal of
Object-Oriented Programming, pp. 51-57, Jul/Aug 1992.

Chris F. Kemerer, "Measuring the Unmeasurable", Bournemouth Metrics Workshop 1996,
Bournemouth University.

[KosVih92]

[Kow93]

Kai Koskimies and Juha Vihavainen, "The problem of Unexpected Subclasses", Journal of
Object-OrientedProgramming, pp. 53-59, October 1992.

Ralph Kolewe, "Metrics in Object-Oriented Design and Programming", Software
Development Journal, Vol. 1, pp. 53-62, October 1993.

[LalPug91]

Wilf Lalonde and John Pugh, "Subclassing :f:. Subtyping :f:. Is_a", Journal of Object
Oriented Programming, pp. 57-62, January 1991.

[LalPug94]

Wilf Lalonde and John Pugh, "Gathering Metric Information Using Metalevel Facilities",
Journal of Object-Oriented Programming, pp. 33-37, Mar/Apr 1994.

[Lee&a193]

Yen-Sung Lee, Bin-Shiang Liang and Feng-Jian Wang, "Some Complexity Metrics for
Object-Oriented Programs Based on Information Flow", IEEE 0-8186-4030-8, pp. 302-
310,1993.

[Lew95a]

John A. Lewis, "Quantified Object-Oriented Development: Conflict and Resolution",4th
Software Quality Conference, pp. 220-229, Vol. 1, University of Abertay, Dundee, July 4-
5, 1995.

[Lew95b]

[Lis87]

Simon Lewis, The Art and Science of Smalltalk, Prentice HalllHewlett-Packard
Professional Books, ISBN 0-13-371345-8, 1995.

Barbara Liskov, "Data Abstraction and Hierarchy", OOPSLA '87 Addendum to the
proceedings, May 88, pp. 17-34, October 1987.

- 194-

[Liu96]

References

Chamond Liu, Smalltalk, Objects and Design, Manning Publications Co., ISBN 1-884777-
27-9, 1996.

[LiHen93]

Wei Li and Sallie Henry, "Object-Oriented Metrics Which Predict Maintainability",
Journal afSystems and Software, Vol. 23, No.2, pp. 117-122, 1993.

[LinRup95]

Thomas Lindner and Andreas Riiping, "How Formal Object-Oriented Design Supports
Reuse", Architectures and Processes for Systematic Software Construction, Eduardo
Casais (Ed.), FZI-Publication 1195, Forschungszentrum Informatik Karlsruhe, 1995

[LisGut86]

Barbara Liskov and John Guttag, "Abstraction and Specification In Program
Development", MIT Press, Cambridge (Mass.), 1986.

[LorKid94]

Mark Lorenz and Jeff Kidd, Object-Oriented Software Metrics, Prentice Hall Object
Oriented Series, Englewood Cliffs (N.J.), 1994.

[MadM0193]

[Mar78]

Ole Lehrmann Madsen, Birger Meller-Pedersen and Kristen Nygaard, Object-Oriented
Programming in the Beta Programming Language, Addison-Wesley, ISBN 0-201-62430-
3, 1993.

T. De Marco, Structured Analysis and SystemSpecijication, Yourdon, Inc., 1978.

[McG95]

John D. McGregor, "Managing Metrics in an Iterative Environment", Object Magazine,
pp. 65-71, October 1995.

[McKMon93]

[Me195]

[Mey88]

[Mey97]

James C. McKim, Jr. and David A. Mondou, "Class Interface Design: Designing for
Correctness", Journal afSystems and Software, No. 23, pp. 85-94, 1993.

Stephen J. Mellor, "Reuse Through Automation: Model-Based Development", Object
Magazine, pp.50-55, September 1995.

Bertrand Meyer, Object-oriented Software Construction, Prentice Hall International,
c.A.R. Hoare, Series Editor, ISBN 0-13-629049-3, 1988. http://www.eiffel.com.

Bertrand Meyer, Object-oriented Software Construction - Second Edition, Prentice Hall
PTR, ISBN 0-13-629155-4, 1997. http://www.eiffel.com.

[Mey&a195]

Bertrand Meyer, Eric Bezault, David Morgan and Xavier Le Vourch, "ISE Eiffel: The
Environment", ISE Technical Report TR-EI39IIE, Interactive Software Engineering Inc.
(lSE), 1995. http://www.eiffel.com.

[MonPuh92]

David E. Monarchi and Gretchen I. Puhr, "A Research Typology for Object-Oriented
Analysis and Design", Communications of the ACM, Vol. 35, No.9, pp. 35-47, September
1992.

- 195 -

References

[MorDom89]

Dennis R. Moreau and Wayne D. Dominick, "Object-Oriented Graphical Information
Systems: Research Plan and Evaluation Metrics", The Journal of Systems and Software,
Vol. 10, pp. 23-28, 1989.

[New&aI96]

Alexander Newman and aI., Special Edition, Using Java, Que Corporation, ISBN 0-7897-
0604-0, 1996.

[ObjSha93]

[Ode92]

[Ode94]

Objectshare Systems Inc. and Dan Shafer, WindowBuilder ProN 1.0 - Tutorial and
Reference Guide, Objectshare Systems Inc., October 1993.

James 1. Odell, "Managing Object Complexity, part I: Abstraction and Generalization",
"Managing Object Complexity, part I: Composition", Journal of Object-Oriented
Programming, September and October 1992.

