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Abstract 

The theme of this thesis is the assessment of quality in class hierarchies. In particular, the notion of 

inheritance and the mechanism of redefinition from a modelling perspective are reviewed. It is 

shown that, in Object-Oriented languages, controversial uses of inheritance can be implemented 

and are subject of debate as they contradict the essence of inheritance. The discovery of an 

unexpected use of the method redefinition mechanism confirmed that potential design 

inconsistencies occur more often than expected in class hierarchies. To address such problems, 

design heuristics and measurement techniques are investigated as the main instrument tools for the 

evaluation "goodness" or "badness" in class hierarchies. Their benefits are demonstrated within 

the design process. 

After the identification of an obscure use of the method redefinition mechanism referred to as the 

multiple descendant redefinition (MDR) problem, a set of metrics based on the GQMlMEDEA 

[Bri&aI94] model is proposed. To enable a measurement programme to take place within a design 

process, the necessary design considerations are detailed and the technical issues involved in the 

measurement process are presented. Both aspects form ~. methodological approach for class 

hierarchy assessment and especially concentrate on the use of the redefinition mechanism. 
. . 

As one of the main criticisms of the measure~ent science is the lack orgood design feedback, the 

, analysis and interpretation phase. of the metfics results is seen: as a crucial phase for inferring, 

meaningful conclusions. A novel· data interpretation framework is pr~posed' and includes the use of 

various graphical data representations and detection techniques. Also, the notion of redefinition 

profiles suggested a, more generic approach whereby a pattern profile can be found for a metric. 

The benefits of the data interpretation method for the extraction of meaningful design feedback 

from the metrics results are discussed. 

The implementation of a metric tool collector enabled a set of experiments to be carried out on the 

Smalltalk class hierarchy. Surprisingly, the analysis of metrics results showed that method 

redefmition is heavily used compared to method extension. This suggested the existence of 

potential design inconsistencies in the class hierarchy and permitted the discovery of the MDR 

problem on many occasions. In addition, a set of experiments demonstrates the benefits of example 

graphical representations together with detection techniques such as alarmers. In the light of 

facilitating the interpretation phase, the need for additional supporting tools is highlighted. 

This thesis illustrates the potential benefits of integration of measurement techniques within an 

Object-Oriented design process. Given the identification of the MDR problem, it is believed that 

the redefinition metrics are strong and simple candidates for detecting complex design problems 

occurring within a class hierarchy. An integrated design assessment model is proposed which 

logically fits into an incremental design development process. Benefits and disadvantages of the 

approach are discussed together with future work. 
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Glossary of terms, abbreviations, notations and trademarks 

Glossary of terms, abbreviations, notations and trademarks 

Object-oriented technology introduced many concepts which have been interpreted differently 

with the research community. This section describes the meaning given to the technical terms used 

in the thesis so as to avoid confusion. For convenience, the "Smalltalk notation" will be adopted in 

most cases unless differently stated. 

Terms 

• Originally, properties or attributes were used to describe characteristics of entities e.g. Entity

relationship model [Chen76]. In the 00 paradigm, it is commonly understood that they 

represent both the instance variables and behaviour of the class. 

• A behaviour or service for a class corresponds to a: 

method in Smalltalk and Java, 

member function in C++, 

feature in EiffeI. 

• An instance variable in Smalltalk is the same as a local variable in C++ within a class 

definition. 

• A class variable in Smalltalk is the equivalent of a static variable in C++ within a class 

definition. 

• The declaration of the method name and arguments list is referred to as the signature of the 

method. For typed systems, it also encompasses the return type of the method. 

• Method redefinition is also known as method overriding. Name overloading is different than 

redefinition in that it refers to the different signatures for the same method which are bound at 

run-time. 

• A pure virtual function in C++ is known as deferred function in EiffeI. 

• A settor or gettor designates a method which, respectively, sets the value of an attribute or gets 

the value of the attribute. 

• Methodology: An organised, documented set of procedures and guidelines for one or more 

phases of the software life cycle e.g. analysis or design. Many methodologies include a 

diagramming notation for documenting the results of the procedure; a step-by-step "cookbook" 

approach for carrying out the procedure; and an objective (ideally quantified) set of criteria for 

determining whether the results of the procedure are of acceptable quality. 

• The term process is understood as a defined set of activities to undertake to realise an objective. 
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• The Smalltalk image refers to the Smalltalk class library and some applications. When 

Smalltalk is started, the Smalltalk executable system uploads the image in memory. An image 

mainly consists of two files: the sources.sml file that contains all the source code and the 

change.log that holds all recent user changes to the image. For any code changes, the system 

re-compiles the source code into byte code that can be executed by the Smalltalk virtual 

machine [GoIRob85]. 

Abbreviations 

• API: Application Programming Interface 

• CASE: Computer-Aided Software Engineering 

• DIT: Depth of Inheritance Tree 

• ER: Entity-Relationship 

• IDE: Integrated Development Environment 

• OMT: Object Modelling Technique method created by Rumbaugh [Rum91]. 

• 00: object-oriented 

• OOD: object-oriented design 

• OOM: object-oriented modelling 

Notations 

• Level in inheritance 

By convention, the depth of inheritance is numbered from the root class to its leaves starting from 

O. 

• Class property description 

A description of a class, at depth of inheritance I can be defined as the description of its properties 

i.e. CI={variables, methods} where variables = linst1, inst2, ... , instnl and methods = 

<mth10, mth20, ... , mthnO> 
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Example: 

The notation C2={linstA, instBI. <mthA(), mthB(»} means that a class C is situated at level 2 in 

the hierarchy, holds 2 instance variables instA, instB, and two instance methods mthA(), mthBO. 

The parameter list will be given when necessary. 

• Class property description with inherited features 

There will be cases where some or all inherited properties have to be shown for a class. The 

purpose of inserting inherited features in the notation will be mainly used to describe methods 

which are redefined in a subclass. Thus, a class holding inherited methods i. e. methods defined at 

least once in one of its parents will be noted 

c = {[inheritedVariables], variables, [inheritedMethods], methods} 

where 

inheritedVariables= lIinst1, inst2, ... , instnll, inheritedMethods = «mth1(), mth20, ... , 

mthnO» 

and inheritedVariables n variables = 0, inheritedMethods n methods = 0. The "[ ... ]" 

denotes the fact that the properties are optionally mentioned when using the notation. When a 

notation contains inherited methods i.e. « ... », the listed methods physically exist in the subclass 

which means that those methods are the ones redefined and therefore inherited. Redefined methods 

constitute part of the additional properties of a class. 

• Properties access adornment 

The Rational Rose 98 1 case tool defmes access adornments to specify the type of access allowed 

between classes, as well as on attributes, operations and roles. There are four types of access 

adornments: public, private, protected, or implementation and are represented with the graphical 

symbol appearing in front of the properties as follows: 

......•............................. _-...................................... ~ 
Access Adornm ent Keys ! 

...................................................... ·················1 
;public ! 

~rivate 
~rotected 

~mplemented 

Public: Public access means that the members of a class are accessible to all clients. 

1 Rational Rose 98, Rational Enterprise Edition, Copyright ©! 1991-1998, Rational Software Corporation, All Rights Reserved, Portions 

©!, 1992-1998, Summit Software Company, http://www.rational .com 

- 17 -



Glossary of terms, abbreviations, notations and trademarks 

Protected: Protected access means that the members of a class are accessible only to subclasses, 

friends, or to the class itself. 

Private: Private access means that the members of a class are accessible only to the class itself or 

to its friends. 

Implementation: Implementation access means that the members of a class in a package Pare 

accessible only by classes that import the package P. 

• Inheritance relationship 

If a class B is a subclass of A, the inheritance relationship is denoted B < A; therefore the depth of 

inheritance of A < depth of inheritance of B. 

Trademarks 

• Sun Microsystems, Java and Java Development Kit are trademarks or registered trademarks of 

Sun Microsystems, Inc. in the United States and other countries. http://www.sun.com. 

• IBM® is a registered trademark of IBM in the United States. http://www.ibm.com. 

• Microsoft, PowerBuilder, Microsoft Foundation Class' (MFC), Windows, PowerPoint, Excel, 

the Wizard function and Object Linking and Embedding are trademarks or registered 

trademarks of Microsoft. http://www.microsoft.com. 

• ENVY is a registered trademark of Object Technology International Inc. (OTI). 

• Rational and Rational Rose are registered trademarks of Rational Software Corporation in the 

United States and in other countries. 

• Eiffel and Design by ContraceM are trademarks of Interactive Software Engineering. 

• Borland® C++ is a registered trademark ofInprise Corporation 

• ITASCA is a registered trademark of IBEX Computing SA 

• Franz and Allegro CLOS language are registered trademark of Franz®, Inc. 

http://www.franz.com 
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1. Introduction 

"Teaching kids to count is fine, but teaching them what counts is best" - Bob Talbert 

The design of software applications using object-oriented (00) concepts and techniques is a 

challenging process where creativity, risk, uncertainty, experience, judgement and good sense 

predominate. Many factors determine the success of application development. Current 00 design 

methods provide the designers with a logical and progressive set of tasks and techniques 

permitting the discovery of many candidate design solutions to a problem. However, there are still 

no reliable ways or "no teachable step-by-step rules" [Mey97] for producing good design. In the 

final decision making process, the designers' experiences and knowledge determine the choice of 

the design solution. This choice reflects the degree of satisfaction of the requirements and criteria 

of the problem, thus the notion of design trade-off. The design choices directly affect the future of 

a project. 

Object technology provides designers with invaluable concepts and techniques that improve the 

software development process. Examples of benefits include a better capture and modelling of the 

business. requirements. Similarly, the software applications produced gain benefits from their 

degree ofreusability, maintainability and adaptability to new requirements. Overall, such benefits 

reduce the cost of the development. To date, the current push for object technology on the market 

is significant. In many areas of computing such as object-relational databases, knowledge 

management or Internet based applications, the adoption of 00 design methods and 00 

programming languages have proven useful in building successful software applications. How 

reproducible those experiences are in a different context is unknown. Software engineers have also 

learned from unsuccessful experiences. Although object-oriented software development has 

existed for decades, several fundamental aspects of object computing are, however, still the subject 

of debate and are actively researched [AskBer92, Sho&aI93, Web95]. Essentially, the issues relate 

to the appropriateness of the 00 concepts to tackle complex requirements of business applications. 

Architectural issues are one of the major aspects of software design. For software to be modular, 

one possible approach is to decompose complex problems into simpler sub-problems. In such a 

way, the identification of modules is made easier and the important 00 aspect of separation of 

concerns is realised. The fundamental unit of construction in 00 design methods is the notion of 

object. It combines data and behaviour into a coherent entity. Each object represents a unique 

concept in the real world. When objects are assembled together, coherent abstractions of real

world problems are formed and the co-operation between objects permits the realisation of the 

features of the application. The abstractions of an 00 model are discovered during the 

generalisation process. Overall, abstraction in an object model contributes to the desired 

extensibility and reusability aspects of the components. 
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Inheritance is the 00 concept that permits the abstraction of objects. From a conceptual point of 

view, inheritance is the mechanism by which a class referred to as asubclass conforms to another 

class, its superclass, thereby forming a class hierarchy. Conceptually, the subclass can be seen as a 

specialisation of its parent class. Pragmatically, from a software engineering perspective, authors 

have also expressed inheritance as a mechanism for code sharing and code reuse. In a class 

hierarchy, the parent classes provide properties that are inherited by their subclasses. Although it is 

generally recognised that inheritance is one of the major aspects of 00 modelling, it is also one of 

the most difficult to master. In particular, the mechanism of method redefinition is problematic and 

raises many conceptual design issues in the context of the class hierarchies. 

The various proposed models of the concept of inheritance [Tai96] have undoubtedly affected its 

essence. It is the obscure uses of inheritance that raise alarms concerning its interpretation and 

validity. To date, the various interpretations are still subject of debate and the characterisation of 

good uses of inheritance is problematic. Clearly, the design process requires the application of 

skills and experience from the designers, When 00 models present unconventional or suspect uses 

of inheritance, the reuse, the extensibility and the maintainability of such models are compromised. 

It should be noted that the advent of 00 programming languages has also contributed to the 

disagreement on the correct use of inheritance. One possible approach to tackle such a problem is 

to reduce the risks for such suspect uses. To do so, guidelines also referred to as recommendations 

or heuristics [Fir95, Rie96, Rum96] have been proposed in order to identify and to expres~ the 

"good uses" of inheritance. In general, heuristics appear as short textual description of the 

appropriate usage of the 00 concepts. Although a heuristic may be conceptually understandable, 

the verification that an 00 model satisfies it is difficult. Technically, depending on the nature of 

the heuristics, suitable verification methods do not always exist. The area of measurement 

techniques addresses such problems and is still actively researched. Ideally, 00 design methods 

aim at providing techniques or principles for the evaluation of "goodness" or "badness" of an 

object model. 

Assessing a design is difficult. Measurement science has suffered from criticisms concerning its 

usefulness [Bas&aI95, Bou89, HarNit96, HitMon95a, Kow93]. Nevertheless, it is generally 

recognised that measurement techniques are beneficial for tackling issues during the software 

development life cycle. Assessment methods can be used for quantifying a particular design 

aspect. Most of the founded criticisms in the literature concern the correctness of the metrics 

themselves [Fen91]. The difficulty of acceptance of assessment technique; from the developers' 

community is due to the additional burden involved in putting a measurement programme in place. 

Also, unclear or non-meaningful feedback from the analysis of metrics results does not encourage 

the use of such techniques. However, it has been generally recognised that traditional metrics 

2 Assessment and measurement techniques will be interchangeably used but the latter term will imply the use of metrics as the 

underlying technique. 
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[Fen91] are not appropriate to the assessment of many aspects of object technology due to the 

fundamental differences. Recent experiments with novel set of metrics [Bri&aI94, Hen96, Kem96] 

have therefore demonstrated the usefulness of the metrics in an 00 context and emphasised the 

need for further research. Again, it should be noted that the fast moving industry of object 

technology has not favoured the adoption of measurement techniques during the design process. 

Often, designers still rely on experience and "feel" for the evaluation ofthe quality of the design. It 

is believed that the provision of adequate measurement tools will embody the designers' 

experience and knowledge and thereby, will enable a smooth integration of measurement 

techniques as part of the crucial design process. To do so, the quantification of the level of 

goodness of an 00 model necessitates a clear understanding of the recommended uses of the 

object concepts as well as the identification of the context in which unusual uses of the concepts 

may arise. Such issues can be addressed by heuristics and the derivation of appropriate metrics on 

the object model is expected to shed light on potential unseen complexities of the design. 

Another important aspect of measurement techniques relates to the final phase of a measurement 

programme: the analysis and interpretation phase [Bou89, BriCuc98, Ebe92, Hen96, RosHya96]. 

In the current literature, this area has seldom been addressed although fundamental to the overall 

process. Usually, the derivation of metrics produces large data sets which require relevant analysis 

methods without which meaningful conclusions cannot be extracted. Often, graphical 

representations of the raw data sets facilitate the analysis process as unusual curves or charts may 

indicate potential problems. However, it is believed that such a process can be further enhanced in 

two ways: 

• The use of various types of graphical representations. Often, metrics results are represented as 

bar charts or curves but many other types of representations may also be appropriate. The 

identification of characteristics of each may guide the process of interpretation to the desired 

conclusions on the design. 

• The use of various functions for narrowing down large data sets facilitates the analysis 

process. Typically, when the conditions on which a problem appears have been identified, it is 

interesting to isolate only the metrics results concerned. 

In order to tackle the problem of evaluation of quality of an object model, this research work 

envisages measurement techniques as the main instrument for design evaluation. 
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Figure 1.1: Objectives of the research work 

1. Introdudion 

Figure 1.1 depicts the objectives of the work. To date, object oriented design methods, design 

heuristics and measurement techniques form three separate areas of research. This thesis aims at 

reviewing the main design aspects and factors relevant to the problematic evaluation of internal 

quality factors of an object model. In particular, the case of inheritance is investigated. The 

definition of an appropriate measurement plan is presented and it is demonstrated how the use of 

metrics on sample object-oriented models sheds light on the complexities involved in the design of 

class hierarchies. This work identifies the fundamental conceptual and technical issues for the 

creation of such structures. In parallel, the experiments with measurement techniques contribute to 

the definition of a possible integration of these techniques within the design process. 

The motivation of this work originates from the following facts: 

1. The use of inheritance is desirable in software applications. 00 methods have largely 

illustrated their benefits in a learning context [Boo9l, Boo94, Emb92, Fir95, Gra94, 

HenEdw94, Mey88, Mey97, Rum91 , Wi196]. Nevertheless, its various uses, sometimes 

contradictory, still generate debate amongst research and industry. 

2. From a technical point of view, the control of the property inheritance scheme in class 

hierarchies is complex and difficult [AdaMoI95, Bou89, Mey97, Sei96, Ste&aI96, Tai96, 

Web95]. To date, the concept of inheritance seems to have lost its original meaning to comply 

with the requirement needs. 

3. Emerging experiments [Bri96, BriCuc98, ChiKem94, Dum&al95, HarNit96, Kem96] and 

popularity for measurement techniques seem to indicate that they represent strong candidates 

for contributing to the design process [Avo94, BarSwi93, Bas&al94, Bas&a195, Bri&aI95, 

Bri&aI94, CheLu93, ChiKem9l, Hen95, Hen96, Hit95, HitMon95b, LewSim98, Lew95a, 

LiHen93, LorKid94, RosHya96, Whi97]. In particular, there is a need for further investigation 

of assessment techniques for the inheritance concept. 

4. Language designers have produced powerful and expressive features that manipulate 

inheritance in ways which are sometimes questionable. The modelling gap between 

fundamental design concepts and the features of programming languages still raises alarms on 

the conceptual validity of a design solution [ArmMit94, Bou89, McKMon93, PapLeJ97, 

Rie96, Sho&al93, Whi96a]. Designers expect a design to be reusable and maintainable; 

however, there are no methods that guarantee such criteria. 
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To illustrate the benefits of the use of measurement techniques, Figure 1.2 shows an example of 

typical expected metrics results. This result has been extracted from chapter 5 and the detailed 

analysis can be found there. 

The use of measurement techniques for the assessment of an object-oriented design enables the 

discovery of unseen behaviour or unclear design situations. The derivation of appropriate metrics 

for the design ought to guide the designers to satisfactory indications or directions for 

improvement of the characteristics assessed. Thus, measurement techniques give opportunities to 

determine the level of goodness or badness of the design. 

Figure 1.2: Measure of level of redefinition in the Smalltalk Object hierarchy 

In Figure 1.2, the two bar charts represent the redefinition activity within the Smalltalk Object 

class hierarchy. The measures taken are for two types of method redefinition: extended methods 

(PEM) and replaced methods (peRM). Clearly, the evolution of the redefinition activity down the 

levels of hierarchy can be seen. In particular, the amount of peRM is much higher than the 

amount of PEM. Such a situation is unexpected and suggests further analysis of the peaks of the 

peRM The technique for metrics results analysis is detailed in section 3.4. 

The thesis is organised into six chapters, plus "Glossary", "Terminology", "References" and 

"Appendix" sections. Chapter two provides a background literature review describing the relevant 

aspects of the concept of inheritance, the method redefinition mechanism, the area of heuristics 

and the measurement process. The definition of inheritance is reviewed and it is shown how its 

various interpretations affect the underlying property scheme. The identification of factors that can 

potentially produce inheritance misuses is sought. The description of the method redefinition 

mechanism clarifies the various ways of using the technique. Then, the investigation of heuristics 

and guidelines for object-oriented design sheds light on the correct ways of using 00 concepts. 

Finally, to demonstrate the benefits of measurement techniques, the roles and the key practical 

aspects for building and using a measurement programme are highlighted. 

Chapter 3 outlines the motivation for assessing the property inheritance scheme. Given the 

multiple interpretations and misuses of inheritance and the redefinition technique, a conceptual 

design problem referred to as the multiple descendant redefinition problem is identified. In order to 
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assess the inheritance characteristics of an object model, a methodological approach for class 

hierarchy assessment is described. Then, based on the GQMlMEDEA software quality model, a 

new set of metrics is proposed to measure redefinition in 00 systems. Finally, a metrics 

interpretation framework is presented to tackle the lack of current assessment techniques 

concerning the extraction of meaningful feedback from metrics. In particular, an analysis and 

interpretation technique details the benefits of using various graphical representations to represent 

metrics results. It is shown how the discovery of unseen phenomena is facilitated and contributes 

to the extraction of satisfactory conclusions. 

Chapter 4 presents a prototype of a metric collector tool that embodies the features for the 

derivation of the redefinition metrics. A brief analysis, design and architecture of the tool are given 

together with other implementation issues. This prototype tool enables the automatic derivation of 

the metric on class hierarchies, thus demonstrating the usability and applicability properties of the 

metrics. The user interfaces are described and implementation issues for the Smalltalk language 

are discussed. 

Chapter 5 gives details of the experiments using the redefinition metrics. In particular, it is shown 

how the analysis of the results permits the detection of unexpected redefinition problems. Various 

graphical representations are investigated and the characteristics of each are outlined. In addition, a 

simple example of a detection technique is presented. 
" . ~ 

Finally, chapter 6 discusses and concludes the thesis. An integration model of the design process 

and assessment techniques is proposed and the potential benefits are presented. Further work 

envisions a promising future for the science of measurement within an object-oriented design 

process. 
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2. Background 

"The future has a way of arriving unannounced" - George F. Will 

"Experience is the name so many people give to their mistakes" - Oscar Wilde 

Advances in object technology have helped many aspects of the design process in software 

development methodologies. Object-oriented methods aim at capturing and formalising the 

knowledge for designing good quality software. Although object concepts seem well understood 

and have proved beneficial, obtaining an acceptable and good object model is non-trivial. 

Designing software remains hard. For years, a considerable amount of research literature has 

discussed the concepts of object technology [Bo091, Bo094, Emb92, Fir95, Gra94, HenEdw94, 

Mey88, Mey97, Rum91, Wi196]. Using object-oriented technology for design reflects the natural 

desire of the industry and research community to manipulate concepts which seem appropriate for 

solving real-world problems. However, the impedance mismatch or modelling gap between the 

object concepts and the features of 00 programming languages has recently changed the view of 

some authors of design methodology [Eli95, Liu96, Whi97]. "Is C++ a high-level' or low-level 

language? It depends how you use it!" stated Coplien [Cop92]. Implementation considerations 

should be made in the design phase and not left to the programmer's own decision. This nlOdelling 

gap has affected the design process in two ways: 
I 

• Considering both object concepts and the various implementations of the concepts in languages 

leads to many alternative choices for the object model, thereby making design decisions 

difficult. 

• To keep the flexibility and "informality" of design activities for building various candidate 

object models to a single problem, assessment techniques have been studied and have shown to 

be promising as a design assessment aid towards the choice of the best suitable object model 

i.e. the most appropriate trade-off. 

Software design is an art therefore it can be assimilated as a creative process. Meyer stated that in 

advanced software design there is no substitute for fresh thinking and creative insights [Bo094, 

Cha&aI92, Col&aI94, Gam&aI95, Gra94, HenEdw94, Lew95b, Mey97, Rie96, Rum91]. Software 

methodology provides us with good advice from past experiences. Rather than a strict guide to 

design, methodologies propose flexible and general guidelines for software design. When good 

quality software is obtained, implicitly, this pre-supposes that the "goodness" of a design can be 

recognised from its "badness". From a designer's viewpoint, badness seems to appear easier to 

recognise because of the currently known pitfalls [Web95] or obstacles [AskBer92] occurring 

during software development. 
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The following list describes the generally accepted characteristics for "good" software 

applications: 

• Usability: features of the software should meet the requirements and be usable. 

• Maintainability: developed features should be as easy as possible to maintain with a minimum 

of disturbance. 

• Evolution: related to maintainability and reusability, the software should be open and flexible 

enough to evolve with new requirements. 

• Reusability: in a general sense, designers ought to reuse existing abstractions with minimum of 

effort. 

• Reliability or robustness: software applications should work in various circumstances i.e. 

expected and unexpected situations should be tackled and the behaviour of the system should 

work in a deterministic manner. In the case of unpredictable events, recovery mechanisms 

should be provided. 

Although most of the above criteria are desired when buildirigapplications, past experiences have 

shown that during design, there has to be a trade-off. The first reason for this comes from the fact 

tl1at not all the criteria may be satisfied at the same time. The second reason 'is that the choice of 

the criteria to be satisfied mainly affects the overall cost of the development. Software engineering, 

which has existed for nearly four decades endeavours to bring solutions to this software dilemma. 

It is noticeable that problems that were qualified as complex in the past generally become more 

understood or solved with time. 

In order to tackle the problem of assessment of an 00 design, this background literature covers 

two main topics as follows: 

1. Inheritance and method redefinition: section 2.1 presents the notion of inheritance and 

illustrates the problem of designing and identifying a correct class hierarchy. It is shown how 

inheritance shifts from its formal definition and can be interpreted differently in 00 

programming languages. As one of the main aspects of inheritance in a class hierarchy is the 

behavioural aspect, a detailed description of the important mechanism of method redefinition 

is given in section 2.2. 

2. Heuristics and assessment techniques: section 2.3 explains how and why the problem of 

assessment of object models can be tackled by the technique of heuristics during the design 

process. Section 2.4 describes the area of assessment techniques and highlights its potential 

benefits for the improvement of the quality of 00 designs. A software quality model presents 

the various aspects to be considered if a measurement plan is desired. 

- 26-



2.1. Inheritance and associated problems 

2.1.1. Use of inheritance 

2. Background 

"Systems are not born into an empty world" - Bertrand Meyer [Mey88] 

The inheritance mechanism is one of the key features for the extensibility and reusability aspects 

of object-oriented systems [Bo094, CapLee93, Fus94, Gam&aI95, HenEdw94, Mey88, Mey92 , 

00P93, Rum91, Sha92]. The concept of inheritance was introduced nearly 30 years ago in the 

Simula language [DahNyg66]. It has since become the core concept of the 00 paradigm and one 

of the most controversial topics of research for the last decade. 

Many researchers have shown that the use of inheritance In 00 systems is still very low 

[HarNit96, Kem96]. It is suggested that the main reasons for this current state might be "the 

culture of the developer", the performance considerations, the complexity of its use and the 

amount of effort needed for maintenance and control of such systems. Inheritance has not been 

fully investigated. Class hierarchy design necessitates a great effort of creativity and the main 

difficulties lie in the fact that future additions of classes should be taken into account [Kem96, 

Rum96]. Whether those characteristics are predictable or not influence the shape and structure of . 

the hierarchy [Fir95]. 

Recently, a variety of models of inheritance have been well described by Taivalsaari [Tai96]. 

Although they offer a vast extent of expressiveness, all of the different mechanisms are still subject 

to conceptual design inconsistencies [ArmMit94, CapLee93, Fir95, Sei96]. In order to reuse the 

features of classes, designers face the problem of property (attribute and method) reuse [Dev96, 

KosVih92, Rum96] and method redefinition. The latter is a powerful mechanism that permits 

behavioural flexibility in a class hierarchy however, it can also introduce inconsistent design 

situations if wrongly used [Dev96, KosVih92, Mey88, Rum96, Sei96, Tai96]. 

Different languages allow different control structures and mechanisms to support reusability and 

extensibility. Conceptually, the idea of achieving reusability is not new. In any type of approach to 

a problem, the rule of thumb is "not to re-invent the wheel". The term "reuse" has generated a lot 

of discussions within the research community as well as in industry. The promise of object 

technology lies, for a major part, in the reuse of the existing code. Code reuse takes its origin from 

the fact that a portion of code could be isolated and reused in another context. Thus, from a 

simplistic point of view, reusability is seen as code reuse. Programming is similar to any type of 

engineering process whereby factorisation and generalisation are necessary steps in order to obtain 

consistent and generic "modules". Lalonde and Pugh [LalPug91] claim that hierarchies are 

different structures depending on the notion of subclassing, subtyping or the is _a relationship used 

when designing. Hierarchy design is always guided by rules or recommendations that are 

described in 00 methods. 
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The validity of a class hierarchy is one of the most difficult tasks to assess. One can argue that a 

system is considered good when it is functionally correct. In such cases, the appropriate strategy to 

ensure the validity of the system is a rigorous testing strategy. This area of testing is beyond the 

scope of this thesis; however, testing and measurement techniques could act as complementary 

techniques. Evaluating the quality of a class hierarchy also concerns the evaluation of its structural 

and behavioural organisation. An approach to assess a class hierarchy for criteria such as 

reusability, extensibility and conformance can be tackled by measurement techniques [Bas&aI95, 

Bri&aI95, ChiKem94, Dum&aI95, Hen96, LorKid94]. Although there are common requirements 

and expected features of class hierarchies [AdaMoI95, Mey88, Tai96], the variety of inheritance 

models lead to different class organisations due to an emphasis on particular criteria to be 

achieved. Thus, the existence of different approaches to class hierarchy evaluation. Compilers 

already encompass technology to detect design errors such as type checking in strongly typed 

languages such as C++. The principle of substitutability or conformance i.e. the type of a subclass 

should conform to the type of its parent(s), is then ensured. 

Given that the aims of this thesis are to assess a particular aspect of inheritance i.e. the method 

redefinition principle, sections 2.1.5 and 2.1.6 cover the property inheritance mechanism. As a 

class hierarchy is the main structural organisation· using the full potential of the inheritance 

relationship, ernphasis will be put on the issues involved iri designing such an architecture as well 

as the possible ways of evaluating its design quality factors. However, it is important to consider 

different aspects of inheritance which are necessary for better assessment. In particular, attention 

will be paid to the "inheritance scoping control", as it is the core mechanism permitting the 

expected benefits of 00 technology. Similarly, it will be interesting to look at the recognised 

design problems associated with the use of inheritance. If it is possible to clearly identify typical 

problems, it will be easier to detect and correct them. 

In the next section, the study is mainly based on current 00 programming language constructions 

although not losing sight of a more theoretical view of the inheritance concept. The reason for this 

lies in the variety of possible constructions offered by languages. Although being design 

considerations, current 00 methods do not encompass a description of those constructions as they 

are often language specific. For instance, in Eiffel, it is possible to specify invariants, assertions 

and the list of client classes that are allowed to use the class properties. This creates the semantic 

modelling gap between 00 methods and 00 programming languages. 

2.1.2. Class hierarchy organisation 

The construction of class hierarchies still remains a problem due to the constraints involved and 

the required criteria. The inheritance relationship is used in order to strongly couple classes in a 

parent-child scheme. Although property inheritance constitutes a powerful mechanism for 

achieving reusability and flexibility, it can also introduce inconsistencies in design that infringe the 
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essence of inheritance. When developing an 00 application, it is common to use libraries of 

classes which provide general functionalities to a specific domain. Usually, a class library, 

organised as a tree hierarchy, becomes part of the system developed. The main function of class 

hierarchies is to provide the developer with an organised set of reusable and extensible classes. For 

instance, all programming languages encompass such libraries for managing widgets, networks, 

collections, etc. In the Borland™ C++ integrated development environment, the hierarchy is known 

as the Object Windows Library (OWL) and provides the developer with the windows management 

API. Microsoft™ and Sun Microsystems, Inc. have equivalent libraries respectively called the 

Microsoft Foundation Class (MFC) and the Java Foundation Class (JFC)/SWING [Sun99]. 

In a class hierarchy, the classes newly added to a hierarchy extend and inherit from the classes 

present in the hierarchy. The Smalltalk class hierarchy provides a single-root class called Object 

and does not support multiple inheritance. Single inheritance simplifies the architecture of a 

system and makes the maintenance easier, whereas the use of multiple inheritance involves 

additional problems such as name space conflicts. Although it is possible to find equivalent 

solutions to single inheritance structures, the benefits of code reuse may be compromised. 

Inheritance in 00 systems provides a feature dispatching mechanism that allows the sharing and 

selection of the code. 

In many occasions, real-world objects have common behaviours but are realised in different ways. 

For example, consider the two classes Bag and OrderedColiection, ,which are both structures for 

storing elements. A bag contains elements with no particular order as opposed to an ordered 

collection of elements which is indexed on a key. Both classes have the same behavioural 

semantics of adding elements in the structure but in the case of an ordered collection, a key must 

be provided in order to record the position of the element in the structure. Therefore, the 

implementations are different but the interfaces can be the same. 

Unfortunately, class organisation is problematic as many viable design solutions may be 

discovered depending on how the notion of inheritance is used. The following sections describe 

three main categories of inheritance uses that raise the problem of correctness and appropriateness 

of each. 

2.1.3. Subclassing, subtyping or specialising 

Different class hierarchy organisations can be designed depending on the model of inheritance 

used. Taivalsaari [Tai96] showed that three completely different tree hierarchies can be drawn 

depending on the relationship used for design. 
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(1) (2) (3) 

Figure 2.1: Subclassing (1), subtyping (2) and specialisation (3) hierarchies 

In Figure 2.1, the three possible hierarchy organisations are shown. Each of them represents a 

possible use of inheritance for modelling the different kind of Collection classes. 

Subclassing refers to an implementation mechanism where the purpose is to share code. For 

example, the Smalltalk class hierarchy h~s. been criticised for its non-conventional use' of 

inheritance i.e. implementation inheritance. When the addition of new classes in the hierarchy (i.e. 

subclassing) is done because the parent class-holds the required services without consideration for 

. other services which might not apply to the new class' instances, the new class does not conform 

to its parent class. Thus, as the new class inherits all unwanted services from its parent class, 

incorrect calls can take place, and potential exceptions can be raised. In all weak-typed languages, 

this kind of inheritance is possible to implement. Implementation inheritance as discussed by 

Meyer (see inheritance taxonomy detailed in [Mey97]) can be referred to as a legitimate case of 

use of inheritance. Meyer emphasised that implementation inheritance is conceptually valid as 

long as the subclass still conforms to the parent class. Recall that one of the criticisms concerning 

implementation inheritance relates to the fact that a subclass would conform to only some of the 

parent's properties, ignoring the remaining although inheriting them. In a better design situation, 

the parent would have cancelled the unnecessary properties for its children. However, assuming 

that a type equals a class, such non-conformance of classes in a hierarchy can be detected at 

compile time. 

Subtyping refers to a substitutability relationship between a subclass and its parent class. This 

directly relates to the type of 00 programming languages. Languages dictate the development 

spirit as they belong to two main categories: weakly typed and strongly typed systems. Strongly 

typed languages claim that the development of more reliable applications is possible while weakly 

3 Note that the described categories represent only a subset of Meyer's inheritance taxonomy [Mey97], relevant to the analysis. 
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typed languages have a high productivity rate with not much overhead. The type-check is done at 

compile-time for the former while an exception would be raised at run-time for the latter. Until 

now, the commercial market has been mainly interested in strong-typed languages such as c++ 
and Ada. However, interpreted languages such as Smalltalk usually offer a rapid development 

environment where software applications can be quickly prototyped and tested. One noticeable 

difference between the two categories of languages relates to the inheritance hierarchy structure. 

Although two hierarchies may be different, they may satisfy the same requirements. This 

emphasises the fact that the goodness of a class model (e.g. class hierarchy) is difficult to define as 

well as difficult to realise. 

Specialisation inheritance respects the conformance rule. A child class is _a particular type of the 

parent class, therefore a specialisation of the parent. Another way to describe this mechanism is to 

consider a subclass as a subset of its parent classes whereby all features of the parent apply to .all 

its heirs. Conceptually, specialisation inheritance pennits a clear categorisation of objects 

regarding their intrinsic properties; therefore it encourages the use of abstraction. 

Note that the root class, in a single-rooted inheritance tree must be the most abstracted class in the 

hierarchy. Smalltalk's root class4 encompasses all the generic behaviour inherited' by all the 

subclasses. A single-rooted approach for a class hierarchy incurs some problems for the 

management of the classes. For example, when developing an application with Smalltalk, the 

library classes and the application classes are built within the same class hierarchy. This non

separation of provided or newly built classes makes the release of an application difficult. 

These different categories of class hierarchies may impose severe restrictions on some aspects of 

the future development of the hierarchy. More research is necessary in this area in order to clearly 

identify all possible effects and problems incurred by the use of a particular category. It is, 

however, possible to evaluate the "goodness" of a class hierarchy regarding two crucial aspects: 

usability and extensibility. This is described in the next section. 

2.1.4. Usability and extensibility 

Two main quality factors are the usability and extensibility of class hierarchies. The notion of 

extensibility refers to the capability of adding new features to a class or new classes to an existing 

class library. New classes are seen as specialised versions of their parent classes. An inheritance 

relationship indicates a strong form of coupling between the classes where common behaviours are 

shared. This kind of use relates to a functional-orientated approach whereby the use of a class is 

4 Many recent discussions from the X3J20 committee for Small talk [X3J96] standardisation has raised the question of having a class 

hierarchy inherit from nil instead of the Object class. This would enable the creation of many class hierarchies rather than a single

rooted hierarchy. 
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accepted when the required functionality exists regardless of the conceptual correctness of the 

classes. 

The major difficulty when using a class hierarchy depends on the level of depth of the tree. The 

deeper the level, the more difficult the understanding and use of the classes. This is where the 

concept of inheritance is paradoxical in the sense that, in theory a class hierarchy should be deeper 

because it increases the general level of abstraction, but in practice it rapidly becomes difficult for 

humans to master deeper levels in the hierarchy. Therefore, there is a large burden for the user if 

attention is not paid to building hierarchies where child classes conform to parent class(es). 

Although the level of difficulty can be defined differently among designers, current commercial 

class hierarchies are not straightforward to approach and this raises the need for further research in 

making efficient use of complex hierarchies. For instance, suppose that it is required to extend a 

particular branch of a hierarchy which is already deep (Riel [Rie96] considers a level deep when it 

reaches the magic number seven), it becomes difficult to understand behaviour of each class in the 

branch. 

With the concept of a class contract [Mey88, Ste&aI96], emphasis is put on the specification of 

the interfaces of the class. If each class encompasses a high number of publicly available methods 

which are inherited down the branch, the final concrete class from which extension is planned 

becomes difficult to understand. Indeed, the first step to extend the hierarchy is to localise the 

correct class from which it is relevant to subclass the new class to be added. A quick look at the 

class names in a particular branch should already pinpoint interesting classes to reuse. A simple 

approach is to "look-up" classes higher in the hierarchy in a bottom-up fashion. Briefly, starting 

from the closest parent from which a derivation is desired, it is possible to scrutinise the class in 

order to find desired abstractions. Thereafter, the same approach for higher classes in the hierarchy 

can be taken. In the case of multiple inheritance, a multiple descendant path has to be studied with 

attention to possible conflicts such as the name space conflicts from repeated inheritance [Mey88]. 

Whenever a new class is introduced in a hierarchy, it should conform to all ancestor classes. 

Without tool aids such as class hierarchy browsers in IDEs, it is difficult to understand classes 

from an existing hierarchy. If CASE tools are used, the designers' task becomes easier because of 

the graphical representation of an object model. 

Other problems of class reuse and extensibility relate to a psychological issue. One of the 

heuristics provided by Riel [Rie96] states that the design of a branch of a hierarchy should be 

given to a single architect designer. This comes from the fact that developers tend to implement 

their own versions of programming code as soon as there is a suspicion of possible unreliability of 

existing code. In many cases, it appears that re-implementing code is much faster than trying to 

understand and modify what has previously been done. Indeed, this is not recommended, but it 

happens for many reasons: 
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• Programming practices of each developer: everyone has his own style of programming e.g. 

syntactical language construction or presentation, algorithmic preferences, etc. 

• No available documentation explaining previous class behaviour and semantics. 

• Complex dependencies between classes: if classes are strongly coupled, it is very difficult to 

understand the general behaviour of one single reference to an interface. Also, this refers to the 

problem of undesired side-effects generated by method dependencies. 

Class addition is one way of extending class hierarchies. Another possibility of extension can be 

done within an existing class itself. Typically, the extension of a class interface broadens the 

behaviour of the class. The higher a class is in the hierarchy the more abstract it is, which means 

that the behaviour must also be abstract enough so that it will be relevant to all subclasses, 

otherwise the conformance rule is broken. For this reason, deletion or modification of the 

behaviour of an existing class is highly critical as other client classes might rely on the deleted 

behaviour or expect a different behaviour. These class and hierarchy management issues are 

studied in the schema evolution research area for databases. Further details can be found in 

[BanKim87, Bar&aI93, Ber91, Cas93, CheLee96a, Dic95, Gib90]. 

The support for reusability and extensibility through inheritance· is different across object-oriented 

programming languages. It relies on the type of inheritance scheme used (see section 2.1.3). 

Consider a class A in the Smalltalk hierarchy: 

Object subclass: #A 

instanceVariableNames: II 

classVariableNames: II 

poolDictionaries: II 

Class A is declared as a subclass of the root class Object, therefore A inherits all variables and 

methods that the Object class holds. There is code reuse as soon as the subclass A uses inherited 

behaviour. In Smalltalk, there is no declarative construction which forbids a subclass to inherit 

from a parent's property. With the various constructions allowed in programming languages, it is 

possible to introduce conceptual inconsistencies particularly when using inherited redefined 

methods. The incorrect use of redefinition leads towards incorrect classification and furthermore to 

an incorrect behavioural inheritance [ArmMit94, Hen96, Mey97, Rum96]. 

Given the possible uses of inheritance in class hierarchies described above, the next section 

presents a formal definition of inheritance and highlights the implicit property inheritance scheme 

suggested by the definition. It is precisely the way the property inheritance scheme is used that 

enable the designers to produce conceptually orthogonal class hierarchies. 
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2.1.5. Property inheritance scheme definition 

Inheritance is the main mechanism which supports the realisation of criteria such as reusability and 

flexibility [Hen94, New&aI96]. An addition of a class to an existing class hierarchy specialises a 

branch of the tree, thereby extending it. By inheriting features from ancestor classes, reusability is 

also achieved. However, there exist many models of inheritance and the correct application of any 

model is debatable [LiHen93, Sei96]. The formal definition of inheritance is characterised as 

follows [BraCoo90, Tai96]: 

(1) I C = P $ LlC I 
where a new class C is shown as a combination ($) of a set of properties inherited from an 

existing class P and the new properties (Ll) which make C a specialised version of P. In this 

equation, the relation superclass/subclass is assumed to be transitive, therefore P includes all 

cumulated properties from its own parents. However, the inheritance scheme of properties from 

parent class to child class is open to many interpretations. Taivalsaari [Tai96] explained that P 

represents the properties inherited from an existing object or class where, in fact, C is able to 

inherit from many classes either in the same descendant branch or multiple branches if in a 

" multiple-inheritance situation. It is generally accepted that the deeper a class is in a hierarchy, the 

more difficult the control of inheritance becomes. Therefore, leaf classes are more subject to bad 

design than their parents are. 

To illustrate how the properties are inherited in equation (1) according to the definition of 

. inheritance, the set of properties of a subclass SubCls of a class Cis becomes: 

(2) SubCls = Properties (Cis) $ Properties (SubCls) 

where 

SubCls < Cis i.e. SubCls is _ a subclass of Cis, 

Properties (class) = { inst I inst E <Attributes>, mth I mth E <Methods>} 

Properties (class) is the set of attributes and methods of a class i.e. <Attributes> and 

<Methods> respectively refers to the set of possible instance variables and the list of methods in 

the class. 

Introducing the origin of properties in (2) gives: 

(3) SubCls = Propertiesinherited (SubCls) $ Properties (SubCls) 

where Propertiesinherited (SubCls) = { X I X E Properties (Cis), X is publicly available to 

SubCls}, 

From (2) and (3), a subclass SubCls is a combination of its inherited properties and its currently 

defined ones. (3) introduces properties overlapping in the definition when reuse of properties is 

achieved. 
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Class 
Properties redefined (SubCls) b PropertieStnhelited (SubCls) 

Properties redefined (SubCls) 
= { x I x E PropertieStnhelited (SubCls), 

x is replaced, extended or realised } 

Figure 2.2: Class properties 

Propertiesredefined(SubCls) are the (inherited) redefined properties as opposed to 

Properties inherited (SubCls) which is a superset including the ones accessible and used without 

modification. Because of the variety of possible modifications to a property such as complete 

redefinition, extension or realisation, there is a possible source of incompatibility between a class 

and its subclass. As stated by Taivalsaari, inheritance use does not guarantee a conceptual 

specialisation intention. The mechanism of redefinition has been criticised [ArmMit94, Fir95, 

KosVih92, Mey88, Rum96, Tai96] for not bearing any kind of semantic relationship with its initial 

implementation, especially when the method is completely overridden. Unfortunately, the 

inheritance "scoping" contro! facility does not prevent this conceptually inconsistent situation. 

