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ABSTRACT 

The Eurasian otter Lutra lutra and its resting places are protected by EU and UK 

legislation. Consultant ecologists must identify resting sites so they can be protected 

during developments. Currently, consultants usually use field-signs, but radio-telemetry 

studies indicate this may be unreliable. Camera-traps could be used to identify resting 

sites within the consultancy industry. This research aims to improve field-sign and 

camera-trap survey methods to identify otter resting sites. Firstly, camera-trap 

methodology is considered. Arrays of camera-traps were used with continuous CCTV as 

a control so the effect of variables on detection success of mammal passes could be 

modelled. A six-year camera-trap study of an active breeding and resting site was 

analysed to optimise set-up.  Distance from the camera-trap had a negative effect on 

trigger probability but a positive effect on registration probability (i.e. the probability 

that an image or video is captured given a trigger). Slower animals had greater trigger 

and registration probabilities while otters had reduced detection after immersion in 

water. A reduction of video clip duration, and exclusion of daytime monitoring would 

have reduced the amount of time watching video footage with minimal data loss. These 

findings guided a camera-trap study of 26 potential resting sites where field evidence 

was recorded at 21-day intervals. The camera-trap data was also used to identify rests 

and any relationships between resting and field evidence were investigated.  A rest 

could only be observed on CT footage and was defined as an otter being within a 

structure for ≥ 15min.  According to this criteria, six of the 26 sites were resting sites, 

with 95% of rests occurring in winter and spring. Latrines were exclusive to resting sites, 

and presence of bedding material was strongly related to resting sites. Data simulations 

calculated that a period of 35 days of camera-trapping in winter, repeated in spring 
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would have a 95% probability of detecting a rest. These findings contribute to the 

evidence-base for guidelines for ecologists to identify resting sites as required by law. 

The patterns of otter activity, behaviour and field-signs provide a comparison for further 

studies. The research focusses on otter, but the approaches and principles could be 

applied more widely. 
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PREFACE 

As an ecological consultant, I have always had a special interest in otters. In 2009 I was 

commissioned to undertake surveys and an impact assessment for otter, for a proposed 

opencast coal mine which involved draining a 60ha, shallow, eutrophic loch which was 

formerly a fishery. As part of this contract, I used camera-traps to investigate the otter 

activity at a disused drift mine. I discovered that it was being used as a natal holt and 

was also used for rearing cubs. Interpretation of the camera-trap data was a challenge 

as there was no comparative information on breeding otters and otter activity at den 

sites. This was exacerbated by the newness of camera-traps as a tool in ecological 

consultancy yielding observations of activity and behaviour which would be impossible 

with other methods. The initial study was commended by Scottish Natural Heritage, and 

the contract was extended to 18 months. After the contract ended, I continued the study 

for my own interest and by the end of six years, I had accumulated a significant amount 

of data. I had documented activity patterns and observed behaviour which was contrary 

to published literature but did not then, have the skills to fully explore the data or 

publish the findings. This led me to approach Edinburgh Napier University to discuss 

potential research on otters by rolling-out this study to other sites, and to analyse the 

data from the long-term study site with the underlying aim of improving otter survey 

methods, primarily for consultancy applications. The long-term study site is presented 

as Chapter 3 of this thesis and the knowledge-gap encountered as a consultant 

precipitated the rest of the research presented here.  

  



11 
  

GLOSSARY 

Capture probability The combination of trigger and registration probability 

i.e.  the probability that the camera trap will trigger and 

record an image of a mammal pass. 

 

Couch The traditional term for an otter den which is above 

ground. 

 

Den The generic and traditional term used for a place of 

rest and/or breeding which can be applied to all 

mammal species. 

 

Holt The traditional term for an underground den of an 

otter. 

 

Latrine A new field sign identified during this research 

referring to a mass of faecal remains deposited on top 

of each other, often appearing like a cow-pat. 

Individual dropping may be visible but a count of 

droppings is not possible. 

 

Registration probability The probability that an image/footage of an target 

animal is recorded once a camera-trap has been 

triggered. 

 

Rest A rest is where an otter stays within a structure for 

>15min (my own definition, as described in the thesis). 

 

Resting site The generic term used by the Habitat Regulations to 

describe places where a European Protected Species 

such as the otter is inactive, for otters, this includes 

holts and couches. 

 

Spraint The faecal scent-mark of an otter which is often small, 

black and tarry. 

 

Structure A fully or partially enclosed location considered 

suitable as an otter resting site as indicated by field 

signs, but not necessarily proven to be used for resting. 
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Trigger Probability The probability that the camera-trap’s Passive Infrared 

sensor (PIR) senses a change in infrared from the pass 

of an animal which causes the CT to trigger. 
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Chapter 1  Introduction 

1.1 Background 

 

1.1.1 Mustelidae, Lutrinae and Lutra lutra 

 

The Mustelidae are the most species-rich family within the order Carnivora, containing 

weasels, martens, wolverines, tayras, polecats, badgers and otters (Koepfli et al. 2008). 

Key family characteristics include a long body and flexible spine, short legs, five toes per 

foot and the presence of anal scent glands (Kollias and Fernandez-Moran 2010). The 

Lutrinae is a sub-family of the Mustelidae and contains 12 species of otter globally. The 

Lutrinae share a range of adaptations to exploit the underwater environment including 

webbed feet, ocular adaptations to facilitate sharp focusing under water and in air and 

highly insulative fur (Dunstone 1998). The Eurasian otter Lutra lutra (hereafter “otter”)  

has a wide geographic distribution, spanning all three Palaearctic continents, Europe, 

Asia and Africa, but is assessed as  “near threatened” by the International Union of 

Nature Conservation (IUCN) with a decreasing population trend (Roos et al. 2015). 

1.1.2 An overview of den use in Mustelidae and Lutra lutra 

 

A mammal den is  a “site or structure” used “for a prolonged bout of sleeping or resting”  

and like many other carnivores, Mustelids also use dens for breeding (Birks et al. 2005, 

p. 314). Mammal dens are of greatest importance when a female has cubs (Fernández 

and Palomares 2000) offering protection from climatic extremes and protection from 

predators  (Roper et al. 2002). 

Some Mustelids, such as the Eurasian badger Meles meles, invest significantly in the 

construction of burrows which can be extensive with hundreds of metres of tunnel, 

many sleeping chambers and numerous entrances (Roper 1992). The badger social 

group has a relatively small number of these burrows (setts) which the social group use 

habitually, with the largest sett being occupied continuously and used for breeding. 

Similarly, other Mustelid species, such as the wolverine Gulo gulo, pine marten Martes 

martes and otter use a specific den for birthing and rearing neonates; at other times 
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several different dens are used, leaving the natal den unoccupied. The female wolverine 

excavates an extensive breeding burrow into deep snowdrifts each year, which is used 

for birthing and early rearing (May et al. 2012). This repeated annual investment is 

rewarded by stable temperatures in the insulated subnivean  environment  (Marchand, 

Peter 1982). Radio-tracked pine marten in Scandinavia used arboreal cavities for birthing 

and caring for the young kits to avoid predation by red fox Vulpes vulpes.  During the 

winter when the martens are not breeding, they use many arboreal and underground 

structures for resting. Energetic constraints give preference for underground sites which 

offer better insulation in the coldest temperatures (Brainerd et al. 1995). There is scant 

literature on activity at otter holts (or otter dens) and even less on natal holts (i.e. the 

holt in which the female otter gives birth). Whilst most (71%) fresh-water resting sites 

are  on the river bank itself or on small islets (Green et al. 1984), natal holts tend to be 

away from open water and have been recorded almost 1km from the shore on Shetland 

Isles (Kruuk 1996). The cubs stay within this natal structure for approximately two 

months (Kruuk and Moorhouse 1991b). Few natal dens have been documented during 

radio-tracking studies but those that have, corroborate site selection away from the 

main river. A natal den was located within a nest structure in a reed bed, away from the 

main river (Taylor and Kruuk 1990), another in a pile of boulders, 150 m away from the 

main river (Durbin 1996a);  the two natal holts found by  Green, Green & Jefferies (1984) 

were 40 m and 100 m from the main river. However, a natal holt monitored by camera-

traps during this research was 20 m from the main river, and the same holt was also 

used sporadically for rearing the cubs and was also used for resting by other otters (see 

Chapter 3).  

The principal difference between denning behaviour in otter in the UK, and other 

mustelids, is that in many studies, otter do not appear to have a breeding season. 

Analysis of placental scarring during post-mortem examination of female otter killed by 

road traffic from mainland UK found no evidence to support a breeding season (Philcox 

et al. 1999; Chadwick and Sherrard-Smith 2010). Furthermore, females are thought to 

be continuously polyoestrous, coming into oestrous every 36 days (Trowbridge 1983). 

This  contrasts with the delayed implantation present in many other mustelid species, 

including other species of Lutrinae, which facilitates seasonal breeding (Thom et al. 

2013). However, in some parts of the otter’s range, there are seasonal peaks in breeding, 
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and these coincide with periods when food availability is highest (e.g. summer in 

Shetland (Kruuk et al. 1991)) and seasonal availability of prey species in Spain and 

Portugal (Ruiz-Olmo et al. 2007). 

When otter do not have neonates, they exhibit peripatetic use of existing structures for 

resting (Green et al. 1984; Rosoux and Libois 1996; Néill et al. 2009) mirroring the use of 

multiple dens observed in pine marten and wolverine. The linear home-range of the 

otter along rivers systems can be as long as 80km (Kruuk 1996), exaggerating the need 

for numerous resting sites which enable individuals to efficiently exploit resources with 

their home-range. On river systems, otters are mostly nocturnal, see Chapter 3, 

alternating bouts of activity with nocturnal rests followed by retirement to a diurnal 

resting site, which can be above ground in the open in vegetation, or enclosed in a 

burrow or similar  i.e. holt (Green et al. 1984). Radio-tracking studies indicate that otter 

use individual resting sites infrequently. Approximately a third of resting sites used by 

each of three otters radio-tracked for  22 days, 36 days and 98 days respectively were 

only used a single time (Green et al. 1984), and this proportion of single-use sites was 

also found in an Austrian study of four radio-tracked otters (Isabel and Freire 2011). 

Furthermore, use of the same resting site over consecutive days is rare, although resting 

sites on consecutive days can be in close proximity even if the daily range of the otter is 

large (Green et al. 1984). Whilst there was no re-use of some resting sites during these 

studies, some resting sites are used habitually. One third of resting sites identified by 

Green et al. (1984) were used for two thirds of recorded rests, and a study in France also 

found that a small number of resting places were used habitually (Rosoux and Libois 

1996).  

Otters generally use existing structures or patches of dense vegetation for resting. There 

is little consensus in the type of feature selected for these resting sites. In Perthshire, 

Scotland,  otters rested above ground in dense vegetation such as sallow beds (shrubby 

willow species), conifer plantations and dense willow beds and below ground in natural 

river bank cavities (Green et al. 1984). Otters in Austria preferred stick and log piles and 

tree root systems (Isabel and Freire 2011), whilst otters in Deeside, Scotland, used dense 

vegetation, small islands and artificial embankments with boulders and even a derelict 

car (Kruuk et al. 1998).  Most of what is known about the internal architecture of 

underground resting sites (i.e. holts), comes from a study of seven holts in peatland 
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habitat on Shetland which were excavated and described by Moorehouse (1998). He 

found that the tunnels often followed desiccation fractures in the peat, and the length 

of tunnel per holt ranged 11—57m. Underground water pools were present in four of 

the seven holts and latrines were found in all holts. Sleeping chambers were identified 

by the presence of bedding, but the shapes were irregular e.g. 1.65m x 0.28m. Holt 

entrances (n = 53) had a mean width of 27cm (range 11—65cm) and a mean height of 

17cm (range 10—27cm). These holts were excavated by otter in deep peat, but in 

riparian areas otters usually utilise existing structures (Erlinge 1967; Green et al. 1984), 

so the internal architecture and dimensions are likely to vary. 

 Availability of den sites is a crucial component of a carnivore’s home-range and can be 

a limiting factor (Halliwell and Macdonald 1996; Birks et al. 2005), especially in areas 

where there is human activity (Weinberger et al. 2019). Understanding denning habits 

of a species is critical when undertaking Ecological Impact Assessments for 

developments, also for conservation management. The predictable denning habits 

coupled with predictable breeding seasons of some mammal species has facilitated 

prescriptive guidelines in the UK for survey, resting site identification, impact 

assessment and mitigation e.g. Chiroptera (bats) (Collins 2016), great-crested newt 

Tritturus cristatus (Langton et al. 2001). Otters are far less predictable, use a wide variety 

of habitats and resting structures, are nocturnal and peripatetic, and lack a recognised 

breeding season over much of their UK range. Their management in the context of 

development works and impact assessment, and their conservation therefore present a 

particular challenge.  

 

1.1.3  Scent marking in otter 

 

Scent marking by mammals is characterised by several traits: it is oriented to specific 

objects, elicited by familiar landmarks and novel objects or odours and the same object 

is repeatedly scent marked. Additionally, it may be accompanied by distinct recognisable 

body movements (Kleiman 1966).  Otter, in common with other Mustelidae, scent mark 

using anal sacs. Scent marking material from glands is stored in the sacs which are 

ducted into the alimentary canal and exuded onto passing faeces (Gorman et al. 1978). 

In otter, these deposits are commonly termed “spraints”. Chemical analysis of spraints 
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has demonstrated that each otter has a different chemical profile allowing individuals 

to be recognised by each other (Gorman et al. 1978; Bradshaw et al. 2011); this is also 

true for other Mustelids such as the American mink Mustela vision (Brinck et al. 1978). 

The age class of the otter that deposit a spraint (juvenile, sub-adult, adult) can be 

discriminated by humans with a reasonable level of success using colour differences and 

smell, probably due to different relative abundances of key compounds (Kean et al. 

2011). Kean, Müller, & Chadwick (2011) also found a difference in the volatile organic 

compounds between the sex of adult otters, and distinguished differences between 

pregnant or lactating females and males or juveniles. Spraints can therefore confer sex, 

age class, breeding status of females and individual recognition of the depositing otter. 

In addition to anal sacs, Mustelids also scent mark using ventral glands which are on the 

underside of the body; the Eurasian otter is described as having ventral glands and 

interdigital glands (Hutchings and White 2000; Kruuk 2006a).  

The function of spraints has been the subject of several studies, primarily seeking to 

relate spraint distribution and/or numbers to the environment or otter ecology. 

Mammals commonly use scent marking to communicate ownership of a territory to 

conspecifics (Macdonald 1980). Although there is some support for territorial marking 

in otter, from observations of increased marking at boundaries (Erlinge 1968; Green et 

al. 1984), not all studies concur. An observational study of sprainting activity on 

Shetland, Scotland, did not find evidence of scent marking at territorial boundaries but 

postulated that sprainting was associated with foraging energetics. Sprainting at feeding 

patches, specifically at intertidal pools, acted as a deterrent to further attempted 

exploitation of that feature when it was potentially depleted, thus benefitting the 

signaller and the receiver (Kruuk 1992). This association of sprainting with pools and 

greater prey abundance was corroborated in fresh-water habitats (Remonti et al. 2011; 

Almeida et al. 2012). However, Remonti et al. (2011) postulate that this could be a form 

of territorial marking or intra-specific resource defence: the linear shape of territories 

makes efficient boundary marking too costly, so key resources are marked within the 

territory as a deterrent to intruders.  

Biological imperatives, such as breeding, may affect sprainting behaviour as spraint 

conveys the reproductive status of the female. The frequency of sprainting in both 

captive males and females was found to relate to the females oestrous cycle with 
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sprainting frequency in both sexes being synchronised (Gorman et al. 1978). 

Observations in the wild also found no difference in sprainting frequency between sexes 

(Kruuk 1992). The number of spraints from groups of captive animals has been related 

to the birth and development of cubs, with a minimum number of spraints being 

deposited at parturition and the following month, with numbers peaking when cubs are 

five to six months old (Prigioni et al. 1995).  

Therefore, sprainting patterns have been related to resource marking, reproduction and 

territorial demarcation. The relationship between spraint numbers and use of resting 

sites has not directly been addressed in published literature, however some studies 

observed that the female does not spraint at natal holts (Kruuk 2006b), and defaecates 

directly into water as a strategy to avoid detection by predators and an absence of 

spraints at a natal holt was confirmed by radio-tracking (Durbin 1996a) 

 

1.1.4 Protection of otter during development projects 

 

1.1.4.1 Legislative framework 

 

The otter is listed on Annex 2 and 4 of the Council Directive 92/43/EEC on the 

conservation of natural habitats and of wild fauna and flora, known as the “Habitats 

Directive”, which was adopted by member States of the European Union in 1992. This 

directed member states to take measures to protect the species listed in the Annexes. 

In response to this, a European network of Special Areas of Conservation (SAC) was set 

up which were areas designated by domestic legislation by each country. The Habitat 

Directive was transposed into law in Scotland by the Conservation (Natural Habitats &c.) 

Regulations 1994, with similar regulations in other areas of the UK, which have been 

subject to various amendments.  Maintenance of the Favourable Conservation Status 

(FCS) of otter is the primary aim. FCS is defined by the statutory authorities in the UK in 

terms of long-term maintenance of population dynamics, range and continuity of 

population  (Joint Nature Conservation Committee 2007). The otter is also given “strict 

protection” by the various regulations to fulfil obligations for Annex 4 species of the 

Habitats Directive. The Habitats Directive continues to be the main legislative protection 

for the otter in EU countries. The UK left the EU on 31st January 2020; the environmental 
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regulations underpinned by EU Directives have been adopted into domestic law; 

England and Wales passed  The Conservation of Habitats and Species (Amendment) (EU 

Exit) Regulations 2019 and Scotland and Northern Ireland have equivalent legislation. As 

the former legislation has been adopted post Brexit, it is assumed that relevant guidance 

issued by the EU will also be applied. 

The strict protection includes several prohibitions, one of which is the prohibition of 

“deterioration or destruction of breeding sites or resting places”. The European Union 

produced a guidance document on interpretation and definition of terms of the Habitats 

Directive (EU 2007, p. 23) which is in context of species listed on Annex 4 which includes 

species as diverse as the fresh-water pearl mussel Margaritifera margaritifera, otter, 

leatherback turtle Dermochelys coriacea  and great-crested newt Triturus cristatus. The 

salient points pertaining to breeding and resting sites are thus summarised. Protection 

should aim “to safeguard the ecological functionality” of breeding and resting places (EU 

2007, p. 41). Breeding sites are defined as areas used for courtship, mating, the 

parturition site and parturition site when occupied by young, although it is 

acknowledged that only some of these criteria may be applicable to each species 

depending upon the species ecology. For example, breeding in great crested newt is 

confined to a pond, and this is where all of the stages of breeding occurs such as 

courtship, egg laying, egg fertilisation, hatching and maturation of the young during the 

first few months of its life. The pond is therefore considered the breeding site (Langton 

et al. 2001). In otter, it is not feasible to protect areas used for courtship and mating as 

these are not thought to be spatially limited and are rarely observed. The breeding site 

includes the place of parturition and the parturition site when it is occupied by young. It 

is reasonable that the environs of the natal holt are also protected to safeguard its 

ecological functionality, however the EU and also the UK do not offer guidelines on this. 

Resting places are defined as “areas essential to sustain an animal or group of animals 

when they are not active”. The main criteria in defining a breeding or resting site in this 

context is that there is a “reasonably high probability that the species concerned will 

return” to use the site/place (EU 2007, p. 41). Resting sites that are frequently used 

either within, or between years should be protected, and this includes periods when 

they are not in use. The guidance also advises that in the case of widely ranging species, 
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the definition of a breeding and resting site should be “restricted to a locality that can 

be clearly delimited: e.g. the roosts for bats or the holt of an otter” (EU 2007, p. 45). 

In England, Wales and Northern Ireland, the otter is also protected by the Wildlife and 

Countryside Act (1981), as amended which broadly reflects the protection to otters and 

their resting sites afforded by the Habitat Regulations. 

 

1.1.4.2 Derogation Licenses 

 

The legislation includes the option of granting derogation from the strict protection (i.e. 

an exemption that allows an action which would ordinarily be unlawful) provided that 

the action can be demonstrated to fulfil strict criteria on the need for the action, the 

lack of alternatives and that the action will not adversely affect the favourable 

conservation status of the species. Article 16 of the Habitats Directive directs member 

states to report the number of derogation licenses issued per year.  The number of 

licenses issued for each UK region each year from 2011-2016, with the licensable 

purpose being “in the interests of public health and safety, or for other imperative 

reasons of overriding public interest, including those of a social or economic nature and 

beneficial consequences of primary importance for the environment” (i.e. for 

development purposes), are summarised in Figure 1-1). Note that the figures refer to 

the number of licenses issued; the number of resting sites affected cannot be extracted 

from online data for all regions for all years, for example, in 2016 in Scotland, 57 licenses 

were issued to cover 89 resting sites.  
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Figure 1-1 Number of derogation licenses issued for development purposes per year between 2011-16 for 
each of the UKs regions (European Commission nd) 

 

 

1.1.4.3 The role of the consultant ecologist  

 

Ecological consultants are qualified individuals who are paid to provide expert services 

and advice on the impacts of development projects on biodiversity. Development 

projects can be small and localised such as the renovation of a property, or spatially 

large with impacts that extend beyond the construction period of the project, such as 

large housing developments, quarries and national infrastructure projects. The 

legislative framework must be applied to any intended developments that may impact 

upon otter. Ecological consultants usually undertake field surveys of otter to provide the 

data for the above processes, these surveys underpin ecological impact assessments, 

derogation license applications and mitigation. Regardless of the magnitude of the 

project, the strict protection afforded to otter has to be applied and the ecological 

consultant must provide advice on how to meet legislative requirements, both for the 

broad conservation of the species and to protect the developer from acting illegally. 

Therefore, the ecological consultant undertakes fieldwork to determine presence of 

otter and, more crucially, to identify resting and breeding sites as presence in suitable 

habitat in the UK is usually assumed. The survey results are used by the consultant to 
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advise on any requirement for a derogation license, but there is no clear and specific 

guidance on identification of resting or breeding sites, just an assumption that they will 

be found and identified correctly (Scottish Natural Heritage; e.g. Northern Ireland 

Environment Agency 2017). Furthermore, the International Union for the Conservation 

of Nature (IUCN) Otter Specialist Group, in their Research Guidelines, state that “there 

is an urgent need for accurate science-based knowledge to underpin ecological impact 

assessments” (Kruuk 2011).  

 

1.1.5 Methods to identify resting and breeding sites 

 

In the EU and the UK, there is a legislative imperative to confidently identify resting and 

breeding sites of otter for developments so these sites can be protected. The current 

approach in the UK consultancy industry (Section 1.1.4.3), is largely reliant on 

interpretation of field-signs; for example, the presence of spraint at an apparently 

suitable structure is taken as evidence that it is a resting site. However, the relationship 

between presence, quantity of spraint at a structure and resting behaviour has never 

been tested; this relationship is very much assumed by practitioners. Several methods 

of studying otter have been used in academic studies of otter; direct observation, radio-

telemetry, non-invasive genetic sampling and camera-trapping. The feasibility of these 

for commercial applications are discussed.  

 

1.1.5.1 Direct observation 

 

Direct observation of otter has been used in a small number of fresh-water studies 

(Jenkins 1980; Ruiz-Olmo et al. 2005; Kruuk 2014), but this method is constrained by 

otter’s primarily nocturnal activity; it is also time consuming. Both these logistical 

constraints are relevant to consultancy, there are health and safety considerations for 

consultants working at night by water, night vision equipment is expensive, and 

consultancy work is time-charged which would make fees overly expensive. Direct 

observation studies of some populations of coastal otters are more feasible where 

otters are active diurnally and nocturnally (Moorehouse 1988) and have smaller home-
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ranges (Kruuk and Moorhouse 1991a), such as on the Scottish isle of Mull and the 

Shetland Isles. It is possible that direct observation could be applied in situations where 

impacts are predicted to be high and where it is logistically possible, therefore justifying 

high consultancy fees. An example would be large developments in the Shetland Isles, 

the most northerly population in the UK, thus indicating potential impact on the range 

of otter. The fees for direct observation monitoring are otherwise likely to be considered 

as disproportionately high, especially for large infrastructure projects where there may 

be many structures requiring monitoring. Additionally, there may be potential for the 

observer’s presence to affect patterns of otter resting. Disturbance by observers has 

been noted during radio-tracking surveys (Green et al. 1984; Isabel and Freire 2011). 

 

1.1.5.2 Radio telemetry 

 

Radio telemetry is a method to follow the movements of individual otters by tracking 

the position of a radio transmitter which is attached to the animal  (Néill et al. 2009). 

Radio-telemetry enables resting sites to be located (Green et al. 1984; Isabel and Freire 

2011). The initial trapping of otter is controversial, box traps are inefficient whilst 

Hancock traps and leghold traps are more efficient but potentially stress the animals 

more and cause injury (Neill et al. 2007). Harnesses, or neck collars that carry 

transmitters can also be lost or removed by otters as they have a small head in relation 

to their neck and harnesses are also prone to snagging on underwater debris (Green et 

al. 1984; Ó Néill et al. 2008). More recent radio tracking studies use intraperitoneal 

implants, which involves trapping, anaesthesia, surgery and release of the animals 

(Ferdia et al. 2011; Quaglietta et al. 2014).  After the otter is released after surgery, it 

will invariably enter water; the residual effects of the anaesthesia, lack of a sub-

cutaneous fat layer and potential for chilling and potential for infection must all be 

considered.  

Radio tracking offers the best method for finding and confirming resting and breeding 

sites. It is occasionally used in consultancy to assess individual movements of and 

impacts on other species such as Chiroptera (bat species). However, it’s use is limited to 

large projects with potentially significant impacts on rarer species of bat, for example a 

new bypass road development for Galway, Ireland (Galway County Council 2018). 
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In 2007-2010, radio tracking was used to study the simultaneous movements of 16 

otters in Southern Portugal (Quaglietta et al. 2014). Such an inclusive study would offer 

robust findings to assess impacts of a large development, in context with movement 

patterns, numbers affected as well as resting and breeding sites. However, the cost 

would be prohibitive, health and safety risk may preclude such work by some companies 

and there may be difficulties in obtaining a license to undertake trapping, anaesthesia 

and surgery on animals for development purposes. Radiotracking is therefore likely to 

remain largely inaccessible as a method to survey otter for consultancy purposes. 

 

1.1.5.3 Non-invasive genetic sampling 

 

Environmental DNA (eDNA) is an emerging discipline to identify species from genetic 

material shed into the aquatic environment (Goldberg et al. 2015) and  is routinely used 

in consultancy to detect presence of great crested newt Triturus cristatus in ponds (Rees 

and Gough 2018). The application of eDNA for otter in the UK is limited, as it can 

currently only detect the presence of a species. Additionally, in lotic systems, eDNA is 

subject to a number of processes which can transport it downstream (Shogren et al. 

2017) with distances of up to 10 km recorded in one study with modelled detection to 

far greater distances depending upon species and season (50 km) (Deiner and Altermatt 

2014). As spraints can readily be found in situ and identified by experienced surveyors 

by their appearance and smell, more costly methods that can only determine presence 

are redundant.  

Non-invasive genetic sampling (NGS) can also be used to analyse genetic information 

from spraints which contain epithelial cells, and thus DNA, which are shed from the gut 

lining (Prigioni et al. 2006). As a non-invasive study method, there would be no issues 

relating to animal welfare. This method is now routinely used by ecological consultants 

to identify species of bat using droppings found at roost sites, and a small number of 

laboratories offer species-identification which is affordable even for small projects. To 

be of use for otter, this method needs to offer more than species identification. 

Population density, sex ratio in a population, relatedness of individuals, ranging 

behaviour and genetic diversity are possible (Park et al. 2011).  The cost of collection 

and laboratory analysis may be justified in assessments with potentially large impacts 
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such as national infrastructure projects, especially where SACs designated for otter may 

be impacted. However, this method can also be prone to bias. Over-estimations are 

possible from contaminated samples, genotyping errors and inclusion of samples from 

transient or dead otters. Likewise, under-estimations can arise by failing to collect 

samples from all individuals; the probability of detecting and collecting spraint from 

each otter in the study area is unlikely to be equal (Arrendal et al. 2007), also poor 

quality samples can lead to errors in analysis (Park et al. 2011).  Application of this 

method to identification of resting and breeding sites is significantly curtailed by the lack 

of knowledge relating to sprainting behaviour at resting sites, and by a lack of knowledge 

and uptake both in the consultancy sector and statutory authorities. 

 

1.1.5.4 Camera-trapping 

 

A camera-trap (CT), or trail camera, is an automatically triggered camera that takes 

photographs or videos of passing animals (Rovero et al. 2013). A CT is usually a single 

unit integrating a camera, a passive infrared motion detector (PIR) and an array of LED 

bulbs to illuminate the area being photographed (Apps and McNutt 2018b). The PIR 

receives infrared energy (IR) emitted by the background surfaces of the area in front of 

the CT which is focussed through a specialised lens onto a pyroelectric sensor. Any rapid 

change in the IR falling on the sensor causes a signal to the camera to take an image or 

video (Welbourne et al. 2016). Mammals moving in front of the PIR can cause such a 

change and thus have the potential to be captured by the camera in any footage/images. 

The development of CTs opened new avenues of study and the twenty-first century has 

marked a rapid proliferation in their use  in ecological research (Rowcliffe and Carbone 

2008). CTs are commonly used for species inventories (Tobler et al. 2008; Mugerwa et 

al. 2013) and have generated records of mammal species in geographic areas where 

they were formerly considered absent (Ambarli et al. 2010; Khanal et al. 2017). They are 

used for abundance estimates of species with pelage marks that identify individual 

animals, utilising capture-recapture analysis (Rovero et al. 2013) and methods are being 

developed to estimate species densities of mammals without unique markings 

(Rowcliffe et al. 2008; Hofmeester et al. 2017). CTs compare well with radio and satellite 

tracking for studying range, habitat associations and landscape scale analysis but also 
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allow studies of  specific behaviours and multiple taxa and allow independent data 

verification (Caravaggi et al. 2017). CTs avoid having to trap and handle target animals 

and any subsequent effects on the target animal from backpack or collar deployment 

(Caravaggi et al. 2017). 

The ability to make observations of mammals at close quarters suggests good potential 

for monitoring behaviour and activity patterns at den sites. CTs performed better than 

human observers in a study of peak counts of kit fox Vulpes macrotis at their dens 

(Kluever et al. 2013). This study found that the main advantages of CTs over human 

observers at den sites included constant surveillance by CTs compared to a sampling 

protocol using human observers, the ability to make nocturnal observations with CTs, 

the ability for a single person to simultaneously monitor many dens, and recording the 

foxes with a CT at 2m from the main den entrance compared with an average of 224m 

by human observers using binoculars to avoid disturbance. The low power consumption 

of the CT when it is not taking pictures, enables continuous monitoring for weeks at a 

time. This facilitates studies of rare behaviours such as predation at den sites (Brzeziński 

et al. 2014; Arbon 2019). Whilst radio-telemetry methods track individuals, CTs monitor 

all activity within a small area facilitating observations of species interactions such as 

den sharing (Mori et al. 2015).  

The advantages of CT are significant, but there are also potential sources of bias 

including potential disturbance, imperfect detectability, effects of sampling design and 

trapping effort, and these may affect the use of camera-traps as a research tool 

(Sollmann and Kelly 2013; Gužvica et al. 2014).  CTs are often described as non-intrusive 

or non-invasive (Lim and Ng 2008; Adamič and Smole 2011; Swinnen et al. 2014; 

Rowcliffe et al. 2016), but it is not universally accepted that CTs are unnoticed by all 

mammal species and do not affect them  as CTs potentially harbour human scent and 

emit mechanical noise that can potentially be detected by some species of mammal 

(Meek et al. 2014b). The wavelength of the LEDs illuminating the field of view also has 

potential to be seen and disturb behaviour (Gibeau and McTavish 2009). 

Camera-trap studies, like other wildlife monitoring methods are not immune to 

sampling error such as imperfect detection.  A review of CT studies found that more than 

half CT studies ignored imperfect detection (Burton et al. 2015). Many variables are 

known to affect detection success, with variables acting at different spatial scales. Six 
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orders of scale have been identified; the geographic range of a study species, the 

landscape, the habitat patch, microsite and the area being monitored by the CT and the 

image or video that is captured (Hofmeester et al. 2019). The importance of bias at these 

scales varies according to the type of study however, all study types including species 

distribution, activity patterns, behaviour and abundance/density are affected by 

detection in front of the CT and in the image (Hofmeester et al. 2019). 

The methods summarised here, each have their strengths depending upon study aims. 

Considering the outlined methods for monitoring potential otter resting and breeding 

sites (i.e. direct observation, radio-telemetry and non-invasive genetic sampling), 

camera-trapping is the most plausible in terms of time, cost and is within the skill range 

and available resources of consultant ecologists. However, as with all monitoring 

equipment, the generated data and conclusions from commercial CT studies will only be 

fit for purpose if the CTs are properly deployed and with a working understanding of 

potential bias. 

 

1.2 Research questions 

 

The overarching objective of this research is to increase the evidence base for methods 

used to identify otter breeding and resting sites, thus improving the potential for 

ecological consultants and other conservation practitioners to identify and protect these 

sites. I have used two intrinsically-linked approaches: the first is to increase 

understanding of optimal deployment and efficacy of camera-traps (Chapters 2 and 3), 

and the second is to provide an evidence base for identifying the function of a structure 

(resting or non-resting) from camera-trap activity (Chapter 4) and assess the potential 

for reaching the same identification using field evidence (Chapter 5).  

 

I have therefore addressed the following research questions: 

 

What factors affect the occurrence of false-negatives when an animal passes in front of 

the camera-trap?  

A false-negative occurs when the camera-trap fails to capture an image of a passing 

animal. I quantify how data quality is affected by key environmental and animal-based 



28 
  

variables by comparing the capture success of animal passes in front of CTs with 

continuously running CCTV. This informs a framework of practical considerations to 

minimise false-negatives for camera-trapping surveys of otter, and two similar sized 

mammals, red fox Vulpes Vulpes and Eurasian badger Meles meles. This is addressed in 

Chapter 2.  

 

How can monitoring of resting sites using camera-traps be optimised?  

Using a 6-year camera-trapping dataset of an otter holt which was used for resting and 

breeding, I develop a method to assess the duration that otters stay inside the structure, 

and from this I define a resting event. I look for any changes in activity patterns of otters 

at the holt that could be caused by researcher visits to maintain the camera-traps. I 

describe variation in resting activity at the holt in relation to seasons and breeding, and 

present findings to estimate survey effort that would be required to have at least a 95% 

probability of detecting a rest. Data is analysed to find if CT deployment and settings 

could have been optimised: the quality of data from a two camera-trap set up was 

compared to a single camera-trap set up and the optimal video duration to balance data 

quality and analysis time was determined. This is addressed in Chapter 3. 

 

Using data from camera-trap monitoring, are there differences in otter activity between 

sites used for resting by and sites that are not?  

Using CT data collected at 26 study sites across the River Tweed catchment, I describe 

variation in otter activity at a range of potential resting structures. I use the method 

developed in Chapter 3 to define rest events and categorise sites as resting sites or non-

resting sites. I describe patterns of resting events relating to season and night/day. I 

analyse patterns of selected behaviours, specifically bedding collection, latrine 

behaviour and sedentary behaviours in relation to the function of the structure (resting 

site vs non-resting site). Simulations on camera-trap data from resting sites are used to 

determine the survey effort required to have a good chance of detecting a rest. This is 

addressed in Chapter 4. 

 

Is there a relationship between field-signs and resting use of a structure, and are there 

field-signs that can reliably be used to differentiate structures used for resting from 

structures that are not used as such? 
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Having defined which of the 26 River Tweed sites were resting sites,  I test whether field-

sign evidence, collected concurrently with the CT footage, could have reliably identified  

those sites, thus testing the efficacy of using field-signs to identify resting sites which is 

a common approach in consultancy applications. This is addressed in Chapter 5. 

 

Finally, in Chapter 6, I evaluate what this research has added to the understanding of 

resting and breeding site use and camera-trap methodology, how this can be applied to 

the ecological consultancy industry and identify areas for further research.
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Chapter 2  Component processes of detection probability in 1 

camera-trap studies: understanding the occurrence of false-2 

negatives 3 

 4 

The following chapter was published as: 5 

Findlay, M. A., Briers, R. A. & White, P. J. C. (2020) Component processes of detection 6 

probability in camera-trap studies: understanding the occurrence of false-negatives 7 

Mammal Research 65 167—180 Doi 10.1007/s13364-020-00478-y 8 

 9 

The publication is included in Appendix III. It has been modified slightly for the thesis. 10 

Author contributions are as follows:  11 

MAF conceived the idea and undertook the fieldwork. MAF conducted the analysis with 12 

advice from PJCW and RAB. MAF wrote the manuscript with advice from PJCW, and 13 

PJCW and RAB contributed guidance and revisions. After peer-review, MAF responded 14 

to the reviewer’s comments and prepared the revised manuscript. 15 

 16 

 17 

  18 
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2.1 Abstract 1 

 2 

Camera-trap studies in the wild record true-positive data, but data loss from false-3 

negatives (i.e. an animal is present but not recorded) is likely to vary and impact data 4 

quality. Detection probability is defined as the probability of recording an animal if 5 

present in the study area. I propose a framework of sequential processes within 6 

detection - a pass, trigger, image registration, and images being of sufficient quality. 7 

Using Closed Circuit TV (CCTV) combined with camera-trap arrays I quantified variation 8 

in, and drivers of, these processes for three medium sized mammal species. I also 9 

compared trigger success of wet and dry otter Lutra lutra, as an example of a semi-10 

aquatic species. Data loss from failed trigger, failed registration and poor capture 11 

quality varied between species, camera-trap model and settings, and were affected by 12 

different environmental and animal variables. Distance had a negative effect on trigger 13 

probability and a positive effect on registration probability. Faster animals had both 14 

reduced trigger and registration probabilities. Passes close to the camera-trap (1─2m) 15 

frequently did not generate triggers and there was over 20% trigger failure for all 16 

species across all distances.  Our results, linked to the framework describing processes, 17 

can inform study design to minimise, or account for data loss during analysis and 18 

interpretation.  19 

  20 
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2.2 Introduction 1 

 2 

Camera-traps (CTs) are used for a range of ecological studies from determining presence 3 

or occupancy (Mugerwa et al. 2013; Tobler et al. 2015) to activity (Lim and Ng 2008). 4 

Studies using CTs have proliferated, however, it is not considered “fully mature as a 5 

methodological discipline” (Rowcliffe 2017). The technical aspects of how CTs using 6 

passive infrared (PIR) motion detectors function, and clarification of associated 7 

terminology have been described (Welbourne et al. 2016). In short, a specialised 8 

‘Fresnel’ lens focuses background infrared radiation (IR), filtered to 8–14 μm onto a 9 

pyroelectric sensor. This sensor detects rapid changes in background IR which triggers 10 

the camera to record. As with more traditional census techniques, it is recognised that 11 

PIR CTs are prone to false-negatives  (i.e. fail to detect a species which is present) 12 

(Gužvica et al. 2014). Detection probability is a fundamental issue in CT studies of 13 

occupation and population density, particularly in studies using Random Encounter 14 

Modelling (REM) of animals that lack easily distinguishable individual markings 15 

(Rowcliffe et al. 2008). 16 

Field data from CTs can only include true-positives: when an animal pass elicits a trigger 17 

which results in registration of the animal as recorded footage. In order to achieve a 18 

true-positive, a number of sequential processes have to occur, all of which must have a 19 

successful outcome (Figure 2-1), and these sequential processes underlie a series of 20 

measurable conditional probabilities. False positives, such as misidentification of 21 

species, sex or individual, are errors by the observer of the footage, and not the CT itself. 22 

Some species may be more prone to being incorrectly identified, such as Scottish wildcat 23 

Felis silvestris silvestris, where the phenotype of the “pure” species and the hybrid are 24 

very similar. True negatives are the result of an absence of footage in an area where a 25 

species is absent. False-negatives can arise from failure of any processes in Figure 2-1. 26 

True and false-negatives cannot be distinguished from each other which is why it is 27 

important to try to understand and account for the latter.   28 

 29 

  30 
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  1 

 2 

 3 

Figure 2-1 The sequential processes required to detect an animal on a camera-trap given that it is present. 4 
Failure of any of these processes leads to a false-negative therefore detection success requires a positive 5 
outcome from all the component processes. Specific terminology we use in this study to quantify these 6 
processes is also shown. ‘Detection probability’ can thus be considered the product of a series of 7 
conditional probabilities representing each of these processes. 8 

 9 

Process 1: Encounter probability P(pass|presence). This is the probability an animal will 10 

pass through the putative “detection zone” of a CT given that it is present in the study 11 

area.  This has been demonstrated to be affected by aspects of survey design such as 12 

the density and placement of CTs in relation to the species rarity and home-range size 13 

(O’Connor et al. 2017), sampling effort, specifically number of CT days and number of 14 

CTs deployed (Tobler et al. 2008), use of attractants such as bait (Hamel et al. 2013) and 15 

animal reaction to CT presence (Larrucea et al. 2007). Inappropriate sampling design 16 

could affect the probability of a pass, for instance setting the CT at ground level for 17 

arboreal species. 18 

Process 2: Trigger probability P(trigger|pass). This is the probability that the CT’s PIR 19 

sensor senses a change in infrared from the pass of an animal which causes the CT to 20 

trigger. It has been suggested that mammals with aquatic lifestyles result in low trigger 21 

probability as their thermal footprint can be compromised by their dense fur and 22 

efficient thermoregulation after exiting water (Lerone et al. 2015). 23 

Process 3: Registration probability P(registration|trigger). A CT trigger is not sufficient 24 

alone to record an animal – the animal must also be visible on the CT image or video. 25 
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Trigger latency or trigger speed is the interval of time between PIR trigger and initiation 1 

of the camera (Rovero et al. 2013) which can vary widely between CT models (Randler 2 

and Kalb 2018). A slow trigger speed coupled with fast moving animals means that not 3 

all triggers lead to registration as the animal has passed through the field-of-view before 4 

the camera has been activated (Rovero et al. 2013). The field-of-view of the camera is 5 

not necessarily the same width as the detection zone monitored by the PIR motion 6 

detector (Rovero et al. 2013; Trolliet et al. 2014; Rovero and Zimmermann 2016), thus 7 

affecting registration probability. Thus, if the detection zone is wider than camera field-8 

of-view, a trigger can occur while the animal is not visible to the camera. Registration 9 

probability is then affected by the duration of the video or the number of photos taken 10 

per trigger as well as the gap between triggers which could be either due to the 11 

technology (i.e. the re-arming time), or due to the user setting. Previous studies, without 12 

use of a control (to identify scenarios where an animal triggers the camera but is not 13 

recorded) have only been able to measure the combined detection of processes 2 and 14 

3 (Rowcliffe et al. 2011; Hofmeester et al. 2017). So while body mass, season and relative 15 

position of an animal with respect to the camera are likely to influence across processes 16 

