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ABSTRACT 

Efforts to improve urban bus transport systems’ comfort and increase user satisfaction 

have been made for many years across the globe. Increasing bus users and reducing car 

users has an economic benefit. Whenever the urban bus share is larger than 25%, there 

are journey time savings due to lower congestion levels on the network. A driver’s loss 

of alertness due to fatigue has been recognised to be one of the major factors responsible 

for road accidents/crashes for many decades. Comfort and fatigue are 

psychophysiological phenomena. Objective measures of human psychological and 

physiological factors must be defined, investigated, and evaluated in order to have an in-

depth understanding of the cause-effect mechanisms regulating psychophysiological 

factors.  

Electroencephalography (EEG) developed as bio-sensor equipment to interpret and 

collate bioelectrical signals was used to gather the time-series quantitative data of urban 

bus passengers and HGV drivers. This study’s EEG data application was designed to link 

the brain activity dynamics to dynamic experimental design variables or tasks by 

correlating increased or decreased measured brain activity by using a baseline for 

comparisons. Two experiments were conducted in this study. The first sought to 

understand the influence of driving time and rest breaks on a driver’s psychophysiological 

response. Therefore, the EEG data was collected, categorised and grouped based on two 

hours of driving before a 30 minute break, two hours of driving after a 30 minute break 

and four hours of driving with no break. The Samn-Perelli seven-point scale of fatigue 

assessment was used to evaluate the influence of the duration of driving time on a driver’s 

performance decrements. The second experiment investigated bus passenger discomfort 

by examining experimental design stage-related changes in EEG measured by using a 

control experiment for comparison. Consequently, datasets in two stages were collected 

for each subject (passenger), including the stationary laboratory (control) and dynamic 

onboard bus environment experiments. A subjective evaluation of the average ride 

comfort on each stage of the experiments was conducted by using the recommended 

assessment scale of the International Standard ISO 2631-1. The ERP EEG oscillations 

were evaluated by decomposing the EEG signals into magnitudes and phase information, 

and then characterising their changes relative to the experimentally designed phases and 

variables. A two-way analysis of variance (ANOVA) was conducted to test the model’s 

predictor under different experimental conditions for passenger discomfort and driving 

fatigue experiments.  
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The variability in the driver’s psychophysiological responses to the duration of driving 

occurs systematically. The effects appear to be progressive and aligned such that the 

driving performance was worst during the last 60 minutes of driving for four hours 

without a break, but better during the first 30 minutes. Data analysis also showed that a 

pronounced psychophysiological response exists relative to the influence of the road 

roughness characteristics, the passenger’s postures, and the bus type. Further analysis of 

passenger discomfort showed that passengers are more strained while in a standing 

posture than in a seated posture, irrespective of the bus type and the degree of the road’s 

roughness. The results indicated that passenger comfort deteriorates as the road roughness 

coefficient increases. Furthermore, the results demonstrated that female passengers 

express more discomfort/dissatisfaction than males under the same experimental 

conditions. Therefore, female passengers are more sensitive than males to a deviation 

from optimal comfort conditions. 

This study provides opportunities for future research applications of EEG in transport 

research studies. It also provides a platform for evaluating different Intelligent Transport 

System (ITS) technologies, particularly passenger’s reactions in autonomous vehicles. 



iii 
 

DECLARATION 

I hereby declare that this thesis and any material contained in this thesis have not been 

submitted to award any other degree or professional qualification in any university. I 

declare that this thesis and all work contained in this thesis results from my independent 

work. This thesis contains no material previously published or written by another person 

except where due acknowledgement to others has been made to the best of my knowledge 

and belief. 

 Benjamin Oladele Afuye 

 

 

 

 

  



iv 
 

ACKNOWLEDGEMENTS 

I would like to express my sincere and profound gratitude to my Director of Studies, 

Professor Wafaa Saleh, for her invaluable guidance, support, advice, and help during this 

work. I express my sincere appreciation to my second Supervisor Associate Professor 

Achille Fonzone, for his guidance and support during this work.  