Indeed, a non-strict is_a policy is more likely to introduce unsubstitutable classes and is .. used 

either for convenience reasons or because it uses_a parent class property. 

This section reviewed the formal definition of inheritance and showed the implications of the 

definition with regard to the property inheritance scheme. It becomes clear that property 

inheritance is a key aspect to the assessment of class hierarchies. The next section describes the 

property ownership transfer and the consequences on the design. 

2.1.6. Property ownership transfer 

As seen in the previous section, the property inheritance scheme states that properties of a parent 

class should be inherited by all its heirs whatever the level in the hierarchy. In a child class, 

visibility and accessibility of a property is defined in the parent class. This means the child class 

is then able to change the property values i.e. public inheritance of properties implies a property 

ownership transfer from the parent class to the child class (Figure 2.3). Due to application 

requirements, e.g. business rules, restrictions have been added to this notion of inheritance. Not 

all properties of a parent class can be inherited by its subclasses. The representation of a real

world entity by an object often necessitates hiding some of its properties from other interacting 

objects i.e. encapsulation. This facility permits an object to manage internal properties for its own 

purpose. In 00 programming languages, attributes declared as private can only be accessed 

within the class where it has been defined. Private attributes are not inherited by heir classes. The 

5 The process of declaring appropriate modifiers to a class, an attribute or a method will be referred to as the inheritance scoping control 

facility. 
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main variants of property inheritance features of four 00 programnring languages are described 

below. It is important to note that all possible features allowed by programming languages are 

subject to design problems when not used correctly. 

concrete classes 

concrete classes 
with their accumulated 
properties 

Figure 2.3: Transfer of property ownership in an inheritance hierarchy 

In 00 programming languages, the transfer of property ownership (Figure 2.3) is realised 

by the application of property modifiers to the property. The next section presents various 

encapsulation schemes offered by programnring languages and illustrates their fimdamental 

differences. 

2.1 .7. Encapsulation: visibility and accessibility of properties 

varA 
varB 

" varA, varB " 
varC. V8IO 

Figure 2.4: Example of transfer of property ownership 

In 00 languages such as e++, Eiffel or Java, there are syntactic control declarations which allow 

the control of the scope of the inheritance of the properties from a parent class (Figure 2.3, Figure 

2.4). Various control schemes are available depending on the language. Property modifiers can be 

applied at class, variable and method level. Although there are exceptions, in most languages the 

inheritance of properties is done in a top-to-bottom direction. It is the parent( s) class( es) which 

define the properties to be inherited by its heir classes (Figure 2.4). The main three basic property 

modifiers are public, protected and private [Str90). In the previous paragraph, public and private 

were presented. When the protected modifier is applied to a property of a parent class, only its 

subclasses are able to access the property. This mechanism restricts the visibility and accessibility 

of a property to descendant classes in a particular branch of the hierarchy. 
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Other types of modifiers exist depending on the language_ For example, in Eiffel, a parent class is 

able to define a subset of its subclasses which is going to inherit a particular property as opposed to 

all of them. Stopping the inheritance of properties as described in section 2.1.8 is conceptually 

questionable as it breaks the transitivity mechanism of inheritance. Although valid reasons exist 

for the presence of such modifiers e.g. optimisation, standardisation and security, the mechanism 

appears as a language feature issue which conceptually affects the quality of the design. 

c++ 
-public 
- protected 
- private 
- static 

Smalltalk 
- instance 
- class 

Class 

variables 

methods 

Java 
- friendly 
- public 
- protected 
- private 
- final 

Figure 2.5: Property modifiers in 00 programming languages6 

One of the aims of the authors when developing the Java programming language was to provide a 

language for which developers would feel familiar with. For this reason, Java syntax [Tea&a196] is 

close to the well-established C language (Figure 2.5). Most of the complexity of the C++ was 

removed although retaining the main features. Java claims to improve the flexibility and 

maintainability of programs. Note that other modifiers may exist for the illustrated languages, 

however, they are not relevant for the purpose of this document. 

The following description covers the main arguable modifiers m Java. In addition to these 

modifiers, it is possible to define packages, which are viewed as self-contained modules. 

Syntactically, a Java class declaration is of the form: 

modifiers class newClass 

Modifiers does not actually affect the class itself but determine how the class will be handled in 

case of addition of new classes or features to classes. Modifiers, in Java, are of different types: 

friendly, public, private, protected, final and abstract In C++, when the friendly or public 

modifiers are applied to a class, other client classes have a full access to the properties of the 

server class. The only difference is that friendly provides access to classes in the same package i.e. 

group of classes. 

The semantics of some modifiers are controversial because of the consequences of their use. It 

becomes difficult to control the whole list of properties together with restrictions imposed by the 

modifiers at each level of the hierarchy. In addition, side-effects are easily introduced when classes 

are complex. For example, encapSUlation can be violated when attributes of a class are declared as 

6 The figure only shows the relevant property modifiers of four 00 programming langages. 
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public, giving direct access to subclasses. The correct choice of property modifiers is an important 

task when an inheritance relationship is used but also remains one of the arduous design issues. 

Some errors can be statically checked by the compiler, or dynamically in the case of an interpreter. 

Unfortunately, this has long been seen as an implementation issue. It is arguable that such 

problems are directly dependent on the architecture and design adopted, therefore language 

features influence and affect the design. Only recently, such considerations have been described as 

part ofthe analysis and design methodology [Col&aI94, Mey97, Whi97]. 

The next sections will show how the concept of inheritance shifts from its definition and why the 

design of class hierarchies becomes even harder with the constraints imposed by new types of 

information systems. 

2.1.8. Consequences of encapsulation on the inheritance scoping control 

Controlling the property inheritance scheme 

In current software development methodology, little has been described about ways of controlling 

the property inheritance scheme. In practice, in a commercial class library, the amount of inherited 

properties in the leaf classes is usually high. In consequence, tracking back the different uses and 

definition applied to properties in ancestor classes is not straightforward. Often, it is assumed that 

properties and behaviours have consistent semantics. The knowledge of the history of inherited 

properties is crucial when considering the addition of new classes to an existing class hierarchy. 

Possible design errors concerning the conformity of a class to the parent(s) class(es) are then 

reduced. It is noticeable how inheritance is still not generally used or accepted in industry. 

Cartwright [Car98] stated that only "experts", i.e. persons who know how to control and maintain 

complex inheritance structures, were doing so. 

When considering the essence of inheritance and its uses [Tai96], designers are facing the dilemma 

of using powerful features of languages without being able to completely control the effect of their 

use [ArmMit94] e.g. Java language. It can be argued that the control over property inheritance only 

adds an additional workload for the designer, as there is no recognised common standard set of 

modifiers (Figure 2.5). Instead, each programming language has its own syntactic constructions. 

For example, in Smalltalk Express7 there is no equivalent method modifier for the privateS 

keyword in C++ or Java. Any method in a class can access any other method declared in another 

class. Therefore, at method level, Smalltalk provides the designer with fewer features to ensure 

information hiding. Instead, programmers need to keep in the "spirit of 00" and not infringe the 

rules, although this is possible. Often, theoretical and conceptual issues are ignored in favour of 

'In this thesis, Smalltalk Express™ designates the version based on SmalltalkIV® Win16 and WindowBuilder® ProN provided by 

ObjectShare®, a Division ofParcPlace, http://www.objectshare.com 

• In Small talk, all instances variables are defined as private whereas instance methods are publicly inherited. 
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pragmatic solutions [Tai96]. This situation has been generally recognised as an arguable use of 

inheritance as prediction and extension of an existing class hierarchy becomes difficult and un

maintainable. Clearly, there is a need for additional control of the property inheritance scheme. 

Abstracting for controlling inheritance 

Conceptually, classification techniques imply the existence of a category of classes with 

similarities from a structural and behavioural viewpoint. Therefore, it is sensible to have such a 

property inheritance scheme in order to cover a wide range of real-world problems. If a class holds 

methods which are to be inherited by some branches and not others, it might suggest a classic 

design problem where the parent class represents more than one concept, therefore containing 

methods which might not apply to all of its subclasses. On the contrary, it is recommended to use 

abstract methods (also called deferred in the Eiffel terminology) in a class where only the interface 

of the methods is provided and all subclasses are forced to give their own implementation. This 

type of inheritance is called reification inheritance. In such cases, methods in subclasses of the 

same class usually have different implementations i.e. polymorphic methods. In Smalltalk, 

declaring a method as abstract is not done via a modifier. Instead, the body of the abstract method 

contains the implementedBySubclass message which has the same effect (see example below)., . 

Object subclass: #Test 

instanceVariableNames: " 

classVariableNames: " 

pool Dictionaries: " 

Test instance methods 

realised Method 

Aself implementedBySubclass 

For leaf classes, the immediate advantage is to reuse and extend the inherited properties. Often 

seen incorrectly as a simple code reuse mechanism, abstraction is a conceptual technique 

permitting the extraction of similarities from objects to form new coherent abstractions. Where a 

class contains one or more abstract methods, the class is referred to as an abstract class. By 

consequence, instantiation of an abstract class is prohibited. Introduction of abstract classes in a 

hierarchy is recommended. However, deep class hierarchies are still difficult to manipulate due to 

the many levels of depth. Often, this results in cases of ignored inheritance, especially when 

considering incremental development of classes. Nevertheless, it is generally recognised that the 

support for adequate documentation and tools reduces the risk of unusual inheritance situations. 
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Case of multiple Inheritance 

In 00 languages that support multiple inheritance such as Eiffel, the publicly declared properties 

of all the parent classes are inherited by the subclass. Although the concept is sufficiently 

expressive to represent some categories of problem, the use of multiple inheritance generates 

obscure design problems concerning the property inheritance scheme. One of the most studied 

problems concerns the name spacing issue. When a subclass inherits from two parents (or more), 

all inherited properties should be accessible by the child class. If the parent classes contain 

properties with the same name, a conflict has to be resolved and the subclass has to decide which 

of the properties to inherit. In some development environments, the compiler statically checks for 

such problems and a default inheritance scheme may be provided when potential conflicts arise. 

Consider two base classes LIST and ARRAY which both define two features: print and show. 

With Eiffel, it is necessary to use the renaming mechanism to prevent name clashes. 

class FIXED_LIST [T] export ... 

inherit 

LIST rn rename print as printList, show as showList; 

ARRAY [T] rename print as printArray, show as showPrint 

feature 

... specific features of linked-size lists ... 

end - class FIXED_LIST 

Figure 2.6 illustrates another classic example of use of multiple inheritance. In a class library, the 

Stream branch provides a framework for managing data structures, input and output 

functionalities, sequential and random accesses. Intuitively, a ReadWriteStream class would 

make use of multiple inheritance and inherit from both the ReadStream and WriteStream 

classes. Then, a FileStream inherits from the ReadWriteStream, thereby all its parent's 

properties. 

Figure 2.6: Stream hierarchy with multiple inheritance 

Graphically represented in Figure 2.7, a new added subclass cumulates all properties of all its 

ancestor classes along the different branches. 
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Single inheritance path Multiple-inheritance paths 

Figure 2.7: Traversal paths for single and multiple inheritance 

Therefore, name space conflicts arise not only from the direct parent classes to the child class but 

from all ancestor classes. 

In general, the levels of depth in class hierarchies affect the control of inheritance. Paradoxically, 

the abstraction technique promotes such a situation, thereby making the design of class hierarchies 

problematic. The next section illustrates the most common inheritance design mistakes. This is 

intended to present the underlying design issues and the recognition of good design practices. 

2.1.9. Common inheritance design mistakes 

Over the past decade, many authors have presented cases of misuse of inheritance. Most of them 

argue the conceptual validity of non-conventional ways of implementing the inheritance 

relationship [AdaMoI95, ArmMit94, Fir95, KosVih92, LalPug91, PapLeJ97, Web95, Wil96]. The 

main reasons given are that they affected one of the criteria such as maintainability, reusability or 

flexibility of the design. In most cases, the conclusion was that the arguable inheritance case 

presented impacts the overall cost of the development in terms of future evolution of the design. 

Rather than an exhaustive list of inheritance design mistakes, this section describes the main 

example problems and highlights the design attributes which are of interest in an assessment 

perspective. Also, it helps at recognising the classic design pitfalls for the identification of 

problems during a measurement programme. 

One of the major problems in software development is, for any designer, to keep in mind all 

possible dependencies between components in the architecture. Meyer stated that modules should 

be understandable by themselves. If a component requires the knowledge of other information in 

other modules, it clearly shows that they are dependent on each other. Therefore, the change of one 

component might also require the change of the other i.e. they are dependent on each other. 

Although not recommended, as modules or objects rely on each other for communicating 

information, dependency or coupling exists. The issue is to control it. To help the designer, tool 

support is clearly desired [Bri96]. 
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Another example of design issues concerns the paradox between what could be understood as an 

optimisation task and design tricks or tips. When a class relies on information given by another 

class, messages are sent back and forth according to the classic client-server model. An alternative 

design choice would be to make the information available in the original class, so that no messages 

are exchanged between objects. The reason suggested for such a choice is the possible gain in 

performance and context switching. This is a wrong design choice as the eventual benefit depends 

only on the internal architecture and algorithm of the compiler or interpreter. In addition, the 

original class might no longer constitute a single abstraction and possible duplication of 

information is likely to happen. Clearly, the design results in code of obscure quality. Often, 

common design inheritance mistakes are mainly due to the side-effects produced during 

incremental refinement and development of the classes. Examples of common design mistakes, 

identified in many 00 methodologies [HenEdw94, Mey88, Rum91, Web95], are illustrated below. 

• Breaking encapsulation: when a child class inherits from a parent class, the child class has 

direct access to all inherited properties including instance variables of its parent. Amongst other 

use of inherited properties, an instance of the child class is able to directly manipulate the value 

of an . inherited attribute. As recommended by any 00 method, acces.s to a private instance 

variable should alway~ be. done by accessor, gettor and settor functions. 

• Concept and implementation: tree hierarchies have been widely used to mainly represent four 

abstraction principles: . 

* . Generalisation/Specialisation. 

* AggregationlDecom position. 

* Classification/Instantiation. 

* Grouping/Ungrouping. 

The inheritance relationship definition validates the first case only. Often theis_a relationship 

has been mistakenly used instead of the has_a relationship (aggregate components) or 

is_implemented_using relationship (behavioural reuse facility). Although the representation as 

a tree hierarchy is conceptually valid, the relationship between the classes is fundamentally 

different. Consider the example below where a STACK class is declared as a subclass of the 

LIST class. 

Object subclass: #LlST 

instanceVariableNames: 'listOfElement' 

classVariableNames: II 

pool Dictionaries: II 

STACK subclass: #LlST 

instanceVariableNames: 'top bottom currentPointer ' 
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classVariableNames: " 

poolDictionaries: " 

2. Background 

A better design alternative defines the LIST class as an aggregate of the STACK class: 

Object subclass: #STACK 

instanceVariableNames: 'top bottom currentPointer listOfElement' 

classVariableNames: " 

poolDictionaries: " I 

STACK instance methods 

initialise 

listOfElement := LIST new. 

In his taxonomy of inheritance, Meyer [Mey97] refers to the first example as facility 

inheritance. He argued that this solution is perfectly viable and conceptually acceptable if all 

the behaviour provided by the LIST class can be applied to the instances of the STACK class. 

Meyer identified two forms of facility inheritance: 

* Constant inheritance: in which the parent yields constant attributes and shared objects. 

* Operation inheritance: in which it yields behaviour. 

• Class coupling generates dependencies: any type of coupling between classes implies class 

dependencies. Lakos [Lak96] mentioned that for compiled languages, "a component y depends 

on a component x if x is needed to compile or link y". Many forms of coupling exist 

[HitMon95b] and sometimes, they generate hidden side-effects problems. For example, in the 

Lisp-based ITASCA ™ Distributed Object Database Management System [Ibe94], the 

declaration of a class and its attributes has the following syntax9
: 

(def-class DEPARTMENT 

:document 

:superclasses 

:abstract 

"Department class" ;; comment about the class 

(ROOT) ;; parent class 

NIL) 

(change-attribute 'DEPARTMENT 'Group :classp NIL 

:document "Instance variable Group" 

: inherit-from NIL 

:composite T 

:dependent T 

:domain '(set-of COMPUTING-GROUP) 

:init NIL) 

9 ITASCATM API is based on the Allegro CLOS language, Franz®, Inc. 
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In the above example, an instance variable named Group, of the DEPARTMENT class is of 

type COMPUTING-GROUP. The COMPUTING-GROUP class is declared as dependent 

aggregate (:composite keyword) of the DEPARTMENT class. In other words, all component 

aggregates (instances of COMPUTING-GROUP class) depend on their container part 

(instances of DEPARTMENT class). By consequence, a deletion of an instance of the 

container implicitly deletes the aggregate objects as well. This dependency mechanism is 

indeed dangerous if the contained objects should exist independently of the container objects. 

Coupling can be categorised in three groups [HitMon95a]: 

* instance variable relationship: in a client-server model: 

Client 

Server varA; 

Figure 2.8: Coupling with instance variable 

In Figure 2.8, the simplest form of coupling is done in declaring an instance variable: Server 

varA; in the Client class i.e. aggregation. 

* behavioural relationship: 

Figure 2.9: Coupling with method 

In Figure 2.9, methods declare local variables of a particular class type. Although the scope of 

the local variables lasts only during the execution of the method, a coupling is nevertheless 

established. 

A variant of the behavioural relationship is realised through the method signature: 

Figure 2.10: Coupling with method signature 
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In Figure 2.10, the coupling is realised in the declaration of the passing parameters. In order for 

the method to understand the argument types, the types are also declared within the method 's 

signature. 

* inheritance: 

Server 

Int varA; 

Client 

Figure 2.11: Coupling with inheritance 

In Figure 2.11, when a class inherits from a parent class, it also inherits all the publicly declared 

properties. This type of coupling is qualified as strong coupling as opposed to weak coupling. 

• Classification or objectification: the problem of finding the best classes is still one of the 

major problems of OOD. Many methods propose an object-centred view to start off the design 

and apply abstraction wherever needed in order to extract potential classes. Alternative choices 

are always possible and the decision depends on the context and the specifications of the 

problem. For instance, there is sometimes hesitation in choosing between different constructs 

such as the use of an attribute or a class. Consider an ENGINE class modelled as follows: 

Engine 

I~'-model : string 
year : Integer 
engineSlze : Integer 
engineType : r'Car", "Plane", "Amphibian") 

Figure 2.12: ENGINE class 

Alternatively, it is possible to create as many classes as types of engines and declared each of 

them as subclasses of a more abstracted ENGINE class: 

Engine 

I 
make : string 
model : string 
year : Integer 

englneSlze : Integer 

Figure 2.13 : ENGINE hierarchy 
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The design choices arise when the classification can be made depending on many factors. 

Meyer stated that a common mistake is referred to as the taxomania mistake. A simple boolean 

or enumerated attribute such as a car's colour, is used as an inheritance criterion even though 

no significant feature variants depend on it. 

• Data-centered or functional-centered: traditionally, designers were concerned with the data 

structures of entities, particularly for database schema design [Chen81]. With the introduction 

of object technology, the consequence was that resulting classes were used merely as a facility 

for encapsulating data structures with little behaviour attached, therefore giving no additional 

benefits from the traditional view. On the contrary, when the emphasis was functional-centred, 

the resulting classes were more used as a grouping unit facility and did not reflect a real-world 

object. Abstractions were not captured and objects were seen as a set of procedures. 

• Class size and class abstraction: the size of a class should not be relevant when building a 

model. However, it can be used as a good indicator of excessive or non-effective class design. 

For example, if a class size, in terms of number of methods, is higher than the average number 

of methods, for the whole set of classes in the system, this might indicate a potential wrong 

decomposition of the class considered. In such cases, the class might do too much. On the 

contrary, when a class includes a small number of methods, it might indicate a strong 

dependency with other classes. Often, such classes require to be redesigned as they may capture 

many abstractions or none at all. Such problems relate to the notion of class cohesion. In the 

case of base classes, the application of generalisation is done in a bottom-up fashion and 

common properties should reside in classes situated in the top part of a hierarchy. If a class 

holds many abstractions or is not refined enough, it probably contains a subset of properties 

which would not be applicable to all its subclasses. A consequence of such a situation is that 

the cancelling of property inheritance, also called disinheritance is likely to happen in lower 

classes. 

• Inheritance or delegation: inheritance is one possible mechanism to share information 

between objects. The delegation mechanism is another possible way to achieve the same 

although the underlying semantics is based on a client-server model as opposed to the 

inheritance model. Due to the similarity of the resulting consequence of both mechanisms, a 

common mistake is to use inheritance when delegation was appropriate and vice-versa. For a 

caller object, the delegation mechanism consists of requiring other object capabilities to realise 

a wanted task which will return the result back to the caller once completed. 
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• Inherit or disinherit: Firesmith [Fir95] recommends that no cancellation of inheritance of 

properties should be done in a class, also referred to as uneffecting properties in the Eiffel 

terminology. This feature is contraditory to the notion of inheritance. On one hand, inheritance 

proposes the heritage of properties and, on the other hand, it is possible to not inherit as well. 

Dealing with disinheritance constitutes an entire part of the design process and contradicts the 

natural mechanism of class hierarchy extension. During implementation, the detection of 

cancelled properties is not straightforward without any tool support. 

Although arguable, the notion of inheritance, in object technology, has been considered as one of 

the major novelties introduced to software development. The notion of redefinition of properties 

has contributed to its inherent complexity and difficulty to control the property inheritance scheme. 

Instead of purely and simply inheriting existing behaviour from a parent class, the child class has 

the possibility of mutating the behaviour's internals in order to adapt it to its own purpose. The 

next section gives a presentation of redefinition where the main categories are highlighted and will 

serve as. basis of study for the remaining part of the thesis. 

2.2. On the notion of redefinition 

"Children have more needs of models than of critics" - Carolyn Coats 

Why redefine if inherited? 

Redefinition is the fundamental mechanism that provides the mutability and adaptability aspects of 

methods in class hierarchies. When the inheritance relationship is used between classes, the 

subclasses of a parent class can use, extend, replace or ignore the set of behavioural properties 

defined in all its parent classes. In the case of replacement of the behaviour, this is referred to as 

the method redefinition mechanism. Redefinition can generate many behavioural and conceptual 

inconsistencies in a class library. The mechanism is still controversial [Mey88, Rum96, Tai96] and 

there is a lack of understanding on the full effect of the mechanism on the overall class hierarchy. 

Use of redefinition 

In the literature, method redefinition is generally described as a syntactic language feature [Bo094, 

Gra94, HenEdw94, Liu96, Mey88, Rum96, PapLeJ97] rather than a design concept. To date, the 

implications of use of method redefinition are unclear. This thesis addresses such problems in 

focusing on a conceptual description of redefinition and in providing the methodology and tools to 

analyse the behavioural aspect of class hierarchies. 

In current 00 methodologies, designers rely on lists of guidelines to validate the use of 

redefinition. In theory, designers should ensure that the semantics of a method remain the same if 
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changes are made to its implementation. Often, the examples of method redefinition relate to an 

illustration of the concept of polymorphism [Mey88]. 

An example list of Rumbaugh [Rum91]'s recommendations on redefinition is as follows: 

• Query operations should not be redefined. 

• A redefined operation should not restrict the semantics of the inherited operation. 

• Redefining operations should never change the protocol or the underlying semantics of the 

inherited operation. 

• Separation of interface from implementation should help in detecting useful redefinition. 

• If all inherited methods are redefined, the subclass is wrongly subclassed. 

• If no redefinition is used, it suggests that polymorphism is non existent. 

To date, designers can only rely on such guidelines, similar to the above-mentioned, for using the 

redefinition feature. Although a detailed description of the mechanism can be found in case study 

examples, there is a lack of methods for the validation of its use in class hierarchies when many 

levels of depth are present. Firesmith described a set of inheritance guidelines which gives 

practical advice concerning a class hierarchy design [Fir95]. However, in practice there are no 

guarantees that a given case of method redefinition is correct. A system can actually work without 

satisfying the guidelines or essence of inheritance. Design rules exist, but there are still various 

problems for which only designer's experiences and intuition help. In those cases, it is argued that 

assessment techniques come into the scene and are able to provide useful help in identifying and 

understanding the problem and suggesting design improvement directions. 

This section analyses the different redefinition categories in the view of identifying the essential 

quality attributes to be considered within the measurement plan. Emphasis is given to the 

identification of possible uses of redefinition and the reasons why the mechanism may generate 

conceptual design problems. Also, it is essential to understand the consequences of use of 

redefinition in order to recognise potential caveats in complex structures such as class hierarchies. 

2.2.1. The redefinition principle 

"Redefinition is an important semantic mechanism for providing the object-oriented brand of 

polymorphism" - Bertrand Meyer [Mey88] 

The basic principle of method redefinition is simple. In a class hierarchy, any class which has one 

or many parent classes inherits the properties of its nearest parent and, by transitivity of 

inheritance, the ones from further ancestors. In a multiple inheritance case, the parents are situated 

in different branches (see section 2.1.8). Method redefinition is a syntactic programming language 
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facility that preserves the original method name when the body changes. Conceptually, one of the 

main reasons for using redefinition is to provide the flexibility of defining a different 

implementation if needed, thus the ability for an original method to hold many forms in many 

subclasses of the same parent class. Such methods are calledpolymorphic. At run-time, the correct 

behaviour will then be dynamically bound to the object which receives the message (the receiver). 

The principle of redefinition is also referred as name overloading or overriding as it exists in Algol 

68 or Ada. Notice that the renaming mechanism provided by the Eiffel language is different from 

redefinition. The idea is simply to provide aliases to the same inherited feature. It is a syntactic 

mechanism which prevents name conflicts in a multiple inheritance situation. 

The change of the semantics of the behaviour when using method redefinition is the fundamental 

issue. Meyer claimed that this situation is contrary to the spirit of redefinition and provides the 

concept of assertions to tackle the semantic problem. Constructions such as preconditions and 

post-conditions are effective ways to realise the specified contract and ensure that any subclasses 

inherit the correct behaviour. 

The next section gives the necessary conditions that enable method redefinition to take place. 

2.2.2. Conditions for realising method redefinition 

In order to realise method redefinition, there must be an inheritance relationship defined between 

two or more classes. Suppose that a superclass AParent is defined as 

AParent = {10L <mthlnParent>}, 

then a subclass would be defined as 

AChiid = {10L «mthlnParent», <mthlnChild>} 

where mthlnParent is inherited and mthlnChild an additional feature of AChild. 

From the formal definition of inheritance and the property ownership transfer given in sections 

2.1.5 and 2.1.6, a method can be redefined only if it is first inherited. 

Thus, for a class C = {10L «m», <0>}, m is inherited if and only if: 

• m is defined in, at least one of its superclass( es). 

• m is publicly accessible by the methods in C. 

If a method m in a class C is redefined, it can be considered as a new property of the class as it 

physically extends or replaces the original method. In the case of methods originally declared as 

abstract, the subclass must provide the body of such methods, thus a completely new property for 

the subclass. 
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A method m of class C is redefined if and only if: 

• m is an inherited method (1), 

• m(C) signature is the same as in its original definition (2jO, 

• m(C) implementation is either, replaced, extended, or provided (3). 

If mthlnParent is redefined in the class AChild, then the class becomes: 

AChild = {101. <mthlnParent, mthlnChild>} 

The parameter listll and body of the methods may have changed. Therefore, the mthlnParent 

method is considered as a new method for the class with the particularity of inheriting a portion or 

none of its parent's definition. Usually, redefined methods add specialisation to a class, thus 

enhance its behavioural aspect. 

In a class hierarchy, it is expected that methods would be mostly reused or extended. By 

consequence, the leaf classes are potentially inheriting a large number of methods. This is 

graphically illustrated in the next section. 

2.2.3. Descendants' heritage extent (hierarchy collapse) 

Suppose that a branch of a hierarchy collapses. Instead of having many classes in the branch, an 

equivalent behavioural construction would be to regroup all the methods from all classes in the 

branch into a single larger class. This process is known as flattening [Hen96]. In the flat class, all 

methods are unique and for the ones redefined within the branch, only the latest version appears. In 

the Eiffel development environment [Mey&aI95], there exists one such functionality that helps the 

designer to browse and understand the class's internals: the flat form view. Amongst other 

features, a class, in its flat form representation, displays the list of inherited properties from all its 

ancestor's classes within the same level. Therefore, a list of accessible features and their origin is 

made available in the flat form view, facilitating the search for suitable class properties. It should 

be noted that the flat form only displays the latest version of its properties, redefined or not. 

Therefore, all intermediate implementations are not shown. This method is sometimes convenient 

for assessing behavioural characteristics of the hierarchy. 

In Figure 2.14 the extent of the expected descendant heritage is modelled for the Child class. 

When a class inherits properties from its parents, all of them are virtually present in the class plus 

the delta parts: x and y. In an is _ a relationship, part of the inherited properties is reused without 

modification and another part is redefined. 

10 In C++, name overloading permits a redefinition of the parameter list only. 

II Note that, in Smalltalk, as the name also defines the parameter list, only the body is allowed to change in the case of a method 

redefinition. 
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-Fi.gure 2.14: Expected descendant heritage extent 

Example of code for inheritance reuse and extension 

class C1 { 

public: 

int add5(int n) { return (n += 5); } 

} 

class C2 extends C 1 { 

public: 

} 

int exponentM(int n, int m) { return ( (super add5(n) )"m ); } 

int square(int n) { return ( (add5(n) )"2 ); } 

int cube(int n) { return ( (add5(n) )"3 ); ) 

int add5(int n) { 

if (n < 0) n = 0; 

r.etum{ super-add5fA) t; 
} 

~ 2. Background 

The addSc10 method is publicly inherited in the class C2, therefore reusable. The measure of 

amount of reuse in 00 systems strictly depends on the definition attributed to the tenn "reuse". 

Code reuse can be interpreted in difierent ways. One possible measure of reuse is to simply count 

the number of times an inherited method is referenced within each of the subclasses. In the above 

example, the add5c10 method is called twice in the class C2. The method calls are detected by 

the keyword super which means that the parent's method is called. However, the counting 

strategy does not specify whether indirect calls should be included or not. Indirect calls are made 

through intennediate methods such as the ones in the squareO and cubeO methods. Counting 

such calls would raise the number of calls to the inherited add50 method to four. Such situations 

demonstrate, for the reuse criterion, how ambiguous an empirical evaluation could be when its 

definition and semantics do not cover a particular case. Another important case is the fact that 

add5c20 redefines (in this case, extends) the inherited implementation. Therefore, it is arguable 
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that such a redefmed method can be considered as a new method to the class C2, In which the first 

counting method remains valid. 

The above code example and Figure 2.14 illustrated the use of redefinition in the case of 

extension; however, there exist other redefinition categories. This is detailed in the following 

sections. As the aim of this thesis is to assess the different uses of inheritance and its correctness, 

emphasis will be given to the redefinition categories that present potential problems from a design 

perspective. 

2 .2 .4 . The main redefinition variants 

Despite its very important role in a class hierarchy design process, the term redefinition is actually 

used in a confused way. Sometimes, it is referred to in the sense of method extension and othet 

times in the sense of method replacement. Although, in both cases, the method is effectively 

redefined, their aims diverge completely. Method extension permits the reuse of the inherited 

property whereas method replacement stops the heritage of a parent property by not using it and 

replacing completely the inherited implementation with a new one. Method replacement seems 

intuitively unnatural unless as used in the case of a polymorphic method. For example, consider 

the following Smalltalk Colfection branch: 

Figure 2.15: Part of the Smalltalk Collection branch 

The add: method of the class Collection is declared as abstract, therefore it is necessary for the 

subclasses to provide the implementation of the class. In such a case, redefinition is correctly used. 

In order to assess the "goodness" of a class hierarchy in terms of criteria such as coupling, 

cohesion, reuse or inheritance, it is important to understand and define what characteristics are to 

be measured. The hypothesis is that a high level of redefinition or its variants suggests a possible 

conceptual design problem in the hierarchy e.g. a class which was wrongly subclassed. The 

redefinition of a method will be assessed regarding its main variants [Lew95b] described in Figure 

2.16. 
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Redefinition variants 
» complete redefinition 
}> extension -----
}> realisation 

Figure 2.16: Different types of methods redefinition 

The SUPERCLASS's methods are assmned to be publicly inherited. In SUBCLASS, the first 

case of the redefinition variants depicts an arguable case of inheritance where a complete 

redefinition of a method is done. Whereas the last two cases, extension and realisation, represent 

the recommended use of property inheritance. Cancellation of methods is an example of complete 

redefmition that restricts or stops the inheritance scheme. An extension to the implementation of 

methodB permits the reuse of inherited code and the addition of extra code which makes the 

subclass a specialised version. It should be noted that all cases of inheritance fall under one of the 

different types of method redefinition mentioned. 

2.2.5. Remark on super method calls 

This section highlights the fact that the type of calls to inherited methods may greatly affect the 

control of the behavioural inheritance. 

When defining an is_a relationship between two classes and providing that the parent class does 

not restrict the scope of inheritance, the subclass is offered the possibility to accept or refuse the 

parent's properties. In Smalltalk, a reference to the superclass properties is done by addition of the 

pseudo-variable [GoIRob85] super in front of the property referenced. The default inherited 

feature called is always the one which was lastly defined or redefmed in one of the superclasses. 

Thus, if many versions of the same feature exist in the descendants, the latest implementation is 

used. This will be referred to as the direct inherited property as opposed to other versions defined 

higher in the hierarchy. Note that the expressions direct or immediate classes will be used as 

opposed to further or distant classes. It is the method-lookup mechanism [GoIRob90, Riv96] which 

allows the execution of the correct version at run-time. 

In the C++ language, is it possible to call any publicly declared property of a superclass using the 

scope operator e.g. classTest::methodAO. Thus, if a method has been redefined many times in 

subclasses, any of the implementations can be recalled from the leaf class in specifying the above-
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mentioned scope operator which is, in fact, the class name followed by the property name, 

separated by two semi-colon characters. These types of calls that clearly deviate from the expected 

inheritance scheme adds complexity to the understanding of the overall class hierarchy, thereby 

compromising its reusability or maintainability. The previous situation also illustrates a case where 

the complexity of the coupling between the parent and child classes is increased. This has been 

recognised as one of the major problems of inheritance hierarchies [Bri&aI95, ChiKem91, 

ChiKem94, HarNit96, Hen96, Hit95, LorKid94, Mey88, Whi97]. The less coupling between 

classes, components or modules, the better. Further research is needed in this area and is outwith 

the scope of this thesis. 

The next section describes one of the most debatable cases of inheritance which is referred to as 

disinheritance. This study is crucial for the understanding of the design characteristics that are 

involved in a measurement programme. 

2.2.6. Disinheritance and inheritance refusal 

Two problematic cases of property inheritance arise when a parent class disinherits its child classes 

or when the child classes refuse the inherited properties from its parent classes. A conceptual 

approach is taken in this section in .order to shed light on the reasoning behind such situations. It is 

argued that such cases of inheritance use are one of the main causes for complex inheritance 

hierarchies and are often related to fundamental design problems. 

Inheritance aims at propagating ancestors' properties. If the properties are required to be known 

only by the class or by a subset of its heir classes, the access and visibility of the properties are 

controlled by the encapsulation mechanism. However, such inheritance situations can be disturbed 

by explicit or non-explicit restrictions as described below: 

• Parent classes impose restrictions for future child classes: the Eiffel language provides a 

particular construct which allows, in a class, explicitly naming the heirs for which a set of its 

properties will be made available. 

class EMPLOYEE 

export {MANAGER, DESIGNER} salaryGradeA end 

end 

In the above example, the salaryGradeA method will be accessible to only the MANAGER 

and DESIGNER subclasses of EMPLOYEE. The main benefits of such constructs bring rigour 

to the specification of a class. The property inheritance scheme is explicitly stated within the 

class. However, it also adds additional complexity for the management and control of 

behaviour in a class hierarchy. Exporting properties to only a subset of classes simply means 

that the concerned properties are not relevant or even not applicable to the other remaining 

subset, thus suggesting a design subclassing problem. One classification might satisfy one 
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criterion while violating another criterion, most of the times because of particularities which 

prevent obtaining a satisfying design. For example, the case of an ostrich being a bird or not 

(i.e. OSTRICH is_a BIRD?) has been studied by many authors. The peculiarity of an ostrich 

not being able to fly but still being categorised as a bird in animal taxonomy raised the 

problem. Meyer proposed a solution using an inheritance construct whereby pre-conditions are 

applied to properties. To simplify, an ostrich would not satisfy the pre-conditions required for 

the fly method, thus the method would not be accessible to ostriches. By consequence, the 

evaluation of the goodness of inheritance use should also take into account those particularities 

when interpreting the values obtained from metrics. The assessment of redefinition is part of 

the design trade-off. 

• Child classes refuse a visible and accessible property of its parent class: this can be 

achieved in two ways: 

* Ignoring inherited features: in this case, the features are simply not used i.e. not referenced 

in the class. Usually, in a class hierarchy, the leaf classes are the classes which encompasses 

all the knowledge given by the ancestor's classes. In this perspective, intermediate classes 

are just passing inherited properties to future subclasses and finally to the leaf classes. 

However, if an inherited property does not conform to an intermediate class e.g. a method 

which does not apply to instances of the· class, the inheritance relationship might be 

questionable. Such situations do exist in current class libraries. This clearly illustrates the 

dilemma between the intrinsic genericity aspect of class libraries and the specificity aspect 

required to produce a solution to a design problem (see section 2.1.3). 

* Redefining the property: this category of redefinition is of particular interest for this work. If 

many cases of complete method redefinition exist in a subclass, it suggests a potential 

design problem whereby the subclass might not hold a correct inheritance relationship with 

the parent class, therefore a case of a class wrongly subclassed. Incremental development 

sometimes leads to inheritance complications and difficulties in controlling the extent of 

multiple changes of a method's implementation down a branch of the hierarchy. For 

example, it is common to add new methods at higher levels of the hierarchy, so that all the 

subclasses can benefit from the new method introduced. Assuming that the semantics of the 

method remain the same for all its descendant classes, different implementations might still 

be needed. In fact, the property redefinition happens because the parent class does not 

provide the desired behaviour, thereby requiring the replacement of the inherited 

implementation. It is precisely the difference of semantics between the parent and the 

replaced method's implementation that poses the fundamental design issue. The "Design by 

contract" methodology [Mey97, Ste&aI96] aims at tackling such problems. 
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Clearly, there exist design solutions which fit the requirements but contradict inheritance. 

Therefore, this strongly suggests that inheritance is not always the most appropriate concept for 

solving certain business requirements. 

While the above described redefinition models provide a flexible way to address particular design 

problems, they may also introduce inconsistencies in the design. The remaining part of this thesis 

investigates possible approaches to evaluate the correctness of a design regarding design 

inconsistencies that are introduced by unclear uses of the method redefinition mechanism. Given 

that a design solution may satisfy some of the design criteria while compromising others, it is fair 

to search for the best compromise, and admit that a design may not satisfy 100% of the criteria 

required during the assessment of the design. 

This section introduced the main redefinition variants and their respective properties. They 

constitute strong candidate subjects for the assessment of the behavioural aspect in class hierarchy. 

Rating the presence of each category gives indications of the type of redefinition used as opposed 

to what is theoretically expected or recommended. 

It can be argued that obscure uses of inheritance ought to be detected at design phases; however, 

this is not straightforward due to the inherent complex hierarchical structures that inheritance 

produces. 

In the previous sections, the inheritance mechanism has been presented. In order to build a 

measurement plan to assess the correctness of inheritance uses, it is essential to recognise what 

constitute good, bad, expected or unexpected uses. Heuristics address such issues in 

recommending appropriate uses of object concepts and in helping the design decisions for trade

offs. Heuristics are investigated as a means to identify correct and incorrect uses of method 

redefinition and are aimed at providing suggestions where design improvement is possible. In 

section 3.4, it is also shown how the interpretation of metrics can be based on existing guidelines 

to address identified design problems. 

2.3. Heuristics or guidelines for object-oriented design 

A consequence of the major hurdles [AksBer92] encountered during the design phase concerns the 

capture of the rules of 00 design called heuristics or guidelines i.e. recommendations on the 

correct use of an aspect of object concept or mechanism. In general, heuristics describe the what 

without telling the how or why. Heuristics are orthogonal to a methodology in the sense that they 

exist as a repository of good advice to be used as a checklist. This repository usually comes from 

the extraction of all rules and constraints recommended in a methodology to form a summary 

synthesis. 

Given the multiple inheritance models (section 2.1.3), an assessment of inheritance requires further 

precisions on the intention of the designer e.g. the inheritance model, the problem tackled and the 
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expectations. These expectations may originate either from the 00 methodology or announced by 

the designers. In our case, if it were to assess the method redefinition mechanism, one would state 

not only the goals of the assessment but also what is considered as good or bad. To do so, the 

heuristics constitute a possible approach for the designer to state the hypothesises, assumptions or 

general recommendations regarding the subject assessed. Reference to such heuristics is valuable 

as a design aid tool; however, it requires to be supported by a quantitative process that permits the 

validation or invalidation on the correctness of the design. 

This section gives a general overview of heuristics. It is shown how the technique can be used as a 

design technique, thereby providing an opportunity for defining the intended uses of inheritance. 

The benefits, applicability and restrictions of heuristics are outlined. 

2.3.1. Definition and purpose 

Guidelines for 00 design are, by definit~on, aimed at guiding the process of design. Sometimes, 

they are referred to as principles although this term implies strict respect for the topic described. A 

basic definition of heuristic is as follows: 

Heuristic [FoI97]: 

A rule of thumb, simplification or educated guess that reduces or limits the search for 

solutions in domains that are difficult and poorly understood. Unlike algorithms, 

heuristics do not guarantee optimal, or even feasible, solutions and are often used 

with no theoretical guarantee. 

From a software engineering viewpoint, it is surprising why the interest for guidelines has 

increased from the birth of the 00 paradigm. One could question if there is a need for those design 

guidelines as all details should be already explained and examined in the 00 methods. A first 

answer can be found in observations made from past experiences. As many factors may influence 

the profile of an 00 model, it is the designer's responsibility to ensure the best possible 

compromise for a good 00 model. Each design solution corresponds to a particular design 

problem space. This is the reason why designers ought to capture the commonalities between each 

design context, so it can be reproducible. Such difficulties are reflected in the design decision 

making process. Thus, heuristics originate from the intention of designers to describe good uses of 

the 00 concepts. For instance, the use of abstraction or generalisation varies according to the 

designer. When many approaches exist to solve a design problem, designers can rely on heuristics 

to guide their decisions. Riel [Rie96] described his work as an attempt to capture this subconscious 

list of heuristics which guru designers use to "validate" their design. If the heuristics pass, then the 

design feels right, and vice-versa. Note that in any cases, humans' mistakes still represent one of 

main sources of errors. Heuristics may also state the conditions under which the application of a 

technique or a mechanism will exhibit good quality factors. In general, heuristics are considered as 

part of 00 design methods although they may not be specifically referred to as heuristics. 
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The development of large software systems provided experience in producing lists of guidelines 

for good design. Even though they remain textual explanations, their application whilst building 

models help increase the level of quality of applications with respect to reusability and 

maintainability [Fir95]. Heuristics for 00 design are categorised according to the various aspects 

found in 00, and often address unclear or imprecise design features i.e. use of the inheritance 

relationship for subclassing or subtyping. Recently, Riel [Rie96] proposed more than sixty 

heuristics which cover most aspects of 00 design from objects, classes, the different kind of 

relationship to a complete 00 model. The author even mentioned that the heuristics provided are 

to be only considered as rules of thumb and not as rules which must be followed. Those heuristics 

exist for the sole purpose of warning when the design does not satisfy a given one. However, the 

decision will always be up to the designer for further actions if judged necessary. 