2 and 3 (Rowcliffe et al. 2011), these may operate on trigger probability, registration 17 

probability, or both. 18 

Process 4: Capture quality probability P(capture quality|registration).  Not all 19 

footage/images of a study species are of equal value, as images of a given quality may 20 

be required depending on a study’s objectives. ‘Quality’ here refers to the contents of 21 

the footage/images rather than image resolution per se.  For example, if aiming to 22 

identify individuals, reliable unique markers need to be visible, so a given angle of view 23 

or fully body image may be required (Foster and Harmsen 2012). Similarly, in species 24 

where it is possible to determine sex, and the study aims require this, footage containing 25 

sufficient views of an animal in terms of primary and/or secondary sexual characteristics 26 

may be required (Findlay et al. 2017), and whilst video may be better than stills for 27 

observations that determine sex such as the source and direction of urine streams, 28 

sexing animals may not be possible for every registration. 29 

Hofmeester et al.(2019) developed a conceptual framework for detectability in CT 30 

studies which considers animal characteristics, CT specifications, CT set-up protocols 31 

and environmental variables in context with a hierarchy of different spatial scales and 32 
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six orders of habitat selection. Our framework broadly converges with this. In practice, 1 

most CT studies can’t quantify trigger probability in isolation from registration 2 

probability and often trigger probability is misrepresented as a combination of trigger 3 

and registration together. Using Closed Circuit TV (CCTV), I look specifically at Processes 4 

2–3 (Figure 2-1), which equate to the 5th and 6th scale described by Hofmeester et al. 5 

(2019) (i.e. what happens when an animal passes in front of a CT), and I also present 6 

capture quality probability as a separate process.  7 

I hypothesise that different environmental and animal-based factors will bias/influence 8 

each process as they result from different functional components of the CT (the PIR 9 

sensor and the camera). For example, trigger probability will relate to changes in IR 10 

received by the PIR sensor and the PIR sensitivity setting. This received IR will in turn will 11 

be governed by the spatial relationship between the animal and the PIR sensor as the 12 

animal enters the putative zone of detection, as well as the thermal properties of the 13 

animal’s surface in relation to the background, CT height and vegetation density (see 14 

Hofmeester et al. 2019). Registration probability only applies when the PIR sensor has 15 

triggered and will be governed by the spatio-temporal relationship between the animal 16 

and the camera’s field-of-view in the time between the trigger and camera initiation (i.e. 17 

the trigger speed), and may also be affected by variables such as the speed of the passing 18 

animal, and variables with potential to completely obscure the image such as dense 19 

vegetation and fog. Capture quality probability may be affected by the proportion, and 20 

which portion, of the animal that is within the image, in addition to factors that may 21 

affect the quality of the image e.g. the speed of the passing animal (blurring), vegetation 22 

density (obscuring view), weather (mist and rain) and time of day (glare from sun).  23 

I used CCTV as a control to record all passes of our target species through the putative 24 

detection zones of arrays of CTs in order to observe at which process CTs produced false 25 

negatives. CCTV explicitly allowed me to observe all passes, even when these did not 26 

elicit a trigger, or did elicit a trigger but not a registration. Without such a control, 27 

recordings where an animal is not seen may be a false-negative caused by an animal 28 

triggering the CT but not being recorded in the footage or may be a ‘false-trigger’.  The 29 

term ’false-trigger’ describes when a CT is triggered by extraneous stimuli such as 30 

moving vegetation and result in recordings that are empty of animals. A greater number 31 

of false-triggers can be due to a high PIR sensitivity setting (Apps and McNutt 2018b). 32 
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They can be a drain on resources in CT studies as they deplete batteries and fill memory 1 

cards. They can also increase the amount of time needed to process images or videos to 2 

a level considered unacceptable (Swinnen et al. 2014). False-triggers can be reduced by 3 

careful CT deployment by ensuring that the CT itself does not move in windy conditions 4 

and by avoidance of dense vegetation within the detection areas which can be achieved 5 

by cutting an area of vegetation back (Apps and McNutt 2018b).  Using a control such as 6 

CCTV enables video or images where an animal is not visible to be classified as a false-7 

negative or a false- triggers in addition to false-negatives caused by trigger failure. 8 

Two CT models were chosen to contrast field-of-view and detection zone differences, 9 

one with a more standard detection zone and field-of-view (Bushnell) and one with wide 10 

detection and field-of-view (Acorn). I was able to separately investigate variation in 11 

trigger probability, registration probability and elements of capture quality probability 12 

for one semi-aquatic (Eurasian otter Lutra lutra), and two terrestrial (red fox Vulpes 13 

vulpes and Eurasian badger Meles meles) mammal species of a similar size (hereafter 14 

‘otter’, ‘fox’ and ‘badger’). I hypothesised that the variables driving success in processes 15 

2, 3 and 4 would be different, for example trigger probability would be influenced 16 

primarily by distance, whilst registration probability would be most influenced by 17 

movement patterns, such as speed. Furthermore, I hypothesised that trigger probability 18 

of wet otters would be lower than that of dry otters (Lerone et al. 2015). The findings 19 

are used to suggest key considerations of study design and potential sources of bias in 20 

CT studies.   21 

2.3 Materials and Methods  22 

 23 

2.3.1  Data collection 24 

 25 

There were two study sites. The first was a wild area in SE Scotland (55.9°N, 3.2°W). I 26 

targeted a mammal run in woodland known to be used by both badger and fox. The 27 

second was a captive otter enclosure (50.6°N, 4.2°W) in SW England. The enclosure was 28 

approximately 700m2, with a pond accounting for approximately a third of the area. The 29 

enclosure included two wooden hutches for denning, termed ‘holts’. A male and a 30 

female otter lived in the enclosure; they were not intended for release and were 31 

habituated to humans. In both study areas we set up two CCTV cameras (Swann SRPRO-32 
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842) at approximately 2m above ground to continuously record to a CCTV recorder 1 

(M2/UTC-FDVR-4). The CCTV used IR illumination at night and was able to observe 24h 2 

per day. Both sites had flat topography and work was undertaken in winter when 3 

vegetation would be at minimum density and height (otter: 14 Nov–5 Dec 2017, fox & 4 

badger: 21 Feb–14 April 2017). At both sites, four CT stations were set up, subsequently 5 

referred to as CT ‘positions’, within the CCTV field-of-view with the PIR at 27cm above 6 

the ground approximating average shoulder height of the three species studied (Figure 7 

2.2), also see section 2.3.2. CTs were aimed parallel to the ground and placed in security 8 

boxes so that they could be replaced at the same height and angle.  9 

For both trials I used Bushnell Aggressor (model 119776) CTs programmed to record 5s 10 

video with an interval of 5s between recordings. Video potentially captures more data 11 

than still images and use of video is likely to increase due to technological advances 12 

(Swinnen et al. 2014). Whilst the resolution of still images can be better than video in 13 

good light (i.e. daytime conditions or using white flash), the better resolution of stills is 14 

lost during night-time conditions if using IR illumination (pers. obs.). As fox, badger and 15 

otter are primarily nocturnal the resolution of still image versus video was therefore not 16 

a consideration in the choice of capture mode.  In the otter enclosure, at each recording 17 

station, I also set a Bushnell CT to record a burst of 3 still images with a 5s interval 18 

between bursts and a Little Acorn (model 5310 WA [Wide Angled]) CT to record 5s video 19 

with a 5s interval. Single CTs were therefore deployed at each position in the set-up for 20 

fox and badger, and three CTs were deployed at each position in the set up for otter, 21 

see Figure 2-2. The sensitivity setting of the PIR on the Bushnell CTs could potentially 22 

have been set to high, normal, low or ‘auto’, and the Acorn to high, medium or low. The 23 

choice of sensitivity settings allows practitioners to balance detection success and 24 

excessive false- triggers according to their aims, environment, and focal species. Data 25 

on each of these settings would have been informative, however the risk of having too 26 

few mammal passes within the limited data collection period to include each sensitivity 27 

setting in addition to the other variables was too great. I therefore set Bushnell CTs to 28 

‘auto’ sensitivity as recommended by the manufacturer and the Acorn was set to 29 

medium sensitivity. The Acorn was used as a contrast to the Bushnell as its PIR sensor 30 

has an advertised 100° detection angle and 100° camera field-of-view, compared to an 31 

advertised 55° detection angle and 40° field-of-view for the Bushnell. At both sites, I 32 
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fixed a data logger (Onset Hobo) 1.5m above the ground to record hourly air 1 

temperature, and in the otter enclosure pond I secured a data logger at 30cm depth to 2 

record hourly water temperature. 3 

At both sites, I determined distances between each CT and features visible on the CCTV 4 

such as habitually used trails and trees in each CTs’ field-of-view. CCTV footage was 5 

reviewed to identify passes of a single animal and create a chronological list of passes. I 6 

defined a ‘pass’ as a single animal moving across the central line of the CT’s field-of-7 

view, (see Hofmeester et al. 2017). As CTs targeted mammal runs, virtually all animals 8 

passed the central line. I included passes where the target species was considered the 9 

only potential stimulus for the CT PIR sensor (i.e. I excluded passes where extraneous 10 

stimuli were present), such as birds and rodents. Waving vegetation and direct sunlight 11 

would also have been seen as an extraneous stimuli, but these were not an issue during 12 

our study period because vegetation was sparse at the time of year of the study, and it 13 

was overcast and not windy. I also excluded passes where the animal was less than 1m 14 

from the CT, as the animals could potentially pass beneath the PIR sensor and/or field-15 

of-view (Rowcliffe et al. 2011), also see section 2.3.2.  16 

I cross-referenced passes on the CCTV footage against the CT footage using their 17 

respective time-stamps. It was noted that the Bushnell CTs set to still images lost time 18 

over the duration of the study, presumed to be due to the clock pausing on every trigger 19 

or photograph so the pattern of movement of each pass (i.e. distance from CT and 20 

direction of pass) on the CCTV was compared to the CT to ensure that both recordings 21 

were of the same pass. This enabled me to separately quantify Processes 2 and 3 (Figure 22 

2-1) (i.e. distinguishing an animal passing but not triggering the CT from an animal 23 

triggering the CT but not registering in its footage). This process eliminated any false- 24 

triggers (i.e. where the CTs triggered but no otter had passed).  25 

 26 

  27 



39 
  

 1 

 2 

Figure 2-2 Schematic maps showing the positions of the camera-trap (CT) arrays and closed-circuit 3 
television (CCTV) at the study sites for (a) badger and fox, and (b) otter. Scales and relative positions are 4 
approximate and CTs and CCTVs are oversized. Arrows indicate direction CT stations faced 5 

 6 

 7 
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2.3.2 Testing of camera-traps 1 

 2 

Before using both models of CT (i.e. the Bushnell Trophy CT and the Little Acorn 5310 3 

WA), several tests were employed to determine whether the camera-traps were 4 

functioning as expected. On receipt of CTs the firmware was checked to ensure the latest 5 

version was installed on the CT. A mobile phone camera was used to view how many 6 

LEDs switched on when the camera-trap was triggered in a dark room. The mobile phone 7 

camera is sensitive to IR and the glowing LEDs could readily be checked. Both CT models 8 

included a setting called “test-mode”, which allowed me to see when the CT had been 9 

triggered as a trigger caused a red LED to come on, on the front of the CT casing. This 10 

function may not be present on all CT models, but was useful in several tests.  The CTs 11 

work on two parallel arrays of AA batteries. The connection between these two battery 12 

circuits was occasionally faulty leading to the camera-trap only being able to draw power 13 

from one of the battery circuits. This was tested by switching on the CT to “set-up” 14 

mode, then removing a single battery from the first array (i.e. closest to the 15 

programming screen). If the screen switched off due to lack of power, it meant that the 16 

second array was not properly connected. This test was then repeated to test the first 17 

array.  Arrays of camera traps were set up in my house and allowed to run for several 18 

days and nights. The number of triggers were compared between the camera-traps to 19 

identify any units that were underperforming. 20 

There is a blind spot between the base of the CT and the bottom of the field-of-view 21 

and/or PIR detection zone where animals can pass undetected (Apps and McNutt 22 

2018b). Tests were undertaken to quantify this distance at different camera-trap heights 23 

so that passes through the blind spot (as observed on the CCTV) could be excluded. The 24 

distance this blind spot extends from the camera-trap increases with increased height 25 

of the camera-trap (Apps and McNutt 2018b). Setting the CT at a low height would 26 

decrease this blind-spot, but this benefit would be offset by increased vegetation 27 

density in front of the CT at greater distances. The height of the CT was a pragmatic 28 

compromise between the vegetation height and the shoulder height of the three focus 29 

species. To quantify the distance of the blind spot, a CT was set up at 27cm from the 30 

ground in ‘test mode’. In test mode, a red light flashes on the front casing of the CT when 31 

the PIR is activated. A large piece of plastic was used to screen a person. The person 32 
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moved their hand parallel with the ground 10 cm away from the front of the CT and 1 

approximately 17cm from the ground (i.e. the estimated height of an otter which was 2 

the shortest of the three focus species). This was repeated five times. The red light was 3 

observed to see if the PIR had been activated on each ‘pass’. This was repeated at 4 

increasing intervals of 10cm from the CT until the PIR reliably triggered. This was at 60cm 5 

from the CT for the Bushnell and 40cm or the Acorn. To measure the vertical field-of-6 

view of the camera, the CT was set up at the same height of 27cm facing a wall at 60cm. 7 

A metal measuring tape was placed vertically in the centre of the field-of-view, flat 8 

against the wall. A hand was used to trigger the CT and take footage and the footage 9 

showed the vertical field-of-view. For the Bushnell, this was 17—39cm on video setting 10 

and 4—40cm on still, while the Acorn video was 0—56cm. The lowest edge of the field-11 

of-view was at approximately the shoulder height of an otter, so the same procedure 12 

was repeated at 1m distance from the wall. The vertical field-of-view for the Bushnell in 13 

video mode was 10–47cm and still 7–50cm and the Acorn on video was 0—76cm. Passes 14 

at 1m of the CT were therefore considered the closest at which an otter could reliably 15 

trigger the PIR and be registered as an image, in the context of both CT models at 27cm 16 

high. 17 

The horizontal dimensions of the detection zone of the camera-traps were not tested as 18 

they are not constant and vary under different conditions such as season and species 19 

(Hofmeester et al. 2017).  20 

 21 

2.3.3 Variables recorded 22 

 23 

I quantified trigger probability P(trigger|pass) with a binary variable of passes which 24 

either triggered the camera (1) or did not (0), regardless of whether its footage 25 

registered the animal. I also quantified registration probability P(registration|trigger) 26 

with a binary variable of passes which either triggered the camera and registered the 27 

animal (1), or triggered the camera but failed to register the animal (0).  28 

As discussed, capture quality probability P(capture quality|registration) depends on a 29 

study’s objectives. In many studies of mammals, identifying presence of the species is 30 

not necessarily sufficient, but rather a good view of the head and body is needed to 31 

identify the age category/sex/breeding status of the individual (for instance, lactating 32 
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females) (Sollmann and Kelly 2013; Findlay et al. 2017), or to observe individual natural 1 

markings (Karanth 1995; Silver et al. 2004). As all passes were of forward-moving 2 

animals, if the head could be seen in the first video frame or image then it was 3 

reasonable to expect that more of the animal would be captured in the following video 4 

footage or images providing that the CT was programmed to record subsequently via a 5 

burst of images or a video. The capture of head was therefore used as an indication of 6 

good capture quality. I quantified capture quality probability with a binary variable 7 

categorising good capture quality probability as capture of head only, head and body, or 8 

head body and tail (1), or poor capture quality probability when the head had already 9 

passed through the field-of-view (0).  10 

From the CCTV footage and data loggers, a suite of animal and environmental 11 

variables were recorded for each pass (Table 2-1).  The orientation of the animal pass to 12 

the CT was also recorded, using three categories. A lateral pass was when the animal 13 

passed exposing a complete side view, an anterior pass was when the animal 14 

approached the camera-trap presenting the head, shoulders and front legs and a 15 

posterior pass when the animal approached the CT from behind and walked away 16 

exposing its hind-quarters. Orientation was used to subset the data but was not used in 17 

models. I chose to record an animal’s gait (i.e. walk, trot, run) to represent speed as gait 18 

was quickly identifiable whilst estimating ms-1 over such short distances would be prone 19 

to inaccuracies from perspective using CCTV footage and inconsistencies due to 20 

instances of the animal pausing. A walking animal is defined in this study as a slow-21 

moving animal, with a smooth locomotion that lacks vertical movement (bounce). It 22 

always has two to three feet in contact with the ground. This contrasts with a running 23 

animal which has all four feet off the ground at intervals as part of the locomotion. The 24 

trot category was used to describe all intermediates between a run and a walk. 25 

Running animals were subsequently combined with trotting animals as running 26 

animals were too infrequent to analyse separately, our variable GAIT therefore had two 27 

categories (walk/trot or run). I recorded whether there was any delay in the animal 28 

passing through the field-of-view as a result of the animal pausing to sniff, or scent mark 29 

(i.e. loitering). This was recorded as a binary variable LOIT. For otter, I also recorded 30 

whether the animal was dry after being in the holt and prior to immersion in water (from 31 

holt) or whether the animal had been immersed in water since leaving the holt (not from 32 

holt). This enabled me to subset the data to include passes where the otter was fully 33 
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dry, or not fully dry. The time since the otter had been submersed in the water (i.e. TFW) 1 

was noted by watching the CCTV footage back from each pass to the time that the otter 2 

last emerged from the pond and subtracting this from the time of the pass as recorded 3 

on the CCTV clock.  For fox and badger, I only used Bushnell CTs on video setting. For 4 

otter, I had stations of three CTs (Busnell video, Bushnell still images, Acorn video) 5 

together, to maximise data acquisition from each pass. I analysed data for each of the 6 

three CT models/settings separately so I could compare Bushnell video between 7 

fox/badger and otter, and because aspects of the three CT models/setting differ 8 

substantially in key elements such as detection zone and field-of-view, for otter. 9 

 10 

 11 
Table 2-1 Data collected for each animal pass identified on CCTV. Response variables were recorded 12 
against the first frame of the CT video or the first still image from the burst of three. Explanatory variables 13 
described parameters of the pass as observed on CCTV 14 

                    Response variables from CT recordings Badger/Fox Otter 

TRIGGER: binary (1 = trigger / 0 = no trigger)   

REGISTRATION: when trigger = 1. Binary (1 = animal registered / 0 = no animal 

registered) 
  

CAPTURE QUALITY: when trigger = 1 and registration = 1. Binary (1 = good / 0 

= poor) 
  

Explanatory variables from CCTV footage 

DIST: perpendicular distance (m) between CT and animal, continuous   

GAIT: binary (walk/trot or run)   

LOIT: any pauses in animal’s progress when passes the CT such as sniffing or 

scent marking. Binary (LOIT/NO LOIT) 
  

TFW: Time From Water (s), continuous   

WET.DRY: binary, DRY (i.e. from holt), and WET (passes where TFW≤10s)   

Explanatory variables from data loggers 

AIR: air temperature (°C), continuous   

WATER: water temperature (°C), continuous   

ABSDIFF: the absolute difference between air and water temperatures (°C), 

continuous 
  

Random variable 

CAM.POS: The location of the CT within the study area, categorical   

 15 

 16 

To understand how the otters’ IR footprint develops after exiting from water, I used a 17 

thermal imager (FLIR PAL65) to take thermal-images of otter on dry ground from the 18 

point of exiting water to 300s post-immersion. Seventeen images were taken, the land 19 

temperature ranged between 6-10°C and water 9.5 C. Mean temperature of the otter 20 

trunk and an equivalent area of ground adjacent to the otter were measured using FLIR 21 
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Tools software (v5.13.17214.2001). The absolute difference in temperature was plotted 1 

against time from water (Figure 2-3) and an exponential model was fitted to the data.  2 

Approximately a 2.7 °C difference between an animals emitted IR and the background 3 

IR is needed for a PIR sensor to initiate a trigger (Meek et al. 2012), although this will 4 

depend on the CT model and PIR sensitivity setting. Under these conditions, the fitted 5 

model predicts 32s to have elapsed before the temperature difference reaches a 6 

conservative 3°C. 7 

 8 

 9 

Figure 2-3 Absolute difference in temperature (°C) between an otter’s trunk and surrounding land against 10 
time after being immersed in water illustrating how long since immersion it takes for the otter to emit 11 
enough heat (c. 3°C) for a passive infrared sensor to theoretically detect the otter. To describe the 12 
asymptotic relationship, I fitted an exponential model in the form y = a(1-e-bx)+c where y is the 13 
temperature difference, x is the time since exiting water, and a, b and c are parameters estimated by the 14 
model. The absolute difference between air and water temperatures is also plotted, using temperature 15 
from data loggers. 16 

 17 

2.3.4 Modelling trigger and registration probabilities 18 

 19 

The aims of the analyses were to find which variables, or combinations of variables best 20 

explain the data, and to understand any trends, particularly the direction and strength 21 

of trends. I chose generalised linear mixed models (GLMMs) so that I could control for 22 

any effects of the individual camera-trap stations by inclusion of the camera-trap station 23 

as a random variable which reduces the number of parameter estimates and allows 24 

fitting with a binomial distribution. Absence of collinearity between variables was 25 

checked using the package “performance” (Ludecke et al. 2020).   26 

I carried out modelling in R version 3.2.2 (RCore Team 2015) within R Studio 27 

(RStudioTeam 2015), fitting GLMMs using lme4 (Bates et al. 2015) and generating model 28 
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comparison tables using MuMIn (Barton 2016). I used the package manipulate (Allaire 1 

2014) to fit the exponential model in Figure 2-3. 2 

I used GLMMs with a binomial distribution to investigate variation in the response 3 

variables P(trigger|pass) and P(registration|trigger) for each species and CT model. The 4 

CTs positions potentially had different local conditions. Therefore, I set CT position as a 5 

categorical random effect, and built a list of candidate models (see Appendix 1) 6 

containing combinations of appropriate variables in Table 2-1, including a null model in 7 

each.   8 

Distance to CT and orientation of animal could not be investigated in the same model 9 

sets, as the trigger distance could not be measured for anterior passes (i.e. when the 10 

animal approaches the CT at 180°), while for most posterior passes when the animal 11 

walks away at 180° the animal would have to enter the detection zone close to the CT. 12 

Distance was prioritised as a variable, and lateral passes approximating 90° were 13 

selected for analysis unless otherwise stated. 14 

I investigated whether immersion in water negatively affected trigger probability for 15 

otter, as suggested by (Lerone et al. 2015). First, I modelled trigger probability for dry 16 

otters after they had emerged from their holts and prior to entering water. This allowed 17 

me to compare dry otter to fox and badger. Then, I repeated the model comparison 18 

including a generated binary variable WET.DRY, to distinguish passes where the otter 19 

was fully ‘wet’ (≤ 10 s since exiting water) and passes where the otter was fully ‘dry’ 20 

(passes where FROM.HOLT = 1). Finally, using all passes where FROM.HOLT=0, I 21 

repeated the model comparison including TFW to test whether it was a significant 22 

variable, but it was not well supported. The models were ranked based upon their 23 

Aikaike Information Criterion (AIC). This is a numerical figure for each model which is a 24 

measure of relative model fit whilst also accounting for model complexity. The model 25 

with the lowest AIC is the best supported model given the model set.  The delta AIC (ΔAIC) 26 

is then calculated for each model in the candidate set by subtracting the AIC of the best 27 

model from the AIC from each individual model’s AIC. I used a threshold of ΔAIC ≤ 2 to 28 

indicate models with “substantial support” (Burnham and Anderson 2004). For brevity I 29 

only include plots for the best supported model (ΔAIC = 0) in the main text, but other 30 

plots of all models with ΔAIC ≤ 2 and parameter estimates for all models are provided 31 

(Appendix 1).  32 

 33 



46 
  

2.3.5 Quantifying detection in a ‘worst-case scenario’ 1 

 2 

Poor triggering of CTs by otters after emergence from water (Lerone et al. 2015) implies 3 

that studies on semi-aquatic mammals could carry large bias, particularly if some CTs 4 

are closer to water than others. I hypothesised that a ‘worst-case scenario’ would be an 5 

otter emerging directly from water into the detection zone, with an anterior or posterior 6 

orientation (i.e. travelling towards or away from the CT). An otter after immersion may 7 

emit less IR radiation relative to the background (Kuhn and Meyer 2009). Anterior and 8 

posterior passes presents a smaller surface area to the PIR sensor and are less likely to 9 

create enough movement across the PIR which is required for a trigger (see Rovero and 10 

Zimmermann 2016 for further details). One of our CT stations in the otter enclosure 11 

faced the pond at a distance of 2.5m. Thus, I quantified trigger and registration 12 

percentages for any anterior passes of otter following immersion, although the sample 13 

size (n = 28) was too small for further analyses.  14 

 15 

2.3.6 Latency between trigger and registration 16 

  17 

Trigger speeds of the CT models were tested by placing a digital clock within the field-18 

of-view of a CT and simultaneously triggering the CT with a moving hand whilst starting 19 

the clock, thus the trigger speed was displayed on the clock in the first frame of the video 20 

or still. Across 40 repeats per camera, trigger speeds were: Bushnell video 2.4s (± 0.1 21 

SD), Bushnell still 0.5s (± 0.1 SD); Acorn video 2.3s (± 0.1 SD).  22 

 23 

 24 

2.4 Results 25 

 26 

False-negatives were recorded at each stage of detection I studied (triggering, 27 

registering, capture quality), but the extent of false-negatives from each process varied 28 

between species, within species (e.g. wet vs dry otters), with CT mode (still vs video) and 29 

CT model (Acorn vs Bushnell) (Figure 2-4). For all scenarios, at least 20% of passes did 30 

not elicit a trigger despite the animal entering the putative detection area (Figure 2-4, 31 

white bars). For otters, badgers and foxes on videos, a substantial component of false-32 

negatives occurred when the CT triggered but did not register the animal, while for stills 33 
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(otters only) this occurred very infrequently (stippled bars). Based on our specific criteria 1 

of recording the animal’s head, substantial data loss occurred due to poor capture 2 

quality regardless of whether stills or videos were used, although this varied widely 3 

between scenarios (light grey bars). There was substantial variation in the proportion of 4 

passes that registered images (combined dark and light grey bars) or images of sufficient 5 

quality (dark grey bars).  6 

  7 

 8 

 9 

Figure 2-4 Success rate of Trigger, Trigger and Registration, and Trigger and Registration of head as a 10 
proportion of the number of passes for (a) fox and badger on video and otter from holt on video and still 11 
images (b) otter passes not from holt (c) all otter passes (passes from holt and not from holt) 12 

 13 

2.4.1 Trigger probability P(trigger|pass) 14 

 15 

For the terrestrial mammals and fully dry otters, model comparison results and plots of 16 

lowest AIC models are in Figure 2-5. DIST and GAIT influenced trigger probability for all 17 

species using the Bushnell CTs. DIST has a negative effect in each scenario, with a slower 18 

GAIT having greater trigger probability except for the interaction seen in badger where 19 

this was only true close to the CT. Trigger rate by the Acorn CT was influenced by AIR 20 

and DIST with trigger probability being better at the higher air temperature, but again 21 

decreasing with increased DIST. 22 

 23 
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 1 

 2 

 3 

Figure 2-5 Model selection tables, and plots of the best supported model for Trigger 

Probability, P(trigger|pass), for (a) badger with Bushnell camera-trap (CT) on video setting 

(b) fox with Bushnell CT on video and (c) dry otter with Bushnell CT on video, and (d) dry 

otter with Acorn CT on video. Model variables are defined in Table 1. For brevity, only models 

with ΔAIC ≤ 2 and the null model are shown in the ranking tables. Full model results are 

included in Appendix I, Table A1. 
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Figure 2-6 shows model comparisons for trigger probability of the best supported 1 

models in which fully wet and fully dry otter were considered. With both CT models, 2 

DIST had a negative effect but the negative effect was reduced for dry otter compared 3 

to wet. 4 

 5 

Figure 2-6 Model selection tables, and plots of the best supported model for Trigger Probability for otter, 6 
P (trigger|pass), including the variable WET.DRY, using (a) Bushnell video and (b) Acorn video. Model 7 
variables are defined in Table 2-1. For brevity, only models with ΔAIC ≤ 2 and the null model are shown in 8 
the ranking tables. Full model results are included in Appendix I, Table A2. 9 

 10 

2.4.2 Registration probability P(Registration|trigger) 11 

 12 

Registration probabilities for the Bushnell still images of otter were almost perfect (i.e. 13 

only 2-4% data was lost from cameras triggering but not registering), see Figure 2-4, so 14 

we did not model these. For videos, registration probability model comparisons are in   15 
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Figure 2-7. Because registration probability is conditional on the camera having 1 

triggered, I did not expect the thermal properties of the animal relative to the 2 

background to influence it, so I combined wet and dry otter passes for the analysis. 3 

For video, in each species the model of LOIT+GAIT+DIST had strong support. Registration 4 

probability increased notably with distance in most cases, except for Acorn CTs where 5 

there was no relationship. In all cases, the registration probability was substantially 6 

better when animals were walking and loitering than when they were moving more 7 

rapidly.  8 

  9 

 10 

  11 
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 1 

  2 

Figure 2-7 Model selection tables, and plots of best models for registration probability P 
(registration|trigger), for (a) badger, Bushnell video (b) fox, Bushnell video (c) otter (all passes), Bushnell 
video and, (d) otter (all passes), Acorn video. Only lateral passes were included (see text). Model variables 
are defined in Table 2-1. For brevity, only models with ΔAIC ≤ 2 and the null model are shown in the 
ranking tables. Full model results are included Appendix I, Table A3. 
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2.4.3 Capture quality probability 1 

 2 

GLMMs were not possible for capture quality probability as loss of data from the trigger 3 

and registration stages reduced the number of captured images, furthermore the 4 

associated variables (GAIT, LOIT, DIST) were too unevenly distributed. A summary table 5 

is provided (Table 2-2). 6 

 7 

Table 2-2 Percentages of the amount of mammal visible in the first frame of each capture for each species 8 
and each camera-trap scenario, with capture of head only, head and body, head, body and tail 9 
representing ‘good’ capture quality by our standard (see text), and any capture not including head a ‘poor’ 10 
quality capture. 11 

 ‘Good’ capture quality ‘Poor’ capture quality 

 

Head only 
Head and 

body 

Head, 

body and 

tail 

Body  

and tail 

Tail 

only 

Badger -Bushnell vid (n = 55) 4 4 60 27 5 

Fox -Bushnell vid (n = 72) 1 3 60 14 22 

Otter- from holt, Bushnell vid (n = 37) 0 11 27 11 51 

Otter- from holt, Acorn vid (n= 50) 2 0 54 20 24 

Otter- from holt, Bushnell still (n = 65) 54 14 23 11 0 

Otter-not from holt, Bushnell vid  

(n = 68) 
1 3 62 18 16 

Otter- not from holt, Acorn vid 

(n= 58) 
0 3 76 16 5 

Otter-not from holt, Bushnell still  

(n = 97) 
26 18 38 9 9 

 12 

2.4.4 Detection in a ‘worst-case scenario’ 13 

 14 

For 28 anterior passes of otters emerging from water at the CT station 2.5m from the 15 

pond, the percentage of triggers, registrations and overall capture probabilities are in 16 

Table 2-3.  17 

 18 

 19 
  20 
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Table 2-3 Summary of trigger, registration and overall capture probabilities for otter representing “worst 1 
case scenario”, from camera-trap position facing water’s edge at 2.5m recording anterior passes of otter 2 
emerging directly from water (n = 28). 3 

 4 

CT model & setting Triggers as % of all 

otter passes (n) 

Registrations as % of 

all triggers (n) 

Overall trigger and 

registrations combined 

(i.e. ‘captures’) as % of all 

otter passes (n) 

Little Acorn Video 36  (10) 40 (4) 14 (4) 

Bushnell Video 39  (11) 63 (7) 25 (7) 

Bushnell Still 43  (12) 100 (12) 43 (12) 

 5 

 6 

2.5 Discussion 7 

 8 

Consideration of the separate component processes of detectability, aligned with their 9 

measurable probabilities (Figure 2-1) facilitated a clearer understanding of false-10 

negatives when camera-trapping our study species. I demonstrated that substantial data 11 

loss through false-negatives can occur at Processes 2-3 (Figure 2-4) but that this varies 12 

with context (species, camera model, footage type). These false-negatives are driven by 13 

different variables as demonstrated by differences between drivers of trigger and 14 

registration probabilities. There are some clear methodological considerations that can 15 

be drawn from our findings. 16 

 17 

2.5.1 PIR sensitivity caused loss of data at close distances 18 

 19 

Decreased capture with increased distance is well documented (Rowcliffe 2017; Randler 20 

and Kalb 2018), but our data demonstrate this occurs primarily because of reduction in 21 

triggering, not a reduction in registering of animals on footage. The PIR sensor receives 22 

long-wave infrared (IR) through an 8-14 μm filter. Atmospheric transmission of long-23 

wave IR through air is good (Usamentiaga et al. 2014), therefore absorption (by 24 

atmospheric gases such as CO2 and water vapour) of IR energy between the animal and 25 

PIR sensor is not thought to be of consequence (Welbourne et al. 2016). Other 26 

mechanisms are therefore needed to explain decreasing trigger probability with 27 

increased distance. I suggest that there are two ways that distance can affect the 28 

presentation of the animals IR footprint to the PIR sensor. The first relates to the loss of 29 

intensity of the animals emitted IR with increasing distance, as the energy per unit area 30 
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from a point source decreases according to the inverse-square law (Papacosta and 1 

Linscheid 2014). The second is that the further away the animal is from the PIR, the more 2 

likely there are to be objects or vegetation between the animal and PIR sensor which 3 

could block the passage of IR and reduce capture rates (Hofmeester et al. 2017). Whilst 4 

distance will always have a predictable negative effect on trigger probability due to the 5 

loss of intensity of IR, this will be compounded by objects within the detection zone and 6 

lead to variation in the relationship between trigger probability and distance, depending 7 

on context, such as local vegetation density. 8 

 I set the Bushnell Trophy CTs to “auto” sensitivity and the Acorn CTs to “medium” 9 

sensitivity. A negative relationship between distance and trigger probability would be 10 

seen with different PIR sensitivity settings as increasing distance reduces the amount of 11 

IR reaching the PIR by the mechanisms described. The sensitivity of the PIR can be set 12 

by the user, and the choice of setting is a compromise between assumed higher 13 

detection on a high sensitivity setting with an unwanted increase in false-triggers 14 

(Rovero et al. 2013). The auto sensitivity setting on the Bushnell CTs responds to the 15 

temperature and increases sensitivity in higher temperatures. Detection by PIR is less 16 

effective where the difference in emitted IR from an animal to the background IR is 17 

small, such as in the tropics (Apps and McNutt 2018b). In such cases, the choice of PIR 18 

sensitivity to the highest setting is straight forward. However, in areas where there may 19 

be significant differences in temperature throughout a 24h period, the auto setting 20 

adjusts the sensitivity to balance capture probability with the probability of excessive 21 

false-triggers and this is likely to be the choice of practitioners, especially as it is 22 

recommended by the manufacturer. Quantifying the impact of different sensitivity 23 

settings on trigger probability would be a worthwhile extension of the work in this 24 

thesis. 25 

The negative effect of distance is critical in CT studies that adopt the Random Encounter 26 

Model (REM) to estimate population densities when individuals cannot be identified 27 

(Rowcliffe and Carbone 2008). This has been an important development in density 28 

estimation using camera-traps because capture-recapture methods cannot be applied 29 

to species that are not individually identifiable.  The REM or similar could be used for all 30 

species, therefore removing any potential error from misidentification of individuals. 31 

REMs require knowledge of the size of the detection zone of CTs (Rowcliffe et al. 2008). 32 
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However, because detection probability is variable within the detection zone, distance 1 

sampling has been integrated into REMs to estimate effective detection distances for 2 

species (i.e. the distance within which the number of animals not captured equals the 3 

number captured beyond) (Hofmeester et al. 2017). This relies upon “a shoulder of 4 

certain detectability up to a certain distance” from the camera-trap (Rowcliffe et al. 5 

2011) ( i.e. there is an assumed zone close to the camera with a 100% capture probability 6 

for a passing animal).  However, I found that at close distances there was a substantial 7 

predicted rate of false-negatives due to trigger failure. Using the best supported models, 8 

the modelled trigger probability at 1 m distance from the CT for fox (all gaits) was 69% 9 

(i.e. there was a predicted 69% probability of the CT triggering for an otter passing 1 m 10 

from the camera); badger run/trot 58% (walk 88%); dry otter from holt with Bushnell 11 

CTs run/trot 74% (walk 93%). The REM approach is caveated with the assumption that 12 

PIR response must be reliable (Rowcliffe et al. 2011). Our trials with two frequently used 13 

models of camera-trap demonstrate important limitations in PIR sensitivity. Similar poor 14 

capture at close distance (1m) has also been found in a study of birds (mean of 60% 15 

across six size classes of bird and six CT models), where CTs were programmed to capture 16 

still images and high sensitivity (Randler and Kalb 2018). We suggest that imperfect 17 

triggering at close distances for small to medium homiotherms may be ubiquitous in CT 18 

technology and thus needs to be evaluated prior to distance sampling and other 19 

quantitative studies, with a CCTV control being a useful method.  20 

 21 

2.5.2 Speed is important in Registration probability 22 

 23 

Gait was an important variable affecting trigger probability for badger and dry otter, but 24 

less so for fox with a slower gait increasing trigger probability. I used gait to represent 25 

the relative speed of passes within each species, but in some species, there is also a 26 

difference in the vertical movement (i.e. bounce) as well as horizontal movement with 27 

different gaits. The bouncing gait of a trotting badger will interact with a larger 28 

proportion of its background, possibly creating a better signal to the PIR. This may lessen 29 

the effect of distance on trigger probability, as seen in the interaction of GAIT and DIST 30 

in Figure 2-5. There was a more consistent effect of gait on registration probability, in 31 

all cases slower passes are more likely to register in an image/video  (Figure 2-7). 32 

Observations of running animals were rare in our study, and this has been noted in other 33 
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mammal groups such as the Felidae (Anile and Devillard 2016), so speed may cause 1 

greater bias in multi-species surveys where species move at different speeds affecting 2 

both trigger and registration probability (Hofmeester et al. 2019).  3 

 4 

2.5.3 Distance drives trigger and registration probability in opposite directions  5 

 6 

In contrast to the strong negative effect of distance on trigger probability, there was a 7 

positive, though less marked, relationship between distance and registration 8 

probabilities when using Bushnell CTs on video setting. This is likely a function of the 9 

time interval between the PIR detecting the animal and the camera switching on (i.e. 10 

the trigger speed). Registration probability for CTs recording video was consistently 11 

affected by gait, loitering and distance across species and CT models, contrasting with 12 

the minimal data loss due to high registration probability on ‘still’ image setting. The 13 

longer trigger speed of videos (just over 2s) required slower passes and/or loitering (e.g. 14 

to scent mark or sniff) to achieve better registration probability. Also, the further the 15 

subject is from the CT, the greater the width of field-of-view of the camera and therefore 16 

it takes longer to pass through the field-of-view and is more likely to be within it when 17 

the camera starts recording.  18 

A hypothetical scenario, illustrating a mechanism by which registration probability for a 19 

lateral pass is likely to increase with distance, and how this is likely to interact with 20 

animal speed, is shown in Figure 2-8. This interpretation presents a hypothesis that 21 

could be tested in future experiments.   22 

 23 

 24 

 25 
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 1 

 2 

Figure 2-8 Hypothesised mechanism showing how distance to camera-trap (CT) can interact with 3 

animal speed to influence registration probability. Registration probability is positively affected 4 

by distance due to the larger area within the field of view at greater distances. Conversely, faster 5 

moving animals can completely pass through the small width of the field-of-view close to the CT 6 

before the camera takes an image 7 

 8 

 9 

Given this reasoning, a stronger positive effect of distance on registration probability 10 

would have been expected with the Acorn CTs due to their wider field-of-view, but this 11 

was not observed. The Acorn’s wide field-of-view led to difficulties identifying otter at 12 

greater distances as the otter had a smaller apparent size, thus reducing registration 13 

probability.  14 

 15 

2.5.4 The choice between still image and video capture 16 

 17 

The fast trigger speed for Bushnell still images resulted in high registration probability, 18 

96–98% of passes that triggered resulted in the otter (wet and dry combined) being 19 

registered. This contrasts with the registration probability for Bushnell videos, where a 20 

lower 65–79% of passes that triggered resulted in registered otter. Survey design 21 

therefore needs to consider potential false-negatives due to longer trigger speeds of the 22 
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video setting, which should influence the choice of CT make/model. Video capture, 1 

however, can facilitate behavioural observations which may be essential, but are not 2 

possible with still capture. For example, animal vocalisations can be recorded on video 3 

mode with CT models that have microphones. 4 

Still capture is indicated for capture-recapture density studies where a key consideration 5 

is high quality images to distinguish pelage details, still capture also enables the use of 6 

Xenon white flash although white flash can impact behaviour (Gibeau and McTavish 7 

2009).  Still capture is also more efficient for faunal inventories and occupancy studies 8 

where data generated by videos is not usually required. Density studies using REM can 9 

use video, or a burst of still images to estimate average speed of an animal. Whilst there 10 

will be lost data from both settings due to trigger probability, the video setting is also 11 

likely to have reduced registration probability, unless the trigger speeds are comparable. 12 

Where data from video is required, for instance in behavioural studies, CTs should be 13 

aimed at areas with field-signs indicating activity that delays the passage of a passing 14 

animal, such as at dens, bait stations or scent marking sites.  15 

 16 

Although trigger speeds for video recording are generally slower than for still images, 17 

models are now available with a trigger speed of less than 1 second (e.g. Bushnell Core 18 

DS), and these could be chosen if video is the preferred mode of study to increase 19 

registration probability. An additional constraint for video recording is that video data 20 

requires more storage capacity and viewing video footage takes longer than still images. 21 

Whilst software to enable automated species identification is being developed and may 22 

be used in the future, this is directed at still images (Yu et al. 2013; Tabak et al. 2019). 23 

 24 

2.5.5 Effects of immersion of otter on detection are short-lived 25 

 26 

The trigger probability of dry otter passes on Bushnell videos broadly reflected those of 27 

the two terrestrial species, with distance and/or gait being important in all the best 28 

fitting models although the best supported model for the Acorn video CT included air 29 

temperature and distance. Our results corroborate observations that wet otters are 30 

poor in eliciting a PIR trigger (Lerone et al. 2015). However, time from exiting water was 31 

not an important variable in trigger success, indicating that other variables may impact 32 

on the rate of change in IR emitted after an otter has left water. Otter thermoregulation 33 
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in cold water can result in reduced emission of infrared from an otter’s body and tail, 1 

however the intensity and duration of swimming prior to exiting water can affect 2 

thermoregulation and hence the amount of IR emitted (Kuhn and Meyer 2009). These 3 

variables, and others, may confound any effect of time from exiting water on trigger 4 

success. When I set a CT facing water at 2.5m to record otter emerging from water, the 5 

trigger probabilities for Bushnell (video and still) and Acorn CTs were very poor (36–6 

