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Abstract. Reducing the structural mass of low speed multi-MW electrical machines for 

renewable energy purposes have become an important object of study as with the drop in mass 

a substantial decrease in the machine capital cost can be achieved. Direct-drive wind turbine 

electrical generators need very robust and heavy supporting structures able to cope with the 

demanding requirements imposed by the environment and the forces and moments transmitted 

by the wind turbine rotor in order to maintain the air-gap clearance open and stable. It is 

estimated that at least 2/3 of the total machine mass corresponds to the supporting structure. 

The main aim of this investigation is to minimize the structural mass of a 3 MW direct-drive 

wind turbine permanent magnet electrical generator, which dimensions have been previously 

optimized, making use of topology optimization techniques. Easy to manufacture structures 

made of cast iron capable of complying with the requirements were generated for both rotor 

and stator.  

1. Introduction 

Global energy consumption has experienced an important increase since the last century especially in 

emerging countries, such as China and India. The same trends are shown for the world’s population 

and economic growth [1]. However, the fact that these three factors are highly correlated makes 

difficult to tackle the problem of climate change. With almost 80 % of the electricity demand 

worldwide coming from the combustion of conventional fossil fuels [2], the level of greenhouse gases, 

released to the atmosphere is causing significant changes in the Earth’s mean temperature. 

 

Taking into consideration this clarifying fact, governments have turned their attention on 
renewable energies. Wind energy is one of the most developed and mature clean technology and has 

an important role to play in the fight against global warming. Wind resources tend to be greater and 

steadier offshore and therefore large scale renewable energy projects will be developed further away 

from shore. In this context, where the offshore wind sector is becoming a key player, a huge effort is 

being made worldwide with the main aim of quickly reducing its high levelized cost and making it 

capable of competing with conventional electricity production technologies. Offshore wind turbines 

are placed in harsh environments where the wind speeds tend to be higher, the air has high humidity 

and salt content, foundations and substations are subject to wave and tidal current loading and access 

can be limited by wave height. Some of the manufacturers’ considerations for wind turbine design are 

low maintenance requirements, easy access to important components, high capacity factors and 

assembly with the lightest and cheapest possible crane.  
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Drivetrains are the area of biggest variation and improvement in wind turbine design. Conventional 

wind turbines are usually formed by a gearbox, a medium or high speed generator and a power 

converter. Gearboxes have a limited lifetime that in most cases does not reach the expected wind 

turbine lifetime. It is normal to replace them at least once in the course of the wind turbine lifetime [3]. 

It is considered that the higher the number of gearbox stages, the higher the gearbox failure rate [4]. 

Consequently, manufacturers are studying new methods to replace or just to eliminate the gearbox by 

introducing the direct-drive concept. Direct-drive wind turbines present a number of advantages that 

make them suitable for offshore purposes. Among them, the removal of the gearbox stands out. With it 

expensive gearbox matters can be avoided. Moreover, the decrease in the number of moving parts, 

such as bearings, represents a significant reduction in downtime periods, for example for oil 

replacement. However, this concept also introduces new challenges as the loads from the wind turbine 

rotor are directly transmitted into the electrical generator and with a large torque input a machine of 

considerable dimensions and robustness is needed to deal with such a harsh environment and keep the 

air-gap open and stable. 

In [5], Polinder presents an overview of the available generators for wind turbines and their trends. A 

good insight of the types of wind turbine generators used in the present day as well as their advantages 

and disadvantages is given in this comprehensive study. Electrical generators for direct-drive wind 

turbines are AC synchronous machines that can be electrically or permanent magnet excited. 

Permanent magnet generators can be considered superior to electrically excited machines as they are 

more compact, they are more efficient and have lower weight. These generators do not need external 

electric excitation since their rotor poles are made of permanent magnet material. The overall 

efficiency of the machine and the energy capture rate then increases as there are no If
2
R losses. 

Besides, the lack of slip rings improves the machine’s reliability. 

Permanent magnet generators are often characterized by the orientation of the magnetic flux as it goes 

across the air-gap, as follows: radial flux, axial flux and transverse flux.   
Most of the permanent magnet commercial models have a radial flux configuration with magnets 

mounted onto the surface of an inner rotor spinning within the stator’s armature [6]. It is possible to 

estimate the mass of the supporting structure, also known as inactive material, of radial flux electrical 

machines at an early design stage. The excessive weight of the generator structure was highlighted by 

Hartkopf et al. who claimed that 2/3 of a direct-drive radial flux electrical machine mass corresponded 

to the inactive material [7]. Mueller, McDonald and MacPherson claimed in [8] that at multi-megawatt 

ratings the inactive mass of a direct-drive axial flux machine it is almost 90 % of the total mass. 