The main characteristics of design heuristics are outlined below: 

• Non-formal. 

• Language dependent or independent. 

• Rely on observations from past experiences. 

• Outline the main idea of a concept. 

• Give an interpretation on the proper use of a technique or mechanism. 

• Non-compulsory. 

In general, heuristics are recognised as good indicators of anomalies or infringement of design 

principles. For example, a class hierarchy that is extended in width rather than in depth illustrates 

that the inheritance mechanism is used in only one particular aspect and that redundancy of 

services might appear in the subclasses. Ultimately, design guidelines provide directions to tackle 

design problems. 

Examples of heuristics' classification from different authors can be found in the Appendix. 

Heuristics may be used in a wide range oftopics from conceptual design to programming language 

constructs. However, one particular limiting aspect of heuristics is that they may be subject to 

various interpretations. In such a situation, their application may also be compromised. The next 

section relates such issues. 

2.3.2. Interpretation 

On one hand, heuristics' informal description underlines the fact that they should be manipulated 

as good design advice rather than strict rules. On the other hand, the definition also specifies that 

they may be open to many interpretations. In general, heuristics recognise the good or bad 

practices in design but do not suggest approaches to reach that aim. Heuristics that encompass a 
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subjective characteristic are particularly questionable. For example, Firesmith's [Fir95] guideline 

G-30 states: "Avoid inheritance structures that are too shallow or too deep". It argues that 

inheritance hierarchies are considered shallow when they are less than three levels deep and deep 

when they more than seven levels deep. Those assumptions are indeed debatable and highly 

dependent on the domain and the designer's experience. On the contrary, Kennedy [Ken92] 

promoted a deep hierarchy approach based on abstract data types. By following his guidelines, a 

designer would not face the important problem of providing too much or too little information 

within a class. A deep hierarchy is effectively breaking up the problem into many classes. Another 

variation of the same principle for inheritance is given by Riel [Rie96]: "5.4: In theory, inheritance 

hierarchies should be deep" and "5.5: In practice, inheritance hierarchies should be no deeper 

than an average person can keep in his or her short-term memory". The application of heuristics 

still remains difficult because of their open interpretation. 

Although valid, heuristics may not be relevant in all design situations as it depends on many 

factors such as the requirements and criteria of the application. For instance, consider the 

following contradictory guidelines: 

• Class coupling is not recommended because it creates a dependency link between the classes. 

• . Commonality in data, behaviour and/or interface should be factored out to the higher levels of 

the hierarchy. 

The second guideline encourages the creation of abstract classes in higher levels of the hierarchy, 

therefore is in favour of decomposing and organising the behaviour in appropriate abstract classes. 

Creating many levels of abstraction implies an increase in the number of classes in the system. So, 

when instances of a class are created, they rely on other information from other classes, therefore a 

possible increase of class coupling as well, which is contradictory with the first guideline. 

Another difficulty in using heuristics is that exhaustive lists of recommendations seem to be 

adopted sparingly in companies and therefore, are under the influence of the practices in that 

environment. Frequently, recommendations are made for 00 programming languages in order to 

generate some sort of uniform programming culture which makes easy communication between 

developers. 

Riel [Rie96] argues that the designer does not get a prioritised ordering of the heuristics. Instead, 

the sense of priority comes from a combination of the application domain and the user's needs. 

Therefore, this suggests that the representation of heuristics should be either problem-based or 

characteristics-based, thus encouraging classification. The application of heuristics or guidelines is 

mainly requirements and constraints driven. 

It is clear that heuristics may not be as beneficial as expected for the reasons that there are no 

supporting techniques or tools to verify if the heuristics are realised. To avoid the above

mentioned problem of heuristics' interpretation in this thesis, attention will be given to heuristics 
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that address specific design issues rather than general ones. In such a case, it is believed that 

heuristics will permit a fairly accurate description of the problems of inheritance, thereby 

facilitating the use of quantitative measures on the design attributes. However, the use of 

quantitative measures will not remove the subjectivity aspect of the heuristics, but rather only 

provides the basis for development of non-subjective assessment. 

The next section illustrates an example use of heuristics. 

2.3.3. Example of heuristic's application 

Class correctness 

Different design solutions exist for the same problem. For example, Rumbaugh proposed that a 

single class with appropriate attributes e.g. instance variable of basic type or of aggregate type 

should be considered when the potential subclasses do not hold different forms [Rum93]. 

Person 

name:*lng 
dateOfBlrth : string 
nationality: {BIttI .... French •••• } 
origin : ~. Asian • ••• } 

(a) 

Person 

name:*lng 
dateOfBirth : string 

has 8 

(e) 

Person 
name : string 
dateOfBirth : *lng 
origin: {WhItII. Asian •.•• } 

/'-r British 1 rrF-"Irel-nch---"l 

I J I J 

(b) 

Citizenship 

nationality: (BrltI .... French • .•• ) 
origin : {WhItII. Asian • ••• } 

Figure 2.17: Three possible designs for the class Person 

Figure 2.17 shows three different models representing the same information about a person. 

Applying Rumbaugh's above-mentioned guideline, the design (a) is preferred because the creation 

of two subclasses BritishPerson and FrenchPerson do not add further information to the design 

as in design (b). In addition, the same problem occurs for representing the origin of a person. In 

fact, a much more flexible design is shown in (c) where the information about any kind of 

citizenship is modelled as a Citizenship class and any person holds a link to this information. 

Suppose that depending on the nationality of a person, there exists a different set of regulations. A 

possible solution to keep track of the regulations would be to store them as behaviour in the class 

Citizenship (design (c». The following guidelines are satisfied as well: "keep related data and 

behaviour in one place" and "descriptive attributes should be modelled as properties" [Rie96]. The 

appropriateness of the Citizenship class (as opposed to an attribute) was justified by the presence 

of behaviour for the different nationalities represented. Citizenship class can therefore be used 

independently in other contexts, resulting in a de-coupling of information among classes. 
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Note that, with the help of the heuristics, a model can be successively refined in order to solve the 

same problem in improved ways. The first important step before applying heuristics to a design is 

to select the relevant ones for the project. Then, a priority order can be attributed to each identified 

heuristic within each of the categories. 

Modelling gap: translation from textual analysis to design to implementation 

It has been generally recognised that in the early phases of the software development life cycle the 

transition from the user requirements to the specification phases raises the problem of capture and 

comprehension of the users concepts. This has been referred to as the mapping and the modelling 

gap problems (Figure 2.18). 

I Abstractions If<III.~----- mapping 

• 
__________ ~~~['-__ B_u_s_in~e_ss __ __J 

. concepts 

Real world 
mapping .................... ................. .... - ............ _ ..................................................... - ............ -.............................. . 

B 
Computing world 

Abstractions ~ mapping modelling 00 language 
gap features 

Figure 2.18: Mapping and modelling gap 

This example illustrates a well-known application of heuristics or guidelines in order to find 

relevant objects from a textual analysis task. The early work on the identification of objects in a 

system is due to Abbott in 1983 [Abb83]. His idea was to extract the objects and methods from the 

textual specification of the problem based on simple rules or guidelines. With a direct mapping of 

the grammatical type of words to 00 concepts it is possible to obtain a first object model. 

Part of speech 
Proper noun 
Improper noun 
Doing verb 
Being verb 
Having verb 
Stativeverb 
Modal verb 

Adjective 
Adjectival phrase 
Transitive verb 
Intransitive verb 

Model component 
Instance 
Class 
Operation 
Classification 
Composition 
Invariance-condition 
Data semantics, precondition, post
condition, or invariance-condition 
Attribute value or class 
Association, operation 
Operation 
Exception or event 

Example 
John 
company 
lead 
is a 
has a 
have bonus 
retires at 65 

is able to 

Table 2.1 : Identification of objects from textual specifications 

Example: Suppose that we want to model a company which employs a certain number of 

employees. A manager is able to lead many employees but an employee is responsible to a single 

manager. An employee receives a bonus on his work anniversary. In this company, an employee 

has the following status: junior, senior, project leader, manager and retires at 65. 
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In the above textual specification, the possible objects are shown in Italic while the relationships 

are underlined. A possible resulting object model would then be: 

employs 

Figure 2.19: A company information system12 

This section showed that heuristics constitute a useful informal technique to tackle design 

problems. Intuitively, it can be claimed that the human s common sense is the first form of 

heuristics. Heuristics give indications on the correctness of a design and can be used as a 

complementary technique to the design process. Therefore, it is a good candidate technique to 

investigate potential misuses of the redefinition mechanism. However, it has been previously 

stated (section 2.3.1) that heuristics do not guarantee solutions. The next chapter describes how the 

recent subject of 00 design assessment can shed light on many design areas where suspected 

problems occur. It is believed that measurement techniques can support heuristics in the sense that 

it provides quantitative elements to identify the realisation of a heuristic. Thus, assessment 

techniques are envisaged as an approach to the validation or invalidation of the heuristics. 

The following section focuses on measurement techniques in a general manner and describes the 

current state of research for the assessment of object oriented concepts. In particular, the process of 

measurement is detailed with the aim of identifying the different aspects for applying metrics to an 

object model. In this thesis, the use of metrics is considered in order to detect design defects using 

inheritance and suggest solutions to identified problems. 

t 2 Note that some assumptions were made before drawing the object model in Figure 2.19 : 

• A manager is an employee. The factorisation of features encourages genericity. Note that, if the manager attributes are to be 
represented e.g. salary, benefit and responsibility, an appropriate class would be required. 

• The different status can be modelled using an attribute. 

• Further generalisation of the model is not required but possible i.e. an abstract Person class could be introduced as the 
Employee s superclass. 
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2.4. Assessment techniques 

"We must know what we are measuring"- Norman E. Fenton [Fen91] 

"You cannot control what you cannot measure" - Tom de Marco [DeM86] 

Generally, assessment techniques are understood as the evaluation of the quality of a 

characteristic/attribute of an entity. Measurement techniques constitute the act of applying metrics 

to obtain measures (numerical value). Past experiences from the engineering discipline suggest 

that the science of measurement plays an important role in software engineering. However, 

software metrics have suffered from a lack of rigour which did not encourage its development and 

use until recently. A definition of measurement is as follows [Fen91]: 

Definition: Measurement is the process by which numbers or symbols are assigned to 

attributes of entities in the real world in such a way as to describe them according to 

clearly defined rules. 

An intuitive and informal design assessment technique relies on the designer's experiences and 

knowledge. Naturally, designers test and validate their designs against the requirements. However, 

as a design rapidly grows in size in terms of the amount of features such as class, attributes, 

methods, rules, constraints, etc, measurement techniques permit a deeper evaluation of an existing 

00 model. 

The increased interest in metrics for 00 has been significant for the last five years following the 

pioneering work of Chidamder and Kemerer [ChiKem91] with their 00 metrics suite. Whitty's 

analysis of 00 metrics literature [Whi96] not only showed that publications in this area have 

increased by a factor of nearly 10 from 1990 to 1995 but also that 45% of them concern product 

metrics applied to designs or code. Since 00 programming languages encompass ready-made 

class hierarchies in their packages, there are opportunities for assessing both external and internal 

quality factors of class hierarchies, therefore a better understanding of the meaning and usage of 

the inheritance mechanism. 

Assessment techniques help managers and designers to evaluate the quality of their projects 

[RosHya96] providing that the goals for measurement have been identified and described. 

Evaluation can occur at all stages of the development; however, for prediction, measures should be 

taken as early as possible in the process. Assessment can also be applied on an implemented 

application, therefore falls under the case of a re-engineering or refinement strategy of a current 

existing product. In such a case, it is interesting to know what areas need to be re-visited, taking 

into account any new requirements. Assessment techniques are divided into three categories of 

measures: 

• Processes: software related activities which normally have a time factor such as specification, 

analysis and design, 

• Products: deliverables such as documents, applications or other artefacts, 
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• Resources: any inputs to software production such as personnel, materials, tools and methods. 

Although a measurement programme should bring benefits to the matter investigated, it does affect 

cost and schedule of the project. Cost issues are outwith the scope of this thesis; however, attention 

will be given to planning a metrics programme to be run within a project. As the design phase aims 

at producing deliverables in particular an object/class model, most of the rest of this document will 

put the emphasis on the product metrics category. Relevant metrics are the ones affecting the 

design phase. 

In this thesis, the use of measurement techniques is envisaged as a means to assess the goodness of 

a class hierarchy with respect to the design criteria and design heuristics. This section explains the 

purpose of a measurement process, the expectations and benefits from the use of metrics and how 

a measurement plan is created. 

2.4.1. Roles of technical measurement 

Fenton [Fen91] claimed that measurement has the two roles of prediction and assessment. The area 

of prediction relates to project management and comparisons are often made to previous project. 

experiences. Fenton considered that prediction should remain the ultimate goal of measurement. 

Whitmire [Whi97] added another three roles to measurement and descdbed the following: 

1. Estimation: in many software projects, is it essential to identify previous experiences (from 

historical and environmental data of existing products) which can help in resolving the current 

requirements of the current project. The aim of estimation is to evaluate the resource 

requirements for future products. 

2. Prediction: as opposed to estimation, prediction looks at values of product measures in 

considering values from existing products. Prediction is not so much based on historical and 

environmental data. 

3. Assessment: from an evaluation perspective, the assessment process aims to compare values 

obtained from a product to previously defined values arbitrarily or not chosen as standards, 

benchmarks, projects goals, targets or customer requirements. 

4. Comparison: the main purpose of comparison is to help in making design decisions i.e. trade

offs. Although assessment ought to compare values as well, comparison only takes into account 

measures taken from the product and not from predetermined values. 

5. Investigation: in order to support or dismiss a hypothesis, measurement techniques can be used 

as a way of investigating unknown attributes or behaviour. 

The assessment of software applications is expected to shed light on various quality criteria of a 

system. If the prediction of costs is possible, the budget planning process becomes easier and 

realistic [VerCor95]. Often, the assessment of the quality factors relies on measures taken from 
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internal factors. For example, assessing the overall reusability of code of a system, the reusability 

aspect must be assessed for all sub-levels in the architecture. Further details can be found III 

[DeM96, Fen91, HenEdw94, VerCor95], however this topic is outside the scope of the thesis. 

The work in this thesis mainly concerns the assessment, comparison and investigation categories. 

A presentation of a software quality model is given in the next section to explain the essential 

process of creating a measurement plan. 

2.4.2. Software quality model 

The success of a development and implementation of a metrics programme is based upon the 

underlying software quality model used to define the metrics themselves. In the same manner as 

for the software development phases, assessment methodologies exist and propose a step approach 

model from definition to implementation of a metrics programme. The well-established 

Goal/Question/Metric (GQM) [Bas&aI94] model is such a model (Table 2.2). 

Level Assessment level Description 

Conceptual Goal Objects of measurement 
Operational Question Characterisation of the way the assessment/achievement of 

a specific goal 
Quantitative Metric Evaluation of the object to be assesse,d 

Table 2.2: GQM levels 

The GQM model describes a framework for developing a metrics programme. It provides a means 

of identifying and defining a concise plan detailing all necessary actions to identify, define and 

apply metrics, analyse and interpret the results and finally, return feedback to the designer. Figure 

2.20 shows the GQM!MEDEA (MEtric DEfinition Approach) [Bri&aI94] which is based on the 

GQM model. In this model, the steps are detailed and take into account possible external 

interactions or events which might affect the metrics programme. 

- 65 -



2. Background 

Envirionmental 
characteristics 

Expert 
opinion 

Envirionmental 
characteristics 

Corporate 
objectives 

Abstractions 
+ 

Context-dflQendent 
properties 

Metrics 

Validated Metrics 

Existing 
concepts 

Figure 2.20: The GQMlMEDEA model 

Goal(s) 

In many past experiments using metrics, the pragmatic approach raises the problem of validity of 

the results obtained by metrics derivation. A consequence of invalidated results is that wrong 

interpretation follows and finally unexpected conclusions arise. Validity of metrics is the first 

important concern addressed in a software quality model. Thus the danger of metrics is that they 

may not produce expected results on the characteristics measured i.e. wrong metrics. A possible 

definition of validity of measure is given: 

Definition [Bak&al90]: 

Validation of a software measure is the process of ensuring that the measure is a 

proper numerical characterisation of the claimed attribute 

For a metric to be valid, it is generally accepted that the metric should embody a certain number of 

properties. The next section concentrates on properties that relate to the 00 concepts. 
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2.4.3. Properties of software measures 

Software metrics has suffered from criticisms concerning their real added value in managing and 

controlling software development. Nonetheless, when Basili [Bas&aI94] proposed the GQM 

approach, he stated that metrics, in order to be effective, must be: 

• Focused on specific goals. 

• Applied to all life-cycle products, processes and resources. 

• Interpreted based on characterisation and understanding of the organisational context, 

environment and goals. 

It is interesting to note how well these three points summarise the expected properties of metrics. 

In the literature where criticisms have been made on the relevance of metrics for software 

development, one or more of these points are either omitted or unclear thereby casting doubt on 

the validity of metrics. For example, Hitz and Montazeri [HitMon95] categorised metrics 

depending on their causal effect on the design process. They argued that attributes can be divided 

into three kinds: ''jundamentaf', "auxiliary" and "useless". In short, they stated that attribute 

selection often does not consider the first point of Basi Ii's metrics effectiveness criteria. Therefore, 

a metric measuring a wrong attribute does not invalidate the correctness of the metric itself. The 

SIZE1 and SIZE2 metrics proposed by Li and Henri [Li&aI95] were challenged for their effective 

evaluation of costs per class as expected. If the metrics were to be minimised, the classes would be 

smaller. Providing that requirements remain the same, the number of classes would rise to fulfil 

them, therefore, generating an increase in the overall system complexity which in turn may 

increase overall maintenance costs. A metric is causal when a change applied to the attribute 

considered generates a different metric result. Therefore, it is expected for a metric to have the 

causality property. 

In general, it is highly desirable for metrics to be: 

• Intuitive (reasonable): when considering the assessment of an aspect A of an object model, 

finding related attributes or other aspects which are directly or indirectly related to aspectA 

should be intuitive. 

• Applicable or derivable: the metric used must be applicable otherwise it is useless. 

• Related to the characteristic measured: a measure of both the structure of the data and 

process must be included. 

• Independent of language: a metric should capture a particular aspect of a concept or a concept 

itself, therefore should not depend on its underlying implementation. 

• Contained: once defined a metric should be valid in the defined context but not dependent on 

conditions for its existence. 
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• Basic or composite nature: a metric is either basic or composed with other dependent 

metric(s). 

• Measures must be consistent: if r is the result of metric m on an entity e, then if e changes, r 

should also have changed. 

• Represented at least on an ordinal scale of weak order: the metric should be represented on 

a quantitative scale and not based on a subjective scale. 

• Additive i.e. for two independent structures, the total complexity metrics should be the sum of 

complexity of the two individual ones. 

• Automatically collected by tools: data collection is a time-consuming and expensive activity, 

therefore it is unrealistic to attempt any measurement programme if no tools are available to 

facilitate the process. 

00 design methods do not include assessment techniques as part of the methodology. Instead, 

assessment methods are considered as. additional techniques. The assessment for "goodness" of a 

design should be done under different perspectives in order to obtain valuable information for 

trade-offs. Thus, a possible definition of a good design is ''providing a set of design requirement

criteria and associated priorities, a good design should mainly satisfy the few important ones 

without discarding the others". Unfortunately, current methodologies give a recipe for software 

design but there will always be a number of unpredictable error cases. In consequence, there is a 

need for a systematic design review process during or after the building of a model. Current design 

review methods include testing techniques and assessment techniques. Both these techniques help 

in detecting suspect designs once the problems are identified. Open interpretation of a concept 

leads to many design choices. To date, it is essentially a great effort of careful programming which 

avoids future maintenance costs. 

The next section highlights the intrinsic internal quality factors of an 00 design. 

2.4.4. Internal quality factors of 00 design 

"Quality is relative to the intended use of the system" - [Bar&aI97] 

Whilst researchers have focused on various software quality model that enable the construction of 

a measurement plan, it is equally important to review the aspects of an 00 design that can be 

assessed. Given the software quality model described in section 2.4.2, recognising a good design 

necessitates first giving a definition of the qualifier: good. In a first attempt to assess a design, the 

designer's intuition plays an important role. Often, knowing that a design 'feels' good or bad 

might be easy; however, giving an explanation of the grounds the conclusion was based on is 

rather difficult. Typical expressions include: 

• "It is good because the classes are reusable? " 
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• "It is good because polymorphism is used and common properties have been abstracted? " 

• "It could be better because classes are too large. " 

• "Should this information be represented as an attribute or a separate class?" 

In all cases, the conclusions remain vague and open to different interpretations. Often, this 

situation is due to an uncertainty of the attributes to be measured. According to Fenton, the clear 

distinction between a) product/process/resource attributes and measures, and b) internal and 

external attributes and measures is crucial before the identification of any possible candidate 

metric. For example, stating that classes are reusable requires further information on the kind of the 

reusability referred to. Is a class reusable because it has subclasses? This is not necessarily true in 

the case of implementation inheritance. In order to evaluate characteristics of an 00 design, a 

detailed study of the object model and its context is necessary. Current assessment methods are 

based on measurement techniques applied to intrinsic characteristics of 00 concepts. Assessing 

design characteristics requires the knowledge of the characteristics themselves with regard to the 

criteria to achieve. One possible approach is to use existing classifications of 00 concepts in order 

to address a particular aspect of the system e.g. the quality factors. 

Goodness of internal quality factors relates to the aspects being assessed. First, the 00 aspects 

envisaged concern the stated criteria in the requirements. A life-critical application would be 

assessed for potential failure of the system. Second, concepts such as coupling, cohesion, reuse, 

depth of inheritance, hierarchy structure [ChiKem94, Bri&aI94, LorKid94, Teg&aI95] can be 

assessed to detect potential misuses. From a user viewpoint, software is considered good if it 

satisfies all the requirements. Internal quality factors concern the architectural, structural and 

behavioural design of the software. From a designer viewpoint, an example for which software is 

considered well designed is that the introduction of new parts in the system does not disturb the 

existing parts. Few papers have described concepts that have been wrongly used and for which 

metrics permitted assessment techniques to take place [BarSwi93, Bri&aI95, LiHen93]. In general, 

obscure uses of 00 mechanisms relate to either the structural or behavioural organisation of the 

classes in the model. Indeed, the architectural issues affect the overall quality criteria of the design. 

Thus, the motivation behind the assessment of 00 models at various levels of complexity 

including system, class hierarchy or class levels. 

In addition, metrics have also been defined for the internals of a class i.e. the instance variables and 

methods. Often, in a measurement programme a set of metrics is utilised for various reasons. When 

the metrics address related aspects of the design e.g. cohesion and message passing flow, complex 

dependencies between the classes may be explained. Tegarden et al [Teg&aI95] proposed that the 

characteristics of a good 00 design are identified by means of coupling and cohesion. They state 

that metrics can be categorised into two types of coupling: interaction and inheritance and three 

types of cohesion (service, class, and generalisation-specialisation). However, they identified four 
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possible levels of complexity which are the variables, the methods, the objects and the overall 

system. 

While the "goodness" of an 00 design can be measured by assessing its internal quality factors, a 

major component depends on the understanding and application of concepts provided in the 00 

paradigm. Determining a good set of metrics is strongly dependent on the interpretation of the 

concept measured. Fenton [Fen91] mentioned that measuring is not enough, one important aspect 

in an assessment process is also to state clearly the objectives, goals or specific motivations for 

establishing such a measurement programme. If software reuse is to be achieved it is essential that 

the structure and behaviour of the class are well designed. One way to tell about the "goodness" of 

a design is in recognising its "badness". 

So far, the reasons and the process of building a measurement programme have been described. 

However, other considerations should be taken into account for the deployment of the programme. 

In particular, the next section highlights the dilemma between the desire of measuring at early 

stages of the design and the data availability issue. The practical issues in the application of 

metrics are explained. 

2.4.5. Data availability and metrics collection 

Once the measurement programme has been identified and defined for the project, the application 

of the programme will start with the data collection phase. Data collection is recognised to be one 

of the main problems which can affect the success of the programme. If a metric ought to assess a 

particular aspect of the design, then the identification of the necessary attributes/properties related 

to the assessed subject should be available. Metrics claim to be implementation-independent (see 

section 2.4.3), therefore it implies that the code is not necessary for calculating the metrics. Indeed, 

an early assessment of the design, meaning that the information is available, favours early 

detection of potential problems. This is not always possible. Due to the incremental development 

process, any attributes are expected to evolve during design; thus assessing an unstable element is 

not good practice. 

Without an automatic metric collection tool, it is unrealistic to perform a measurement 

programme. Deriving measures on an object model is purely a counting process. Classes, 

properties, data structures, meta-information and so on are parsed and required metric information 

is collected, then computed if necessary, and finally stored for later analysis. Not only is an 

appropriate measurement methodology necessary, but also tools [Bri96, BriCuc98, Fen91, 

LewSim98] are vital for a successful completion of a measurement activity. 

To date, most metrication tools rely on source code for extracting measures. It has been criticised 

that taking measures when the implementation is done appears too late in the software 

development process. This is a valid criticism. Nevertheless, collecting metrics on source code still 
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gives much insight into both the design and most importantly, the language features used to 

implement a design solution. Often, there are no other choices. Therefore, an assessment of source 

code for design features should be considered as a valuable process for detection, investigation or 

evaluation purposes. 

Current research has focused on the provision of generic tools which would be able to define, 

apply and analyse a range of measures in combination. This is still an active research area where 

more empirical studies are required in order to classify the different possible measures i.e. 

taxonomy of measures. So far, dedicated tools exist for a set of measures, often corresponding to 

an author's suite of metrics. Another area of research concerns the application of the metrics across 

languages. Languages have different constructs to implement the same concept, therefore different 

metrics are needed to cope with the equivalent syntaxes. Sometimes, such mappings are not 

straightforward or even possible. For example, metrics assessing multiple inheritance cannot be 

applied to single-inheritance languages such as the Smalltalk language. 

The integration of assessment tools within CASE tools seems to be the natural solution to provide 

designers with complementary functionalities to assess a design while being built. To date, only 

few research projects have built specialised metrics tools for assessing internal quality factors of a 

design [BriCuc98, LewSim98]. Besides the metrics tool availability problem, the assessment 

methodology is still subject to debate. Measurement techniques are, without doubt, beneficial to 

designers and, implementors but more empirical experiments are required to validate and quantify 

the quality of the measurement experiments themselves. In [Bri96], the main goals. of automatic 

data collection tools are identified as: 

• Simplification of data collection. 

• Minimising the impact on the development schedule. 

• Maintaining confidentiality of data. 

• Providing value to target audience. 

In this research work, the development of a metric collector tool is envisaged to support and 

demonstrate the use of metrics derived from an object model. The automation of the metrics 

collection process is crucial to the success of the programme. 

In as much as the definition of the metrics is important, the analysis and interpretation of the 

metrics results is equally important for the extraction of meaningful feedback and possible actions 

for improvement. The issue of metrics interpretation is covered in the next section. 

2.4.6. Metrics interpretation 

The application of metrics to an 00 design aims at providing explanations or directions to the 

problem assessed. For instance, the discovery of unseen design problems may confirm the stated 
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hypotheses. The analysis and interpretation of metric results is problematic and sometimes 

unclear. Depending on the subject assessed and the purpose of measurement, the metrics results 

may not always guide the designers to the satisfactory conclusions. It is believed that such 

situations are due to various factors which can be decomposed into the following categories: 

• Metrics' definition: the metric definition itself can be the cause of difficulty of interpretation, 

particularly when it does not measure the desired characteristic [Fen90, Hen96]. For instance, 

the LOC (Line Of Code) metric has been a subject of debate for its use in 00 programming 

languages [Fen90, Hen96]. However, it has been generally recognised that the metric was not 

appropriate to the object model. 

• Identification of the purpose of the metrics: although a metric may be completely valid, it 

may not be very useful. Collecting measures is part of the goals of a measurement programme, 

suggesting directions and solutions are the main outcome researched. For instance, there have 

been many attempts to provide measures on a particular aspect for the resultant software 

system. Often, those aspects are high level quality factors such as in the equation 

below[Hen96] : 

Quality = reliability + availability + maintainability + usability 

Where maintainability = understandability + modifiability + testability 

It is argued that, metrics assessing an entire system are mostly beneficial if finer-grained 

metrics are jointly used in order to suggest more precise indications on where design goodness 

or badness occurs. In [Ban97], the proposed hierarchical object-oriented design 'quality 

framework relies on the decomposition and relations between high-level quality attributes and 

details of the structural and functional design properties. 

The goals' definition is the first step of the measurement process [Bri&aI94]. Assumptions 

about the characteristic measured are also defined. However, if incorrect assumptions are 

made, the interpretation of the metric results is also affected. Usually, assumptions relate to the 

interpretation of 00 concepts, and therefore depend on the designer's experience. 

• Metrics' derivation: often, because of an unclear description of the metric and its use, the 

interpretation of each can be wrong [ChuShe95, HitMon96]. In such a case, the user of the 

metric may elaborate many incorrect assumptions when ambiguity arises, thereby affecting the 

analysis of the results. 

• Metrics' results interpretation: often relying on statistical methods, this does not seem 

entirely satisfactory [HarNit96] as the conclusions relate more to a mathematical model than to 

a design characteristic. On the other hand, averages or thresholds appear to be useful although 

based on an arbitrary choice for the value. The problem of interpretation is that without a 

reference or comparison value, the designer is left with an intuitive interpretation. For example, 

Henderson-Sellers [Hen96] stated that a first and simple approach is to infer relationship order 
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between the values e.g. a system containing 1000 classes is bigger than a system with only 20 

classes. Then, the standard deviation of a particular measure from a mean value gives an 

indication on how different the measure is compared to an even distribution within a system. 

However, it is argued that such an interpretation is not appropriate in some cases. For example, 

the fact that a system has 20 methods on average per class would suggest that all classes 

should encompass around the same number of methods, otherwise it is considered as suspect. 

Note that this example assumes that the classes assessed belong to the same categories. In 

general, the inclusion of classes from different categories such as VI classes, facility classes, 

control classes, etc in the metric calculation raises the issue of interpretation of the results due 

to the fundamental nature of each. 

To date, proposed software quality models only cover the first two points above described. 

However, it is the interpretation of the metrics results phase that provides the final conclusions, 

therefore it is vital for the success of the measurement programme. 

Computing an average or a threshold constitutes another research problem for the metric 

interpretation. Generally, it involves the derivation of the metric on the entire system in a particular 

domain. Metrics for 00 design have suffered from many types of criticism, from lacking a 

. theoretical basis, missing the. measurement goals, misleading use when deriving the metric, to 

simply a metric derivation collection which is too fastidious [ChiKem94]. The results obtained' 

from metrics derived on both C++ and Smalltalk applications [ChiKem94, LorKid94] showed that 

interpretation of data are usually consistent across the same language. It is suggested that metric 

results exhibit "typical" syntactic language construct profiles dependent on the language used. This 

observed fact constitutes one of the main motivations behind the desire of generating a redefinition 

profile for inheritance hierarchies. Also, such comparison methods could be categorised in the 

benchmarking technique whereby a chosen set of measures is arbitrarily the reference and where 

measures obtained from others systems are compared against one or many references. 

Lorenz and Kidd [LorKid94] preferred the use of thresholds for their proposed metrics. Thresholds 

are also arbitrarily chosen numbers for which a measure is believed to be fair. The usual form of a 

threshold is an average, a minimum or a maximum. Still, in this case, the decision on the validity 

of a design relies on the comparison of a value obtained against such threshold. Thus, it is arguable 

why a metric applied in one context should be the reference for the same metric applied in a 

different context. For example, it is irrelevant that all classes in a model should have the same 

number of methods as the average case. Such comparisons might only hold in the case of two or 

more similar classes representing a slight variation of an abstraction. 

One possible approach to tackle the problem of interpretation is In the understanding of the 

dependencies between object concepts. As the metrics are applied on the internal features of an 

object model, it is interesting to investigate how dependent the metrics are. The next section 

investigates such approach and gives insights on the possible interactions between related metrics. 
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2.4.6.1. Remark on the dependencies between metrics 

Unsurprisingly, in object technology as in many other technologies, concepts are directly or 

indirectly related to each other. The notion of relationship relates to the dependency criteria. Here, 

the notion of dependency can be defined as follows: 

Dependency between metrics 

A metric m 1 is dependent on a metric m2 if and only if there exists a characteristic 

c which affects the values of m 1 and also affects the values of m2. 

In general, objects that exchange messages are dependent on each other. In the literature, only a 

few experiments with metrics for object-oriented systems emphasise this dependency aspect 

between the concepts measured [Ban97, HitMon95a]. It is argued that a dependency between 

metrics also exists if the respective attributes measured are dependent on each other. Therefore, it 

would be possible to exploit such a property to support and facilitate the use and interpretation of 

metric results. Based on the knowledge of the dependency factor between metrics, one possible 

investigation technique would be to simulate a set of results for one metric and infer the results for 

others. Thus, inference of the corresponding design may be predicted. 

In a measurement programme, it is common to use a set. of metrics rather than a single one. The 

reason lies in the interpretation of the results and feedback for the designers. Usually, the results of 

a single metric are not beneficial if considered alone. Adopting a comparative approach permits 

drawing conclusions relative to a known entity. Thus, knowing the dependencies between metrics 

would facilitate the interpretation of the results. Indeed, it is not predictable how a metric behaves 

when derived over a set of applications or even on different versions of the same application. 

However, the rules for interpretation of metric results should remain consistent with the original 

assumptions and hypothesis described during the metrics definition phase. For instance, in 

[Hen96], for the Reuse ratio U and the Specialisation ratio S metrics (see section 5.6), the 

following interpretation values were given: 

Deep hierarchy Wide hierarchy 

U 1- 0 

S 1+ 00 

The Reuse ratio indicates how inheritance of classes is used. The value obtained is less than 1 but 

if it is near 0, it indicates a shallow, broad hierarchy. The Specialisation ratio gives indication 

about the width of the hierarchy. For a broad structure, S » 1, and for lots of multiple 

inheritance, S « 1. 

Thus, the prediction of evolution of a desired characteristic may benefit from the knowledge of the 

dependency factors between metrics. Although finding dependencies between metrics constitutes 
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another topic of research and out with the scope of this thesis, it is discussed as further work in 

chapter 6. 

Chapter 3 explains how the use of inheritance in class hierarchies can generate complex design 

situations which affect the future of the hierarchy. In particular, the detailed study of the method 

redefinition mechanism unveils previously unknown design situations that raise issues on the 

overall quality of the design solution. The reasons why such situations are considered as bad 

design practices are given, thereby permitting the description of a new heuristic for the identified 

problem. In order to assess the behavioural inheritance aspect of a design, the design factors that 

influence the design process are reviewed together with the possible forms of method redefinition. 

Then, a novel set of metrics is proposed to tackle the identified problem. Finally, a data 

interpretation technique is presented and addresses the issue of analysis of metrics results. 
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3. Assessing the Properties Inheritance Scheme for the Multiple 

Descendant Redefinition Problem in Object-Oriented Systems 

"The purpose of abstraction is to separate behaviour from implementation" 

- Barbara Liskov [LisGut86] 

Object-oriented design and assessment model: a refocus on the designer 

To date, the area of measurement for 00 systems has mainly focused on internal characteristics of 

the design such as the number of classes, the number of messages sent and received by a class or 

the depth of inheritance. Although these characteristics enable the definition of metrics, this 

section emphasises the fact that a refocus on the goals definition phase is needed. An assessment 

process should be design-driven and design-centered rather than being metric-centered as is often 

the case. If an assessment of an object model is desired, the detection of the pertinent internal 

characteristics does not suffice. The definition of the goals of measurement is highly dependent on 

the context of the measurement. In Figure 3.1, an 00 design assessment model describes the main 

actors participating and influencing the result of an assessment programme. This is often omitted 

in the literature. It is believed that this is one of the main reasons why metrics are potentially 

misleading . 

. To assess software applications, there are three main aspects to consider which are materialised as 

a three-layer model shown in Figure 3.1: 

1. The object-oriented fundamentals. 

2. The human factors. 

3. The software development processes and products. 

The representation of the three layer object-oriented design assessment (OODA) model in Figure 

3.1 principally shows the relationships involved between the major actors of a design process and 

the processes themselves. The presence of human factors in the middle layer of the model 

emphasises the fact that the role of the designer is the central key to the development. Indeed many 

automated tools such as diagramming tools and code generators are helpful tool aids in the design 

process, but these remain limited to a set of functionalities where the interaction with the designer 

is still required. Similarly, for the interpretation process, the decision-making and the conclusions 

are, in general, drawn by the designers. Otherwise, if defined and precise interpretation rules 

exists, tools may be able to handle them and infer the corresponding conclusions. 
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Object-oriented design assessment model 

Object-Oriented fundamentals 

relates to 

Human factors 

corresponds 

Software development 

understanding 
interpretation 

production 

recommendations 

./ 
has 

metries 
derivation 

design 
feedback 

Figure 3.1: Object-oriented design assessment model 

Figure 3.1 shows the interactions of the different components involved in the software 

development process. The first layer is concerned with the fundamental object-oriented concepts. 

In this layer, the Guidelines/Heuristics component remains one of the most intuitive and practical 

techniques for understanding and using object concepts (see section 2.3). During an assessment 

programme, the main goal is to quantify the level of "goodness" or "badness" of the characteristic 

measured. In relation to these defined criteria, a set of reference values i.e. threshold values 

delimiting the "good" from the "bad", are usually needed when the purpose of the assessment is to 

compare results of the same metrics on several parts of the design. The dependency fonction 

relationship on the 00 concepts component notifies the fact that an implicit dependency factor ties 

concepts together. When the designer is able to capture and understand such dependency factors, 

the interpretation of metric results is facilitated. 

The middle layer relates to the human factor issues in the process of designing and assessing. 

Although all design problems imply different design solutions, there are approaches to recognise 

"reusable design chunks" i.e. design patterns [Gam&al95] because of the similar nature of the 

problems. The designers judgements and choices are dependent on their own experience and 

perception of the concepts. The experience of the designer is shown as a list of features including 

the knowledge, the interpretation, the understanding, the level of subjectivity and the habits. All of 

these features play an important role in the success and correctness of interpretation of metric 

results. If it was intended for a design to have a particular structural and behavioural organisation, 

the assessment of the design will indeed reflect this desire in terms of quality criteria. Overall, 
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conclusions are satisfactory when solutions for design improvement can be obtained from the 

assessment of a particular characteristic of design. 

The third layer concerns the software design process. In Figure 3.1, the application requirements 

and the measurement programme components are included as part of the software development 

layer. The 00 design component outlines the fact that the 00 model produced is subject to a 

measurement programme providing that the necessary design information for the derivation of 

metrics is available and valid at this time. In chapter6, a proposed model for the integration of the 

measurement programme within the design process is discussed. 

The OODA model emphasises the important role of the designer both in the design and assessment 

processes. Moreover, it shows the various tools available to aid the designers when considering the 

evaluation of an 00 design. In order to obtain accurate and useful conclusions from an assessment 

programme, it is necessary to reduce the number of factors which cannot be quantified, especially 

when related to the designer's perception. 

Motivation 

Given the OODA model, it is clear that the production of an object model depends on the 

designer's interpretation and understanding of the object concepts. A possible approach to evaluate 

the goodness of an object model is to validate it against suitable design guidelines. This chapter 

concerns the study of the inheritance mechanism and the effects expected and produced in a 

hierarchy of classes for object-oriented information systems. The reasons why complete method 

redefinition infringes the essence of inheritance are discussed. To do so, the design methodology 

issues concerning behavioural inheritance are examined. A redefinition metrics set is proposed and 

practical experiments demonstrate that the results obtained permit the detection of inheritance 

design problems. Appropriate design decisions are suggested. 

This work aims at a comprehensive analysis of the extent of the redefinition mechanism using 

metrics for object-oriented systems in order to identify a simple methodological approach to the 

problem of measurement. It is also aimed at providing guidance as to the appropriate use of 

redefinition for improvement of behavioural and conceptual properties of the model. The 

information gathered from the metrics is then used in a design-evaluation cycle. 

The key contributions are: 

~ An identification of design methodology considerations related to inheritance assessment. 

~ An identification of design inconsistencies resulting from the multiple method redefinition 

problem in a class hierarchy. 

~ The proposition of a method redefinition metrics set for assessing inheritance from a 

behavioural viewpoint. 
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~ Empirical validation of the metrics set and results obtained from the Smalltalk class library are 

presented. 

The next section explains how and why, in some situations, method redefinitions can severely 

compromise the reusability and maintainability of the model. In section3.2, a redefinition metrics 

set is proposed and aims at measuring redefinition activity in class hierarchies. Section 3.3 

provides a methodological approach where further design issues are examined regarding the 

assessment of method redefinition in class hierarchies. Finally, in section3.4, a data interpretation 

method is proposed for addressing the problem extraction of feedback from the analysis of the 

metrics results. 

3.1. Method redefinition: uses and abuses 

Current use of inheritance has illustrated that the introduction of conceptual inconsistencies IS 

possible in a class hierarchy. Based on the analysis of current existing class hierarchies, potential 

design problems may arise in an object model due to an unclear use of the method redefinition 

techniques. Languages are fundamentally different as each provides different ways of 

implementing 00 principles such as encapsulation or method redefinition; thus this 

implementation has close equivalents in other languages. As the focus is given to Smalltalk's 

implementation of the redefinition concept, it is important to note that such implementation has its 

equivalent in other languages; therefore the analysis presented here also applies to other languages. 

The context of the problem is outlined and a heuristic is created to capture its essence. It is 

explained why such redefinition uses pose major issues for the future maintenance of the 

hierarchy. Thereby, the problem's definition sets the scene for the remaining part of the thesis and 

serves as the basis for the evaluation of goodness of inheritance hierarchies. 

3.1.1. Method redefinition in class hierarchies 

A major criticism of redefinition lies in the essence of inheritance itself. The two notions of 

property redefinition and property heritage are paradoxical. Surprisingly enough, method 

redefinition, including correct and incorrect use, happens more often than expected in a class 

hierarchy. For example, the redefinition metric results for the Smalltalk class library (Figure3.2) 

show that the amount of redefinition reaches 57.07% at DIT=4 in the hierarchy. On the first three 

levels of the hierarchy, the results obtained more than double from one level to another, denoting 

high "redefinition activity". One possible reason for such a redefinition profile is the incremental 

development of software. A closer look at the implementation of the same method redefined many 

times along a branch of the hierarchy revealed that common code had not been factorised. This 

phenomenon seems typical of the case of many developers working on the same part of a system 

without modifying the others' code (class dependency problem). Chidamber and Kemerer's 

coupling between objects (CBO) metric [ChiKem94] permits the detection of weak and strong 

coupling. The CBO is recommended to be as low as possible. However, with new design 
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techniques such as design patterns [Gam&al95], the dependency between classes present in a 

pattern is high as they are strongly dependent (the purpose of a pattern). 

Figure 3.2: Smalltalk hierarchy redefinition profile 

Smalltalk has been criticised for its implementation inheritance [Rum91, Tai96]. For instance, 

cancellation, which is a variant of implementation inheritance, is common in the class hierarchy. 

Similarly, Bracha and Cook [BraCoo90] stated that inheritance in Smalltalk is a mechanism for 

incremental programming whereby instances of a class may not bear a necessary relationship with 

the instances of its subclasses. Again, inheritance is used for convenience reasons and behavioural 

compatibility may be ignored. Nonetheless, Taivalsaari [Tai96] acknowledged that the Smalltalk 

class hierarchy has its advantages. It is generally recognised that the hierarchy would be more 

complex and memory consuming if it was designed in a more conceptual approach. Cook [Coo92] 

described some major problems in the Smalltalk hierarchy as follows: 

• Inherited methods that violate the subclass invariant. 

• Methods that have the same name but completely unrelated behaviours and for which a 

generalised specification cannot be found. 