I would like to thank the former Director of Transport Research Institutes (TRI), Professor 

Tom Ray, for his support. My appreciation goes to Messrs Stephen Paterson, and the 

electronics technical team of Edinburgh Napier University for various assistance during 

my PhD. My thanks also extend to the staff of the Transport Research Institute and the 

administrative staff of SEBE.   

I am grateful to Pastor and Mrs Gbadebo Adigun, Mr and Mrs Festus Akapo, Mr and Mrs 

Julius Aransiola and Pastor and Dr. (Mrs.) Festus Olatunde. I am also grateful to Dr Udoh 

Utibe, Mr OluwaKayode Oni, Dr Aswin Azhar Siregar and Mr and Mrs Adekunle 

Sinmikaye for their unmeasurable supports. My appreciation is incomplete without 

Professor and Dr. (Mrs.) Samuel Iyiola Oni, Dr Charles Asenime, Pastor and Mrs Samuel 

Ayodele, Mrs OluwaToyin Magbagbeola, Dr Joshua Odeleye and Dr Emmanuel Ege. 

I would like to express my appreciation to all who volunteered their precious time to help 

with this study during the experiments and contributed in diverse ways to make this work 

a success. I say a big thank you to all. I appreciate and thank Dr Joseph Appiah, Dr Idowu 

Rotifa, Miss Morgan Ormsby, Mr and Mrs Larry Adebayo James, Mr Kayode Jejeloye 

and Dr Augustus Ababio-Donkor for their support. I thank all my colleagues at Edinburgh 

Napier University who provided inspirational support during the time I spend with them 

at the research office. 

Without the support and sacrifices of my family, this study would not have been 

successfully completed. I am very much grateful to my wife, Mrs Esther Abosede 

Afuye, for her prayers, advice, support, and encouragement to complete this study. A big 

thanks to my children (Ms Emmanuel IyanuOluwa Afuye and Miss Elizabeth 

Toluwanimi Afuye) for tolerated me during the period of this research. Thanks to my 

mother, Mrs Deborah Afuye, for her prayers and support. I will also express my profound 

appreciation to Mr John Olumayowa Afuye, Mr Sunday Afuye, Mrs Omowunmi NEE 

Afuye, Mr Alex Olukunle Afuye and all my family members for their prayers and support. 



v 
 

I am grateful to my father, Late Pa. Joshua Afuye, who has been my inspiration from my 

childhood. 

Finally, my deepest appreciation goes to Almighty God, graciously looking after my 

family and me and giving me the strength to complete this study. 

 

 

 

 

 

 

 

 

  



vi 
 

 

 

 

DEDICATION 

This thesis is dedicated to the most beautiful and strong woman in my life 

Mrs Esther Abosede Afuye 

And 

My Precious Father 

Late Pa. Joshua Afuye 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



vii 
 

TABLE OF CONTENT 
ABSTRACT ................................................................................................................................... i 

DECLARATION ......................................................................................................................... iii 

ACKNOWLEDGEMENTS ......................................................................................................... iv 

DEDICATION ............................................................................................................................. vi 

CHAPTER 1  INTRODUCTION .......................................................................................... 1 

1.1 Background ....................................................................................................................... 1 

1.2 Research Questions ........................................................................................................... 3 

1.3 Research Objectives .......................................................................................................... 3 

1.4 Justification of the Study................................................................................................... 3 

1.5 Structure of the Thesis ...................................................................................................... 4 

1.6 Chapter-by-Chapter Summary .......................................................................................... 6 

CHAPTER 2       LITERATURE REVIEW ......................................................................... 8 

2.1 Introduction ....................................................................................................................... 8 

2.2 Bus Passenger Comfort ..................................................................................................... 8 

2.3 Bus Transport System ....................................................................................................... 8 

2.3.1 Passenger Discomfort in Public Transport .............................................................. 10 

2.3.2 Passenger Ride Comfort and Posture Influence ...................................................... 14 

2.3.3 Passenger Ride Comfort and Road Surface Irregularity ......................................... 17 

2.3.4 Comfort Models ...................................................................................................... 19 

2.4 Assessment of Driver Fatigue ......................................................................................... 21 