Several studies have been written on this regard presenting different approaches that can be utilised 

when designing this type of machines in order to minimise their structural mass [9][10][11].  

Although many different types of structures can be assumed to characterize permanent magnet 

machines, see figure 1, disc and arm structural models, are more common due to their relative 

simplicity. 

 

 
Figure 1. Typical rotor and stator structures [12] 

 
McDonald [9] defined several methods for estimating the structural mass of the machine so as to cope 

with uniform deflection (Mode 0) and used arm and disc models to relate the mechanical and the 

electromagnetic design in radial flux machines and to calculate radial, axial and tangential deflections 

in the structure. Although there are a number of forces at play in the machine, in an early stage of the 
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design process it is considered appropriate to take into account only the normal component of the 

Maxwell stress as it is the largest force by far. 

Bearing this in mind, this investigation is centred on minimising the mass of the inactive material of a 

3 MW direct-drive wind turbine radial flux permanent magnet electrical generator using topology 

optimization techniques. 

 

2. Modes of deflection 

An ideal structural design for an electrical generator would involve a lightweight low-cost structure 

capable of maintaining the air-gap between the rotor and the stator open. Therefore, the variable to 

consider is strain in place of stress. Deformation can be different at different parts of the components 

forming the electrical machine. Consequently, it cannot be assumed that local and global deflections 

are one and the same. In [13], the authors noted that localized contact can eventually happen because 

of:  

Mode 0: Relative radial expansion of the rotor or radial compression of the stator.  

Mode 1: Relative displacement of the rotor and stator.  

Mode 2: Distortion of either or both of the circular surfaces into ellipses (known as ovalizing).  

Mode 𝑛: Distortion with ripples, 𝑛 peaks around the circumference.  

In general, the total change in air-gap clearance, 𝛿 (= 𝛿r + 𝛿s) can be expressed as a function of 

circumferential angle around the machine’s axis, θ, by equation (1), 

 

 
𝛿(𝜃) = ∑ 𝛿nsin 𝑛(𝜃 − 𝜑n)

n

0

 
 

(1) 

 

where 𝛿(𝜃) is the change in air-gap clearance at angle θ, 𝛿n is the amplitude of component 𝑛, 𝜑n is 

the phase angle of component 𝑛, and 𝑛 is the number of peaks, hence:  

𝑛 = 0 for deformation of mode 0 (Figure 2(a));  

𝑛 = 1 for mode 1 (Figure 2(b));  

𝑛 = 2 for mode 2 (Figure 2(c));  

𝑛 ≥ 3 for mode 3 (Figure 2(d)) and higher.  

Often the air-gap deformation is dominated by a uniform mode 0 component with amplitude, 𝛿̅, 
and a higher order component with amplitude 𝛿∆ and hence equation (2) can be modified:    
 

 𝛿(𝜃) = 𝛿̅ + 𝛿∆sin 𝑛(𝜃 − 𝜑n) (2) 
 

 

              
     (a)                                   (b)                                     (c)                                   (d) 

 

Figure 2. A rotor deforming into the air-gap towards a stator 

 

(a) Mode 0, uniform deflection, (𝜽) = 𝜹̅ 

(b) Mode 1, eccentricity, (𝜽) = 𝜹̅ + 𝜹Δ𝒔𝒊𝒏 (𝜽−𝝋)  
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(c) Mode 2, ovalization, (𝜽) = 𝜹̅ + 𝜹Δ𝒔𝒊𝒏𝟐 (𝜽−𝝋)  

(d) Mode 3, (𝜽) = 𝜹̅ + 𝜹Δ𝒔𝒊𝒏𝟑 (𝜽−𝝋) 

3. Structural optimization 

Structures are more prone to deform following certain patterns depending on their geometric 

configuration. In [10] Jaen-Sola and McDonald optimized a generator structure made of cast iron 

model by first finding the minimum radial and tangential stiffnesses needed to comply with the 

structural requirements of the rotor and the stator sub-structures (disc and cylinder) and second by 

minimizing the thicknesses of the said sub-structures until a limit in deflection previously stated was 

reached (10 % of the air-gap length). The optimized rotor structure presented in [10] was formed by a 

disc sub-structure with 56 mm of thickness and a cylinder sub-structure with a thickness of 40 mm. 

The stator structure was composed by two discs of 40 mm thickness each and a cylinder with a 

thickness equal to 25 mm. See Figure 3. 