• Methods that have the same (or related) behaviour but different names. 

All the above-mentioned problems contribute to the introduction of potential design 

inconsistencies such as the MDR problem in the class hierarchy. The next section formalises the 

unusual case of method redefinition and explains why it is conceptually wrong. 

3.1 .2. Multiple descendant redefinition (MDR) problem 

The principle of inheritance involves an ownership transfer of features from the parent class to its 

subclasses. When a class inherits a method which has been publicly defined, the subclass has the 

right to change the property inheritance scheme for itself and future heirs. 
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Figure 3.3: Life history of the includes: redefined method in the Smalltalk Collection branch 

In Figure 3.3, the includes: method is used to test if an element is present in a collection. At first 

sight, a representation of the life history of the completely redefined includes: method casts doubt 

on the correctness of the design. Although all IndexedColiections are Collections, they do not 

test the inclusion of elements in the same manner, as Indexed Collection introduces a key for 

access. The solution is thus to redefine the includes: method to cancel the inherited 

implementation from the class Collection. Similarly, for Ordered Collection, the same method is 

completely redefined again. Clearly, the property inheritance scheme is broken and nothing is 

inherited from the parent class. Furthermore, the includes: method has not been originally 

declared as deferred and all its subclasses hold completely different forms, an incorrect case of 

polymorphism by definition. This situation will be referred to as the multiple descendant 

redefinition (MDR) problem. It should be noted that such classification, although conceptually 

incorrect can be implemented in any programming language. Further complex method redefinition 

situations may also arise when a combination of many super calls exists in the same method. 

A definition of MDR is as follows: 

In a class hierarchy, consider a class parentC = { <mthAO> } and mthAO declared as public . 

• {V'subclassD. V'subclassE I subclassD < parente. subclassE <direct subclassD } 

MDR3 iff • subclassD = {«mthAO» }. mthA() is replaced 
• subclassE = { «mthA()>> }. mthAO is replaced 
• mthAOsubclassD *- mthA()subclassE *- mthAOparentc 

where the relation classB <direct classA denotes the fact that classB is a direct subclass of classA 

and mthOclassA is read as the method mthO of classA 

To illustrate how MDR problems can be tackled in class hierarchies, an example of an alternative 

design solution is given in the next section. 

3.1.3. Example inheritance hierarchy that avoids the MDR problem 

Although the study of solutions to the MDR problems is outwith the scope of this thesis, 

suggestions for improvement of a class hierarchy are presented in this section. 

Inheritance hierarchies that encompass MDR problems require a re-design of the hierarchies which 

usually implies code re-engineering. Many viable solutions are possible to tackle the MDR 
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problem; however it is important to emphasise that they are not straightforward as other related 

design aspects have to be considered. For instance, if an alternative solution consists in moving a 

method M from a class A to a class B, the consequences of such relocation have to be examined. 

As the original property inheritance scheme is affected, subclasses of A may still expect the 

inheritance of method M. In general, the presence of MDR problems in a hierarchy indicates a 

more broader design problem. Note that potential solutions to the MDR problem also depend on 

the language features. To address the problems of the Smalltalk hierarchy mentioned in section 

3.1.1, Cook proposed an alternative Collection class hierarchy based on the conceptual 

relationships of the classes [Co092]. He demonstrated the use of interface hierarchies and 

specification techniques in producing an improved class library structure. Bracha and Cook 

[BraCo090] proposed the concept of mixin-based inheritance as a new inheritance model. The 

model relies on composition of mixins or abstract subclasses. Separate mixin classes are created to 

hold parts of classes that may not be related but sharing a set of common behaviours. In that 

respect, mixin classes seem a good candidate for solving the MDR problem. Both techniques of 

interface hierarchies and mixin-based inheritance constitute potential candidates to avoid MDR 

problems. The latter is used in the example below. 

As Smalltalk supports single inheritance, one of the main problems of its class hierarchy is that 

code may be duplicated across different classes and by side effect this situation often generates 

MDR problems. 

contents 

contents 
"self implementedBySubclass 

setToEnd 
self position: self readLimit. 

contents 
"collection copyFrom:1 to: readLimil . 

aetLlmlta 
"self copyFrom:1 to: self position. 

setToEnd 
position := O. 
readLimit := collection size. 

self position: self writeLimlt. 

contents 
"self copyFrom:1 to: self readLimil 

aetToEnd 
self position: self readLimit. 

setLlmlts 
position := O. 
readLimit := writeLimlt := collection size. 

Figure 3.4: MDR and code duplication in the Stream class hierarchy 
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Figure 3.4 shows the Smalltalk Stream hierarchy which includes two main problems as follows: 

• Code duplication due to Smalltalk's single inheritance. The ReadWriteStream class only 

inherits from the WriteStream class but as behaviours of the ReadStream class are needed, 

duplication of the setLimits method is done. 

• Presence of MDR due to the non-full compatibility between ReadWriteStream and 

WriteStream. Strangely enough, the setToEnd method is originally declared in the Stream 

class although the definition of its body appears to be for the ReadStream class. 

WriteStream completely redefines the method and so does ReadWriteStream, giving rise to 

the presence of MDR Note that the body of the setToEnd method in ReadWriteStream is 

the same as the one originally defined in the Stream class. This situation illustrates a case of 

use of inheritance for convenience reasons. Originally declared as abstract in Stream, the 

contents method in ReadWriteStream is also suspect as its body is very similar to the one in 

ReadStream. 

In this particular example, note that multiple inheritance as described in section 2.1.8 represents a 

possible solution to the code duplication and MDR problems. However, in the alternative design 

solution below, the use of mixins is presented 3. It is believed that mixins represent a better 

solution to tackle MDR problems in a wider context. 

__ nts 

"self impiementedBySubclass 
IMIToEnd 

"self impiementadBySubclass 

I aetLlml": .collection 
position:= O. 
readUmit := aColiection size. 

r----
contents: endP08ltlon 

: "collection copyFrom:1 to: endPosition. 
I MfroEnd: endPoelt1on 

self position: self endPosition. 

Figure 3.5: Stream hierarchy using mixins classes 

Figure 3.5 shows an alternative Stream hierarchy which introduces two mlXms classes: 

StreamMixin and ReadStreamMixin. Design solutions using native Smalltalk capabilities may 

be found for simulating mixins, however the model would probably be simpler with the use of real 

mixins. In this example, it is assumed that Smalltalk has been extended to include mixins 

capabilities as described in [BraCoo90] or [Sch98]. The introduction of mixin classes captures 

13 See [BraCoo90] for the details of mixins' implementation. 
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common behaviours in the hierarchy; however existing classes also need to be altered so that 

methods are still accessible. To do so, the Stream class is combined with the StreamMixin class, 

ReadStream and ReadWriteStream class with ReadStreamMixin. In the Stream class, the 

contents and setToEnd methods are declared as abstract methods, thus encouraging the use of 

polymorphism. ReadWriteStream is now treated as another type of Stream for the reasons that it 

still inherits the common behaviours from the Stream class but can also be combined with the 

mixin classes so that specific behaviours to the ReadStream and WriteStream classes are 

available. All subclasses of Stream make use of inheritance for extension and both code 

duplication and MDR problems are avoided. 

Moon classes appear to be a good candidate for tackling implementation inheritance; however the 

cost of a re-engineering process should not be underestimated. Although the alternative design is 

conceptually sound, the increase in complexity and amount of code is noticeable. 

The next section illustrates the consequences of a MDR problem regarding the property 

inheritance scheme. 

3.1.4. Descendants heritage extent for the MDR problem 

In an extreme situation, suppose that the Parent class completely redefines all the Grand

parent IS methods, and the Child class redefines all the Parent's methods: all versions of the 

methods defined in the Parent and Grand-parent classes are lost (Figure 3.6). In the Child class, 

no features come from its ancestors although being a subclass. 

An MDR heuristic can be formulated as follows: 

Providing the hypothesis that the multiple descendant redefinition problem breaks the 

properties inheritance scheme in a class hierarchy, a method m from a class C should 

not be consecutively and completely redefined more than twice down a given branch. If 

such a situation occurs, all versions of method m defined in previous ancestors classes 

are lost, thus violating the essence of inheritance. 

Properties inherited recovered 

Figure 3.6: Descendant heritage extent with MDR anomaly. 
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3.2. Measuring redefinition in object-oriented systems 

The method redefinition mechanism can be applied in obscure manner in class hierarchies and is 

not always justified [Mey88, Rum91]. In a parent-child relationship between two classes, the 

shared methods are the ones defined in the parent class as inheritance is unidirectional. In 3 .1.1, it 

was shown that a high rate of method redefinition occurs in the current Small talk class hierarchy 

and that such a situation may point to potential design inconsistencies as methods are generally 

expected to be extended rather that being redefined. A high rate of completely redefined methods 

strongly suggests some behavioural inheritance design problems e.g. MDR problem. This might 

indicate that either the parent class has poorly abstracted the methods concerned or the subclasses 

are wrongly situated in the hierarchy which obliges the class to ignore inherited properties. On 

many occasions, a deep analysis of the class hierarchy source code depicted that suspect methods 

can simply lack code factorisation and thereby fall under the case of a complete redefinition 

instead of an expected extension. It was suggested that, due to the class dependency problem and 

the incremental software development, developers would prefer to re-write their own version .. 

Given the MDR heuristic (section 3.1.2) and the design considerations for inheritance assessment 

(section 3.2), it is now possible to elaborate a measurement plan that specifically tackle the MDR 

problem. The following sections describe the application of the GQM/MEDEA model for building 

a redefinition metrics set. 

3.2.1. The method redefinition assessment 

Current criticisms of 00 metrics are that they only provide hints or clues to the "goodness" of the 

design. We argue that a precise identification of suspected problems with valid metrics for its 

assessment suggests obvious directions or solutions for design improvement. With the help of the 

behavioural analysis technique (section 3.3.5), metrics can be prescriptive. 

The approach taken to define the product metrics was based on GQM/MEDEA (Goal Question 

MetriclMEtric DEfinition Approach [Bas92, Bri&al94]) which provides practical guidelines for 

building metric sets. Nonetheless, this stage remains a difficult process for determining the validity 

of the metric. Whilst Ebert stated that "a metric is a criterion to determine the difference or 

distance between two entities" [Ebe92], the definition of the criterion itself is subject to 

difficulties. Many metrics design models have refined the process by which less uncertainty is 

allowed regarding the definition of objectives for a metric. Thus, the very first step in defining a 

metric is the "Experimental goal(s) definition" stage, defined as the set of the following topics 

[Bri&aI94]. 
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The steps involved in applying the method are: 

Step 1: Experimental goal(s) 

Object of study: method redefinition mechanism in a class hierarchy 

Purpose: detection of MDR anomaly 

Quality focus: conceptual design consistency for property heritage 

Viewpoint: designer 

Step 2: Assumptions 

Assumption 1: the deeper a class is in a tree hierarchy, the more complex it is 

Assumption 2: the deeper a class is in a tree hierarchy, the more likely the MDR problem 

arises 

Assumption 3: see the MDR guideline formulated in section 3.1.2. 

Step 3 and 4: Relevant measurement concept and product abstractions. The rationale behind the 

redefinition metrics set is fairly straightforward and has been emphasised in the 

fundamental steps 1, 5 and 6. The abstract properties of the redefinition metrics are 

discussed in section 5.10. 

Step 5: Define the candidate metrics (see section 3.2.2) 

Step 6: Experim~ntal validation of the metrics (see chapter 5) 

A precise definition of the goals reduces the chances for the future metric to be incorrect. Brito et 

al. [Bri&aI94] established that this stage is fundamental to the whole metric definition process. A 

possible means for identification of goals can be tackled in looking at design recommendations or 

guidelines. However, in practice, the application of guidelines or heuristics, often in a textual form 

[Fir95, Mey88, Rie96, Rum91], is not very easy to accomplish (see section 2.3.3). 

Again, the quality of the 00 model is completely dependent on the designer's experience, 

understanding and interpretation of the concepts used. At least, guidelines provide a method for 

recognising good 00 design standards. 

The following redefinition metrics are proposed and explained in the next section: 

• PRM: the percentage of redefined methods includes 1) the methods completely 

redefined, 2) extended and 3) realised (see section 2.2.4). 

• PRMH: the percentage of redefined methods per level within a hierarchy and its 

variants (peRM and PEM) 

• peRM: the percentage of completely redefined methods. This metric is intended to 

assess the first and third cases above mentioned. 

• PEM: the percentage of extended methods. This is the second case of redefinition. 
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3.2.2. Percentage of redefined methods per level within a hierarchy (PRMH) 

Current metrics assessing inheritance examine single classes or a system whereas the PRMH 

metric evaluates the amount of redefinition level by level. Providing that a class hierarchy is 

ideally designed, abstract classes should appear closer to the root of the hierarchy and specialised 

( or concrete) classes should be situated nearer to the bottom. The redefinition metrics are aimed at 

depicting such a profile. For instance, PRMH 1 metric (Figure 3.7 branch A at level 1) measures 

the shaded classes. The PRMH metric can also be applied at the system level as classes are not 

necessarily organised in a class hierarchy. For simplicity, we will keep the numbering level 

absolute in comparison with the root (class Object) level O. The notation Cm,n gives the location of 

a class C, at rank n, for a given level m in the branch, e.g. class B at level 2 of branch A, is named 

B2,1' The rank is arbitrarily numbered from 0 to n, n is an integer, from left to right at the 

considered level. Note that the rank is used only for a logical identification of the classes at a 

specific level in the fonnulas below, but does not imply a notion of ordering in the class hierarchy. 

Figure 3.7: Complexity metrics at hierarchy level 

The redefinition metric for a class and for a given level m are defined as: 

NC 

NRM PRMC'= NRM * 100 
L PRMCm,n 

PRMC=- * l00 n = 1 NPIM PRMH m NIM NC (a) 

where N RM is the number of redefined methods, N I M is the number of instance methods, NIM > 

0 14
, NC is the number of classes for a given level m, NC > 0, PRMCm,n is the percentage of 

redefined methods for all classes Cm.n. In the current calculation of PRMC (first approach), the 

equation is a function of the NIM defined locally. However, any class C inherits methods from all 

its parents, making them potentially available for use (via the method lookup mechanism). For this 

reason, the cumulative redefinition approach to the same calculation is given by the PRMC' 

equation (second approach) where NPIM is the number of potential instance methods, NPIM > O. 

Indeed, NPIM is expected to increase from top to bottom of a hierarchy, thus, PRMH decreases 

when DIT increases. This metric relates to the fact that "off-the-shelf' class hierarchies are 

14 Note that classes without methods (e.g. classes that defmes constants only) may exist but are not relevant in this thesis. 

- 87 -



3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems 

abstracted enough to contain a fairly high depth of inheritance and a high number of methods per 

class. Consequently, the deeper the class is in the hierarchy, the more it is likely to inherit a high 

number of methods. Thus, designers face the problem of finding the wanted information amongst a 

high proportion of non-relevant ones. The PRMH in (a) is general. A refined version includes the 

redefinition variants: 

NCRM NEM NC 

PCRM=-- * 1 00 PEM=-*100 r.(PCRM + PEM) 
NIM NIM PRMH - n=1 m- NC (b) 

where NIM > 0, NC > 0, NCRM is the number of completely redefined methods and NEM is the 

number of extended methods. 

In general, the interpretation of the redefinition metrics needs to be done in connexion with other 

related metrics. For example, consider a class that does not hold redefined methods. The 

interpretation is likely to be different depending on the total number of methods in the class. 

Due to the inclusion of the DIT metric within the redefinition metric set, the depiction of 

redefinition profiles of hierarchies is possible. 

In order to detect and thus assess potential design problems such as the MDR problem in a class 

hierarchy, it is necessary to· identify the main design aspects that should be considered in a 

measurement programme. The concep4Ial and technical issues involved in such an assessment are 

explained in the next sections. In particular, it is shown how a state transition diagram describing 

the method redefinition states permits the identification of the suspect state transitions e.g. the 

MDR problem. A behavioural inheritance analysis is proposed to tackle the problem of localisation 

of defective classes in class hierarchies. 

3.3. Design considerations for inheritance assessment 

"Designing is weighing alternatives, including discovering them in the first place and 

eventually rejecting all but one" - Chamond Liu [Liu96] 

The MDR problem and the redefinition metrics have been described in the previous section, and 

contribute towards the goals of a measurement plan. This section is concerned with the description 

of the technical issues involved in the assessment of inheritance hierarchies and thereby the 

assessment of the redefinition mechanism. Note that the following mainly constitutes a design 

exercise which is directly relevant to the essential aspects of assessment. In order to identify a 

methodological approach in a design assessment activity, four categories of design information are 

considered: 

• The key mechanics for extracting design information from an inheritance hierarchy. 

• The definition of the possible method redefinition statuses. This addresses the different type of 

methods to assess, and thus a possible direction for finding appropriate metrics. 
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• An essential behavioural inheritance analysis model which enables the designer to focus on a 

particular branch of a hierarchy. An overview of a branch restricted to the desired methods 

permits a rapid localisation of suspect classes. This is aimed at supporting the interpretation of 

the metric results. 

• Specific remarks on the consequences of use of method redefinition to be taken into account 

during analysis of the metric results. 

3.3.1. Methodological approach for class hierarchy assessment 

From a software engineering point of view, satisfying all the requirements for the system is a 

requirement but achieving a maintainable, flexible and open architecture is as important if it is to 

achieve reusability with reduction of costs for future development. To date, mechanisms in the 

object model do not permit full control of the property inheritance scheme [Sei96, Tai96]. In an 

inheritance hierarchy, the number of features of a class and the number of levels of depth are 

difficult to manage. In class hierarchies such as the OWL, it is not surprising to have a large 

number of methods in leaf classes. Note that this may have been what was originally intended. 

However, when extension or reuse is wanted, such situations rapidly become a burden for the 

designer because of the exhaustive search process for the existence and origin of desired method's 

interfaces and implementation. The techniques proposed in the following sections contribute to the 

detection of possible design problems appearing in class hierarchies. For example, the problem of 

MDR is effectively seen as a side effect of the use of inheritance. In order to tackle the variety and 

combination of property inheritance schemes in an object model, it is necessary to be able to assess 

methods of a class, at any level of the hierarchy. As a complementary tool for the designer, the 

techniques address the reuse or extension of a class hierarchy from a behavioural point of view. To 

help designers in pinpointing design defects, the following design methodology approaches are 

considered: 

• Behavioural inheritance analysis: in class hierarchies, the transfer of ownership (see section 

2.1.6) and the redefinition mechanism (see section 2.2.1) constantly change the state and 

definition of the original method. In order to have an overview of the history of a particular 

method in a class hierarchy, the creation of a method's life history record enables the discovery 

of the origin and successive definitions of the method. 

• The definition of a metric set: the use of a set of redefinition metrics applied to a branch of the 

hierarchy or the whole hierarchy would permit the representation of the notion of redefinition 

profiles. One possible way to assess the amount of methods redefined is to isolate branches 

within the hierarchy. Particularly, in single-rooted object-oriented systems, the abstractions are 

derived from the same root class, therefore the only possible way to isolate them is to consider 

the start of a branch at a defined node. Then, on a graphical representation, a depiction of the 
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redefinition profile would help in the understanding of the general evolution of the property 

redefined. 

• Interpretation: the identification of potential defect classes can be done using a cross

reference method between the interpretation metric results and the method's life history 

technique. Although a redefinition profile may already indicate potential design problems in a 

class hierarchy, the precise localisation of a design defect requires the support of additional 

method analysis tools described in the section 3.2. Possible useful processing tasks may involve 

filtering, graphical representations and data mining. 

The next section explores the technical aspects that allow the extraction of information from an 

inheritance structure. 

3.3.2. A design information repository with metaclass facilities 

liTo perform measurements on a program or design, we need to be able to describe the 

structure of a program or design in language-independent terms." - Anton Eliens [EIi95] 

This section explains how the extraction of design features is possible using metaclass facilities. 

Due to the incremental design process, classes and their properties are likely to change during the 

course of design. The main problem of early measurement relates, not only to the availability of the 

design information but also to the degree of correctness of the information (see section2.4.5). Even 

in the case of use of supporting tools such as diagrammatic or CASE tools, the derivation of 

metrics implies that metrication functionalities are already implemented within the design tool in 

order to share the meta-information generated by the design tool [LewSim98]. Measurement 

techniques may be applied at any time in the development process providing that the required 

design information is available and consistent. 

The following four sub-sections describe the core set of design information that is used within the 

metric's calculation algorithm. The purpose of a design information repository is to identify all 

design characteristics relevant to a measurement process. 
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Meta-model 

Consider the following meta-model which is used to represent the main 00 concepts: 

sed-b:J 
10 .. * 

,-----'----, 0,,* 
Class 

Property 0 * I InheritanceLink I 
~;;;:;;;~~~--t~.::... ___ has ____ -<""':;>j +name: String 
I +name: String ~ I I 1 +abstract: boolean 

O .. *I'--__ uses~ 
Modifier 

+type: set-of{ keywords} 
+keywords: enum = {ABSTRACT, FINAL, FRIENDLY, PRIVATE, PROTECTED, PUBLIC, STATIC, SYNCHRONIZED} 

...................................... -................................................ _ ................................................................................... ·1 
r------~-----~ r--~-__, 

Attribule Method 
uses 0,,* I---------i 

I '+~co~n~ta~lnm~e~n~t: ~en~um~= ~{bY~-~re~fe~re~nc::e,~b~Y ~va~IU~e}~-l;;~- __ -j +abstract: boolean 
t- 0,,* +signature: String 

+body: String 

Figure 3_8: Meta-model of main 00 concepts 

In Figure 3.8, classes and properties Le. attributes or methods, are modelled as classes. Instances of 

the class Class have instances of the class Property. In a class, the relationships with other classes 

are defined by constructing new instances of the other class. For this reason, relationships can be 

modelled as instances of the class Property and act as aggregates of instances of the class Class. 

The type of a Property object is defined by a possible combination of Modifier objects. The 

Attribute class and the Method class both inherit from the Property class. Relationships between 

classes can simply be categorised in two groups: the inheritance relationship and all other types of 

relationships. Indeed, the latter category can be subdivided in many more groups to differentiate 

from a simple association, aggregation, dependency, etc. The containment attribute in class 

Attribute notifies the fact that an instance attribute can be attached either as a nested 

component/composite objects or as a pointer to a composite object. Another possible way to 

describe a relationship between two classes can be done within the body of a method. Local 

variables to the method can be temporarily declared of a particular class type (section 2.1.7). 

In the meta-model presented above, the interesting design features are the class properties. Clearly, 

each of them is a potential metric. For example, for a class, "the number of methods per class" can 

be calculated in counting the number of the Method class's instances. Thus, the meta-level design 

information provides a description of all design features which can be used by the metrics' 

algorithms. 

Note that Modifier objects that are incorrect Java modifiers can be defined according to the meta

model. For instance, the value of the variable type may be: {ABSTRACT ABSTRACT} which is 

an incorrect Java modifier. A semantic analyser or improved meta-model can detect such error 

cases. The purpose of the meta-model is to show how the capture of meta-information can be done. 
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Remarks on the encapsulation aspect 

In Figure 3.8, the attribute scopeModifier of the Property class gives the indication of the 

property's visibility for the heir classes i.e. encapsulation. The C++'s PUBLIC, PRIVATE and 

PROTECTED scope modifiers are the ones described in section 2.1.7. The FINAL property 

modifier gives visibility of the property to heir classes but prohibits its redefinition. It is equivalent 

to a removal of the property. A peculiarity of the inheritance relationship is that it has been 

separately modelled with a self-link, via the InheritanceLink class, on the class Class. The reason 

lies in the semantics of inheritance. An inheritance relationship implies a transitive transfer of the 

properties from the parent to the child class. It purely deals with the behavioural aspect of two 

classes: one is able to use and modify properties from the other one. As opposed to other 

relationships, the inheritance relationship acts as a channel for ancestor's property visibility where 

the other relationships are mainly resulting from the declaration of variables in a class. It is 

basically the use of the two groups of relationships which combines classes together and 

communicates via message-passing that provides the expressiveness of the 00 concepts. It is the 

combination of different property scopes in a class hierarchy which is essentially responsible for 

the complexity of the inheritance scoping control. By consequence, the validity and correctness of 

the design is also affected by the property scope modifiers. 

Figure 3.8 illustrated some of the desired design features that can be used for the computation of 

metrics. As these metrics would constitute the basic metrics, it is, therefore interesting to build a 

repository of such metrics based on the collected design information. Indeed, such a repository is 

convenient for building more complex metrics. This approach will be considered for building a 

metric collector tool. 

Detecting a method's original definition 

Another aspect of the retrieval of design information concerns the identification of the class's 

context such as its references to internal or inherited properties. In particular, to assess behavioural 

inheritance, for each class, methods are analysed regarding whether it is a new method for the class 

or if it is inherited. In some class browsers such as RationaIRose98®, a class can optionally display 

the list of inherited methods as well as the new methods. However, if a method is redefined, its 

method name, signature and body appear in the class description as if it is an added method. To 

find out if such a method is extended, cancelled or replaced, a finer analysis of the body of the 

method is required. For example, if the method reuses inherited methods, calls to the ancestor's 

method will be tagged with the keyword super. Note that, unless there is detailed design 

documentation, the only way to find such information is unfortunately to wait for the source code 

availability. Thus, analysing the references made to other methods, within a particular one, will 

enable a finer assessment of the inheritance model used and potential suspect classes and methods. 
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Meta design information 

A possible categorisation of useful design information concerning the behavioural assessment of 

inheritance is given in the following Table 3.1, Table 3.2 and Table 3.3. The main interest of such 

information gathering will serve both the computation of metrics and the suggestion and 

localisation of design defects. The designer will rely on the availability of front-end tools to 

manipulate the information. Examples of front-end tools include a metrics collector, methods 

profiler or persistent storage tools. 

Types of meta Characteristics 
information for a class 

General • Name 

• Abstract 
Heritage link • direct parent class(es) 

• list of ancestor's classes 

• list of direct sub-classes 
Class internals • list of attributes and related information such as name, type, 

scope 

• list of internal, inherited methods and related information 
such as name, returned object type, signature 

Table 3.1: Class design features 

. In Table 3.1, description of attributes and methods of a class are included in the list. Note that 

Inherited methods are also listed. Some languages provide method look-up mechanisms to infer the 

list of all inherited characteristics from ancestors. Either in a designer or from 'an assessment 

perspective, it is important to know what a class is i.e. its structure but also what it is capable of i.e. 

its behaviour, inherited or not. Heritage links are the relationships which attach a (many) parent(s) 

class(es) to its child classes. 

Types of meta information Characteristics 
for an attribute 

General • name 

• scope 
• defined in class 

Category • instance attribute 

• class attribute 
users of • list of internal methods referring to the attribute 

Table 3.2: Attribute design features 

In Table 3.2 the characteristics for attributes are shown. However, as the focus of this chapter is on 

behavioural inheritance, only the fact that a method uses one or other attribute is of interest. 

Types of meta information Characteristics 
for a method 

General • name 

• abstract 

• scope 

• defined in class 
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Category 

Calls from 

Calls to 

Use of 

• instance method 

• class method 

• list of internal methods calling or using the current method 

• list of internal methods calls including super calls i.e. 
inherited methods 

• list of internal or inherited instance attributes used 

• list of class attributes used 

Table 3.3: Method design features 

In Table 3.3, the method's interactions are described. Basically, there are two forms of interaction: 

• calls_from: interaction between methods are based on a sender-receiver model. The receiver is 

able to identify the list of senders. 

• calls_to: similarly to calls_from, a method uses other methods as receivers. In this case, 

messages can also be sent to inherited methods. The method binding mechanism makes sure 

that the correct method receives the message. 

Given the above-described list of meta design information, the calculation of metrics becomes 

fairly straightforward. The next section describes parsing considerations within a class hierarchy. 

3.3.3. Class analysers 

Inheritance path isolation 

The technical issues involved in the extraction of the design features are covered in this section. To 

assess behavioural inheritance in a class hierarchy, parsing of a tree is necessary. In addition to the 

design information described in section 3.3 .2, a more detailed analysis of the methods in each class 

permits the investigation of the method life cycle or life history down the branches of the tree. The 

designer will rely on the presence of supporting tools to extract such information. To understand 

the overall effect of the application of scope modifiers to methods in the hierarchy, an isolation of 

all possible paths is undertaken. Recall that from a designer's perspective, when (re-)using or 

extending the class hierarchy, the main problem is to discover and understand the successive 

versions of the same method, especially for bottom classes. It has been generally recognised that 

class libraries often encompass more functionalities that an application would really need. Note 

that this is a desired characteristic for class libraries. However, Hitchens and Firmage [HitFir97] 

stated that the use of a class library is haphazard. With the absence of browsing, query tools or 

other mechanisms, the designer must proceed through all the classes with no guarantee of finding 

the desired class. If addition of new classes is needed in large hierarchies, one of the consequences 

of the situation described above is that classes tend to ignore all un-wanted methods, therefore, 

risking non-conformance. Whenever used for pragmatic reasons such as possible savings in code 

develop~ent or optimisation purposes, inheritance becomes questionable. 
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Figure 3_9: Tree parsing strategy 

In general, a designer is interested in knowing which are the ancestor's inherited properties. To do 

so, an isolation of inheritance paths is a possible solution to reveal the desired design information. 

Figure 3.9 represents an example class hierarchy. Adopting a depth and top-bottom tree parsing 

strategy, the list of possible paths include: 

Level 0 1 2 3 

Path 1 A 7 B -7 C -7 D 
Path 2 A -7 B -7 C -7 E 
Path 3 A -7 B -7 C -7 'F 
Path 4 . A -7 B -7 G -7 H 
Path 5 A -7 B -7 G -7 
Path 6 A -7 J -7 K 
Path 7 A -7 L -7 M -7 N 

Table 3.4: Inheritance paths table 

The depth and top-bottom (DTB) parsing strategy allows a chronological construction and 

gathering of design information in the table. Different parsing strategies will be used to examine 

the behavioural aspects of each of the classes. Note that the parsing strategies mainly concern the 

issues involved in developing the metric's calculation algorithm; however, it also depends on the 

encapsulation mechanism in place. Designing and assessing a class hierarchy should really be 

based on the examination of inheritance paths as a whole. Often, designers only concentrate on 

direct (or immediate) parent classes to extend the hierarchy instead of inspecting all previous 

ancestors. The knowledge of chronological changes happening to inherited methods is essential to 

minimise obscure inheritance uses. Recall that, although not being good practise in a team 

development, software engineers tend to leave unclear existing pieces of code as they are and 

redevelop their own version for safety reasons, not encouraging reuse. Often, the fear of modifying 

someone else's code is not so much due to the code being unclear but due to possible dependencies 

on other portions of code. 

Notice that in the case of multiple inheritance, the detection of the path with a DTB strategy raises 

the issue of name collisions (see section 2.1.8). Consider the following example (Figure 3.13) 

where the method m1 0 in class A is publicly inherited in all heir classes B, C, D and E. 
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Figure 3.10: Name space collisions with multiple inheritance 

Using the DTB strategy, the isolated paths are: 

A7B7C7D 

A7E7D 

If a name clashes problem exists i.e. m1 0 is redefined in C, BorE, D inherits only one version of 

m10: either the method explicitly refers to the desired definition i.e. originator parent class, or a 

default scheme is provided by the support language. Thus, one of the two paths has to be dismissed 

for the study of m1 O. When the call to m10 is explicit, the reference to the originator class is 

given (see section 2.1.8). When the call to m10 relies on the default scheme provided by the 

programming language, the default path is then the chosen one. 

While detecting the various inheritance paths is straightforward, assessing if the methods in Dare 

redefined necessitates an investigation of the code of methods in D to detect which versions are 

explicitly referred to. Otherwise, if the designer relied on the default inheritance scheme to obtain 

the desired functionality and to remove the ambiguity, a metric's collector will have to implement 

the corresponding algorithm. Technically, a possible solution to discover mUltiple paths relies on 

the parsing of the concerned classes for extracting the associated parent and child classes. 

However, in languages that provide reflective capabilities such as Smalltalk [GolRob90], parsing 

is not necessary as appropriate functionalities permit the discovery of inheritance relationships 

between classes. 

Class wrapper 

This section explains a technique based on wrappers to filter out desired information from an 00 

design. A class wrapper would aim at analysing class internals and intercepting its interactions 

with other classes. In general, wrappers are used between two applications for intercepting the set 

of transiting messages. For example, the tcp_wrappers [CheBel94] are a set of API functions that 

shadow the real functions based on tcp communications e.g. telnet, ping, finger, etc. When a client 

program initiates one of the cited functions, a corresponding tcp_wrappersJ5 function takes 

I S Note that the concept of proxies for web servers provide similar functionalities. 

- 96 -



3. Assessing the Properties Inherttance Scheme for the Mun~ Descendant Redelinttion Problem in Objed-Orienled Systems 

control, filters out the wanted infonnation and launches the real invoked function. In such a way, 

the execution of the wrapper function is completely transparent, does not interfere with the 

execution of the real function and dynamically extracts the wanted infonnation. A class wrapper 

acts in the same way for static infonnation. The wrapper encapsulates a class in order to extract 

meta infonnation such as the class definition and the details of interactions between classes such as 

method sender, message sent and method receiver. Note that meta class infonnation such as 

messages sent or received, number of parent and child classes or number of methods are possible 

candidate metrics themselves [LorKid94]. 

In Figure 3.11, the design of a possible class wrapper is shown. It includes two parts acting as the 

filters for the desired information. Indeed, the filters are configurable in the sense that only the 

wanted infonnation would be filtered out and addition or removal of other filters is possible. 

ClassC is scrutinised for extracting infonnation such as the list of instance or class variables and 

methods, the list of ancestors classes, the list of external methods internally referenced and the list 

of external methods which reference internal methods. 

Figure 3.11: Class wrapper 

A class wrapper may exist under the fonn of a set of API functions, therefore they could be closely 

integrated with a metrics collection tool. Collaboration for infonnation exchange can take place 

between the client metrics tool and the wrapper functions. 

Hierarchy wrapper 

In Figure 3.12, the technique of class wrappers is extended to a branch of a class hierarchy. 

Particularly for the assessment of behavioural inheritance, it is interesting to isolate a branch of the 

hierarchy for a detailed study. A hierarchy wrapper would mainly rely on infonnation provided by 

the class wrapper at a lower level; however, the filters would provide infonnation on all classes of 
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the branch instead of a single one at a time. In such a way, comparison and use of the design 

information are made easier either for design analysis or for deriving metrics on the hierarchy. 

Figure 3.12: Hierarchy wrapper 

It may be useful to build a design repository which would be persistent Such a repository would 

include all characteristics for each class of the branch together with their relationships with other 

classes. This implies that the hierarchy wrapper can be invoked independently of a client program. 

Alternatively, like for the class wrapper, the hierarchy wrapper would be closely integrated with 

the collection tool for dynamically extracting information "on the fly" . The benefits of having 

hierarchy level information as opposed to class level information is that the analysis of inheritance 

paths is possible, therefore the history of method changes down a branch can be followed. Also, 

due to the consequences of property modifiers, the detection of cancellation of methods permits 

the suggestion of potential wrong subclasses. 

To date, the concept of wrappers has not been applied in the context of a measurement programme. 

For the purpose of assessing class hierarchies, the technique is convenient and permits an 

encapsulation of the two levels: class or (branch ot) hierarchy. 

The next section concentrates on the different method states when being redefined. A state 

transition diagram is used to illustrate the relevant transitions. 
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3.3.4. State transition diagram for the method redefinition mechanism 

The assessment of the mechanism of redefinition requires a deeper analysis of the methods present 

in the hierarchy. The tracking of the evolution of method status becomes essential from an 

assessment perspective. This section introduces a state transition diagram that captures the possible 

states of a method when being redefined down the hierarchy. A set of expected and unexpected 

transitions is explained. 

In most 00 methods literature, the mechanism of inheritance is illustrated in examples involving a 

parent and a child class. Although the case of multiple inheritance involves many parents, the 

coupling effect is still shown for the pair of parent-child classes. Managing many levels of depth 

requires an overview of the whole hierarchy or at least a separate view of the branches. Due to the 

transitivity of the inheritance relationship, for each of the inheritance paths, publicly declared 

properties are passed from one level to the next level of depth down to the leaf class. For this 

reason, correctly extending an existing hierarchy requires a good knowledge of the design of 

ancestor classes. This adds an additional burden for the designer in the case of off-the-shelf class 

hierarchies. Three main factors affect the designer'S choices when looking for appropriate 

abstractions in existing hierarchies: 

• Class complexity vs. depth: the behaviour of classes increases in complexity when many levels 

of depth are involved. In the case of commercial class hierarchies, the decision for extending 

the hierarchy is often based on a limited number of factors due to the size of the hierarchy and 

the number of possible dependencies. The consequence is that the chance for wrongly extending 

inheritance is higher. 

• Accumulated inherited properties: the size of accumulated inherited properties may become 

un-manageable by designers if the classes encompass a large number of methods. This directly 

affects the decision for the solution design and often induces ignored inheritance in the 

hierarchy. 

• Class and behaviour documentation: the availability of a comprehensive description of the 

classes and behaviour is always desirable but not present in many cases, thereby making the 

reuse of the classes difficult. The existence of examples is a crucial factor to the understanding 

of the existing classes and associated methods. The Javadoc ™ software tool from Sun 

Microsystems™ directly addresses this point. Given that pre-defined tags have been inserted in 

the Java source code, Javadoc formats the public API into a set of HTML documents, thereby 

providing the detailed description of classes and methods in a standardised way. 

For a class, for each attribute and method, the scope modifiers define the encapsulation of the 

class, thus future heir class visibility. Inherited properties mean that they have been declared as 

either public or protected in the parent class. In such cases, various changes can be done to the 

implementation of an inherited method. In order to visualise the effect of change of state of 

methods from a parent class to a child class, a state chart diagram is used in Figure 3.13 (see 
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section 2.2.4 for a description of redefinition variants). From an assessment perspective, the change 

of state of methods from one level to the next level permits accurately following their evolution in 

the branches of the hierarchy. The method's state refers to the changes happening to an existing 

method between its version in a parent class to the version in one of its child classes. 

Figure 3.13: State-chart diagram for method redefinition 16 

In Figure 3.13 all possible state transitions of a method are represented. Six different states are 

listed: 

• Deferred: when a method is in a deferred state, the only next possible state is being defined. 

Eiffel refers to the action of providing the first method definition i.e. body, as effecting the 

method. This is also known as realising the method. 

• Defined: it is the first time definition for the method. 

• Reused the method is reused without modification. 

• Extended: the inherited implementation of the method is reused with addition of new code. 

• Replaced: the method is completely replaced, the signature remains the same. 

• Cancelled: the method is removed from the child class 

• Final: the method is declared as non-modifiable although accessible . 

• 6 Note that the two states "CanceUed" and "Final" are treated as a single state as they both are questionable states. 
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~ Defined Reused Extended Replaced Cancelled 

Parent to Child 
IFinal 

Deferred 

Defined 

Reused 

Extended 

Table 3.5: State transition table for method redefinition 

The main purpose of the state transition diagram is to detect suspect or unexpected method changes 

down the branch of the hierarchy. During the extension of a class hierarchy, different design 

constraints may appear whether an existing class library is provided and reused as it is. If so, the 

process of investigation of the wanted abstractions (i.e. (set of) classes) constitutes an important 

task in the design process. Pragmatically, designers or implementers rely on a localisation of an 

appropriate branch of the hierarchy in order to reduce the search range. In current class hierarchies, 

abstractions are fairly well-decomposed and organised as branches of the hierarchy. For example, 

current graphical interface abstractions also referred to as frameworks are well established and 

solve most ofthe needs of information systems requirements. 

In this document, the focus is given to transitions (Table 3.5) which might suggest design 

problems. Mainly, it concerns methods whose state is either replaced or cancelled. Although Meyer 

[Mey97] promotes method overriding under the condition that the semantics remain the same, the 

checking of consistency of the semantics is difficult. In detecting the change of state of methods 

down the hierarchy, there are opportunities to suggest potential inconsistencies in the use of the 

redefinition mechanism. 

Clearly, the detection of suspect state transitions is desired; however, it should be noted that further 

complex method redefinitions that are not captured by the state transition diagram presented above 

could take place. Such complex redefinition cases, often obscure, are presented in the next section. 

17 Eitfel provides a construct which fixes and disallows future changes to a method. Such a method is referred to asjrozen and is 

equivalent to afinal method in Java. Note that for the transition: Reused to Reused, a frozen or final method can be reused. 
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3.3.4.1. Remark: method redefinition and unexpected message sends 

The state transitions for methods described above aim at suggesting potential wrong use of method 

redefinition; however, further complications may occur. From an assessment perspective, it is 

essential to be aware of such situations that cannot be easily detected automatically. Although a 

redefined method may seem conceptually valid, developers are offered many opportunities to 

deviate from the inheritance sch~e when implementing the method. Sometimes the context may 

require a portion of code qualified as a hack to provide a simple solution to a problem e.g. in the 

case of inheritance of somebody else's code. However, a dangerous situation may happen in the 

case of careless programming. A redefined method may appear correct from the point of view of 

its interface but not from the point of view of its semantics, therefore incurring consequences on 

previously made assumptions on the design. 

The possible combination of message-passing, the delegation mechanism and the effect of 

encapsulation are the main causes of the problem of unexpected messages in the method's 

implementation. Message-passing generates dependencies between objects but also affects the 

validity of inheritance because of method invocations in non-conventional ways. Such method 

invocations results from the hazardous use of directed resends i.e. ability for an overriding method 

to invoke the overridden version (Smalltalk-80 has super, CLOS has call-next-method, C++ has 

qualified messages using the :: operator [Cha97, Ste90, Str90]). In Figure 3.14, four classes a, b, c 

and d with d < C, c< band b < a are represented. 

origin a n 

l)supercall 
b 

'1' ) super call 
c r;; 

replacement d J) Aomal/extemal call 

Figure 3.14: Expected method invocation 

Consider class a = {<m(»}, with m defmed as public. Method mb() and Il1cO are extended 

methods, therefore an invocation of the ancestor implementation is made via the super call. 

Method m is replaced in class d therefore its implementation is completely different from its parent 

one and it is expected that the semantics would remain the same. Note that method mdO is entitled 

to send messages to other remote methods i.e. internal or external calls. In a redefined method, 

three types of invocation are possible: reference to the closest inherited parent IS implementation, 

explicit reference to an inherited parent's implementation 18 and other internal or external references 

18 Note that the difference between a cJassicsuper call and an explicit super call is that, in the latter case, the ancestor's identifier is 

specified in the call, allowing the caller to refer to a specific parent·s implementation of the inherited method. 

- 102-



3. Assessing the Properties Inher~ance Scheme for the MuHpe Descendant Redefin~ion PrOOlem in Objed-Orienled Systems 

to the class. The combination of those possible references gives opportunities to deviate from the 

correctness of the inheritance. 

In Figure 3.15, four examples of such cases are given. 

ancestora 0 

replacement b 

a) directed super call 

origin a Q ~ ... '\ 

replacement b 6 I 

c 11 ;~::J 
d ---) 

c) mUltiple super call 

ancestor a 0 

i 
replaoomenl : ! m' 

~, 
" , \ 

\ 
\ 
\ 
I 

I 
I , 

J 

~~, 

---.-I 

" \ 
I 

I 

b) directed super call and disinheritance 

origin a 

replacement b 

d)MDR 

Figure 3.15: Examples of unexpected method invocations 

Legend 

a ~ 

b<_a! 
c <direct b 

Examples in Figure 3.15 show various uses of method replacement. In case a), mdO and me() 

extend their definitions whereas mbO replaces the method. meO issues an explicit super call, not 

to the latest inherited implementation (from class b) but to one of its previous ancestor (class a). 

Effectively, a previous implementation of method m is wanted for the class c. Thus, maO's 

implementation is not available for reuse unless referenced within an explicit super call. Note that 

either or both class b or c are considered as suspect classes i.e. abnormal case of inheritance. 