James 1. Odell, "Six different kinds of Composition", Journal of Object-Oriented
Programming, pp. 10-15, January 1994.

[OOP93]

OOPSLA '93, Workshop #19 - "Understanding Object-Model Concepts", 1993.

[Owe95]

[Pap95]

John"Owens, Using Object-Oriented Databases To Model Hydrocarbon Reservoirs, PhD
Thesis, University of Aberdeen, 1995.

David M. Papurt, Inside the ObjectModel- The Sensible Use of C++, SIGS Books, ISBN
1-884842-05-4, 1995.

[PapLeJ97]

[Ped89]

[PoI97]

[Pow98]

[Rad93]

[Rie96]

David M. Papurt and Jean Pierre LeJack, "The Sensible Use of Method Overriding",
Journal of Object-Oriented Programming, pp. 62-65, 71, Mar/Apr 1997.

Claus H. Pedersen, "Extending Ordinary Inheritance Schemes to Include Generalization",
OOPSLA '89 Conference proceedings, pp. 407-417, October 1-6, 1989.

Geert Poels, "An Analytic Evaluation of Static Coupling Measures for Domain Object
Classes", ECOOP '98, Object-Oriented Product Metrics for Software Quality Assessment
Workshop, Brussels, Belgium, July 21, 1998.

Powersoft, Sybase Inc., PowerBuilder User's Guide, Open Tools from Sybase Inc.,
http://www.powersoft.com/products/powerbuilder/pb6prodinfo.html. 1998.

Klaus Radermacher, "Abstraction Techniques in Semantic Modelling", Information
Modelling and Knowledge Bases IV, H. Jaakkola et al. (eds.), lOS Press Amsterdam 1993.

Arthur J. Riel, Object-Oriented Design Heuristics, Addison-Wesley Publishing Company,
ISBN 0-201-63385-X, 1996.

- 196-

[Riv96]

[Rob92]

References

Fred Rivard, "Smalltalk: a Reflective Language", Reflection '96 proceedings, pp. 21-38,
edited by Gregor Kiczales, San Franscico, USA, Avril 1996.

Teri Roberts, "Metrics for Object-Oriented Software Development", Workshop report,
Addendum to the OOPSLA '92 proceedings, pp. 97-100, October 1992.

[RobBoJ89]

Pierre N. Robillard and Germinal Boloix, "The Interconnectivity Metrics: A New Metric
Showing How a Program Is Organised", The Journal of Systems and Software, Vol. 10,
pp.29-39, 1989.

[RosHya96]

[Rum91]

[Rum93]

[Rum96]

L. Rosenberg and L. Hyatt, "Developing a Successful Metrics Program", Proceedings of
2nd Annual Conference on Software Metrics, Washington, DC, June 1996.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen, Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs (N.J.),
1991.

James Rumbaugh, "On the Horns of the Modeling Dilemma - Choosing Among Alternate
Modeling Constructs", Journal of Object-Oriented Programming, pp. 8-17, NovlDec
1993.

James Rumbaugh, "A Matter of Intent: How to Define Subclasses", Journal of Object
Oriented Programming, pp. 5-9, 18, September 1996.

[Sca&aJ93]

[Sch98]

[SEL95]

[Sei96]

[Sha92]

[Sha96]

[She90]

Bruno Scardia, Antoine Proietto and Thierry Labbe, "ORGUE: un Outil pour la
Conception des Logiciels Temps Reel selon la Methode TOCCATA", Genie Logiciel &
Systemes Experts, No. 32, pp. 24-30, September 1993.

Schaffer B., "Design and Implementation of Smalltalk Mixin Classes", Ubilab Technical
Report, 98.11.1, UBS AG, ZUrich, Switzerland, November 1998.

Software Engineering Laboratory, "Software Measurement Guidebook", NASA, Goddart
Space Flight Center, Greenbelt (MD) SEL-94-102, June 1995.

Ed Seidewitz, "Controlling Inheritance", Journal of Object-Oriented Programming, pp.
36-42, January 1996.

Dan Shafer, Scott Herndon and Laurence Rozier, Smalltalk Programming for Windows,
Prima Publishing, Rocklin, CA, 1992.

Bruno Shafer, "Advanced Smalltalk: Elegance and Efficiency", 10th European Conference
on Object-Oriented Programming, Tutorials Notes, July 8-12, Linz, Austria, 1996.

Martin Shepperd, "Early life-cycle metrics and software quality models",lnformation and
Software Technology, pp. 311-316, 1990.

- 197-

References

[She&aI91]

Sheetz, Steven D., David P. Tegarden, and David E. Monarchi, "Measuring Object
Oriented System Complexity", Workshop on Information Technology and Systems -
WITS-91, 12/91.

[Sho&aI93]

Jean Scholtz, Shyam Chidamber, Robert Glass, Al Goerner, Mary Beth Rosson, Mike
Stark and Iris Vessey, "Object-Oriented Programming: The Promise and the Reality",
Journal of Systems and Software, Vol. 23, pp. 199-204, 1993.

[SimLew98]

[Smi91]

[Ste90]

Frank Simon and Claus Lewerentz, "A Product Metrics Tool Integrated Into a Software
Development Environment", 12th ECOOP '98, Object-Oriented Product Metrics for
Software Quality Assessment Workshop, CRIM Montreal, ISBN 2--921316-87-0, pp. 36-
41, 1998.