2.5 Human Brain Activities and EEG ................................................................................... 26 

2.5.1 Mechanism of Human Brain Sensitivity ................................................................. 26 

2.5.2 Introduction to EEG ................................................................................................ 27 

2.5.3 EEG Frequency Bands ............................................................................................ 28 

2.5.4 Beta EEG Frequency Band ..................................................................................... 31 

2.5.5 eSense(cm) Meters (Attention and Meditation) ...................................................... 32 

2.5.6 Event-Related Potential (ERP) ................................................................................ 33 

2.5.7 EEG Data and Artifacts ........................................................................................... 34 

2.6 Application of EEG ......................................................................................................... 36 

2.6.1 Application of EEG for Motion Sickness ............................................................... 37 

2.6.2 EEG and in-vehicle Driver and Passenger Responses ............................................ 38 

2.6.3 EEG and Driver Fatigue .......................................................................................... 39 

2.6.4 EEG and Stress........................................................................................................ 41 

2.7 Driving Pattern and Vehicle Acceleration Characteristics .............................................. 42 

2.8 Gaps Identified in the Literature ..................................................................................... 43 

 



viii 
 

CHAPTER 3      METHODOLOGY: STUDY DESIGN, EXPERIMENTAL 
PROCEDURE AND DATA COLLECTION ......................................................................... 46 

3.1 Introduction ..................................................................................................................... 46 

3.2 Lothian Buses .................................................................................................................. 46 

3.3 Ethical Approval ............................................................................................................. 48 

3.4 Equipment ....................................................................................................................... 48 

3.4.1 GPS-based Performance Box .................................................................................. 48 

3.4.2 Myndplay Electroencephalography (EEG) ............................................................. 49 

3.4.3 The EURO Truck Driving Simulator ...................................................................... 51 

3.5 Sample Size Estimation .................................................................................................. 52 

3.6 Experimental Design ....................................................................................................... 52 

3.6.1 Drivers Fatigue Experiment .................................................................................... 52 

3.6.1.1   Participants ............................................................................................................ 53 

3.6.1.2   Driving Fatigue Data Acquisition ......................................................................... 55 

3.6.2 Urban Bus Passenger Ride Comfort Experiment .................................................... 57 

3.6.2.1   Sampled Rroute ..................................................................................................... 57 

3.6.2.2   Participants ............................................................................................................ 58 

3.6.2.3  Bus Passenger Discomfort Data Acquisition ..................................................... 58 

3.6.3 Speed-Time Data..................................................................................................... 62 

3.7 Data Preparation and Analysis ........................................................................................ 62 

3.7.1 Factors of Data Dnalysis (dependent variables) ...................................................... 63 

3.7.1.1   EEG eSense Metric Value of Attention ................................................................ 64 

3.7.1.2   EEG Power Spectrum and Interpretation of the Beta Frequency Band ................ 65 

3.7.1.3   Artefact Removal .................................................................................................. 66 

3.7.2 Data Analysis .......................................................................................................... 68 

3.8 Summary ......................................................................................................................... 70 

CHAPTER 4 PSYCHOPHYSIOLOGICAL RESPONSES OF THE DRIVER: 
INFLUENCE OF DRIVING TIME ........................................................................................ 71 

4.1 Introduction ..................................................................................................................... 71 

4.2 Processing the Driving Datigue Psychophysiological Time Series Data ........................ 72 

4.3 Relationship between a Driver’s Psychophysiological Response (Fatigue) and Duration 
of Driving .................................................................................................................................... 73 

4.3.1 Correlation between Driver Psychophysiological Response and Driving Time with 
and without a break: eSense Metric for Attention .................................................................. 74 

4.3.2 Correlation between Driver Psychophysiological Response and Driving with and 
without Breaks (Beta EEG frequency band) ........................................................................... 75 

4.4 Modelling the Effects of Fatigue Associated with Length of Time Driving .................. 76 

4.4.1 Evaluation of Driver’s Psychophysiological Response to the Influence of Driving 
Time (before a 30 minute break and no break of the first two hours: eSense metric for 
attention) 77 



ix 
 

4.4.2 Evaluation of a Driver’s Psychophysiological Response to the Influence of Driving 
Time (After a 30 minute break and no break of the last two hours: eSense Metric for 
Attention) ................................................................................................................................ 77 