The case b) is a variant of case a).I1lcO issues an explicit super call to a method different than the 

(inherited and redefmed) method maO i.e. super call to m'aO and mlaO publicly defined in the 

superclass a. me() completely changed its original semantics and in addition, it refers to a different 

method in one of its superclasses which suggests that maO and m'aO may be variants of each other. 

This clearly suggests a design problem as the semantics are different than the original. 

In case c), an example of multiple super calls is given. mbO replaces the inherited implementation 

therefore no super call appears. In order to extend the inherited implementation, meO issues two 

super calls: one as normal and one to the previous ancestor's implementation for code reuse. As 

meO reuses maO and mbO implementation, this seems to be a possible way to simulate multiple 

- 103-



3. Assessing the Prq:Jerties Inher~ance Sdleme for the Mu~pe Descendant Redefin~ion PrOOIem in Objed-Oriented Systems 

inheritance although not a satisfying design. Class c re-establishes the expected inheritance 

scheme. Class b is a suspect class. 

In case d), an example of MDR is shown. The multiple method replacement implies that maO, 

mbO and I11cO are different versions of the same inherited method. Further subclasses to c must use 

the directed super call mechanism to reactivate "lost" implementation resulting from previous 

method replacement. Given the definition of the MDR in section 3.1.2, the referred parent-child 

relationship between band c (Figure 3.15 b» is a direct relationship. However, other unexpected 

situations related to the MDR problem may appear and are described below. 

Consider Figure 3.16 where two scenarios, referred to as distant MDR, are shown. 

origin a 0 origin a I legend ,," , ~:1 a ~ ; 
; , / 

replacement b ?/ replacement b 0' 
, 

b <distant a 0 
reused b1 ¢ reused b1 d 

! , 

reused b2 ? ;1f extended b2 9 , :1 
, , ,," 

~ , , 
9 i-, replacement c Q ~- replacement c I " ., , \ 

I I 

! , , I 
d 0 --; d 0 -

a) distant MDR b) distant MDR 

Figure 3.16: Distant MDR scenarios 

Rather than a direct inheritance relationship between the classes band c , they may be separated by 

other classes b1 and b2. Whereas b1 and b2 are only reusing mbO (Figure 3.16 a» or reusing and 

extending mbO (Figure 3.16 b», a subsequent replacement i.e. meO, raises further design issues. 

Intuitively, such complex sequence of calls does not suggest any recognised appropriate use of 

inheritance and is not well understood. Such situations may be attributed to optimisation reasons in 

class hierarchies i.e. only the behaviour in the leaf classes is completely re-implemented for 

performance. Often, these classes are also defined as finalised (see 2.1.7). 

The examples of unexpected calls described above demonstrate that designing classes using only 

method interfaces does not ensure a correct design. This contradicts the claim of current 

methodologies for completely decoupling design issues from implementation. The use of 

inheritance and the design of method interfaces rely on assumptions on the inheritance scheme, 

which may not hold at implementation phase. More importantly, such situations affect the 

maintenance of the application but also distorts metric results as they may be categorised as correct 

measures. To prevent hidden method redefinition abnormalities, code inspection is des'ired. The 

state transition diagram described in 3.3.4 cannot detect such anomalies either. Currently, only an 

analysis of the source code permits the detection of such problems. Alternatively, in a dynamic 

event model (see OMT methodology [Rum91]), as the message flow is defined, it reduces the 
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chance for the problem of unexpected calls. Nevertheless, the design of a class hierarchy with the 

intention of code sharing and code reuse is not only an application-solving problem but also a 

software engineering activity. 

The next section provides a synthesis of the behavioural inheritance analysis technique which is 

aimed at providing a visual representation of the method s life history in class hierarchies. 

3.3.5. Behavioural inheritance analysis 

Providing that an object model is stable i.e. towards the end of the design phase, it is essential to 

gather an overview of the architecture and design issues involved for the entire application. This 

may be seen as a design validation phase or a final design review phase preceding the 

implementation phase. One important aspect for the design of class hierarchies is to make sure that 

the semantics of the behaviour are correct for optimising reuse regarding the inheritance use and 

the set of requirements for the application. Behavioural inheritance analysis addresses the problem 

from the interface point of view. Three techniques have been described in sections 3.3.2, 3.3.3 and 

3.3.4: 

• Obtaining design information useful for metrics. 

• Class analysers and inheritance path isolation. 

• State transition diagram for method redefinition. 

Using the output of each of the above techniques, the aim is to build a snapshot of the life history 

of methods in a particular branch of the hierarchy. For each of the classes of each path of a 

hierarchy, the method is analysed to record the evolution of its state. A possible representation is to 

reproduce an image of the concerned hierarchy with addition of method s state to provide an 

overview of the method IS life history. 

Figure 3.17: Method life history representation 

In Figure 3.17, an exact reproduction of the concerned branch of hierarchy is used to show 

additional information about the methods. Thus, the top class is the main parent class fqr all 

isolated paths found. Recall that the idea for studying a branch is interesting because it captures a 

set of related concepts such as the Collection branch, the Stream branch or the WindowManager 

- 105-



3. Assessing the Prq>erties Inherttance Sdleme for the Muttpe Descendant Redelinttion PrOOIem in Objed-Oriented Systems 

branch. For each method defined in the main parent class, all the paths are scrutinised to show how 

the method evolves further down the hierarchy. For a particular branch of the hierarchy, the 

method states are recorded in each class in the following form: 

method name » state 

with state = {deferred, defined, replaced, extended, cancelled} (see section 3.3.4) 

A behavioural analysis may only concern a subset of methods which have to be evaluated, 

therefore, not all existing methods in the class may be displayed. Recall that methods simply 

reused in a class except for the case of super calls are not shown as it requires a detailed parsing of 

the code for detecting such cases. Therefore if a class does not show a method, it does not mean 

that it is not used. Various possible ways of use or reuse include aggregation, inheritance, message 

passing or arguments of methods that cannot be detected by previously described techniques. Thus 

showing a limitation of the behavioural analysis technique. 

An example of use the technique is illustrated in the next section. 

3.3.5.1. Experiments on the Collection class 

In Figure 3.18, the example given in section 3.1.2 is revisited. Only the relevant methods from the 

Collection class are shown. To obtain the hierarchy below, the designer will rely on a tool and 

therefore additional filtering mechanisms to organise the information e.g. one method at a time, 

only replaced methods or a specific isolated path, are possible. 

Figure 3.18: Method life history for the Collection branch 

The representation of the class hierarchy together with the method s status permits an overall view 

of the life history of the method. This representation clearly pinpoints the problem of MDR in the 

inciudes:Coliection and add: Collection methods. Although originally declared as abstract methods, in 
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most paths the methods are completely redefined. The few exceptions concern the add: method in 

the classes MethodDictionary, System Dictionary and SymbolSet. Particularly, the path 

Collection, SetDictionary, IdentityDictionary and MethodDictionary raises attention. All 

versions of the add: method have been replaced except that in the leaf class where the method is 

extended. Having a case of MDR and an extended method in the leaf class suggests that 

inheritance is used for sharing of other methods not shown here. Although all classes in the same 

path seem to be structurally similar, the semantics seem to be different according the evolution of 

the add: method. 

Another interesting case concerns the grow: and do: methods. The grow: method is firstly defined 

in the IndexedColiection class. Then, subsequently replaced in OrderedColiection and finally 

extended in SortedColiection. Besides the fact that the method has been replaced once, not 

enough arguments allow us to conclude that it might be a problem. On the contrary, the fact that 

the method is extended in the leaf class gives it credit. The case of the do: method is the opposite. 

After being replaced, then extended, it is again replaced. This raises a "design alarm" for potential 

incorrect interface design. Notice that if a method is declared as deferred in a parent class, the first 

replacement is a correct use of the redefinition mechanism (see section 3.3.4, Table 3.5 for the 

recommended transitions). 

Design decisions are not possible· at this stage, as other methods in the classes should be 

considered. This is the reason why measurement techniques will complement such analysis. For 

example, given a ratio of replaced methods compared to the number of extended methods gives an 

indication on how the redefinition facility is used in the model. 

Following the description of all design considerations relevant to the assessment of inheritance in 

the above sections, the interpretation and understanding of use of the inheritance relationship and 

the method redefinition were clarified. This reduces the chances for ambiguities, and thus enables 

the delivery of an appropriate measurement programme. 

In a measurement process, not only the definition and derivation of the metrics are important. In 

the literature on measurement, the topic of interpretation process is little described. Paradoxically, 

it is generally agreed that without a good design feedback from the analysis of the metrics results, 

a measurement programme may fail. The next section proposes a novel data interpretation 

framework for the assessment of 00 models. Emphasis is given to the necessity for generating 

sensible feedback to the designers. In addition, the data interpretation framework aimed at being 

integrated as the final process within the GQM model. 
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3.4. Mechanisms for data interpretation of metrics for object-oriented systems 

"There are as many scientific methods as there are individual scientists" 

- Percy W. Bridgman, On "Scientific Method" 

3.4.1. Introduction 

Measurement techniques are valuable and troublesome design tools at the same time [Av094, 

Bo089, BinSch96, Bri96, ChiKem91, KosVih92, McKMon93]. The analysis and interpretation 

method used is an important component in the measurement process. More than a simple data 

retrieval and representation mechanism, the analysis and interpretation technique should be 

designed to illustrate a few particular aspects of the feature assessed [Ebe92]. Because of the 

relative immaturity of the 00 metrics research field, little research has been done on the 

interpretation and analysis of metric results, making meaningful design decisions difficult. For 

example, in the depth of inheritance (DIT) metric, Chidamber and Kemerer interpreted the 

possible results as, "top heavy" (too many classes near the root) or "bottom heavy" (many classes 

near the bottom of the hierarchy) designs. However, whether a class hierarchy falls under one or 

the other case seems arbitrary, and thus subjective. 

Measures are only significant if th~y are objective and repeatable. Metrics that require subjective 

assessment where a range of complexity values are 'arbitrarily affected have been recognised to 

have no scientific validity [Hen96]. Complexity values may be used for attributing weightings to 

the metrics. Instead, it is preferable not to take into account subjectivity that makes the data 

interpretation difficult. Stating that a design is good is only valid with respect to particular criteria. 

One such criterion might be the non-dependency of classes to other classes, which exhibits a low 

level of class coupling. In addition, the qualifier "low-level" must be related to a hypothetical 

average or threshold for the particular metric under consideration. Interpretation of data relates to 

the goals and assumptions stated for the concerned metric. For example, an assumption concerning 

the DIT metric is that the deeper a class is in the hierarchy, the greater the number of methods it is 

likely to inherit, therefore the more complex it is likely to be. So, a typical DIT curve would 

decrease rapidly on a number of classes per DIT graph. Currently, the metric results analysis is 

carried out in a pragmatic way. Outstanding patterns or phenomena drive the process. Often, a 

graphical display provides assistance for quick and easy feedback over a table of numbers. 

Although the area of representation and visualisation constitute separate topics of research, they 

strongly relate to the interpretation techniques used in a measurement programme. To date, 

emphasis has been given to the early stages of the measurement programme. A consequence of 

this is that metrics have been criticised for collecting large amounts of data without any suitable 

methods for analysing the data afterwards, making them useless [Fen90]. 
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Currently, the interpretation of metric results rely on one possible understanding of the 00 

concepts, which is the reason why the emphasis is put on the early goal definition stage for a 

candidate metric. In general, most authors use statistical methods in addition to empirical analysis 

methods but others have emphasised the need for more appropriate techniques [Abb&aI94, 

Bak&aI90, Bar&al93, Bas&aI94, Bou89, Bri96, BriCuc98, Hen96, RosHya96]. Clearly, the 

difficulty of interpreting metric results asks for complementary analysis techniques. This section 

argues that, depending on the characteristic assessed, the combination of a dedicated analysis and 

interpretation technique and the use of appropriate graphical representations procure additional and 

better quality information feedback from the metric results. In addition, other supporting tools for 

pre-processing and data analysis may be required. For example, trigger rules that characterise a 

particular phenomenon on a given curve can be defined and automatically detected. As the 

"goodness" in a design is subject to disagreement because it depends on the interpretation of each, 

appropriate analysis and interpretation techniques must take into account the variety of 

characteristics assessed, the environment and the purposes of measurement. Thus, the efficiency 

and relevance of metrics relates to the amount of feedback produced about the design and the 

suggested ways for improvement. 

The methodological issues involved in the interpretation process are defined as follows: 

~ A description of examples of convenient data visualisations for a collection of metric 

results. The benefits and drawbacks of each are highlighted. 

~ An exploration of possible utilisations of pattern profiles with regard to the intrinsic 

properties of the data visualisation type. 

~ A novel interpretation framework is proposed. The detection of particular design problems 

is realised using an "alarmer" technique and triggered conditions. 

The following sections propose a data interpretation method based on pertinent visualisation of a 

data set obtained from the method redefinition metrics for object-oriented systems. The data 

interpretation method aims at facilitating the metric results interpretation, the design problem 

identification and constitutes a means of deducing design decisions. It is discussed how this 

method constitutes a solution to re-injecting design information in an object-oriented model. This 

work aimed at the generalisation and integration of the data interpretation method within a design 

evaluation cycle framework. 

3.4.2. Motivation and approach for interpretation 

In the current literature on assessment methods for 00 systems, the importance of extracting 

design information feedback from metric results [Hen96, LorKid94, Whi97] has been highlighted. 

However, to date, emphasis is still given to the correct definition of metrics and the goals for 

which they are defined. Then, the data obtained from derivation of metrics are empirically studied. 
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The data visualisation method presented in this section is based on the idea of metric profiles. Any 

deviation from this "norm" will suggest potential inconsistencies which correspond to specific 

design problems. However, the deduction of conclusions from raw data obtained from metrics is 

not straightforward. One way to tackle such problem is to provide a complementary method or 

technique for designers to facilitate the measurement process. 

Three main aspects are considered in our analysis and interpretation method as follows: 

1. In general, raw data are pre-processed before being analysed. The nature of the processing 

function is chosen depending on the type of results expected. For instance, only a range of the 

values may be relevant at a time, or the values may be more suitable for reading on a 

logarithmic scale. Any transformation of the raw data contributes to the overall method for 

analysis. 

2. The use of graphical representations directly depends on the type of values returned by the 

metrics and the purpose of measurement. Based on the assumption that different visual 

representations are able to express different aspects of a measure, considerations have been 

given to the investigation of a set of representations applied to the same set of results. Such 

experiments enable the interpretation of the metric results from different angles. 

3. The need for additional interpretation aid tools such as searching or querying facilities aJso . 

. . contriblltes to the interpretation process. When the graphical representation includes a large 

data set, details are not necessarily obvious the human eye. To un-clutter the,;graphic with 
?~ 

unwanted data, several techniques can be used e.g. zooms, filters, triggers, data tr~nsformation. 

Identified and recognisable patterns for a profile can then be detected automatically e.g. 

increase of rate by a factor of x. However, from an investigation point of view, the designer 

may not know in advance what to expect concerning the characteristics of the metric profile. 

In such a case, it is likely that the needs for appropriate tools are only identified during the 

interpretation process. Such methods, similar to a "data mining" activity, are usually dedicated 

to a specific purpose contributing to the interpretation of the behaviour observed. 

Interpretation techniques are highly dependent on the properties of the attributes assessed. The 

interpretation stage is only part of the measurement process, it is nevertheless, crucial for the 

delivery of the expected benefits. Recall that the outcome of a measurement program can be either: 

• Expected. In such a case, it means that the result obtained is expected to match the predicted 

result. Providing that the notion of "goodness" or "badness" is defined, the difference between 

the values gives indications on the quality level of the attribute. Expected results permit the 

confirmation of general hypothesis such as: 

"due to the abstraction level of classes situated near the top of a class hierarchy, the 

deeper a class is, the higher the level of redefinition" 
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"for a DIT level, a high level of redefinition may suggest a potentially design problem in 

the current level and parent levels affecting the understanding, maintainability and 

extendibility of the class hierarchy" 

or more specific ones such as: 

"a redefinition level higher than 50% indicates a potential MDR problem arising at the 

considered DIT in the hierarchy" 

"the ratio of extended methods compared to the total redefined methods gives evidence 

of a class reusability" 

"a method redefinition rate increase> 30% suggests the presence of the MDR problem" 

Note that the above mentioned thresholds may be based on existing benchmarks. 

• Unexpected. In such a case, the interpretation is open to suggestions arising from the 

observation of the metric results obtained. An empirical study the profile obtained ought to 

discover particular patterns for further investigations. 

Whether the metric results are expected or not, the desired feedback provides explanations or 

suggestions for improvement concerning the observed profile. 

In section 3.4.3, a novel interpretation framework is presented and used for the evaluation of 

different types of graphical representation. The framework addresses the lack of the GQM 

approach for the analysis of the metrics results. 

3.4.3. Metrics interpretation framework 

liThe capability to qualify a process or product with measurement data is limited by the 

abilities of the analysts." - Henderson-Sellers 

Goodness and badness are two possible quality design attributes. Inevitably, a design always 

shows weaknesses regarding some particular 00 aspects while presenting strengths in other 

aspects. The area of measurement contributes to the design decision process and helps in the 

identification of recognisable design anomalies. Often, comparison is adopted as the technique for 

interpreting metrics results. However, as stated in [Ban97], the designer should make sure that the 

metrics values are comparable at first. To compare an aspect to another, they must be related to 

each other i.e. variants or serving the same purpose. In addition, they must be in related context 

e.g. similar conditions for comparison. In this thesis, the aim is to assess the various uses of the 

redefinition techniques. So, the measures are compared to each other within the same branch of the 

hierarchy. When two different branches belong to two different categories (see interpretation given 

to systems in sections 5.4 and 5.5), comparison is only made from a general perspective of use of 
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redefinition and conclusions can be drawn regarding the different type of profiles obtained. The 

metrics interpretation framework proposed in this section ought to minimise the risk of 

incomparable data in guiding the designer for the choice of the correct representations and 

interpretation mechanisms. 

The proposed metrics interpretation framework is aimed at being integrated in a traditional 

measurement process such as the GQM model. In consequence, the given description assumes that 

the interpretation phase naturally takes place after the metrics collection phase. In the light of 

explaining the crucial stage of data interpretation, it is necessary to re-visit the design and 

measurement process to demonstrate the strong dependency relationship involved between the 

early stages of design and the final stage of a measurement programme. In a software development 

process, the designer's perception is the core element to the success of the realisation of 

applications. 

In the following sections, the importance of the designer's perception is highlighted. It is shown 

how the interpretation framework can .be decomposed in the three following aspects: raw data 

representation, profile analysis and design feedback. Details of interactions between different 

components of the framework are explained. 

3.4.3.1. Designers' perceptions and decisions 

An interpretation process is a reasoning activity. As the decision making process is done by the 

designer, many factors influence the final decision. The designer's experience is one such factor 

(Figure 3.19). If an empirical analysis approach is adopted, the interpretation starts with an 

observation phase where an overview of the data is analysed. Then, a more detailed study is 

necessary. It is noticeable how the designer's perception or understanding of the underlying 00 

concepts affects the conclusions of an interpretation process. For this reason, the knowledge of the 

intention of the designer when the candidate design was built is crucial to the interpretation phase. 

External subjective factors may also compromise the interpretation as well validating it. For 

instance, experiments illustrated in [Abb&aI94, Ban97] proposed to choose evaluators I.e. 

designers based on similar experiences to rate a set of aspects of design. The results of the 

experiments showed a general consensus on the quality attributed to each design. However, it can 

be argued that in such a situation, there exists a degree of subjectivity related to the quantification 

of the level and similarity of experience of the designers. The number of years may be one possible 

approach to quantify such level. In consequence, in an interpretation process, the less subjective it 

is, the better the quality of the conclusion is. 

An interpretation process is also based on the understanding of the 00 concepts used. It is 

therefore important to relate the designer's perception of a concept with the interpretation of a 

measure. This is particularly important in the case of use of an 00 principle that exhibits different 

interpretations itself. 

- 112-



3. Assessing the Prq>erties Inher~ance Scheme for the MuitPie Descendant Redefinition Prcblem in Objed-Oriented Systems 

00 fundamentals 

Experience 

analysis 

r··········-{··· .. · .. · .. · .. ·· .... · ........ · .. · .. · .. · .. ·· .. · .. Y. .. · .. · .. · .. · .. · .. · .. · .. · ...... · .. -· .. · .. · .. · ·~·· .. .. · .. · .. ··l 

, Design feedback Raw data ' 
(suggestions) representation 

; ~ profile ~ 
i analysis i 
i ... !~.~~.'P.~~~i!?~ ................... .. ................ ............................................................... .1 

Figure 3.19: Analysis, interpretation and interactions 

The interpretation process can be decomposed into three aspects (Figure 3.19): 

• The representation of the raw data set implies that the metric results are not processed before 

display. 

• The analysis of the profile represents the process by which extraction of the design feedback is 

possible. 

• Design feedback. Often, this involves a comparison of the metric values obtained against the 

assumptions made on the 00 characteristic assessed. 

After a presentation of the benefits of graphical data representations, a detailed description of the 

profile analysis task is given in the following sections. In particular, the interpretation techniques 

focus on the discovery of unknown design features. 

3.4.3.2. Raw data representation 

To date, most research work on metrics has concentrated on the metrics themselves and does not 

exploit the results from different perspectives. The derivation of metrics tends to generate a large 

data set as a result Therefore, a graphical representation of raw data is the first natural step. 

Instead of a table of plain numbers which might be suitable in some cases, the main benefits of a 

visualisation is that it is easy to pinpoint disparities. The evaluation of different representations is 

desired in order to identifY the appropriateness of these with regard to the metric chosen and the 

design characteristics expected to be interpreted. The suitability of the visualisation type chosen 

determines the correctness of the interpretation. 

The data representation phase is illustrated by the three components shown in Figure 3.20. 
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Figure 3.20: Data representation 

An advantage of use of graphical representations is that they are not limited to well-defined ones 

such as bar charts, surface charts, etc. Several types of diagram may be appropriate for the same 

data sets offering the choice of many perspectives. For example, symbolic diagrams [Ebe92] can 

reduce information content while increasing readability and clarity. The symbols are arbitrarily 

chosen according to the values. 

The motivations behind the use of graphical representations for the method redefinition profIle are 

manifold: 

• Ease of analysis, comparison and interpretation: a visual representation is, in most cases, more 

convenient than raw data sets, especially large, in a table. The type of representation or 

symbolism used determines the expressiveness of the visual aspects. For instance, in the case 

of a ratio values type in a data set, the pie chart is one possible representation. 

• The comparison of the redefinition activity for different branches is made easier. A 

redefinition profIle can act as an element of reference in a comparison. The investigation of 

differences between two shapes indicates similarities or dissimilarities of the design from the 

point of view of behavioural inheritance. 

Data processing tools: 

Sometimes it is convenient to transform raw data (fable 3.6) before it is visualised. Examples of 

use of data processing tools can be the extraction of a reduced set of data, the data transformation 

into a different scale unit or the conversion of the data into ranges for enabling different 

perspectives. A pre-transformation of data is seen as a re-processing stage where the results from 

the transformation are expected to exhibit some desired features or peculiarities. The possibility of 

hiding or showing a subset of the raw data set is crucial for the analysis and interpretation of the 

metric's results. The focus on certain aspects of large data sets permits the discovery of details 
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which are otherwise unnoticeable. Although rare, data sets may also contain redundant values that 

can be removed by a filtering function. As applications evolve in time, it is also possible to see the 

effect of changes made between two versions of the same class, branch or system in comparing 

different versions of the redefinition profiles. Such comparisons are made easier with the presence 

of graphical representations. 

DIT Redefinition profile (%) 
1 6.48 
2 19.39 
3 42.15 
4 56.03 
5 45.54 
6 52 
7 60 

Table 3.6: Smalltalk Express Object branch redefinition profile 

The choice of the transformer function is outside the scope of this thesis; however, 

transformations in the metrics domain are considered. 

Detectors 

In general, abnormal or unusual values indicate abnormal or unusual ~e~ign features. The 

discovery of such unusual values may be straightforward if visual. As ,the redefinition metrics are 

mainly utilised to assess branches of hierarchies, depending on the size of the branch, a fine 

detection of potential suspect classes can be done due to the derivation level by level. The 

technique of detectors is complementary to data processing tools as the latter can be used as a 

filtering system to reduce the amount of data processed. A data interpretation model using 

alarmers is presented in section 5.11. 

Providing that suitable visualisation of the metric results exists, one possible way to identify 

design inconsistencies, for a given characteristic, is to assess the disparities on the graphical 

representations. This leads to the notion of pattern profiles. An example of detectors used in the 

experiments is the technique of alarmers (section 5.10) which are aimed at specifying and 

recognising such disparities. More generally, the identification of conditions under which a 

disparity occurs is essential for design problem detection. 

Ideally, it is sought to recognise typical pattern profiles which would be classified for a particular 

metric and thereby, the corresponding design problems. Suggestions for design improvement 

would then be facilitated. A profile should exhibit some expected characteristics or properties 

related to the metric considered. An alternative choice is to look at the range of possible chart 

types available for evaluating their appropriateness against the concerned metric. Not all graphic 

representations are suitable for a given metric, the choice depends on its type, on its properties, on 

the characteristics to be measured and on the type of results expected. For example, the 
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redefinition metric set measures the amount of redefined methods in a class hierarchy. The 

measure is taken level by level in the hierarchy and a percentage is returned for each level. 

Therefore, the type of results is discrete which prohibits the use of smooth curves. Instead, visual 

representations such as bar charts or scatter plots are the most suitable. Novel visual 

representations and symbolism are encouraged for the representation of results, especially if the 

properties of a particular phenomenon are known i.e. conditions under which a phenomenon is 

likely to appear. Although the drawback of such an approach entails the overall cost of 

development of the measurement programme, the main benefits lie in the focus of the dedicated 

representation to discover a particular feature of the design which can be detected by the derivation 

ofmetrics. 

The next section presents the core and final part of the interpretation process whereby the profile 

analysis process is explained. Naturally, it is expected that the outcome of the analysis is the 

suggestion of potential solutions to the design problems tackled. 

3.4.3.3. Profile analysis and design feedback 

The analysis of the results is mainly a synthesis activity. In gathering and referring back to the 

infonnation found during the entire course of the measurement, the analysis of observations made 

from the graphical representation leads towards explanations of the phenomena observed. The 

profile analysis and the extraction of design feedback are closely related tasks. Simply, the former 

aims at discovering and explaining the profiles obtained while the latter describes the necessary 

design actions to be done to improve the design. Figure 3.21 represents the final phases of the 

measurement cycle. 

Design feedback 

deSign decisions 
and transformations 

Assumptions 
Referential 
Hypotheses 

Profile analysiS 

processing tools 

................... 
....... 
patterns 
rates 
shapes 
colours 

Figure 3.21: Profile analysis 
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side effects 
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John McGregor [McG95] identified three techniques to interpret metric values. The observations 

can be based on: 

• The rate of changes of the value over iteration. 

• The direction of changes of a set of values. 

• The standard deviation from the mean of a set of values. 

McGregor's techniques are mainly based on the observation of changes occurring to a raw data set. 

However, the phenomena observed on a curve can be of different nature. When a design problem 

is identified, it may be possible to define the conditions in which the problem occurs. In such a 

case, the data set may be processed before display in order to explicitly show the identified 

phenomenon on a curve. Therefore, the interpretation process is based on the following two factors 

(Figure 3.21): 

• The presence of phenomena i.e. noticeable features, which can be either: 

* Native: without transformations, the data values exhibit particular visual characteristics 

e.g. peak, exponential rate of increase or decrease, minimum, maximum. Note that 

outstanding characteristics may be not be visually explicit e.g. not necessarily a peak on a ;: 

graph. Notice that the absence of a phenomenon may be the sign of an unusual 

characteristic and would required further attention. 

* Generated: under some conditions, particular visual characteristics can be generated when 

the data is processed beforehand. For example, to obtain a macroscopic view of the data, it 

may be useful to show ranges of values instead of all values in a data set. This permits a 

reduction of the size of the data set to be displayed on a graphic, therefore facilitating its 

reading. 

• The notion of interpretation rules is one possible approach to generate design feedback and 

suggest actions for improvement. For instance, suppose that in the context of the method 

redefinition profile, a threshold value of 40% is arbitrarily chosen as cut-off point. Then, if the 

peRM measures show two values that are higher than the threshold on two consecutive levels 

of DIT, it could indicate the presence of the MDR problem. Therefore, such a situation 

requires the analysis of the source code to discover further information on the causes of the 

problem. Note that, in general, threshold values are determined by measurements done in the 

past in a similar context and domain. In that respect, benchmarks are commonly adopted 

instruments for the interpretation of metrics and determination of "goodness thresholds". 

Unfortunately, benchmarks are rare due to the additional cost involved in the measurement 

process and the relatively unpopularity and non-maturity of metrics for 00 systems. 
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A possible definition of an interpretation rule is given as follows: 

Interpretation rule: 
In a given context of measurement, for a quantifiable aspect of a design attribute, an 

interpretation rule permits the logical deduction of the causes of the phenomena 

observed on a chosen representation. An interpretation rule indicates or suggests 

explanations on the observations of particular phenomenon for a given 

representation. 

Therefore, interpretation rules constitute a mean for inferring design feedback and suggest 

required design actions to the designers. In Figure 3.21, the referential values are values such as 

threshold values, averages, minimum or maximum. They are pre-calculated or arbitrarily chosen 

for reference. Sometimes, subjective choices based on experience are chosen as referential values. 

This area is still argued amongst the research community. However, when the referential values 

are well identified e.g. benchmarks, they can be used within detector tools as element of 

comparison. In addition, to support the search for a particular phenomenon during the profile 

analysis, various investigation tools providing facilities for pattern searching, querying, filtering, 

simulation and history of profiles may be considered. Some of the tools are discussed in chapter 5. 

An important characteristic of the analysis process is the influence of factors such as the 

assumptions, the referential values and the hypotheses defmed earlier in the measurement process. 

The interpretation rules tackle such factors in reducing the introduction of uncontrolled factors 

during the interpretation. This provides a better degree of accuracy in the conclusions generated. 

3.4.3.4. 

Design feedback 
Actions 

Factors affecting the interpretation process 

Figure 3.22: Interpretation factors 

Figure 3.22 shows the factors affecting the interpretation process. Often ignored in the literature, 

these factors .are rarely emphasised for the interpretation process. As expected, the output from an 

interpretation process is the generated feedback for design improvement. Interpretation rules 
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directly correlate causes to effects by identifying the list of factors from the different phases of the 

measurement (see Figure 3.22). To experimentally demonstrate the validity of the metrics, the 

technique of interpretation rules helps in confirming or refuting the stated hypotheses. 

The side-effect factor relates to the interpretation and uses of an 00 concept to solve a problem. In 

the case of inheritance, it has been demonstrated that various possible uses of the method 

redefinition mechanism affect the solution design. Often, it is the programming language features 

that generate unexpected designs referred to as the side-effect factor. The investigation of potential 

side effects is beneficial to the interpretation process as it provides explanations on the origins of 

the problems. Sometimes, the designers produce "non-conventional" designs on purpose to tackle 

a specific problem. For instance, the quality of the design may degrade when code optimisation is 

required and hacks may be utilised. If a side effect is known, then the causes of the problem may 

be easily understood. 

The investigation of dependency relationships between attributes assessed is one possible approach 

for discovering the effect of one attribute on the other. When a dependency relationship exists 

between two attributes, the corresponding metrics are therefore dependent (see section 2.4.6.1). 

Interpretation techniques can then fully benefit from this observation. For example, it would be 

possible to discover the logical chain of events between related metric results sets to understand 

how the changes to an attribute affects the result of the other. Another example relates to the 

redefinition and the encapsulation mechanisms. If the properties of a class are declared as private, 

they are not visible and accessible from other classes, therefore, no redefinition is possible for the 

subclasses of the class. This implicit dependency relationship between metrics opens various ways 

of improving the assessment process. In some cases, it can be efficiently used in a predictive 

manner. Suppose that two metrics m1 and m2 are directly related, the knowledge of evolution of 

m 1 allows the prediction of evolution of m2 and vice-versa. 

3.5. Conclusion 

This chapter examined the MDR problem in inheritance hierarchies and proposed a set of novel 

metrics for the measurement of redefinition. Details of the technical issues involved in the 

measurement programme were given and can be used in a more generic context. The behavioural 

inheritance analysis technique is a possible approach for discovering methods life histories 

regarding their redefinition status. Finally, a description of a metrics interpretation framework was 

given for tackling the problem of metrics results interpretation. 

To demonstrate the benefits of the redefinition metrics, the next chapter presents a metric 

prototype collector tool that enables automated collection of the metrics. Details of the 

requirements, design and architecture are described together with some sample screen shots. 

Further details concerning the design of the prototype tool can be found in the Appendix. 
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4. Metric tool collector and implementation issues 

"Not everything countable counts and not everything that counts is countable" 

- Norman E. Fenton 

4.1. Introduction 

The availability of automated tools within a measurement programme is a necessity for the data 

collection phase. If metrics were to be applied manually, the task would be very exhaustive and 

prone to errors. As the metric collector tool examines the design information, this must be in a 

format recognisable by the tool. In general, the design information is available in one of the 

following main forms: 

1. As a textual document on paper. 

2. Within a CASE tool. 

3 .. As textual· files used by either.a development environment or directly by a compiler. 

In case 1, the use of an automated tool is not possible. Case 2 requires the knowledge of the 

format in which the design is stored under the CASE tool. In such cases, a possible solution is to 

generate the corresponding implementation in a particular language which in turn, could be 

processed in the same manner as in case 3. The programming code still remains a common basis 

from which the extraction of design information is possible. If the CASE tools do not support 

code generation features, a costly approach would involve the development of an integrated 

metrics tool within the CASE tool architecture. In case 3, additional implementation of parsing 

tools is required for the derivation of the metrics. For development environments providing 

metaclass capabilities, the design information may be directly accessible without the need for 

further tool development. Although features like metrics definition, metrics collection and results 

visualisation are desired [Bri96], the diversity of environments necessitates dedicated metric tools. 

In order to limit the experiments to the demonstration of the applicability and usefulness of the 

redefinition metric set, the following aspects guided the design and implementation of the 

prototype metric collector: 

• A simple metric collection may be limited III functionality and use existing software 

applications as much as possible. 

• The use of a prototyping language enables rapid development of applications. 

• The identification and extraction of design information should be possible at minimum cost. 

• The algorithms for the computation of the redefinition metric set should be replicable III 

different environment. 
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• Class libraries are required as subject of study. 

This chapter introduces a prototype metric collector tool which: 

~ Automates the data collection for the redefinition metrics at class, hierarchy and system levels. 

~ Demonstrates possible novel representations. 

~ Features a method profiler for the analysis of the method's life history. 

~ Provides an example use of the technique of the alarmers. 

The next section details the requirements for the prototype metric tool. 

4.2. Requirements 

4.2.1. Features 

The purpose of the metric collector tool is to provide the user with a minimal set of features 

facilitating the derivation of the metric redefinition set described in section 3.2. The derivation 

process mainly consists of the automation of the data collection for further processing and 

analysis. The development of a metrics collector tool emphasises the fact that particular attention 

should be given to the feasibility and .cost of suchdevelopmertt within the measurement 

programme. To date, few generic metrics tools are extensible and flexible enough to permit an 

easy implementation of new metrics [SimLew98]. However, these are still under development. 

For the purpose of this thesis, the following features of the prototype tool are considered: 

• A browser which permits the display of the design to be assessed: in particular, the 

representation of a class hierarchy is required in order to choose sub-hierarchies for assessment. 

• Implementation of the redefinition metrics algorithms. 

• A method profile analysis tool that permits source code analysis for MDR problem discovery. 

• Persistent storage for the metrics results. As the design process is incremental, many stable 

versions of the model may constitute viable solutions, therefore, it is interesting to assess these 

versions comparatively. Thus, a persistent facility is needed for storing previous measures. 

Essentially, it is desirable to be able to store metric results and other possible attributes related 

to the measure of the particular design subject being assessed. Therefore, persistent storage 

should provide a mechanism for dynamically creating objects with their associated attributes 

and then provide functions for retrieval of existing objects. Its underlying model is not of main 

importance. 

• A data representation tool: the existence of powerful graphic packages on the market will 

suffice to satisfy the purpose of the experiments. However, the possibility of dynamic linking 
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between the prototype metric tool and the graphic package is envisaged as well as 

functionalities for creating novel representations. 

• An implementation of an example of detection technique. 

In addition, functionalities such as printing, exporting, importing and metrics management 

capabilities are also desired. Using the Smalltalk language, a rapid prototype development is 

possible. Furthermore, the IDE also provides support for dynamic manipulation of class 

hierarchies and user applications. The development is done within a PC-based environment. 

4.3. Analysis and design of the metric collector tool 

This section highlights the design issues for building the metric collector tool. The redefinition 

metrics set assesses the mechanism of method redefinition in a single class, in class hierarchies or 

in a system. For the derivation of the PRM, PRMH, PCRM and PEM metrics (see section 3.2), 

the internal structure of classes and existing inheritance relationship information are gathered. 

Before the derivation of metrics, two main questions need to be answered: 

• How can one detect if a method is a newly defined method for a class? 

• If a method is inherited, how can one recognise that the method is extended or redefined? 

Other states for a method have been described in section3.3.4 but not relevant to the calculation of 

the redefinition metrics. An immediate answer to the first question is to check if the method exists 

in at least one of its ancestor classes. If it exists, then the method can only be redefined, extended, 

reused or cancelled in the subclasses. The fact that an inherited method exists in a class i.e. 

presence of its signature, implies that the method is redefined, however two cases may arise: the 

method is replaced i.e. completely redefined, or the method is extended i.e. reuse of the inherited 

implementation. Note that cases of particular super calls such as directed super calls and 

dishineritance (see Figure 3.15 b), section 3.3.4.1) are not considered as a valid extension of a 

method from a conceptual point of view. 

The next section presents the problem of hierarchy parsing with regard to the derivation of the 

redefinition metrics at different levels. 

4.3.1. Class lineage and parsing strategies 

Several parsing strategies can be envisaged for the search of redefined or extended methods 

[Mey97, Riv96, Ste90]. In single inheritance class hierarchies, the lineage of a class can be 

examined in local ising the direct parent in a bottom-up fashion and by repeating the process for the 

parent class until reaching the Root class, the whole list of ancestors can be obtained. In the case 

of inheriting from multiple classes, the correct path is found in analysing the calls to the inherited 

method in the current class (see section 3.3.3). 
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Whether support is given by the development environment or not, the prototype metric tool is 

dedicated to the language studied in the sense that specific language syntax is taken into account. 

One of the other tasks is then to detect if a method falls Wlder the case of extension. Consequently, 

it is possible to conclude that all other redefined methods are either declared as polymorphic or 

completely redefined. 

Metrics derivation for the different levels 

Figure 4.1: Levels of derivation 

Figure 4.1 shows the classes of a system. The different shaded areas represent the three different 

levels for which the redefmition metrics can be applied. For each level, the list of classes to be 

included in the calculation is also shown. The different levels are: 

• Class level only the single class is concerned. 

• Hierarchy level the user enters the sub-root class name of the hierarchy. Then all subclasses 

of the sub-root are included in the computation list. 

• System levet the user enters the list of classes in the system. 

Note that at system level, the computation of the metrics does not differentiate whether classes 

situated at a particular level inherit from the same branch of the hierarchy or not. For example, all 

classes at level 1 in Figure 4.1 would be included in the calculation of the metrics although not 

inheriting from the same root class (further issues were described in section 5.5). 

To realise the different types of searches required by the metric tool, two main parsing strategies 

are shown in Figure 4.2. 
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Figure 4.2: Parsing strategies in class hierarchies 

The calculation of the hierarchy redefinition metrics requires the examination of classes level by 

level. To do so, the metric tool selects all classes situated at the same depth in the branch assessed 

and then, for each class at this level, examines its ancestors, its children or both depending on the 

information researched. The process of parsing is the main activity during the course of the 

derivation. The appropriate use of upward or downward parsing direction avoids unnecessary 

processing time. For example, in the case of the calculation of the redefinition metric for a class, 

downward parsing is not necessary. 

For each class to be included in the calculation, an extraction pf the relevant design information 

(section 3.3.2) from the class is done. Further details on the utilisation of the Smalltalk language 

for the realisation of this process can be found in the Appendix. 

4.4. Architecture 

The design of applications with object concepts naturally separates concerns into different 

abstractions. Based on a Model-View-Controller (MVC) architecture, the metric collector tool 

encompasses three main components shown in Figure 4.3 and is entirely part of the Smalltalk 

environment. The Smalltalk class librarY 9 therefore provides the main development features of the 

language. 

19 The SmaJltaIk Express version 2.0.4 was used for the metric tool development and the creation of the user interface was done using 

the WindowBuilder ProN GUI builder [ObjSha93]. 
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Figure 4.3: Metric collector tool architecture 

The main three elements of the metric collector tool are detailed below: 

• The profile manager and the metric engine act as the controllers. The profile manager ensures 

that the persistent repository is configured for the storage of method profile objects. The metric 

engine processes metric derivation requests. 

• The persistent repository structure represents the data model for the method profiles. The 

underlying persistency mechanism relies on the Smalltalk environment and its images. 

• The user interfaces include the hierarchy browser and the metric result panel. 

The benefits of such an architecture for a metric collector tool lies in its simplicity and adaptability 

for extension of new features. Three core classes represent the three elements in the architecture. 

At the centre of the architecture is the profile manager object. It co-ordinates the despatching of 

tasks, ensures that the method proftles are created and returns the results to the display panel 

object. Following the object design philosophy, one important aspect of the metric tool's 

architecture is that the components are abstract enough to carry out their tasks independently. 

Smallta1k applications are "embedded" within the Smallta1k environment. The persistent repository 

CPR) is an adapted version of the persistence system used in [Owe95] . Represented as an additional 

layer on the top of the Smalltalk class hbrary (Figure 4.3), the PR consists of a set of classes which 

provides capabilities for managing persistent objects within the Smalltalk image. 

• The analysis and design of the components of the architecture can be found in the Appendix. 

However, two of the features of the metric prototype tool: the concept of alarmers and the data 

interpretation system, will be illustrated in chapter 5. Both features have been integrated 

within the hierarchy and proftle browsers. 
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4.5. User interfaces 

In this section, the user interfaces illustrates the main features of the prototype tool. Decomposed 

in four sections: derivation, profile metric managet, method profiles and alarmers, the description 

of the tool covers the aspects shown in Figure 4.4. 
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Figure 4.4: Roadmap for user interfaces presentation 

In Figure 4.4, for each main feature, the available functionalities are presented as a tree. The 

following sections describe the metric prototype tool from a user point of view. Explanations about 

the derivation process and the supporting tools for analysis are given. 

4.5.1. The System Metric Browser 

Figure 4.5 shows the main user interface for the metric prototype tool. It includes a hierarchy 

browser on the left-hand side panel and a tabular display of metric results on the right hand side of 

the window. 
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System Metric Browser 

Oil ANM (%) PRM peRM PEM 
(%) (%) (%) 

5.0 14.7058 14.7058 0.0 

2 7.666661 50.3607 50.3607 0.0 

3 8.6 68.2857 54.0336 2.87114 

4 6.33333: 36.1909 24.3125 0.74276 

36.'7927 22;5945 

Levels in the Average Total Percentage of Percentage of 
completely 
redefined 
methods 

hierarchy percentage of percentage completely 
methods in of redefined redefined 
class per level methqds' methods 

Results of the 
redefinHion 
metrics for the 
Collection 
branch 

Figure 4.5: Prototype metric tool main window 

The request for a class, a hierarchy or a system metric is activated either by the Metric menu or by 

the first three buttons on the tool bar. The calculation mode is set in the left-bottom panel and the 

chosen option is automatically reflected in the status bar. The result panel display, including the 

titles and metric results, are only shown after the completion of a derivation request. A function 

permits clearing this panel if needed. Note that this functionality only deletes the values in the 

browser window but not the corresponding method profile object either in memory or in the image. 

For each derivation request, the date of derivation is shown above the status bar and this date is 

updated if a new derivation request is made on the same classes. 