David N. Smith, Concepts of Object-Oriented Programming, McGraw-Hill series on
programming languages, ISBN 0-07-059177-6, 1991.

Guy L. Steele, Common Lisp the Language, 2nd edition, Thinking machines Inc., Digital
Press, ISBN 1-55558-041-6, 1990.

[Ste&aI96]

[Str90]

[Sun99]

[Tai96]

[Tai98]

Patrick Steyaert, Carine Lucas, KirilMens and Theo D'Hondt, "Reuse Contracts:.
Managing the Evolution of Reusable Assets", OOPSLA '96 Conference proceedings, 1996.

Stroustrup B. Ellis M., The AnnotedC++ Reference Manual, Addison-Wesley, 1990.

Sun Microsystems Inc., JavaTM 2 SDK, Standard Edition Documentation, Version 1.3,
1999.

Antero Taivalsaari, "On the Notion of Inheritance", ACM Computing Surveys, Vol. 28,
No.3, pp. 439-479, September 1996.

Antero Taivalsaari, "Implementing a Java Virtual Machine in the Java Programming
Language", Sunlabs Microsystems, Technical Report, SMLI TR-98-64, March 1998.

[Tea&aI96]

Java Team, James Gosling, Bill Joy and Guy Steele, The Java ™ Language Specification,
part of The Java™ Series, Sun Microsystems, Inc., ISBN 0-201-63451-1, April 1996.

[Teg&a\95]

David P. Tegarden, Steven D. Sheetz and David E. Monarchi, "A Sofware Complexity
Model of Object-Oriented Systems", Decision Support Systems: The International
Journal, No. 13, pp. 241-262, 1995.

[VerCor95]

Frans Ververs and Cornelis Pronk, "On the Interaction between Metrics and Patterns",
OOIS '95 Conference proceedings, pp. 303-314, December 1995.

[OMG97]

Object Management Group, "Unified Modeling Language, version 1.1, Updated
September 1, 1997", Rational Software, http://www.rational.com. 1997.

- 198 -

[Wan88]

[Web95]

References

Yair Wand, "An Ontological Foundation for Information Systems Design Theory" and "A
Proposal for a Formal Model of Objects", Proceedings of the IFIP WG 8.4. Working
Conference on Office Information System: The Design Process, Linz, Austria, August
1988.

Bruce F. Webster, Pitfalls of object-oriented development, ISBN 1-55851-397-3, 1995.

[Whi96a]

[Whi96]

[Whi97]

[Wil93]

[WiI96]

[X3J96]

Scott A. Whitmire, "A Formal Object Model for Measurement", OOPSLA '96 Conference
proceedings, Workshop on "00 Product Metrics", Workshop report, 1996.

Robin Whitty, "Object-Oriented Metrics: An Annoted Bibliography", SIGPLAN Notices,
http://www.sbu.ac.ukl-csse/publications/OOMetrics.html

Scott A. Whitmire, "Object-Oriented Design Measurement", John Wiley & Sons, Inc,
ISBN 0-471-13417-1,1997.

John D. Williams, "Metrics for Object-Oriented Projects", Object Expo Europe
Conference Proceedings, SIGS Publications New York, USA, July 1993.

Willis C.P., "Analysis of Inheritance and Multiple Inheritance", Software Engineering
Journal, Vol. 11, No.4, pp. 215-224, July 1996.

X3J20, Smalltalk committee, J 996.

[You79]

E. Yourdon and L. Constantine, Structured Design, Englewood Cliffs, Prentice-Hall Inc.,
1979.

[ZhaOve97]

T.C. Zhao and Mark Overmars, Forms Library - A Graphical User Interface Toolkit for X
vo. 88, http://www.westworld.com/-dau/xforms/forms.index.shtml. November 1992.

- 199-

A. Appendix

A. Appendix

A.1. Heuristics' classification

Categories of heuristics [Fir95, HenEdw94, Mey88, Pap95, Rie96] are organised according to the

main aspects of 00 modelling as follows:

Categories Topics
00 conceptual model The object model

Abstraction, abstract data types
Architecture from objects to systems Encapsulation and information hiding

Class-specific data and behaviour
Responsibilities, roles, contracts, interfaces

Modularity and subsystems Classes relationships and objects coupling
Communication, message-passing
Relationships: association, aggregation

The inheritance relationship and class hierarchy Generalisation/specialisation
Inheritance identification
Reuse
Multiple inheritance
Physical 00 design

Heuristics for subclass's definition [Rum96]

Topics Heuristics
Full inheritance A subclass should inherit all properties from its superclass without restricting or

deleting
Extension A subclass should add further features to the ones inherited
Behaviour A subclass should either:
compatibility • Reuse without change

• Implement the declared deferred method

• Be a combination of inherited behaviour and new functionality e.g. self in
Small talk or before-and-after in CLOS

• Override with extreme care
Form change A subclass must have a different structure from its superclass e.g. additional

attributes, associations
Restriction A subclass should not restrict the inherited properties

Summary of Fusion's method guidelines [Fus94]

Topics Heuristics
Class definition • Properties must describe all instances of the class

• A class must represent one and only one abstraction

• A class should be cohesive

• An operation should perform a single function
Object interactions • Reduce the coupling between objects