43%). The slower trigger speed for video led to poor registration probability of 40–63% 7 

(Table 2); the resulting capture of all passes on video setting (e.g. 14% for Acorn) is very 8 

poor. Within the limits of our study conditions and limited sample size, thermal imaging 9 

readings indicated that when an otter emerges from water, its surface temperature 10 

nearly matches water temperature (see Figure 2-3). It only takes a short period of time 11 

from immersion (≤1 min) for an otter to develop a thermal footprint with a 3°C 12 

difference from the background, 3°C being an approximate difference that would trigger 13 

a camera-trap PIR (Meek et al. 2012). This indicates that the relationship between water 14 

and land temperatures due to the influence of season, geographic location and circadian 15 

temperature changes has the potential to significantly affect trigger probability of 16 

animals after immersion in water. A greater difference between land and water 17 

temperatures would result in a higher trigger probability and a smaller difference in a 18 

lower trigger probability. Further study to include variation in water and land 19 

temperatures would be beneficial to investigate how this affects the time required from 20 

immersion to the animal having a thermal footprint sufficiently different from the 21 

background to trigger a PIR detector. 22 

 23 

2.5.6 Understanding the stages of detectability will improve study design 24 

 25 

CTs can be used for a range of study types, hence study design needs to consider CT 26 

model specifications, placement and settings (Rovero and Zimmermann 2016). 27 

Understanding how the animal, environment and equipment interact is important for 28 

all CT studies. Recognition of detection as a sequence of processes (Figure 2-1) enables 29 

each process to be considered independently when planning CT studies as the 30 

mechanisms for success in each process are different, for instance recognising potential 31 

causes for detectability heterogeneity between CT sites or species within a study. I 32 

demonstrate the high level of data loss (on both video and still setting) on medium sized 33 
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animals due to poor triggering, even at close distances. This would need to be accounted 1 

for within population density analyses such as the REM when distance-sampling is used 2 

to estimate effective detection distances. Using CCTV as a control, the influences of 3 

different seasons, temperatures, humidity and vegetation structure could also be 4 

quantified. 5 

We found that trigger probability for otter was compromised after recent emergence 6 

from water, and it is anticipated that this would apply for other semi-aquatic species. In 7 

a pilot study, we also found very low trigger probabilities for European beaver Castor 8 

fiber in an enclosure where they spent a significant time in water (unpubl. data). Careful 9 

CT placement is therefore critical when studying semi-aquatic mammals and CTs set on 10 

in-stream features such as stones or on entry/exit points from water are likely to have 11 

poor trigger probability, as previously demonstrated (Lerone et al. 2015). Trigger 12 

probability would improve if CTs were set to anticipate semi-aquatic mammal passes 13 

where the animal has been out of water long enough to develop a warmer thermal 14 

footprint if the air and water temperatures are similar.  15 

I would recommend that the trigger speed of the chosen CT model and mode of 16 

recording is established, either from the manufacturer’s specification or via testing. 17 

Video trigger speeds are rarely specified by manufacturers as they are usually 18 

significantly slower than still. 19 

 20 

2.6 Conclusions 21 

 22 

Our approach has demonstrated where false-negatives potentially occur during the 23 

process of detection using camera-traps and what factors drive variation in trigger and 24 

registration probabilities, and this can help optimise camera-trap deployments to try to 25 

reduce false negatives given the study species, environmental context and study aims. 26 

Our findings could generalise to other species of medium-sized terrestrial and semi-27 

aquatic mammals. Similarly, this approach, using CCTV as a control to separate 28 

component processes of detection (trigger, registration and capture quality), could be 29 

carried out as a precursor to CT studies in different contexts, such as with small or large 30 

mammals, or in different seasons and environmental conditions. Results could be used 31 

to inform modelling of detection functions for REM with distance sampling and would 32 

help to improve study design more widely.  33 
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Chapter 3  Developing an empirical approach to optimal 1 

camera-trap deployment at mammal resting sites: evidence 2 

from a longitudinal study of an otter Lutra lutra holt 3 

 4 

 5 

The following chapter was published as: 6 

Findlay MA, Briers RA, Diamond N, White PJC (2017) Developing an empirical approach 7 

to optimal camera-trap deployment at mammal resting sites: evidence from a 8 

longitudinal study of an otter Lutra lutra holt. Eur J Wildl Res 63:96. doi: 9 

10.1007/s10344-017-1143-0 10 

The publication is included in Appendix III. It has been modified slightly for the thesis. 11 

Author contributions are as follows:  12 

MAF undertook the fieldwork, first as part of a commercial consultancy contract and 13 

then for personal interest. MAF conducted the analysis with advice from PJCW and RAB. 14 

MAF wrote the manuscript with advice from PJCW, and PJCW and RAB contributed 15 

guidance and revisions. After peer-review, MAF responded to the reviewer’s comments 16 

and prepared the revised manuscript which was accepted. 17 

 18 

  19 
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3.1 Abstract 1 

 2 

Most studies of nocturnal mammals rely on indirect evidence (i.e. interpretation of signs 3 

left by the mammal) or invasive methods involving capture and tagging of individuals. 4 

Indirect methods are prone to error, while capture and tagging mammals have logistical 5 

and ethical considerations. Off-the-shelf camera-traps are perceived as an accessible, 6 

non-intrusive method for direct data gathering, having many benefits but also potential 7 

biases. Here, using a six-year camera-trap study of a Eurasian otter holt (den), I evaluate 8 

key parameters of study design. First I analyse patterns of holt use in relation to 9 

researcher visits to maintain the camera-traps. Then, using a dual camera-trap 10 

deployment I compare the success of data-capture from each camera-trap position in 11 

relation to the dual set-up. Finally, I provide analyses to optimise minimum survey effort 12 

and camera-trap programming. My findings indicate that otter presence and resting 13 

patterns were unaffected by the researcher visits. Results were significantly better using 14 

a close camera-trap emplacement than a distant. There was a higher frequency of otter 15 

activity at the holt during the natal and early rearing period which has implications for 16 

determining the minimum survey duration. Reducing video clip duration from 30 to 19 17 

s would have included 95% of instances where sex could be identified and saved 35-40% 18 

of memory storage. Peaks of otter activity were related to sunrise and sunset, exclusion 19 

of diurnal hours would have missed 11% of registrations. Camera-trap studies would 20 

benefit by adopting a similar framework of analyses in the preliminary stages or during 21 

a trial period to inform subsequent methodological refinements. 22 

3.2 Introduction 23 

 24 

The study of terrestrial carnivores encompasses a great variety of direct and indirect 25 

monitoring methods, such as telemetry, capture-mark-recapture, distribution of field-26 

signs, harvest reports and questionnaire surveys (Gese 2001). The development of 27 

remote trail cameras, or camera-traps opened new avenues of study and the twenty-28 

first century marked a rapid proliferation in their use  in ecological research (Rowcliffe 29 

and Carbone 2008). Camera-trap technology has been applied to biodiversity 30 

monitoring (Mugerwa et al. 2013; Tobler et al. 2015), estimating population size 31 

(Rowcliffe et al. 2008; Tobler et al. 2015) and behavioural observation (Brzeziński et al. 32 
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2014; Huang et al. 2014). There are, however, acknowledged potential sources of bias 1 

in camera trap studies including disturbance, detectability, sampling design and trapping 2 

effort which may affect the use of camera-traps as a research tool (Sollmann and Kelly 3 

2013; Gužvica et al. 2014).  4 

The ability of a camera-trap to detect and record its target has been shown to be 5 

affected by the mass of the target, the distance between the camera trap and the target, 6 

the speed the target moves at and the season (Rowcliffe et al. 2011).  Differences in 7 

detectability have also been found between camera-trap models (Swann et al. 2004; 8 

Wellington et al. 2014). Imperfect detection by a single camera-trap has been improved 9 

by using two camera-traps in different configurations, e.g. where camera traps are set 10 

at different distances from the target (Kilshaw and MacDonald 2011), adjacent to each 11 

other (Glen et al. 2013) or at 90° to the target  (Newey et al. 2015a).  Most camera-traps 12 

use passive infra-red (PIR) motion detectors which monitor ambient infra-red radiation 13 

and are triggered by changes due to infra-red radiation emitted by a passing animal. The 14 

otter’s adaptations to a semi-aquatic life such as fur structure and thermoregulation, 15 

may reduce their infra-red footprint when exiting water, thus reducing their visibility to 16 

PIR suggesting that they may not be suitable for PIR motion detectors (Lerone et al. 17 

2015). When the efficacy of camera-traps were compared to scat surveys to quantify 18 

visitation rates by North American river otter Lontra canadensis to scat sites, the 19 

camera-traps produced fewer false-negatives than presence indicated by field-signs 20 

(Day et al. 2016). However, that study found a relationship between scat counts and the 21 

number of otter registrations on the CT and concluded that scat counts could be used 22 

to determine the intensity of use of a spraint site. In addition to investigating presence 23 

of otter at spraint sites, camera-traps have been used to assist field-sign interpretation 24 

in areas where several otter species co-exist but have similar spoor (Kanchanasaka 25 

2001).  26 

 Camera trapping has been perceived as a non-intrusive “hands-off” method of direct 27 

observation (Rowcliffe et al. 2008; Adamič and Smole 2011). However, evidence is 28 

emerging that challenges this assumption: camera-trap shyness has been exhibited by 29 

tiger Panthera tigris (Wegge et al. 2004) and a startle reflex has been observed in the 30 

grey wolf Canis lupus (Gibeau and McTavish 2009). Behavioural responses to camera-31 

traps vary between species, and between individuals within species (Meek et al. 2016).  32 



64 
  

Suggested sources of disturbance include the deposition of scent from ecologists 1 

undertaking maintenance visits (Munoz et al. 2014) and also noise (mechanical and 2 

ultrasonic) and infra-red illumination emitted by the camera-traps (Meek et al. 2014b). 3 

Potential bias from observation-effects should also therefore be considered in camera-4 

trap studies. 5 

Camera trapping is time-efficient in the field but analysis time can be onerous due to 6 

capture of non-target species and superfluous triggering caused by extraneous stimuli. 7 

In conservation and research, resources are inevitably limited; considering methodology 8 

efficiencies is important in terms of resources saved against any impact on data quantity 9 

or quality.  10 

When deploying camera-traps at den sites, key considerations therefore include: (A) 11 

potential bias from disturbance, (B) the optimal number and placement of camera-traps, 12 

(C) study duration, and (D) the optimal camera-trap settings (e.g. clip duration, hours of 13 

operation/duty time). This study presents an empirical approach to address these using 14 

a six-year study of the holt of a semi-aquatic mammal, Eurasian otter Lutra lutra.  15 

Firstly (A), I investigate any effect on otter activity levels caused by regular visits by the 16 

two researchers to maintain the camera-traps. I hypothesise that if researcher visits 17 

caused disturbance to otters using the holt, a positive relationship between frequency 18 

of resting or scent-marking behaviours and number of days elapsed since the 19 

maintenance visit would be expected.  20 

Secondly (B), I investigate how the position of a camera-trap in relation to the recording 21 

area can affect the amount and type of data recorded. I hypothesise that data gain 22 

would improve using dual camera-traps compared with one camera-trap and that 23 

camera-trap position relative to the holt would affect both the probability of capturing 24 

an event and also the ability to record more specific observations such as sex and 25 

behaviour. 26 

Thirdly (C), I investigate optimisation of study duration by quantifying the minimum 27 

number of days camera-traps would need to be employed to observe specific activity 28 

types which would contribute to defining the Minimum Survey Duration (MSD).  29 
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Finally (D), I examine whether camera-trap settings could be informed by an analysis of 1 

optimal video clip duration, and of duty time (time during the daily cycle when camera-2 

traps are armed) in relation to parameters which would be commonly recorded.  3 

Our approach provides a framework whereby camera-trap studies in other locations or 4 

for other species could be optimised from the analysis of pilot study data. While I do not 5 

aim to define specific deployment and programming criteria for otter holt camera-trap 6 

studies, our results provide a comparison to be used by other studies.  7 

 8 

3.3 Methods 9 

 10 

3.3.1 Study species and context 11 

 12 

The Eurasian otter, (hereafter “otter”), is on Annex IV of the Habitats Directive (Council 13 

Directive 92/43/ECC) which affords it strict protection. Article 12 of the Directive frames 14 

protection in terms of the species’ wider habitat and also in relation to a species’ 15 

breeding and resting sites. With wide-ranging species such as otter, the actual place of 16 

rest is considered protected (EU 2007) and the Directive states that such sites must be 17 

“clearly perceptible” or “perfectly known and identified as such” (European Commission 18 

1992). It is therefore important that breeding and resting sites can reliably be identified 19 

for the purpose of Environmental Impact Assessment and derogation licensing. Camera-20 

traps have been used to confirm the use of structures as dens for other species such as 21 

the Asiatic black bear Ursus thibetanus gedrosianusas (Fahimi et al. 2011) as well as 22 

examining circadian activity  of neotropical otter Lontra longicaudis at holts (Rheingantz 23 

et al. 2016). For species with unpredictable denning and breeding habits such as otter, 24 

camera-trapping offers an accessible monitoring method to complement traditional 25 

field-evidence surveys.  26 

 27 

3.3.2 Study Holt 28 

 29 
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The study holt is in southern Scotland at a latitude of 56° 6’ 26” N and is at an altitude 1 

of 125 m AMSL. The holt is adjacent to a small watercourse 3 - 4 m across in a secluded 2 

and undisturbed valley with near-continuous cover from scrub and thickets of bracken 3 

Pteridium aquilinum. It is 600 m downstream from a eutrophic loch, formerly a mixed 4 

fishery which is still fished informally and used for dog walking. Therefore, the holt and 5 

its immediate environs are undisturbed, but recreational disturbance is present around 6 

prey-rich habitat relatively close by. The holt is approximately 20 m from water and did 7 

not flood during the study period. The structure is a partially blocked drift mine with a 8 

tunnel (cross-section approximately 34 cm high and 140 cm wide) in rock which narrows 9 

and divides into two smaller tunnels after approximately 6 m.  10 

 11 

3.3.3 Sampling period and summary of holt use 12 

 13 

The study was undertaken between December 2009 and September 2015. Of the 2,120 14 

potential camera trap days, cameras were operative on 1,720 (81%). A large gap in 15 

recording in 2011 was due to stolen camera-traps; to avoid further loss of equipment, 16 

monitoring ceased for approximately six months which also gave time to install more 17 

secure housing.  Other gaps were due to battery depletion and delays in procuring 18 

replacement of defunct units. Maintenance visits during periods of continuous 19 

monitoring were on average every 15.2 (± SD 6.6) days, with approximately 15 min at 20 

the study site per visit.  The same two researchers shared the maintenance visits 21 

throughout the study period; usually just one researcher attended at each visit 22 

according to availability. Researcher visits avoided peak activity times of dawn and dusk. 23 

The holt was assigned one of a set of mutually exclusive functions (pre-natal, natal, early 24 

rearing, mid rearing, late rearing and non-breeding) according to the status and/or 25 

absence of a breeding female (Figure 3-1). The natal period, before emergence of the 26 

cubs, was taken as the 10 weeks preceding the first record of small cubs (Durbin 1996a; 27 

Kruuk 2006a) provided that there had been near-daily activity of adult otter recorded 28 

for at least 8 weeks. The early rearing period was defined as 60 days following the first 29 

day of emergence, mid rearing as 60 days following the end of early rearing and late 30 

rearing as 60 days following the end of mid rearing. At the end of the late rearing period 31 

the cubs would be at least eight months old, difficult to distinguish from the adult female 32 
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and approaching dispersal (Jenkins 1980; Kruuk 2006a). The prenatal period was defined 1 

as 30 days before the estimated birth date, which is approximately the second half of 2 

the 63 day gestation period (Roos et al. 2015). Atypical activity was recorded during the 3 

single pre-natal period recorded (Nov-Dec 2011) when a female, a sub-adult male 4 

thought to be her cub from the last litter, and an adult male frequently rested in the holt 5 

as single otters, dyads or triads. Non-breeding was defined as none of the above. There 6 

was a minimum of two different breeding females during the study period: for the first 7 

two winters the holt was used for birthing (natal), possibly by the same female, 8 

subsequently in the winters of 2011-12, 2012-13 and 2013-14 a female with a distinctive 9 

broken/malformed tail used the holt for rearing but not birthing.  10 

 11 

 12 

 13 

Figure 3-1 Timeline of holt function as defined by the status of the breeding female throughout study 14 
period (November 2009 – September 2015) and times when camera traps were not recording. Holt 15 
function is defined in the text 16 

  17 

3.3.4  Camera trap deployment and set up 18 

 19 

Over the study, two camera-trap positions were used, “close” and “distant” (Figure 3-20 

2). The topography around the holt entrance was irregular and there were two clear 21 

otter runs into the holt. Tall summer vegetation and potential theft of the camera-traps 22 

had to be considered. A close camera-trap was positioned at 1.6 m from the centre of 23 

the holt entrance to enable the complete width of the holt to be in the field-of-view, 24 
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and for the centra of the holt entrance to be at the centre of the field-of-view. The 1 

camera-trap was at a height of 40cm and tilted slightly downwards to reduce the blind 2 

spot immediately below. The distant position was 4.2m from the holt and was slightly 3 

elevated to avoid conflict with the runs and to gain camouflage from a rose bush. This 4 

was set at 30cm height to overcome vegetation and again was aimed to capture both of 5 

the otter runs and also the holt entrance which necessitated a slight downwards tile of 6 

the camera-trap. No bait or lure was used at any time. 7 

The time-scale of the study resulted in two different camera-trap models being used 8 

which had different programming capabilities. Initially, a Moultrie I40 was deployed in 9 

the close position in December 2009. This model had an IR frequency < 850nm and was 10 

programmed to record the maximum length of video possible (5 s) with the minimum 11 

programmable rearm time between videos of 1 min. A second camera-trap was added 12 

in November 2010 in the distant position to create the dual camera-trap deployment. 13 

The second camera-trap was a Uway Night Trakker 50B (IR frequency 950nm). This had 14 

better programming flexibility and so was set to record videos of 30s with the minimum 15 

of 6s to re-arm between videos. The close camera-trap was replaced by a Uway in 16 

February 2011. The sensitivity of the PIR detector could not be altered on the Moultrie 17 

I40 or the Uway NT50b. 18 

The holt was in a linear hollow which limited the extent of the detection and recording 19 

areas and also naturally contained otter activity.  20 
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 1 

Figure 3-2 Diagram illustrating camera-trap positions and approximate fields of view: (a) Camera-traps 2 
were deployed in a modified plastic drain pipe (close camera) and wooden housing (distant camera) which 3 
emulated an old fence post for camouflage. The height and angle of the camera-traps were consequently 4 
consistent each time they were reset; (b) field-of-view of close camera-trap; (c) field-of-view of distant 5 
camera-trap 6 

 7 

3.3.5 Filtering videos and extraction of data 8 

 9 

The date, time (GMT), number of otters and movement in or out of the holt were 10 

recorded, as was sex where possible. Sex was identified using primary characteristics 11 

(presence of scrotum, presence of nipples, source and direction of urine stream) and/or 12 

secondary characteristics (size and body shape). Selected behaviours including scent-13 

marking (spraint and urine), vocalisation, play, grooming, loafing and bedding collection 14 

were recorded. Video clips from both cameras were cross referenced using the date and 15 

time to compile a database of “events”. An event was defined as a unit of continuous 16 

activity, varying from the rapid pass of an otter, to an otter loafing for an extended 17 
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period comprising numerous video clips. The event record contained the combined data 1 

gained from both camera traps. 2 

Time spent in the holt was calculated where an otter was observed both entering and 3 

leaving, termed a ‘paired event’. On occasions, a group of otters would use the holt but 4 

entered and exited individually at different times. In such cases, the time in the holt of 5 

individual otters could not be tracked and the minimum time spent in the holt was 6 

calculated from the last entry time to the first exit time (such occurrences accounted for 7 

7% [36/492] of paired events). A bimodal frequency distribution of time spent in the holt 8 

indicated two natural categories of rest type: “visits” of 15 min or less (n=305), or “rests” 9 

of greater than 15 min (n=492) (Figure 3-3).  10 

 11 

 12 

Figure 3-3 Frequency distributions of time spent in holt for paired events; (a) bimodal distribution of time 13 
spent in holt (n = 797), and (b) detail of the distribution in the first 30 min only (n = 425) 14 

 15 

Thermal imaging has shown that wet otters can have a limited heat footprint due to 16 

their highly insulating fur (Kuhn and Meyer 2009). Single events of an otter exiting the 17 

holt at dusk with a dry coat without a corresponding record of it entering the holt were 18 

attributed to detection failure of the camera-traps of a wet otter upon entry. These 19 

events were excluded from the analysis of time spent in the holt but were included as a 20 

rest in further analysis (17% of all rests) since it was assumed that to become dry the 21 

otter would have to have been in the holt for at least 15 min. 22 

3.3.6 Analysis 23 

 24 

Statistics were carried out in R version 3.2.2 (RCore Team 2015) within R Studio 25 

(RStudioTeam 2015). Fitting of generalised linear mixed models used packages lme4 26 

(Bates et al. 2015). A function to calculate sunrise and sunset was written using the 27 
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packages rgeos (Bivand and Rundel 2016) and maptools (Bivand and Lewin-Koh 2016). I 1 

used the manipulate package (Allaire 2014) to fit the first apparent in frame models and 2 

the package lubridate (Grolemund and Hadley 2011) to facilitate use of dates and times.  3 

3.3.6.1 A.  Potential bias from disturbance 4 

 5 

If otter activity was influenced by the researchers’ camera-trap maintenance visits, there 6 

would be a relationship between key otter behaviours such as resting and scent-marking 7 

and the number of days elapsed since a researcher visit. Additionally, it was 8 

hypothesised that propensity to disturbance might be influenced by the current function 9 

of the holt and that any disturbance would potentially be greatest during the natal and 10 

early rearing periods when cubs were small. Thus, generalised linear models (GLM) with 11 

binomial error distributions were constructed with the probability of rests (i.e.  > 15 12 

minutes in duration) occurring on any day as the binary response variable (1 = rest 13 

occurred, 0 = no rest occurred). The date of the rest was recorded as the date of entry 14 

to the holt.   15 

Three explanatory variables, were generated: (i) a binary variable indicating the holt 16 

function at the time of that rest as either ‘breeding’ (pre-natal, natal, and early, mid and 17 

late rearing) or ‘non-breeding’, (ii)  a binary variable indicating the holt function at the 18 

time of that rest as either ‘natal or early breeding’ or ‘all other functions’ (non-breeding, 19 

pre-natal, mid and late rearing), and (iii) a continuous variable indicating the number of 20 

days elapsed between the last researcher visit and the rest (the date of the rest was 21 

recorded as the date of entry to the holt). I then tested two models: one containing the 22 

interaction between (i) and (iii), and one containing the interaction between (ii) and (iii). 23 

For each model if no interaction was found, the interaction was removed and the main 24 

effects were tested. 25 

I used a likelihood ratio test with the Χ2 distribution to compare models with and without 26 

the interaction term. If the test was not significant, I removed the interaction terms and 27 

tested the main effects within the non-interactive model.  28 

Similarly, any relationships between the frequency of scent-marking at the holt and days 29 

elapsed since maintenance visit were tested for; the response variable described 30 

whether scent-marking was detected on a particular day (1 = yes, 0 = no). Season was 31 

also included as a categorical explanatory variable (four levels: spring, summer, autumn, 32 
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winter) as sprainting on land has been shown to be affected by season (Yoxon and Yoxon 1 

2014).  I tested whether the probability of scent-marking was related to an interaction 2 

between season and days elapsed since researcher visit. Again, I used a likelihood ratio 3 

test with the Χ2 distribution to compare models with and without the interaction term, 4 

and then tested the main effects in the non-interactive model if the test was not 5 

significant.   6 

3.3.6.2 B. The optimal number and placement of camera-traps 7 

 8 

The probabilities of data capture by each of the individual camera-traps were compared 9 

with the combined data gained from both camera-traps. The dual camera-trap setup 10 

would always capture at least as much data as a scenario where only one of the camera-11 

traps was operational. Thus, I could examine the efficiency of each camera-trap position 12 

relative to each other and relative to the dual setup as a baseline, although not relative 13 

to perfect detection. This analysis can be conceptualised as the hypothetical removal of 14 

each camera in turn to retrospectively examine what the impact on our data would have 15 

been had I only had either the close or distant camera in place, thus comparing both 16 

cameras to the dual setup, and both cameras to each other. I examined the relative 17 

performance of both camera locations using three criteria: (i) count of otters, (ii) 18 

detection of sex of adult otter using primary characteristics (note that in the sample 19 

there were no events including more than one adult), and (iii) detection of selected 20 

behaviours (Table 3-1). Behaviour was recorded as the count of different behaviours 21 

observed; this was applied to both single otters and groups. 22 

  23 
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Table 3-1 Descriptions of behaviour categories 1 

Behaviour category Description 

Vocalisation A variety of calls emitted, ranging from a hiss to a short whistle.  

Play Observed in cubs and young otters especially between siblings but 

occasionally by single otters. Includes practice and development of 

any skills, common examples include fighting, climbing up rock face 

behind holt and bedding collection (i.e. pulling at vegetation)  

Scent marking Deposition of a small amount of faecal matter or urination 

Bedding collection A full capture would be an otter exiting the holt and tearing up 

vegetation with its mouth and returning to holt carrying bedding in 

mouth. This behaviour is normally undertaken at run with the otters 

head held characteristically high. Bedding collection is often 

recorded over several video clips, comprising otter running out of 

holt and leaving field of view, sound of rustling vegetation and otter 

running into holt with bedding. The otter may do this just once, or 

numerous times in succession. 

Groom/roll Otter licking fur and/or extended periods of scratching or lies down 

and rolls on back or rubs torso on ground 

Loafing Otter lying down, stretched out on back or on stomach and with 

little to no movement. In a relaxed state, occasionally shutting eyes 

 2 

A random sub-sample of 200 events was selected when both Uway camera-traps were 3 

in operation (i.e. post February 2011). These criteria required me to carefully watch 4 

footage, often repeatedly, so from the large total of 2301 events, I randomly 5 

subsampled 200 (9%) events to provide a representative sample. Each event was given 6 

a numerical categorical identifier. Microsoft Excel was used to generate random 7 

numbers and events were selected using these numerical identifiers. Where the event 8 

was paired, the individual pass (in or out of the holt) was randomly selected by flipping 9 

a coin. The analysis included instances when one camera-trap failed to trigger, or one 10 

camera-trap triggered but did not record otter.  For each pass of otter the selected 11 

criteria (count, detection of sex using primary characteristics, behaviours) were 12 

recorded for each camera-trap. 13 

Generalised linear mixed models (GLMM) with binomial error distributions were 14 

constructed to investigate effects of camera-trap position and group size on the 15 

probability of capturing these three criteria. I hypothesised that the relative efficiency 16 

of each position could interact with group size, because a large group size may be a 17 

greater trigger stimulus than a single otter and therefore may increase detectability over 18 

longer distances. The categorical identifier was always included as a random effect to 19 
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account for non-independence of the two camera-positions within each event. As 1 

competing models were nested, I used backwards stepwise selection to select the best 2 

model (Crawley 2005, pp. 104–105). This approach starts with the most complex model 3 

and compares it against a model with one less term. I used a likelihood ratio test with 4 

the Χ2 distribution to compare models with and without the interaction term. If the test 5 

was not significant, I removed the interaction terms and tested a model just containing 6 

the main effects. 7 

The first model used probability of detecting an otter as the response variable. The 8 

measure of success for each camera-trap in detecting an otter was represented by a 9 

dual vector comprising the number of otters seen on the single camera-trap (binomial 10 

numerator), and the number observed by the dual camera-traps (binomial 11 

denominator).  12 

A second GLMM was constructed using the ability to determine sex as the response 13 

variable (1 = sex identified, 0 = sex not identified). Finally, this was repeated using 14 

observation of behaviour as a response variable, represented by a dual vector of the 15 

numbers of behaviours observed on a single camera-trap (binomial numerator) and the 16 

number of behaviours observed on the dual camera-trap system (binomial 17 

denominator). Again, an interaction between camera-trap position and number of 18 

otters on the dual system was tested for, and if this was not significant the interaction 19 

term was removed to test the significance of the main effects within the non-interactive 20 

model. 21 

Within the subsample of 200 random passes, redundancy of the two camera-traps 22 

positions in the dual camera setup was assessed for each pass by determining whether 23 

a particular data type was recorded by (a) both camera-traps, (b) only the close camera-24 

trap or (c) only the distant camera-trap. The higher the percentage of events that fall 25 

into (a), the more redundancy there is in the dual camera set-up.  The data types 26 

considered were (i) presence of otter(s) (yes/no); (ii) count of otters; (iii) observation of 27 

behaviour (yes/no); and, (iv) determination of sex (yes/no).  For (ii) I took the count as 28 

the minimum number of otters seen on the dual camera-trap setup.  29 

3.3.6.3 C. Study duration 30 

 31 
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Given the status of otter as a European Protected Species (European Commission 1992), 1 

there is a requirement to ascertain whether or not a structure is used for resting but 2 

there are no explicit criteria for identifying an otter resting-site. Based on the 3 

distribution of duration of time spent at the holt three hierarchical categories of otter 4 

use of the holt per study day were generated: absence of otter, any presence of otter 5 

(all registrations), and a rest by an otter (a stay within the holt of > 15 minutes). The last 6 

two categories broadly align with two potential aims of a camera-trap study at a holt 7 

(i.e. either to (a) simply determine presence of otter at a site, or (b) to determine 8 

whether a site can be defined as a ‘resting site’). The number of days between a specified 9 

event type (i.e. presence, or rest) would inform the minimum study duration required 10 

for that specific aim. 11 

For each period of holt function (Figure 3-1) the intervals (days) between consecutive 12 

instances of the same activity-type (presence or rest) were calculated. If the interval 13 

spanned more than one holt function, such as the last rest in the early rearing period of 14 

2010 to the first rest in the early rearing period of 2011, then it was excluded.  15 

A generalised linear model (GLM) was used as the response variable comprised count 16 

data, so a GLM with Poisson error distributions was constructed with the number of days 17 

between successive visits as the response variable, and holt function as the explanatory 18 

variable. Over dispersion was tested using the Ben Bolker function and if over-dispersed 19 

an alternative error distribution would be tried e.g. quasi-poisson. I repeated this using 20 

the number of days between successive otter rests as the response variable. A likelihood 21 

ratio test with a Χ2 distribution was used to assess model significance. 22 

I calculated the 90th and 95th percentiles of intervals between events (separately for 23 

presence and rests) as a contributor to minimum survey duration which represents a 90-24 

95% probability I would record one of each activity-type if our study was at least that 25 

long. Because holt function significantly influenced the intervals between events for 26 

both presence and rests, I calculated separate percentiles for each holt function (natal, 27 

early rearing, mid rearing, late rearing and non-breeding). 28 

3.3.6.4 D. The optimal camera-trap settings: clip duration and duty time 29 

 30 

Setting a camera-trap to record longer video clips may increase data gain, but results in 31 

greater battery depletion and memory storage each time a camera triggers (often by 32 
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non-target species or false-triggers), as well as longer time required to review the clips. 1 

Thus selection of the duration of video clips represents a trade-off that ecologists have 2 

to make for each study. Reducing clip duration without losing significant data has the 3 

potential to increase efficiency of camera-trapping studies. 4 

I specified a set of three observable criteria that ecologists are likely to record using 5 

camera-trap footage: (1) determining sex of an otter using primary sexual characteristics 6 

only or (2) both primary and secondary sexual characteristics (primary characteristics 7 

plus body-shape), and (3) scent-marking activity (sprainting, urination). Using events 8 

recorded by the dual camera-trap set up with two Uway camera-traps I extracted all 9 

events containing the desired criteria (scent-marking n = 274, primary sexual 10 

characteristics n = 373, primary and secondary sexual characteristics n = 171). Some 11 

otters in this study had characteristic tail abnormalities which identified them as 12 

individuals. To avoid bias from individuals being recognised and influencing observations 13 

of sex, these were omitted from the subsampling for observation of primary sexual 14 

characteristics (reduction of n = 373 to 123). Excluding the period when the Moultrie 15 

camera-trap was operating, I randomly selected and rewatched 60 events from each 16 

subset to provide a representative sample.  For each event, the data from either the 17 

close or distant camera-trap was randomly selected, as was the individual pass if it was 18 

a paired event (either going in or coming out of the holt). For each pass I observed a 19 

maximum of 30 s of video and recorded the time to the nearest second when each 20 

observable criteria was first apparent in frame (hereafter ‘FAF time’).  21 

For each criteria, the FAF times were ranked in ascending order. The rank of each data 22 

point was then divided by the sample size for that criteria to form a cumulative 23 

proportion. The cumulative proportion (y-axis) was plotted against the FAF (x-axis) for 24 

each pass. To describe the asymptotic relationship that was apparent for each criteria, I 25 

fitted an exponential model of the form y = a.(1-e-b.x) + c where y is the predicted 26 

cumulative proportion of that observable criteria that would have been recorded given 27 

a hypothetical clip duration (s) of x, and a, b and c are parameters estimated by the 28 

model. There is a short delay between a subject triggering a PIR detector and the 29 

camera-trap initiating recording. A recorded FAF time of zero can actually represent a 30 

range of true FAF times within that delay range. As such, the plotted cumulative 31 
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distributions appeared truncated at t = 0. To avoid truncation influencing model fit, 1 

values of FAF = 0 were excluded from the model.  2 

The fitted models were used to predict the minimum clip duration that would be 3 

required to record 95% of passes containing each observable criteria since I considered 4 

that 5% data loss would be acceptable if it could result in a proportionally greater 5 

reduction in superfluous video, battery depletion or memory depletion.  6 

Many camera-trap models have the ability for duty time to be programmed (i.e. daily 7 

periods of time when the camera-trap is active or inactive).  They are prone to being 8 

triggered by precipitation, strong light conditions or vegetation moving in the wind 9 

(Swann et al. 2004), termed ‘false-triggers’. Runs of false-triggers were experienced 10 

almost exclusively during the daytime depleting the limited supply of memory storage 11 

capacity and increasing analysis time. Efficiency in analysis time would be improved if 12 

false-triggers could be substantially reduced by the camera-trap being in ‘sleep-mode’ 13 

during some, or all of the day if it could be demonstrated that this would not lead to a 14 

significant loss of data. In describing mammal activity in relation to sunrise and sunset, 15 

four activity periods have been described (Lucherini et al. 2009); (a) day; (b) night; (c) 16 

dawn (one hour before sunrise to one hour after), and; (d) dusk (one hour before sunset 17 

to one hour after). Otters are predominantly nocturnal (Green et al. 1984) but they can 18 

be active during the day.  For each otter registration, the times of the closest sunset and 19 

sunrise were back-calculated using the date and time in conjunction with the holt’s 20 

latitude and longitude. The time of each registration was then compared to the time of 21 

the closest sunrise and sunset and assigned to whichever one it was closest to. I then 22 

plotted the distribution of hours relative to sunrise and sunset for each registration and 23 

calculated the proportion of registrations that occurred in the four activity periods (day, 24 

night, dawn, dusk).  This was repeated for registrations within each holt function 25 

category.  26 

 27 

3.4 Results 28 

 29 

3.4.1 A. Potential bias from disturbance 30 

 31 
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The GLM which tested for any effect on the probability of a rest during periods when 1 

the holt function was breeding or non-breeding and days since maintenance found no 2 

significant interaction (Χ2 = 1.16, df = 1, p = 0.281).  When the interaction term was 3 

removed, there was no significant effect of holt function and days since maintenance 4 

check on the probability of a rest (Χ2 = 0.859, df = 1, p = 0.354).  Similarly, the GLM which 5 

defined the holt function as early breeding (natal and early rearing periods) or not early 6 

breeding, found no significant interaction between holt function and days elapsed since 7 

maintenance visit on the probability of use of the site for a rest (Χ2 = 0.65, df = 1, p = 8 

0.418). When the interaction term was removed, there was no significant effect of holt 9 

function and days since maintenance check on the probability of use of the site for a rest 10 

(Χ2 = 0.22, df = 1, p = 0.637). 11 

The GLM using the probability of scent-marking as the response variable found no 12 

significant interaction between the season and days elapsed since maintenance check 13 

(Χ2 = 6.84, df = 3 p = 0.077). When the interaction term was removed, the probability of 14 

scent-marking on a given day was not significantly related to days elapsed since 15 

maintenance check (Χ2 = 0.57, df = 1, p = 0.520).   16 

 17 

3.4.2 B. The optimal number and placement of camera-traps 18 

 19 

The GLMM investigating effects on the probability of detecting an otter found no 20 

significant interaction between camera-trap position and group size (Χ2  = 0.04, df = 1, p 21 

= 0.852). When the interaction term was removed, the probability of detecting an otter 22 

was significantly related to camera-trap position and group size (Χ2  = 25.86, df = 1, p 23 

<0.001) (Figure 3-4a). When investigating the effects on the probability of detecting the 24 

sex of an adult otter, no significant interaction was found between camera-trap position 25 

and group size (Χ2  = 1.80, df = 1, p = 0.179). Removal of the interaction term resulted in 26 

a significant effect of camera-trap position and group size (Χ2  = 21.96, df = 1, p  <0.001) 27 

(Figure 3-4b).  The GLMM investigating effects on the probability of observing behaviour 28 

found no interaction between group size and camera-trap position (Χ2  = 0.52, df = 1, p 29 

= 0.469) and when the interaction term was removed, there was no significant 30 

difference from the camera-trap position and group size (Χ2  = 0.04, df = 1, p = 0.842), 31 

however there was a significant effect of camera-trap position (Χ2  = 28.07, df = 1, p < 32 
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0.001). The probability of the close camera-trap recording behaviours was 0.81 (± 0.04 1 

SE) substantially greater than for the distant camera-trap (0.47 [± 0.08 SE]). 2 

 3 

 4 

Figure 3-4 The probability of data capture was different between the two camera-trap positions when 5 
considering (a) the probability of detecting an otter; and (b) the ability to sex the adult otter  6 

 7 

The close position substantially out-performed the distant camera-trap both in terms of 8 

registering presence, count of otters and facilitating the identification of otter sex 9 

(Figure 3-5) and also recording behaviour. There was the highest degree of redundancy 10 

between cameras when recording behaviours, when 91% of all events where behaviours 11 

were recorded by both cameras. However there was substantially less redundancy 12 

between cameras for presence (57%), count (48%) and sexing (52%). 13 

  14 
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 1 

Figure 3-5 Comparison of the uniqueness of data capture between the two camera-trap positions in a 2 
random sample of 200 events. Pale grey indicates the proportion of events where only the close camera-3 
trap recorded data in each category (Presence, Count, Behaviours, Sex) which was unique and black 4 
indicates the proportion of events where only the distant camera-trap recorded data in each category. 5 
The hatched area represents the proportion of events where both camera-traps recorded the same data 6 
in each category 7 

 8 

3.4.3 C. Study duration 9 

 10 

There was a significant effect of holt function on days between consecutive records of 11 

otter presence (Χ2  = 195.35, df = 5, p < 0.001). There was also a significant effect of holt 12 

function on days between consecutive records of otter rest (Χ2  = 158.47, df = 5, p < 13 

0.001). 14 

The number of days between consecutive records of otter presence at the holt increases 15 

with decreasing breeding status relative to the natal period (Figure 3-6), this is more 16 

pronounced with resting patterns than presence.  17 

 18 

 19 

 20 

0 10 20 30 40 50 60 70 80 90 100

Sex (n=60)

Behaviours (n=85)

Count (n=200)

Presence (n=200)

Percentage of data captured by both camera-traps, and unique to each camera-trap

Unique to close camera-trap Common to both camera-traps Unique to distant camera-trap

Figure 3-6 95% and 90% percentiles of intervals in days between consecutive rest types for each holt 
function excluding prenatal as sample was too small; (a) for presence of otter at holt and; (b) for a rest of 
over 15 min 
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3.4.4 D. Optimal camera-trap settings  1 

 2 

3.4.4.1 Clip duration 3 

 4 

The 95th percentile for sexing otters using primary characteristics only was 22s, for 5 

sexing otters using a combination of primary and secondary characteristics was 19s and 6 

for recording scent-marking behaviour was 24s(Figure 3-7).  7 

 8 

  9 
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 1 

Figure 3-7 Minimum clip durations illustrating 95th percentile for three types of observation: (a) 2 

for sexing otters using primary characteristics only; (b) for sexing otters using a combination of 3 

primary and secondary characteristics and; (c) for recording scent-marking behaviour. (Solid 4 

line: fitted model, dotted lines: standard errors of the relationship, dashed lines: 95th 5 

percentile readings) 6 

 7 

3.4.4.2 Duty time 8 

 9 

Frequency of registrations peaked approximately two hours before sunrise and two 10 

hours after sunset (Figure 3-8). Nocturnal activity accounted for 81% (n = 2,301) of all 11 

registrations. Inclusion of dawn and dusk periods increases the proportion of 12 

registrations to 89%. However, when the holt was functioning as a natal holt, 86% of 13 

registrations were nocturnal and 100% of registrations occurred in the nocturnal and 14 

dawn and dusk periods (i.e. there was no diurnal activity).  There was a slight increase 15 
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in diurnal activity during the early rearing period (nocturnal: 86%, nocturnal, dawn and 1 

dusk: 93%). Diurnal activity increased during late rearing and non-breeding status too 2 

(late rearing nocturnal: 64%, nocturnal, dawn and dusk: 81%; non-breeding nocturnal: 3 

78%, nocturnal, dawn and dusk: 87%).  4 

 5 

 6 

Figure 3-8 Histogams of otter registrations at the holt in relation to hours around; (a) sunrise and; (b) 7 
sunset. Each registration is included within a single histogram depending on whether it was closer to (a) 8 
sunrise or (b) sunset 9 