4.5.2. Metrics derivation 

In the case of a system metric request, an instance of the SelectSystemClasses class is created 

and the user is asked for the selection of classes to include in the system (Figure 4.6). The list of all 

classes in the Smalltalk environment is presented as a flat alphabetical list on the left-hand side of 

the dialog box in Figure 4.6. 
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Redefinition metric for a system 
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C8Iculale the Update the View the Load the list cI Canoet 
melrk: for the selected list metric results ctasses for the operations on 
system cI classes In for the system name cI the system 

the system system entered 

Figure 4.6: Redefinition metric at system level 
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A set of functions is also provided for the management of classes in the system. The metric results 

for a system are also stored as persistent method profile objects, thus the presence of a Load 

function for the reloading of classes of a system that have been previously stored. Often, it is also 

convenient to add or remove classes from the system as it evolves. The Update function permits a 

quick modification of the list of classes of the system without having to reselect all classes. The 

Derive function requires the computation of the metrics for the selected classes and the VifNol 

function returns the stored results without re-computation of the metrics. 

In the case of derivation at class or hierarchy level, the input of, respectively, a class name or a top 

node class name suffices for the execution of the calculation of the metrics. 

4.5.3. The method profiles manager 

. To retrieve existing metric results from the persistent repository, it is necessary to load in memory 

the corresponding method profile object. A list of these can be browsed using the method profile 

list manager in Figure 4.7. The left-hand side panel shows this list and the entry field on the right

hand side permits the manual input of the profile object name. 
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Method ProfUes Manager 

Profile features 

Figure 4.7: Method profile list manager 

The list of features associated with the profiles is accessible via the buttons. The deletion of a 

profile is a physical deletion of the object from the repository. Similarly, on a request of the 

Update profile function, an automatic deletion of the object is done before the re-computation of 

the metrics. The View/New Profile option calls the method profile browser (see Figure 4.8). Note 

that, although the method profiles are used to store and to reload measures on a class a hierarchy or 

a system, the activation of methods browsers is only available for measures on hierarchies. The 

Export profile functionality is an alternative possibility for saving a method profile. It relies on 

Smalltalk's object dump facility that writes a compressed description of an object along with its 

referenced structure on disk. An example benefit of the use of such a mechanism is that it allows 

saving of different versions of the same method profile objects, therefore enabling a comparative 

assessment of the measures. The saved files may also serve as back-ups files as well as being 

uploaded in another Smalltalk Express environment providing that the metric tool is available. To 

do so, the Import profile facility reads such binary files and permits an easy reloading of the 

method profiles into the repository. 

Rather than directly print a method profile as the name of the Print functionality would suggest, it 

saves the method profiles information in textual files that can be directly reused by other 

applications or printed for documentation. This is particularly interesting for the processing of the 

results by third party applications in particular graphical applications. 
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4.5.3.1 . The method profiles browser 

Figure 4.8 shows the method profiles for the Collection branch. Divided in two separate panels: 

the upper and lower panels respectively give details about replaced and extended methods. In each 

panel, three windows permit the discovery of the methods life history. The left window shows the 

whole list of parent classes that exist in the requested branch of the hierarchy. Then, on selection 

of any of the classes in this window, the set of redefined or extended methods of the selected class 

is displayed in the middle window. For example, in the upper panel, the list of redefined methods 

for the Collection class is shown. And finally, on selection of any method in the middle window, 

the list of subclasses of the current parent class where the method is redefined or extended in the 

hierarchy is shown in the right window. Thus, the method profile browser shows the details of 

methods life history as described in section 3.3.5 , thereby permitting the confirmation of the 

existence of the MDR problem in suspect classes. For example, in Figure 4.8, it can be seen that 

the includes: method is replaced in the branch OrderedColiection < IndexedColiection < 

Collection. 

List a classes 
that includes 
replaced 
methods 

List a 
completely 

Method proftles for the Collection branch 

Number of 
methods 

~~ --r1:::~::==~·-methods for the 1~~pClIW 

current class ! !!-•••• .,~I 
List a classes 
that includes 
extended 
methods 

List a 
extended 
methods for the 
current class 

.. 

A '" . attli. 'end of the method's name danotes a polymol)lhlc - . . 

Figure 4.8: Redefmed methods browser 

Number a 
classes 

List a 
subclasses a 

the ClmIf1l 
class in which 

the current 
method is 

being replaced 

List a 
subclasses a 

the current 
class in which 

the current 
method is 

being extended 

Note that any methods that have been originally defined as polymorphic are notified by their name 

being followed by a '*' character. 

In both panels, it is possible to access four additional features on activation of the right mouse 

button on any selected method (see Figure 4.9): 
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• showList 

• showlnheritance 

• Dependents 

• Implementors 

When a detailed search of the use of methods is needed, the first two functions may facilitate the 

process of interpretation. For ease of reading, the list of subclasses in the right window can be 

shown as a flat list or a hierarchical list e.g. in Figure 4.9, a hierarchical view of the subclasses for 

all add: replaced methods of the Collection class is displayed. 

Method profiles 

~. 
s~ , . 

Subclasses 
represented as 
hierarchical list 

••• ~!!~~~fJ~~ Subclasses represented as 
plain list 

:1II8 . m.tthod'in.n~e··llenIBte!I. 1I poi1morphlc method 

Figure 4.9: Features of the methods browser 

During the course of interpretation, it is interesting to know the list of methods that refer to the 

method being studied. In such a case, it is possible to search for the list of classes and associated 

methods that refers to a method name20
• For instance, in Figure 4.10, the dependent classes of the 

includes: method are displayed in the Method dependencies window. 

20 Note that in the Smalltalk tenninology, methods are referred as senders for the reason that the method names act as the messages 

between two objects i.e. message-passing mechanism. 
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Figure 4.10: Method senders 
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The list of dependencies for a particular method mainly indicates how the method is being reused 

in other classes. In the Method dependencies window, a class»method format is used to 

represent a method of a class that refers to the selected redefined method in the method browser. 

Indeed, the list of dependent classes may contain classes not in the branch of the hierarchy being 

assessed. The search of such dependencies for all redefined methods down the branch of the 

hierarchy sheds light on the various uses of the method, therefore on the reasons why it is being 

redefined. Also, it gives useful information if an eventual modification of the redefined methods is 

envisaged. Recall that in a class hierarchy, the change of an existing class or method is a difficult 

task, as the semantics should remain consistent with its class lineage. The complexity of change 

varies depending on how the class or method is referred to in other classes. For example, the total 

references of the includes: method equal 187 (Figure 4.10). 

Similarly, classes that re-implement a method are referred to as Implementors. In fact, this 

functionality gives similar information to the right-hand side window in the method browser, 

however an indication of the DIT is also given by the Implementors class list in the form 

DIT -+ Implementor 

The Senders and Implementors functions can be called from both redefined and extended panels 

on selection of a method in the middle window. 
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Figure 4.11: Method implementors 
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From an interpretation perspective, it is interesting to detect the list of method implementors 

within the branch of hierarchy assessed but also in other branches of the entire class library. In 

such a case, if the same method exists in different branches, many other issues have to be tackled 

such as the similarity or dissimilarity of the semantics of the method particularly if the method is 

being redefined in all branches. This problem constitutes other design issues that are not covered in 

this thesis although the discovery of such problems is possible. 

4.5.4. The definition of ranges for the alarrner 

To set-up the ranges used by the alarmer, the getAlarrnRange: method creates an instance of the 

AlarrnerRange window that allows the user to manually input the values of the seven ranges 

(Figure 4.12). Recall that the entered values defme seven ranges of percentages and each of the 

ranges corresponds to a different colour range bar. 
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Figure 4.12: Alanner ranges definition 
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Figure 4.13 shows an example of results obtained from the Collection branch. The different colour 

range bars are displayed directly underneath each metric value providing that the alanner function 

has been tagged on (Figure 4.5). Note that the colour range bars themselves are previously defined 

and associated with the different ranges defined. In the current version of the tool, the range bars 

are bitmaps that can be redefined for different colours or shapes. However, the association is 

presently hard-coded for the purpose of the visualisation experiment. 
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System Metric Browser with alarmer display 
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Figure 4.13: System Metric Browser with alarmer display 

4.6. Concluding remarks 

Alarmer colour 
range bars 

The metric prototype tool benefits from an integrated interface where the class hierarchy 

component is visualised together the metrics results. Therefore, is it possible to immediately relate 

the analysis of the results to the relevant classes in the hierarchy. If further analysis of the 

hierarchy is required, the Smalltalk class hierarchy browser provides additional features. Recently, 

the development of such metric collector tools or code analysis tools for programming languages 

such as e++ or Java appears popular in indus1:r'i l
. As software applications are increasing rapidly 

in size due to the complexity of the business requirements, it seems natural that such metrics 

analyser tools are being developed as well. 

One of the main requirements for the metric prototype tool is the importance of support provided 

by the development environment for both the accessibility to meta-information but also for a rapid 

implementation of the tool. Only the class library integrated within the Smalltalk Express 

21 JavaOocGen is a Java static source analysis, JavaSQA is an Object-Oriented program quality assurance tool and JavaStructure is 

a structure analysis and diagramming tool for Java source code. These tools are developed by International Software Automation, Inc., 

http://www.softwareautomation.com. 1999. PC-Metric for C++ (PC version) and UX-Metric for C++ (SunOS version) are source code 

analysis tools for c++ and are developed by SET Laboratories, Inc.P.O. Box 868 Mulino, OR 97042. 
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environment and the WindowBuilder ProN class library were required. Although portability was 

not an issue, the specific part of the metric tool lies in its interfaces, therefore they depend on the 

supporting GUI class libraries. The core classes in the remaining part of the metric tool 

architecture use fairly standardised functionalities that are supported in many Smalltalk flavours, 

therefore facilitating the portability of the tool. 

An important feature of the tool without which the collection process would become rapidly 

cumbersome relates to the persistence of objects. This is realised with native features of the 

Smalltalk environment and saved within its image, all objects in the system including the method 

profile objects are only physically updated if an explicit Save command is requested or when 

exiting the environment. The Save command acts like a 'commit' command in a database in the 

sense that all existing objects in memory are saved in the image. Although this behaviour remains 

consistent with the Smalltalk procedures, it may also be constraining in some cases. For instance, 

if unwanted changes occur in the class library and new method profiles are expected to be saved, 

the changes must be undone before requesting objects to be saved. In most cases, the existing 

procedure is sufficient for tackling the main issues with the metrics. 

Concerning the graphical representation functionalities for the. metrics results, the Microsoft 

ExceFM 97 package was used with the exception of the implementation of the colour-coded 

representation within the prototype tool. By consequence, the creation of the graphical 

representations requires the metrics results to be transferred within the Excel worksheet. This 

process was manually done in the existing version of the prototype tool. Indeed, an·automatic 

transfer would remove all the necessary manipulation. This is possible with the use of the 

Microsoft Object Linking and EmbeddingTM (OLE) technology and is envisaged as further 

development. 

Overall, the metric prototype tool demonstrates that the redefinition metrics set is derivable. 

Automatic metric collection is possible at class, hierarchy and system level as expected. In 

addition, the implementation of a possible method profile browser gives insights on the problem of 

MDR, therefore generating feedback on the subject assessed. The experiments with the 

redefinition metrics are described in the following chapter and illustrate the applicability and 

benefits obtained from the analysis of the metric results. 
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5. Experiments 

The aim of this experiment is to demonstrate that the redefinition metrics are derivable and 

produces results that may suggest potential design problems. Given the description of the 

metaclasses' facilities for design information extraction in section 3.3.2, the experiments were 

carried out on the Smalltalk Expres~2 class library [GoIRob85] and a third-party application called 

T-gen. The reasons behind such choices originate from the following factors: the size of the 

software applications or class libraries, the presence of inheritance and the availability of the 

source code. As the measures were taken on existing applications or class hierarchies, the design 

details are not known apart from a high conceptual level understanding of the subjects assessed. As 

a class hierarchy may cover many distinct abstractions in different branches e.g. Collection and 

Stream branches, it is desired to assess these different branches in isolation. By consequence, the 

same above-mentioned factors affected the choice of the relevant branches for assessment. 

The experimentation is conducted as a five-stage process: 

1. Collection of the metrics for the different branches 

2. Analysis of the general PRM23 metric for the different branches. 

3. Analysis ofthe PCRM and PEM metrics for each of the branches orsystem. 

4. Investigation of various. graphical representations for the metric results. 

5. Implementation of a simple example of a detection technique called the alarmer'technique. 

This chapter demonstrates how a high level of method redefinition suggests the existence of design 

problems such as the MDR problem. In the first part of the experiment, only the general PRM 

metric is considered. The metric gives an overview of the redefinition profile for the class 

hierarchy. As the redefinition metrics set is a novel set of metrics, no previous results, benchmarks, 

thresholds or profiles exist, therefore the interpretation of the results can only be supported by the 

detailed analysis of the class hierarchy and the available code. Ideally, the access to design 

documents would shed light on the interpretation of the profiles. The shape of the curves obtained 

is the main guideline for interpretation. It is aimed at recognising pattern profiles that illustrates a 

specific aspect of the design e.g. "normal curve", "curve suggesting an MDR problem". 

In the second and last part of the experiment, the previous results are further discussed with the 

derivation of the PCRM and PEM metrics for the same branches. The finer-grained results i.e. 

ratios between the amount of replaced and extended methods, give opportunities for a better 

22In this thesis, Smalltalk ExpressT'" designates the version based on SmalltalkIV® Win16 and WindowBuilder® ProN provided by 

ObjectShare®, a Division ofParcPlace, http://www.objectshare.com 

23 The percentage of redefined methods (PRM) metric is obtained in calculating thePRMH for every level in the class hierarchy with 

Iinearisation of the inheritance graph i.e. no duplicates in the ancestors' list for a class. 
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interpretation of the design assessed. In general, when an unusual phenomenon in the profiles 

suggests further clarification, the designers ought to refer to the design considerations for 

inheritance assessment24 described in section 3.2. Ultimately, references to the source code are 

needed in order to pinpoint precisely any potential defects. 

Also, a simple detection technique called the "alarmer" technique is used for the identification of 

suspected design problems occurring under certain conditions. It is shown how the evaluation of 

different possible visualisations for a set of metric results not only suggested potential design 

problems but, depending on the type of visualisation, the same data set can reveal different 

characteristics. 

The list of hierarchies assessed in the experiment is shown in Table 5.1. As previously stated, one 

of the main criteria for the choice of the hierarchies presented in the experiment relates to the 

number of classes in the branches or in the systems. 

Type of subject assessed No. of Description 
Classes 

Object hierarchy 427 Root of the Smalltalk class library and other 
third-party classes 

WindowBuilder ProN system . 144 GUI builder for Sinalltalk Express 
,T -gen system 116 . Lexical parser. 
Collection branch 25 Set of container classes 
Stream branch 5 Set of Input/Output stream classes 
GraphicObject branch 40 Set of classes for window management 
TreNode branch 38 Subset of classes of the T-gen system· 
AbstractScanner branch 10 Subset of classes of the T-gen system 
Object hierarchy with the T- 549 Smalltalk and T -gen classes 
gen system installed 
Collection hierarchy with the T- 34 Collection and T -gen classes 
gen system installed 

Table 5.1: List of assessed hierarchies 

Graphical representations of the raw metrics results are generated by the Microsoft Excel97© 

package. On the below figures, the PRM metric is represented on the x-axis and the DIT level on 

the y-axis. Note that the maximum DIT shown on the graphics is 7 as no hierarchies include 

further levels. 

5.1. Overview of the method redefinition profiles using the PRM metric 

This first part of the experiment outlines an overview of the metric results for the selection of 

hierarchies described in the previous section. The initial analysis of the method profiles obtained 

suggests potential recognisable patterns on the use of redefinition for the assessed hierarchies. It is 

24 The method profiler in the prototype metric collector tool is an adapted version of the behavioural inheritance analysis method 

(section 3.3.5). 
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also aimed at discovering unusual characteristics in the method profiles that would suggest good or 

bad use of method redefinition. Overall, the grouped presentation of the results gives a ' feel' of the 

use of the redefinition mechanism in the hierarchy. 

Figure 5.1: PRM for the Smalltalk Object hierarchy 

Window Builder ProN system (%) 
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. ~3.85 

62.37 6 
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Figure 5.2 (a) and (b): PRM for the WindowBuilder ProN and T-gen systems 

Smalltalk Stream Branch (%) 

Figure 5.3 (a) and (b): PRM for the Collection and Stream branches 

Figure 5.4: PRM for the GraphicObject branch 
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Figure 5.5 (a) and (b): PRM for the TreNode and AbstractScanner branches 
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Figure 5.6 (a) and (b): PRM for the Object and Collection hierarchies with the T-gen system 

installed 

Figure 5.1 and Figure 5.2 (a) and (b) represents the method redefinition profiles for three of the 

largest (> 100 classes) hierarchies assessed. Although these hierarchies are isolated for the 

measurement process, they constitute different systems. The other branches assessed are part of the 

systems. 

Figure 5.3 (a) and (b) show the Collection and Stream classes redefinition metric profiles. They 

are generally recognised to be at the origin of similar framework of classes in other programming 

languages. Figure 5.4 (a), Figure 5.5 (a) and (b) show three hierarchies of smaller size « 100 

classes). The TreNode and AbstractScanner are subset of the T-gen system. In Figure 5.6 (a) 

and (b), the method profiles for the Object and Collection hierarchy show the metric results 

calculated with the presence of the T-gen system in the Smalltalk environment. 

A common pattern that appears in the profiles is that the amount of method redefinition rapidly 

increases in the first three levels of the hierarchy, then remains stable for two or three levels and 

finally decreases or increases in the bottom levels. As the highest values occur in the middle or 

bottom levels of the hierarchy, it indicates that the core redefmition activity is located at these 

levels. In the first levels of smaller size hierarchies, it is noticeable that the redefinition activity is 

low or even non-existent. Generally speaking, it seems normal that the redefinition activity would 

increase as the subclasses are specialised i.e. use of abstraction. This can be explained by the fact 

that deeper levels of the hierarchy should include a higher number of classes and as the number of 

inherited methods are accumulated at each level, they are also likely to be either used or redefmed. 

Naturally, the first overview of the redefinition activity calls for further investigation of the low 

and peak values. The following sections give a deeper analysis of the metric results. For each of 
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the above hierarchies or systems, it is shown how the examination of the high values guides the 

analysis of the results to the discovery of unclear design situations. The presence of MDR is 

highlighted in most cases. To do so, the PCRM and PEM metrics is derived on the same 

hierarchies and illustrations of a pragmatic approach to the problem of localisation of defect 

classes in the design are given. 

5.2. Smalltalk Object hierarchy 

The Object branch represents the whole class hierarchy (single-rooted hierarchy) which comprises 

425 classes. The two curves for the PCRM and PEM metric25 enable a clear separation between 

two types of method redefinitions: extension and replacement. Surprisingly, most of the methods 

are replaced instead of being extended. 

Smaatalk Object hierarchy (%) 
n 

1"~6.34 I I =~ .3 8.16 
3 ....... ··'" -'1A.03 

!:: • AI 47.48 0 
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8.25 
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Figure 5.7: PCRM and PEM for the Object hierarchy 

In Figure 5.1 , the PRM rate of increase of the Object branch is fairly smooth. The first surprising 

feature (Figure 5.7) is the relatively high number of completely redefined methods (PCRM) in the 

whole Smalltalk hierarchy. In this initial measure of the Smalltalk redefmition profile, from 

DIT=1 to DIT=3, starting with a value of6.34% for the PCRM, the value more than doubles in 

the subsequent levels denoting a strong redefinition activity. From DIT=3, PCRM=38.03%, the 

next values seem to stabilise until DIT=6 although there is an unusual peak at DIT= 4 with 

47.48%. Clearly, the midlevels of the Smalltalk hierarchy yield most of the redefined methods. It 

is argued that deeper hierarchies may generate a redefinition activity as high as the one presented 

in the experiment. In general, large branches such as the Object branch tend to lessen the 

discovery of potential problems. This is due to a leverage phenomenon when a large number of 

classes are involved in a measure. 

25 Note that the profile for the Smalltalk Object hierarchy in section 5.6 (a) slightly varies from the profile shown in section3 .1.1 , 

Figure 3.2. The differences of measures obtained are mainly due to the evolution of the prototype metric collector between the two sets 

of experiments. Indeed, the prototype also lives in the Smalltalk environment, thus influencing the results. The correctness of the 

metrics results remains consistent as long as the same version of the prototype is included when assessing various aspects of the 

hierarchy. 
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Although recommended (see section 2.1.1), more levels implies more abstracted classes spread 

over more complex branches of the hierarchy making it difficult to control inheritance. This is also 

true for the use of the extension mechanism. If a hierarchy already encompasses many levels of 

inheritance, fmding what the abstract classes and methods are, before the addition of new features, 

is a necessary and cumbersome task. The need for design aid tools to alleviate some of the 

designer's task is then a requirement in the modelling process. In Figure 5.7, note that the low 

level ofPEM (13.75%) at DIT=6 is also its maximum. The interesting characteristic ofthePEM 

values is that it has a fairly constant increase which indicates a good sign of the use of inheritance. 

However, at DIT=7, 60% of the methods are replaced while 0% is extended. This contradicts the 

essence of inheritance. Redefinition, which is recommended to be used with care, occurs 

frequently at all levels in the hierarchy, and extension, which is recommended, is rarely used. This 

raises the question ofthe correctness of the behavioural inheritance design. 

In order to further understand the phenomena observed on the curve, it is necessary to consult the 

classes present in the hierarchy and the state of their associated methods (see section 3.3 .5). Note 

that the Smalltalk class hierarchy comprises of many branches dealing with different aspects of a 

generic class library, therefore the results obtained in Figure 5.7 includes classes that may not be 

related to each other although part of the hierarchy. The overview of the method redefinition for 

the Smalltalk hierarchy sheds light on the way redefinition is done down the hierarchy. However, 

to identify the possible reasons for such profile, it is more appropriate to derive the metrics on a 

smaller portion of the class hierarchy. In such a way, the measures are done on classes that 

participate in the same abstraction. Therefore, the results are not disturbed by the effect of other 

classes that not related to the subject assessed. 

The following experiments present the isolated branches of the Smalltalk hierarchies. 

5.3. Collection branch and Stream branch 

Smalltalk Collection Branch (%) Smalltalk Stream Branch (%) 

o 20 40 60 80 20 40 60 

Figure 5.8 (a) and (b): PCRM and PEM for the Collection and Stream hierarchies 

The Collection classes in Smalltalk have been well studied by many researchers [Coo92, 

GolRob85, Lew95a] and are particularly known for the conceptual design problems occurring in 

leaf classes (see section 3.1.1). A major problem concerns the amount of cancellation of property 

inheritance in leaf classes. Smalltalk's inheritance scoping control permits a class to stop the 

visibility and accessibility of a method to its subclasses in redefming the method with a body 
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containing the code self shouldNotlmplement. This situation is often recognised as a source of 

bad design. The derivation of the redefinition metric would include the case of cancellation of 

properties of a class. Indeed, the precise localisation of the faulty class requires code inspection. 

In Figure 5.8 (a) and (b), at DIT=2, no methods are extended. A simple explanation is that all 

classes at level 2 have realised the abstract methods, which is normal. The metric profiles illustrate 

a case where a peak in a curve permits the discovery of classes highly suspect as they present an 

unusual level of redefmition. For example, supposing that a threshold of 40% of method 

redefmition should raise an alarm to potential design defects, it would be necessary to take a closer 

look at the peaks happening at DIT=3 in Figure 5.8 (a) and DIT=4 in Figure 5.8 (b). A simple way 

would be to derive the PCRM metric for each class of the concerned level. In Figure 5.9, it can be 

seen that the FixedSizeCollection class holds 100% of methods completely redefined. Such a 

result is unusual as none of the parent classes is declared as abstract. Although the percentage of 

deferred methods is not shown in the figure, the above-mentioned class seems to be wrongly 

subclassed. With the help of the method profiler tool, it is possible to study the hierarchy further. 

For instance, Figure 5.10 shows the method profile for the Collection branch. The add: method of 

the Collection class is being replaced in many subclasses (right hand side panel) situated at 

different levels of the hierarchy, thus illustrating a case of MDR problem. In the bottom panels, it 

is also shown that the add: method is only extended in three of the Collection subclasses. 

Figure 5.9 (a) and (b): Collection branch at DIT = 3 and FileStream at DIT=4 
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Figure 5.10: Collection method profile 

5, Experiments 

The PCRM for the Stream branch (Figure 5.8(b) and Figure 5.9 (b» is hi,gh with 40.62% at ~.' 

DIT=4, which represents a factor increase of 60% from the previous level. This confirms the 

Smalltalk Stream branch's generally recognised design defect. Due to the single inheritance 

scheme, the ReadWriteStream class inherits only from the WriteStream class. There is a 

duplication and redefinition of methods from the ReadStream to WriteStream. Note that the use 

of the method profiler for this branch is not shown but it also reveals several cases ofMDR. 

5.4. WindowBuilder ProN branch 

WindowBuilder ProN is a GUI builder for SmalltalkN [ObjSha93]. The tool permits the creation 

of the user interface including all of the powerful and standard UI elements. In addition to being 

entirely visual, the tool generates the necessary Smalltalk code once the design is done. A full 

installation of Window Builder ProN includes 144 classes. As the prototype metric collector tool 

was built with it, the measures taken for the Object branch included the WindowBuilder ProN 

classes as well as the prototype collector classes. 

Figure 5.11: PCRM and PEM for the WindowBuilder ProN 
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GUI builders are now well established with many proprietary products such as The BISS AWT 

Framework [Bis97], XForms [ZhaOve97], PowerBuilder@ [Pow98]. All of them are based on 

basic interface elements such as windows, scroll bars, text boxes, list boxes, radio buttons. Due to 

the advent of graphical development environments, it is generally recognised that GUI builders 

cover the essential needs of a large range of information systems. Therefore, the design of the GUI 

builder itself ought to be abstracted enough to achieve such requirements, thereby showing a fairly 

high redeftnition activity as in Figure 5.11. It is noticeable that the highest measures of redefmition 

occur at mid-levels of the hierarchy (DIT=3 and DIT=4) rather than in top levels as previously 

seen for the Collection branch (Figure 5.8 (a». Although the PCRM decreases on deeper levels of 

the hierarchy (DIT=5 and DIT=6), it remains fairly high with 37.88% and 42.73% respectively. 

On the contrary, the PEM ratio is steadily increasing down the hierarchy which suggests that 

inheritance is correctly used for specialising the hierarchy by addition of new features. However, 

recall that the measures shown on Figure 5.11 are general to the WindowBuilder ProN system. 

Complete redefmition or extension may be found only on some branches of the system and not 

others. A behavioural inheritance analysis for each isolated path would permit the discovery of 

further details of the design. 

The next section describes the measures taken for the GraphicObject branch which is part of the 

WindowBuilder ProN application. 

5.4.1. GraphicObject branch 

The GraphicObject branch is , one of the largest branches of the WindowBuilder ProN 

application. It includes 40 control interface classes which permit the definition of radio buttons, 

check boxes, list boxes, entry fields. 

GraphicObject Branch (%) 

t-
15 

o 20 40 60 80 100 

Figure 5.12: PCRM and PEM for GraphicObject branch 

Figure 5.12 shows that the first two levels of the branch contains a low amount ofPCRM and 

PEM. GraphicObject is the only class situated at DIT=1 , so is the InterfaceObject class at 

DIT=2. Such a profile indicates that the two classes provide all the necessary behaviour for future 

subclasses, thus the low level of redefinition. The PCRM increases by a factor of21.6 from DIT= 

2 to DIT=3. This shows that method redeftnition occurred at the top of the hierarchy, and 

questions whether the methods were initially well abstracted. For DIT=3 and DIT=4, the PCRM 
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are respectively equal to 74.28% and 71.68%. Considering that this branch provides all the 

necessary basic user interfaces elements for windows management, it is expected that most of the 

methods in the top classes would be redefined. In addition, each of the interface elements would be 

very specialised, therefore including a large amount of methods for reuse by a new application. A 

detailed analysis of the classes at DIT=3 is given in section 5.6. A suspect feature is depicted at 

DIT=5 in Figure 5.12 with PCRM=1 00 and PEM=O. Considering this level in the hierarchy, it is 

surprising that no methods were reused nor extended and that no addition of new methods were 

made. The study of the GraphicObject branch method profile (Figure 5.13) reveals that this 

phenomenon seems to happen relatively often and concerns a few leaf classes i.e. a single class in 

this case. Also, it is possible to detect that many methods present a case of MDR such as the 

drawFrameWith:at: method which is defined in the FrameObject26 class 

V Class methods prohler - fi!l1l!l1f3 

Figure 5.13: GraphicObject method profile 

Note that the bottom panels of Figure 5.13 shows the list of methods of the InterfaceObject class 

that are being extended in its subclasses producing a PEM=8.96% at DIT=3 and PEM=10.14% 

at DIT=4. 

5.5. T -gen system 

"T-gen is a general-purpose object-oriented tool for the automatic generation of string-to-object 

translators. It is written in Smalltalk and lives in the Smalltalk programming environment. T-gen 

supports the generation of both top-down (LL) and bottom-up (LR) parsers, which will 

26 The FrameObject class is situated at DIT=3. 
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automatically generate derivation trees, abstract syntax trees, or arbitrary Smalltalk objects. The 

simple specification syntax and graphical user interface enhance the learning, comprehension, 

and usefulness of T-gen." -- Justin O. Graver [Gra92]. T-gen is made of 116 classes with a 

maximum depth of six for the TreNode branch. As the system is a lexical and syntactical parser, 

most of the processing does not involve user interaction apart from defining a grammar as input. 

As for any other Smalltalk applications, the installation ofT-gen classes, in a general sense, 

extends the Smalltalk class hierarchy. Similarly, the redefinition metrics prototype tool (See 

chapter 0) application classes are also part of the Smalltalk image. With the Smalltalk 

environment, many applications can live in the same image and not interfere with each other. 

However, assessing the redefinition mechanism of a system raises some issues concerning the 

choice of classes to be included in the derivation of the metrics: 

• Isolated classes: the assessment of inheritance is relevant when, by definition, an inheritance 

relationship is defined between two targeted classes. If an assessment of application classes that 

inherit from the Smalltalk environment is desired, the question is to know whether the latter 

classes should be included in the derivation of the metrics. Recall that a branch of a hierarchy 

can be identified by locating the top node of the branch, thereby the assessment of such a 

branch will examine all possible inheritance paths from the top node class. As the redefinition 

metrics assess inheritance level by level, a first approach will only consider the application 

classes in the calculation. In such a way, the results obtained from the derivation of the metrics 

would only concern the targeted application. A second approach for deriving the metrics is to 

consider the whole Smalltalk hierarchy with the application classes installed, so a comparison 

would be possible with the original Smalltalk environment. 

Isolated classes in an application raise the problem of their inclusion on the calculation of the 

redefinition profile for the whole system. For instance, in T-gen, the class Graph inherits from 

the OrderedColiection class, the class Stack inherits from the Array class, the class ItemSet 

inherits from the class Set, etc. OrderedColiection, Array and Set are part of the Smalltalk 

library. In most cases, isolated classes are leaf classes, therefore a measure of redefinition for a 

class is one possible solution. In Figure 5.14, the ItemSet class has PCRM=100% and 

PEM=O%. Although this result may suggest a design problem at first sight, the detailed study 

of its methods reveals that the only three methods in the class: =, hash and isltemSet are 

originally defined in the Object class and are not previously redefined in its intermediate parent 

classes Collection and Set classes. Thus, the Item Set class should not be considered as 

suspect. 
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Figure 5.14: T-gen: ItemSet class redefinition profile 
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• Foreign classes i.e. classes which belong to the existing library. In general, application classes 

extend many existing branches of a hierarchy. Suppose that the application classes derive from 

an existing class which has itself many superclasses in the same branch. Many ancestor classes 

may act as top node of a branch for hierarchy assessment. For the derivation of the metrics, the 

issue is to decide whether to include the parent classes or not. In such cases, there are two 

possibilities; including the direct parent only or previous parent classes. In both cases a mixture 

of classes from the existing library and the application classes are included in the calculation. 

This remains consistent in the sense that an assessment of inheritance is desired, thus the 

inclusion of all classes which act as a superclass in a particular branch. Note. that inherited 

methods in a class are not necessarily originally defined in the direct parent class but· in 

ancestor classes of more abstracted levels as well. The case of the Object class is special as it 

represents the root class (see section 2.1.3). Indeed, when the metrics are applied on the whole 

Smalltalk class library, the Object class is the top node of the branch. The disadvantage of 

including foreign classes in the calculation is that it may affect the values of the results when 

the proportion of foreign classes is much higher than the application classes. In a cumulative 

approach, this may invalidate the results in making negligible the effect of the application 

classes and their properties (see section 5.6) on the metric results. 

5.5.1. T-gen system redefinition profile 

The classes in the T -gen system are spread over many different branches of the Smalltalk 

hierarchy. The T-gen system is made of distinct small size hierarchies with the Object class as a 

parent class and isolated classes inheriting from the Smalltalk class library. The derivation of the 

redefinition metrics is done in the same way as for the derivation on a single branch of the 

hierarchy. In fact, in the calculation of the metrics, classes are processed according to their 

superclasses, subclasses and the DIT level they belong to. Isolated classes of a system are included 

in the calculation of the metrics as any other classes in the system. In Figure 5.15 a redefinition 

profile is represented. In this experiment, the calculation is done on the application classes only i.e. 

no inclusion of foreign classes. 
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Figure 5.15: PCRM and PEM for the T-gen system 

Figure 5.15 reveals that, at DIT=6, 33.33% of the methods are extended but none are replaced. 

Concerning the PEM curve, the values remain quite low except the presence of the peak at DIT=6. 

Contrary to previous experiments, at DIT=2 the PEM reaches 6.87% after being nil at DIT=1. As 

many SmaIItalk branches are involved in the T-gen system, no satisfactory conclusions can be 

drawn at this point. Again, the measures of the redefinition on a whole system raise the problem of 

interpretation. Further investigation for more detailed measures and knowledge about methods 

profile are necessary before suggesting any recommendations for improvement. However, it is stilI 

possible ~o notice that the level of completely redefined methods is high which suggests possible 

presence of the .MDR problem in the system. 

As for the SmaIItalk class hierarchy, in the next sections, relevant branches of the T-gen system 

have been profiled and presented for further understanding on the use of the redefinition . ' 

mechanism. Indeed, selected branches ought to have many levels of inheritance in order to be able 

to analyse the behavioural aspect of the branches. 

5.5.2. T-gen: TreNode branch redefinition profile 

The TreNode branch is the deepest branch in the T-gen system with a maximum DIT=6. 

Figure 5.16: T-gen: PCRM and PEM for the TreNode branch 

In Figure 5.16, no metrics values were found for DIT=1 and DIT=2. Simply, it means that no 

redefinition has been found for classes situated at the two first levels. At the first level, an 

explanation of such a situation is that the TreNode class is the top node of the branch and has the 

Object class as its superclass. Therefore, as the TreNode class itself should provide generic 

methods for its subclasses, it acts as a supplier class. In addition, there was no need to redefine 
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inherited methods from the Object class, thus the nil values. At DIT=2, only a single class exists, 

the ParseTreeNode class with four methods defined as non-applicable to instances of the class 

i.e. the body of the methods contains: 

self shouldNotlmplement 

The above body declaration does not impose any conditions on the subclasses of the class but only 

on instances of the class. No invocations of the declared methods are allowed by instances of the 

class. If such a situation happens, the system redirects a doesNotUnderstand: walkback error to 

the sender of the message meaning that an object received a message that it cannot resolve. As no 

implementations are provided for the methods, the ParseTreeNode class acts as an abstract class, 

however, in such a case, the methods should have been declared abstract as well, with a body 

containing: 

self subclassResponsibility 

or 

self implementedBySubclass 

As expected, subclasses of the ParseTreeNode class do provide the implementation for the four 

methods. Despite the fact that the original author's intention of prohibiting the creation of 

instances of an abstract class is correct, abstract methods are seen as a preferred design technique 

to ensure the coherence of inheritance. 

Although at DIT=3, the peRM is low 11.84% (Figure 5.16), an investigation of the classes 

situated at this level reveals that three classes exists: GrammarParseTreeNode, 

TokenSpecParseNode and RegularExpressionNode. Looking at the comment for the first two 

classes, the author considered them as abstract classes, however, no methods were declared in 

those classes. This situation is typically the case where inheritance is used as a mechanism for 

separation of concerns more than for the intended mechanism. This does not invalidate the use of 

inheritance in this case; on the contrary, its use was probably intended for future development of 

the hierarchy. At DIT=4 and DIT=5, the peRM is quite high with 42.47% and 43.14% 

respectively. Again, when reaching the bottom classes two phenomena can be expected in a 

hierarchy: either the high level of peRM or PEM. Again, the method profile for the TreNode 

branch (Figure 5.17) permitted the localisation of suspect classes containing MDR problems e.g. 

the ParseTreeNode class at DIT=2. 
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Figure 5.17: TreNode method profile 
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None of the methods were extended in the first five levels of the branch, then PEM is equal to 

66.66% . at DIT=6. As is often the case, only few leaf. classes. exist at deeper levels in the 

hierarchy. In turn, this raises the level of peRM or PEM. Here, only a single class realises the 

amount of PEM (bottom panels of Figure 5.17). This example illustrates the difficulty of 

designing classes that extend the system behavioural capabilities rather than using the redefinition 

technique for realising the necessary functionalities. It has been generally recognised that, 

designing a well-abstracted hierarchy with use of redefinition for extension requires extra effort 

from the designers. Such a task is difficult to realise for the reasons that forward planning of future 

enhancement is necessary; however, this is, unfortunately, unknown in most cases. By nature, 

requirements are likely to evolve with respect of the business needs. This may be not predictable. 

5.5.3. T-gen: AbstractScanner branch redefinition profile 

The AbstractScanner branch is another example where no redefinition occurs at DIT=1. This 

branch is composed of ten classes on four levels of depth. A peculiarity in Figure 5.18 is that the 

redefinition level is constantly decreasing down the hierarchy. In order to better analyse and 

interpret such results, a detailed analysis of the behavioural inheritance is required. A high level of 

redefinition should always raise suspicions about the design but does not necessarily imply an 

incorrect use of the mechanism for all the sub-branches of a branch. Recall that the decision that a 

design is bad or good depends on the elements of comparison. For example, consider the three 

measures for the branches AbstractScanner (Figure 5.18), TreNode (Figure 5.17) and for the 

overall system (Figure 5.15). The AbstractScanner and TreNode branches are the largest 
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branches in the system. At DIT=2, as no redefinition activity is taking place in Figure 5.17 and 

PCRM=27.3% in Figure 5.15, it seems that the AbstractScanner branch is responsible for 

nearly all the redefinition activity with PCRM=27.08%. 

Figure 5.18: T-gen: PCRM and PEM for the AbstractScanner branch 

Further investigations done with the method profile for the AbstractScanner branch confirms the 

presence of the MDR problem (Figure 5.19) e.g. scanToken method in the AbstractScanner 

class. 

AbstraclScanner 'inil 
FSABasedScanner reset 
FSABasedScannerWith 
HandCodedScanner 
OptimizedScanner 

FSABase'dScanner 
OptimizedScanner 
HandCodedScanner 

A .. ' character at the end ,of themethod's,name denotes a polymorphic method 

Figure 5.19: AbstractScanner method profile 

Another reason to carry out such investigations is that attention should be given to the derivation 

of the metrics level by level and the leverage effect of classes situated at the same level. For 

example, an analysis of the result PCRM=20% at DIT=4 (Figure 5.18) may suggest an acceptable 

level of redefinition. However, when examining closely the design at this level, two classes 

OptimizedScannerWithOne TokenLookAhead and 

OptimizedScannerWithTwoTokenLookAhead exist. In the latter, the class is empty i.e. no 

properties are defined, which suggests that the author planned its development for the future. Thus, 
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it is possible to conclude that the former class has, in fact, a PCRM=40%, which makes the class 

more suspect. 

In this example of use of metrics, it is shown that the analysis and interpretation of the metrics 

results still require the support of additional design or contextual information e.g. source code, to 

reach a viable explanation and potential solution to a design problem. 

The next experiment investigates the use of the cumulative PRM for three branches of the 

Smalltalk hierarchy. 

5.S. Cumulative measure for the Collection, Stream, Object and GraphicObject 

branches 

The second approach for the calculation of the PRMC' metric i.e. cumulative metric (section 

3.2.2) relates to the number of potential methods available to a class. If all inherited methods as 

well as the new ones defined in a class were to be considered, the ac,cumulation of methods is 

likely to increase for classes situated near the bottom of the hierarchy. An experiment done on the 

Collection.hierarchy is shown in Figure 5.20 .. 

't-
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Figure 5.20: Cumulative PRM for the Collection branch 

As expected, the values for the PRM metric remain low and even decrease. The Collection class is 

situated at DIT=1 and inherits the 155 methods of its parent Object class, giving a PRM=2.64%. 

From DIT=3, the PRM decreases. This is due to the fact that most of the classes in the hierarchy 

are situated within the first three levels. Figure 5.21 represents the number of classes per DIT 

level. Recall that the single root Object class is at DIT=O. The total number of classes in the 

hierarchy is 427. Clearly, more than half of the total classes are located nearer the top of the 

hierarchy. Therefore, this suggests that, per DIT level, the number of methods may be higher near 

the top than the bottom. 

Number of classes per DIT level 
1 

B 4 

7 

o 20 40 60 80 100 120 

Figure 5.21: Number of classes per DIT level 
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From DIT=3 to DIT=7, the rate of decrease of number of classes is quite high (nearly or over 

50%) from one level to the next. Indeed, the above measures only give an idea of the profile for 

the whole hierarchy; however, it shows that the hierarchy tends to have a "shallow shape" rather 

than a recommended "deep shape" [Fir95]. 

Number of methods per DIT level 
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Figure 5.22: Number of methods per DIT level 

Figure 5.22 shows an overview of methods per DIT level. As previously expected, the majority of 

methods are situated in classes near the top of the hierarchy. The root Object class (DIT=O) 

contains 155 methods. It is noticeable that for DIT=1, the number of methods is 1956 while at 

DIT=2, it is only 1885 although the former level contains 67% less classes than the latter level. 

This confirms that, in general, top classes usually contain more methods than bottom classes. It 

also reflects the fact that more abstracted methods may exist in the first level of the hierarchy. 

Thus, for each inheritance path, a portion of this high number of methods in top classes is inherited 

in subclasses giving a low level of redefinition when considering the accumulation of potentially 

available methods in the calculation (Figure 5.20). 

Cumulative PRM for Object branch (%) 
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Figure 5.23: Cumulative PRM for the Object branch 
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Figure 5.24:Cumulative PRM for the GraphicObject branch 

Figure 5.23 and Figure 5.24 respectively represent the cumulative PRM for the whole Smalltalk 

Object hierarchy and the GraphicObject branches. The GraphicObject branch contains classes 
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related to GUI definition. Similarly, the values of the metric remain low. However, a similarity in 

the profiles seems reproduced in the different measures. All the cumulative measures have a 

maximum value occurring near the DIT=3 level which suggests that classes located at such level 

are critical classes as the redefinition activity increases to its maximum value. For the half bottom 

part of the hierarchy, the redefinition activity decreases due to the amount of inherited methods in 

bottom classes. 

As a general guideline, a high redefinition activity at one level in comparison to other levels 

indicates that many leaf classes may exist at the concerned level, requiring the redefinition of 

inherited methods. Therefore, there are potential design problems. A refined measure of 

redefinition would then indicate the ratio between replaced, cancelled or extended methods. 

The cumulative measure of redefinition is useful when considered, at a levell, with: 

• The number of methods per classes. 

• The number of classes. 

If applied on an isolated branch of the hierarchy, a peak in the redefinition profile suggests either: 

• A high number of abstract methods in top classes. 

• Wrong use of inheritance at the level where the peak occurs. 