• Reduce objects' dependencies

• Objects should be organised into independent sub-systems
Use of inheritance • Abstract common properties in abstract classes

• A void implementation inheritance

• Polymorphism is recommended when the semantics of the inherited
operations remain the same

• Develop the class hierarchy in depth instead of width

• Root should be defmed as an abstract class

• Each sibling should be semantically different

• Preserve subtype inheritance

• Behavioural subtyping should be preserved even if inheritance is a code-
reuse mechanism and not a subtyping facility

- 200-

A. Appendix

A.2. Detailed design of the main components of the metric prototype tool

A.2.1. Basic metrics repository

During the process of determining the lineage of a method, it is implicitly assumed that all parent

children relationships are known, however this is not straightforward. In particular, the amount of

specific development for pattern matching varies depending on how much information can be

directly obtained from the environment and the language used. In most cases, it would require a

minimum amount of code analysis. In [SimLew98], the authors proposed a generic model that

deals with all the language specifics however it also necessitates the use of a scripting language for

describing the metrics to implement. Smalltalk provides a native set of functions permitting easy

querying of the system for meta-information. Table A.1 shows examples of such features.

Category Smalltalk command Returned values

Organisational aClass superclass The direct parent class of aClass
aClass subclasses The direct subclasses of aClass
aClass aliSuperclasses All parent classes of aClass
aClass aliSubclasses All subclasses of aClass

Class description AnObject class The class name of anObject
AClass allinstances All instances of aClass
AClass selectors All methods of aClass
AClass allinstVarNames All instance variables of aClass
AClass aliClassVarNames All class variables of aClass

Coupling ASymbol implementors All methods that provide an implementation
ofaSymbol

ASymbol senders All methods that sends a aSymbol message

Table A.I: Smalltalkmetaclass information

Some of the features presented in the Table A.I are candidate metrics themselves. When a

Smalltalk command returns a set of objects, the use of the commandaSet size returns the number

of objects in the set. A metric is referred to as basic in the sense that it represents a simple

counting of a feature of the implementation. Although such metrics may be useful as indicators of

size, they are often utilised to form more complex metrics to address a particular aspect of the

design e.g. the redefinition metrics. Metrics repositories can be used as a catalogue of measures for

various purposes. Although the metric collector tool does not deal with the management of metric's

definition, a possible repository structure may include the name, the definition of the metric e.g.

Smalltalk commands, the description, its uses, its meaning and other related properties. In the

experiments, the associated values of basic metrics were mostly of interest as they were often

utilised during the derivation process. Rather than re-computing a metric every time it is needed,

the metrics results are stored in the repository. The time processing aspect should not be neglected

during the metrics collection. Because ofthe nature of the processing involved for the derivation of

metrics e.g. inheritance structure parsing and computation, a pre-calculation is adopted whenever

possible.

As Smalltalk provides an exporting functionality that enables persistent storage of objects on disk,

there is no need to transform the metric repository structures and their values, as they are

- 201 -

themselves objects. Such direct mapping between memory and disk is convenient, as it does not

add much additional development cost for the metric tool.

A.2.2. Dictionary structures for metrics

The derivation process can be separated in two phases:

1. Collection of design information from all the classes included in the derivation.

2. Calculation of the redefinition metrics based on data previously collected.

While the second phase consists of the application of the metrics formulas, the first phase is an

essential preparation phase where information is gathered and organised for later use. The

description of this first phase follows.

An important aspect of the design is the use of simple repository structures that hold intermediary

or final results for metrics. Before the computation of the metrics, a preparation phase gathers and

temporarily stores all necessary information into Dictiona,yo objects in memory. This structure

permits a rapid access to the metrics values. As the values of a Dictionary object can themselves

hold references to other Collection objects, it is therefore possible to build flexible multi

dimensional dictionaries or Collection objects.

Sub-dlctlonary
.', -_ _. __ ,

DIctionary / Lists of redefined \.,
f methods for a class ;

~ _ _......... !
~ i : .. _ _ .. _._ _. !

..... !

!

:::::::::::::::::::: I
......... _ .. _ _......... I
.. _ _ ._ _. t I

t

.. ~ ... - ... ~::::":':-........ -....... .,~: , / .

Figure A.I: Dictionary of redefined methods per class

As the redefinition metrics are calculated in relation to the hierarchy level, the metric tool gathers a

list of classes to be included in the derivation at the corresponding level. In Figure A.I, a

Dictionary object is used to store the class and method names. The levels in the hierarchy are the

dictionary keys and the corresponding values are the class names. In order to store the list of

redefined methods for each class, it is appropriate to use a dictionary type object with the class

30 Similar to an indexed table structure, Dictionary objects in SmaIJtalk are Collection objects. They hold a key that enables direct

access to an associated value.

- 202 -

names being values for the main dictionary as well as keys for the sub-dictionary. Therefore, the

corresponding values for the sub-dictionary are the method names. In the experiments with the

Smalltalk class hierarchy, the maximum depth level is seven. Although it is necessary to search for

inheritance relationships between the classes for determining if a method is redefined, this

information is not recorded in the dictionary structure.