4.4.3 Driver’s Psychophysiological Responses as Function of the Influence of Driving 
Time (before a break and after the first two hours of no break: Beta Brain Activity) ............ 78 

4.4.4 Driver’s Psychophysiological Responses as a Function of the Influence of Driving 
Time after a Break and for the Last Two Hours with no Break (beta brain activity) ............. 79 

4.4.5 Age Influence on Driver Fatigue: eSense metric for attention ................................ 80 

4.4.6 Gender Influence on Driver Fatigue: eSense metric for attention .......................... 82 

4.5 Relationship between the Average eSense Metric for Attention and a Drivers’s 
Perception of Fatigue and Performance Decrements .................................................................. 83 

4.5.1 Assessment of a Driver’s Perception Relative to Changes in their 
Psychophysiological Response (eSense metric for attention) ................................................. 86 

4.5.2 Psychophysiological Response and Driver’s Perception of Fatigue (eSense metric 
for attention): Parameter of Estimates .................................................................................... 86 

4.5.3 Evaluation of the Relationship between the Psychophysiological and Subjective 
Responses of the Participants: Gender Influence .................................................................... 89 

4.5.4 Evaluation of the Relationship between Psychophysiological and Subjective 
Responses: Age Influence ....................................................................................................... 90 

4.6 Relationship between Average Beta Brain Activity and Driver’s Perception of Fatigue 
and Performance Decrements ..................................................................................................... 91 

4.6.1 Assessment of Driver’s Perception relative to Changes in their Psychophysiological 
Response (beta brain activity) ................................................................................................. 93 

4.6.2 Correlation between Psychophysiological Response and Driver’s Perception of 
Fatigue (beta EEG frequency band): Parameter of Estimates ................................................. 94 

4.6.3 Correlation between Psychophysiological Response and Driver’s Perception (beta 
EEG frequency band): Age Influence ..................................................................................... 96 

4.6.4 Correlation between Psychophysiological Response (beta EEG frequency band) 
and Driver’s Perception: Gender Influence ............................................................................ 97 

4.7 Summary ......................................................................................................................... 98 

CHAPTER 5 URBAN BUS PASSENGER RIDE COMFORT: APPLICATION OF 
BETA EEG BRAIN ACTIVITY ............................................................................................. 99 

5.1 Introduction ..................................................................................................................... 99 

5.2 General Overview of Human Response and Experimentally Designed Phases .............. 99 

5.3 Processing Psychophysiological Time Teries Data ...................................................... 101 

5.4 Average Response of Passengers to the Impact of the Experimentally Designed Phase
 102 

5.5. Influence of Experimentally Designed Phases on a Passenger’s Psychophysiological 
Responses .................................................................................................................................. 104 

5.5.1 Passenger’s Psychophysiological Response to the Influence of Experimentally 
Designed Variables ............................................................................................................... 105 



x 
 

5.5.2 Passenger’s Psychophysiological Response (beta frequency band) as a Function of 
Experimental Phases: Age Influence .................................................................................... 106 

5.5.3 Effect of Experimental Phases on Passenger Comfort: Gender Influence ............ 106 

5.5.4 Effect of Road Roughness on Passenger Comfort: Influence of Bus Type .......... 108 

5.5.5 Effect of Road Roughness Characteristics on Passenger Comfort: Posture Influence
 109 

5.5.6 Effect of Road Roughness Characteristics on Passenger Comfort: Age Influence 110 

5.5.7 Effect of Road Roughness Characteristics on Passenger Comfort: Gender Influence
 111 

5.5.8 Passenger Psychophysiological Response (Comfort): Age and gender Influence 112 

5.5.9 Passenger Sensibility: Influence of Bus Type and Posture ................................... 113 

5.6 Relation between Psychophysiological Response and a Passenger’s Perception of 
Discomfort ................................................................................................................................ 114 