For instance, in Figure 5.24 for the GraphicObject branch, it is clear that at DIT=3, the high level 

of redefinition activity is remarkable and asks for further investigation. As the measure was done 

following a cumulative approach, consideration should be given to the number of potentially 

available methods per class (Figure 5.22) when interpreting the results. 

GraphicObject classes at DIT=3 (%) 
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Key 
a PButtom 
b PComboBox 
c PDrawnButton 
d PGenericSubPane 
e PGraphPane 
f PGroupBox 
9 PStaticBox 
h PStaticGraphic 

PStaticText 
PToggle 

Figure 5.25: Subset of GraphicObject subclasses branch at DIT=3 

In order to understand why the redefinition activity rises at DIT=3 for the GraphicObject branch, 

an investigation of classes situated at this level is done (Figure 5.25). The redefinition metrics is 

then applied on a selected subset of classes (10 out of21) which are relevant to the demonstration. 

The list of class names is given in the above legend. All the represented classes contain a level of 

PCRM above 73% and a PEM below 12.5%. Four of the classes redefine all their methods giving 

a PCRM=100% and PEM=O%. A detailed method life history would then pinpoint problems 

such as the MDR. In this particular branch, none of the methods have been initially defined as 
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polymorphic. This should raise the suspicion alarm for the designers about the correctness of the 

classes and properties. 

The following three experiments describe other interesting measures that shed light on the use of 

the method redefinition mechanism. In particular, focus is given to the discovery of suspect classes 

and the influence of method redefinition in systems that are "embedded" in a class hierarchy. 

5.7. Effects ofthe T-gen system on the Smalltalk hierarchy 

A Smalltalk application is tightly coupled to the Smalltalk class hierarchy in the sense that the 

applications classes derive from the existing class library, thereby becoming part of the hierarchy. 

It is then interesting to investigate the effects produced by the presence of a system in the 

Smalltalk environment from an inheritance assessment perspective. After installation oftheT-gen 

application, the new redefinition profile for the Smalltalk Object hierarchy is as follows (to be 

compared with results in Figure 5.7): 

ObjecVT-gen hierarchy (%) 

3 
!:: 
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20 40 60 

Figure 5.26: Smalltalk Object hierarchy with the T-gen system installed 

The T-gen system does not seem to have much effect on the Smalltalk redefinition profile. A 

slight increase of the values is noticeable for the frrst three levels. Then for the deeper levels, the 

values of the peRM decrease due to the leverage effect of less completely redefmed methods in 

the T-gen classes for the levels concerned. Similarly, the values of the PEM still increase and are 

slightly higher for the frrst six levels and remain at zero at the seventh. Note that, at DIT=6 

PEM=17.01 % which represent an increase of 23% compared to its initial value. This seems 

directly related to the amount of PEM in Figure 5.16 for the TreNode branch. 

Overall, for development environments similar to the Smalltalk environment, knowledge of the 

redefinition profile is interesting as it is affected by the following reasons: 

• Flexibility for development: direct modification of the code of the native class library is 

possible. For instance, extension of existing classes and methods from the Smalltalk hierarchy 

is common practice. Indeed, this assumes that the code is available for modification. The 

specialisation of code to suit a developed application is a natural and valid process from a 

software engineering point of view. The drawback for the Smalltalk hierarchy is that it becomes 

more specialised, which may generate problems when more than one independent application 
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requires to live in the same Smalltalk image. In such cases, careful precautions must be taken in 

order to avoid the overriding of methods used by both applications. Usually, the delivery of 

Smalltalk applications is done per image, thus avoiding the problem. In languages such as e++, 

the native class hierarchies are provided as is. Only extension by new class addition is possible 

and only the interface functions are described without code availability. 

• A stand alone image: reuse and specialisation. Whether the ratio of newly introduced classes 

of an application to the native classes of the library is none, low or high, the effects of the 

application classes on the redefinition profile completely depends on the design. Predictions of 

the profile depending on the shape of the hierarchy are difficult. However, if the application 

class ratio is high e.g. over 50%, the chances of increased dependency level is higher, thus 

affecting the overall class hierarchy redefinition profile. In the case of the T -gen system, the 

ratio is: 

application class ratio = number of classes of the system 
number of classes of the native class hierarchy 

T - gen class ratio = 116 = 26.85% 
432 

In comparison, the reuse ratio U [Hen96] and specialisation ratio S (see chapter 2, section 

2.4.6.1 for the interpretation of these metric's) are equal to: 

u = number of superclasses U for T - gen = 514539 = 27.86% 
total number of classes 

s = number of subclasses S for T - gen = 5
1
4538 = 3.58 

number of superclasses 

While 26.85% of the classes are T-gen classes, the reuse ratio is 27.86% which indicates a 

shallow depth and a large number of leaf classes. The specialisation ratio is 3.58. According to 

Henderson-Sellers [Hen96], ratio values of U and S near 1 suggest a poor design which is not 

the case ofthe above values. Although, T-gen has slightly increased the level ofPCRM, it has 

also contributed towards a "better" extension profile and a leverage effect on the whole 

hierarchy. 

5.8. Effects of the T -gen system on the Collection branch redefinition profile 

In general, the Collection branch is one of the branches mostly used by applications as it provides 

all the facilities for container management. It is then interesting to repeat the previous experiment 

on this branch to detect any eventual effects of the T -gen classes on the redefinition profile. The 

initial measures of the PCRM and PEM are shown in Figure 5.8. 
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Figure 5.27 (a) and (b): PCRM and PEM for the Collection hierarchy with the T-gen system 

installed 

Figure 5.27 shows the new profile for the Collection hierarchy. Compared to the profile without 

the T-gen system installed (Figure 5.8), no remarkable differences can be observed. With the T

gen system installed, the values for the redefinition metrics seem to slightly decrease apart from 

DIT=3. Nonetheless, each value of the extension profile decreased as opposed to what had been 

previously seen for the whole Smalltalk hierarchy. From the profile, the effects of the T-gen 

appear negligible. 

Conclusions on the first three stages of the experiments 

In any assessment technique, it is important to consider the characteristic's context i.e. any factors 

directly or indirectly related to the characteristic, in addition to the characteristic itself and its 

eventual influence on other characteristics. Often, to analyse results from a metric, it is necessary 

to refer to other metric results to infer any conclusions, design anomalies or directions for solutions 

to a problem (see chapter 2, section 2.4.6.1). As mentioned in section 5.5, some design choices 

may involve a modification of the class library from which the application derives. Depending on 

the modifications, the assessment of the redefinition mechanism and inheritance in general raises 

other issues concerning the derivation algorithm. Design modifications concerning the behavioural 

aspect of inheritance may be categorised as follows: 

• Insertion of a new class as an intermediate parent class. In rare cases, an identification of a new 

abstraction may require the addition of a new class in the middle of an already existing branch 

rather than adding the new class as a leaf class. 

• Modification of code in the existing methods of the class library. This is not generally 

recommended unless there is detailed knowledge of the implications of the changes for the 

hierarchy. 

• Addition or update of new classes or methods to the classes library. This is one of the most 

common tasks occurring during design. Depending on how abstract the method is, its addition 

may take place at any level of the hierarchy. 

• Deletion of classes and methods from the class library is not recommended although possible. 
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The first two points involve a high level of risk of compromising the conformance of classes to 

their ancestor classes. Addition, deletion or update of classes or methods may have consequences 

on all subsequent subclasses in the branch. In all cases, the designer must verify that the 
, 

implications of the modifications do not jeopardise the coherence of the inheritance hierarchy. 

The issues concerning the assessment of new classes added to the class hierarchy has already been 

discussed in the introduction of section 5.5. In the same manner, changes to the class hierarchy i.e. 

existing classes or methods, can be assessed in comparing the redefinition profile for a single class 

obtained before and after modifications. Then, to capture an overview of the effects of changes, it 

is recommended to generate a redefinition profile for an isolated path or branch of the hierarchy. 

In the previous experiments, the metrics results were either displayed in a tabular form or as bar 

charts. The graphical representation gave many insights on the redefinition mechanism and 

discovery of the MDR problem was possible. The bar chart graphical representation was 

expressive enough to suggest potential suspect defects and to reach satisfactory conclusions. 

However, in an interpretation process (section 3.4.3), other types of representations may be 

suitable depending on the subject assessed, the metrics used and the type of data obtained. The 

next section investigates several graphical representations for the metrics results. Then, a novel 

type of representation and its benefits .are introduced in section 5.9.5. Then, section 5.10 shows i. 

how alarmers can be beneficial for the interpretation of specific phenomena on a metric profile. 

5.9. Metric results visualisation and interpretation 

Large data sets are generally difficult to interpret. In the previous experiments, the use of the bar 

charts has contributed to the interpretation process. It is believed that the use of appropriate 

graphical representations facilitates the processing of the metrics results as well as the discovery 

of suspect features. Graphical representations permit a rapid depiction of phenomena occurring in 

the data set and depending on the data manipulated, a large variety (but not limited to) of standard 

graphic types is available and have various benefits. In addition, the combination of pre

processing functions on a data set prior to being visualised enables the detection of specific 

occurrences. For example, when only a portion of the data is desired, filtering functions can be 

used. In that respect, the purpose of this experiment is to evaluate a range of visualisations for 

supporting the interpretation process. In order to experiment with a variety of classical chart types, 

Microsoft® Excel97 was chosen as the graphical package application. The same data set i.e. the 

redefinition metric results obtained in previous sections, is used in order to keep elements of 

comparison consistent. In this experiment, the Smalltalk branches evaluated are the Object and 

the GraphicObject branches. These were chosen because they show completely different 

redefinition profiles and because potential design problems exist in the latter (see section5.4.1).1t 

is hypothesised that graphically displaying a data set using different representations may provide 

additional information for supporting the interpretation process. Therefore, the aim of this 
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experiment was to use different representations for the same data set in order to identify any 

interesting characteristics of each. 

Note that explanations for the Object and GraphicObject bar charts were presented in section 5.6 

and 5.4.1 respectively. 

The key contributions of this section are: 

• An investigation of various standard chart types in addition to a newly created one for the 

visualisation of the redefmition metrics results. The characteristics and benefits of each are 

explored. 

• The concept of alarmers is presented and illustrates an example of application of pre

processing function on a data set. 

• A data interpretation system is proposed for supporting the interpretation process. 

5.9.1. Surface bar charts 

Figure 5.28 (a) and (b): Surface bar profiles for the Object and GraphicObject branches 

Bar charts illustrate comparisons among measures in a data set, while surface bar charts combine 

the measures on the same percentage scale in such a way as to find optimum combinations 

between two sets of data, thereby highlighting any unbalanced distributions. The detection of such 

distributions is interesting for metrics such as the peRM and PEM metrics (both variants of 

method redefmition). In Figure 5.28 (b), the general high proportion of peRM compared to the 

PEM raises design questions regarding the use of the redefinition mechanism. For the 

GraphicObject branch, the extension of methods is poor. This visualisation is convenient for 

depicting trade-offs between metrics in a design where the design characteristics are anticipated. 

Notice that the join lines at the peRM and the PEM boundary are drawn for ease of reading but 

do not define a smooth curve (the metrics results are discrete value sets). Further experiments on 

several other branches confirmed that the profiles shown occur on many occasions. An early 

analysis suggests two corresponding design problems: 

• Methods in top classes are poorly abstracted. A 100% of peRM for the Object branch at 

DIT=7 and for the GraphicObject branch at DIT=5 suggests a low level of polymorphic 
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methods in the top classes. Comparing Figure 5.28 (a) and (b) the visual effect of imbalance is 

immediate. 

• Leaf classes are wrongly subclassed as they are not reusing inherited properties. 

In Figure 5.28 (a), at DIT=6, the apportionment ofPCRM vs. PEM is 73.56 to 26.44% whereas 

at DIT=7, the apportion comes to respectively 100 to 0%. This suggests that leaf classes are more 

subject to complete redefmition than extension, however to discover the causes of such a situation, 

the analysis of the methods appearing at the concerned DIT is necessary. If further analysis of the 

measures depicted in the graphical representations is required, the behavioural inheritance analysis 

technique described in section 3.3.5 and used in chapter 5 is recommended. 

5.9.2. Surface charts 

Figure 5.29 (a) and (b): Surface profiles for the Object and GraphicObject branches 

The surface charts are used for the same purpose as the surface bar charts, however this 

representation is convenient for measures returning non-discrete values. On a scale of 0 to 100%, 

the representations of each proportion for each metric illustrate the disparities amongst the result 

set. In particular, it is possible to assess the magnitude of change of the measures over the DIT. 

This is intended only as an example27 as the redefmition metrics return discrete values and is 

therefore unsuitable. Similarly to the surface bar charts, the surface charts quickly outline the 

balance between two or more correlated metrics. 

27 Notice that the x and y-axis have been interchanged for ease of reading. 
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5.9.3. Addition bar charts 

Figure 5.30 (a) and (b): Addition bar charts profiles for the Object and GraphicObject branches 

The addition bar charts are a variant of the standard bar chart however, many measures can be 

"stacked" together on the same bar, thereby showing the relationship of individual measures to the 

whole. The contribution of each measure to the total is depicted. The addition bar charts are also 

suitable for complementary or related metrics. As completely redefmed and extended methods are 

both considered as redefmed methods, the sum of peRM and PEM gives the PRM (Figure 5.30 

(a) and (b)). In Figure 5.30 (a) and (b), PRM is shown by the total extent of the bar. The addition 

bar chart is considered an enhanced version of the simple bar chart as it makes clear the values for 

each of the shown metrics. 

5.9.4. Radar charts 

Figure 5.31 (a) and (b): Radar charts profiles for Object and GraphicObject branches 

The radar charts allow the display of results across many dimensions. Each dimension has its own 

value axis radiating from the center point. The lines connect all measures in a particular data set. 

The radar charts permit rapid pinpointing of differences in the shape of the profile. In particular, it 

is convenient to use this representation when previous experiments have defined, for example, 

averages or thresholds for what is considered good or bad. Any disparity can then be depicted 

quickly. Again, the join lines are shown for ease of reading but it is possible to take them into 

consideration for identification of pattern profiles. When a smooth increasing curve is expected, 

the shape of the profile is a spiral. Attention should be taken when interpreting this type of chart as 

it can hold large amounts of data of different types e.g. different metrics across different DIT 

levels, that can clutter the graphic, and therefore the interpretation. For theGraphicObject branch, 

both curves obtained are rather intriguing as the redefinition activity seems to take place only in 
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deeper levels of the hierarchy. Intuitively, this is confirmed by the assumption that a class situated 

deeper in a hierarchy inherits all methods from its ancestor classes. It is therefore potentially able 

to call a high number of possibly unrelated methods, thus explaining the high level of redefinition. 

In Figure 5.31 (b), it is clearly seen that dimensions one and two are negligible compared to those 

remaining. Given that those dimensions represent the DIT level, it seems fair to conclude that a 

redefinition activity is more likely to happen in the bottom of the hierarchy and is due to the 

abstraction property of classes at the top. However, the rate of increase of the metrics cannot be 

easily pictured in those charts. 

5 .9.5. A colour coded range bar charts 

Hierarchy Branch : Object 

DIT PRII peRil PEII 
('!Co) ('!Co) ('!Co) 

6.46 6.34 0 .14 
1 -==::J m:::::::::J ~ 

19 .39 18 .16 1.23 
2 ac:::::J oc::::::J m:::::::::J 

42.16 38 .03 4 .12 
3 -=::J -=:::J m::::::::::J 

4 iWk::J iIiiIc:::J ~ 
6 iWk:::::J tiII:::::J ~ 

52 38 .25 13 .76 
6 -=:J -==:J m::::::::::J 

60 60 0 .0 
7 ~ -=:J c:::::::::::J 

HI.rarchy Branch : GraDhh:Ob act 
DIT Pltlll PCRM PEII 

('!Co) ('!Co) ('!Co) 
7 .69 7 .69 0 .0 

1 m::::::::::J m::::::::::J c::::::::=:J 
4 .3 3 .44 0.88 

2 m:::::::J m::::::::::J IIC==:J 
83 . 24 74 .28 8 .96 

3 ~~m::=:I 
81.82 71.68 10.14 

4 ~ ~ m:::::::::J 
100.0 100 .0 0 .0 6 __ c::::::J 

Figure 5.32 (a) and (b): Colour coded bar for the Object and GraphicObject branches 

Ranae ADDortion (%) Colour coded bar 

0 0 I 
1 0.01 - 14 II 
2 14.01 - 28 .M 
3 28.01 - 42 1M 
4 42.01 - 56 

i_ 
S 56.01 -70 i_ 
6 70.01 - 84 i_ 
7 84.01 -100 

Table 5.2: Example of equally distributed ranges 

In this thesis, the colour coded range bar charts have been created to address the issue of rapid 

threshold detection for metrics. These are adapted representations of the simple bar charts. In some 

cases, the display of ranges of values may be more relevant than the exact values for a particular 

data set. For example, metrics results can be compared to a range of thresholds rather than a single 

threshold value e.g. the 20% to 25% range. Instead of displaying the exact measures, the aim is to 

represent the ranges in which measures occur. To do so, the measures are pre-processed by a filter 

function. In addtion, the use of colour for the different ranges gives extra information at first 

glance. The coloured bars shown in Figure 5.32 (a) and (b) have been obtained by checking the 

pre-defined ranges in which each metric value is situated. The coloured range bars are defined in 

Table 5.2. The apportionment has been arbitrarily chosen to be equal but this is not necessary. It is 

the responsibility of the designer to define the ranges and thereby the filter function, relative to 
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predefined threshold values. It is important to underline that this filtering method is not meant to 

be compared to a subjective assessment metric although it is based on the same principle as 

scaling. Table 5.2 shows an apportionment of a percentage scale into seven ranges, roughly equal 

to 100/7. When the proportions are equal, the smaller the proportion is, the closer this 

visualisation will be to the equivalent in a bar chart representation. In the example, colour shaded 

rectangles have been used to give a gradual effect. It might also be interesting to consider non

equal apportionment of the ranges. In such cases, attention should be given to the grounds on 

which the proportions are attributed to prevent subjective interpretation [Hen96]. For example, 

adopting a non-equal range strategy for a metric m and, providing that previous statistical 

experiments deducted a threshold of60%, only three ranges are necessary. The first range is for 0, 

the second from 0 to 0.6 and the third 0.61 to 1. The same principle of colour coded rectangles 

can be used to quickly locate defects, thus only three colours would be used in this example. 

In the GraphicObject branch, from DIT=2 to DIT=3, the peak (already pinpointed with the bar 

chart) appears even more suspect as the PRM increases by a factor of 21.6 suggesting potential 

design flaws at DIT=2. Although this visualisation seems similar to the bar charts, but less 

accurate, the main idea for such a visualisation is to use it in conjunction with a triggering function 

or alarmer. 

5.9.6. Visualisation uses 

The different types of visualisation described in the prevIOus sections support the metrics 

interpretation activity. It is believed that there is a need for integrating those visualisation 

techniques in a measurement programme. Further work is needed for identifying and extending the 

current recognised representations. 

From the observations made on the experiments with the different visualisations, a summary table 

is given below in order to categorise and facilitate the choice of one or another. Each of the 

graphical representations is usually suited for a particular task i.e. pinpointing a particular 

characteristic of the data; therefore it is possible to categorise them depending on the purpose of the 

measurement and the task to be achieved. In the following table, for a particular task, the list of 

suitable visualisations and associated explanations is given. 
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Task 

Data 

evolution 

Visualisation 

• Bar chart 

• Surface bar chart 

• Surface chart 

5. Experiments 

Explanation 

For the detection of peaks and general evolution of the data 

set. Also, identification of the localisation of the problems 

has been possible in the case study. 

Correlation • Surface bar chart For the detection of disparate uses of an 00 mechanism 

Pattern 

profiles 

Alarmer 

• Radar chart 
and trade off. It also permits the localisation of design 

problems with respect to related metrics. Often, the 

emphasis on the realisation of one of the criteria disfavours 

other criteria. This phenomenon is measurable and can be 

localised by defining the adequate metrics set. 

Any charts with For the detection of possible repetitive pattern profiles 

restrictions in the corresponding to particular design problems in an 00 

case of the alarmer system, the classification of typical profiles for later 

reference can be envisaged. This IS currently being 

investigated in further work. A catalogue of typical good 

and bad profiles for a metric will be considered. Profiles 

from different branches are more likely to converge 

towards the same pattern as they employ the same object 

concept. Chidamber and Kemerer, in their empirical data 

collection, showed that the distribution of the results of 

their metrics converges even when the sites were different 

in terms of domain and 00 programming language used 

[ChiKem94]. 

Colour coded range For finding subset of data or single value within a given 

bar chart data set. The triggering mechanism of the alarm is defined 

by exact conditions. 

Table 5.3: Summary of visualisation types 

5.10. The concept of "alarmers" 

The concept of an alarmer is simple. Suppose we want to detect any factor increase > 2 between 

two consecutive levels in the hierarchy. Any values satisfying the condition is expected to be 

pinpointed automatically. This is exactly what the alarmer technique is intended for. If an alarmer 

is set on for the GraphicObject branch in Figure 5 .32 (b), only the values of PRM and PCRM at 

01T=3 would be found. If it was decided to use the colour coded bar charts for visualisation, only 

the two bars at 01T=3 for PRM and PCRM are shown. Indeed, the visual effect of the colour 
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coded bar representation is immediate and asks for further analysis. The alarmer has accomplished 

its task in pinpointing the disparate results. 

The alarmer mechanism 

The first desired functionality of an alarmer is that it should provide a means for defining the 

behaviour to be detected. A simple form of an alarmer would be to detect a particular expected 

value within a set. In such a case, a simple condition function would be sufficient to filter the 

initial results set. For instance, this would be useful for comparing metrics results to the traditional 

averages or threshold numbers. Suppose that after some statistical analysis of the redefinition 

metrics results for a project, a threshold of 40% of redefinition is arbitrarily defined above which 

the design is to be re-considered. Therefore the triggering condition is simply: 

metricValue >= AVERAGE _THRESHOLD 

The algorithm of such behaviour can be specified (example 1 ). 

Example 1: 

AVERAGE_ THRESHOLD:= 0.4. 

SuspectedValues := Collection new. 

(redefinitionAlarmer isOn) 

] 

ifTrue: [ 

metricResults do: [:metricValue I 
( metricValue >= AVERAGE _THRESHOLD) 

ifTrue: [ 

] 

suspectedValues add: metricValue. 

RaiseAlarm( metricValue ). 

In the algorithm of example 1, the AVERAGE _THRESHOLD constant can easily be defined at 

run-time in an application. The suspectedValues collection contains the set of defect values. For 

this type of alarmer, a simple condition is sufficient to detect the desired characteristic i.e. 

(metricValue >= AVERAGE_THRESHOLD). The metricResults is a collection of results 

values obtained from the derivation of a metric on a system. metricValue is a local instance 

variable equal to an item of the metricResults collection. The raiseAlarmO function can be a 

function which manages the presentation process of the alarm under a chosen form e.g. visual 

aspect or sound. 

However, in the case of an alarmer triggered when the "weighted methods per class (WMC)" 

metric [Chidamber94] is greater or equal to 5, the triggering condition becomes a function: 

wmc(class) >= AVERAGE _THRESHOLD 
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Then, the algorithm of such behaviour can be specified (example 2). 

Example 2: 

AVERAGE_THRESHOLD := 5. 

SuspectedValues := Collection new. 

(redefinitionAlarmer isOn) 

ifTrue: [ 

] 

systemToCheck do: [:class I 

] 

(wmc(class) >= AVERAGE _THRESHOLD) 

ifTrue: [ 

] 

suspectedValues add: class. 

RaiseAlarm( class ). 

5. Experiments 

The difference in this example is that the triggering condition is now a function and not a single 

value. This condition is also tested for each of the classes contained in the systemToCheck 

collection of classes. 

From the two examples cited, we can ,see that the core element of an alarmer resides in its 

triggering condition. In the case of large data sets, complex conditions can be applied. In a general 

case, an alarmer makes use of the following main components (Figure 5.33): 

• A filter function: when not all metric values are of interest in the whole metric result set, a 

filter function can be used to reduce the amount of data processed. 

• A transformer function: if the data has to be transformed before application of the triggering 

condition, a transformer function e.g. statistical functions can pre-process the metric results set. 

• A triggering condition: defines the condition under which the set of values to check are 

satisfied. 
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5.11. Data interpretation system 

Figure 5.33: Data interpretation system 

A data interpretation system has been built based on the components shown in Figure 5.33. The 

raw data in the model can be directly displayed or pre-processed before being displayed. The 

visualiser permits the display of the possible representations. A data transfonner contains a list of 

functions pennitting pre-processing of the data set. Typical transfonner functions are filtering and 

statistical functions. When the designer has recognised some design problems in the hierarchy, the 

alanner engine allows one to define and set up the alann. In some cases, it is necessary to pre

process the data set before setting up an alann for the new metrics set. Thus, the alanner engine 

can co-operate with the data transfonner. 

The next section concludes the chapter on the experiments. 

5.12. Conclusion of the experiments 

Currently, one of the main problems that inhibits the development and adoption of 00 metrics is a 

lack of tools for supporting their development and use in a general sense. Using the prototype 

developed, the experiments demonstrated that the redefinition metrics set is applicable to an 

object-oriented design, including designs not necessarily organised as a hierarchy. The metrics 

proved successful in the detection of suspect classes and thereby enabling the discovery of design 

problems such as the MDR problem. In addition, the graphical representations of the metrics 

results for various branches of the Smallta1k class hierarchy gave us insights into the behavioural 

aspect i.e. the method redefinition mechanism. The separation of the measures for the peRM and 

PEM gave finer-grained indications on the ratios of redefinition at each level of the hierarchy. 

In the context where the metrics generate large data sets, it is necessary to have some mechanisms 

to quickly filter or re-process the data set in order to facilitate their interpretation. The alanner 

technique provides an easy way to detect problems that appears under certain conditions. If the 

triggering conditions are satisfied, the suspect values can be automatically pinpointed. The two 
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aspects of filtering and alarmer functions have been successfully demonstrated and the data 

interpretation system integrated within the prototype tool permitted the investigation of the colour 

coded range bar chart representation. 

Due to the high-level of redefinition activity in some parts of the Smalltalk class hierarchy, it is 

possible to conclude that the inheritance mechanism is violated in many respects. To a major 

extent, the possible reasons behind such situations can be attributed to the weak type characteristic 

of the language. Also, in some cases, the lack of multiple inheritance clearly produces suspect 

design situations. Inheritance in current 00 systems is still hazardous. A conceptual gap exists 

between 00 modelling constructs and their mapping onto a language. The implementation of an 

inheritance relationship between classes using any 00 programming language is actually a real 

source of design problems. 

Chidamber and Kemerer's [ChiKem91, ChiKem94] early work on 00 metrics proposed a suite of 

six metrics for assessing the complexity of an 00 model. Their metrics were applied on C++ and 

Smalltalk. For each of their metrics, only simple histograms and summary statistics in a table form 

were produced. The interpretation of data relied on comparisons made between the histograms 

obtained for both sites. All charts represented the range of metric values (x-axis) obtained against 

the number of classes involved (y-axis) for each of the values. No dependency relationships 

between the metrics were presented. The authors only suggest that a class hierarchy can be "top" 

or "bottom-heavy" i.e. the DIT and the "number of children (NOG)" metrics are correlated. A high 

peak in the NOe histogram showed that most of the classes have no child classes. It was suggested 

that design practices dictated the use of shallow inheritance hierarchies, and that performance was 

the reason given in some cases. A use of surface bar charts might be a good candidate to exhibit 

previous observations. In such cases, it would be interesting to measure the number of classes per 

DIT level against their average number of children. Conceptually, it is expected the results would 

lead to the same conclusions. 

In Lorenz and Kidd's [LorKid94] project experience database, only histogram charts were used. In 

some cases, this type does not seem appropriate due to the existence of large numbers in the results 

set. For instance, they considered the number of message sends metric and represented the 

values obtained against the number of methods. They correctly suggested that a rapid drop in 

numbers is the typical pattern found. This confirms the assumption that coupling between objects 

should be low in order to avoid inter-class dependencies. However, from a bad practice detection 

viewpoint, it would be more interesting to find out the methods which are strongly coupled. This 

could not be easily shown on the histogram provided as only a few methods are expected to send a 

large number of messages. Considering the colour coded range bar chart, an appropriate definition 

of ranges would immediately locate such peculiar results for further analysis. 

An important area of measurement theory is the interpretation and analysis of metrics results. In 

our experiments, the analysis and interpretation process has been strongly supported by the method 

profiler feature of the prototype metric tool. In many cases, the precise location of suspect classes 
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containing methods with the MDR problem has been possible. At this point, it is possible to 

suggest that the MDR problem happens for at least three reasons: 

» A class is wrongly subclassing its parent class i.e. the class does not satisfy the is a 

relationship. 

» An incorrect design of interfaces of parent classes. 

» A lack of abstraction of the top classes in the class hierarchy. 

A possible solution for the first reason is to move the suspected class higher in the hierarchy so the 

class would inherit from the early implementation of the method, thereby minimising the chance 

for the MDR problem. In return, the class concerned will have to resolve all super calls to the 

original parent. This can be handled by the introduction of the original parent class as an aggregate 

which is instantiated in a constructor method. The great benefit of this solution is that it can be 

executed automatically. Otherwise, a manual intervention of the designer is probably required. 

Characteristics of the redefinition metrics 

The experimental validation of the metrics confirmed that the metrics measured the desired 

characteristics. However; concerning some abstract ,Properties of good metrics mentioned by 

Kolewe [Kow93], alternative approache,s are coris.idered for the development of the necessary 

validation of the metrics. We shall briefly comment on these characteristics for the redefinition 

metric set: 

./ noncoarseness: we considered many different programs and were able to find different metrics 

results . 

./ nonuniqueness: if we consider two classes A and B derived from the same parent class where 

the same modifications on inherited methods are done and no added operations are made, we 

could find the PRMC is the same for both classes . 

./ importance of implementation: we assess a class's internal complexity by looking at its 

methods' redefinition. The metric depends on the implementation. 

x monotonicity: not applicable for the redefinition metrics as their purpose is not to have a 

general value for the whole system. However, we could compute for two classes A and B their 

respective PRMC. Assuming that a class C contains all the methods from A and B with no 

name space conflicts, PRMHc = PRMHA + PRMHB. For this characteristic, the redefinition 

metrics can be extended in order to calculate a mean value of redefined methods for a whole 

system. 

x nonequivalence of interaction: same comment as previous characteristic. 
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../ interaction increases complexity: as inheritance is a strong form of coupling and interaction is 

implemented via methods in a class, inheriting or adding new methods to a class increases its 

complexity, therefore the PRMH vary accordingly. Further verification requires to be done. 

x nonequivalence of permutation: not applicable. 

As the redefinition metrics are ratios that do not introduce arbitrary weightings or subjective 

values, the risk for wrong metrics' definitions is reduced. More importantly, the measures taken at 

each level of the hierarchy with the possibility of deriving the metrics on isolated branches 

permitted us to assess cross sections of an entire class hierarchy. This enabled a better 

understanding of the relevant abstractions in the hierarchy. 

The next chapter concludes the research work and proposes a framework in which measurement 

techniques are "smoothly" integrated within an 00 design process. 
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6. Discussion and conclusion 

"Things should be made as simple as possible, but not any simpler." - Albert Einstein 

"In general, no programming language or language mechanism should be used as a 

substitute for creative thinking, or as an excuse for avoiding software design and 

architecture. " - Antero Taivalsaari 

The work presented in this thesis is concerned with the modelling issues of inheritance. It 

investigates the use of measurement techniques for the evaluation of goodness in an 00 model. 

Ideally, the integration of metrics within the design activity is sought. Various aspects of 

inheritance in class hierarchies have been presented with a particular emphasis on the effects of the 

method redefinition mechanism. Based on the GQM process model, a measurement plan which 

lead to the creation of a novel redefinition metrics set (section 3.2) permitted the assessment of 

inheritance hierarchies. Analysis of the metrics results illustrated that the MDR problem (section 

3.1.2) exists in class hierarchies. During the course of the measurement process, it was felt that the 

input of design considerations (section 3.2) was essentiaJ to ,the completion of the process. 

Experiments with the redefinition metrics were possible .with the creation of a prototype metric 

collection tool for the Smalltalk class hierarchy. While the collection of the metric results have 

been possible, an appropriate analysis and interpretation ofthem proved difficult. 

The main contributions of the work can be summarised as follows: 

• In section, 3.1.2, the description of the multiple descendant redefinition problem in inheritance 

hierarchies. Different uses of the method redefinition mechanism showed that a model might 

violate the definition of inheritance although it may also satisfy the requirements. This re

iterates the debate concerning the fundamental semantics given to the inheritance concept. 

• In section 3.3, a description of design methodology considerations and techniques necessary 

for the assessment of inheritance, in particular the method redefinition mechanism. The design 

considerations describe an approach for identifying and gathering the information that is later 

utilised within the measurement process. 

• In section 3.2, the definition of a set of candidate redefinition metrics for the assessment of use 

of method redefinition in class hierarchies. 

• In section 3.4, a proposed metrics interpretation framework based on design methodology 

considerations and the method's life history analysis. 
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From a software engineering perspective, the designers benefit from the above contributions in 

many ways: 

• Understanding of the causes and effects due to the presence of the MDR problem in class 

hierarchies. The use of the redefinition principle is still unclear. Papurt and LeJack [PapLeJ97] 

described the conditions under which method overriding should be used for three aspects: 

final, abstract and polymorphic. However, no consideration was given to the different types of 

redefinition. They consider method overriding as a replaced method, according to the 

classification given in section 2.2.4. Also, the authors mainly focused on the inheritance 

relationship between a parent and a child class but did not consider the life history of a 

particular method down a class hierarchy. The detection of MDR anomalies strongly suggests 

potential design problems that may compromise the future evolution of the design. 

• The use of metrics gives insights into the improvement of the software architecture which is 

generally recognised as one of the key points of the design. Therefore, it also contributes 

towards the realisation of the requirements. In theory, an object model ought to be free from 

programming language considerations. In reality, as ()bject-oriented languages offer a rich set 

of features, it would be unrealistic to comple~ely ignore the implementation issues (see 

description of experiments in chapter 5). In consequence, these issues· may directly affect the 

final design solution. As metrics are generally applied to the source code, all design issues can 

therefore be assessed. With the advent of modelling techniques using the concepts of 

components [Eng97], improvement of software architecture is made possible. 

• One of the interesting aspects of measurement techniques (see section 2.4) is that they can be 

used as an instrument for problem discovery. The awareness and understanding of design 

problems enlightens the designers on the use of the fundamental object concepts. 

Recommended guidelines may be used during the whole design and assessment process. 

• The use of measurement techniques not only improves the design solution but also contributes 

to the development of the design and measurement process. Further experiments are needed in 

this area in order to refine the technique and procedures involved in a measurement plan. 

It is believed that the redefinition metrics and its variants are strong and simple candidates for 

detecting complex design problems occurring within a class hierarchy. 

Metrics, method redefinition and implications 

Technically, the implementation of the redefinition mechanism is simple. Based on polymorphic 

selection or method body selection [PapLeJ97], different behaviour can be attached to the same 

method name and dynamic selection takes place at run-time depending on the object receiving the 

message, namely the execution of a method call. This mechanism gives code flexibility to the 

programmers. However, rather than a simple implementation exercise, the work presented in 
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chapter 2.4.6.1 emphasised the fact that the redefinition principle should also be regarded as a 

conceptual design tool. In our experience, most of the problems discovered concerning the use of 

method redefinition were design issues. To some extent, incremental design development and the 

mechanism of encapsulation are the two main reasons which increase the risk of incorrect 

redefinition use. For instance, if a designer is not the original author of an existing class hierarchy, 

careful attention should be given to the type of inheritance relationships used and the type of 

property modifiers for methods in classes. The behavioural inheritance scheme is not 

straightforward to understand especially if the hierarchy includes deep levels. 

Only recently, CASE tools such as the RationalRose98® design tool support an automated 

visualisation of the inherited methods in class hierarchies. In addition to the methods defined by a 

class, it is also possible to visualise the list of methods inherited from the ancestor classes. 

Although this list does not include detailed information such as the origin of the method and the 

state of the method i.e. overridden or not, it is a valuable feature for the designers. Alternatively, in 

the recent Java documentation28 format, a detailed textual description of the above is given. This 

partly fulfils the need for search mechanisms in class library documentation. It is clear that further 

modelling tools are needed to sUPI?0rt the design tasks, in particular for class libraries. In the case 

of the method redefinition technique, a possible approach to verify the semantics of the inheritance 

relatic)llships is to break down the tasks in two levels of abstraction. For each class, a systematic 

check is required for: 

• Immediate parent classes and subclasses: in general, class hierarchies tend to be shallow 

rather than deep as recommended. Various types of inheritance contradict the conformance of 

classes in hierarchies. By consequence, classes tend to reuse behaviour from its closest parent 

classes rather than further classes. Thus, verifying that a class conforms to its nearest parent 

classes and repeating the process at all levels of the hierarchy guarantees that the inheritance 

relationship remains consistent. 

• Further parent classes and subclasses: the previous level of abstraction permits a "localised" 

verification of the semantics of an inheritance relationship. In addition to this, an overview of 

the class hierarchy is also necessary because classes do not necessarily inherit their properties 

from their immediate superclasses. In the case of well abstracted hierarchies, it is common to 

encounter abstract methods in the root classes which are reused further down the hierarchy. 

Therefore, an overview of the resulting effect of encapsulation for a considered class is crucial. 

The use of measurement techniques allows the detection of suspected design problems. When a 

problem has been identified, there are chances that an appropriate detection method can be found. 

In most cases, it is possible to find a pattern of code that corresponds to the design problem. 

Therefore, the identification of such patterns permits the discovery of the respective design 

28 Java development kit v1.2, Sun Microsystems, Inc. Copyright 1993-1999. 
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problems. For instance, "abnormal" super calls (section 3.3.4.1) may be detected with an 

appropriate lexical parser tool. Another example of inconsistencies is the MDR problem. Indeed, 

the method profiles obtained from the derivation of the redefinition metrics guided the search for 

the MDR anomaly. Also, the analysis of the method's life history for multiple redefinition permits 

a localisation of potential suspect classes and methods. In many respects, measurement techniques 

represent an additional and valuable asset in the range of available design tools. 

Taivalsaari [Tai98] stated that languages should not be a substitute for creative thinking. Therefore 

it is legitimate to consider their fundamental concepts and principles in the perspective of design 

assessment. Unfortunately, this situation does not encourage the important issue of separation of 

concerns between the design and the implementation phases. Similarly, it becomes tempting to tie 

design architecture issues to the supporting environment. This is not generally considered 

satisfactory. 

Chidamber and Kemerer [ChiKem91, ChiKem94] proposed a suite of six metrics for assessing the 

complexity of an 00 model. The DIT29 metric is based on the following assumptions: 

• A class situated deep in a hierarchy is more likely to inherit a great number of methods, hence .. " .' 

increasing its complexity. 

• A deep tree involves greater overall design complexity SInce the number of classes and 

methods are important. 

• A class which is located deep in a hierarchy benefits from the potential reuse of inherited 

methods. 

The redefinition metrics set adopts these assumptions; however, rather than using the DIT metric 

as a stand alone metric, it was incorporated it into the PRMH metric to give a more meaningful 

metric. The WMC metric is the weighted method per class which takes into account the static 

complexity of methods in a class. If the complexity is equal to one, WMC becomes simply the 

number of methods metric. Churcher and Shepperd [ChuShe95] showed that the metric was open 

to many interpretations when considering its use with constructors and destructors in C++. In 

addition, unlike the PRMH metric it makes no observations as to which methods are inherited and 

of those inherited, which are redefined and which are not. 

Lorenz and Kidd [LorKid94] included in their metrics set the number of methods overridden by a 

subclass and produced an average extracted from tests on project results. However, unlike the 

redefinition metrics, it was done at class level only, no metrics were proposed at hierarchy level 

and system level. In addition, their metrics are not represented as percentages which clouds 

interpretation. For example, ifnumber of overridden methods = 5, the class complexity is not 

29 The theoretical basis for the DIT metric came from Bunge's [Wan88] notion of the scope of properties. 
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the same if the class contains a total of 1 0 methods (50%) or if the class contains a total of 1 00 

(5%). 

The MOOD (Metrics for Object-Oriented Design) set [Bri&aI95] addresses the evaluation of the 

main keypoints of mechanisms of the 00 paradigm. The six metrics are: the method hiding factor 

(MHF), the attribute hiding factor (AHF), the method inheritance factor (MIF), the attribute 

inheritance factor (AIF), the polymorphism factor (PF) and the coupling factor (CF). MHF and 

AHF refer to encapsulation as they detect the amount of hidden attributes and methods. Again, no 

differentiation is made in the nature of the methods when deriving their metrics for inheritance. 

Thus, because of the possible existence of completely redefined methods within a class hierarchy, 

their measure ofMIF and PF are affected and do not assess inheritance in such cases. 

Lewis [Lew95a] proposed a set of fine-grained metrics for assessing overloading, overriding and 

polymorphism issues. Related metrics are the overridden method references (ORMR), the degree 

of method overriding (OMOR), the degree of polymorphism (OP) and the degree of obscured 

polymorphism (OOP). ORMR is applied at method or class level and is taken in the general sense 

of overriding. ORMR is aimed to be used with OMOR which counts the number of existing forms 

of a method in the whole application. OP relates to the justified use of m~thod overriding but OOP 

seems to be language-dependent as it is directed at measuring unspecified polymorphic methods. 

None of their proposed metrics are considered a~ ratios and no case studies were presented. 

Current research on 00 metrics has I,lot yet addressed the multiple descendant redefinition 

problem. The proposed metrics set was aimed at the assessment of a class hierarchy from a 

behavioural viewpoint and the detection of abuses of the method redefinition mechanism. The 

results shown in the experiments revealed that such abuses exist in the current Smalltalk Express 

hierarchy, but they are theoretically possible in any language. As suggested earlier this may be 

simply due to the inherent incremental development of a class hierarchy, especially when different 

people are involved in the development. It should be emphasised that a system can be in a perfect 

working state even when containing MDR anomalies. The MDR problem increases the code re

engineering difficulty and affects the natural extension of the inheritance tree which degenerates in 

the presence ofMDR (see section 3.1.3). 

To support the interpretation of results obtained from the redefinition metrics, additional tools 

were required to precisely pinpoint defects in methods. The method profiler realised that task by 

providing a life history for each redefined method of each class along a particular branch of the 

hierarchy. The analysis of suspect classes was facilitated. A possible approach to further refine the 

redefinition metric set is to detect complex redefinition cases described in section 3.3 .4.1. 

Although this would provide detailed information about the behavioural aspect, it pre-supposes 

that the metric would become language dependent. Again, it can be argued that such complex 

redefinition cases can be considered as design or implementation issues. Further work is needed in 

this area. 
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Metrics collector tools 

Despite the fact that the simple functionalities of the metric tool were enough to demonstrate the 

applicability of the redefinition metrics, it is possible to identify a number of future development 

areas as follows: 

• The tool requires an appropriate versioning system for storing measures on the same subject at 

different points in time. This would be particularly beneficial for enabling comparisons on 

designs that continuously evolve with time. The current solution adopted is to save the method 

profiles as textual files, delete the profile from the persistent repository and finally to re

calculate the metrics when necessary. Indeed, the textual files contain the metric results and 

therefore are available for further processing tasks. 

• In its current state, the metric collector tool lacks automatic transfer of metric results to a 

graphical tool such as Microsoft Excel®. In the experiments, manual copies of the result 

values were necessary in order to be processed. A possible solution is to use the Object 

Linking and Embedding mechanism provided by the Microsoft Windows ™ environment. 

. However, as a possible future development, it is desirable to extend the current functionalities 

for the management .and analysis of the m~trics results. For instance, the graphical,. 

representations could be done within the same package and further re-processing algorithms of 

the metrics results can be developed. 

• The development of a metrics' definitions repository is crucial for the extension of the 

prototype tool. As proposed in [SimLew98], the work constitutes an entire topic of research on 

itself. Similarly, further investigations for a common architecture towards a flexible structure 

for metrics repositories are desired. 