Given the information in Figure A. I, the derivation of the metrics still necessitates the calculation

of the following:

Sub~lctIonary
/ • •••••• _ •• _ _ •••••• • •••••••• _ •••• ___ _ . .. _ .. _ _ •••••••• __ 0 ... , _ ,~

I I

Dictionary i Total number i
,,--.--t---.--~,. of methods l
r Level i) for a class i
~ 1 i Sub~lctlona~ i
: ! .. -_ _-'ft. _ .. ,H __ _ _ •••. ;

I r Class name ! '1
! I 1

j ;

~ i
! k _ __ . __ !... · · · ·_· _ _-_ · ·1
, ! I Total number i
i ! t of redefined i
\.-----L j methods for I

i, a class .!
.......... ____ _ __ •••• • _ __ __ . .. __ _ .. 04 ·.,.

Figure A.2: Dictionary for the total number of methods per class

In Figure A.2, two different dictionaries with identical entry structure are represented. One sub

dictionary is used for the total number of methods fOT a class while the other is for the total number

of redefined methods. The values are calculated directly from the dictionary in Figure A.I or

during the parsing of the classes. Although such numbers can be calculated at request time, their

pre-calculations are often useful for a quick review of the metrics results. In such a way, if no

updates have been done on the classes assessed, no re-calculations are needed and expensive

parsing is avoided.

Note that, during the parsing of the classes, in the case of the calculation of the PRMC (see 3.2),

the total number of methods for a class is being cumulated with those inherited to form the new

total number of methods. The user sets the cumulative option in the collector tool before the

request for metrics derivation.

- 203 -

SulMjlctionary

.
,.l'····-··-·················-...... ··--~ ·--· · · ·- · - · ·· _ _ ' ~

... ' ... 11 .. " ".. ~

! -...... -...... list of replaced i
i methods for a ! DIctionary 1 I __ ----4------~ dass I

t level : \
1 1 ! Sub-dlct1onary i

4 r _._ _ .. _ .. _... ~

! 6 1· ... ··-_ _ .. _ -... t·· ... _ _ _ -..................... f
! 7 I ! : .:~:: :~:: .. ~.:~.:.:.::. list of extended ! \. ___ -+-______ ... methods for a !

I ... _ - dass l
!
i .. - .-... __ _....... .j

\. _ _ _ ... _ _ _ ... _ _ - __ _ .. _ "'

Figure A.3: Dictionary for replaced and extended methods

So far, the infonnation gathered in the above dictionaries pennits the calculation of the general

PRM regardless of the method's state. In Figure A.3, two more dictionaries, again with identical

entry structure, shows for each class, the list of methods being replaced or extended. In the same

manner than as in Figure A.2, dictionaries for the total number of replaced and extended methods

can be built. Thus, the preparation phase is complete and the second phase of the derivation

process can take place.

A.2.3. A persistent repository structure

Persistently storing metrics values is an important feature for enhancing the metric tool

capabilities. The persistent features, not only improves the usability of the tool but also opens a

wide-range of possibilities for further development such as the management of metrics results

versions for comparison of design versions. Figure 4.1 shows only the relevant, adapted classes

and methods taken from [Owe95].

- 204 -

Smalltalk Class library Metric tool persIstent repository structure Interface class

InstaliClass:
instaIiClass:wiIhSuper:
prlntHierarchyMetric:

r-----+----------------t>'l wilhProfiie:

addEntity:withKey:
deleteEntity :
ants

'------+-1 getAliEntities
getEntityWithKey:
newAttribute:type:

Figure A.4: Persistent repository model

wilhRedef:
with Extended:

prlntMetric

(.. K;y----- -- ----".

I The MethodsProflle I

: class Is Installed by
I the prototype metric
I .

'-~~~~-!~ ----:

The main purpose of the PR is to provide features for the management of persistent objects. The

main particularity of the system is that all the persistent objects are dealt and stored within the

Smalltalk image in exactly the same manner as any other 'live' objects at anyone time in the

environment. This provides a uniform and coherent access to both control or data objects from the

metric tool prototype. The two main classes Root and CmdClass inherit from the Object class

and provide the necessary functionalities for method profile management. The PR system permits

dynamical installation of classes within the image. The CmdClass class methods are the

interfaces to the PR e.g. the self explanatory instaIiClass:withSuper: method and uses the low

level Root class methods. For objects to be persistent, the corresponding class has to be first

created and installed within the Smalltalk environment by the PR Such a class is subclass of the

Root class. In such a way, the Root class generic methods are inherited by any of its subclasses.

Note that generic methods are methods that manage the persistent objects. In the PR terminology,

(see Root class's methods in Figure A.4), a method profile object is referred to as an entity that

holds a set of attributes. In addition, dynamic changes to an inserted class are possible e.g. deletion

or addition of new attributes to a class. A key string that acts as an object identifier allows

uniqueness and access to objects. The main changes from the PR original version includes the

adaptation of some methods to take into account the metric requirements. Most of the changes are

low-level changes such as the location of temporary stored files. These did not affect the original

interface functions in the CmdClass class. Extension of functionalities was realised by addition of

new methods in this class e.g. printing facilities.

The major benefits of the use of the PR system is that classes and objects can be dynamically

created and recalled regardless of the underlying storage mechanism. The PR also provides various

- 205-

class methods for the management of objects. Treated as objects, the method profiles include the

list of attributes in Figure A.4 i.e. mainly the dictionaries described in section A.2.1. The following

section describes the installation of the MethodsProfile class by the profile manager component.