 10 

3.5 Discussion 11 

 12 

Before interpreting the results from any camera trap study, potential sources of 13 

observer bias must be considered. There are two primary potential causes of observer 14 

bias in our study arising from the fieldwork affecting the otters: (i) regular maintenance 15 

visits and (ii) any effect from the camera-traps themselves. I did not find any effect of 16 

maintenance visit on the probability of resting or scent-marking at the study site and 17 

this was unaffected by the breeding status of the holt.  18 

The maintenance visits at the study site were, on average, two weeks apart and did not 19 

include scent masking, so the deposition of human scent at this interval does not appear 20 

to have affected otters’ use of the holt. There may be a threshold of shorter intervals 21 

between maintenance visits which would cause disturbance and affect patterns of 22 

activity, and future studies might be able to quantify this. Over such a long-term study, 23 

there may have been habituation to the visits which were by the same researchers 24 

throughout the study period. Additionally, the sleeping chambers of the holt are at least 25 
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6 m from the entrance so disturbance at the entrance to the tunnel may not be critical 1 

given the size and security of the structure.  2 

As such, further investigation using different types of structure in areas of higher/lower 3 

ambient disturbance levels (e.g. urban vs. rural sites) may be required to assess impacts 4 

of disturbance and habituation. Behavioural reactions to the camera-traps were not 5 

quantified in this study, although no adverse reactions to the close camera-trap were 6 

observed on the distant camera-trap. Studies on predatory species found that animals 7 

could readily detect camera-traps (Meek et al. 2014b) with some nocturnal predators, 8 

such as felid species being particularly sensitive. Individuals of some species have been 9 

observed exhibiting adverse reactions such as backing away  (Meek et al. 2016), and this 10 

could potentially affect detectability. However, neotropical otters continued to use holts 11 

after camera-traps were deployed facing the holts, and this was observed in both areas 12 

of the study (Rheingantz et al. 2016), also giant otter Pteronura brasiliensis were almost 13 

indifferent to camera-traps placed at the edge of latrine sites (Pickles et al. 2011) 14 

suggesting that this otter species may not be sensitive to camera-traps. For these 15 

reasons, the unaffected activity patterns may not necessarily be applicable at other 16 

sites, but the lack of any change in activity indicates that observer effect need not be 17 

considered in our subsequent analyses.  18 

In addition to bias resulting from any effects of the equipment or maintenance visits on 19 

the otter’s activity, observer bias could also have arisen when watching and 20 

documenting videos.  The number of species of mesocarnivore encountered was limited 21 

to five (otter, badger, mink, fox and pine marten). These could readily be told apart even 22 

on poor quality videos due to size, shape (especially tail shape and length) and 23 

vocalisations. Identification of sex was considered to have most risk of observer bias as 24 

size and proportions of the head and shoulders can be used to pick out male otters, 25 

criteria which are somewhat subjective in interpretation. To overcome this, the 26 

identification of sex was coupled with a second variable to indicate if the identification 27 

was based upon primary (i.e. immutable) characteristics such as presence of scrotum or 28 

nipples, or secondary characteristics which requires experience and expert judgement 29 

to assess body proportions (see section 3.3.5). Instances where the identification of sex 30 

was not possible were expected and allowed for in the data. If a similar study was 31 
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undertaken with multiple people, then inter-observer reliability between observers 1 

could be tested using the Cohen’s Kappa statistic (McCarthy et al. 2018). 2 

Very poor detectability of otter by PIR triggered camera-traps led researchers to 3 

question whether such camera-traps are appropriate for semi-aquatic species and 4 

whether active triggers would be more effective (Lerone et al. 2015). Our study 5 

illustrates that PIR camera-traps can successfully be used to study otter (see also 6 

Rheingantz et al., 2016), but differences in deployment can cause variation in 7 

detectability.  In the comparison of data capture between the dual set up and individual 8 

camera-traps, the close position provided the most information, both in terms of 9 

detecting otter and the ability to identify sex. With perfect detection, I would have 10 

observed one otter entering the holt for every otter exiting the holt (i.e. every event 11 

would be paired), but this only occurred in 61% (1,610 of 2,639) of events where holt 12 

entry/emergence occurred. Single events were thought to be due to missed 13 

registrations either when the otter did not trigger the PIR, where the PIR was triggered 14 

but the otter was not recorded possibly if the otter was moving quickly, or if an otter 15 

passed during the time when the camera-trap re-armed between videos. The high 16 

proportion of missing passes and the poorer detectability of the distant camera-trap are 17 

notable, although probability of detection has previously been shown to be affected by 18 

distance (Rowcliffe et al. 2011; Howe et al. 2017). A greater source of bias would have 19 

been experienced if only the distant camera had been used; this large discrepancy 20 

suggests a cause for concern when management/derogation licensing decisions are 21 

made based on camera-trap monitoring.  22 

Setting the distance between the camera-trap and the holt is a compromise. Increased 23 

distance gives a better overview of the den area and has a perceived, though not 24 

evidenced, potential reduction in disturbance, but has a negative effect on detection 25 

probability. The sensitivity of the target species to disturbance coupled with the 26 

individual characteristics of the den structure and the species’ effects on detection 27 

therefore all need to be balanced and understood when setting camera-traps at den 28 

sites. Detection improved when family groups used the holt which indicates distance to 29 

the target may be more critical for solitary species than species living in a social group. 30 

A group of otters will present as a larger stimulus for PIR. This may have been a 31 

contributing factor in the success of other camera-trap studies of otter species which 32 
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live in groups (Pickles et al. 2011; Day et al. 2016; Rheingantz et al. 2016) and the poor 1 

PIR detection reported for the Eurasian otter (Lerone et al. 2015) which is often solitary.  2 

If a close camera-trap is deployed, the addition of a second camera-trap should offer 3 

significant data gain or have other tangible benefits to justify the capital cost and 4 

substantial increase in analysis time. In this case study, the distant camera-trap offered 5 

little extra gain of data (Figure 3-5) and its loss would have been acceptable in light of 6 

this and also its limitations as a back-up if the close camera-trap failed. However, a 7 

second camera-trap placed on the other side of the holt may have reduced the amount 8 

of missing passes. 9 

False-triggers are a drain on power and memory storage. Duty time can be set on many 10 

models; a dormant camera-trap during the daytime for a nocturnal species would likely 11 

increase the longevity of a camera-trap in the field and reduce the likelihood of battery 12 

or memory depletion before maintenance visits. Otter activity at the holt was 13 

concentrated between one hour before dusk to one hour after sunrise, with 89% of all 14 

registrations occurring in this period and 100% of registrations when the holt was in the 15 

natal or early rearing phase. This conforms with studies on activity from radio telemetry 16 

where emergence occurred just after sunset and retirement was related to sunrise, but 17 

some diurnal activity was also recorded (Green et al. 1984). If duty times were set so 18 

that the camera-trap recorded from one hour before sunset and finished at one hour 19 

after sunrise, the loss of data (11%) in this study would have been considered acceptable 20 

in context with the considerable time it took to filter daytime footage and compile the 21 

events database, and likely would have reduced instances of battery or memory 22 

depletion. However, it has been suggested that resource partitioning may occur in areas 23 

of high density with single otters foraging in areas during the daytime and families of 24 

otter using the same area during the night (Jenkins 1980). It has also been demonstrated 25 

that the circadian activity of neotropical otter varies between regions (Rheingantz et al. 26 

2016). Caution is therefore needed before restricting the duty time of camera-traps 27 

even for perceived nocturnal species without knowledge of the study population, and 28 

our approach could be used on a set of pilot data before setting any restrictions on 29 

recording.  30 

The frequency of resting at the holt was significantly related to the holt function. To 31 

determine the current function of the holt, the minimum study duration should consider 32 
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the number of days between desired events, such as rests, with an additional period of 1 

habituation likely to be determined by the type of structure. This study of a very busy 2 

and secure holt in rich habitat indicates a minimum of twenty-eight days to have a 95% 3 

probability of recording at least one rest regardless of holt function, which would be 4 

unlikely to be known when initiating a study. A period of habituation also needs to be 5 

factored in. A minimum of 28 days would have been long enough to detect a more 6 

significant function such as cub-rearing or birthing (natal) if the holt currently had that 7 

function.  If the aim is to determine breeding, the monitoring should coincide with any 8 

known local breeding season, although this varies considerably across the species’ 9 

geographic range: summer on Skye in Scotland (Yoxon and Yoxon 1990), spring in 10 

southern Sweden (Erlinge 1967), locality-specific seasons in the Mediterranean (Ruiz-11 

Olmo et al. 2002) and aseasonal in England and Wales (Chadwick and Sherrard-Smith 12 

2010). A female is unlikely to give birth more frequently than once per year giving a 13 

window of opportunity for recording natal behaviour of 9-10 weeks out of 52. Where no 14 

breeding season is known, sampling through the year would be required if determining 15 

the status of a structure is a requirement for Environmental Impact Assessment or other 16 

assessments, however fidelity to natal holts is not guaranteed leaving some residual 17 

uncertainty. 18 

Long video clips will fill up memory space, drain batteries and increase analysis time. In 19 

the analyses for optimising clip duration, a survey simply for presence of otter would 20 

require the shortest clip duration, and it could be argued that still images would be more 21 

appropriate. To gain additional data such as identification of sex and recording scent-22 

marking behaviour, a balance needs to be found between analysis time and data gain. If 23 

video clips had been reduced to 19 seconds (the 95th percentile of the FAF analysis) from 24 

30, to facilitate sexing of otter using both primary and secondary characteristics, then 25 

this would proportionately have reduced memory storage by 35 - 40 % (11/30 s) and 26 

reduced power consumption, which would have the benefit of extending the number of 27 

days that the camera-trap could run untended. It would also have reduced video analysis 28 

time and so, on balance, the loss of the 5% of instances where the sex can be determined 29 

against the reduction of analysis time and greater field longevity of the camera-trap 30 

would have been an acceptable trade-off. The FAF approach could therefore be applied 31 
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to optimise settings for specific data collection; a trial period would enable the most 1 

efficient video duration to be estimated. 2 

 3 

3.5.1 Recommendations 4 

 5 

The study holt was a well-used otter breeding structure in rich habitat, and so there are 6 

limitations to the generality of the findings across all possible otter structures that 7 

practitioners may monitor. However, these results do present some general 8 

considerations for camera-trapping otters and other species of semi-aquatic and 9 

terrestrial mammals, as well as presenting a framework whereby efficiency and efficacy 10 

of camera-trapping can be investigated and improved via the analyses of prior data 11 

collected. At den sites, I recommend analyses to assess any observer effect. If more than 12 

one camera-trap is used on the same target area, the effect of distance on detectability 13 

should be considered, which could result in two close camera-traps. However, data 14 

redundancy should be evaluated, and a high level of redundancy may indicate that one 15 

camera-trap could be removed or could be run as a back-up. Any local variation in 16 

activity should be taken into account when determining duty time and minimum survey 17 

duration; factors such as breeding status should also be considered. An adaptive 18 

approach, whereby data is evaluated in the early stages of a study and appropriate 19 

modifications made to study design, could improve both data quality and use of 20 

resources.    21 

There are many potential biases within camera-trapping studies and further research is 22 

required to understand how environmental, spatial and animal-based factors interact to 23 

influence the detection probability of animals to camera-traps. These may vary between 24 

taxa or functional groups (e.g. semi-aquatic versus terrestrial mammal species), 25 

between solitary and social species and between habitats or environments, and so a 26 

one-size fits all approach is unlikely to be appropriate.  27 

 28 

 29 

 30 
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Chapter 4  Camera-traps as a tool to identify resting sites: a 1 

catchment scale study 2 

4.1 Abstract 3 

 4 

Camera-traps are a potential tool to identify otter resting sites. This study aims to 5 

contribute to an evidence-based method so this potential can be realised. Twenty-six 6 

structures indicated to be otter resting sites from field-signs (i.e. spraints, footprints 7 

etc.) were identified across the River Tweed catchment in southern Scotland. Each of 8 

these structures was monitored using camera-traps for approximately a year. From the 9 

camera-trap videos collected, patterns of resting and behaviour associated with resting 10 

were identified. Rests, where an otter spent at least 15min in the structure, were 11 

observed at six sites. There was a strong seasonal bias in rest events at these six sites; 12 

at least 95% of rests occurred in winter and spring and all structures were repeatedly 13 

used within each winter-spring period and in successive winter-spring periods. All six 14 

structures were used for nocturnal and diurnal rests and by single and groups of otter. 15 

Latrine behaviour and bedding collection were found to be good behavioural indicators 16 

of resting. Simulations of the data found that two sampling periods of 35 days each, one 17 

period in winter and one period in spring (i.e. a total of 70 days) would have had a 95% 18 

or greater probability of detecting a rest at all sites. This was more efficient than a single 19 

camera-trapping period which would have required 108 days to achieve the same 20 

outcome. This study indicates that camera-traps are an effective tool for identifying 21 

otter resting sites. Activity patterns, specifically the duration of time an otter spends in 22 

a structure, and behavioural indicators can be used to identify resting sites. The study 23 

found that survey effort could be refined by targeting the seasons when resting is most 24 

likely to occur at structures, and the sampling effort found in this study can be used as 25 

a guide for further studies. 26 

  27 
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4.2 Introduction 1 

 2 

The strict protection of otter necessitates the protection of individual places where 3 

otters rest (see Section 1.1.4.1). Radiotracking studies which sampled daily positions, 4 

found that approximately a third of resting sites were used once during the radio-5 

tracking contact time. “Resting sites” is the generic term encompassing all sites where 6 

an otter is inactive, including the term holt which is specific to enclosed structures used 7 

for resting such as burrows, or couches which are unenclosed areas used for resting such 8 

as in dense vegetation. One study followed three animals for 22, 36 and 98 days in 9 

Perthshire, Scotland (Green et al. 1984) and the other followed four animals for 47, 54, 10 

56 and 187 days (Isabel and Freire 2011).  There would be negligible probability of 11 

finding and/or identifying such infrequently used sites without radiotracking (i.e. using 12 

field-signs). The Habitat Regulations extends the protection of resting places to periods 13 

when they are unoccupied. This is clarified by EU guidance which states that the 14 

ecological functionality of resting and breeding places of otter and all other European 15 

Protected Species should be maintained with the condition that there is “a reasonably 16 

high probability that the species concerned will return to these sites and places” (EU 17 

2007, p. 41). Therefore, the focus for consultants’ surveys is to identify the sites where 18 

there is habitual use.  19 

To identify a resting site solely from CT observations at a site, an expectation of activity 20 

types and patterns is required for context. Radiotracking studies detect an animal’s 21 

spatial positions, so resting is deduced when the animal is stationary, particularly during 22 

the daytime (Green et al. 1984; Isabel and Freire 2011). As CTs do not monitor the otter 23 

itself when it is resting out of view in an enclosed structure, a different approach to 24 

defining a rest is necessary, such as a threshold of time the otter spends within the 25 

structure. Resting must therefore be ascertained from activity patterns at a site. 26 

However, it is possible that certain behaviours may also be so strongly associated with 27 

resting that they could be diagnostic; these may be identifiable using CTs. 28 

Radio-tracking studies have examined aspects of resting site selection and use (Rosoux 29 

and Libois 1996; Isabel and Freire 2011; Weinberger et al. 2019). The findings of these 30 

studies are mainly framed in term of spatial movements. Green et al. (1984) found that 31 

otters rarely change resting sites during the daytime, and this has been corroborated 32 
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(Rosoux and Libois 1996).  Green et al. (1984) also found that otters are active in bursts 1 

through the night, with intervening rests. Locating resting sites at night using radio 2 

telemetry can lead to disturbance (Isabel and Freire 2011), and studies on resting sites 3 

therefore focus on diurnal sites (Weinberger et al. 2019). The use of holts for resting was 4 

found to be more frequent than couches in the seasons when vegetation is at a 5 

minimum, possibly due to a lack of visual cover as this was observed more in areas which 6 

had higher disturbance (Weinberger et al. 2019). 7 

Some studies in the UK suggest a seasonal bias in otter births, peaks were found in early 8 

winter to spring on the Severn catchment (Mason and Macdonald 1987a) and also in 9 

Perthshire  (Green et al. 1984).  Radio-tracking studies also infer that females rear their 10 

young in small, calm watercourses, and use smaller core ranges (Green et al. 1984; Ruiz-11 

Olmo et al. 2007). Winter-spring breeding with its associated reduction in range of the 12 

female and cubs, and selection of smaller watercourses, suggest that activity on smaller 13 

watercourses would be greater within the winter-spring period. 14 

There is little information on whether resting sites are shared by adult otters, either at 15 

the same time or at different times. The CT footage for the long-term study site showed 16 

an adult male, a sub-adult male, breeding female and two cubs simultaneously resting 17 

in the holt structure several times. Female otters are assumed to rest with their cubs at 18 

least when the cubs are young so sharing of a resting site by a female and dependant 19 

cubs would be expected as a minimum. A radiotracking study in Portugal (Quaglietta et 20 

al. 2014) followed 16 otters to investigate socio-spatial organisation. In the animals that 21 

they were tracking, they found a significantly greater number of otters resting together 22 

simultaneously than predicted. They also found additional instances of simultaneous 23 

shared resting of tagged and untagged animals. These simultaneous shared rests were 24 

in an area where there was an abundance of resting sites, suggesting that the behaviour 25 

was by choice. 26 

Ideally, any observations relating to resting activity or resting behaviour could be used 27 

as diagnostic indicators to distinguish between sites used for resting, and those which 28 

are not. However, in order to reject a site being a resting site, there needs to be a 29 

sampling protocol which gives an acceptable level of certainty that those indicators 30 

would be recorded during the sampling period if the site is a resting site.  31 
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4.2.1 Aims and objectives 1 

 2 

The overarching aim of this chapter is to provide an initial analysis of seasonal and 3 

diurnal otter activity that can be used to inform camera-trapping protocols of otter 4 

resting sites. I analyse resting and non-resting activity recorded on camera-traps from 5 

26 structures which have potential as otter resting sites across the River Tweed 6 

catchment in the UK.    7 

I hypothesise that there will be patterns in resting events, specifically that (i) nocturnal 8 

rests will be shorter than diurnal rests; otter is a nocturnal species and likely to spend 9 

most of the dark hours foraging, with short rests, (ii) there will be a difference in resting 10 

duration between groups of otters and single otters due to different energy needs, and 11 

(iii) there will be more use of structures for resting in winter due to a greater need for 12 

shelter. 13 

I hypothesise that there will be more otter activity on smaller watercourses in winter 14 

and spring than summer and autumn due to winter and spring peaks in breeding, and 15 

preference of smaller watercourses for cub rearing. 16 

As there are no guidelines on camera-trapping survey effort to determine a resting site, 17 

I aim to calculate the minimum duration of camera-trap days required to detect a resting 18 

event with a reasonable level of certainty,  and to identify any behavioural indicators of 19 

a resting site. 20 

 21 

4.3 Methods 22 

 23 

4.3.1 Study catchment 24 

 25 

The River Tweed catchment spans the Scottish Borders in the south of Scotland and 26 

North Northumberland in England. Its headwaters rise in the Lowther Hills in 27 

Peebleshire, the highest point in the catchment being at 850m AMSL; it flows generally 28 

eastwards into the North Sea at Berwick-upon-Tweed. The catchment is approximately 29 

4,335km2 (SEPA 2015) and has a variety of river types from small, oligotrophic tributaries 30 
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in the upper catchment, to the eutrophic reaches of the lower Tweed. The whole river 1 

and its tributaries are designated as a Special Area of Conservation (SAC) under the 2 

Habitats Regulations (see Section 1.1.4.1) which is the highest level of protection 3 

afforded to a site in the UK.  Otter is one of the qualifying interests of the River Tweed 4 

SAC. For SACs, there is a duty to report to Europe on the populations of qualifying 5 

species every six year. The last assessment for otter was in 2011, and it was judged to 6 

be in Favourable Conservation Status (Scottish Government 2020).  7 

 8 

4.3.2 Spatial arrangement of study sites 9 

 10 

Individual monitoring sites in this study were spatially arranged for independence of 11 

data such that sites running concurrently were likely to be in different home-ranges. The 12 

minimum distance between sites being monitored at the same time (i.e. concurrently) 13 

was based on the approximate size of a females’ range, according to common practice 14 

(Ferdia et al. 2011), although sites could be closer together if non-concurrent. Ranging 15 

data from radio-tracking studies (Table 4-1,) was used as a guide to variation in home-16 

range size. Spatial independence of study sites was based upon a minimum of 20 km via 17 

watercourses in oligotrophic systems (i.e. low nutrient status) and 8 km between sites 18 

in mesotrophic (i.e. medium nutrient status) or eutrophic systems (i.e. high nutrient 19 

status). Green et al. (1984) noted that range boundaries were often at confluences or 20 

other prominent features, so major confluences were therefore considered as offering 21 

likely separation of home ranges. Where potential monitoring sites were found in 22 

proximity (i.e. likely to be within the same home-range), the sites were included but 23 

were monitored in different years. Since the study design, a more recent radio-tracking 24 

study in Southern Portugal found a mean female home-range of 11.2km (n = 5) 25 

(Quaglietta et al. 2015) which is within the range of those in earlier studies cited in Table 26 

4-1. 27 

  28 
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Table 4-1 Size of otter ranges from radio tracking data. Sizes are given in km units as otters have 1 
approximately linear ranges 2 

Source Sex Total range Region and Habitat Notes 

Green et al. 
1984 

Female 16km  
 22km 

River Earn (upper Tay 
catchment), Scotland. 
Oligotrophic river system 

Female range 
unrelated to river 
width Male  39km 

Durbin 
1996b 

Female 24km River Don, Scotland. 
Oligotrophic river system 

 

Male 50km  84km 

Néill et al. 
2009 

Female 7.5km 
(SD1.5km) 
n=7 

Ireland. Mesotrophic 
river system 

Female home range 
inversely related to 
river width in rivers 
less than 15m wide.  Male 7—19km n=5 

Georgiev 
2007 

Female 8.5km of 
linear 
watercourse, 
2.2km of 
water body 

Bulgaria. Mostly through 
field systems and 
including an area of canal 
so likely to be 
mesotrophic. 

 

 3 

 4 

4.3.3 Selection of study sites 5 

 6 

Potential study sites were found by walking watercourses and adjacent habitat to locate 7 

suitable structures. Structures were assessed using the same approach as a field 8 

ecologist would to identify structures potentially used for resting by otters. Structures 9 

could be enclosed or semi-enclosed with any entrance to a tunnel or chamber being at 10 

least 10cm at the narrowest point. Potential resting sites were identified by the presence 11 

of field-signs e.g. spraint, footprints and forms (shallow depressions approximately 50—12 

60cm diameter). Structures were excluded where there was an elevated risk of 13 

equipment theft, submersion of CTs during moderate river-level rises, or where access 14 

permission could not be secured or where there were safety considerations for return 15 

visits to change the CT batteries. Finding new study sites was an ongoing task, so that as 16 

some study sites were completed, suitable replacements had been identified. Sites used 17 

within the study are presented in Figure 4-1. 18 
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 1 

Figure 4-1 Location of study sites in the River Tweed catchment (shaded blue). Sites close to each other 2 
were not run concurrently. 3 

 4 

4.3.4 Camera-trap deployment and settings 5 

 6 

Camera-trap set up was necessarily bespoke at each site due to varying topography and 7 

surrounding vegetation. The analysis of data from the long-term study site (see Chapter 8 

3), and detectability trials using CCTV (see Chapter 2) indicated that CT set-up should 9 

include at least one close CT within 2 m of the structure entrance, set parallel to the 10 

ground at approximately 20-30cm high. The ideal height for maximum detection is just 11 

below shoulder height (Apps and McNutt 2018b) so that the body of the animal is in the 12 

centre of the detection zone. I estimated the shoulder height of otter to be 17-25cm, 13 

but this height was considered too prone to interference from vegetation so the CTs 14 

were set slightly higher than this. The main area of interest (i.e. the structure entrance) 15 

was roughly central to the field-of-view, whilst ensuring that runs remained unimpeded. 16 

The challenging topography on many watercourse banks often precluded a “standard” 17 
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set-up, in these cases distance to the structure entrance and maintaining unimpeded 1 

runs were prioritised. 2 

Camera-trap deployment is classified into three broad categories: (1) trio CTs: three CTs 3 

when a structure had more than one entrance (n = 2), (2) dual CTs: most structures used 4 

a dual CT set up with two CTs set either at different angles or distances from the 5 

entrance (n = 22), and (3) single CT: where available space did not facilitate two CTs e.g. 6 

at Frogden2 which was 1m up a tree (Figure 4-2d), a single CT was deployed (n = 2). 7 

When a single CT was deployed, it was invariably close, at approximately 1m from the 8 

entrance. 9 

Bushnell Trophy cams, models 119678, 119676 and 119776 were used which have low-10 

glow LEDs that illuminate at 850nm to avoid visible light disturbing any otters. The covert 11 

illumination was also virtually invisible to humans, lessening the chance of them being 12 

detected and stolen. During the four years of data collection, some CTs became faulty 13 

and were replaced with new CTs. On occasions, these had to be newer models due to 14 

the manufacturer releasing different models. This resulted in three models being used. 15 

Metal security boxes were used to house CTs where possible, either attached to a tree 16 

if one was available in the right position, or to a wooden stake. At most sites, the camera-17 

traps were locked into the housing. Hard fixings also ensured consistency of the field of 18 

view and detection zone of the CT between each change of CT. To avoid theft, CT housing 19 

often emulated features in the locality to avoid attracting attention. Examples of fixings 20 

include a tall wooden box emulating a fence post with a cut out section to house the 21 

camera-trap (Figure 4-2 b & f) and a section of round plastic pipe with a cut out section 22 

(Figure 4-2c).  23 

  24 
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 1 

Figure 4-2 Examples of different camera-trap (CT) deployments in this study with CTs indicated 2 

by arrows, (a) dual deployment on stakes on flat ground (Learmouth), (b) dual deployment on 3 

flat ground with CTs concealed in wooden posts (Torquhan), (c) single CT in drain pipe (Frogden 4 

1), (d) single CT in security case (Frogden 2), (e) two CTs of a three CT deployment, one set high 5 

to cover otters climbing tree to entrance and one set low down to cover runs to entrance at 6 

ground level (Gordon), (f) dual system on steep bank with two close CTs covering structure 7 

entrance from different angles (Hownam), (g) dual system with CTs suspended on wooden arms 8 

to avoid submersion in water and enable maintenance from bank top when water-level was high 9 

(Eden 2) and, (h) wooden mounting board for CT to facilitate view of structure (Yetholm Loch). 10 

 11 

At approximately three-week intervals (median = 21d, IQR = 16—26d), each CT was 12 

replaced with one with fresh batteries and an empty SD card from a pool of CTs. The 13 

decision to visit each site at three weekly intervals balanced several considerations. High 14 

milliampere hours rechargeable batteries (2,900 mAh) were used in the CTs due to the 15 

number of sites and longevity of study; battery depletion was therefore a concern and 16 

three weeks was thought to run a low risk of battery depletion. Analyses at the long-17 

(a) Learmouth (b) Torquhan (c) Frogden 1 

(d) Frogden 2 (e) Gordon (f) Hownam 

(g) Eden 2 (h) Yetholm Loch 
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term study site (Chapter 3)  found no effect of disturbance with two-week maintenance 1 

visits (see Section 3.4.1), and so three-week intervals suggested no measurable impact. 2 

Finally, field-signs (e.g. spraint counts) was recorded at each CT maintenance visit and 3 

three weeks was considered sufficient for field-signs to change between visits (this is 4 

discussed further in Chapter 5). Visits to sites to change CTs and collect field-sign data 5 

(discussed below), are hereafter called “maintenance visits”. High river conditions 6 

shortened the interval between maintenance visits in order to retrieve CTs, and at some 7 

sites, lengthening the interval as the water was too deep to access the CT 8 

emplacements. 9 

CT time was programmed to Greenwich Mean Time. Times on CTs per site were 10 

synchronised as best as possible, however the time could not be set more precisely than 11 

to the minute. The CTs were programmed to record 20s video (as per the findings in 12 

Section 3.3.6.4), with accompanying audio, with the minimal re-arming time of 1s. Video 13 

was used as it collects more data in terms of sexing otter, vocalisations and scent 14 

marking behaviour, the longer trigger time of video capture was compensated for as the 15 

sites were used for scent marking, thus increasing the time of the animal in front of the 16 

CT (see Section 2.5.3).  The PIR sensitivity was set to “auto” which is indicated by the 17 

manufacturer as being optimal where there is potential for variation in day and night-18 

time temperatures. The aim was to monitor each site for approximately a year, although 19 

monitoring at some sites was curtailed for short periods due to heavy rain and 20 

associated spates/floods. The monitoring period for sites identified as resting sites were 21 

extended for over a year to obtain more data on activity patterns. Monitoring ceased 22 

prematurely at Lochside and Newhall when the structures were destroyed by severe 23 

storms and monitoring ceased early at Foggo due to frequent threats of submersion due 24 

to closeness of the CTs to the water. The footage from retrieved CTs was reviewed 25 

briefly to assess how the CT had performed and if any faults were indicated with the CT 26 

unit.  27 

The research was covered by licenses to disturb otters at resting sites, in Scotland (issued 28 

by Scottish Natural Heritage) 68572 and in England (issued by Natural England) 2016-29 

26206-SCI-SCI.  30 
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4.3.5 Summary of study sites 1 

 2 

The study sites include a range of structure types and are on a range of river sizes and 3 

positions in the catchment (Table 4-2). Open structures could be fully examined with a 4 

torch when initially found, but closed structures could not. The mean width of the water-5 

course was calculated using QGIS v 3.8.2 - Zanzibar (QGIS Development Team 2018) from 6 

OS VectorMap digital maps using GIS from three measurements, at the location of the 7 

structure being monitored, 100 m upstream and 100 m downstream. The Strahler 8 

stream order is a measure of stream order based upon the number of divisions between 9 

the headwaters and where the river enters the sea (Strahler 1957). A headwater stream 10 

is allocated as a one, as would a spring fed stream further down the catchment. The 11 

lowest reach of the River Tweed is allocated a ten, therefore all values lie between one 12 

and ten.   13 
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Table 4-2 Summary of the main properties of the study sites. Mean width refers to the width of the 1 
watercourse at the structure (see text). Locations of sites are shown in Figure 4-1 2 

SITE 
STRUCTURE 
TYPE 

OPEN 
OR 
CLOSED 
STRUCTURE 

MEAN  
WIDTH (m) 

STRAHLER  
INDEX 

Berwick 1 Ledge OPEN 100 10 

Berwick 2 Burrow CLOSED 103 10 

Crailing Erosion behind roots CLOSED 7 7 

Eden 1 Burrow CLOSED 7 8 

Eden 2 Erosion feature OPEN 7 8 

Floors 1 Burrow CLOSED 66 9 

Floors 2 Erosion feature OPEN 76 9 

Foggo Erosion feature OPEN 8 8 

Frogden 1 Hollow tree CLOSED 4 6 

Frogden 2 Hollow tree CLOSED 4 6 

Galashiels Burrow CLOSED 16 8 

Gordon Hollow tree OPEN 2 2 

Hawick Burrow CLOSED 19 8 

Hownam Hollow tree CLOSED 6 7 

Learmouth Hollow tree CLOSED 2 3 

Lochside(Eggs) Hollow tree CLOSED 2 5 

Marlefield Epicormic growth CLOSED 11 7 

Maxton Rock/earth burrow CLOSED 53 9 

Mill1 Derelict building CLOSED 52 9 

Mill2 Burrow CLOSED 54 9 

Nenthorn Hollow tree CLOSED 6 8 

Newhall Burrow CLOSED 10 7 

Rutherford Burrow CLOSED 44 9 

Slitrig Erosion feature OPEN 12 7 

Torqhan Hollow tree CLOSED 9 7 

Yetholm Loch Burrow CLOSED 4 3 

 3 

 4 

4.3.6 Recording activity data from footage 5 

 6 

Video sorting and data extraction from the videos for each site commenced after 7 

monitoring of that site had been completed, to avoid any unintended bias from video 8 

observations of sprainting (see below) affecting field-sign data collection (analysed in 9 

Chapter 5).  10 

The videos from each camera trap were watched from each period between 11 

maintenance visits per site, and sorted into four folders (1) otter, (2) badger and mink, 12 
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(3) first and last video and, (4) bycatch (non-target species e.g. birds and rodents) and 1 

false-triggers (footage with no faunal observations). If the camera-trap failed to record 2 

for the full duration of the monitoring period due to excessive triggering depleting the 3 

batteries, the date of the last video was recorded to provide a record of days working in 4 

the field for each camera-trap position. The selected mammal videos were watched in 5 

full and a sequential list of activity, the “Events List” was produced from the combined 6 

data of all CTs at the site in the same way as for the longitudinal study (see Section 3.3.5). 7 

An event was a unit of activity pertaining to an individual otter. Some events contained 8 

observations of an entry into the structure and subsequent exit, whether a short while 9 

or several hours later. These are termed “paired events” as in this example at Hownam: 10 

https://tinyurl.com/uk3gtsw  & https://tinyurl.com/v26w3aa (also see video 11 

descriptions within links). “Single events” are when the time in the structure could not 12 

be determined, for instance if an otter was observed entering a structure but there was 13 

no footage of it exiting. Often, the otter would not enter the structure, but only 14 

interacted with the area at the entrance, these were recorded as a “pass” , as in this 15 

example at Mill1:  https://tinyurl.com/ttubrs4  (i.e. the otters “passed” the site without 16 

entering). Trigger probability can be reduced when an otter has exited the water (see 17 

section 2.4.4). To test if this is affected by season, which would indicate an effect of 18 

temperature, the distribution of event types (i.e. paired or single-entry or single-exit) in 19 

summer and winter were tested for independence using the Chi squared test. Summer 20 

and winter were used as they would have the greatest difference in temperature. The 21 

null hypothesis being tested was that that season (i.e. winter and summer) does not 22 

significantly affect the type of event. 23 

For each event, three main types of data were recorded: (1) the temporal details of the 24 

observation and the interaction with the structure (i.e. the date and time and whether 25 

the otter entered the structure or not), (2) details of the individual otter where possible 26 

(i.e. sex, age etc.), and (3) behavioural observations (see Table 4-3).  27 

Finally, a calendar of activity was derived from the Events List, this summarised key 28 

observations for every day within the period that each site was active and comprised 29 

the variables in Table 4-4.  This also included variables about the structure type, river 30 

width and position in the catchment. 31 

https://tinyurl.com/uk3gtsw
https://tinyurl.com/v26w3aa
https://tinyurl.com/ttubrs4
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Table 4-3 Variables derived from the activity recorded at each site, and included within the "Events List" 1 
datasheet 2 

Variable and type of 
data 

Levels/Units Descriptions 

SITE, categorical 26 levels Name of site 

EVENT TYPE, categorical 
 

PAIRED 
 
SINGLE 

An event where the same otter is recorded entering 
and exiting the structure 
An event where the otter is either observed entering, 
or exiting the structure 

TIME IN STRUCTURE, 
continuous 

Minutes Minutes calculated between entry to holt and exit from 
holt, rounded to nearest minute. 

REST, categorical 1 
0 

Rest (TIME IN STRUCTURE ≥ 15 mins) 
No rest (TIME IN STRUCTURE ˂ 15 mins) 

SUNRISE, time Date & time Date and time of sunrise on day of entry to structure 
(calculated using function in R) 

SUNSET, time Date & time Date and time of sunset on day of entry to structure 
(calculated using function in R) 

MID, time Date & time Time and date of the mid-point between the entry and 
exit of each paired rest 

NOCT.DI, categorical Nocturnal 
Diurnal 

When mid-point of rest lies between sunset and 
sunrise 
When mid-point of rest lies between sunrise and 
sunset.  

UNIQUE REST, categorical  
 
 
1 
 
0 

A group of three otters was recorded as three separate 
observations. This variable enabled each day to be 
allocated as a rest day, or not. 
Rests by single otters and the first registration of a 
group of otters 
 Second and subsequent otters resting in a group 

  3 
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Table 4-4 Variables used within a calendar of events datasheet which summarises otter activity per 1 
camera-trap day 2 

Variable and type of 
data 

Levels/Types Descriptions 

SITE, categorical 26 levels Names of sites 

No. EVENTS, integer Count Number of observations of otter at that site on that 
date 

PRESENCE, categorical O Otter recorded 

 NO Otter not recorded 

 GAP No CTs set up due to impending spates 

 CAMS.DEFUNCT No CTs running as batteries depleted, or other 
malfunctions 

ORDINAL DATE, integer Integer Sequence of numbers denoting day of year, Jan 1st =1, 
Jan 2nd = 2 etc. 

YEAR - Year of observation 

SEASON, categorical WINTER 
SPRING 
SUMMER 
AUTUMN 

December, January, February 
March, April, May 
June, July, August 
September, October, November 

STRAHLER, integer Range of 1-10 Number derived from GIS to describe position of site 
within catchment (stream order) 

MEAN WIDTH, integer Continuous Mean width of river (m), from width at study site and 
100 m up and downstream. Measured using GIS. 

RESTING SITE, categorical 1 
0 

Resting site (see Section 0 for definition) 
Not a resting site 

REST, categorical 1 
0 

Rest observed that day (see Section 0 for definition) 
No rests observed that day 

STRUCTURE, categorical  
OPEN 
CLOSED 

Description of structure: 
Unenclosed e.g. a ledge, 
Enclosed e.g. hollow tree 

 3 

 4 

4.4 Analyses 5 

 6 

4.4.1 Are there differences in the patterns of otter registrations at resting and non-resting 7 

sites 8 

 9 

Using paired events, the duration of time the otter spent within the structure was 10 

calculated. A site was classified as a resting site if one or more paired events recorded 11 

an otter inside the structure for ≥15min. Sites where this was not observed were 12 

classified as non-resting sites (see Sections 3.3.5 for further details).  Two sites, 13 
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Marlefield and Mill2 could not be identified as resting or non-resting sites using this 1 

approach and are therefore excluded. Sites identified as resting sites are Crailing, 2 

Frogden1, Frogden2, Gordon, Learmouth and Torquhan. 3 

The number of otter observations recorded by the CTs at each site per day was used as 4 

a response variable. As individual otters cannot be distinguished from each other, the 5 

count may represent one, or more than one individual. Days where the CTs were not 6 

functioning for any reason were excluded.  7 

Variables hypothesised as potentially affecting patterns of activity were mean width of 8 

river, Strahler index, whether the site was a resting site or a non-resting site (i.e. where 9 

an otter had not been observed inhabiting the structure for 15min or longer), the type 10 

of structure (open or closed), season and month.  11 

Mean width and Strahler index were highly correlated (rs = 0.90, p <0.001); mean width 12 

was selected for inclusion in the models as it was a direct measurement. Additionally, 13 

the six resting sites (identification based upon paired events) were all on narrow 14 

watercourses (Figure 4-3). However, as both these variables were of interest they were 15 

included in competing models, but not within the same model. 16 

 17 

  18 

 19 

There was a high proportion of zeros in the data  (73% of observations, n = 8075) (Figure 20 

4-4) (i.e. days when no otter activity was observed at a given site [across all sites, resting 21 

Non-resting site        Resting site 

Figure 4-3 Distribution of the mean width of the river for non-resting sites (n=18) and resting sites (n= 
6) identified in this study. Two sites (Marlefield and Mill2 are excluded due to uncertainties over their 
status as resting sites or not) 
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sites and non-resting sites]), which indicated that a zero-inflated or hurdle model might 1 

be necessary.  2 

 3 

Figure 4-4 The distribution of the number of observations of otter per camera-trap day 4 

 5 

Zeros in data can have different origins and are classed as structural or sampling zeros. 6 

An example of a zero-inflated model would be if the response variable was the count of 7 

otters sprainting per CT day. Zeros could arise from an absence of otter registrations 8 

(structural zeros – as observations of an otter sprainting would be impossible), or when 9 

otters are registered on a CT day but do not spraint (sampling zeros). A zero inflated 10 

model accounts for structural and sampling zeros in the data (i.e. when the count of an 11 

observation always has to be zero (structural zeros) and where the count can be either 12 

a zero or positive number (sampling zeros) (Hu et al. 2011)). Sampling zeros are 13 

therefore predicted by the model and included in the conditional part of the model (i.e. 14 

the count data) and the remainder of the zeros (structural zeros) are modelled with a 15 

binomial distribution. Hurdle models also account for excess zeros, but a hurdle model 16 

models all zeros with a binomial distribution. The non-zero count data is modelled with 17 

the distribution stated in the model which is truncated at 1 as it lacks any zeros.   18 

A hurdle model structure was therefore considered most appropriate (Steel et al. 2013) 19 

as only one source of zeros was implicated which was the CT days when there were no 20 

recordings of otter. Furthermore, a hurdle model was beneficial as the model has a 21 

single AIC value, but the output is in two parts, the zero count data and the non-zero 22 

count data. This facilities interpretation of “presence/absence” of otter at structures in 23 
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addition to the intensity of presence (i.e. the number of registrations of otter per day 1 

when they were present). 2 

Instances of the CT triggering due to vegetation, or non-target species had been 3 

discarded, as had any days when the close CT had was not functioning, therefore any 4 

zeros generated were due to the CT not recording otter and were all considered to be 5 

structural (i.e. a genuine lack of otter registrations on that day).   6 

A candidate list of models was created (Table 4-5) using combinations of variables in 7 

Table 4-4. To find the best fitting error distribution, the global model was fitted with 8 

These were fitted as generalised linear mixed hurdle models with a truncated negative 9 

binomial error distribution using the R package glmmTMB (Brooks et al. 2017). 10 

Modelling was carried out in R version 3.6.2 (RCore Team 2015) within R Studio 11 

(RStudioTeam 2015). Plots of best fitting models were created using the R package sjPlot 12 

(Lüdecke 2019). 13 

Table 4-5 Candidate model list where the response variable Y is the number of otter registrations per 14 
camera-trap day, and explanatory variables are defined in Table 4-4. Mixed models were fitted using site 15 
as a random factor, and with a hurdle model structure with a truncated negative binomial distribution for 16 
the count data.  17 

Model 
Y ~ NULL MODEL 
Y ~ RS 
Y ~ SEASON 
Y ~MONTH 
Y ~ln(MEAN.WIDTH) 
Y ~ OPEN.CLOSED 
Y ~ RS+SEASON 
Y ~ RS*SEASON 
Y ~ RS+MONTH 
Y ~ RS*MONTH 
Y ~ OPEN.CLOSED+SEASON 
Y ~ OPEN.CLOSED*SEASON 
Y ~ OPEN.CLOSED+MONTH 
Y ~ OPEN.CLOSED*MONTH 
Y ~ SEASON+ln(MEAN.WIDTH) 
Y ~ SEASON*ln(MEAN.WIDTH) 
Y ~ MONTH+ln(MEAN.WIDTH) 
Y ~ MONTH*ln(MEAN.WIDTH) 

 18 

4.4.2 Simulations to determine minimum camera-trap sampling duration to record a rest 19 

 20 
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The following analysis aims to use simulations based on the empirical distribution of 1 

resting events at each of the six resting sites (identified from paired events) in order to 2 

estimate the minimum number of CT days required to detect a rest with a reasonable 3 

level of certainty , with the aim of feeding into surveying guidelines.  4 

Most of the resting days (95%) occurred in winter (December, January, February) and 5 

spring (March, April, May) (see Section 0) so summer and autumn were excluded. To 6 

calculate a sampling protocol which would have a 95% probability of determining a rest, 7 

and therefore determine whether a site is a resting site, separate simulations were run 8 

in consecutive winter and spring seasons at each of the six sites where rests were 9 

recorded from paired observations (Crailing, Frogden1, Frogden2, Gordon, Learmouth 10 