                
Figure 3 (Left) Rotor structure showing constraints; (Right) Stator structure showing constraints 

 

The characteristics of the entire machine are as follows, 

- Power rate, ‘P’ = 3 MW 

- Structural material density, ‘ρ’ = 7,850 kg/m
3
 

- Axial length, ‘l’ = 1.2 m  

- Rotor radius, ‘R’ = 2 m 

- Air-gap, ‘g’ = 0.005 m 

- Rotor yoke height, ‘ℎry’ = 0.04 m 

- Aspect ratio = 0.6 

- Magnet height, ‘lm’ = 0.017 m 

- Magnet width, ‘bp’ = 0.1 m 

- Flux density, ‘Br’ = 1.02 T. 

 

For this paper two models were studied and further optimized, one at a small scale, which helped 

validate the usefulness of the ANSYS tool, and one at a large scale. With a uniform radial expansion 

load of 400 kPa (Mode 0) and a tangential load of 30 kPa applied on the outer face of the rotor’s rim 

sub-structure and on the inner surface of the stator’s cylinder sub-structure and a gravitational load 

applied globally according to the Y axis, the shape optimization studies were carried out.  
 
3.1.  Small scale disc structure optimization 

Multiple methods can be used to estimate the minimum required stiffness and structural mass of an 

electrical machine [9]. For this investigation, the authors considered appropriate to optimize first the 

machine volume by finding the minimum required stiffness and thicknesses of the sub-structures 

forming the rotor and the stator [10] to then carry out topology optimization studies that can further 

contribute to minimize the mass while maintaining the overall stiffness. This paper is focused on the 

mass reduction of a linear elastic structure subject to a particular set of boundary conditions, where the 

overall stiffness is a constraint, and loading. Topology optimization, also known as shape 

optimization, can be categorized as compliance-based or stress-based. Compliance-based is a well-

known and mastered technique [14], whereas stress-based has been typically avoided due to numerical 

issues caused by the behaviour of local stresses identified as the singularity phenomenon. Although, 

the research trend shows a clear appetite for the development of the stress-based method, a 
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compliance-based optimization approach was used as it fits better to the application presented in this 

paper.  

In this Section, the shape optimization add-on tool available in ANSYS Workbench is introduced. 

Both small and large scale generator structures have been looked at. An optimization study of a small 

scale generator structure made of cast iron was run first in order to verify the usefulness of the said 

tool. Moreover, the creation and analysis of a small scale model at first instance was considered good 

practice and it could be utilized for other purposes in the future. A 100 kW electrical machine with 

0.42 m radius, 0.21 m axial length, 2.08 mm air-gap, 140 rpm rotor speed and 6.8 kNm torque was 

assumed. With a radial expansion load of 400 kPa and a tangential load of 30 kPa applied on the outer 

face of the rotor rim structure and a gravitational load applied globally according to the Y axis, the 

shape optimization study was made. After constraining the structure at the shaft, a fine tetrahedral 

mesh was produced, and as it can be seen, the red elements, which are mostly placed within the disc 

sub-structure, are the ones that can be removed. See figure 4(a).   

 

 
(a) 

 
(b) 

 

Figure 4 Rotor structure shape optimization; (a) Rotor structure highlighting the elements to be 

eliminated; (b) Cut-outs of the optimized rotor structure (dimensions shown in mm) 

 

Linking the result to a CAD model in SolidWorks with the same dimensions and material 

characteristics a handmade removal of material was carried out always taking into consideration the 
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deflection limit, which in this case corresponds to 0.208 mm. An elimination of 6 mm of material 

could be done for the disc as seen in figure 4(b). The same procedure was followed for the stator 

acquiring similar data. In this case, the radial expansion load of 400 kPa was directed inwards and 

applied to the inner surface of the stator’s rim. The tangential load of 30 kPa was applied to the inner 

face of the stator too, whereas the gravitational load was again applied globally following the Y-axis. 

Having a 6 mm cylinder thickness and 12 mm thickness discs, a removal of 7.5 mm of material from 

each disc, as it was done with the rotor, could be accomplished. The total mass for a solid cast iron 

generator structure being able to withstand the mentioned loads without deforming more than as 

stated, is 313.22 kg with 114.76 kg for the rotor and 198.46 kg for the stator. After further 

optimization using the ANSYS shape optimization tool an overall reduction in mass of about 15 % can 

be achieved. The final structural mass would be 266.7 kg with 91.1 kg for the rotor and 175.6 kg for 

the stator. At this point, it must be highlighted that during the topology optimization process, the 

elimination of certain areas of the rotor disc sub-structure contributed to decrease the overall 

deformation. This allowed a further reduction of the disc thickness from about 10.5 mm to 9.5 mm 

with the consequent mass saving.  