A.2.4. The profile manager

The profile manager (MethodsProfileList class) is the core component that supervises the

derivation process (Figure A.5). It receives the requests from the user interface and verifies if the

requests have not been previously processed i.e. existence of method profile objects. If it is the

case, only a re-calculation of the metrics is necessary i.e. second phase of the derivation process,

therefore the metric results displayed correspond to a previous measure. For an update of the

measures, the user should issue an explicit request within the profile interface browser. Before the

launch of the derivation process, the profile manager should ensure that a MethodsProfile class

exists to proceed further. To do so, the initMethodsProfile method in MethodsProfileList class

places requests to the PR via the Profile DBAP I interface methods. It should be noted that the

profile manager has been specifically developed to provide support for the assessment of class

hierarchies. Therefore, the concerned method profiles are mainly classes organised as a tree

hierarchy i.e. branches or entire class hierarchy (see experiments with the redefinition metric at

system level in section 0).

Persistent repoaltory structure

profile
interface calls

Interface cI

(Ctndet.. , i{il,J~

installClass: >

instaIlClass:withSuper: ,
printHlerarchyMetric: 1
withProfile:
withRedef:
with Extended:

printMetric::

DB interface calls

DB
instaIiMethodsProfil~ 'f requests
getBranchProfileList "
getBranchProfileOf: <

importProfila
exportProfile:
deleteProfile:
fileOutClass:
filelnMehod:

Figure A.5: Profile manager model

Controller

The installation of the MethodsProfile class is a one-off task. Given a class description i,e. class

name and an attributes list, the instaliMethodsProfile method in the ProfileDBAPI class

- 206 -

A. Appendix

automatically generates a subclass of the Root class called MethodsProfile. For each of the

attributes created, a corresponding accessor method is automatically generated in the new installed

class, thereby enabling future consultation of the objects attribute values. The list of attributes

includes:

• Several dictionaries (see section A.2.1) detailing the life history of extended and redefined

methods (respectively the extendedMthProfile and redefMthProfile attributes).

• The corresponding PCRM and PEM values (respectively the extendedMetric and

redefMetric attributes).

• Other relevant information that defines the context of derivation such as the date and the

calculOptions attributes.

At run-time, the profile manager (MethodsProfileList class) maintains a list of existing profiles

i.e. MethodsProfile objects in memory. Any update of a method profile is preceded by a deletion

of the MethodsProfile object before the start of the entire derivation process. For this reason, it is

important to date-stamp the derivation process at the' original date of request. Notice that a finer

grained stamping method may be possible e.g. time.

The metric derivation and the method profiles building activities share common parsing tasks. C".'

Despite a' potential additional processing time, both activities are realised within a same

functionality. In all cases, the availability of the method profiles is essential during the analysis

and interpretation phase.

Whether the derivation of the metrics is requested for a class, a branch of the hierarchy or a

system, a unique identifier is used for naming and storing the method profiles built. By default, the

top node class for a branch of the hierarchy is the identifier in the case of metrics applied at

hierarchy level. For a class and a system, respectively, the class name and an arbitrary name acts as

identifier.

The calculOptions attribute is initialised by the setCalculOptions: method, both in the

MethodsProfileList class. This attribute holds the desired derivation options as well as the control

options for internal purposes e.g. display options. For the metric collector tool, only two options

are relevant:

• The cumulative option: used for the calculation of the cumulative redefinition metric.

• The compiler classes inclusion: in Smalltalk, the compiler classes are hidden classes

[GoIRob85] and are only accessible on explicit request. This option offers the possibility to do

so. As these classes are special internal classes, by default they were not included during the

experiments.

- 207-

The calculOptions attribute can be a placeholder for further options. Being a dictionary type

object, the use of this attribute is flexible and can be extended for further requirements. The option

values are saved in the method profile object as well.

A.2.S. The metric engine

The metric engine (RedefMetric class) incorporates the necessary parsing and calculation

algorithms for the redefInition metrics (Figure A.7). It is the proille manager object that initiates

the creation of a metric engine object. Once a method proille object has been initialised, the

derivation request is passed on to the metric engine object by the profile manager object for

processing. A metric engine object stores temporarily information in its attributes, gathered during

the course of parsing. Only on completion of the processing tasks, does the method proille object

regain control and transfer the results to the corresponding method proille object In such a way,

the derivation request is completely delegated to the metric engine object and its lifetime lasts

while the method proille is built.

A.2.6. The hierarchy browser and profile manager designs

The main user interface integrates a similar hierarchy browser as the one provided by the Smalltalk

environment and a tabular set of fields for the display of the metric results. The maximum display

of levels of the hierarchy is fixed to seven for convenience reasons. When the prototype metric

tool is running, an instance of the SystemMetric8rowser class is created and represents the main

interface window (see Figure A.6). In the case of a class or hierarchy metric request, a dialog box

is presented to the user for entering the name of the class concerned. Then. the metric browser

object directly creates an instance of the profile manager object \IDd continues the derivation

process.

c:alculClass
calculHierarchy
calculSystem
c:alculMode
defaultCalcUlOptions
displayResult
getCalculOptions
initAlarm
alarmOnOff
getAlarmRange:

Hierarchy and profile manager browsers

class list

initiates \ initMethodsProfile
importProfile:
exportProfile:

~--~~ deleteProfile:
setCalculOptions:
profile:

Figure A.6: The hierarchy browser and profile manager designs

- 208 -

AAwen<ix

The MethodsProfileList class plays both the role of profile manager and the interface for profile

management. Although an instance of this class is always created for metric processing, it only

interacts with the user on request of the profile management function. The user interface permits

the deletion, update, view, import, export and print of an existing list of profiles currently stored

(see the corresponding methods in the MethodsProfileList class in Figure A.6).