& Torquhan). No paired rests were recorded at any other sites. There are six months in 11 

winter and spring combined, sampling for one period could potentially require more 12 

survey effort than two sampling periods. However, as the results could potentially 13 

contribute to camera-trapping guidelines of resting site, simplicity of sampling is also 14 

advantageous. Therefore, a comparison was made between one sampling period and 15 

two equal sampling periods, one in winter and one in the following spring. This 16 

quantified the difference in sampling effort between the two sampling approaches to 17 

determine whether any reduction in sampling with two periods is justified against the 18 

simplicity of a single sampling period. 19 

Simulations were run on eight winter-spring periods from the six sites (Table 4-6) to 20 

determine the duration of camera-trap days required have a 95% chance of detecting a 21 

rest. Simulations were first run to find the number of camera-trap days of a single 22 

sampling period,  then simulations were run to find the number of camera trap days if 23 

there were two sampling periods of equal duration, one in the winter and the other in 24 

spring. The maximum duration of days for each scenario (i.e. a single sampling period, 25 

and a double sampling period), could then be compared. The maximum duration would 26 

have detected a rest on all eight winter-spring periods and could be used as a guide for 27 

survey effort to have a good (95%) chance of detecting a rest. 28 

Eight winter-spring periods were used from the six sites (Table 4-6) which were treated 29 

separately. 30 

 31 
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 1 

 2 

Table 4-6 Summary of data used to simulate the duration of one, or two camera trapping periods which 3 
would have a 95% probability of a rest. 4 

 WINTER SPRING  

SITE (year) 

No of 
rest 
days 

No of days 
CTs 

operating 

No of rest 
days 

No of days 
CTs 

operating 

% of days CTs 
operating in winter-

spring period 

CRAILING (17-18) 10 77 6 79 87 
FROGDEN1 (17) 22 45 12 52 54 
FROGDEN2 (18) 3 38 0 87 73 
FROGDEN2 (18-19) 11 90 0 85 97 
GORDON (16-17) 20 90 11 55 81 
LEARMOUTH (17-18) 0 84 3 63 82 
LEARMOUTH (18-19) 3 89 6 75 91 
TORQUHAN (17-18) 6 56 10 90 81 

 5 

4.4.2.1 Single period of camera-trap days 6 

 7 

This analysis aimed to find the duration of a single period of camera-trapping that would 8 

have a 95% chance of detecting a rest. Simulations were run in R Studio (RStudioTeam 9 

2015), code and data are available at https://github.com/melanieCTfindlay/Otter-CT-10 

research.git . To run the simulations, each date was first allocated a number starting at 11 

1 on the first day of winter (1st December), 2 for the second day (2nd December) etc. to 12 

the end of spring which could be used as an index within a loop function. If the winter-13 

spring period was shorter than the full 181 days (182 in leap years), the first date of 14 

recording was allocated as 1. The probability of determining a rest was first calculated 15 

for a sampling duration of a single day. Starting at day 1, if a rest was recorded, a 1 would 16 

be entered into a prepared, empty vector and 0 if a rest was not recorded. This was 17 

repeated for day 2, day 3 and so on until all 1-day periods had been recorded. This was 18 

repeated for every possible consecutive 2-day sampling period, again starting on day 1 19 

and recording a 1 if a rest was recorded or 0 if no rest was recorded in the two day 20 

sampling window, then moving onto day 2 and progressing through all possible 2-day 21 

periods. This was then repeated for a sampling period of 3 days and so on. For each 22 

sampling period (1 day, 2 days etc), the 1’s were summed and divided by the total 23 

number of simulations to give the proportion of simulations when a rest was detected. 24 

If t was the sampling period in days and s was the number of days in winter and spring 25 

https://github.com/melanieCTfindlay/Otter-CT-research.git
https://github.com/melanieCTfindlay/Otter-CT-research.git
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combined, then the number of possible simulations for a given t would be s-(t-1). 1 

Because only resting sites were subsampled, there would be a 100% chance of detecting 2 

a rest where t=s and a 0% chance where t=0.  As examples of the potential number of 3 

simulations, for a three-day sampling period, the number of simulations would be 179 4 

(i.e. 181-(3-1)), and a twenty-day sampling period would be 162 (i.e. 181-(20-1)). 5 

However, there were short periods where a camera had malfunctioned or where 6 

sampling ceased due to anticipated river spates. A variable was therefore included for 7 

each day to denote if the camera-traps were working (1) or not (0). Individual sampling 8 

periods could then be excluded if they did not reach a predetermined threshold of 9 

sampling days. This threshold was set so that simulations were only included if the close 10 

CT (i.e. the CT closest to the structure entrance), was functioning 6 out of every 7 days. 11 

However, simulations were retained if a rest was detected even if the CTs functioned 12 

less than 6 out of 7 days because a greater number of functioning CT days in that 13 

simulation would not have changed the outcome. This would also be applicable to 14 

consultants, that if a rest was detected before CTs malfunctioned, then that would be 15 

evidence of a rest, however if a rest was not detected and CTs malfunctioned this would 16 

not be sufficient to conclude there were no rests and further sampling would be needed. 17 

The proportion of lost simulations was calculated per sampling window. 18 

The probability of detecting a rest for a given sampling duration was plotted against each 19 

duration (between 1 and s) and the point at which this reached ≥ 0.95 was then taken 20 

as the minimum recommended sampling duration if a single camera-trapping period in 21 

winter-spring were to be adopted.    22 

 23 

4.4.2.2 Two equal periods of camera-trap days: one in winter and one in spring 24 

 25 

The analysis was repeated to simulate two periods of camera-trapping of equal length, 26 

one in winter and one in the subsequent spring. Instead of using the single index of days 27 

for winter-spring that was used in the single camera-trapping period analysis, a separate 28 

index was created for each season. The first day of monitoring in each season being 29 

recorded as 1, the second day as 2 and so on. Starting with a camera-trapping window 30 

of 1 day in winter, the simulation recorded whether there was a rest or not on the first 31 
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day of winter or on the first day of spring. It then sampled the first day of winter and the 1 

second day of spring, then the first day of winter and the third day of spring etc., until 2 

all the days in spring have been sampled together with the first day of winter. This was 3 

repeated with the second day of winter, starting on the first day of spring and moving 4 

forward to sample all days of spring against the second day of winter. When all 5 

combinations of winter and spring had been realised, the process repeated using a 2-6 

day camera-trapping window, then a 3 day window, and so on. Each simulation was 7 

coded as 0 (no rest detected) or 1 (rest detected in either winter, spring or both). If t 8 

was the sampling period in days, sW was the winter length and sS was the spring length 9 

(all in days), then the number of possible simulations for a given t would be [sW-(t-1)][sS-10 

(t-1)]. As examples of the potential number of simulations, for a three-day sampling 11 

period, the number of simulations would be 7430 (i.e. [89-(3-1)][92-(3-1)]) and a 20d 12 

sampling period would be 6480 (i.e. [89-(20-3)][92-(3-1)]).  13 

This was repeated, recording whether the close CT was working or not, so that in the 14 

final calculations each simulated CT window was only used if the threshold of 6/7 days 15 

was reached or if a rest was detected. These two criteria could be applied by a consultant 16 

ecologist if, for example their batteries ran out leaving a lower proportion of functional 17 

CT days than 86% (i.e. 6 out of 7), then additional camera-trapping would only be needed 18 

if they did not detect a rest. The probability of detecting a rest for a given sampling 19 

duration of two periods was plotted against that each duration (between 1 and s) and 20 

the point at which this reached ≥ 0.95 was then taken as the minimum recommended 21 

sampling duration if two camera-trapping periods of equal duration, one in winter and 22 

one in spring were to be adopted. 23 

For each of the eight winter-spring periods, the site with the largest number of CT days 24 

to have a 95% probability of detecting a rest for a single sampling period can be 25 

compared to whichever of the eight winter-spring periods had the largest number of CT 26 

days to have a 95% probability of detecting a rest in the double sampling period to see 27 

which would be more efficient. 28 

 29 

4.4.3 Does season affect event type (paired, single-entry, single-exit) 30 

 31 



111 
  

If season affects detection probability, the distribution of event types (paired, single-1 

entry, single-exit) is likely to differ between seasons, since single entry or exit events are 2 

indicative of lower detection probability. A contingency table was first constructed 3 

containing the observed count of each of the three event types in both seasons, and this 4 

was used to calculate the frequencies which would be expected if the null hypothesis 5 

was true (i.e. that there was no relationship between season and event type).  I used a 6 

chi-squared test to test whether the observed distribution differed from the expected 7 

distribution which would be due to random chance. The calculated expected 8 

frequencies were calculated from the observed frequencies (i.e. sum of column x sum 9 

of rows / total); the expected frequencies and the X2 test were calculated in Rstudio 10 

(RStudioTeam 2015). 11 

 12 

4.5 Results 13 

 14 

4.5.1 Summary of camera-trap days per site 15 

 16 

In CT studies, survey effort is usually defined by the number of CT days (Allan et al. 2011). 17 

The CT days in Table 4-7 represent days when there was at least one CT working in sites 18 

where there is a dual set up. As detectability of the close CT was likely to be higher than 19 

any CT further away (see Sections 2.4.1 & 3.4.2), the percentage of CT days where the 20 

only functioning CT is the “distant” CT is also given. These days have higher detection 21 

uncertainty; this only applies to sites where the dual set-up includes a close and a distant 22 

CTs. The bracketed percentage is the proportion of days that only the distant CT was 23 

operable in dual deployments. At Gordon, there were two entrances to the structure. 24 

One entrance was at ground level and was monitored by a close CT (cam 1), the other 25 

entrance was approximately 1m up a tree and was monitored by two CTs at different 26 

heights (cams 2 & 3). At Gordon, the bracketed percentage is the number of days where 27 

one of the entrances was not monitored (i.e. either cam 1 failed meaning the ground 28 
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level entrance was unmonitored, or where both cam 2 & cam 3 failed meaning that the 1 

upper entrance was unmonitored). The proportion of incomplete observations are also 2 

quantified in Table 4-7, these are instances of “single events” where the complete 3 

movement of the otter in relation to the structure is not accounted for, e.g. where an 4 

otter is observed entering the structure but there is no observation of it leaving the 5 

structure. 6 

  7 
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Table 4-7 Summary for each site of the monitoring period, potential camera-trap days and actual 1 

camera-trap days when at least one of the camera-traps were operating. The figures in brackets 2 

indicate the percentage of days when only the distant camera-trap was working in dual camera-3 

trap deployments, indicating reduced detection. Losses of days were due to battery depletion 4 

(‘Defunct’) and periods when the CTs were intentionally not deployed (‘Not set’) due river level 5 

rises. The number of otter registrations are shown in the last column for each site and the 6 

percentage of those registrations were “single events” where the observation was incomplete 7 

e.g. otter entered structure but there was no corresponding exit. The site was visited to 8 

replenish batteries and memory and record field-signs, termed “maintenance visit”.  9 

 10 

 Monitoring Period Summary of status of CTs (days) 

Median 
days 
betw. 
maint-
enance 
visits 

Type of 
set-up 

No. of 
otter 
registratio
ns 

Site Start Finish 
Pote
ntial  

Defu
nct 

Not 
set 

 Working 
(% single 
events) 

Berwick 1 09/11/16 05/11/17 361 10 0 351 (11) 29 DUAL 32 (77) 

Berwick 2 25/10/17 12/06/18 230 0 7 223 (40) 22 DUAL 31(0) 

Crailing 23/04/17 27/05/18 399 25 17 357 18 DUAL 463(22) 

Eden 1 11/02/16 24/02/17 379 3 3 373 (0) 22 DUAL 1206 (4) 

Eden 2 29/05/18 21/05/19 357 0 0 357 25 DUAL 394(0) 

Floors 1 25/04/16 24/04/17 364 0 3 361 32 DUAL 41(0) 

Floors 2 21/01/18 08/02/19 383 4 22 357 (17) 25 DUAL 119(0) 

Foggo 14/06/15 11/11/15 150 20 0 130 20 DUAL 9 (0) 

Frogden 1 23/02/15 18/04/16 420 29 25 366 15 SINGLE 320 (7) 

Frogden 1 15/01/17 20/04/17 95 0 0 95 15 SINGLE 105 (3) 

Frogden 1 15/09/17 25/05/18 252 0 107 145 21 SINGLE 35 (27) 

Frogden 2 14/01/18 25/05/18 131 8 0 123 27 SINGLE 12 (0) 
22 (0) Frogden 2 08/11/18 18/11/19 375 91 0 284 26 SINGLE 

Galashiels 01/10/15 30/11/16 426 36 58 332 (<1) 22 DUAL 139 

Gordon 26/02/16 25/04/17 424 19 0 405 (28) 26 TRIO 309 (81) 

Hawick 27/09/16 20/08/17 327 0 109 218 15 DUAL* 208 (0) 

Hownam 08/06/15 12/06/16 370 22 8 340 (6) 16 DUAL 173 (7) 

Learmouth 03/12/17 19/05/19 532 15 49 468 (10) 23 DUAL 555 (5) 

Lochside 15/07/15 18/11/15 126 0 0 126 19 DUAL 10 (0) 

Marlefield 09/11/16 22/11/17 378 33 96 249 (5) 22 DUAL 230 (1) 

Maxton 19/05/17 06/07/18 413 0 18 395 (22) 21 DUAL 28 (4) 

Mill1 24/11/16 22/11/17 363 13 90 260 (25) 19 DUAL 58 (0) 

Mill2 22/01/18 03/03/19 405 19 74 312 (4) 21 DUAL 53 (6) 

Nenthorn 19/01/18 19/12/18 334 46 34 254 23 DUAL 48 (33) 

Newhall 16/06/15 31/03/16 289 0 129 160  16 DUAL 98 (0) 

Rutherford 01/04/16 24/04/17 388 0 0 388 (5) 29 DUAL 25 (0) 

Slitrig 23/07/16 29/08/17 402 0 129 273 20 DUAL 41 (0) 

Torqhan 31/12/16 27/05/18 512 5 49 458 21 DUAL 164 (5) 
Yetholm 
loch 02/05/16 30/06/17 424 0 52 372 (1) 24 DUAL 173 (1) 

*Hawick started with a dual set-up of two close CTs but the lower emplacement was removed as it was 11 

prone to submersion. Comparison of registrations on both CTs had almost perfect parity between the two 12 

CTs indicating that detection of the retained CT was not compromised. 13 
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4.5.2 Does season affect event type (paired, single-entry, single-exit) 1 

 2 

The distribution of event types (paired, single-in, single-out), differed significantly 3 

between season (summer, winter) (χ2 = 43.9, df=2, p<0.001). Observed and expected 4 

(under the null hypothesis) frequencies are shown in Table 4-8.  5 

Table 4-8 Contingency table of event types in summer and winter 6 

  Season  
Event type  Summer Winter Total 

Paired Observed count 250 522 772 
 Expected count 212.9 559.1 772.0 
     
In Observed count 14 120 134 
 Expected count 36.9 97.1 134.0 
     
Out Observed count 4 62 66 
 Expected count 18.2 47.8 66.0 
     
Total Observed count 268 704 972 
 Expected count 268.0 704.0 972.0 

 7 

The frequency of observed paired events was greater than that of the expected in 8 

summer, whilst the frequency of single entries and exits were lower than expected in 9 

summer (Table 4-8). In contrast, the frequency of observed winter paired events was 10 

lower than expected, with higher observed single entries and exits than expected. 11 

 12 

4.5.3 Defining resting activity from presence 13 

 14 

The distribution of time spent within the structures using all paired registrations shows 15 

a large peak where the otter has spent only a short time in the structure (Figure 4-5a). 16 

This peak is confined to less than 10 min (Figure 4-5b) and very few durations between 17 

10 and 30min (Table 4-9). A threshold of 15 min inside the structure captures this peak 18 

of activity which is too short to be considered resting behaviour. Events where the 19 

duration within the structure is less than 15 min is therefore defined as a “visit”. When 20 

the first 15 min are excluded, the duration of rests across all sites has a peak in frequency 21 

for shorter rests (0 – 3 h) and very few very long rests of over 16 h (Figure 4-5c). 22 

 23 



115 
  

 1 

Figure 4-5 Distribution of time that otters spent in the structures on the Tweed catchment, using paired 2 
registrations (a) all paired registrations, (b) distribution through the first hour, (c) distribution of all rests 3 
in hours, excluding the first 15 minutes. Note variation in scales and units on x-axes. 4 

 5 

Table 4-9 Distribution of duration where an otter is within the structure less than an hour 6 

Duration (min) of time in the 

structure 
Count 

<10 1149 

10-19 4 

20-29 9 

30-39 10 

40-49 13 

50-59 12 

 7 

This 15 min threshold of an otter being within the structure to define a rest is the same 8 

duration that defined a rest in the long-term study site (Section 3.3.5). Using this criteria, 9 

six of the 26 sites in the River Tweed catchment included at least one rest and are 10 

therefore defined as resting sites: Crailing, Frogden1, Frogden2, Gordon, Learmouth and 11 

Torquhan. 12 

 13 

  14 

Time (min) inside structure 

Time (h) inside structure 

Time (min) inside structure 
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4.5.4 Summary of otter activity 1 

 2 

Presence per day is presented as a measure of whether at least one otter was registered 3 

at the structure for each day the site was actively being monitored by one or more CTs. 4 

As detectability of the close CT was likely to be higher than any CT further away (see 5 

Section 3.4.2), the % of CT days where the close CT failed, and the distant CT did not 6 

record an otter are stated in Table 4-10. These days have a higher level of detection 7 

uncertainty; this only applies to sites where the dual set-up includes a close and a distant 8 

CTs. Presence of otter was therefore calculated by using all instances where an otter 9 

was registered by any CT at that site on that day.  10 

At least one otter was recorded at all study sites, see Table 4-10. The highest percentage 11 

of CT days that otters were present was 92% at Eden 1, whilst the lowest were at 12 

Rutherford and Lochside where otter was only present on 5% of CT days. Using paired 13 

events to define a rest of ≥ 15min, the highest percentage of CT days where a rest was 14 

recorded was at Frogden1 where a rest was detected on 10% of CT days. Of the sites 15 

where resting was detected from paired events, the lowest percent of CT days where a 16 

rest was recorded was at Learmouth, where a rest was recorded on 3% of CT days. 17 

However, two additional sites (Marlefield and Mill2) were thought to be resting sites 18 

based upon behavioural indicators (see discussion in Section 4.6.4). The % of CT days 19 

where a rest was recorded are indicative for these two sites. 20 

  21 
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 1 

Table 4-10 Percentage of CT days that otter was recorded as present, and that a rest was recorded, ranked 2 
on decreasing percentage of presence. Resting sites as defined by paired events are in bold, red text, 3 
resting sites indicated by behaviour are in bold, black text.  4 

 5 

Site 

CT days with a 
minimum of 1 CT 

(% of CT days 
when otter not 
registered, but 
only distant CT 

running) 

Structure 
Description 

Structure type 
% 

Presence 
% 

Rest 

Eden 1 373 (0) Burrow Enclosed 92 0 

Learmouth 468 (5) Hollow tree Enclosed 63 3 

Hawick 218 Burrow Enclosed 57 0 

Newhall 160  Burrow Enclosed 47 0 

Marlefield 249 (5) Epicormic growth Enclosed 47 <1 

Eden 2 357 Erosion feature Open 46 0 

Hownam 340 (4) Hollow tree Enclosed 38 0 

Gordon 405 (28) Hollow tree Enclosed 34 9 

Crailing 357 Roots Enclosed 32 6 

Galashiels 332 (< 1) Burrow Enclosed 30 0 

Yetholm loch 372 (1) Burrow Enclosed 29 0 

Frogden 1 609 Hollow tree Enclosed 28 10 

Floors 2 357 (15) Erosion feature Open 22 0 

Torquhan 458 Hollow tree Enclosed 19 4 

Nenthorn 254 Hollow tree Enclosed 15 0 

Slitrig 273 Erosion feature Enclosed 14 0 

Mill1 260 (24) Derelict building Enclosed 13 0 

Mill2 312 (4) Burrow Enclosed 11 <1 

Berwick 2 223 (36) Burrow Enclosed 11 0 

Floors 1 361 Burrow Enclosed 10 0 

Berwick 1 351 (11) Ledge Open 8 0 

Frogden 2 421 Hollow tree Enclosed 8 5 

Fogo 130 Erosion feature Open 7 0 

Maxton 395 (17) Rocks Enclosed 6 0 

Rutherford 388 (5) Burrow Enclosed 5 0 

Lochside 126 Hollow tree Open 5 0 

  6 
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4.5.5 Are there differences in the patterns of otter registrations at resting and non-resting 1 

sites? 2 

 3 

For the hurdle model of count of otter observations per CT day, the best supported model 4 

related to whether the site was a resting site or not interacting with month (Table 4-9). There 5 

were no other models with a ΔAIC ≤ 2.   6 

 7 

Table 4-11 Model selection table for presence of otter per camera trap day with the best supported model 8 
indicated in bold. Table includes the total number of parameters (K) (i.e. for both the zero-inflated and 9 
conditional parts of the models), Akaike Information Criterion (AIC), delta AIC (ΔAIC) and AIC model weight 10 
Wi.  11 

 12 

Model K AIC ΔAIC Wi 

RS*MONTH 48 13061.4 0.0 1.00 

MONTH*ln(MEAN.WIDTH) 48 13101.6 40.2 0.00 

OPEN.CLOSED*MONTH 48 13149.7 88.4 0.00 

RS*SEASON 16 13178.4 117.0 0.00 

SEASON*ln(MEAN.WIDTH) 16 13215.8 154.4 0.00 

MONTH+ln(MEAN.WIDTH) 26 13247.4 186.0 0.00 

RS+MONTH11  26 13251.8 190.4 0.00 

MONTH 24 13255.1 193.7 0.00 

OPEN.CLOSED+MONTH 26 13258.9 197.5 0.00 

OPEN.CLOSED*SEASON 16 13281.8 220.4 0.00 

SEASON+ln(MEAN.WIDTH)   10 13337.2 275.8 0.00 

RS+SEASON 16 13341.2 279.8 0.00 

SEASON 8 13344.1 282.7 0.00 

OPEN.CLOSED+SEASON 10 13347.9 286.5 0.00 

ln(MEAN.WIDTH) 4 13436.2 374.8 0.00 

RS 4 13439.9 378.5 0.00 

NULL MODEL 2 13442.6 381.2 0.00 

OPEN.CLOSED 4 13446.2 384.9 0.00 

 13 

The model plot for the best supported model is presented in context of the two 14 

components being modelled, the zeros as a proportion of all observations  (Figure 4-6b 15 

& d) and the non-zero count of registrations per CT day (Figure 4-6a & c).  16 

The zero-inflated model enables an interpretation of presence/absence per CT day by 17 

looking at the distribution of zeros (i.e. days when otters were not recorded), at resting 18 

and non-resting sites (Figure 4-6b & d). At non-resting sites, there are fewer zeros (i.e. 19 

greater number of CT days when otter was recorded) in November and December, and 20 

increased zeros in January but otherwise there are no other notable differences. At 21 
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resting sites however, there is a strong seasonal pattern, with activity increasing to a 1 

peak in January, February and March (i.e. fewer zeros) and activity decreasing to a peak 2 

in late summer (i.e. peak of zeros occurring in August). This demonstrates that season 3 

has a stronger effect on activity at resting sites than non-resting sites. 4 

The conditional model (Figure 4-6a & c) represents the non-zero counts of otter 5 

registrations per CT day. At non-resting sites, there are no clear trends, although the 6 

counts of registrations in January appear to be lower than in other months. The counts 7 

of otter registrations per CT day at resting sites are lower than non-resting sites with the 8 

highest in January and March with February and December also having higher counts 9 

per CT day than the rest of the months. 10 

 11 

 12 

Figure 4-6 Plots from the hurdle model “count of otter observations per camera trap day related to 13 
whether the site was a resting site or not interacting with month”. The incidence rate ratio of 1 is indicated 14 
by a vertical line to aid interpretation, values greater than 1 are noted in blue, and less than 1 in red. For 15 
(a) and (c) an incident ratio of >1 indicates higher than average counts (i.e. observations of otter per 16 
camera-trap day), and vice versa. For (b) and (d) an incidence-rate ratio 1 indicates a higher than average 17 
probability of zero otter registrations per camera-trap day, and vice versa. 18 

 19 

  20 



120 
  

 1 

4.5.6 Patterns of otter rests 2 

 3 

4.5.6.1 Is there a difference between the duration of nocturnal rests and diurnal rests? 4 

 5 

Aggregating the six resting sites, there is a significant difference between rest duration 6 

of nocturnal and diurnal rests with diurnal rests being significantly longer than nocturnal 7 

rests (Figure 4-7a & b). When considered separately, one site showed a significant 8 

difference in the duration of nocturnal and diurnal rests, where  nocturnal rests were 9 

significantly shorter than diurnal rests (Frogden1 (Figure 4-7e & f) when using a 10 

Bonferroni adjusted   value of 0.007 (0.05 divided by seven tests). No sites were used 11 

exclusively for diurnal or nocturnal rests, however rests at Learmouth are almost 12 

exclusively diurnal, while there are more nocturnal than diurnal rests at Gordon and 13 

Torquhan. 14 

 15 

  16 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

The combined distribution of nocturnal and diurnal resting duration across all sites by 24 

single otters, and groups are presented in Figure 4-8. A Kolmogorov-Smirnov test was 25 

W = 6760   * P < 0.001   n = 187 

Noct (h) Diur (h) 
Med IQR Med IQR 
2.7 3.9 12.3 8.0 

W = 82        p = 0.17    n = 23 

Noct (h) Diur (h) 
Med IQR Med IQR 
9.7 9.95 2.8 4.92 

W = 1064     *p <0.001   n = 70 

Noct (h) Diur (h) 
Med IQR Med IQR 
3.1 5.4 14.9 5.9 

W = 26        p =  0.95   n = 15 

Noct (h) Diur (h) 
Med IQR Med IQR 
6.0 9.4 12.1 10.5 

W = 155        p = 0.04   n = 44 

Noct (h) Diur (h) 
Med IQR Med IQR 
2.3 2.1 11.7 6.8 

W = 24          p = 0.29    n = 14 

Noct (h) Diur (h) 
Med IQR Med IQR 
2.8 7.0 11.9 7.7 

W = 59        p = 0.07   n = 20 

Noct (h) Diur (h) 
Med IQR Med IQR 
2.4 4.9 12.8 2.4 

         Duration of rest (h)  Duration of rest (h) 

 
Figure 4-7 distribution of nocturnal and diurnal rest durations for each site using unique rests (i.e. where 
a rest by a family group counts as a single observation), with associated Mann-Whitney-Wilcoxon values.  
The Bonferroni adjustment alpha level for these tests was 0.05/7 = 0.007, thus significant P-values are 
indicated by “*”  
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used to test whether the distribution of rest durations by single otters was significantly 1 

different from otter groups, firstly for nocturnal rests, then for diurnal rests. The 2 

distribution of nocturnal rests for single otter and otter groups not significantly different 3 

( D = 0.16, p = 0.459), similarly, there was no significant difference between diurnal rests 4 

for single otter and otter groups (D = 0.35, p = 0.137). Therefore, there was no significant 5 

difference in the distribution of rest durations between single otters and groups of otter. 6 

 7 

 8 

 9 

 10 

When a structure was used by a female with cubs, often resting was not synchronous 11 

between all otters. The female could leave the cubs at the holt and undertake foraging 12 

trips on her own. When the cubs remained at the holt, they were not exclusively 13 

contained within the holt and could be active in the holt locality. The resulting footage 14 

was difficult to interpret as discriminating the adult from cubs is not always possible 15 

leading to inabilities to pair entries and exits to the holt. Pairing observations was not 16 

always possible. 17 

(a) 

(b) 

Figure 4-8 Frequency distribution of the rest duration of single otters and groups for (a) nocturnal rests 
(n=group 62, single 33) and, (b) diurnal rests (n= group 13, single 72) 
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 1 

4.5.6.2 Variation in frequency of resting site use through the year 2 

 3 

There was a strong seasonal pattern for all resting sites, with most rests occurring in 4 

winter and spring (Figure 4-9). A single rest in summer was recorded at three sites, 5 

Crailing, Learmouth and Marlefield. Gordon was the only site where rests occurred in 6 

autumn: these were observed on seven CT days, with four of these relating to a group 7 

of otter (minimum of two otters). 8 

 9 

 10 

 11 

 12 

 13 

 14 

  15 
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  1 

Figure 4-9 The  percentage of camera-trap days where a rest was recorded for each season 
(winter: December 1st to February 28th; spring: March 1st to May 31st; summer: June 1st to 
August 30th; autumn: September 1st to November 30th ) for diurnal rests aggregated from all 
six resting sites, nocturnal rests aggregated from all six resting sites and for each individual 
site. Numbers above bars are the number of camera-trap days. 
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4.5.6.3 Site re-use in successive winter-spring seasons 1 

 2 

There were multiple rests at each of the six sites where resting was confirmed by paired 3 

events (Crailing, Frogden1, Frogden 2, Gordon, Learmouth and Torquhan). All these sites 4 

were re-used in the winter and/or spring of the following, or subsequent years (Figure 5 

4-10). 6 

A build-up of woody debris downstream of Frogden1 coupled with heavy rainfall caused 7 

localised flooding in the winter/spring of 2015/2016. The CT at Frogden1 was above the 8 

water level and recorded the structure being flooded on at least four occasions (3rd & 9 

4th, 26th & 27th December 2015; 6th, 27th January 2016). Otter rests are notably absent 10 

during this period. 11 

Flooding was not thought to be an issue at the other structures. High water levels 12 

curtailed camera trap deployment at Crailing, Marlefield and Mill2, but it was not clear 13 

if the sleeping chambers became flooded. 14 

A single rest was detected at Marlefield in summer when a fully dry otter left the 15 

structure.  16 

 17 
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  1 

Figure 4-10 Daily activity type (otter recorded or otter rest detected) in context with monitoring 

periods at each site used for resting (winter: December 1st to February 28th; spring: March 1st 

to May 31st; summer: June 1st to August 30th; autumn: September 1st to November 30th). Gaps 

in recording (e.g. due to malfunctions or flooding) are left as blank space. 
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4.5.7 Behavioural observations as indicators of resting behaviour 1 

 2 

4.5.7.1 Bedding collection 3 

 4 

Bedding collection was noted at five of the six habitually used resting sites, no bedding 5 

collection by otter was observed at Frogden 2. Bedding collection was not observed at 6 

any of the non-resting sites. Vegetation was invariably pulled up and carried into the 7 

structure in the otter’s mouth, with the otter usually moving at a faster pace than 8 

typical. Bedding collection occurred close to the structure, often with the otter not fully 9 

leaving the structure if it could pull vegetation from immediately outside the entrance. 10 

For example, at Gordon, one of two otters resting in the structure exits the holt and 11 

returned within a few seconds with a mouthful of bedding  tinyurl.com/rhj75a9, and 12 

similarly at Torquhan, an otter collected bedding locally to the holt tinyurl.com/tlge662. 13 

Badgers were also observed taking bedding into Frogden 1 (five nights) and Frogden 2 14 

(six nights) and mink were observed collecting bedding at Frogden 1 (two nights) and 15 

Crailing (one night). Of the 20 sites not identified as rest sites, there was one incidence 16 

of an otter taking a twig into the structure (Nenthorn), but the otter subsequently left, 17 

and no resting was observed at the structure. This was not considered bedding collection 18 

in the same manner as seen at the other sites. Also, a badger was observed taking 19 

bedding into the Hownam structure (also not identified as a resting site) on at least ten 20 

nights. 21 

Bedding collection by otter is summarised in Table 4-12. It was observed in both sexes, 22 

and when a group of otter were resting at Gordon, two otters were observed 23 

simultaneously collecting bedding. See Appendix II, Table A4, for a more detailed 24 

account of bedding collection observations. 25 

  26 

https://tinyurl.com/rhj75a9
https://tinyurl.com/tlge662
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 1 

Table 4-12 Summary of bedding collection by otter at five of the six detected resting sites. No bedding 2 
collection by otter(s) was observed at one other confirmed resting site, nor in any of the 20 sites where 3 
resting was not detected.    4 

Site 
No of CT days 
observed 
(Total CT days) 

% of CT days 
Single or 
group  

Sex 
Associated with 
paired rest 
event 

Nocturnal or 
Diurnal activity 

Crailing 2 100% Single Male and an 
otter of 
unknown sex 

50% Diurnal 

Frogden 1 12 75% single 
25% group 

Male  
Female 

75% Nocturnal and 
diurnal 

Gordon 12 17% single 
83% group 

Male  
Female 

25% Nocturnal and 
diurnal 

Learmouth 2 100% single Unknown 100% Nocturnal and 
diurnal 

Torquhan 8 63% single 
37% group 

Male  
Female 

75% Nocturnal 

 5 

 6 

4.5.7.2 Sedentary behaviour at structure entrance 7 

 8 

Sedentary behaviour encompassed several types of behaviour. Initially these were 9 

recorded separately but as more video footage was watched, the number of behaviours 10 

increased and often several behaviours could occur in one event. There was no benefit 11 

in quantifying these separately in context of the research aims, so these were grouped 12 

as a single generic category of sedentary behaviours, and are described in Table 4-13. 13 

 14 

Table 4-13 Descriptions of behaviours grouped into a single sedentary behaviour category 15 

Behaviour Description 

Loafing Otter lying down, stretched out on back or on stomach and with little 
to no movement. In a relaxed state, occasionally shutting eyes 
(Example: tinyurl.com/wnv723s at Learmouth) 

Grooming Otter licking fur and/or extended periods of scratching (Example:  
tinyurl.com/wnm7nsn at Frogden1) 

Rolling Otter lies down and rolls on back, often on loose substrate such as 
fragmented bark, fur often wet at start of behaviour and notably less 
wet when rolling ceases (Example: tinyurl.com/sgfqchc at Frogden1) 

 16 

 17 

 18 

https://tinyurl.com/wnv723s
https://tinyurl.com/wnm7nsn
https://tinyurl.com/sgfqchc
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Sedentary behaviours (described in Table 4-13) were observed at some study sites (Table 1 

4-14). This was more frequently observed at resting sites than non-resting sites, and the 2 

mean time of each observation was longer at resting sites than non-resting sites. 3 

Table 4-14 Comparison of the frequency and duration of behavioural observations at resting sites and 4 
non-resting sites 5 

 
Total events 
where otter 

recorded 

% of otter events when 
sedentary behaviour 

observed 

Duration of sedentary behaviour 
events (min) 

Mean Min Max 

Non resting site 3116 1.57% 1.1 ±0.3 <1 2 
Resting site 1672 10.65% 2.8 ±4.3 <1 32 

 6 

4.5.7.3 Use of latrines 7 

 8 

Otters were observed using a latrine associated with the structure, either just within the 9 

entrance of the structure or outside. Latrine behaviour was characterised by the otter 10 

visiting the latrine area and defecating with or without urinating. The droppings 11 

produced at latrines were noticeably larger than the deposits produced at spraint sites 12 

(example of latrine behaviour at Gordon tinyurl.com/vq9kydq and example of sprainting 13 

behaviour as a comparison at Hawick tinyurl.com/ul2ach2 ; the behaviours are 14 

described in more detail in the video descriptions). Otters would use latrines prior to, 15 

during, or after a rest. Often the fur of the otter would be dry as it had previously been 16 

resting in the holt. Only one active latrine was observed at each site. Latrine activity is 17 

summarised in Table 4-15.  The latrine could be used once, or more (maximum of six 18 

times), during a resting event.  19 

Latrine behaviour was observed at five of the six resting sites; Torquhan lacked 20 

observations of latrine behaviour. Latrine behaviour also occurred on three days at 21 

Mill2, the fur was not dry indicating an underwater holt entrance. This site was not 22 

included as a resting site as there were no paired events confirming time spent in the 23 

structure was over 15min but other observations suggested it may have been a resting 24 

site (the site is discussed in more detail, below). 25 

There were no observations of latrine behaviour at any of the non-resting sites.  26 

https://tinyurl.com/vq9kydq
https://tinyurl.com/ul2ach2
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 1 

Table 4-15 Summary of latrine behaviour in relation to resting events based upon paired registrations. 2 
Note that the relatively large number of latrine observations per site is due to groups of otter resting and 3 
using the latrine on a day, also repeated use of the latrine per rest.  4 

Site 

No 
CT 

days 
(see 

Table 
4-7) 

No of days 
latrine 

behaviour 
observed 

No of days 
latrine 

behaviour 
associated with 
a paired event 

% of paired 
events where 

latrine behaviour 
observed, and a 

rest occurred 

Total number 
 of latrine 
behaviour 

observations 

Crailing 357 19 11 91 40 
Frogden 1 609 31 27 100 44 
Frogden 2 421 5 5 100 5 
Gordon 405 52 34 94 154 
Learmouth 465 5 5 100 5 
Mill2 312 3 0 NA* 11 

 5 
*Mill2 could not be defined as a resting site based upon paired events 6 

4.5.8 Data simulations to determine optimum camera-trap sampling duration to detect a rest 7 

 8 

There was considerable variation between sites in the number of days required for a 9 

95% probability of detecting a rest, both when a single or two equal periods of camera 10 

trapping were simulated (Table 4-16). In general, the total number of days required to 11 

have a 95% probability of detecting a rest was smaller when two equal periods were 12 

used (Table 4-16 D). The single period was more efficient in three of the eight site-13 

periods, but in each only by ≤ 6d. The mean difference between a single period and a 14 

double period of camera-trapping is +23d, this suggests that using a double period is 15 

35% more efficient (i.e. 23/65 (the mean of a single period)), or would require about 16 

three weeks less sampling effort overall to have the same confidence of detecting a rest. 17 

For the six known resting sites, the longest required CT period to have a 95% chance of 18 

detecting a rest if using a single CT period would be 108d, compared with a total of 76d 19 

for a double period of CT sampling (Table 4-16) 20 

  21 
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 1 
Table 4-16 The number of camera-trap days required to have a 95% probability of detecting a rest if using 2 
a single camera-trapping window, or two equal periods. All values are in days. Negative values in D 3 
indicate the single winter-spring period was more efficient than the separate winter and spring periods, 4 
and positive numbers vice versa. 5 

 6 

 A B C D 

SITE (YEAR) 

Single period 
Winter-spring 

combined  

Two periods 
Per period 

Two periods 
Total of both 

periods 
(2*B)  

Difference 
between 

single period 
and total of 
two periods 
(A minus C)  

CRAILING (17-18) 22 14 28 -6 
FROGDEN1 (17) 12 4 8 4 
FROGDEN2 (18) 94 11 22 72 
FROGDEN2 (18-19) 107 30 60 47 
GORDON (16-17) 13 7 14 -1 
LEARMOUTH (17-18) 108 30 60 48 
LEARMOUTH (18-19) 69 35 70 -1 
TORQUHAN (17-18) 98 38 76 22 

Mean 65 21 42 23 
Maximum 108 38 76 72 
Minimum 12 4 8 -6 

 7 

The high degree of variation in the relationship between sampling duration and 8 

probability of detecting a rest for site-seasons are shown in Figure 4-11. The plots 9 

illustrate that the two period sampling strategy was generally more efficient, reaching 10 

95% probability of detecting a rest more quickly.  11 
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  1 

(a) 

(b) 

Figure 4-11 The probability of rest during 8 winter-spring periods at 6 resting sites based on 
simulated camera-trap surveys over different surveying durations (in days) for (a) a single period 
of camera-trapping, and (b) for two equal periods of camera-trapping, one in winter and one in 
spring. Torquhan is shown as dotted line due to poorer data, see Section 4.5.4.1 below. The 95th 
percentile is indicated by the horizontal dashed line  
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4.5.8.1 The effect of discarded simulations 1 

 2 

The numbers of simulations discarded because the CTs were not operational (e.g. due 3 

to malfunctions or flooding) in ≥6 of every 7 days were generally greatest at lower 4 

sampling periods for both the single period and two equal period sampling strategies. 5 

Generally, the longer the CT sampling duration, the fewer simulations had to be 6 

discarded as they exceeded this threshold. Torquhan had a much higher rate of 7 

discarded simulations, which also continued for a longer sampling duration (shown with 8 

dotted line in Figure 4-11 & Figure 4-12). Unfortunately, the only hard copy of a 20-day 9 

period at Torquhan was irretrievably lost when the SD card was mailed from the 10 

research volunteer. Therefore, there was a gap in the data of this duration which 11 

resulted in a large number of simulations being discarded. This is evident in the longer 12 

duration of days required to detect a rest in the two equal sampling periods for this site 13 

(Figure 4-11b), and by the large proportion of lost data (Figure 4-12b).  14 
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  1 

(b) 

Figure 4-12 The proportion of null data rejected from calculations to determine the number of 
days required to have a 95% probability of a rest, (a) for a single sampling period, and (b) for two 
equal sampling periods. Torquhan is shown as dotted line due to poorer data 
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4.6 Discussion 1 

 2 

4.6.1 Defining a resting site- the need for standardisation 3 

  4 

The distribution of time spent in the structures on the River Tweed catchment enabled 5 

a resting site to be defined as a structure where otters stay within the structure for at 6 

least 15min. Using 15min to divide a visit from a rest relied upon having a time of entry 7 

and exit from the structures so that the time spent within the structure could be 8 

calculated. There was a clear peak in the frequency distribution of time spent in the 9 

structure in both the in the River Tweed data (see Figure 4-5) at 1—2min and at the long-10 

term study site data (see Figure 3-3 ) at 1—10min, these were obviously visits. There are 11 

few (48) instances of otters being at the structure between 15min and an hour and so 12 

this “trough” in the data was used to demarcate a visit from a rest. Table 4-17 shows 13 

how the count of instances that would be classed as a rest would change using different 14 

thresholds to define a rest. A 20min threshold would have minimum impact on the 15 

number of rests, however if an hour were used, this would reduce the number of rests 16 

by 15%. 17 

Table 4-17 The number of events that would have been defined as a rest across the whole study 18 

had the threshold time used to define a rest (≥15 min) had been extended (to up to >60 min). 19 

The threshold I used is shown in bold 20 

 21 

Time in holt (min) >15 >20 >30 >40 >50 >60 

Count 326 323 314 304 289 278 

 22 

The rationale behind the 15min window to define a rest was therefore based primarily 23 

on the data coupled with a necessary subjective assessment on how long an otter could 24 

be active within a structure without it being considered resting behaviour. The threshold 25 

provided meaningful separation which could be consistently applied on the Tweed study 26 

and was also consistent with the long-term study (section 3.3.5). Furthermore, paired 27 

registrations enabled the mid-point of the rest to be calculated, and the rest could be 28 

classed as a diurnal or nocturnal rest. Once a rest event was defined, sites could be 29 

categorised as a resting site or a non-resting site based upon whether a rest event had 30 
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occurred at the structure or not. Without the use of CTs, identification of otter resting 1 

sites has previously been based upon expert opinion, which is an assessment of field-2 

signs at a structure and its context. CTs are now widely used in research (Rovero et al. 3 

2013) and are increasingly being used by consultants for monitoring structures 4 

suggested as resting sites. Therefore, a more precise definition that can be applied by 5 

consultants using CTs at a resting site is needed. The definition I use in this research 6 

could readily be applied, it is easily interpreted and is evidence based. 7 

 8 

4.6.2 Nocturnal and diurnal resting 9 

 10 

Rest events from paired events were detected at six of the 26 sites. It was hypothesised 11 

that the duration of nocturnal rests would be shorter than diurnal rests. The data 12 

strongly supports this hypothesis as nocturnal rest duration (median = 2.7h) was 13 

significantly shorter than diurnal (median = 12.3h). This is in agreement with 14 

radiotracking studies where these primarily nocturnal animals have been recorded 15 

taking short rests after bouts of foraging during the night, but rest continuously during 16 

the day (Green et al. 1984). However, the data did not support the hypothesis that there 17 

would be a difference in rest duration between groups of otter and single otters. Groups 18 

of otter recorded were mainly females with young, having greater energy demands 19 