 

 
Figure 5 Flowchart of the structural topology optimization process 

 

Figure 5 shows a flowchart of the structural topology optimization process as it was followed. Two 

different ways of approaching the structural optimization can be tracked: by hand or using the Design 

Explorer ANSYS tool, coupled to the CAD model in SolidWorks. ANSYS DesignXplorer 

parametrizes the problem and then analyses the effects of varying those parameters in the whole 

domain. After a correlation study the most relevant input parameters are identified for further study. 

The first procedure was used to optimize the small scale model, whereas the second was utilized to 

optimize the large scale one. Models with relative simple shapes can be easily optimized by hand. 

However, when the shapes are more complex, the use of an instrument that standardizes the process as 

DesignXplorer does is necessary. 
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3.2.  Large scale disc structure optimization 

Having demonstrated the utility of this ANSYS instrument, it was utilized once again to further 

optimize the 3 MW large scale model. In this case, different outcomes were obtained for the rotor and 

the stator structures compared to those of the small scale model. Using the sub-structures thicknesses 

and machine’s characteristics provided in Section 3 and with the structure loaded as specified, the 

shape optimization analysis was made revealing that the elements to be removed are not only within 

the disc sub-structure but also in the outer surfaces. In addition, they tracked a certain pattern, as 

observed in figure 6 that can be utilized to eliminate the material in a standard way making the 

structure easier to manufacture. 

 

Figure 6. Rotor Structure Shape Optimization 

 

Considering the data retrieved from the shape optimization study, a model in SolidWorks was 

modified as seen in figure 7 trying to standardize the shape of the clusters of elements to be removed. 

Then, by linking this model, through a parametric design table, to the ANSYS DesignXplorer tool, the 

dimensions and the number of those shapes could be altered. Keeping in mind the deflection limit (in 

this case it is 0.5 mm), the optimum number of gaps was found to be 9. The size of the shapes was 

maximized so that the maximum amount of material could be taken out. A total number of 57 

iterations were necessary to find out the optimum profile for the rotor structure. Figure 7 shows the 

variables as changed in the DesignXplorer study with lr = 1,265 mm, Rs = 135 mm, Rm = 2,345 mm 

and Rl =1,240 mm.    

 

Figure 7. Design Explorer Optimization (Large Rotor Structure) 
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For the stator structure a similar methodology was followed although a different shape was acquired 

from the study, as seen in figure 8. The shape was approximated as shown in figure 9 with the 

optimum found at Ds = 1,400 mm and ds = 1,150 mm with 5 circular holes. A total number of 23 

iterations were needed so as to figure out the optimum values of the two variables. 

 

 
Figure 8. Large Scale Stator Structure Shape Optimization 

 

 

 
Figure 9. Design Explorer Optimization (Large Stator Structure) 

 

If the mass of the resultant generator structure is compared with a solid disc structure (overall mass of 

19,260 kg with 9,809 kg for the rotor and 9,451 kg for the stator [10]) capable of supporting the 

already said loads, a difference of almost 38 % is achieved. With a total mass of 12,000 kg with the 

rotor accounting for 5,694 kg and the stator for 6,306 kg a substantial drop in mass was achieved. 

4. Discussion and conclusions 

Further optimization of the rotor and stator disc structures of a 3 MW direct-drive wind turbine 

electrical machine was accomplished using finite element techniques. A small scale model was studied 

first in order to check the usefulness of the shape optimization tool. This previous analysis revealed 

that substantial mass savings can be obtained. In addition, it was noted that during the optimization 

process the elimination of certain areas helped to reduce the overall deflection. This allowed a further 

reduction of the thickness of the entire sub-structure with the consequent decrease in mass. A 

comparison between a solid structure and the topology optimized structure showed a total mass 

difference of 15 % in favour of the latter. Once the utility of the said instrument was checked, a 

topology optimization study of the 3 MW machine structure was carried out. A large drop in mass of 

about 38 % was achieved by removing material following a certain pattern that facilitates the 

manufacturing of the structure. With the Design Explorer tool that allows the parametrization of the 

problem connected to a CAD model in SolidWorks, it was possible to visualize the key areas to be 
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removed, the physical changes made in each study and predict their effect in the whole structure. 

Looking at the results obtained and the relatively low complex shapes that can be acquired tracking 

this methodology, the authors recommends its use for additional structural optimizations. More static 

and dynamic integrated designs can be achieved by using the proposed technique.   
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