Interface classes

instaliMethodsProfi~ l
getBranchProfIlelist
getBranchProfileOf:
importProfile
exportProfIle
deleteProfile:
fileOutCiass:
filelnMehod:

DB
requests

Controller classes

inilMethodsProfIle
setCa\CuIOplions:
profile:
updateProfile:

derivation
requests

ca\CUiExtendedMetric
caiculRedefMetric:
classRedetMetric:
hierarchyRedefMetric:
systemRede1Metric:
lookForExtRedln:
findAncestorsOf:

Figure A. 7: Metric engine model

The main function of the metric engine object is to search for redefined methods within a given set

of classes. During the parsing of the classes, the object constructs four main dictionaries (as its

object attributes):

• The extendedMethod attribute which stores all extended methods per class per level.

• The redefMethod attribute which stores all replaced methods per class per level.

• The resultsExtended attribute which stores the percentages for extended methods per leve1.

• The resultsRedef attribute which stores the percentages for replaced methods per level.

To determine if a method is redefined in a class X, the findAncestorsOf: method looks up for the

list of parent classes of the given class. The presence of the method signature in, at least one of X's

parent classes, permits conclusion that the present method is redefined. However, further analysis

is required to detect in which case of redefinition the method falls under. The

hierarchyRedefMetric: method is the main entry point to the parsing algorithm for the metric at

hierarchy leve1. The classRedefMetric: and the systemRedefMetric: methods are re~pectively,

the methods for calculating the metrics at class and system levels. The profile manager object

- 209 -

A. Appendix

invokes them all, in addition to the lookForExtRedln: method that determines whether a method

is being extended or replaced. Updates of the methods profile are done accordingly. Additional

useful information is the detection of methods originally declared aspolymorphic. To do so, the

isMethodPolymorphic:inClass: method examines the method source code for the Smalltalk

implementedBySubclass pattern.

On completion of the calculations, the profile manager object requests the dictionary object

identifiers built by the metric engine object and reassigns them to the corresponding method

profile objects.

The algorithms can be decomposed in two phases:

• The search for redefined methods.

• The search for the type of redefinition used.

The main difference between the two phases lies in the information searched. If such a metric was

to be applied early in the development process, it is assumed that, at design phase, the method

signatures would be known, therefore this information would be sufficient to realise the first phase

of the algorithm. The body of the method is needed for the second phase and permits the

conclusion on the type of redefinition used. This may be not known until the coding phase.

- 210-

'r-.

A. Appendix

Algorithm for the search redefined methods

For a given set of classes, the algorithm below searches for all redefined methods for each class,

stores them in appropriate dictionaries and calculates the percentages for each level in the

hierarchy. Note that the algorithm parses classes regardless of the fact that they may be organised

as a tree hierarchy or as a system, therefore it enables the use of the same algorithm for the

calculation of metrics at hierarchy or system level. For this reason, the dictionaries are

systematically organised as an n-Ievel entry that corresponds to the n depths of inheritance of the

single rooted hierarchy.

initialise dictionaries

for each class in the branch of the hierarchy
search at what level the class is situated
increment the number of classes at the found level

if no cumulative calculation is required

store the total number of methods of the class
else

store the cumulative number of methods .for all ancestor classes of the
class .

endif
for each method in the class

endfor

for each superclass of class

endfor

if method signature exists in superclass
store method name for the class

endif

compute the general redefinition metric for each level of the branch of the
hierarchy

endfor

- 211 -

A. Appendix

Algorithm for the search of the type of redefinition used

For a given set of classes, the algorithm below parses the body of all redefined methods for each

class, detects if the methods are either extended or replaced, stores them in appropriate dictionaries

and calculates the corresponding percentages for each case at each level in the hierarchy. In this

algorithm, the downward parsing task i.e. parsing in subclasses as opposed to ancestor classes, is

isolated and can be required by the set-up of a calculation option in the code (see test on parsing

direction in the below algorithm). Note that this is not an interactive option as it relates to the

calculation algorithm. Downward parsing may be only relevant in the case where a hierarchical

structure exists amongst the set of classes assessed e.g. branch of the hierarchy. In such a case,

downward parsing is necessary for the construction of the method profiles.