(Ruiz-Olmo et al. 2011) and an assumed increased requirement for shelter than a single 20 

otter.  This suggests that families may take longer rests to conserve energy, and/or 21 

shorter rests due to longer bouts of foraging. No overall difference was found in the 22 

distribution of rest durations between groups and single otters. 23 

 24 

4.6.3 Seasonal trends 25 

 26 

The distribution of event types (paired, single-in, single-out) differed significantly 27 

between season (summer, winter). While I could not measure detection probability 28 

directly, this result does infer that detection probability varies with season, since a 29 

paired event implies better detection that single events (where either the entry or the 30 

exit is missed). The greater than expected frequency of paired events in summer (and 31 
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less than expected in winter) thus indicates better detection of otter in summer. This 1 

could be due to the temperature of river water being significantly lower than the 2 

temperature range on land (See Figure 2-3). It is possible that the detection of rests in 3 

winter could thus be under-represented, however, if this is the case, the observed 4 

seasonal bias of resting towards winter in this study may be even stronger. Ninety-five 5 

percent of rests were recorded in winter and spring and 4% of rests were in autumn but 6 

were only recorded at one site (Gordon). Summer resting was rare and only occurred 7 

once at each of three sites (Crailing, Marlefield and Learmouth) which was ˂1% of all 8 

rests.  9 

The highest number of CT days when otter was registered at resting sites was January 10 

to March which sits within the winter-spring period when resting sites are used the 11 

most, and the lowest activity is in late summer. This indicates that otter activity and 12 

interest in resting sites is generally limited to the time when they are being used. When 13 

they are not used for resting the otters do not appear to invest energy in visiting the 14 

resting sites in order to check or scent mark them to claim ownership. Interestingly, the 15 

peak in the number of CT days an otter was recorded in January, February, March at 16 

resting sites corresponds to lower presence at non-resting sites. As all the resting sites 17 

were on small rivers, with a mean width of between 2 and 9m (see ), this may indicate 18 

a seasonal shift in the core area of activity of otter populations in winter-spring to 19 

smaller rivers. There could be one, or several reasons for such a seasonal habitat change. 20 

It may be due to a preference for winter-spring breeding (Green et al. 1984; Mason and 21 

Macdonald 1987a) together with a preference for breeding on smaller watercourses 22 

(Green et al. 1984). It may be associated with the avoidance of spates on the large rivers 23 

which make foraging difficult and which may also flood any rest sites there. There may 24 

also be better seasonal availability of prey in winter and spring, such as frogs (Weber 25 

1990; Brzeziński et al. 2006).  If seasonal breeding on small water-courses drives this 26 

seasonal change in the centre of otter activity, it would follow that the peaks of otter at 27 

non-resting sites in November and December may be due to individuals prospecting for 28 

structures to give birth in or rear cubs, or olfactory signalling between females and 29 

males. The low point of activity seen at non-resting sites in January may be due to the 30 

females moving to smaller watercourses to breed. These potential patterns in the spatial 31 
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use of home-range cannot be tested directly with my data but could be tested with a 1 

future radiotracking study. 2 

During the summer, occurrence at non-resting sites is higher, further supporting the 3 

hypothesis of a seasonal shift of activity between larger and small rivers. 4 

 5 

4.6.4 Behavioural indicators of resting 6 

 7 

The data show that some behaviours are indicative of resting. Once resting and non-8 

resting sites were identified, variations in behaviour could be compared between these 9 

categories.  Sedentary behaviours, such as loafing and grooming, were observed at a 10 

greater frequency and with longer duration at resting sites although they were not 11 

exclusively observed at resting sites. Bedding collection was observed at five of the six 12 

resting sites, excluding Frogden2. The latter site contained bedding material but this had 13 

been collected by badgers. Bedding collection was observed by both males and females; 14 

therefore, it cannot alone be used to define if a structure is used for breeding or not. 15 

The absence of bedding collection behaviour at any of the sites where resting was not 16 

observed indicates that observations of this behaviour would be good evidence to 17 

identify a resting site. As many structures are too difficult to inspect completely, bedding 18 

may not always be visible increasing the value of observations of bedding collection by 19 

CT. 20 

As with bedding, latrine behaviour was observed at five out of the six resting sites and 21 

was not recorded at any non-resting sites, therefore it could also potentially be used 22 

diagnostically to identify resting sites. The usefulness of behavioural indicators of resting 23 

is illustrated by Mill2, where latrine behaviour was recorded in the absence of any paired 24 

registrations of  ≥ 15min in the structure (thus indicative of a rest). Mill2 had an entrance 25 

above ground on the bank but also a concealed entrance accessed from a ledge on the 26 

riverbank behind roots. Both entrances were monitored, but there were no paired 27 

registrations to signal resting behaviour. At the end of the monitoring period, the river 28 

level dropped exposing a previously unobserved entrance which would normally have 29 

been underwater; uncountable otter prints were present on the muddy margins. It is 30 

very likely that Mill2 was a resting site, evidenced by the latrine behaviour, but one 31 
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entrance could not be monitored leading to incomplete data. This scenario is unlikely to 1 

be unique when monitoring otter structures, although holts with underwater entrances 2 

were described as “not common” in a radiotracking survey in Sweden (Erlinge 1967). 3 

Descriptions of holts with underwater entrances would naturally be rare as the 4 

underwater entrances would be difficult to observe, so it is not known how common 5 

this feature is. However, as the sleeping chamber would need to be above the water-6 

level, these are more likely to be associated with deeper rivers. In such cases where an 7 

entrance is below water, additional criteria to the paired events would be critical to 8 

identify the structure as a resting site. 9 

Few studies of Eurasian otter make a distinction between a “latrine” and a “spraint site”. 10 

Both terms have been used to describe the same feature (i.e. a small number of spraints 11 

deposited together). “Spraint site” is the preferred term used in some studies (Green 12 

2000; Remonti et al. 2011; Parry et al. 2013; Yoxon and Yoxon 2014). Other studies use 13 

the term “latrine” when referring to a collection of very few spraints, for example 1—3 14 

spraints (Ruiz-olmo et al. 2001), and some studies offer a definition of a latrine as a  15 

location containing three or more spraints (e.g. Depue and Ben-David 2010; Almeida et 16 

al. 2012). Occasionally the terms are used interchangeably (e.g. Georgiev 2008). In these 17 

studies, the function of the latrines and spraint sites are described within the context of 18 

scent marking. The observations on the River Tweed indicate a functional distinction 19 

between sprainting behaviour characteristic of scent-marking (i.e. small token amounts) 20 

and latrine behaviour which is digestive elimination, although the latter could also 21 

function as an olfactory signal. There are similarities between the latrines identified in 22 

this study with other studies that describe the same type of feature. One study of 23 

Eurasian otter refers to latrines being found underground within holts (Moorehouse 24 

1988), whilst another study of spraint distribution refers to “big latrines” of 79—282 25 

spraints, which were all associated with dens and caves (Ruiz-olmo and Gosalbez 1997). 26 

There is a parallel between the latrines in these two studies and the latrines found in 27 

this study;  the large number of droppings, and also that they are within resting sites 28 

(Moorehouse 1988) or an implied resting site (Ruiz-olmo and Gosalbez 1997). This 29 

distinction between latrines and other types of scent marking is present in other 30 

Mustelid species, for instance pine marten (Kleef and Tydeman 2009), badger (Böhm et 31 

al. 2018) and honey badger Mellivora capensis (Begg et al. 2003). This distinction 32 
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between latrines and spraint sites in other mustelids indicates the plausibility of such a 1 

distinction in Eurasian otter. Recognition of this distinction by ecologists would further 2 

surveying methodology for otter.  3 

 4 

4.6.5 Use of resting sites by family groups 5 

 6 

Sexing of otter using primary characteristics (i.e. presence of scrotum, presence of 7 

nipples, source and direction of urine stream) was possible on 21% (n = 1,565) of 8 

observations of adult otter at resting sites. 9 

Five of the six resting sites were used by both adult male(s) and females with cubs 10 

although shared use of individual structures were not synchrous. The sixth resting site 11 

(Learmouth) was also shared; a male used the structure, as did a dyad of unknown sexes. 12 

These were considered siblings as their behaviour was similar. From my observations, a 13 

dyad comprising a female with a fully-grown cub is usually identifiable; she is less 14 

energetic and more wary, often looking out of and away from the holt, whereas the cub 15 

often initiates  interactions with the female and is less attentive to the surroundings. 16 

The River Tweed data contrast with a recent radiotracking survey of nine otters in 17 

Austria, where only 0.03% (n = 285) sites were used by both males and females 18 

(Weinberger et al. 2019). This may, however, be due the inherent difference between 19 

radio tracking and CT monitoring. The former samples the spatial positions and 20 

movements of a subsample of individual otters, thus potentially missing individuals, 21 

while CTs continuously monitoring small areas of interest, such as rest sites, and 22 

potentially records all occurrences of all otters within the small area being monitored. 23 

 24 

4.6.6 Re-use of resting sites between years 25 

 26 

The re-use of resting sites needs to be considered within the context of a specified 27 

timescale. Generally, resting sites were repeatedly re-used within and between years. 28 

However, one site (Marlefield) was only used once for resting during approximately a 29 

year of monitoring (see ). Finding such infrequently used sites using CTs would require 30 
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monitoring for such long periods as to make the aim of finding such sites impractical. 1 

The aim, and perhaps more importantly, the expectation of consultants should be to 2 

locate and confirm resting sites that are re-used, especially in context with the 3 

legislation which protects resting sites where there is an expectation of re-use (see 4 

Section 1.1.4.1). The data shows that resting site use was clustered in the winter-spring 5 

period with each of the resting sites being used repeatedly. Of the four resting sites 6 

where monitoring was extended to cover two or more winter/spring seasons, repeated 7 

resting between years was observed. Repeated use in the same season, and implied re-8 

use between years indicates that the structure and locale make a significant contribution 9 

to that home-range. 10 

 11 

4.6.7 Methodological considerations 12 

 13 

4.6.7.1 Sampling duration 14 

 15 

Camera-trapping a site for a year is not usually feasible for consultancy applications. 16 

Understanding any patterns of use could facilitate identification of resting sites with a 17 

shorter sampling duration. The seasonal trend of resting at structures indicates that 18 

camera-trapping would be more efficient in the winter—spring seasons, but six months 19 

is still a large sampling duration. The simulation approach therefore aimed to see if rests 20 

could be detected with a reasonable degree of confidence with a shorter sampling 21 

duration. The comparison between a single period of camera-trapping over the winter—22 

spring period, and two equal periods with one in winter and one the following spring 23 

shows that for the six resting sites it would have been significantly more efficient to 24 

adopt the latter sampling strategy. The simulations also allow for a proportion 25 

(approximately 15%) (i.e. one day in seven) of camera-trap days to be lost due to 26 

malfunctioning camera-traps. Ideally, a consultant would have no data loss but the 27 

inclusion of an allowance for a small proportion of non-functioning CT days would reflect 28 

real world situations where CTs can malfunction. It would also draw attention of 29 

practitioners and statutory authorities that this is an important methodological point to 30 

be included in CT survey reports as it contributes to an assessment of quality.  31 
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The small loss of data was greater in shorter camera-trap durations, and as such, did not 1 

have an effect on the duration of days required to have a 95% probability of a rest; the 2 

sampling durations required were usually long enough that the proportion of lost 3 

simulations had substantially fallen to a negligible value. However, one site (Torqhuan) 4 

was missing 20 consecutive days and this led to a high proportion of excluded 5 

simulations. Excluding Torquhan due to the imperfect data, two periods of 35d (based 6 

upon Learmouth (18-19)) was the sampling effort required to have a 95% probability of 7 

detecting a rest (i.e. two periods of 5 weeks, one in winter, one in spring). This compares 8 

to a single sampling duration of 108 days (15.4 weeks) (based upon Learmouth (17-18)). 9 

Guidance states that protection is afforded to resting sites where there is a “reasonable 10 

probability that the species will return”  (EU 2007). The detection of a single rest is likely 11 

to be sufficient to afford protection under the “precautionary principle”. The 12 

precautionary principle in commercial ecology recognises that “lack of scientific 13 

evidence should not be used as a reason for avoiding steps that might prevent 14 

environmental damage” (Snell and Cowell 2006). Therefore, if only one rest was 15 

detected after two CT periods of 35d, it could be considered that subsequent rests may 16 

be likely given that the structure has been proved to be suitable for resting otter.  17 

Using eight simulations from six resting sites may be considered too small to base any 18 

concrete recommendations on, but the method described here, provides a framework 19 

that could be repeated at more resting sites over a larger geographical range to enable 20 

refinements to any sampling protocol. In the absence of any other data, these analyses 21 

demonstrate the level of survey effort required. Consequently, surveys with low 22 

sampling effort such as two weeks that do not detect a rest, can readily be assessed as 23 

not being fit for purpose. If two sampling periods of 35d over a period of six months 24 

were introduced, given that there is currently no camera-trapping protocol for assessing 25 

the use of structures as otter resting sites, this may be perceived as a high level of 26 

monitoring. However, the cost of running the CTs is relatively cheap; the person-hours 27 

would be minimal. Each duration of monitoring would require a site visit to deploy the 28 

CTs, one maintenance visit after two to three weeks and a third visit to retrieve the CTs. 29 

The maintenance visit would be optional as high quality non-rechargeable batteries are 30 

likely to run for 35d. However, if a CT fails, or is stolen or flooded, this would be a 31 

significant loss of data, whereas a check mid-monitoring period could rectify any issues 32 
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and the monitoring period extended until recommended number of CT days is reached. 1 

More frequent checking would not be advisable due to potential disturbance, and 2 

maintenance at approximately two week intervals did not cause any measurable 3 

differences in activity and scent-marking behaviour in the long-term study site (see 4 

Section 3.4.1). Two sampling periods of 35d would only be required if no rests were 5 

detected, if a rest were detected at any point, then monitoring could cease. 6 

Derogation license applications require a statement on whether the structure is a 7 

breeding structure; in Scotland there is a presumption against granting a license for 8 

damage to, or disturbance of a structure currently used by breeding otter (Scottish 9 

Natural Heritage n.d) so determining that a site is a resting site may not be enough on 10 

its own for a license application especially if there is a method to determine breeding 11 

status.  12 

The cost of analysis time of the videos or images would vary, but even if two full 13 

monitoring periods of 35d each were undertaken, the costs should not be prohibitive 14 

even with a dual CT arrangement. The main issue would be that there would be firmer 15 

seasonal guidance on when camera-trapping should be implemented, also that a 70d 16 

monitoring (if the two surveys are undertaken back-to-back) would be required to 17 

demonstrate that enough effort had been invested to determine a lack of evidence of 18 

resting.  19 

4.6.7.2 Logistical constraints 20 

 21 

For the evidence from the River Tweed sites to be used to generate generalisable 22 

guidelines for identifying resting sites, it is important that the sites sampled are 23 

representative of those that would be initially identified as potential resting sites by 24 

ecologists. The River Tweed sites were found by the same surveyor and had to have a 25 

low risk of inundation which precluded some potential sites. There were health and 26 

safety considerations surveying the larger rivers such as the rivers Tweed and Teviot, 27 

and safe access to CTs when the rivers were rising also had to be considered. This 28 

precluded some habitats that were potentially ideal, such as islands by old mill caulds 29 

(weirs that raise water levels to increase flow into mill lades) which were a common 30 

feature in the lower Tweed catchment, and also sections of river bank which were 31 

backed by steep wooded embankments. Additionally, features close to the water were 32 
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excluded due to vulnerability of equipment coupled with the small distance between 1 

the water and entrance likely leading to missed detections due to soaking wet animals 2 

failing to trigger the CT (see Section 2.5.5). The logistical constraints of finding suitable 3 

sites will be the same as those encountered in other CT studies of otter resting sites, and 4 

the same as those encountered by consultants. The findings are therefore in context 5 

with the study mode. 6 

Detection heterogeneity (i.e. differences in detection between sites due to 7 

topographical, vegetation and other differences), was an accepted constraint from 8 

inception of the study. In accordance with the findings from Chapters 2 and 3, CT 9 

deployment was designed to minimise false-negatives; two or more CTs were used at 10 

most sites with at least one CT at each site close (within 1.5m) to the structure entrance. 11 

Additionally, the otters were not expected to run though the field of view (and slower 12 

animals tend to have higher detection probability – see Chapter 2). Signs such as spraints 13 

indicated that otter had some interest in the sites included and were not simply passing 14 

through. It was anticipated that behaviour such as scent-marking and sniffing would 15 

result in loitering in the detection zone and field of view which increases the probability 16 

of capture (see 2.4.2). Only 8% (n = 13,847) of observations were defined as ‘incomplete’ 17 

(i.e. unpaired), for instance if an otter was observed exiting a structure with no prior 18 

entry recorded, indicating that detection success was at an acceptable level. This figure 19 

also includes occasions where there was a lack of certainty that an otter leaving the 20 

structure was the same individual as that observed entering, especially if there were 21 

groups of otter and/or repeated visits at the structure by single otters. These were 22 

recorded as single events (i.e. incomplete observations). However, they were related to 23 

the inability to distinguish individual otters and so were not entirely related to detection. 24 

The remaining observations were considered complete, in that the activity of the otter 25 

in relation to the structure was fully accounted. There are also likely to be false-26 

negatives, where an otter was present, or rested, but this was not recorded at all. 27 

Although these cannot be quantified, they were minimised by careful deployment. 28 

Failure of the CT to trigger or register a pass, and activity during the re-arm time of the 29 

CT (i.e. the time between each successive videos of the same CT) are likely to be the 30 

primary causes of false-negatives. Both were minimised by using one or more close CTs 31 
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which would have different detection areas and trigger at different times. Staggered 1 

trigger and re-arming times would make missed detections less likely. 2 

The necessity for bespoke CT deployment at each site cannot completely avoid 3 

detection heterogeneity, although it was minimised as far as possible by informed 4 

deployment. These are unavoidable logistical constraints which were managed to 5 

minimise false-negatives, however their impact on the applied findings is not of major 6 

concern as they are issues that a practitioner will also be faced with.  7 

 8 

4.6.8 Conclusions 9 

 10 

Of 26 sites studied, six were confirmed as resting sites by camera-trapping observations 11 

with two more resting sites implied from behavioural indicators. Rests at thr ee study 12 

sites occurred almost exclusively in winter and spring and were also generally more 13 

active in terms of number of CT days otters were observed, and the number of 14 

observations of otter per CT day during these seasons. Latrine behaviour and bedding 15 

collection were exclusively observed at the resting sites and can be used as a strong 16 

indicator of resting when observed on CT footage. All resting sites were used by at least 17 

one otter, and there was repeated use of structures within, and between years. These 18 

structures would qualify as resting sites under the Habitat Regulations where guidance 19 

states that resting places are “areas essential to sustain an animal or group of animals 20 

when they are not active” and that there is “reasonable probability that the species will 21 

return” to use the site/place (EU 2007). Furthermore, the use of CTs enables nocturnal 22 

resting sites to be confirmed and studied, which is out with the usual remit of radio-23 

tracking studies.  24 

The observations on the River Tweed provide a basic understanding of what activity can 25 

be expected at resting sites and non-resting sites. The study contributes a strong 26 

evidence-base towards methodological considerations such as seasonal constraints and 27 

minimum sampling effort to determine if a structure is used for resting (see Chapter 6 28 

for further discussion).  29 

  30 
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Chapter 5  Can field-signs alone be used to identify an otter 1 

resting site  2 

 3 

5.1 Abstract 4 

 5 

Otter resting sites are protected by UK and European legislation. Ecological consultants 6 

must identify otter resting sites so they can be fully considered during development 7 

projects.  Field-signs are usually used to identify resting sites, but the relationship of 8 

field-signs to resting sites is assumed. This study aims to test whether quantity or 9 

patterns of field-signs can be used to identify resting sites, and whether some types of 10 

field-sign are more reliable than others. Intensively camera-trapping 26 structures 11 

across the River Tweed catchment (Chapter 4) provided a data set of resting and non-12 

resting sites to compare field-signs between and within. Field-signs were recorded at 13 

each site at approximately three-week intervals for approximately a year. Each site was 14 

monitored with camera-traps to determine which sites were resting sites. Otter latrines 15 

(i.e. significant accumulations of droppings where a count of deposits is not possible, 16 

see Glossary, P11) were the only reliable field-sign indicator of a resting site. Presence 17 

of bedding could be used, however potential confusion with bedding dropped by 18 

badgers and windblown vegetation make this less reliable. Other field-signs (spraint 19 

counts, presence of a path, presence of spraint piles) were not related to whether a site 20 

was a resting site or not. Spraint counts in the vicinity of the structure were higher at 21 

resting sites if the site had recently been used for resting, but this trend was not strong 22 

and could not be applied to any field survey protocol. This study found that it is unlikely 23 

that most field-signs could be used to reliably identify resting sites, except for the 24 

presence of an active latrine. Previous literature is ambiguous in the distinction between 25 

spraint sites and latrines, but these should be treated as different types of field-signs as 26 

they have different morphology and different functions are inferred. A spraint is a small 27 

faecal deposit used to scent mark while a latrine is a large mass of faeces comprising 28 

uncountable droppings.  This study concludes that camera-traps are required to 29 

complement field-sign surveys to increase the accuracy of resting site identification. 30 

 31 
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 1 

5.2 Introduction 2 

 3 

Guidance notes by statutory authorities (Scottish Natural Heritage; Northern Ireland 4 

Environment Agency 2017; Natural England and Department for Environment Food & 5 

Rural Affairs 2019) state that an otter surveyor must identify otter resting sites as holts 6 

(underground structures) or couches (above ground resting sites) but offer no further 7 

advice on methods to do so. The has led to a practice where consultants can only state 8 

in report methodologies that otter resting sites will be found and classified as a couch 9 

or a holt as there is no industry guidance (pers. obs.). In addition to identifying whether 10 

a structure is a resting site or not, there is also a need to determine if the site is used for 11 

breeding and if it is currently active. Breeding sites are more significant in Ecological 12 

Impact Assessments, and impacts from construction can be avoided or reduced by 13 

avoiding times when the resting or breeding site is active (CIEEM 2019).   14 

Therefore, there is a need to establish whether field-signs can be used to (a) identify 15 

resting and breeding sites and also (b) determine current occupation (i.e. whether one 16 

or more animals are in the structure or have been recently). Using field-signs is likely to 17 

be the most time-efficient, cost-effective and accessible method, but a reliable approach 18 

is needed.  Comparing interpretation from field-sign surveys with another method, that 19 

is more time-consuming but which can reliably identify resting sites and recent usage, 20 

such as a CT survey could validate the use of field-signs and enable a more prescriptive 21 

method of identifying resting and breeding sites from field-signs. However, if this 22 

relationship cannot be validated, there would be a need for an alternative approach 23 

such as CT surveys, but this too would need a robust survey protocol.  24 

Previously underlying assumptions have been made that spraint at a structure indicates 25 

a resting site, and that the amount of spraint relates to the frequency of resting (e.g. 26 

Waldemarin and Colares 2000).   Other field-signs (or field evidence) such as bedding, 27 

presence of an otter path (often termed an “otter slide”), finding otter hairs and otter 28 

footprints have all been all perceived as indicators of resting when found at a structure 29 

which is assessed as offering potential shelter (O’Sullivan 1993). Using spraint and other 30 

field-signs to indicate resting sites would be robust if such field-signs were always, and 31 

only ever, present at resting sites, or if there was a clear difference in the magnitude, 32 
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pattern or type of field-signs left at resting sites and non-resting sites. Otters have 1 

numerous spraint sites, using features such as prominent rocks, the shores of small 2 

islands, under bridges and at river confluences (Ruiz-olmo et al. 2001; Prigioni et al. 3 

2006). They can also use vegetation to accentuate spraint sites, scratching up vegetation  4 

to produce a mound before sprainting on it, often referred to as a “sign heap” (Erlinge 5 

1967; Mason and Macdonald 1987b), which can sometimes give the appearance of 6 

abandoned bedding (pers. obs.). As spraint has been used as a key indication of a resting 7 

site when it is found at a feature that may offer shelter, it would be critical to be able to 8 

distinguish sprainting activity associated with a resting site from “regular” spraint sites, 9 

if such a distinction exists. Many factors are thought to affect sprainting behaviour such 10 

as season, breeding status and habitat, (see Section 1.1.3 for discussion of sprainting). 11 

Any differences in variation of the number or spatial arrangement of spraints at resting 12 

sites and non-resting sites would need to be consistent if it is to be used as a diagnostic 13 

feature to identify resting sites. The correct identification of field-signs is also important, 14 

and whilst some field-signs are well described such as footprints, rolling places, slides 15 

runs, spraint sites and sign heaps (Erlinge 1967), those such as bedding and latrines at 16 

resting sites are not explicitly described.  17 

To my knowledge, published studies that link field-signs to the use of resting sites are 18 

limited to the coastline of the Shetland Isles (Kruuk et al. 1989; Kruuk 1992); a group of 19 

islands between Scotland and Norway. There are fundamental differences between the 20 

Shetland population of otters and mainland riparian otters. Otter home-ranges are 21 

generally smaller on Shetland and otters are active during the day (Kruuk and 22 

Moorhouse 1991a); their coastline habitat comprises treeless peatlands and so holts are 23 

usually burrow structures readily found in the open habitat (Moorehouse 1988). 24 

Shetland holts are typically burrows in peat with polished (smooth) entrances that are 25 

wider than their height, with accumulations of spraint, prints and soiled vegetation 26 

outside, and importantly, they can be confirmed by watching otter activity at holts 27 

(Moorehouse 1988). Using field-signs to identify holts is a standard approach for other 28 

species of otter. For example, the survey protocol for the giant otter Pteronura 29 

brasiliensis states that holts are one of the main features that confirm presence of the 30 

species (Groenendjik et al. 2005). The protocol identifies giant otter holts as large, 31 

riverside burrows, with a flattened area outside which has a surface layer of dispersed 32 
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hard parts of fish, and tracks in or leading to the entrance. It is therefore understandable 1 

why identifying Eurasian otter holts using field-signs is not questioned, especially given 2 

the legislative imperative to protect such sites during development.   3 

Many studies have been undertaken to find drivers of sprainting behaviour by looking 4 

at spraint distribution (see Section 1.1.3), but few have looked at spraint in relation to 5 

resting sites. Visual observations of otters at holts on Shetland recorded otters 6 

sprainting at holts before entering (10 occasions), sprainting outside a holt without 7 

entering (11 occasions) and entering a holt without sprainting (14 occasions).  Visits to 8 

holts with no sprainting were also observed (2 occasions) (Moorehouse 1988). This 9 

indicates inconsistent sprainting behaviour at holts, but analysis was not taken any 10 

further. At spraint sites, a  correlation has been found between spraint counts and 11 

visitation rates of both the Eurasian otter (Guter et al. 2008) and the northern river otter 12 

(Day et al. 2016) by pairing visits recorded by video recording and daily spraint counts. 13 

Spraint counts were less successful in quantifying the number of otter registrations, but 14 

there was a positive, but weak, relationship between otters registered by cameras and 15 

spraint counts in both studies. Therefore, one could hypothesise that a high number of 16 

spraints at a resting site equates to a higher number of times an otter has been present. 17 

However, camera-trapping on the River Tweed has demonstrated that sites can have  18 

very high levels of otter visits without being rested in (see Table 4-10, p117), challenging 19 

the assumed link between high otter presence at a structure and it’s use as a resting 20 

site. 21 

5.2.1  Aims  22 

The three aims of this chapter are: (i) to provide descriptions of field-signs found at 26 23 

structures known to have been visited by otters across the River Tweed catchment 24 

(described in Chapter 4); (ii) given that these structures contained known resting and 25 

non-resting sites, to test the assumption that field-signs can be used to identify resting 26 

sites, and (iii) within the six known resting sites, to test whether there was a relationship 27 

between field-signs and recent resting behaviour (i.e. current occupancy).  28 

 29 

5.3  Methods 30 

 31 
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This study uses the CT data collected at the 26 study sites on the Tweed in combination 1 

with field-signs which were collected at each site when the CTs were maintained (i.e. 2 

when the CT unit was exchanged with a different one with fresh batteries and empty SD 3 

card). The selection, location and CT monitoring methods were described in Section 4.3, 4 

with details of field-signs collection described here. 5 

Each time sites were visited for change-over of cameras (see Section 4.3.3), an 6 

inspection of the structure was also undertaken where possible, and field-signs were 7 

recorded (Table 5-1). However, on 19%  (n = 396) of maintenance visits, it was not 8 

possible to collect field-signs as the water levels were too high to safely climb down the 9 

bank sufficiently to view the structure, or the area outside the structure was submerged. 10 

To minimise disturbance, field-sign data were collected only on maintenance visits 11 

during daylight hours and not between maintenance visits. 12 

Table 5-1 Summary of field evidence recorded at each site on each camera-trap maintenance visit 13 

Field evidence Units Descriptions 

Recorded within each distance band from structure (at entrance, to 1m and 1—5m) 

SPRAINT Count The number of individual spraints, including an 
estimate of spraints within spraint piles 

SPRAINT PILES Count Count of piles with ≥ 4 spraints 

Recorded within chamber, tunnel and entrance to 1m 

BEDDING Present/absent Clumps of loose vegetation that are out of 
context with surroundings e.g. clump of loose 
moss on bare ground outside structure 

Recorded as present/absent across all distance bands combined 

LATRINE Present/absent Characterised by large collection of droppings 
creating a distinct area with lateral spread over 
ground/substrate. 

PATH Present/absent  Presence of a path linking structure to water 

SUBSTRATE FOR 
FOOTPRINTS 

Present/absent Substrate within 5m of structure which would 
potentially register footprints such as deposited 
silt or mud. 

FOOTPRINTS Present/absent Otter footprints, sub-categorised as adult or 
young. 

 14 

When recording the field-signs, the aim was to record what was present but not to 15 

distinguish what was new since the last visit as there was no intention to compare the 16 

field-signs from one survey to the next. Therefore, the data represented what a field 17 
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surveyor would find with no prior knowledge of the structure. Field evidence was also 1 

recorded with no prior review of the CT footage.  2 

To keep disturbance to a minimum, the inspection was non-invasive (i.e. did not include 3 

an endoscope or use of a torch inside the structure). This would emulate the level of 4 

inspection available to a non-licensed ecologist. Although I did hold a license for invasive 5 

surveys at sites in both Scotland and England, most ecologists do not hold a license to 6 

disturb otters when surveying (pers.obs.); using a torch inside a structure suspected to 7 

be a resting site would constitute disturbance. According to the type of structure, field 8 

signs were identified (see Brown et al. 2004) and recorded within five discrete spatial 9 

areas: (i) “chamber” - the assumed sleeping area characterised by a flat, dry area of a 10 

minimum of 50cm with/without bedding; (ii) “tunnel” - any area of tunnel/burrow 11 

visible  from the entrance to the structure; (iii) “entrance” - the threshold where the 12 

cover from the structure becomes open; (iv) “1m zone” -  from the entrance to 1m, 13 

excluding any spraint at the entrance threshold; and, (v) “5m zone” - the area within 1—14 

5m of the entrance. The ability to record signs in the (i) chamber and (ii) tunnel was 15 

often not possible for some sites, but they were recorded in all cases where they were 16 

visible without an invasive search.  17 

Signs were not recorded beyond 5m as the topography made accessing some of the 18 

steep riverbanks difficult; extending the search further than 5m would result in 19 

inequality of survey between sites. The distance of 5m was considered an achievable 20 

standard for most sites.  Additionally, it was assumed that signs beyond 5m would be 21 

less likely to be associated with a structure by a field surveyor.  22 

Most categories of field evidence were recorded as being present or absent, for example 23 

bedding and otter footprints (see Table 5-1). Spraints, however, were counted. Spraints 24 

are rarely deposited as neat parcels, they are usually amorphous or semi-amorphous. 25 

Scattered spraints could be counted with reasonable accuracy, but several deposits in 26 

the same area, such as on the same tree root, had to be estimated by looking at the 27 

amount and differences in weathering of the deposits as well as identifying individual 28 

deposits where possible from their form. Historical deposits of spraint which had 29 

become fragmented and dispersed were excluded as this would have necessitated a 30 

more thorough, and potentially disturbing examination using a torch at some sites. 31 

Spraint piles were also counted, defined as four or more spraints being deposited 32 
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directly on top of each other. The spraint counts included an estimate of the deposits 1 

within any spraint piles, e.g. a pile of eight spraints and two single spraints would be 2 

recorded as a count of 10 spraints and one spraint pile. It was accepted that the spraint 3 

counts would not be fully accurate, but application of a consistent approach would 4 

enable valid comparisons between sites, and these limitations would also be faced by 5 

practitioners. During the fieldwork, substantial accumulations of spraints/droppings 6 

were found at some structures. The individual deposits in these accumulations could not 7 

be counted, they formed an uninterrupted mass of droppings at least 15cm across and 8 

several cm deep. These were recorded separately from the spraint counts as “latrines” 9 

(examples shown in Figure 5-1a, b & c). In some instances the latrines contained a mix 10 

of amorphous deposits (Figure 5-1a) whilst the droppings in other latrines were drier 11 

with a three-dimensional form (Figure 5.1b & c).  12 

The presence of a path linking a structure to the water is purported to be evidence of a 13 

breeding or natal site (Liles 2003). Therefore, the presence of a path was recorded, this 14 

could be a path though the vegetation, or a pathway of trampled or compacted earth 15 

when on bare ground (Figure 5.1d & e).  16 

  17 



153 
  

 1 

 2 

Figure 5-1 Examples of field-signs identified at study sites: (a) a latrine on open ground at 3 

Gordon; (b) a latrine sheltered by the structure at Learmouth; (c) a latrine at Frogden1 (note 4 

cylindrical pellet droppings); (d) a well-defined otter path with a smooth, compacted substrate 5 

and no vegetation at Eden1 between the structure and the water (e) a well-defined otter path 6 

through vegetation at Learmouth linking the structure to two watercourses. 7 

 8 

(d) 

(a) 

(c) 

(b) 

(e) 
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5.4 Analyses 1 

 2 

5.4.1 Simplification of variables 3 

 4 

The sample size and number of levels in ordinal and categorical variables had to be 5 

rationalised to reduce the number of parameter estimates in models. The rationale for 6 

simplification of variables is described in Table 5-2. 7 

 8 

Table 5-2 Simplification of field data to reduce complexity of models, .BIN has been used to denote binary 9 
variables 10 

Variable Simplified 
variable 

Description of 
simplified variable 

Rationale 

Footprints Not used Not used Of 67 observations where suitable 
substrate was present, footprints 
were only found at 15. 
Footprints were excluded from 
further analyses 

Bedding BED.BIN 
 

Presence or 
absence 

Bedding can be moved by wind 
and animals 

Spraint piles SPILES.BIN Presence or 
absence 

 There were zero counts for 68% 
of 319 observations and a limited 
count range 1—6 when present. 

 
 

Spraint 
counts 

SPRAINT1M Spraints count at 
the entrance and 
to 1m 

Spraint could not be seen in the 
chamber and tunnel of most of 
the closed structures, so these 
categories were not included. 
Categories included can be 
applied to all structures 

SPRAINT1.5M Spraint count 1—
5m from entrance 
 

ALLSPRAINT Sum of SPRAINT1M 
and SPRAINT1.5M 

 11 

 12 

 13 
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5.4.2 Can field evidence be used to distinguish resting sites from non-resting sites? 1 

 2 

Models were constructed to determine if field-signs were related to whether a site was 3 

a resting site or not. Resting site was used as a binary response variable (1 = site used 4 

for resting over whole study duration, 0 = site not used for resting) and site was used as 5 

a random factor within a generalised linear mixed model structure with a binomial error 6 

distribution. A hypothesis-driven list of candidate models (Table 5-3) was created using 7 

explanatory variables from Table 5-2.  8 

Models were fitted to the data in R studio (RStudioTeam 2015), using package lme4 9 

(Bates et al. 2015) and MuMin (Barton 2016) to generate model comparison tables. 10 

Models were compared using AIC, and models with a ΔAIC of ≤ 2 were considered as 11 

having good support (Burnham and Anderson 2004). 12 

Mill2 was omitted from the analysis as it was unclear whether this was a regularly used 13 

resting site (see Section 4.5.1). Additionally, it was the most difficult site to access and 14 

conditions were rarely conducive to count spraint to a 5m radius. Marlefield was also 15 

excluded as only one rest was recorded there (see Section 4.5.1). Crailing, Frogden1, 16 

Frogden2, Gordon, Learmouth and Torquhan were coded as resting sites as each had 17 

multiple recorded rests (see ), and the remaining 24 sites were considered non-resting 18 

sites during their monitoring. 19 

The models were initially fitted to the dataset containing all seasons (n = 297 CT 20 

maintenance visits where field-signs were surveyed). They were then fitted to a subset 21 

of field data including winter and spring which are the seasons when 95% of rests 22 

occurred (n = 141) (see Section 4.6.3).  23 
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Table 5-3 Candidate model set of generalised linear mixed models, using site as a random factor and  Y as 1 
a binary response variable of whether the site is a resting site (1) or not (0).   2 

Model set Key to Explanatory variables 

Y ~ NULL MODEL ALLSPRAINT: count of spraints from and including 
Y ~ BED.BIN entrance to 5m 
Y ~ PATH BED.BIN: presence/absence of bedding to 1m 
Y ~ SPRAINT1M PATH: presence/absence of path within 5m 
Y ~ ALLSPRAINT SPRAINT1M: count of spraints from and including 
Y ~ SPRAINT1.5M entrance to 1m 
Y ~ SPILES.BIN SPRAINT1.5M: count of spraints from 1—5m 
Y ~ BED.BIN+SPILES.BIN SPILES.BIN: presence/absence of spraint piles 
Y ~ PATH+SPILES.BIN to 5m 
Y ~ SPRAINT1.5M+PATH  
Y ~ SPRAINT1.5+BED.BIN  

 3 

 4 

5.4.3 Can field evidence be used to evaluate recent use of a resting site? 5 

 6 

The previous analysis (Section 5.4.2) examined whether field evidence can be used to 7 

distinguish a resting site from a non-resting site. Once a resting site has been confirmed 8 

using CT data, it is often necessary to know at a later date if it is in current use, for 9 

example to decide if potentially disturbing construction activities can go ahead.  The 10 

following analysis is therefore restricted only to sites I identified as resting sites and aims 11 

to determine whether field evidence can be used to assess if a structure has recently 12 

been used for resting. 13 

This analysis used a subset of data only containing the six habitually used resting sites 14 

(i.e. Crailing, Frogden1, Frogden2, Gordon, Learmouth and Torquhan).  Continuous CT 15 

data immediately prior to the field-signs being recorded was required, so that the field-16 

signs could be analysed in context with any rests recorded on the CTs. There were 129 17 

maintenance visits to the six resting sites, and, of these, field-signs were recorded on 18 

106. For this analysis, the CTs needed to have been operational prior to the collection of 19 

field-sign data, but camera-malfunctions would reduce the sample size. To avoid 20 

excessive reduction of sample size, the analyses included observations of field evidence 21 

where a minimum of the close CT (the CT within 1—1.5m of the structure entrance) was 22 

running for the previous 10 days, thus reducing the sample size to 97.  23 

Two variables relating to otter rests were derived from the camera-trapping data. For 24 

the five-day periods prior to each of the dates when field evidence was collected, a 25 
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binary variable was created to denote if resting had been recorded at the structure or 1 

not (DAY5PRIOR, 1 = at least one rest recorded, 0 = no rest recorded). A second variable 2 

was similarly created for the previous 10 days prior to collection of field evidence 3 

(DAY10PRIOR).   4 

A hypothesis-driven list of candidate models was constructed (Table 5-4).  These were 5 

fitted to the data, first using DAY5PRIOR as the response variable, then using 6 

DAY10PRIOR. Models had a generalised linear mixed model structure with a binomial 7 

error distribution. Models were compared using AIC, and models with a ΔAIC of ≤2 were 8 

considered as having good support (Burnham and Anderson 2004). 9 

Table 5-4  Candidate model set fitted to the data when Y is a binary variable of presence or 10 

absence of a rest in the previous five days before field evidence was collected. The models were 11 

refitted when Y is a binary variable of presence or absence of a rest in the previous five days 12 

before field evidence was collected. 13 

Model Key to explanatory variables 

Y ~ NULL MODEL ALLSPRAINT: count of spraints from and including 
Y ~ BED.BIN entrance to 5m 
Y ~ PATH.BIN BED.BIN: presence/absence of bedding to 5m 
Y ~ SPRAINT1.5M PATH.BIN: presence/absence of path within 5m 
Y ~ ALLSPRAINT SPRAINT1M: count of spraints from and including 
Y ~ SPRAINT1.5M entrance to 1m 
Y ~ BED.BIN+SITE SPRAINT1.5M: count of spraints from 1—5m 
Y ~ SPILES.BIN SPILES.BIN: presence/absence of spraint piles 
Y ~ BED.BIN+SPILES.BIN to 5m 
Y ~ PATH.BIN+SPILES.BIN  
Y ~ SPRAINT1M+SITE  
Y ~ SP.ALL+SITE  
Y~ SPILES 
Y~SPRAINT1.5M+PATH.BIN 

 

Y~SPRAINT1.5M+BED.BIN  

 14 

5.5 Results 15 

 16 

5.5.1 Summary of field evidence 17 

The individual types of field-signs observed are initially described and summarised, 18 

followed by the results of the analyses relating field-signs to otter activity. 19 

 20 

5.5.1.1 Latrines 21 

 22 
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All confirmed resting sites had latrines (single latrines at Crailing, Frogden2, Learmouth 1 

and Torquhan; two latrines at each of Frogden1 and Gordon). Of these, the latrines at 2 

Frogden2, and one of the latrines at Frogden1 were within the structure and finding 3 

them required an invasive search which was undertaken after monitoring had ceased. 4 

Invasive searches of these sites were carried out as latrine behaviour had been observed 5 

on the CT footage which was not watched until monitoring had ceased in order to avoid 6 

bias. The latrine at Torquhan was observed after the structure, a hollow ash Fraxinus 7 

excelsior tree, was blown over by high winds after monitoring ceased. This latrine had 8 

been fully concealed and was not in the field of view of the CTs and could not be seen 9 

during CT monitoring or normal field-sign data collection. 10 

Mill2 had a disused latrine at commencement of monitoring (Figure 5-2) which was 11 

washed away after five weeks by a spate. Mill2 was latterly thought to have been an 12 

active resting site during the monitoring period although this had not been observed 13 

using CT data (see Section 4.4.1).  14 

 15 

Figure 5-2 Latrine at Mill2, with head torch for scale and approximate area of latrine indicated by dashed 16 
line. One of the entrances is within 0.5m of the latrine. 17 