In conclusion, the metric prototype tool successfully demonstrated that the redefinition metrics is 

applicable and that automatic collection of measures is possible. A simple tabular display of the 

metric results gave insights on the method redefinition profile of the Smalltalk class hierarchy. 

Given the simplicity of the architecture, it was shown that the development of such a tool is 

facilitated by the presence of functionalities to extract meta-information. The last of the points 

mentioned above showed the need for an improved version of the architecture of the persistent 

repository. This confirms the fact that the use of a metric tool collector alone is not enough and 

requires support from other tools. It should be emphasised that the discovery of unexpected use of 

inheritance was possible when collecting the measures on branches of the Smalltalk hierarchies. 

Further investigations and development were needed for the interpretation of the metric results. In 

its current state, the metric tool satisfied the original requirements but could be extended for 

further functionalities. 
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GQM lacks the pre-assessment and the interpretation phases 

Although it seems natural to know what to measure before measuring, the identification of the 

appropriate attributes in relation to the purpose of measurement is difficult to establish. Similarly, 

past experiments with metrics [Fen90, Fug&aI98, HarNit96, Hen96] clearly illustrate the 

problematic issues in interpreting metric results. There is always the risk that correct metric results 

may suggest incorrect conclusions or unwanted actions. The problem of interpretation concerns the 

techniques or approaches taken for deducing conclusions. For example, the use of arbitrary 

thresholds essentially infers three categories of conclusion: the results may be greater, lower or 

equal to the threshold. This technique assumes that the comparison with such a value is possible. 

However, the interpretation task requires the knowledge of the context of measurement. Values 

under a threshold on a curve may not necessarily indicate normality. In the experiments with the 

hierarchy redefinition metrics, for a particular level in the hierarchy, an "abnormal" PCRM value 

for a class may be leveraged, therefore hidden, by the low PCRM values in other classes. Thus, a 

thorough analysis of metrics results obtained together with input from the design task enable the 

designers to confirm or refute their initial hypothesises, and thereby take appropriate action. 

In [Fug&aI98], the authors describe their experiences in applying the GQM approach in industry. 

In addition to the identification of drawbacks in the use of GQM, interesting recommendations and 

suggestions ~ere given co~cerning the ~pecialisation of the' approach within a large software 

house. It is particularly striking how the authors emphasised the needs to understand the company 

business rules before establishing the list of goals for the assessment plan. This was necessary in 

order to effectively customise the GQM plan to the company and to avoid unrealistic goals. In the 

following example, the basic format of the goal definition is shown: 

Analyse the introduction of GQM measurement technology 

for the purpose of better understanding 

with respect to cosUbenefit ratio 

from the viewpoint(s) of the quality organisation and project team 

in the following context: experimental sites of the CEMP project 

Although their measurement plan mainly concerned the process level, analogies can be drawn with 

the work in this thesis where a pre-assessment phase was required prior to the use of product 

metrics. In order to define the correct goals and metrics, it is essential to have concise ideas about 

the application requirements and the attributes assessed. From the experiments, it is clear that the 

assessment of object-oriented models would not be as beneficial without a good understanding of 

the design process and the experience gained from previous design exercises. The assessment of 

inheritance hierarchies was driven by the aim of discovering unexpected inconsistencies in the 

presence of method redefinition. Given the knowledge of possible interpretations of the inheritance 

model, it was possible to focus on the method redefinition technique for a behavioural inheritance 

analysis. 
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In [Fug&aI98], an improvement of the GQM process has been realised by inserting an additional 

step i.e. the abstraction sheet, which aims at bridging the gap between the goals and metrics 

definition stages. To this end, for each goal, the focus, variation factors, hypotheses and the 

expected impact of variation factors on the hypotheses are summarised. Abstraction sheets were 

found useful in capturing the implicit knowledge about the process or product. Both the method's 

life history analysis and the additional abstraction sheets step in the GQM process illustrate how 

experimental approaches permit a refinement of the measurement process itself. 

The experiments with the redefinition metrics gave us insights into their practical use. 

Undoubtedly, the use of metrics is not straightforward as many technical issues are involved in the 

process. In fact, it is clear that this process currently lacks design considerations that are geared 

towards the definition of an assessment programme. For instance, the redefinition profiles obtained 

from different branches of the Smalltalk class hierarchy permitted the identification of possible 

pattern profiles regarding the category of classes assessed. However, the interpretation of the 

metric results would not be realistic without referring back to the design problem. To date, no 

interpretation methods exist concerning the analysis of the property inheritance scheme with the 

use of metrics. Pragmatically, it is possible to draw an example list of aspects to review during the 

interpretation process: 

• The goals of measurement. 

• Identification of potential design problems and hidden side effects should be possible. 

• Any possible mismatch between the requirements, the detailed design specifications and the 

implemented solution. 

• The object oriented concepts involved and their multiple interpretations. 

• The assumptions made on the design and during measurement. 

• The designers' point of view. 

Ideally, the designers ought to discover the reasons behind the phenomena shown by the 

redefinition profiles. Then, a relation from cause to effect can be established between observed 

phenomena, the generated design problem, the context in which the problem occurs and the 

possible directions for improvement. In addition, with the new findings, a refinement of the 

measurement plan and the metric set can be made. 

A proposed additional refinement step as a new stage in the GQM process can be as follows: the 

analysis and interpretation step as described in section 3.4.3 appears to be a natural step which 

takes place after the metrics definition stage in the GQM process. The interpretation framework is 

composed primarily of the three aspects: the raw data representation, the profile analysis and the 

designer's feedback. The framework is intended to describe to the different aspects to be reviewed 

during the interpretation phase. Although the emphasis was given to graphical representations, it 

- 179-



6. Discussion and conclusion 

was not intended to cover all possible visualisation techniques. This requires further work and 

represents a separate topic of research. 

Further work 

In order to complement the work presented in this thesis, a number of immediate areas can be 

identified as follows: 

• The investigation of effects of Java interface mechanism on the use of method redefinition. 

• The creation of new types of representations for the results of design metrics for 00 systems. 

• The classification of typical pattern profiles. Further tests are needed to explore the possibility 

of defining good or bad pattern profiles for these metrics. This new area of research seems to be 

promising and should be considered as a part of the software measurement process as well as 

the software development life cycle. 

• The formalism of specification of the triggering condition for the alarmer. 

It is believed that visualisation techniques and the coqcept of alarmers for data interpretation 

provide a more expressive approach to interpreting metric results thereby enable the detection of 

complex design problems. 

From a broader perspective of the project, there is a need for an integrated development 

environment whereby measurement techniques are used to assess an 00 model at early stage of 

the development and also to be able to re-inject design decisions into the model. Thus, the design

evaluation cycle can be completed and repeated. In summary, "measure to understand, interpret to 

decide and transform to improve n. The final section of this thesis opens the way for such 

integration. Naturally, the proposed data interpretation model can be seen as part of a measurement 

framework model such as "the application of metrics to industry (AMI)" program proposed in 

[Row93]. 

On the integration of measurement techniques in an object-oriented design process 

In light of the work presented in this thesis, it is proposed that measurement techniques and the 

process of object-oriented design should be considered part of the same development process and 

not act as two different tasks as currently is. This thesis cannot cover all necessary aspects 

involved in such desired integration. However, having concentrated on one possible use of metrics 

to assess inheritance, it is possible to suggest directions for improvement of the current design 

process. The main problems encountered during the experiments with metrics were the lack of 

similar results from other experiments for comparison. To palliate this deficiency, a refocus on the 

goals' definition and the analysis of methods' life history supported by the interpretation 

framework enabled satisfactory conclusions on the experiments. This emphasises the fact that a 
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good understanding of the design is necessary before the start of a measurement programme 

[HenEdw94, Whi97]. The new interpretation model which is part of the measurement process and 

presented in section 3.4 directly addresses this deficiency. This work has demonstrated that metrics 

are beneficial in many respects; nonetheless, it should be noted that feeding results back into the 

design remains difficult due to the necessary effort for potentially re-designing and re-engineering 

the code. This would imply additional cost on the overall development; thus the relative 

''unpopularity'' of the measurement science amongst the software engineering community. It is 

believed that such situations can be smoothly tackled in adopting an iterative and incremental 

development approach. 

Figure 6.1 depicts an overview of the current situation concerning the interactions between the 

modelling tasks and the assessment tasks. Three different layers: the "Requirements', the 

"Processes" and the "Deliverables" are represented for the purpose of identifying the interactions 

between the modelling and assessment tasks. Due to the relatively recent interest of researchers in 

assessment techniques, a clear separation between the two processes exists. Rather than being 

integrated at process-level, the assessment activities are co-ordinated at the deliverable level. The 

progress of the assessment methods depends on the state of the outcome from the design methods 

i.e. the 00 model or the source code. 

Modelling tasks 

Requirements 

Processes 

................................................................................................... ................ <D design 
characteristics 

Deliverables @ application 

® data 
collection 

® feedback 

Assessment tasks 

... " 

. kse~~~~t 
' methods 

initiation ............... .. 

Measurement 
programme 

Figure 6.1: Modelling and assessment tasks 
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In Figure 6.1, a simplified sequence of assessment activities is given by the numbered labelled 

arrows: 

1. Design characteristics gathering: when the assessment activities start, an informal survey of 

the design is done in order to identify the goals of measurement. 

2. Measurement programme initiation: the programme is defined and suitable metrics are 

identified. 

3. The derivation phase corresponds to the application ofthe metrics on the subject attributes. 

4. Data collection. 

5. The feedback phase is expected once the metrics results are analysed. 

Further work is necessary on the identification of core product metrics for the use of object 

concepts. The experiments show that a merging of assessment activities and design is necessary in 

order to complete the measurement programme. In particular, for maximising the chances for 

better decision making from the analysis and interpretation phases, the designer must rely on 

previous design decisions. Some example benefits include: 

• Until now, 00 design methods do not include any form of evaluation method, thus risking a 

mismatch between the requirements and the developed application. Assessment techniques are, 

one potential candidate for filling this gap. An integrated model would promote the inclusion 

of measurement concerns within the design activities. Systematically assessing a candidate 

object model has as a first objective the demonstration that the object concepts are correctly 

utilised and secondly that the necessary abstractions and behaviour are adequate to the 

requirements. In a different perspective, the choice of the best-suited design amongst a set of 

possible candidates may be possible with the use of metrics i.e. quantification of level of 

goodness. 

• While a measurement plan at design phase may involve additional costs on the overall 

development, design problems may be even more expensive to rectify III the future. 

Unfortunately, tight development budgets often imply that software development is reduced to 

the simple phase of implementation where all the design decisions are made without a real 

overview of the essential architectural issues. In consequence, it is not rare to observe that, in 

many cases, the complete redevelopment of the software is necessary when new requirements 

appear. 

• At the current state of research, existing measurement models are flexible and open enough to 

be integrated within the design process. In fact, measurement techniques naturally fit into an 

incremental development process as illustrated in Figure 6.2. 
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Proposed integrated model 

Besides the human and the organisational aspects, the proposed integrated model mainly aims at 

providing designers with a simple framework which co-ordinates assessment activities with 

design. In all cases, such integration ought to be as smooth as possible in the sense that it should 

not disturb or deviate from the design goals. Here, the term "integration" refers to a high-level 

integration rather than a detailed description ofthe model. An 00 design process describes a set of 

activities, partially ordered and potentially dependent on each other. A measure is a quantitative 

element related to the presence of a specific attribute in the object model. Therefore, a possible 

approach for integration consists of identifying at what stage of the design process a targeted 

attribute appears in the model. Then it would be possible to derive the metrics. However, further 

conditions are required before being able to do so. A possible situation where potential wrong 

measures can be taken is when the attributes assessed are not in a consistent state. Recall that one 

aspect of the design is that it evolves constantly until its final version. As it is during the course of 

design that the benefits of the measurement techniques are desired, the start of such a programme 

will depend on the state of the object model. Therefore, the identification of the "critical" design 

activities, i.e. activities that enable the model to reach a correct and working state, determine if a 

measurement plan is possible. In such a case, a guideline may be defined as follows: 

Measurement guideline: 

The use of measurement techniques during the design process may only be envisaged if: 

• All various forms of the abstractions or attributes targeted are identified. Note that the 

candidate metrics should only address one particular form of an attribute at a time. 

• The identified abstractions or attributes are stable. The stability of an abstraction or an attribute 

relates to their correctness during the design phase. An essential condition is that the candidate 

object model satisfies the requirements, therefore providing a consistent stable design point. 

• The design activities that produce the abstractions or attributes are known. The recognition of 

these activities may be not straightforward as the design process itself is not necessarily a strict 

sequence of the same activities. However, when the abstractions or attributes are recognised to 

be stable, the identification of desired activities is possible. 

Given that the process of design is constantly evolving and that the measurement techniques can 

be applied at stable design points, a "natural" integration of both activities is possible in the 

perspective of incremental development. Here, the term integration can be defined as a co

operation between the two activities based on the exchange of inputs and outputs. Figure 6.2 

depicts the integration of an incremental design process with a modified version of the GQM plan. 
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Incremental Design and Assessment Process 
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Figure 6.2: Incremental Design and Assessment Process 

An incremental design process is represented as a simple loop sequence of requirement inputs, 

design updates and design validation The measurement plan shown in Figure 6.2 is based on the 

GQM plan [Bas&al94] and mainly includes the findings from section 3.4.3 for the analysis and 

interpretation phase. In consequence, a possible smooth integration simply consists of the insertion 

of measurement plans at all identified stable design points in the design process. Thus, a stable 

point of the design determines the start of the measurement initiation phase. The point of 

integration between design and measurement activities is referred to as the measurement co

ordination point. Basically, the object model produced at this stage becomes the input for the 

measurement programme. In return, design feedback is expected as outcome from the analysis and 

interpretation phase. As a consequence, the design improvement suggestions serve as inputs, as 

well as any new requirements for a new phase of the incremental design. Recall that the designer s 

intervention is crucial for a correct analysis and interpretation of the metric results. This is 

characterised by the design information input in Figure 6.2. Figure 6.3 shows an overview of the 

proposed integrated model. 

p-------------------------------------------------------------, 
Integrated Incremental Design and Assessment Process 

Measurement 

plan \. I 
Phasez "-1 

-~ ____ 7 

Process input 

Process input 

Measurement 

~ plan I Phase x 

, 

~ , 
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Measurement E:J Design activity ; 
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Phase y - Measurement activity i 

~U.h . . . . .. .......... u •••• u.u ... . .. . ......... . .. ...... . ................... ... . ........................ .................................... ... . ........... ........ . u ............................................. ,! 

Figure 6.3: Integrated model for design and assessment 

- 184 -



6. Discussion and conclusion 

A simplified example of the incremental design process is pictured in the centre of the diagram 

with only three stable points. Each of these boxes hides all the design activities necessary to reach 

a stable point. Pictured as separate processes on Figure 6.3 between each of the stable points, a 

measurement plan is grafted on the core design cycle. Inasmuch as the design requirements and 

issues are being tackled, the important aspect of such integration is that the measurement processes 

themselves evolve. Two consecutive measurement plans may not be related depending on the 

attributes assessed. If it is the case, a review of the previous plan is necessary to take into account 

any new design information. Although the goals may remain the same, the corresponding 

attributes to be assessed may have changed due to the changes occurring in the object model. 

Sometimes, for the same problem, a different design solution is adopted from one stable design to 

the other. 

The main beneficial aspect of this framework is that it keeps both processes separate and 

independent while co-ordination and co-operation are possible. The model remains flexible and no 

constraints are imposed on the design activities. The measurement co-ordination points are the 

input and output exchange from the design to the measurement tasks and vice-versa. Details of the 

related design information can be found in section 3.2. In many respects, such a model was 

unconsciously applied during the course of the experiments in this research work. 

The above description of a proposed integrated model of measurement techniques within an 

object-oriented design process give us directions for challenging and interesting future work. 

Although the general description of the model has been given, further issues have to be tackled 

regarding the definition of a concise methodology. For instance, it is believed that profiles such as 

the redefinition profile (chapter 5) correspond to particular design situations e.g. MDR problem. A 

dictionary of such profiles, in particular for identified design problems, would prove beneficial for 

the designers. In the same manner as with a medical doctor, the identification of symptoms would 

suggest the causes and effects of the problems. Another promising area of research concerns the 

dependencies between metrics (section 2.4.6.1). From a re-engineering perspective, these 

dependencies are the key for enabling proactive design feedback from the use of metrics. If the 

dependencies were quantitatively defined then it would be possible to predict how the metric 

values vary if one or another varies. Therefore, such a technique can act as a simulation instrument 

for inferring the corresponding future evolutions of the current object model. 

Perhaps the inheritance mechanism itself still deserves more attention since no agreement exists on 

the diversity of its application. Clearly, it is the understanding of business problems that drives the 

design of languages and therefore, the architecture of the design. For example, the Java language 

encompasses such a comprehensive set of class and method modifiers that their combination with 

other aspects of the design make it difficult to master. Architectural issues are probably the essence 

of the design process and further development of appropriate metrics is also needed. 

- 185 -



6. Discussion and conclusion 

In conclusion, this thesis presented an illustration of the potential benefits of measurement 

techniques regarding the complexities of the concept of inheritance. For years, it has been 

generally accepted that measurement techniques are mature enough to take part in an industrial 

process. Unfortunately, the reality is still otherwise and experiments within industry are rare. 

Perhaps the main causes of such a situation relates to the rapid evolution of 00 concepts for 

designing, and the progress of programming languages and other associated technologies for 

solving enterprise business problems. 

The notion of compromise or trade-off remains the key element in the decision process. However, 

all factors influencing the compromise must be known. The complexity of applications and the 

development process require the contribution of various resources from designers, abstraction tools 

and methods. A design assessment framework is one possible solution to ensure the success of 

each of the design milestones. It is a natural desire to evaluate goodness, originality and creativity 

in object-oriented design. Assessment techniques contribute strongly to this goal, so let's design 

and measure, and vice versa! 
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A. Appendix 

A. Appendix 

A.1. Heuristics' classification 

Categories of heuristics [Fir95, HenEdw94, Mey88, Pap95, Rie96] are organised according to the 

main aspects of 00 modelling as follows: 

Categories Topics 
00 conceptual model The object model 

Abstraction, abstract data types 
Architecture from objects to systems Encapsulation and information hiding 

Class-specific data and behaviour 
Responsibilities, roles, contracts, interfaces 

Modularity and subsystems Classes relationships and objects coupling 
Communication, message-passing 
Relationships: association, aggregation 

The inheritance relationship and class hierarchy Generalisation/specialisation 
Inheritance identification 
Reuse 
Multiple inheritance 
Physical 00 design 

Heuristics for subclass's definition [Rum96] 

Topics Heuristics 
Full inheritance A subclass should inherit all properties from its superclass without restricting or 

deleting 
Extension A subclass should add further features to the ones inherited 
Behaviour A subclass should either: 
compatibility • Reuse without change 

• Implement the declared deferred method 

• Be a combination of inherited behaviour and new functionality e.g. self in 
Small talk or before-and-after in CLOS 

• Override with extreme care 
Form change A subclass must have a different structure from its superclass e.g. additional 

attributes, associations 
Restriction A subclass should not restrict the inherited properties 

Summary of Fusion's method guidelines [Fus94] 

Topics Heuristics 
Class definition • Properties must describe all instances of the class 

• A class must represent one and only one abstraction 

• A class should be cohesive 

• An operation should perform a single function 
Object interactions • Reduce the coupling between objects 

• Reduce objects' dependencies 

• Objects should be organised into independent sub-systems 
Use of inheritance • Abstract common properties in abstract classes 

• A void implementation inheritance 

• Polymorphism is recommended when the semantics of the inherited 
operations remain the same 

• Develop the class hierarchy in depth instead of width 

• Root should be defmed as an abstract class 

• Each sibling should be semantically different 

• Preserve subtype inheritance 

• Behavioural subtyping should be preserved even if inheritance is a code-
reuse mechanism and not a subtyping facility 
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A. Appendix 

A.2. Detailed design of the main components of the metric prototype tool 

A.2.1. Basic metrics repository 

During the process of determining the lineage of a method, it is implicitly assumed that all parent

children relationships are known, however this is not straightforward. In particular, the amount of 

specific development for pattern matching varies depending on how much information can be 

directly obtained from the environment and the language used. In most cases, it would require a 

minimum amount of code analysis. In [SimLew98], the authors proposed a generic model that 

deals with all the language specifics however it also necessitates the use of a scripting language for 

describing the metrics to implement. Smalltalk provides a native set of functions permitting easy 

querying of the system for meta-information. Table A.1 shows examples of such features. 

Category Smalltalk command Returned values 

Organisational aClass superclass The direct parent class of aClass 
aClass subclasses The direct subclasses of aClass 
aClass aliSuperclasses All parent classes of aClass 
aClass aliSubclasses All subclasses of aClass 

Class description AnObject class The class name of anObject 
AClass allinstances All instances of aClass 
AClass selectors All methods of aClass 
AClass allinstVarNames All instance variables of aClass 
AClass aliClassVarNames All class variables of aClass 

Coupling ASymbol implementors All methods that provide an implementation 
ofaSymbol 

ASymbol senders All methods that sends a aSymbol message 

Table A.I: Smalltalkmetaclass information 

Some of the features presented in the Table A.I are candidate metrics themselves. When a 

Smalltalk command returns a set of objects, the use of the commandaSet size returns the number 

of objects in the set. A metric is referred to as basic in the sense that it represents a simple 

counting of a feature of the implementation. Although such metrics may be useful as indicators of 

size, they are often utilised to form more complex metrics to address a particular aspect of the 

design e.g. the redefinition metrics. Metrics repositories can be used as a catalogue of measures for 

various purposes. Although the metric collector tool does not deal with the management of metric's 

definition, a possible repository structure may include the name, the definition of the metric e.g. 

Smalltalk commands, the description, its uses, its meaning and other related properties. In the 

experiments, the associated values of basic metrics were mostly of interest as they were often 

utilised during the derivation process. Rather than re-computing a metric every time it is needed, 

the metrics results are stored in the repository. The time processing aspect should not be neglected 

during the metrics collection. Because ofthe nature of the processing involved for the derivation of 

metrics e.g. inheritance structure parsing and computation, a pre-calculation is adopted whenever 

possible. 

As Smalltalk provides an exporting functionality that enables persistent storage of objects on disk, 

there is no need to transform the metric repository structures and their values, as they are 
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themselves objects. Such direct mapping between memory and disk is convenient, as it does not 

add much additional development cost for the metric tool. 

A.2.2. Dictionary structures for metrics 

The derivation process can be separated in two phases: 

1. Collection of design information from all the classes included in the derivation. 

2. Calculation of the redefinition metrics based on data previously collected. 

While the second phase consists of the application of the metrics formulas, the first phase is an 

essential preparation phase where information is gathered and organised for later use. The 

description of this first phase follows. 

An important aspect of the design is the use of simple repository structures that hold intermediary 

or final results for metrics. Before the computation of the metrics, a preparation phase gathers and 

temporarily stores all necessary information into Dictiona,yo objects in memory. This structure 

permits a rapid access to the metrics values. As the values of a Dictionary object can themselves 

hold references to other Collection objects, it is therefore possible to build flexible multi

dimensional dictionaries or Collection objects. 

Sub-dlctlonary 
.', ....... -_ ................................. _. __ ................................ , 

DIctionary / Lists of redefined \., 
f methods for a class ; 

~ ......... _ ........ _......... ! 
~ i : .. _ .... _ .. _._ ..... _. ! 

..... ......................... ! 

! 

:::::::::::::::::::: I 
......... _ .. _ .... _......... I 
.. _ ........ _ ._ ..... _. t .............................. I 

t 

.. ~ ... - ... ~::::":':-........ -....... .,~: ........................................... ........ , ...... / . 

Figure A.I: Dictionary of redefined methods per class 

As the redefinition metrics are calculated in relation to the hierarchy level, the metric tool gathers a 

list of classes to be included in the derivation at the corresponding level. In Figure A.I, a 

Dictionary object is used to store the class and method names. The levels in the hierarchy are the 

dictionary keys and the corresponding values are the class names. In order to store the list of 

redefined methods for each class, it is appropriate to use a dictionary type object with the class 

30 Similar to an indexed table structure, Dictionary objects in SmaIJtalk are Collection objects. They hold a key that enables direct 

access to an associated value. 
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names being values for the main dictionary as well as keys for the sub-dictionary. Therefore, the 

corresponding values for the sub-dictionary are the method names. In the experiments with the 

Smalltalk class hierarchy, the maximum depth level is seven. Although it is necessary to search for 

inheritance relationships between the classes for determining if a method is redefined, this 

information is not recorded in the dictionary structure. 

Given the information in Figure A. I, the derivation of the metrics still necessitates the calculation 

of the following: 

Sub~lctIonary 
/ • •••••• _ •• _ .............. _ •••••• • •••••••• _ •••• ___ ............. _ . .. _ .. _ .... _ •••••••• __ 0 ... , _ ....... ,~ 

I I 

Dictionary i Total number i 
,,--.--t---.--~,. of methods l 
r Level i ) for a class i 
~ 1 i Sub~lctlona~ i 
: ! .. -_ ..... _-'ft. _ .. ,H __ ...... _ ..... _ •••. ; 

I r Class name ! '1 
! I 1 

j ; 

~ i 
! k ...... _ .... __ . __ ......... !... . ..... · .... · .... · .... ·_· .... _ .... _-_ ...... · .... ·1 
, ! I Total number i 
i ! t of redefined i 
\.-----L j methods for I 

i, a class .! 
.......... ____ .... . _ ........ __ •••• • _ .... __ ........... __ . .. __ . . ... _ .. 04 . ... . ·.,. 

Figure A.2: Dictionary for the total number of methods per class 

In Figure A.2, two different dictionaries with identical entry structure are represented. One sub

dictionary is used for the total number of methods fOT a class while the other is for the total number 

of redefined methods. The values are calculated directly from the dictionary in Figure A.I or 

during the parsing of the classes. Although such numbers can be calculated at request time, their 

pre-calculations are often useful for a quick review of the metrics results. In such a way, if no 

updates have been done on the classes assessed, no re-calculations are needed and expensive 

parsing is avoided. 

Note that, during the parsing of the classes, in the case of the calculation of the PRMC (see 3.2), 

the total number of methods for a class is being cumulated with those inherited to form the new 

total number of methods. The user sets the cumulative option in the collector tool before the 

request for metrics derivation. 
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SulMjlctionary 

.
,.l'····-··-·················-...... ··--~ ·--· · · ·- · - · ·· ............................ _ ........ _ ......................... ... ' .... ~ 

... ' ... 11 .. " ..... ".. .... ~ 
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i methods for a ! DIctionary 1 I __ ----4------~ .......................... dass I 

t level : \ ................. ... ... 
1 1 ! Sub-dlct1onary i 

4 r ..... _._ ........ _ .. _ .. _... ~ 

! 6 1· ... ··-_ ...... _ .. _ ........ -... t·· ... _ ............ _ ........ _ ................... -..................... f 
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Figure A.3: Dictionary for replaced and extended methods 

So far, the infonnation gathered in the above dictionaries pennits the calculation of the general 

PRM regardless of the method's state. In Figure A.3, two more dictionaries, again with identical 

entry structure, shows for each class, the list of methods being replaced or extended. In the same 

manner than as in Figure A.2, dictionaries for the total number of replaced and extended methods 

can be built. Thus, the preparation phase is complete and the second phase of the derivation 

process can take place. 

A.2.3. A persistent repository structure 

Persistently storing metrics values is an important feature for enhancing the metric tool 

capabilities. The persistent features, not only improves the usability of the tool but also opens a 

wide-range of possibilities for further development such as the management of metrics results 

versions for comparison of design versions. Figure 4.1 shows only the relevant, adapted classes 

and methods taken from [Owe95]. 
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Smalltalk Class library Metric tool persIstent repository structure Interface class 

InstaliClass: 
instaIiClass:wiIhSuper: 
prlntHierarchyMetric: 

r-----+----------------t>'l wilhProfiie: 

addEntity:withKey: 
deleteEntity : 
ants 

'------+-1 getAliEntities 
getEntityWithKey: 
newAttribute:type: 

Figure A.4: Persistent repository model 

wilhRedef: 
with Extended: 

prlntMetric 

( .. K;y----- -- ----". 

I The MethodsProflle I 

: class Is Installed by 
I the prototype metric 
I . 

'-~~~~-!~ ----: 

The main purpose of the PR is to provide features for the management of persistent objects. The 

main particularity of the system is that all the persistent objects are dealt and stored within the 

Smalltalk image in exactly the same manner as any other 'live' objects at anyone time in the 

environment. This provides a uniform and coherent access to both control or data objects from the 

metric tool prototype. The two main classes Root and CmdClass inherit from the Object class 

and provide the necessary functionalities for method profile management. The PR system permits 

dynamical installation of classes within the image. The CmdClass class methods are the 

interfaces to the PR e.g. the self explanatory instaIiClass:withSuper: method and uses the low

level Root class methods. For objects to be persistent, the corresponding class has to be first 

created and installed within the Smalltalk environment by the PR Such a class is subclass of the 

Root class. In such a way, the Root class generic methods are inherited by any of its subclasses. 

Note that generic methods are methods that manage the persistent objects. In the PR terminology, 

(see Root class's methods in Figure A.4), a method profile object is referred to as an entity that 

holds a set of attributes. In addition, dynamic changes to an inserted class are possible e.g. deletion 

or addition of new attributes to a class. A key string that acts as an object identifier allows 

uniqueness and access to objects. The main changes from the PR original version includes the 

adaptation of some methods to take into account the metric requirements. Most of the changes are 

low-level changes such as the location of temporary stored files. These did not affect the original 

interface functions in the CmdClass class. Extension of functionalities was realised by addition of 

new methods in this class e.g. printing facilities. 

The major benefits of the use of the PR system is that classes and objects can be dynamically 

created and recalled regardless of the underlying storage mechanism. The PR also provides various 
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class methods for the management of objects. Treated as objects, the method profiles include the 

list of attributes in Figure A.4 i.e. mainly the dictionaries described in section A.2.1. The following 

section describes the installation of the MethodsProfile class by the profile manager component. 

A.2.4. The profile manager 

The profile manager (MethodsProfileList class) is the core component that supervises the 

derivation process (Figure A.5). It receives the requests from the user interface and verifies if the 

requests have not been previously processed i.e. existence of method profile objects. If it is the 

case, only a re-calculation of the metrics is necessary i.e. second phase of the derivation process, 

therefore the metric results displayed correspond to a previous measure. For an update of the 

measures, the user should issue an explicit request within the profile interface browser. Before the 

launch of the derivation process, the profile manager should ensure that a MethodsProfile class 

exists to proceed further. To do so, the initMethodsProfile method in MethodsProfileList class 

places requests to the PR via the Profile DBAP I interface methods. It should be noted that the 

profile manager has been specifically developed to provide support for the assessment of class 

hierarchies. Therefore, the concerned method profiles are mainly classes organised as a tree 

hierarchy i.e. branches or entire class hierarchy (see experiments with the redefinition metric at 

system level in section 0). 

Persistent repoaltory structure 

profile 
interface calls 

Interface cI ..... 

( Ctndet.. , i{il,J~ 

installClass: > 

instaIlClass:withSuper: , 
printHlerarchyMetric: 1 
withProfile: 
withRedef: 
with Extended: 

printMetric:: 

DB interface calls 

DB 
instaIiMethodsProfil~ 'f requests 
getBranchProfileList " 
getBranchProfileOf: < 

importProfila 
exportProfile: 
deleteProfile: 
fileOutClass: 
filelnMehod: 

Figure A.5: Profile manager model 

Controller 

The installation of the MethodsProfile class is a one-off task. Given a class description i,e. class 

name and an attributes list, the instaliMethodsProfile method in the ProfileDBAPI class 
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automatically generates a subclass of the Root class called MethodsProfile. For each of the 

attributes created, a corresponding accessor method is automatically generated in the new installed 

class, thereby enabling future consultation of the objects attribute values. The list of attributes 

includes: 

• Several dictionaries (see section A.2.1) detailing the life history of extended and redefined 

methods (respectively the extendedMthProfile and redefMthProfile attributes). 

• The corresponding PCRM and PEM values (respectively the extendedMetric and 

redefMetric attributes). 

• Other relevant information that defines the context of derivation such as the date and the 

calculOptions attributes. 

At run-time, the profile manager (MethodsProfileList class) maintains a list of existing profiles 

i.e. MethodsProfile objects in memory. Any update of a method profile is preceded by a deletion 

of the MethodsProfile object before the start of the entire derivation process. For this reason, it is 

important to date-stamp the derivation process at the' original date of request. Notice that a finer

grained stamping method may be possible e.g. time. 

The metric derivation and the method profiles building activities share common parsing tasks. C".' 

Despite a' potential additional processing time, both activities are realised within a same 

functionality. In all cases, the availability of the method profiles is essential during the analysis 

and interpretation phase. 

Whether the derivation of the metrics is requested for a class, a branch of the hierarchy or a 

system, a unique identifier is used for naming and storing the method profiles built. By default, the 

top node class for a branch of the hierarchy is the identifier in the case of metrics applied at 

hierarchy level. For a class and a system, respectively, the class name and an arbitrary name acts as 

identifier. 

The calculOptions attribute is initialised by the setCalculOptions: method, both in the 

MethodsProfileList class. This attribute holds the desired derivation options as well as the control 

options for internal purposes e.g. display options. For the metric collector tool, only two options 

are relevant: 

• The cumulative option: used for the calculation of the cumulative redefinition metric. 

• The compiler classes inclusion: in Smalltalk, the compiler classes are hidden classes 

[GoIRob85] and are only accessible on explicit request. This option offers the possibility to do 

so. As these classes are special internal classes, by default they were not included during the 

experiments. 
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The calculOptions attribute can be a placeholder for further options. Being a dictionary type 

object, the use of this attribute is flexible and can be extended for further requirements. The option 

values are saved in the method profile object as well. 

A.2.S. The metric engine 

The metric engine (RedefMetric class) incorporates the necessary parsing and calculation 

algorithms for the redefInition metrics (Figure A.7). It is the proille manager object that initiates 

the creation of a metric engine object. Once a method proille object has been initialised, the 

derivation request is passed on to the metric engine object by the profile manager object for 

processing. A metric engine object stores temporarily information in its attributes, gathered during 

the course of parsing. Only on completion of the processing tasks, does the method proille object 

regain control and transfer the results to the corresponding method proille object In such a way, 

the derivation request is completely delegated to the metric engine object and its lifetime lasts 

while the method proille is built. 

A.2.6. The hierarchy browser and profile manager designs 

The main user interface integrates a similar hierarchy browser as the one provided by the Smalltalk 

environment and a tabular set of fields for the display of the metric results. The maximum display 

of levels of the hierarchy is fixed to seven for convenience reasons. When the prototype metric 

tool is running, an instance of the SystemMetric8rowser class is created and represents the main 

interface window (see Figure A.6). In the case of a class or hierarchy metric request, a dialog box 

is presented to the user for entering the name of the class concerned. Then. the metric browser 

object directly creates an instance of the profile manager object \IDd continues the derivation 

process. 

c:alculClass 
calculHierarchy 
calculSystem 
c:alculMode 
defaultCalcUlOptions 
displayResult 
getCalculOptions 
initAlarm 
alarmOnOff 
getAlarmRange: 

Hierarchy and profile manager browsers 

class list 

initiates \ initMethodsProfile 
importProfile: 
exportProfile: 

~--~~ deleteProfile: 
setCalculOptions: 
profile: 

Figure A.6: The hierarchy browser and profile manager designs 
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The MethodsProfileList class plays both the role of profile manager and the interface for profile 

management. Although an instance of this class is always created for metric processing, it only 

interacts with the user on request of the profile management function. The user interface permits 

the deletion, update, view, import, export and print of an existing list of profiles currently stored 

(see the corresponding methods in the MethodsProfileList class in Figure A.6). 

Interface classes 

instaliMethodsProfi~ l 
getBranchProfIlelist 
getBranchProfileOf: 
importProfile 
exportProfIle 
deleteProfile: 
fileOutCiass: 
filelnMehod: 

DB 
requests 

Controller classes 

inilMethodsProfIle 
setCa\CuIOplions: 
profile: 
updateProfile: 

derivation 
requests 

ca\CUiExtendedMetric 
caiculRedefMetric: 
classRedetMetric: 
hierarchyRedefMetric: 
systemRede1Metric: 
lookForExtRedln: 
findAncestorsOf: 

Figure A. 7: Metric engine model 

The main function of the metric engine object is to search for redefined methods within a given set 

of classes. During the parsing of the classes, the object constructs four main dictionaries (as its 

object attributes): 

• The extendedMethod attribute which stores all extended methods per class per level. 

• The redefMethod attribute which stores all replaced methods per class per level. 

• The resultsExtended attribute which stores the percentages for extended methods per leve1. 

• The resultsRedef attribute which stores the percentages for replaced methods per level. 

To determine if a method is redefined in a class X, the findAncestorsOf: method looks up for the 

list of parent classes of the given class. The presence of the method signature in, at least one of X's 

parent classes, permits conclusion that the present method is redefined. However, further analysis 

is required to detect in which case of redefinition the method falls under. The 

hierarchyRedefMetric: method is the main entry point to the parsing algorithm for the metric at 

hierarchy leve1. The classRedefMetric: and the systemRedefMetric: methods are re~pectively, 

the methods for calculating the metrics at class and system levels. The profile manager object 
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invokes them all, in addition to the lookForExtRedln: method that determines whether a method 

is being extended or replaced. Updates of the methods profile are done accordingly. Additional 

useful information is the detection of methods originally declared aspolymorphic. To do so, the 

isMethodPolymorphic:inClass: method examines the method source code for the Smalltalk 

implementedBySubclass pattern. 

On completion of the calculations, the profile manager object requests the dictionary object 

identifiers built by the metric engine object and reassigns them to the corresponding method 

profile objects. 

The algorithms can be decomposed in two phases: 

• The search for redefined methods. 

• The search for the type of redefinition used. 

The main difference between the two phases lies in the information searched. If such a metric was 

to be applied early in the development process, it is assumed that, at design phase, the method 

signatures would be known, therefore this information would be sufficient to realise the first phase 

of the algorithm. The body of the method is needed for the second phase and permits the 

conclusion on the type of redefinition used. This may be not known until the coding phase. 
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Algorithm for the search redefined methods 

For a given set of classes, the algorithm below searches for all redefined methods for each class, 

stores them in appropriate dictionaries and calculates the percentages for each level in the 

hierarchy. Note that the algorithm parses classes regardless of the fact that they may be organised 

as a tree hierarchy or as a system, therefore it enables the use of the same algorithm for the 

calculation of metrics at hierarchy or system level. For this reason, the dictionaries are 

systematically organised as an n-Ievel entry that corresponds to the n depths of inheritance of the 

single rooted hierarchy. 

initialise dictionaries 

for each class in the branch of the hierarchy 
search at what level the class is situated 
increment the number of classes at the found level 

if no cumulative calculation is required 

store the total number of methods of the class 
else 

store the cumulative number of methods .for all ancestor classes of the 
class . 

endif 
for each method in the class 

endfor 

for each superclass of class 

endfor 

if method signature exists in superclass 
store method name for the class 

endif 

compute the general redefinition metric for each level of the branch of the 
hierarchy 

endfor 
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Algorithm for the search of the type of redefinition used 

For a given set of classes, the algorithm below parses the body of all redefined methods for each 

class, detects if the methods are either extended or replaced, stores them in appropriate dictionaries 

and calculates the corresponding percentages for each case at each level in the hierarchy. In this 

algorithm, the downward parsing task i.e. parsing in subclasses as opposed to ancestor classes, is 

isolated and can be required by the set-up of a calculation option in the code (see test on parsing 

direction in the below algorithm). Note that this is not an interactive option as it relates to the 

calculation algorithm. Downward parsing may be only relevant in the case where a hierarchical 

structure exists amongst the set of classes assessed e.g. branch of the hierarchy. In such a case, 

downward parsing is necessary for the construction of the method profiles. 

The computation of percentages is done at the end of the algorithm and consists of the direct 

application of the formula for the considered metric. 

initialise dictionaries 

for each class in setOfClasses 

for each method in the class 

endfor 

if parsing direction = '80th' 

tempSubclasses ~ subclasses in which the method exists 
endif 

boolean Extended ~ is current method extended? 
if tempSubclasses size> 0 

end if 

if boolean Extended isFalse 

extended Method ~ current class 
endif 

for each class in tempSubclasses 
if method is extended 

extended Method ~ current class 

else 

redefMethod ~ current class 

endif 

endfor 

orig ~ find original creator of method 
if orig not in setOfClasses 

if boolean Extended = true 

store method name in dictionary for extended method 
else 

store method name in dictionary for redefined method 
endif 

endif 

compute redefinition metric for extended and redefined methods at each level of 
the hierarchy 

endfor 

- 212-



A.2.7. The method profiles browser 

Figure A. 8 shows the list of interface classes for the method profile display. It is an instance of the 

RedefMethodsBrowser class that allows the consultation of method profiles for classes. When 

the user issues such a request, the profile manager object executes the profile: method, which in 

return, initiates the creation of the RedefMethodsBrowser instance. The corresponding 

MethodsProfile object is then passed to the browser for display i.e. setExtendedProfile: and 

setRedefProfile: methods. 

initMethodsProfiJe 
importProtiJe: 
exportProtile: 
deleteProflle: 
setCalculOptions: 
profile: 

Method profiles browser 

displayExtended: 
dlsplayRedef: 
getExtendedMethods : 
getExtendedSubclasses: 
getRedefMethods: 
getRedefSubclasses: 
setExtendedProflla: 
setRedefProfile: 
senderRedef 

Figure A.8: The method profiles browser design 

The class list in the method profile browser can be displayed in two different forms: a flat list or a 

hierarchical list (respectively realised by the showList: and showlnheritance: methods). This 

feature facilitates the interpretation of the current branch of the hierarchy when many classes are 

involved. In addition, for further investigation of one particular method, it is possible for the user 

to request the list of dependencies with other classes in two ways: 

• Search for the senders of the current method (see section 3.3.2): an instance of the 

MethodsOependents class is created. This feature returns a list of classes and the method 

names that send the current message i.e. method name, thus giving the list of classes 

dependent on the current one. 

• Search for the implementors of the current method (see section 3.3.2): an instance of the 

Implementors class is created. This feature returns the list of classes that implements the 

current method with their associated depth of inheritance. 
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A.3. Remarks on the consequences of the encapsulation mechanism 

Suspect uses of inheritance in the Smalltalk class hierarchy are partly due to the absence of an 

encapsulation mechanism for controlling accessibility of inherited properties. If the proposed 

redefinition metrics was to be applied on languages where encapsulation mechanisms can be 

controlled such as c++ and Java, further considerations should be given to the validity and effects 

of the combination of different property modifiers. In a C++ or a Java application, if methods are 

declared as public or protected, the metrics would be derived in the same manner as for Smalltalk 

applications however, when restrained accessibility is applied at class and method level, the use of 

the redefinition mechanism is inhibited. In Table A.2, in Java, the allowed transitions of method's 

declaration are shown for a class P, declaring a method m with a modifier x, inherited, redefined 

and redeclared in a class C with C < P. 

~ class C Abstract Public Protected Private Final 

class P 

first method' ./ ./ ./ ./ ./ 
definition 

Abstract ./ ./ ./ ./ ./ 

Public x ./ x x x 

Protected x ./ ./ x x 

Table A.2: Allowed property modifiers for a redefined method in Java 

All transitions indicated by a x are forbidden by the Java compiler, therefore, method redefinition 

cannot take place for those. The case of a method m declared as private has not been included in 

Table A.2 as, by definition, the accessibility of the method will be restricted to the class only. The 

issue of the encapsulation mechanism from a measurement point relates to the additional parsing 

for extracting the necessary design information. In a language such as C++, as only static 

information is available, a counting strategy of a specific feature may have to take into account 

subsequent applied property modifiers at method or class level. For example, to compute a number 

of accumulated methods in a class i.e. including methods from ancestors, the parsing algorithm of 

the metric collector tool would have to detect any restrictions applied to the methods. 
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