The computation of percentages is done at the end of the algorithm and consists of the direct

application of the formula for the considered metric.

initialise dictionaries

for each class in setOfClasses

for each method in the class

endfor

if parsing direction = '80th'

tempSubclasses ~ subclasses in which the method exists
endif

boolean Extended ~ is current method extended?
if tempSubclasses size> 0

end if

if boolean Extended isFalse

extended Method ~ current class
endif

for each class in tempSubclasses
if method is extended

extended Method ~ current class

else

redefMethod ~ current class

endif

endfor

orig ~ find original creator of method
if orig not in setOfClasses

if boolean Extended = true

store method name in dictionary for extended method
else

store method name in dictionary for redefined method
endif

endif

compute redefinition metric for extended and redefined methods at each level of
the hierarchy

endfor

- 212-

A.2.7. The method profiles browser

Figure A. 8 shows the list of interface classes for the method profile display. It is an instance of the

RedefMethodsBrowser class that allows the consultation of method profiles for classes. When

the user issues such a request, the profile manager object executes the profile: method, which in

return, initiates the creation of the RedefMethodsBrowser instance. The corresponding

MethodsProfile object is then passed to the browser for display i.e. setExtendedProfile: and

setRedefProfile: methods.

initMethodsProfiJe
importProtiJe:
exportProtile:
deleteProflle:
setCalculOptions:
profile:

Method profiles browser

displayExtended:
dlsplayRedef:
getExtendedMethods :
getExtendedSubclasses:
getRedefMethods:
getRedefSubclasses:
setExtendedProflla:
setRedefProfile:
senderRedef

Figure A.8: The method profiles browser design

The class list in the method profile browser can be displayed in two different forms: a flat list or a

hierarchical list (respectively realised by the showList: and showlnheritance: methods). This

feature facilitates the interpretation of the current branch of the hierarchy when many classes are

involved. In addition, for further investigation of one particular method, it is possible for the user

to request the list of dependencies with other classes in two ways:

• Search for the senders of the current method (see section 3.3.2): an instance of the

MethodsOependents class is created. This feature returns a list of classes and the method

names that send the current message i.e. method name, thus giving the list of classes

dependent on the current one.

• Search for the implementors of the current method (see section 3.3.2): an instance of the

Implementors class is created. This feature returns the list of classes that implements the

current method with their associated depth of inheritance.

- 213-

A. Appendix

A.3. Remarks on the consequences of the encapsulation mechanism

Suspect uses of inheritance in the Smalltalk class hierarchy are partly due to the absence of an

encapsulation mechanism for controlling accessibility of inherited properties. If the proposed

redefinition metrics was to be applied on languages where encapsulation mechanisms can be

controlled such as c++ and Java, further considerations should be given to the validity and effects

of the combination of different property modifiers. In a C++ or a Java application, if methods are

declared as public or protected, the metrics would be derived in the same manner as for Smalltalk

applications however, when restrained accessibility is applied at class and method level, the use of

the redefinition mechanism is inhibited. In Table A.2, in Java, the allowed transitions of method's

declaration are shown for a class P, declaring a method m with a modifier x, inherited, redefined

and redeclared in a class C with C < P.

~ class C Abstract Public Protected Private Final

class P

first method' ./ ./ ./ ./ ./
definition

Abstract ./ ./ ./ ./ ./

Public x ./ x x x

Protected x ./ ./ x x

Table A.2: Allowed property modifiers for a redefined method in Java

All transitions indicated by a x are forbidden by the Java compiler, therefore, method redefinition

cannot take place for those. The case of a method m declared as private has not been included in

Table A.2 as, by definition, the accessibility of the method will be restricted to the class only. The

issue of the encapsulation mechanism from a measurement point relates to the additional parsing

for extracting the necessary design information. In a language such as C++, as only static

information is available, a counting strategy of a specific feature may have to take into account

subsequent applied property modifiers at method or class level. For example, to compute a number

of accumulated methods in a class i.e. including methods from ancestors, the parsing algorithm of

the metric collector tool would have to detect any restrictions applied to the methods.

- 214-

	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	000015
	000016
	000017
	000018
	000019
	000020
	000021
	000022
	000023
	000024
	000025
	000026
	000027
	000028
	000029
	000030
	000031
	000032
	000033
	000034
	000035
	000036
	000037
	000038
	000039
	000040
	000041
	000042
	000043
	000044
	000045
	000046
	000047
	000048
	000049
	000050
	000051
	000052
	000053
	000054
	000055
	000056
	000057
	000058
	000059
	000060
	000061
	000062
	000063
	000064
	000065
	000066
	000067
	000068
	000069
	000070
	000071
	000072
	000073
	000074
	000075
	000076
	000077
	000078
	000079
	000080
	000081
	000082
	000083
	000084
	000085
	000086
	000087
	000088
	000089
	000090
	000091
	000092
	000093
	000094
	000095
	000096
	000097
	000098
	000099
	000100
	000101
	000102
	000103
	000104
	000105
	000106
	000107
	000108
	000109
	000110
	000111
	000112
	000113
	000114
	000115
	000116
	000117
	000118
	000119
	000120
	000121
	000122
	000123
	000124
	000125
	000126
	000127
	000128
	000129
	000130
	000131
	000132
	000133
	000134
	000135
	000136
	000137
	000138
	000139
	000140
	000141
	000142
	000143
	000144
	000145
	000146
	000147
	000148
	000149
	000150
	000151
	000152
	000153
	000154
	000155
	000156
	000157
	000158
	000159
	000160
	000161
	000162
	000163
	000164
	000165
	000166
	000167
	000168
	000169
	000170
	000171
	000172
	000173
	000174
	000175
	000176
	000177
	000178
	000179
	000180
	000181
	000182
	000183
	000184
	000185
	000186
	000187
	000188
	000189
	000190
	000191
	000192
	000193
	000194
	000195
	000196
	000197
	000198
	000199
	000200
	000201
	000202
	000203
	000204
	000205
	000206
	000207
	000208
	000209
	000210
	000211
	000212
	000213
	000214