 18 

A latrine was also present at Maxton when the site was initially found during walked 19 

surveys to locate potential structures for this study (see Section 4.3.3). However, this 20 

latrine was never refreshed, and resting behaviour was not recorded during CT 21 
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monitoring. This latrine was in a semi-covered tunnel above the level of the most 1 

extreme spates experienced during the monitoring period. It was found on 4/6/17 and 2 

was considered absent by 19/2/18, thus lasting for up to 36 weeks without being 3 

refreshed but was never submerged by the river and was only likely to be rained on in 4 

extreme rain/wind. 5 

 6 

Table 5-5 Location of latrines associated with resting sites. “Initial” and “second” refer to the order they 7 
were observed. Sites where latrines were not observed during the data collection phase, but only after 8 
invasive search at the end of data collection are in italics. 9 

 10 

Within structure Within 1m of entrance Within 5m of entrance 

Crailing 
Frogden1, second latrine 
Frogden2 
Gordon, initial latrine 
Learmouth 
Torquhan 

Gordon, second latrine 
Maxton 
Mill2 
 

Frogden1, initial latrine 

 11 

 12 

The Learmouth latrine was made by the otters during the monitoring period and was 13 

visible as part of the non-invasive surveys for field-signs. The latrine was first recorded 14 

on 27/3/19 following six rests documented on CTs between 12/2/19 and 27/3/19. The 15 

last resting activity prior to 12/2/19 had been in June 2018. 16 

 17 

5.5.1.2 Bedding 18 

 19 

Vegetation within the chamber of the structures was seen at three resting sites, Gordon, 20 

Frogden2 and Torquhan. At Gordon, this was clearly a “made” nest (Figure 5-3) 21 

comprising a large amount of collected vegetation with a central depression where an 22 

animal has lain. Similarly, at Frogden2, there was a large quantity of bedding, often 23 

partially blocking the entrance, although bedding collection was only observed on CTs 24 

by badgers. Small amounts of fresh green bedding were observed in the hollow tree at 25 

Torquhan but these didn’t form a nest structure. 26 
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Loose vegetation within 1m of the structure, interpreted as dropped bedding material, 1 

was found at four of the non-resting sites, although at one of these (Hownam) bedding 2 

collection was observed by badgers (Table 5-6). On 26 occasions, bedding was noted in 3 

the field with no bedding collection behaviour detected on the CTs. However, at 4 

Frogden2 and Gordon, the nests were present throughout monitoring, so 23 of these 5 

observations referred to the presence of a nest with no active bedding collection 6 

recorded on CTs.  7 

At the non-resting sites, ‘bedding’ was recorded but with no corroborating CT footage 8 

of bedding collection by any species on 14 occasions, these field observations were likely 9 

to have been incorrect interpretations of the origin of the vegetation, e.g. it may have 10 

been windblown debris. 11 

There were also seven instances where bedding collection by otter was recorded by the 12 

CTs but not recorded at the subsequent inspection for field-signs, presumably as none 13 

had been dropped, or any dropped vegetation had blown away. The collected bedding 14 

was out of sight within the structure. These observations indicate that field-signs are not 15 

an accurate reflection of activity. There is potential for false-negatives (no bedding 16 

observed in the field yet CTs showed bedding being collected) and also false-positives 17 

(apparent bedding observed in the field yet CTs do not show any bedding collection) in 18 

terms of recording of bedding. 19 

 20 

Figure 5-3 Nest of collected bedding at the resting site at Gordon, a partially open hollow 21 

alder Alnus glutinosa tree 22 
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Table 5-6 Frequencies of contingencies, at resting and non-resting sites, of observations of bedding 1 
material recorded in the field at a maintenance visit (a) and whether bedding collection was recorded on 2 
the camera-traps on footage since the last maintenance visit by (b) otters, or (c) badgers. Y = yes, N = no. 3 
The figures are based on periods when field evidence was recorded, and data was available from camera-4 
traps (noted in brackets).  5 

 6 

Contingency   
Frequency of contingency at 
resting sites and non-resting sites 

(a) Bedding 
recorded in 
field 

(b) Bedding 
collection by 
otter observed 
on CT 

(c) Bedding 
collection by 
badger 
observed on CT 

Resting site  
(n = 87) 

Non-resting site 
(n = 181) 

Y Y N 7 (8%) 0 (0%) 

Y N Y 4 (5%) 4 (2%) 

Y N N 26 (30%) 14 (8%) 

N Y N 7 (8%) 0 (0%) 

N N Y 1 (1%) 1 (0.5%) 

N N N 42 (48%) 162 (88%) 

 7 

 8 

5.5.1.3 Paths 9 

 10 

The presence or absence of an otter path at each site showed little change over time 11 

and between sites. At ten sites, a path was never present, two of which were resting 12 

sites, Torquhan and Frogden2; there was soft grassy vegetation in front of Torquhan 13 

which would have registered a path. A climb of about 1m up a large willow tree was 14 

necessary to access the entrance of Frogden2, which would need considerable traffic of 15 

either otter or badger to register wear or staining on the bark. Gordon also had an 16 

entrance approximately 1m up a tree, and a near vertical stained run was clearly visible 17 

on the outside of the trunk (see tinyurl.com/thsy9jn ). 18 

 A path was present at every visit at three confirmed resting sites (Crailing, Gordon and 19 

Learmouth), and Mill2 which was probably a resting site (Section 4.4.1). A path was 20 

present at every visit at the non-resting sites Nenthorn, Hownam and Eden1. 21 

  22 

https://tinyurl.com/thsy9jn
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5.5.1.4 Spraint counts and spraint piles 1 

 2 

The number of spraints at resting sites and non-resting sites are summarised in Table 3 

5-7. These suggest there is a greater difference in spraint numbers in the general vicinity 4 

of the structure (i.e. in the distance zone of 1—5m compared to near the immediate 5 

structure entrance). 6 

Table 5-7 Summary of spraint counts at resting sites and non-resting sites 7 

 Count to 1m Count from 1 to 5m 

 Resting Non-resting Resting Non-resting 

Number of observations (n) 106 213 106 213 
% of observations with 
presence of spraint 66% 65% 3% 38% 

Median 2 1 0 0 

1st Quartile 0 0 0 0 

3rd Quartile 4 6 5 2 

Max 18 20 54 15 

 8 

 9 

In the winter and spring, the median spraint counts at resting sites were generally higher 10 

close to the holt (i.e. the entrance and to 1m), with less spraint between 1m and 5m 11 

(Table 5-7). The median count between 1m and 5m is notably higher in the summer 12 

whilst the autumn count is negligible at both non-resting sites and resting sites.  13 
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 1 

  2 

Figure 5-4 Distributions of spraint counts to different distances from entrance by season and resting site 3 
vs non-resting site (a) includes spraint at the entrance and to 1m, (b) from 1m to 5m, and (c) total spraint 4 
count from entrance to 5m 5 

 6 

The number of spraint piles at resting sites and non-resting sites are summarised in 7 

Table 5-8. 8 

Table 5-8 Summary of the counts of spraint piles at resting and non-resting sites 9 

 Resting site Non-resting 

Number of observations (n) 106 213 

% of observations with presence of spraint pile 37% 30% 

Median 0 0 

1st Quartile 0 0 

3rd Quartile 1 1 

Max 6 5 

 10 

 11 

5.5.1.5 Footprints 12 

 13 

Observations of conditions that were suitable to register footprints were infrequent 14 

(19% of all observations) with nine sites never having suitable substrate within 5m of 15 

the structure. Footprints were therefore very rare, adult footprints were registered 16 

within 5m of the structure in only 5% of all observations (24% of all observations where 17 

(a) (c) (b) 
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suitable substrate was present). They were observed once at four non-resting sites, and 1 

once at Mill2 which is thought to have been a resting site. At resting sites, they were 2 

recorded at Frogden1 on five occasions and Learmouth on two occasions. Prints within 3 

1m of the structure were rarer still, with three non-resting sites having a single 4 

observation of adult prints per site. Cub footprints were recorded once, within 5m of a 5 

non-resting site (Yetholm Loch). 6 

 7 

5.5.2  Can field evidence be used to distinguish resting sites from non-resting sites? 8 

 9 

Models in Table 5-3 were fitted to data including all four seasons to determine whether 10 

field-signs were related to whether a site was a resting site or not. Seven models have 11 

ΔAIC≤2, however the null model has the most support (Table 5-9 ). Even though the 12 

support for the null model is poor, with a model weight of 0.26, the remaining models 13 

are not considered further because the null hypothesis could not be excluded. 14 

The fitting of the same models in Table 5-3 were repeated using a subset of data from 15 

winter and spring, the period when 95% of rests were recorded. Again, seven models 16 

have a ΔAIC≤ 2 with the null model having the most support, so the models with less 17 

support are not considered further (Table 5-10). 18 
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Table 5-9 Model selection table, using data from all seasons, when the binary response variable is whether the site was a resting site or non-resting site. Explanatory variables 
are explained in Table 5-2. A + indicates inclusion of a categorical variable. Models with ΔAIC ≤ 2 are in bold and represent the models with most support and the null model is 
in italics. df = model degrees of freedom, logLik = log likelihood of the model, AIC = Akaike information criterion, ΔAIC = difference in AIC between that model and the model with 
the lowest AIC, and Wi = Akaike’s weight. 

 

MODEL (Int) SP.ALL 
BED 
-DING 

SPRAINT 
1M 

PATH 
.BIN 

SPRAINT 
1.5M 

SPILES 
.BIN df logLik AIC ΔAIC Wi 

NULL MODEL -15.31       2 -10.05 24.10 0.00 0.26 

BED.BIN -15.58  +     3 -9.99 25.99 1.89 0.10 

PATH.BIN -15.67    +   3 -10.04 26.08 1.98 0.10 

SPRAINT1.5M -15.44     0.02  3 -10.05 26.09 1.99 0.10 

SPILES.BIN -15.42      + 3 -10.05 26.09 2.00 0.10 

SPRAINTALL -15.45 0.01      3 -10.05 26.09 2.00 0.10 

SPRAINT1M -15.42   0.02    3 -10.05 26.10 2.00 0.10 

BED.BIN+SPRAINT1.5M -15.67  +   0.02  4 -9.99 27.98 3.88 0.04 

BED.BIN+SPILES.BIN -15.63  +    + 4 -9.99 27.98 3.89 0.04 

PATH.BIN+SPRAINT1.5M -15.76    + 0.02  4 -10.04 28.07 3.97 0.04 

PATH.BIN+SPILES.BIN -15.75    +  + 4 -10.04 28.07 3.97 0.04 
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Table 5-10 Model selection table, using subset of data including winter and spring when the binary response variable is whether the site was a resting site or non-resting site. 
Explanatory variables are explained in Table 5-2. A + indicates inclusion of a categorical variable. Models with ΔAIC ≤ 2 are in bold and represent the models with most support 
and the null model is in italics. df = model degrees of freedom, logLik = log likelihood of the model, AIC = Akaike information criterion, ΔAIC = difference in AIC between that 
model and the model with the lowest AIC, and Wi = Akaike’s weight.  

 

MODEL (Int) SP.ALL 
BED 
-DING 

SPRAINT 
1M 

PATH 
.BIN 

SPRAINT 
1.5M 

SPILES 
.BIN df logLik AIC ΔAIC Wi 

NULL MODEL -13.98       2 -9.83 23.66 0.00 0.26 

BED.BIN -13.92  +     3 -9.69 25.38 1.72 0.11 

PATH.BIN -14.30    +   3 -9.82 25.65 1.98 0.10 

SPRAINT1M -14.23   0.04    3 -9.82 25.65 1.99 0.10 

SPRAINT1.5M -14.12     0.02  3 -9.83 25.65 1.99 0.10 

SPRAINTALL -14.16 0.01      3 -9.83 25.66 1.99 0.10 

SPILES.BIN -14.06      + 3 -9.83 25.66 2.00 0.10 

BED.BIN+SPILES.BIN -13.98  +     4 -9.69 27.38 3.71 0.04 

BED.BIN+SPRAINT1.5M -14.32  +   0.02   4 -9.71 27.42 3.76 0.04 

PATH.BIN+SPRAINT1.5M -14.43    + 0.02  4 -9.82 27.64 3.98 0.04 

PATH.BIN+SPILES.BIN -14.36    +  + 4 -9.82 27.64 3.98 0.04 
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5.5.3 Can field evidence be used to predict recent resting behaviour? 1 

 2 

While field evidence could not predict whether a site was a resting site or not, there was 3 

good support for a relationship between a rest having been detected in both the 4 

previous five days and the count of spraints between 1 and 5m (Table 5-11 and Figure 5-5 

5a). In the preferred models with ΔAIC ≤ 2, all the models showed a positive relationship 6 

between the explanatory variables and the response variables. The presence of bedding 7 

and spraint count between 1 and 5m was related to a slightly higher probability of 8 

resting behaviour having occurred in the previous 5 days (Figure 5-5b) and the presence 9 

of a path was also related to a slightly higher probability of resting behaviour having 10 

occurred (Figure 5-5c) although these effects were small. 11 

The trends seen in the models using rests detected in the previous 10 days mirrored 12 

those seen in the models using the five-day response variable, but the trends were 13 

generally weaker. Again, there was most support for a relationship between resting 14 

behaviour having occurred in both the previous 10 days and the count of spraints 15 

between 1 and 5m (Table 5-12 and Figure 5-6a). The presence of bedding had a higher 16 

probability of resting behaviour having occurred than no bedding with the spraint count 17 

to 1—5m (Figure 5-6b). The remaining models with ΔAIC ≤ 2 supported a positive 18 

relationship of spraint count at 1m (Figure 5-6c), a spraint count to 5m (Figure 5-6d) and 19 

the spraint count 1—5m with the presence of a path (Figure 5-6e). 20 

None of the trends in Figure 5-5 and Figure 5-6 were definitive, with the maximum 21 

probability of a rest having occurred in the 5 days and 10 days prior being approximately 22 

60% at the highest recorded numbers of spraints, so there was still a reasonable chance 23 

of having high numbers of spraints without a recent rest having occurred. 24 

  25 
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 1 

 2 

Figure 5-5 Plots of models with most support ( ΔAIC ≤ 2) in Table 5-11, (a) best supported model, spraint 3 
count 1—5m; (b) spraint count 1—5m and presence of bedding, and (c) spraint count 1— 5m and 4 
presence of a path. Distribution of binary data when Y = 0 and Y = 1 indicated by ‘|’ symbol. 5 

 6 

7 
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  1 

 2 

 3 

Figure 5-6 Plots of models with most support ( ΔAIC ≤ 2) in Table 5-12, (a) best supported model, spraint 4 
count 1—5m; (b) spraint count 1—5m and presence of bedding; (c) spraint count to 1m; (d) spraint count 5 
to 5m, and (e) spraint count to 5m and presence of a path. Distribution of binary data when Y = 0 and Y = 6 
1 indicated by ‘|’ symbol. 7 

 8 

 9 

 10 

 11 
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Table 5-11 Model selection tables where Y=where rest detected in previous five days. Explanatory variables are explained in Table 5-2. A + indicates inclusion of a categorical variable. 
Models with ΔAIC ≤ 2 are in bold and represent the models with most support and the null model is in italics. df = model degrees of freedom, logLik = log likelihood of the model, AIC 
= Akaike information criterion, ΔAIC = difference in AIC between that model and the model with the lowest AIC, and Wi = Akaike’s weight.  

 

 (Intercept) 
BED 
.BIN 

PATH 
.BIN 

SPRAINT 
1M 

SPRAINT 
ALL 

SPRAINT 
1.5 SITE 

SPILES 
.BIN df logLik AIC   ΔAIC Wi 

SPRAINT1.5M -2.57     0.10   2 -37.57 79.14 0.00 0.48 

BED.BIN+ SPRAINT1.5M -2.76 +    0.10   3 -37.20 80.39 1.25 0.26 

SPRAINT1.5M+PATH.BIN -2.72  +   0.09   3 -37.48 80.97 1.83 0.19 

SPRAINT.ALL -2.33    0.05    2 -41.24 86.48 7.34 0.01 

SPRAINT1M -2.38   0.08     2 -41.24 86.49 7.35 0.01 

PATH.BIN -2.51  +      2 -41.26 86.52 7.38 0.01 

SPRAINT1.5M+SITE -2.47     0.10 +  7 -36.45 86.89 7.75 0.01 

PATH.BIN+SPILES.BIN -2.55  +     + 3 -41.13 88.25 9.11 0.01 

NULL MODEL -1.62        1 -43.44 88.87 9.73 0.00 

SPILES.BIN -1.93       + 2 -42.53 89.06 9.92 0.00 

BED.BIN -1.89 +       2 -42.77 89.54 10.40 0.00 

BED.BIN+SPILES.BIN -2.20 +      + 3 -41.88 89.76 10.62 0.00 

SPRAINT1M -1.86   0.06   +  7 -37.90 89.81 10.66 0.00 

SPRAINT.ALL+SITE -1.41    0.02  +  7 -38.36 90.72 11.58 0.00 

BED.BIN+SITE -1.11 +     +  7 -38.52 91.04 11.90 0.00 

  



 

 
 

1
7

1 

Table 5-12 Model selection tables where Y=where rest detected in previous ten days. Explanatory variables are explained in Table 5-2. A + indicates 

inclusion of a categorical variable. Models with ΔAIC ≤ 2 are in bold and represent the models with most support and the null model is in italics. df = 

model degrees of freedom, logLik = log likelihood of the model, AIC = Akaike information criterion, ΔAIC = difference in AIC between that model and 

the model with the lowest AIC, and Wi = Akaike’s weight.  

 

 (Intercept) 
BED 
.BIN 

PATH 
.BIN 

SPRAINT 
1M 

SPRAINT 
ALL 

SPRAINT 
1.5 SITE 

SPILES 
.BIN df logLik AIC ΔAIC Wi 

SPRAINT1.5M -1.59  +   0.06   2 -51.53 107.07 0.00 0.23 

BED.BIN+ SPRAINT1.5M -1.85 +    0.06   3 -50.64 107.28 0.22 0.21 

SPRAINT1M -1.78   0.08     2 -51.73 107.47 0.40 0.19 

SPRAINT.ALL -1.63    0.04    2 -52.45 108.91 1.84 0.09 

SPRAINT1.5M+PATH.BIN -1.52  +   0.07   3 -51.48 108.96 1.89 0.09 

BED.BIN -1.41 +       2 -53.16 110.32 3.25 0.05 

NULL MODEL -1.11        1 -54.27 110.54 3.48 0.04 

PATH.BIN -1.39  +      2 -53.85 111.70 4.64 0.02 

BED.BIN+SPILES.BIN -1.55 +      + 3 -52.87 111.74 4.68 0.02 

SPILES.BIN -1.25       + 2 -53.97 111.94 4.87 0.02 

PATH.BIN+SPILES.BIN -1.41  +     + 3 -53.76 113.53 6.46 0.01 

SPRAINT1M+SITE -1.60   0.07   +  7 -50.06 114.12 7.05 0.01 

SPRAINT1.5M+SITE -1.50     0.06 +  7 -50.27 114.54 7.47 0.01 

BED.BIN+SITE -0.81 +     +  7 -50.46 114.92 7.86 0.00 

SPRAINT.ALL+SITE -1.14    0.03  +  7 -50.80 115.60 8.54 0.00 
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5.6 Discussion 1 

 2 

5.6.1 Field evidence as indicators of a resting site 3 

 4 

5.6.1.1 Latrines 5 

 6 

Active latrines were only found at resting sites. This is of significance as current literature 7 

makes no distinction between spraint sites and latrine sites and uses the terms 8 

indiscriminately (see Section 4.6.4). The exclusive relationship between active latrines 9 

with active resting sites strongly indicate that spraint sites and latrines should be 10 

recognised as different entities, fulfilling different functions. Spraints are characteristic 11 

of scent markings whereas latrine activity is digestive elimination but may also have an 12 

olfactory function. Latrine behaviour was also observed during the fieldwork with 13 

captive otters in Devon which informed Chapter 3; large latrines were present outside 14 

the wooden holts and the keeper confirmed that the animals did not defecate in the 15 

sleeping chamber itself. Latrines are readily distinguished from spraint sites as they 16 

comprise a large accumulation of faeces (see Figure 5-1) and often individual faeces 17 

have a cylindrical or pellet form (Figure 5-1c), which is unusual in otter spraints 18 

(pers.obs) which are described as “shapeless” and/or “tarry” and “sometimes very 19 

liquid” (Kruuk 2006a). They could therefore be used as a diagnostic field-sign for resting 20 

sites, especially as they have good longevity when not exposed to weather. However, 21 

latrines can be difficult to find.  Four of the ten latrines found in this study could not 22 

have been found without an invasive search.  In Europe and the UK, a requirement for a 23 

license to disturb otters when undertaking routine surveys is therefore implicated as 24 

there would be a need for an invasive survey of structures to locate latrines. In the UK, 25 

licenses are issued by the statutory nature conservation bodies, Scottish Natural 26 

Heritage, Natural England, Natural Resources Wales and Northern Ireland Environment 27 

Agency. The alternative would be to have a tiered approach to otter surveys, with non-28 

licensed surveyors identifying structures that suggest suitability as resting sites, and a 29 

second, invasive survey undertaken of these structures by a licensed surveyor. An 30 

additional issue is that not all structures can be examined thoroughly enough, even with 31 

a torch and/or endoscope, to be confident that a latrine is absent. Therefore, 32 

examination of a structure could have three outcomes (1) a latrine is present and the 33 
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site is reported as a resting site; (2) that spraint is erroneously identified as a latrine and 1 

the site is mis-identified as a resting site; (3) a thorough examination does not find a 2 

latrine and the site is reported as unlikely to be a resting site, and (4) a full inspection is 3 

not possible, in which case no conclusion can be drawn and further evidence would be 4 

required to identify whether the structure is a resting site or not. 5 

 6 

5.6.1.2 Bedding 7 

 8 

Bedding was recorded at nine sites, although it was only observed being collected by 9 

otters at five of the six resting sites on CT footage. Therefore, whilst bedding at a 10 

structure is a good indicator of a resting site, there is potential for confusion with 11 

bedding dropped by badgers, or even vegetation deposited by the wind or high-water 12 

levels. This was likely to be the source of loose vegetation recorded as bedding when no 13 

bedding collection had actually been observed on the CTs. The bedding collection 14 

method employed by badgers differs from that of otters. Badgers move larger quantities 15 

by dragging it backwards and can lose some on the way. In contrast, the CT observations 16 

all showed otters carrying in bedding a mouthful at a time, usually forwards, suggesting 17 

less chance of dropping any. This was also observed at the long-term study site (Chapter 18 

3). This was the commonest method of bedding collection observed on Shetland, 19 

although one individual otter was seen dragging bedding in backwards in the same way 20 

that badgers collect bedding (Moorehouse 1988). Clumps of bedding outside the 21 

structure may therefore be more likely to be of badger origin than otter. Nests of 22 

bedding within a structure can be made by otter (e.g. at Gordon, see Figure 5-3) but at 23 

Frogden2, bedding was taken in by badger and not otter, but both species rested in the 24 

structure at different times. A nest of bedding seen within a structure, where the 25 

structure facilitates such a view, as opposed to loose vegetation at its entrance, should 26 

be taken as a strong indication of an otter rest site provided that the structure is large 27 

enough and dry. Observations of otter nests are rare in published studies but there are 28 

examples of constructed nests in reedbeds (Norfolk and Norwich Naturalists Society 29 

1874; Taylor and Kruuk 1990) and bedding used within structures (Moorehouse 1988; 30 

Durbin 1996a) but as a comprehensive inspection of some sites may not be possible, the 31 
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inability to fully investigate the site means that the presence of bedding may not be a 1 

viable field-sign at all sites.  2 

 3 

5.6.2 Field evidence at resting sites 4 

 5 

A strong relationship between field evidence types (spraint counts, presence of spraint 6 

piles, presence of a run and presence of vegetation suggesting bedding) and whether a 7 

site is a resting site or not could potentially be used to identify resting sites. The resting 8 

sites identified on the River Tweed were used seasonally, with 95% of rests in the winter-9 

spring period. For a relationship between field-signs and resting sites to be used by 10 

surveyors at any time of the year, implies that field-signs generated by resting behaviour 11 

must have good longevity, or that otters generate field-signs throughout the year at 12 

resting sites, even when they are not using them for resting. For instance, if the resting 13 

sites are always accompanied by large spraint counts as the otters scent-mark them as 14 

a resource. However, no relationship was found between field evidence and resting sites 15 

when analysing data from all seasons, or when restricting the data to the winter-spring 16 

period. 17 

 18 

5.6.3 Field-evidence as an indicator of recent resting activity: determining current use 19 

 20 

The models testing whether field evidence was related to a rest within preceding days 21 

found a positive relationship between spraint counts 1—5m from the resting site 22 

entrance and resting in the previous five days. The presence of bedding in conjunction 23 

with the spraint count at 1—5m marginally improved the likelihood of a rest in the 24 

previous 5 days, as did the presence of a path in conjunction with the 1—5m spraint 25 

count. However, these effects were very weak in the context of using them 26 

diagnostically. The summary of spraint counts from 1—5m also suggested a difference 27 

between resting and non-resting sites (see 5.5.1.4). The best supported model predicted 28 

60% probability of a rest in the previous five days at the maximum observed number of 29 

spraints (27) within 1—5m. When rests were included in the previous ten days, the 30 

results were similar in terms of the positive relationship of spraints within 1—5m. 31 
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Therefore, otters appear to spraint more around the vicinity of their resting sites during 1 

the periods when they are actually resting at those sites than when they are not, but 2 

this trend is relatively weak.  As otters have large home-ranges of many kilometres in 3 

riparian habitats (see Section 4.3.2), using scent marks to maintain ownership of all their 4 

resting sites all of the time is unlikely to be energetically feasible which is why spraint 5 

numbers at resting sites may vary according to use. As these trends are relatively weak, 6 

spraint numbers and distribution at a structure are not suitable for using as criteria for 7 

classing a structure as a resting site or not as it risks false-positives and false-negatives. 8 

 9 

5.6.4 Success rate of identifying resting sites using field evidence 10 

 11 

There was a low proportion of resting sites with eight resting sites out of the 26 sites 12 

monitored (31%) (i.e. six resting sites confirmed by CT observations of rests and two 13 

likely resting sites based upon field-signs and behavioural observations) included in the 14 

study which is a testament to the difficulties of identifying otter resting sites from field-15 

signs. All sites were included in the study based upon a subjective assessment of their 16 

suitability as resting sites and accompanying field evidence of otter, and otters were 17 

recorded at all of these sites during the study. Of the 18 sites that were not used for 18 

resting during this study, several could be described as  “typical holts” due to their 19 

structure and associated field-signs, (i.e. burrows in a river bank with strong runs to the 20 

water and marked locally by spraints in and around the entrance ()).  As examples, 21 

Hownam and Eden1 were chosen for inclusion as study sites due to the presence of 22 

clean runs down the riverbank, often termed “otter slides” and were marked with 23 

spraint at the structure entrance, on the run and at the water’s edge. Yet otter rests 24 

were not recorded at either site during the study period.  Eden1 had the highest 25 

proportion of CT days when otter was recorded (see Table 4-10), with as many as eight 26 

registrations in one CT day, but no rests were recorded. Often the floor of the outer 27 

burrow was wet from passes of otter the previous night. These would almost certainly 28 

be recorded as otter resting sites by most ecological consultants. Derogation license 29 

applications, mitigation measures, species protection plans and monitoring plans would 30 

follow if any impacts were implicated. These false-positives identifications which are 31 

based upon field-signs incur time and fees. However, although these sites are not resting 32 
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sites, otter activity can be very high and otters are entering the structure for some 1 

unknown reason. This indicates that sites with such frequent visits as Eden1 have some 2 

other importance to the otters, possibly as a grooming site, a spraint site or other type 3 

of scent marking site.  4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

5.6.5 Constraints and further research 23 

 24 

The field study sites were found by a single surveyor and this may be a source of bias 25 

relating to the level of experience and skill of the surveyor. A valuable extension to this 26 

study would be to test any variation in structure classifications as resting or non-resting 27 

sites between different ecological consultants. Initially, I considered using a group of 28 

consultants who had no prior knowledge of any of the sites, to assess each of the study 29 

sites on the River Tweed structures as resting sites or not. This would have required the 30 

involvement of consultants though out the four years of fieldwork to include resting 31 

Figure 5-7 Hownam: a hole leading into a dry chamber, marked with spraints and a clear run to the water 
would be considered a resting site based upon its structure and associated field-signs, but no resting was 
recorded   

Entrance 
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sites when they were active and inactive, and also non resting sites. This was not 1 

logistically feasible. Another source of bias is that the structures which were included 2 

had to have a reasonably low risk of inundation or theft of CTs. This too, was an 3 

unavoidable constraint, but these criteria would have to be applied to any CT 4 

monitoring. Monitoring sites with a lower risk of flooding may increase the likelihood of 5 

monitoring sites that are used habitually, as sites prone to inundation may only be used 6 

when conditions are favourable. Sites prone to inundation would also be habitually 7 

washed of spraint and latrines, as seen at Mill2. Identifying resting sites with entrances 8 

close to, or below the water remains a challenge to methods other than radio-tracking. 9 

Using CT observations to provide a comparative record of otter activity enables 10 

relationships between field-sign and otter activity to be investigated.  Detection of otter 11 

by the CTs is unlikely to have been perfect, and unlikely to have been the same across 12 

all sites. However, the analysis of data from the long-term study site (Chapter 3) and the 13 

research on the components of detection by CTs (Chapter 2) guided CT deployment and 14 

settings on the River Tweed study sites. This resulted in a low proportion of incomplete 15 

observations 8% (n = 13,847) (i.e. where the full interaction of the otter and the study 16 

site was not accounted for, such as an otter recorded entering a structure with no 17 

corresponding exit). Whilst there may be some additional non-detections, the overall 18 

data quality offers a good control to provide context for field-sign data. 19 

 20 

5.6.6 Conclusions 21 

 22 

This study has found that the most types of field-signs are unlikely to be reliable as 23 

indicators that a site is a resting site or not, or that a resting site has recently been 24 

utilised. Therefore, assessments of sites that may be used as otter resting sites that are 25 

based upon field-signs alone have limited capacity to fulfil the legal imperative to protect 26 

otter resting sites. Use of field-signs alone, an approach which has been used by 27 

consultant ecologists, could lead to an unacceptable proportion of mis-identifications of 28 

resting or non-resting sites, both in the form of false-positives (a non-resting site is 29 

misidentified as a resting site) or false-negatives (a resting site is misidentified as a non-30 

resting site). The only field-sign that could be used with a reasonable degree of 31 
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confidence to identify a resting site is the presence of an active latrine. However, the 1 

ecologist must be able to inspect the structure thoroughly in order to confirm that a 2 

latrine is present or absent; this may not be possible in some structures and an invasive 3 

survey would necessitate a license to disturb otters. Bedding, especially a made nest in 4 

the structure is also another good positive indicator of a resting site but would have to 5 

be in context with the position of the structure and its accessibility to badgers. Although 6 

badger and otter are protected by UK legislation, the legislation for each species is 7 

different (badgers are protected under the Protection of Badgers Act 1992). The licenses 8 

are therefore species-specific so that species-appropriate mitigation can be 9 

implemented. Caution would therefore be needed to avoid misidentification of resting 10 

sites between the two species.  Using the number of spraints to confidently identify a 11 

resting site appears not to be possible based on results on the River Tweed.  12 

Although no relationship was found between spraint numbers and identification of 13 

resting sites per se, at the subset of resting sites there was a positive relationship 14 

between spraint count and the probability of a rest in the previous few days. Therefore, 15 

a high number of spraints in the vicinity of the structure could be used as a “rule of 16 

thumb” to indicate an active resting site. Advocating such an approach would require 17 

prior knowledge that the site was a resting site, which could have come through recent 18 

CT surveying or identification of an active latrine. The highest observed spraint count of 19 

27 only predicted a 60% probability of a rest in the previous five days, whilst some rests 20 

were associated with a low spraint count. The latter could lead to a false-negative 21 

assessment of the structure. It is questionable whether the relationship between spraint 22 

numbers and previous resting is strong enough to be used as a predictor across all active 23 

resting sites. 24 

This study is the first to explore the relationship of resting sites and field-sign using CTs 25 

to validate any relationships. The analyses strongly indicate that camera-trapping should 26 

routinely be used by consultants as a second-tier method to confirm resting sites after 27 

field-sign surveys have located potential resting sites. 28 

 29 

 30 
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 1 

Chapter 6  Discussion 2 

 3 

6.1 Research overview 4 

 5 

The research in this thesis covers three related studies over four chapters which 6 

contribute to the evidence base for methods used to identify otter resting and breeding 7 

sites.  8 

Chapter 2 examines methodological considerations in CT studies of otter (as well as 9 

considering badger and fox for comparison) using CTs in parallel with CCTV which is used 10 

as a control. It presents detection by CTs as a sequential framework of four processes: 11 

(1) encounter probability; (2) trigger probability; (3) registration probability; and, (4) 12 

capture quality probability. Using CCTV as a control to document animal passes, and the 13 

novel framework that recognises the four main processes, it was possible to understand 14 

how key variables (the distance of the animal from the CT, the animal’s gait and whether 15 

it paused or loitered) affected processes 3 and 4. This enabled false-negatives to be 16 

quantified in relation to both processes. Understanding how variables including distance 17 

of animal from the CT and speed of the passing animal can affect detection in front of 18 

the CT enables an informed deployment to minimise false-negatives.  19 

Methodological considerations are also the theme of Chapter 3 which presents 20 

empirical analyses of data from a unique long-term CT study of a holt to examine how 21 

CT settings and set-up can be optimised in terms of data quality and analysis time. A 22 

method to organise data for analyses of resting behaviour was developed called an 23 

“events list”, which used the arrival and departure dates and times of an otter to define 24 

an event, with specified behaviours such as sprainting or bedding collection recorded 25 

within each event. The frequency distribution of the duration of time each otter spent 26 

in the holt was used to provide a data-driven delineation between ‘rests’ (≥ 15min within 27 

structure) and ‘visits’ (< 15min in the structure). This was a fundamental step towards 28 

identifying a site as a resting site, as required by EU and UK legislation. The patterns of 29 

these two activities were then investigated for any changes in response to the 30 

researcher visits every two weeks as an assessment of disturbance. Once it was 31 
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established that the researcher’s visits did not affect activity patterns, the data were 1 

analysed to determine how long a CT would have needed to be deployed to have a 95% 2 

chance of detecting a rest. A comparison was made between data gained from a single 3 

CT and a dual CT set-up and how distance can affect the type of data recorded, e.g. 4 

ability to sex an otter and registration of behaviour.  5 

Chapters 2 and 3 provide guiding principles for CT methodology at a given structure 6 

which were applied to the catchment-wide study of sites identified as having potential 7 

as otter resting sites on the River Tweed in Chapters 4 and 5. To minimise false-8 

negatives, dual CT systems were used wherever possible, with 20s video setting and with 9 

at least one CT deployed within 1.5m of the structure entrance. These two chapters 10 

describe the patterns of activity, selected behaviours and field-signs at 26 study sites, 11 

representing approximately 26 CT-years of surveillance in all seasons. Chapter 4 12 

examines resting patterns from analyses of the CT data which show seasonal trends in 13 

resting at the structures and behaviours that are linked to resting. This confirms that CTs 14 

have the potential to be a highly effective tool to identify resting sites, as required by 15 

legislation, provided a robust set-up is used. The analysis in Chapter 4 also provided a 16 

unique data set of known resting and non-resting sites against which other approaches 17 

to identification of resting sites, such as use of field-signs, could be compared. 18 

Chapter 5 analyses field-signs in context with the known activity types from the CT study, 19 

which tests the validity of the traditional approach to identify resting sites using field-20 

signs. This is the first study to investigate any relationships between field-signs and 21 

resting sites in the context of CT data which is effectively used as a control. 22 

 23 

6.2  Key findings 24 

 25 

6.2.1 Camera-trap deployment: minimising false-negatives 26 

 27 

Camera-trap studies do not always account for, or even discuss imperfect detection 28 

even though it is an important consideration in all CT studies (Burton et al. 2015). The 29 

increased use of CT methods to estimate abundance or density through capture-30 

recapture studies of animals with individual pelage markings or by the developing 31 
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random encounter model (REM) have highlighted the importance of detection. 1 

Investigation of factors influencing detection probability is now a common focus of CT 2 

studies (e.g. Anile and Devillard 2016; Hofmeester et al. 2017; Apps and McNutt 2018a).  3 

The use of continuous recording using CCTV, acting as a control, enabled exploration of 4 

how false-negatives occurred when an animal passed the CT. Increased distance 5 

between the CT and the animal had a strong negative effect on trigger probability, and 6 

a mild positive effect on registration probability. Distance has been shown to have a 7 

negative effect on trigger and registration combined (Hofmeester et al. 2017) (i.e. 8 

capture probability), with the mass of the animal, density of intervening vegetation and 9 

time of day (see Hofmeester et al. 2019).  Uniquely, the use of CCTV facilitated trigger 10 

and registration probabilities to be examined separately. This exposed the magnitude of 11 

imperfect triggering of the PIR which caused false-negatives at all distances. The mild 12 

positive effect of increasing distance on registration probability can be countered by 13 

using a CT with a fast trigger speed, as demonstrated by the improved registration 14 

probability using still image capture which has a faster trigger speed (see Figure 2-8). 15 

Once this effect has been negated, the main source of false-negatives would be due to 16 

the strong negative effect of distance on trigger probability. This is due to IR losing 17 

intensity according to the inverse square rule, compounded by other factors such as 18 

vegetation density. It is the failure of the PIR to trigger on wet otters after exiting water 19 

that causes the excess of false-negatives noted by Lerone et al.(2015), although in my 20 

study, thermal imaging of otters after exiting water indicated that this effect is limited 21 

in duration. In the Tweed data, a significant difference was found in the distribution of 22 

event types (paired, single-entry, single-exit) (see section 4.5.1) in winter and summer, 23 

with apparent better detection (i.e. greater than expected paired events) in summer. 24 

Otters going into a structure are likely to have previously been immersed in water. This 25 

difference may be due to wet otters in the summer having a colder thermal footprint 26 

than the terrestrial habitats due to cold river water being held in their fur. Further 27 

studies would be needed to confirm this, for example taking thermal images of otter 28 

across a range of different water and air temperatures. 29 

Often holts, including those with entrances near water level, have platforms or ledges 30 

at the entrance where spraints and/or footprints can be found (pers.obs.). Sniffing and 31 

scent-marking would be expected at these areas which increases the time spent in front 32 
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of the CT and which will improve both trigger and registration probability (see Chapter 1 

2).  However, CT data from holts which lack such a platform may have a high proportion 2 

of false-negatives when wet otters enter the structure caused by poor trigger success. 3 

Otters exiting a structure are likely to trigger the CTs more successfully as they will be 4 

drier and warmer in comparison to the background. Expecting paired registrations in 5 

order to identify the site as a resting site would be unrealistic. Physical triggers, such as 6 

a pressure plate could be considered, and have been used with some success (Lerone et 7 

al. 2015) but this is not an off-the-shelf solution. Structures that are unsuitable for 8 

monitoring with CTs are likely to be rare, but the limitations of CTs need to be 9 

understood. 10 

Deployment of two CTs at a study site results in more reliable capture rates, especially 11 

of single otters (see Section 3.4.2). Setting the CTs to target the same area but with 12 

differing detection zones and fields-of-view, such as at different angles or different 13 

distances potentially yields a wider range of data as well as better interpretation (e.g. 14 

the ability to determine sex and observations of sprainting behaviour). Other studies 15 

that deployed two CTs that targeted the same spatial area  also found increased 16 

detection with two CTs (Glen et al. 2013; Newey et al. 2015b). It has been shown that 17 

the magnitude of increased gain in capture rates by having two CTs varies for different 18 

species (Negrões et al. 2012). It has been suggested from a study using labrador-sized 19 

dogs in mown grassland, that camera-traps set at just below the shoulder height of the 20 

focus species and parallel with the ground will yield the best detection probability (Apps 21 

and McNutt 2018a). Increased height and dip (downwards angle) reduced detection as 22 

it reduces the size of the detection area.  Translating this to wild scenarios may require 23 

some compromise. Dense vegetation potentially prevents some or all, of an animal’s 24 

emitted IR from reaching the CT, thus compromising trigger probability. “Gardening” 25 

(i.e. cutting back vegetation to ground level) is recommended to obviate this problem 26 

(Apps and McNutt 2018b) but this may not be advisable at a resting site as it could elicit 27 

changes in activity or make the site more vulnerable to predation or human 28 

interference. The topography in front of resting sites is rarely flat and density of 29 

vegetation will vary with the season so the decision on what height to set CTs should 30 

balance these considerations and rarely will a standard set-up be achievable across sites.  31 
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In the context of using CTs at potential otter resting sites, a minimum of two CTs is 1 

recommended to improve the capture rate of animal passes and facilitate better 2 

interpretation.  3 

 4 

6.2.2 Camera-traps as a non-intrusive observation method 5 

 6 

CTs can emit ultrasonic noise when batteries are near depletion and the wavelength of 7 

frequencies of IR LEDs can be detected by some species (Meek et al. 2014b). A 8 

behavioural study found that predatory mammals reacted to CTs in the field indicating 9 

that CTs are detected by some mammal species (Meek et al. 2016).  10 

Analyses of resting events, presence and sprainting patterns at the long-term study site 11 

showed no changes due to the maintenance visits by the researcher every two weeks to 12 

change batteries at the long-term study site. Habituation to the scent of the researcher 13 

may have been a factor. Based upon this analysis, a three-week period between 14 

researcher visits on the River Tweed was considered to have minimal potential to cause 15 

disturbance. Reactions to the CT by the otter, such as sniffing it, although not recorded 16 

as part of the methodology, were rarely observed (per.obs.). More reactions to the CTs 17 

were observed by passing badgers. Behaviours such as rolling, grooming and even 18 

sleeping were recorded close to the CTs indicating that otters were not sensitive to the 19 

CTs. 20 

 21 

6.2.3  Camera-trap deployment at otter resting sites: optimisation of settings 22 

 23 

Behavioural studies with CTs often use video setting (Rovero and Zimmermann 2016) as 24 

it potentially offers more information than still images. When camera-trapping a 25 

potential resting site, there would be a need to distinguish latrine behaviour from 26 

sprainting as it is only the former that appears to be a diagnostic behaviour for resting 27 

sites. There would also be the need to identify the sex of animals, as repeated rests by 28 

a single female otter may indicate small cubs within the structure, lending more 29 

importance to a breeding structure in an impact assessment. Observing the position of 30 
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the source of a stream of urine, and the direction of a urine stream is often the most 1 

helpful characteristic in sexing an otter (see 3.3.5). This is unlikely to be distinguishable 2 

on still images given the poor image quality from night photography taken with IR flash. 3 

Identification of bedding collection would also be required as this is also linked to 4 

resting. Bedding collection can be identified if bedding is observed in the otter’s mouth 5 

being carried into the structure. It is usually undertaken at a fast run and comprises of 6 

several swift passes with the otter often holding its head higher than usual when 7 

carrying the bedding and with rustling heard when the otter is not in the field of view 8 

(CTs that record sound would therefore be needed). These characteristics contribute to 9 

the identification of bedding collection. It is likely that still images are less able to detect 10 

bedding collection as images of a running otter are more likely to be blurred and other 11 

indications, such as the sounds of otters pulling up vegetation would not be recorded. 12 

This could be tested using a paired set up with one CT set to record video and one to 13 

record stills.   14 

The main drawback of video data is that it is more time consuming and can be a major 15 

obstacle in research (Caravaggi et al. 2017). They also use more battery power and need 16 

more memory storage. Methods to automate analysis of still images are being 17 

developed (Yu et al. 2013; Norouzzadeh et al. 2017), and potentially offer considerable 18 

time-savings when fully developed and tested. These methods are for still images. CTs 19 

can be programmed to record up to a minute of video, but all the required information 20 

may be present in the first few seconds. Optimising the video length can reduce analysis 21 

time, as well as save battery power in deployed CTs.  Analysis of the long-term study site 22 

found the optimum video length to be 20s to enable identification of sex, group size and 23 

behavioural observations (i.e. c. 95% of these observations could be achieved in 20s of 24 

video compared to 30s), and this approach was subsequently applied in the River Tweed 25 

study. Setting the duty time of the CTs (i.e. programming a daily period of dormancy 26 

would also present savings of battery power and analysis time). The long-term study site 27 

found that activity peaked prior to sunrise and after sunset. Setting duty time was 28 

considered for the River Tweed sites but was not used as it was anticipated that some 29 

sites may be nocturnal resting sites and setting a duty time could potentially miss rests. 30 

Additionally, duty times could not be programmed on the Bushnell Trophy CTs. Setting 31 

a duty time, however, could be a time-saving strategy with other species or scenarios 32 
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provided the CTs have this facility, but a full assessment of the likely proportion of data 1 

loss would need to be made first. 2 

 3 

6.2.4 Camera-trap deployment: sampling duration 4 

 5 

Survey effort is a key consideration in CT survey protocols which is often overlooked 6 

(Hamel et al. 2013). Faunal inventories assess whether the sampling duration has been 7 

long enough by plotting a species accumulation curve (Tobler et al. 2008; Rovero et al. 8 

2014; Si et al. 2014). Similarly, in capture-recapture studies, the number of new 9 

individuals are plotted against CT days (or sampling periods); the cumulative number of 10 

new individuals increases and eventually levels off indicating that further survey effort 11 

will not yield any/many more new individuals (Rovero and Zimmermann 2016).  12 

There are many reasons why a mammal den may be surveyed with CTs, for example 13 

proof of use (Fahimi et al. 2011), counting litter size (Kluever et al. 2013) or observing 14 

inter-specific interactions (Brzeziński et al. 2014). There is no standard approach to 15 

determining survey effort for such studies and the number of CT days is rarely justified, 16 

especially if the study aim is realised. Camera-trapping at resting sites could also take 17 

this approach and cease monitoring when there is evidence that a structure is used for 18 

resting. However, not every site camera-trapped will be a resting site, and there needs 19 

to be an accepted minimum survey effort to demonstrate that a negative result is likely 20 

to be a true-negative. 21 

From the six resting sites identified across the River Tweed catchment, simulations 22 

established that 35d of monitoring in winter and 35d in the subsequent spring (i.e. two 23 

periods of five weeks), would have had a 95% probability of detecting a rest at all resting 24 

sites considered (see Section 4.6.7.1) and that this would be more efficient than a single 25 

70d period. The long-term study site found that resting frequency was significantly 26 

related to the holt’s current function (i.e. whether the holt was functioning as a natal, 27 

early, mid or late rearing or non-breeding structure) (see Section 3.4.3).  The younger 28 

the cubs were, the more frequent rests were recorded. When the holt was not used for 29 

breeding, a minimum of 28d camera-trapping was needed to have a 95% probability of 30 

recording at least one rest. This difference between a single period of 28d and two 31 
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periods of 35d is substantial but is a good illustration of the need to base any 1 

recommendations on multiple sites and not a single site. My recommendation for 2 

sampling duration and frequency would therefore have to be two periods of 35d. 3 

However, if the purpose of monitoring was only to identify whether a site was a resting 4 

site, then monitoring could potentially cease as soon as enough data was collected to 5 

confirm resting. Surveyors may wish to continue monitoring to ascertain if breeding 6 

occurs. 7 

Ninety-five percent of CT days on which a rest was recorded on the River Tweed were in 8 

winter and spring, with only 4% in autumn. This concurs with the large seasonal bias 9 

found at the long-term study site in Fife, approximately 100km north of the Tweed 10 

catchment, where 88% of CT days with a recorded rest were in winter and spring, and 11 

6% in autumn. This also broadly concurs with a recent radiotracking study in Austria 12 

which found more use of holts when the summer vegetation had died back (Weinberger 13 

et al. 2019).   14 

The use of structures for resting is indicated more in months/seasons of poor weather, 15 

providing shelter to otters. However, any recommendation for a “seasonal window” 16 

within a CT protocol would have to be caveated to allow for geographic variation. For 17 

example, to advocate summer CT surveys for coastal populations on Shetland and the 18 

North coast of Scotland where breeding is in the summer (Kruuk and Moorhouse 1991b).  19 

 20 

6.2.5 Using camera-trap data to define and monitor resting behaviour 21 

 22 

Legislation refers to a resting site as an “area essential to maintain an animal or a group 23 

of animals when they are not active”, and in wide-ranging species this is “a locality that 24 

can be clearly delimited” (EU 2007). However, a more precise definition of what 25 

constituted a rest was first needed in order to define what a resting site was, and before 26 

patterns in resting behaviour and field-signs could be investigated. Otter observations 27 

were first organised into an events list for the long-term study site (see Section 3.3.5) 28 

and this was extended to the River Tweed study as it had worked so well.  29 

The data facilitated an understanding of how much time otters spent at these structures. 30 

Very brief visits of otters to the structures of one to two minutes were the most frequent 31 
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duration, otherwise otters tended to stay in the holt for at least an hour. A practical 1 

threshold of 15min or longer inside the structure was used to define a rest, and a resting 2 

site was defined as a site where one or more rests had been observed. Several methods 3 

have been used to study mammal den sites. Radio-tracking is frequently used (Dame 4 

1993; for example see Brainerd et al. 1995; Lim and Ng 2008), snow-tracking has been 5 

used for wolverine (Magoun and Copeland 1998) and temperature loggers have also 6 

been used to monitor the activity of female pine marten at natal dens, an abrupt rise of 7 

temperature marking the arrival of a breeding female and a fall in temperature marking 8 

her departure (Kleef and Tydeman 2009). This latter study has parallels with the long-9 

term study in Fife and the River Tweed study in that the duration of time spent in the 10 

den was analysed. The pine marten study gave a good account of den occupation 11 

periods but was limited to analyses of changes in temperature which contrasts with the 12 

diversity of data available from CTs. A study of pine-marten dens using local knowledge 13 

and questionnaires, defined dens as places used for a prolonged bout of sleeping or 14 

resting and made the distinction between natal dens used for birth and the initial rearing 15 

of young, and other dens (Birks et al. 2005). Sites that pine marten used for brief periods 16 

of rest or shelter (also known as lie-ups) were mentioned and excluded. Whilst 17 

differences in the types of rest (prolonged at a den site and a brief period at a lie-up site) 18 

were defined and these distinctions offer an insight into pine marten denning habits, 19 

they are not specific enough to be used across studies. 20 

 Using CTs facilitates a precise definition of a rest and a resting site, and these can be 21 

consistently applied to other sites that are camera-trapped for otter and would be a 22 

robust demonstration of a site’s status in context with its legal protection. The approach 23 

to defining resting sites by the same criteria (i.e. time spent within the structure) could 24 

be used as an approach for other species. The “events list” would be an accessible 25 

method for consultants to use as standard. It is readily interpreted, and activity can be 26 

summarised and presented to statutory authorities as evidence of resting (or non-27 

resting). 28 

6.2.5.1 Seasonal use of structures for resting 29 

 30 

Rests in winter and spring accounted for over 95% of all rests in the River Tweed resting 31 

sites, and 88% of rests at the long-term study site. The eight resting sites on the River 32 
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Tweed, and the drift mine structure in the long-term study site in Fife (see Section 3.3.2) 1 

all offered a good level of shelter. Gordon was a semi-enclosed hollow tree and all the 2 

other sites were enclosed. Frogden1, Frogden2, Torquhan and Learmouth all comprised 3 

large hollow trees. Hollow trees have good insulative properties (Coombs et al. 2010) 4 

and are often chosen as den sites by other species (Brainerd et al. 1995; Fernández and 5 

Palomares 2000; Prigioni et al. 2006). Resting otters do not always use a structure to 6 

rest in, they often rest in dense vegetation, even in low temperatures (Kruuk et al. 1998). 7 

However, there is low re-use of these sites and usually no associated field-signs (Green 8 

et al. 1984; Isabel and Freire 2011). A radiotracking study in Austria found that holts 9 

were used more when vegetation cover was less (i.e. in the winter, and that this was a 10 

more important variable than temperature in the choice between holts and couches for 11 

diurnal rests). The study suggested that the cover provided by riparian vegetation 12 

outside the winter period provided sufficient refuge and protection from human 13 

disturbance (Weinberger et al. 2019). The River Tweed study reflects this increased use 14 

of holts in seasons of low vegetation cover, whether for protection from disturbance or 15 

from extreme temperatures. However, there was a peak in holt use on the River Tweed 16 

structures between January to March (see Section 4.6.3 & ) and this is not fully explained 17 

by temperature/weather or by vegetation cover which are also low in the early winter. 18 

 19 

6.2.6 Identification of behaviour recorded on camera-trap footage that are indicators of an 20 

otter resting site 21 

 22 

If the CT set-up is robust enough to minimise false-negatives, then the time of entry into, 23 

and exit from a structure can be used as robust evidence of the duration of time within 24 

the structure and interpreted as a rest or not, and this approach has been used before, 25 

albeit using temperature loggers within a den (Kleef and Tydeman 2009). However, not 26 

all sites can be camera-trapped with complete confidence as there may be hidden 27 

entrances, such as at Mill2 (see Section 4.6.4). Identifying latrine behaviour (i.e. 28 

repeated use of a specific site for defecation (and urination)), also appears to be strong 29 

evidence for resting behaviour. Observations of bedding collection behaviour recorded 30 

on CTs were strongly associated with resting sites and were not observed at any non-31 

resting sites. 32 
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Camera-trap observations of latrine behaviour and bedding collection could be used as 1 

behavioural indicators of resting, even in the absence of paired rests. Sedentary 2 

activities such as loafing and grooming were more frequent at resting sites, although 3 

they were observed at non resting sites too. Sedentary behaviours cannot therefore be 4 

used as a criterion on their own.  5 

 6 

6.2.7 Testing the validity of field-sign surveys to identify otter resting sites 7 

 8 

Finding and interpreting field-signs is the main approach currently taken by consultants 9 

to classify a structure as an otter resting site. Latrines can be identified as a different 10 

type of field-sign to spraints (see Section 5.6.1.1),  but previously have not been 11 

identified as separate features, or as having different functions in the published 12 

literature. The distinction between latrine and sprainting behaviour, and the former’s 13 

relationship to resting sites, represents a novel observation that contributes to existing 14 

knowledge of scent marking in Eurasian otter, as well as potentially being a significant 15 

contribution to otter survey methodology. This distinction also has implications for 16 

studies of otter diet from analysing the remains of fish (and other prey items) in their 17 

spraints. Dietary studies are a common research theme in relation to the importance of 18 

wild and commercial fisheries (Kemenes and Nechay 1990; Jacobsen 2005; Kloskowski 19 

2005). These, and more general dietary studies (Brzeziński et al. 2006; Ruiz-Olmo and 20 

Jiménez 2009; Ottino and Giller 2012) rely on quantifying the undigested remains of prey 21 

in spraints. Spraints comprise less faecal matter than droppings in latrines, so excluding 22 

latrines from dietary studies may introduce significant bias. The River Tweed study 23 

found that active latrines were closely associated with active resting sites and were 24 

readily identified from spraint sites. A large latrine was also noted in the tunnel of the 25 

drift mine at the long-term study site in Fife, but the significance of this was not 26 

understood at the time.  27 

Bedding collection was observed at all resting sites by the CTs. Loose vegetation was 28 

occasionally erroneously recorded as bedding, and there was also potential confusion 29 

with badger activity. Sharing of badger setts by multiple species has been documented 30 

with CTs in Italy (Mori et al. 2015). Badger and otter both used Frogden2 for resting, and 31 
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both used the same latrine site within the structure; otter spraint was also noted in a 1 

badger latrine at Frogden1. Further investigation of holt sharing would inform what 2 

potential there is for misidentification of holt sites due to field-signs left by badger or 3 

other species. Camera-traps are ideally suited to such a study. 4 

No relationship was found between spraint counts at a structure and the structure’s 5 

status as a resting site. The other field-signs analysed (spraint numbers and distribution, 6 

presence of a path, spraint piles) also could not be used to distinguish a resting site from 7 

a non-resting site. While there was a positive relationship between spraint counts at a 8 

structure and the probability of a rest having occurred recently, the relationship was not 9 

strong enough to enable it to be used diagnostically. 10 

The River Tweed research illustrates a hierarchy in the importance of field-signs as 11 

evidence of a resting site. Latrines are good evidence and bedding is also strong evidence 12 

provided it is correctly attributed to otter activity. Other signs such as spraint counts 13 

should not be used. 14 

 15 

6.3  Contribution to a methodology to identify otter resting sites: first steps towards 16 

standardised guidelines 17 

 18 

The research has provided an evidence-base to inform several important aspects of 19 

methodology which would be required to identify a resting site: detection in front of an 20 

individual CT, CT set-up at a site and settings, sampling effort, behavioural indicators of 21 

resting and field-sign indicators of resting. Combined with other information in the 22 

literature, these need to be incorporated into a standard methodological approach that 23 

is readily interpreted by consultants and statutory authorities. Here I provide some 24 

initial recommendations that might be incorporated into future guidelines. 25 

 26 

6.3.1  Field-sign surveys 27 

 28 
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At the time of writing, the Mammal Society are currently reviewing and refreshing 1 

survey and mitigation guidelines for a range of UK mammals, including the otter. The 2 

research in this thesis can make a significant contribution to these guidelines. 3 

The research has highlighted the importance of undertaking a thorough inspection of 4 

each potential structure and establishes the limitations of most field-signs in identifying 5 

resting sites; conversely the presence of a latrine has been proved to be a reliable 6 

indicator of a resting site. 7 

A decision tree to identify a resting site from field-signs (Figure 6-1) has been formulated 8 

from my findings from the River Tweed study. This is designed to be in a format that is 9 

likely to be familiar to consultant ecologists. It presents a series of questions and 10 

outcomes which lead to one of three conclusions: (i) a resting site; (ii) not a resting site; 11 

or, (iii) a potential resting site, which should be monitored with CTs to identify its status.  12 

If the decision tree is used in future guidance, supporting text and photographs would 13 

be needed to clarify the difference between a latrine and spraint sites, and bedding 14 

forming a nest. A license to disturb otter resting sites would also be required to facilitate 15 

an intrusive survey. 16 

The main caveat in using this decision tree is the uncertainty of the seasonal 17 

recommendations if rolled out nationally and how this could bias results. For example, 18 

breeding in the coastal population on Shetland is in the summer (Kruuk and Moorhouse 19 

1991b) and monitoring with CTs in the winter/spring would potentially miss breeding 20 

activity in such populations.  21 
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Figure 6-1 Decision tree to assess the resting status of a structure or habitat patch using field signs 
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 1 

6.3.2 Camera-trap methodology 2 

 3 

The research provides a suite of recommendations to be included within a methodology 4 

to CT potential otter resting sites and many of the principles can be applied to other den 5 

surveys.   Firstly, the evidence-based definition of a rest event as 15min or longer within 6 

a structure could be a standard definition in CT studies of otter resting sites. This would 7 

require data to be analysed as paired registrations so that resting duration can be 8 

calculated. The methodology would describe behavioural indicators of resting so that 9 

these can be recognised (i.e. latrine behaviour and bedding collection). 10 

To implement the above, the deployment of the CTs and settings would need to be 11 

optimised, summarised here: CTs with fast trigger speeds (˂ 1s) on video setting should 12 

be used - video potentially records richer data, and the fast trigger speed minimises 13 

false-negatives arising from poor registration probabilities associated with slower 14 

trigger speeds; the use of two or more CTs per observation area to improve detection 15 

probability per site; there should being at least one close CT (1—1.5m) to improve 16 

detection probability; video length is recommended to be set to 20s for economy of 17 

batteries and analysis time; the survey effort should comprise two sampling periods, 35d 18 

in winter and 35d in spring (caveated to facilitate seasonal differences according to 19 

geographic areas). 20 

Given the diversity of structures that can be used for resting, a prescriptive set-up which 21 

can be applied across the board to all sites is not possible. It is therefore most important 22 

that practitioners understand how data quality can be affected by CT deployment so 23 

that practitioners can fine-tune CT placements in response to each site. The area of 24 

interest at a resting structure is small, the focus being on the entrance area of a den 25 

structure such as a burrow or tree-hole. Aligning the CT so that the structure entrance 26 

and the area immediately outside the entrance with the centre of the field-of-view and 27 

detection area will increase detection probability as the animal cannot circumnavigate 28 

this area when using the den and is also likely to loiter to sniff or spraint, thus increasing 29 

registration probability (see section 2.4.2, Figure 2-7). The effect of the CT height and 30 

angle must be considered. A low CT height potentially captures morphological features 31 

(such as presence of scrotum) to allow sex to be identified but may incur the necessity 32 
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for more trimming of vegetation which may not be appropriate at sensitive sites. A 1 

greater height may be necessary due to steep topography and lack of ground in front of 2 

the structure (e.g. if it is on a steep bank adjacent to water). The practitioner must be 3 

aware of the blind-spot below the CT and the reduced angle of detection, however as 4 

the target area is generally small, careful deployment can obviate these potential issues. 5 

There are other broader considerations if camera-trapping of potential resting sites is to 6 

be carried out to a good standard. Consultants must provide a good account of their 7 

methodology during reporting. This has been recognised as an important issue in 8 

academic CT studies (Meek et al. 2014a) and it is equally important to have a 9 

standardisation of reporting the methodology in consultancy.  The CT models, settings, 10 

deployment (number of CTs, height and distances from the structure, dates of surveys) 11 

should all be described clearly.  Non-functioning CT days caused by battery depletion for 12 

example, should be reported and any other incidents that may affect the results. The 13 

proportion of single events (i.e. where the complete interaction of the otter and the 14 

structure were not captured, for example an otter observed entering a structure but not 15 

subsequently leaving) should be stated as this is an approximate gauge of any issues of 16 

detection. Paired events should be presented, and any observations of any behavioural 17 

indicators should be quantified in terms of frequency and duration. 18 

The current standard of camera-trapping at resting sites is understandably varied 19 

(pers.obs.), as currently there are no guidelines. Examples of commercial camera-20 

trapping reports are difficult to source because they are not routinely published, only 21 

two examples relating to camera-trapping potential resting sites were found online and 22 

are briefly summarised. Example 1: a structure was camera-trapped for one month 23 

between 16th April—16th May (30d) to inform impacts of a new bypass. The CT did not 24 

face the structure, and recorded videos at a duration of 1min.  There were no 25 

registrations of otter (Thomson Ecology 2014). Example 2:  a structure was camera-26 

trapped 12th June—21st July and 4—25th October (39 and 21d) to inform impacts for a 27 

high voltage electricity cable between Norway and Scotland. One CT was used at 2m 28 

from the structure entrance on video setting with no stated clip duration. There were 29 

no registrations of otter (NorthConnect 2017). The only similarities between the 30 

examples is that they both used a single CT, they stated model of CT used, they both 31 

reported the sampling durations and both recorded video. The survey duration, seasons 32 
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and position of CT in relation to the structure were different. The survey duration and 1 

season are likely to be in response to the projects timetable rather than any underlying 2 

ecological rationale. The introduction of a CT methodology for otter resting sites which 3 

requires monitoring over two seasons is significantly different from the current 4 

approach which is usually based upon a single visit at any time of year. However, many 5 

types of ecological surveys are seasonally limited or require sampling in specific seasonal 6 

windows (Brown and Shepherd 1993; Hancock et al. 1999; Collins 2016) so a 7 

methodology that requires two seasons data should not be perceived as exceptional by 8 

practitioners. 9 

The recommendations set out here could be presented as a coherent methodology, but 10 

a consultant would require a certain level of competence and experience to implement 11 

it. Training in the methodology, extracting data from videos and reporting would be an 12 

essential prerequisite for a consultant prior to commercial CT contracts, but also for 13 

decision-making bodies such as local government ecologists and staff from the statutory 14 

nature conservation bodies. 15 
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6.3.3  Application of camera-trapping method to legislation 1 

 2 

The Tweed study found that structures indicated to be “holts” (i.e. enclosed resting 3 

sites) from associated field signs were often not used for resting yet still had a high 4 

frequency of otter registrations (see Table 4-10). For example, Eden 1 was the busiest 5 

site with at least one registration of otter on 92% of CT days, but was not used for resting 6 

during the study. Such structures must have some function or importance, such as a 7 

grooming site or type of scent-marking site but are not explicitly protected under 8 

existing legislation. Resting sites are defined as “areas essential to sustain an animal or 9 

group of animals when they are not active” (EU 2007, p. 42). For some species this is 10 

broadened out further to include other functions when an animal is inactive other than 11 

resting, for instance, places used for thermoregulatory behaviour of the sand lizard 12 

Lacerta agilis. If structures such as Eden 1 fulfil an essential function, this would set them 13 

apart from other sites which are visited frequently but are not essential such as an 14 

individual scent-marking site. Extending the interpretation of Article 12 of the Habitats 15 

Directive to include sites which fulfil an essential function could be achieved by 16 

amending the existing guidance document (EU 2007) as the example of the sand lizards 17 

thermoregulation areas sets a precedent, but this may be tenuous as the otter is clearly 18 

active and not resting at such sites. A better approach would be to include such sites 19 

within any amended domestic legislation which may arise post-Brexit.  However, the 20 

function of such sites as Eden 1 is currently unknown, and further research would be 21 

needed to determine why the frequency of otter presence is so high before these sites 22 

could be considered important.  23 

 24 

6.4 Further research 25 

A key logistical constraint of having CT emplacements by watercourses are the changes 26 

in water levels, thus precluding some sites from study and resulting in gaps in data 27 

collection for others. Submersible equipment would remove this as a constraint. While 28 

a single unit housing a camera, PIR and illumination LEDs is likely to be more robust, 29 

there were disadvantages as there must always be compromise between the most 30 

efficient distance for both trigger and registration probabilities (see Chapter 2). A system 31 

where these components are separate would be greatly beneficial, one or more PIRs 32 
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could be placed close to the targeted monitoring area and the camera unit could be 1 

placed at a greater distance. The analyses in Chapter 2 indicate that this would greatly 2 

improve trigger and registration probabilities. Such a modular system would also allow 3 

a camera to be placed inside a structure, with the battery and memory unit being placed 4 

outside the structure so that maintenance of the battery and memory causes minimal 5 

disturbance. CTs, while used extensively by research and consultant ecologists, are still 6 

largely marketed towards hunting and shooting purposes. However, the continued rise 7 

in ecological CT studies and demand for adaptable designs for academic purposes may 8 

be at a critical mass that such modifications become commercially viable. Finally, the 9 

research on the River Tweed offers a methodology to monitor structures with CTs, to 10 

identify rests and resting sites, and analyse resting patterns. Extending the geographical 11 

coverage of this study by monitoring resting sites elsewhere would further increase 12 

understanding of the effects of seasons and geographical patterns which could be used 13 

to refine and modify CT studies of otter resting sites by consultants. 14 

  15 

6.5 Closing summary 16 

The overarching objective of this research was to increase the evidence base for 17 

methods used to identify otter breeding and resting sites so that they could be better 18 

identified and protected. There are currently no fit-for-purpose guidelines for otter 19 

survey, specifically the identification of protected resting sites, which are endorsed by 20 

competent authorities such as the statutory nature conservation bodies. This contrasts 21 

with very prescriptive survey guidelines for other species with the same legislative 22 

protection such as Chiroptera (bats). The absence of guidelines to identify otter resting 23 

sites mostly appears to be due to a lack of research in this area. My research provides a 24 

substantial contribution to developing robust otter survey techniques in context with 25 

the very sparse evidence-base. It provides reliable field-sign indicators of resting sites, 26 

and methodological guidance for camera-trapping at potential resting sites, as well as a 27 

framework for organisation and interpretation of CT data to determine resting sites 28 

from non-resting sites. As more experience and research accrues, and with improving 29 

technology, the methodologies can be updated to reflect these. 30 

  31 
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APPENDICES 

Appendix I - Model Selection Tables for Chapter 2 

Model tables containing all candidate models used for each analysis are presented here with the parameter estimates for each model. We used a threshold of ΔAIC 

≤ 2 to indicate models with “substantial support” and the plots of the best supported models (i.e. ΔAIC = 0) are included in the main text. Plots of all other models 

with ΔAIC ≤ 2 are presented here and are indicated in bold in the following tables.  

In the tables below, df = model degrees of freedom, logLik = log likelihood of the model, AIC = Akaike information criterion, ΔAIC = difference in AIC between that 

model and the model with the lowest AIC; and Wi = Akaike’s weight.  
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Trigger probability models 

Variables affecting trigger probability were analysed using generalised linear mixed models using a binomial distribution. Trigger probability was the binary response 

variable (1 = trigger/ 0 = No trigger) and camera position (CT.POS) was used as a random effect. 

Table A1 Model results for Trigger Probability, P(trigger|pass), for (a) badger with Bushnell CT on video setting (b) fox with Bushnell CT on video setting and (c) dry 

otter from holt with Bushnell CT on video setting, and (d) dry otter from holt with Acorn CT on video setting. 

(a) Badger video, Bushnell (n = 249) 

   Model Parameters    

Model df logLik Int DIST GAIT LOIT AIR 
DIST: 
GAIT 

AIC ΔAIC Wi 

GAIT:DIST 5 -130.515 0.44 -0.111 2.351   -0.633 271.03 0.00 0.937 

DIST 3 -135.934 1.31 -0.329     277.87 6.84 0.031 

GAIT+DIST 4 -135.669 1.21 -0.328 0.230    279.34 8.31 0.015 

AIR+DIST 4 -135.931 1.29 -0.330   0.005  279.86 8.83 0.011 

LOIT 3 -138.037 0.00   1.006   282.07 11.04 0.004 

NULL 2 -140.044 0.09      284.09 13.06 0.001 

GAIT 3 -139.728 -0.01  0.250    285.46 14.43 0.001 

AIR 3 -139.997 0.20      285.99 14.96 0.001 

GAIT+AIR 4 -139.717 0.04  0.241    287.43 16.40 0.000 
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(b) Fox video, Bushnell (n = 454) 

 

   Model Parameters    

Model df logLik Int DIST GAIT LOIT AIR 
DIST: 
GAIT 

AIC ΔAIC Wi 

DIST 3 -280.491 1.291 -0.471     567.0 0.00 0.401 

GAIT+DIST 4 -279.888 1.101 -0.465 0.242    567.8 0.79 0.269 

GAIT:DIST 5 -279.300 0.801 -0.378 0.664   -0.125 568.6 1.62 0.178 

AIR+DIST 4 -280.463 1.235 -0.471   0.010  568.9 1.94 0.152 

LOIT 3 -305.894 -0.302   0.879   617.8 50.81 0.000 

GAIT 3 -306.844 -0.494  0.350    619.7 52.71 0.000 

NULL 2 -308.278 -0.251      620.6 53.57 0.000 

GAIT+AIR 4 -306.841 -0.475  0.349  -0.003  621.7 54.70 0.000 

AIR 3 -308.266 -0.215    -0.006  622.5 55.55 0.000 

 

           Fox video, Trigger ~GAIT+DIST                        Fox video, Trigger ~GAIT:DIST                       Fox video, Trigger ~AIR+DIST 
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(c) Dry otter video, from holt, Bushnell (n=111) 
 

   Model Parameters    

Model 
d
f 

logLik Int 
Log 

(DIST) 
GAIT LOIT AIR 

DIST: 
GAIT 

AIC ΔAIC Wi 

GAIT+log(DIST) 4 -27.543 7.215 -6.174 1.474    63.1 0.00 0.440 

Log(DIST) 3 -29.045 7.854 -6.065     64.1 1.00 0.266 

GAIT*log(DIST) 5 -27.401 6.883 -5.924 2.191   -0.636 64.8 1.72 0.186 

AIR+log(DIST) 4 -28.950 7.292 -5.820   0.045  65.9 2.81 0.108 

 GAIT 3 -46.350 0.693  1.808    98.7 35.61 0.000 

GAIT+AIR 4 -45.373 0.130  1.800  0.087  98.7 35.66 0.000 

AIR 3 -50.940 0.792    0.110  107.9 44.79 0.000 

NULL 2 -52.344 1.513      108.7 45.60 0.000 

LOIT 3 -52.344 1.510   0.024   110.7 47.60 0.000 

 

     Dry otter, TRIGGER~log(DIST)                           Dry otter, TRIGGER~GAIT:log(DIST) 
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(d) Dry otter video, from holt, Acorn (n = 115) 

   Model Parameters    

Model df logLik Int DIST GAIT LOIT AIR 
DIST: 
GAIT 

AIC ΔAIC Wi 

AIR+DIST 4 -34.870 3.076 -0.636   0.135  77.7 0.00 0.387 

GAIT:DIST 5 -34.210 3.124 -0.442 2.669   -0.738 78.4 0.68 0.275 

DIST 3 -36.333 4.036 -0.652     78.7 0.93 0.243 

GAIT+DIST 4 -36.272 4.209 -0.668 -0.225    80.5 2.80 0.095 

AIR 3 -47.923 0.442    0.192  101.8 24.11 0.000 

GAIT+AIR 4 -47.703 0.277  0.364  0.187  103.4 25.67 0.000 

NULL 2 -51.611 1.619      107.2 29.48 0.000 

GAIT 3 -51.186 1.349  0.494    108.4 30.63 0.000 

LOIT 3 -51.599 1.602   0.107   109.2 31.46 0.000 

 

Trigger~GAIT:DIST               Trigger~DIST 
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Table A 2 Model results for Trigger Probability, P (T|P), including the variable WET.DRY, using (a) Bushnell video setting and  (b) Acorn video setting. Generalised 
Linear Mixed models, using trigger probability as a response variable and binomial distribution. CT.POS is used as fixed effect. 

(a) Coat wetness, Bushnell video (n = 190) 

   Model Parameters    

Model df logLik Int DIST GAIT LOIT AIR 
WET.D

RY 

DIST: 
WET. 
DRY 

WET. 
DRY: 
GAIT 

AIR: 
WET. 
DRY 

AIC ΔAIC Wi 

wet.dry:DIST 5 -75.645 5.670 -1.077    -3.613 0.574   161.29 0.00 0.606 

wet.dry+DIS
T 

4 -77.545 4.556 -0.811    -1.378    163.09 1.80 0.246 

AIR+DIST 4 -78.463 5.572 -0.872   -0.180     164.93 3.64 0.098 

GAIT+DIST 4 -79.187 3.044 -0.773 1.146       166.37 5.08 0.048 

DIST 3 -83.442 3.700 -0.792        172.88 11.59 0.002 

wet.dry:AIR 5 -94.808 0.915    0.092 3.316   -0.533 199.62 38.33 0.000 

wet.dry+GAI
T 

4 -96.537 0.766  1.590   -1.558    201.07 39.78 0.000 

wet.dry:GAIT 5 -96.398 0.693  1.808   -1.386  -0.389  202.80 41.51 0.000 

GAIT 4 -103.465 0.965  1.432  -0.106     214.93 53.64 0.000 

GAIT 3 -106.441 0.150  1.382       218.88 57.59 0.000 

wet.dry+AIR 4 -105.779 2.044    -0.071 -1.258    219.56 58.27 0.000 

wet.dry 3 -106.955 1.515     -1.388    219.91 58.62 0.000 

wet.dry+LOI
T 

4 -106.158 1.443   0.550  -1.446    220.32 59.03 0.000 

AIR 3 -112.456 1.670    -0.095     230.91 69.62 0.000 

NULL 2 -114.661 0.907         233.32 72.03 0.000 

LOIT 3 -114.328 0.847   0.345      234.66 73.37 0.000 
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         Trigger~wet.dry+DIST 
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(b) Coat wetness, Acorn video (n = 193) 
 

   Model Parameters    

Model 
d
f 

logLik Int DIST GAIT LOIT AIR 
WET. 
DRY 

DIST: 
WET. 
DRY 

WET. 
DRY: 
GAIT 

AIR: 
WET. 
DRY 

AIC ΔAIC Wi 

wet.dry+DIST 4 -83.694 3.918 -0.620    -2.128    175.4 0.00 0.715 

wet.dry:DIST 5 -83.612 4.041 -0.650    -2.534 0.111   177.2 1.84 0.285 

GAIT+DIST 4 -97.793 3.180 -0.607 -0.652       203.6 28.20 0.000 

DIST 3 -99.354 2.656 -0.564        204.7 29.32 0.000 

AIR+DIST 4 -99.340 2.582 -0.562   0.009     206.7 31.29 0.000 

wet.dry:AIR 5 -99.202 0.416    0.177 -0.659   -0.169 208.4 33.02 0.000 

wet.dry+LOIT 4 -100.340 1.448   0.953  -1.958    208.7 33.29 0.000 

wet.dry+AIR 4 -100.421 0.860    0.105 -2.056    208.8 33.45 0.000 

wet.dry 3 -102.546 1.562     -1.836    211.1 35.70 0.000 

 

 

Trigger~wet.dry:DIST 
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Registration probability models 

Only passes of mammal where the CTs triggered were used in these models, thus the registration probability is conditional on there being a trigger. 

Variables affecting registration probability were analysed using generalised linear mixed models using a binomial distribution. Registration probability was the 
binary response variable (1 = animal registered / 0 = no animal registered) and camera position (CT.POS) was used as a fixed effect. 

 

Table A3 Model results for Registration Probability P (C/T), for (a) badger, Bushnell video  (b) fox, Bushnell video  (c) otter (all passes), Bushnell video  and, (d) otter 
(all passes), Acorn video. 

 

(a) Badger video (n = 140) 

   Model Parameters    

 df logLik Intercept DIST GAIT LOIT AIR 
DIST: 
GAIT 

AIC ΔAIC Wi 

LOIT+GAIT+DIST 5 -78.262 -1.970 0.243 1.632 1.375   166.5 0.00 0.727 

GAIT 3 -82.364 -0.962  1.502    170.7 4.20 0.089 

GAIT+DIST 4 -81.481 -1.785 0.247 1.639    171.0 4.44 0.079 

GAIT+AIR 4 -81.758 -0.456  1.424  -0.091  171.5 4.99 0.060 

GAIT:DIST 5 -81.106 -1.973 0.300 2.256   -0.249 172.2 5.69 0.042 

LOIT 3 -86.414 -0.572   1.413   178.8 12.30 0.002 

LOIT+DIST 4 -86.405 -0.651 0.026  1.411   180.8 14.29 0.001 

AIR 3 -88.469 0.375    -0.144  182.9 16.42 0.000 

NULL 2 -90.160 -0.379      184.3 17.80 0.000 

AIR+DIST 4 -88.245 0.059 0.123   -0.156  184.5 17.97 0.000 

DIST 3 -90.136 -0.504 0.041     186.3 19.75 0.000 
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(b) Fox video (n = 199) 

   Model Parameters    

Model df logLik Intercept DIST GAIT LOIT AIR 
DIST: 
GAIT 

AIC ΔAIC Wi 

LOIT+GAIT+DIST 5 -106.985 -1.576 0.060 0.953 1.807   224.0 0.00 0.513 

LOIT 3 -109.598 -0.696   1.985   225.2 1.23 0.278 

LOIT+DIST 4 -109.597 -0.712 0.006  1.985   227.2 3.22 0.102 

GAIT 3 -111.308 -1.412  1.120    228.6 4.65 0.050 

GAIT+DIST 4 -111.213 -1.586 0.054 1.156    230.4 6.46 0.020 

GAIT+AIR 4 -111.292 -1.333  1.114  -0.012  230.6 6.61 0.019 

GAIT:DIST 5 -110.692 -2.287 0.222 2.027   -0.236 231.4 7.41 0.013 

NULL 2 -115.196 -0.542      234.4 10.42 0.003 

AIR 3 -115.131 -0.400    -0.023  236.3 12.29 0.001 

DIST 3 -115.192 -0.514 -0.010     236.4 12.41 0.001 

AIR+DIST 4 -115.119 -0.338 -0.019   -0.025  238.2 14.27 0.000 

 
Registration~LOIT 
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(c) Otter Bushnell video (n = 220) 

   Model parameters    

Model df logLik Intercept DIST GAIT LOIT AIR 
DIST: 
GAIT 

AIC ΔAIC Wi 

LOIT+GAIT+DIST 5 -127.152 -2.202 0.273 1.852 1.347   264.3 0.00 0.996 

GAIT+DIST 4 -134.191 -1.893 0.263 1.895    276.4 12.08 0.002 

GAIT:DIST 5 -133.625 -1.387 0.098 1.205   0.250 277.2 12.95 0.002 

GAIT 3 -137.110 -1.136  1.737    280.2 15.92 0.000 

GAIT+AIR 4 -137.021 -1.261  1.713  0.018  282.0 17.74 0.000 

LOIT 3 -143.350 -0.231   1.404   292.7 28.40 0.000 

LOIT+DIST 4 -142.504 -0.561 0.130  1.420   293.0 28.71 0.000 

NULL 2 -152.265 0.091      308.5 44.23 0.000 

DIST 3 -151.564 -0.199 0.116     309.1 44.82 0.000 

AIR 3 -152.123 -0.072    0.020  310.2 45.94 0.000 

AIR+DIST 4 -151.460 -0.332 0.113   0.017  310.9 46.62 0.000 

  



 

 
   

2
2

8
 

 

(d) Otter Acorn video (n = 201) 

   Model parameters    

Model df logLik Intercept DIST GAIT LOIT AIR 
DIST: 
GAIT 

AIC ΔAIC Wi 

LOIT+GAIT+DIST 5 -107.963 -1.173 -0.017 2.041 1.296   225.9 0.00 0.906 

GAIT 3 -113.080 -0.957  2.086    232.2 6.23 0.040 

GAIT+AIR 4 -112.324 -1.436  2.107  0.056  232.6 6.72 0.031 

GAIT+DIST 4 -113.053 -1.045 0.027 2.114    234.1 8.18 0.015 

GAIT:DIST 5 -112.794 -1.259 0.081 2.624   -0.183 235.6 9.66 0.007 

LOIT+DIST 4 -123.109 0.425 -0.209  1.433   254.2 28.29 0.000 

LOIT 3 -124.782 -0.135   1.357   255.6 29.64 0.000 

DIST 3 -130.418 0.604 -0.158     266.8 40.91 0.000 

NULL 2 -131.497 0.164      267.0 41.07 0.000 

AIR 3 -130.803 -0.260    0.049  267.6 41.68 0.000 

AIR+DIST 4 -129.809 0.196 -0.154   0.046  267.6 41.69 0.000 
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Appendix II – Table of bedding collection behaviour for Chapter 4 

Table A4 Details of all bedding collection recorded by camera-traps, incidents where more than one 

otter collect bedding are highlighted. 

 

Site Date 

Duration of bedding 
collection events 

(min) 

Group 
or 

single 
otter 

Sex 
Duration 

of rest 
(min) 

Nocturnal 
(N) or 

Diurnal 
(D) 

Rest 

 

Event 
1 

Event 
2 

Event 
3 

 

LEARMOUTH 29/03/2018 <1   SINGLE U 19 N PAIR 

LEARMOUTH 10/03/2019 <1   SINGLE U 944 D PAIR 

GORDON 17/09/2016 <1   SINGLE U  
 

 

GORDON 18/09/2016 <1   GROUP U  
 

 

GORDON 18/09/2016 <1   GROUP U  
 

 

GORDON 28/10/2016 <1   GROUP U  
 IN 

GORDON 24/11/2016 12   GROUP U  
 IN 

GORDON 24/11/2016 4   GROUP U  
 IN 

GORDON 05/01/2017 11   GROUP U 230 N PAIR 

GORDON 10/01/2017 1 3 1 GROUP U 354 N PAIR 

GORDON 10/01/2017 1 3 1 GROUP U 354 N PAIR 

GORDON 21/01/2017 6   GROUP F 88  PAIR 

GORDON 21/01/2017 6   GROUP M 88  PAIR 

GORDON 03/02/2017 1   SINGLE U  
 IN 

GORDON 04/02/2017 1   GROUP U  
 IN 

GORDON 04/02/2017 1   GROUP U  
 IN 

GORDON 11/02/2017 3   GROUP U  
 IN 

GORDON 11/02/2017 3   GROUP U  
 IN 

GORDON 16/02/2017 <1   GROUP U 756 D PAIR 

GORDON 16/02/2017 <1   GROUP U 756 D PAIR 

FROGDEN1 09/04/2015 <1   GROUP F 137 N PAIR 

FROGDEN1 18/01/2017 1   GROUP U 322 N PAIR 

FROGDEN1 26/01/2017 6   GROUP U 970 D PAIR 

FROGDEN1 17/01/2018 <1   SINGLE U 622 D PAIR 

FROGDEN1 28/01/2018 7   SINGLE M  
 IN 

FROGDEN1 03/02/2018 <1   SINGLE  
 

 

FROGDEN1 05/02/2018 4   SINGLE M 326  PAIR 

FROGDEN1 08/02/2018 1   SINGLE NONE 249 N PAIR 

FROGDEN1 12/02/2018 2   SINGLE U 652  PAIR 

FROGDEN1 05/04/2018 <1   SINGLE U 392  PAIR 

FROGDEN1 01/05/2018 <1   SINGLE M   IN 

FROGDEN1 11/05/2018 <1   SINGLE M 491  PAIR 

NENTHORN 05/12/2018 1   SINGLE U    

TORQUHAN 09/02/2017 <1   GROUP F 779 N PAIR 

TORQUHAN 16/02/2017 4   SINGLE U 583 N PAIR 

TORQUHAN 23/02/2017 1   GROUP U 560 N PAIR 

TORQUHAN 02/03/2017 <1   SINGLE U 149 N PAIR 

TORQUHAN 15/03/2017 1   SINGLE M 60  PAIR 
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Site Date 

Duration of bedding 
collection events 

(min) 

Group 
or 

single 
otter 

Sex 
Duration 

of rest 
(min) 

Nocturnal 
(N) or 

Diurnal 
(D) 

Rest 

 

Event 
1 

Event 
2 

Event 
3 

 

TORQUHAN 23/04/2017 <1   SINGLE U 479 N PAIR 

TORQUHAN 28/04/2017 <1   SINGLE U   OUT 

TORQUHAN 11/03/2018 3   GROUP F 154 N PAIR 

CRAILING 27/04/2017 <1   SINGLE M 1038  PAIR 

CRAILING 12/02/2018 6   SINGLE U   IN 
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