5.6.1 Relationship between a Passenger’s Psychophysiological Response and Subjective 
Passenger Assessment ........................................................................................................... 115 

5.6.2 Influence of Experimental Designed Variables on Psychophysiological Response 
and Passenger’s Perception ................................................................................................... 116 

5.6.3   Effect of Experimentally Designed variables on Psychophysiological and Subjective 
Responses: Age influence ..................................................................................................... 118 

5.6.4   Effect of Experimentally Designed variables on Psychophysiological Response and 
Passenger Perceptions: Gender Influence ............................................................................. 119 

5.7 The Effect of Speed on Passenger Sensibility ............................................................... 119 

5.7.1 Effect of Speed on Passenger Comfort: Posture Influence ................................... 120 

5.8 Inter-Subject Variability ............................................................................................... 121 

5.8.1 Inter-subject Variability in Psychophysiological Responses of Passengers to the 
Influence of Experimentally Designed Variables ................................................................. 122 

5.8.2 Evaluation of Inter-subject Variability as a Function of the Influence of 
Experimentally Designed Variables ...................................................................................... 123 

5.9 Summary ....................................................................................................................... 125 

CHAPTER 6 URBAN BUS PASSENGER RIDE COMFORT: APPLICATION OF 
THE eSENCE METRIC FOR ATTENTION ...................................................................... 126 

6.1 Introduction ................................................................................................................... 126 

6.2 General Overview of Analysis ...................................................................................... 126 

6.3 Influence of Experimentally Designed Phases on Passenger Response ....................... 127 

6.4 Average Passenger’s Psychophysiological Responses to the Influence of Experimentally 
Designed Phases........................................................................................................................ 128 

6.5 Analysis of the Impacts of Experimental Phases on Passenger Comfort ...................... 129 

6.5.1 Passenger’s Psychophysiological Responses to the Influence of Experimentally 
Designed Variables ............................................................................................................... 129 

6.5.2 Evaluation of Passenger’s Psychophysiological Response to the Influence of 
Experimentally Designed Variables ...................................................................................... 130 



xi 
 

6.6 Effect of Road Roughness on a Passenger’s Psychophysiological Response: Gender 
Influence ................................................................................................................................... 131 

6.6.1 Effect of Road Roughness on a Passenger’s Psychophysiological Response: Age 
Influence 132 

6.6.2 Effect of Road Roughness on a Passenger’s Psychophysiological Response: 
Influence of Bus Type ........................................................................................................... 133 

6.6.3 Effect of Road Roughness on a Passenger’s Psychophysiological response: Gender 
Influence: Posture Influence ................................................................................................. 134 

6.7 Relation between Average Psychophysiological Response and Passenger Perception 135 

6.7.1 Correlation between Psychophysiological Responses and Passenger’s Perception of 
the Influence of Experimental Design Variables .................................................................. 136 

6.7.2   Influence of Experimentally Designed Variables on Psychophysiological Responses 
and a Passenger’s Perception ................................................................................................ 137 

6.7.3 Effect of Experimentally Designed variables on Psychophysiological and 
Subjective Responses: Age Influence ................................................................................... 139 

6.7.4 Relationship between Psychophysiological Response and Subjective Comfort 
Assessment: Gender influence .............................................................................................. 139 

6.8 Inter-subject Variability ................................................................................................ 140 

6.8.1 Inter-subject variability (eSense metric for attention)........................................... 141 

6.8.2 Inter-subject Variability: Parameter of Estimates ................................................. 141 

6.9 Summary ....................................................................................................................... 143 

CHAPTER 7 GENERAL DISCUSSION ......................................................................... 144 

7.1 Study Background ......................................................................................................... 144 

7.2 Overview of Urban Bus Passenger Comfort ................................................................. 144 

7.2.1 Relationship between Road Roughness Characteristics and a Passenger’s 
Psychophysiological Response ............................................................................................. 146 

7.2.2 Relationship between Passenger’s Psychophysiological Responses, Passenger 
Posture and Bus Type ........................................................................................................... 147 

7.3 Overview of Driver Fatigue .......................................................................................... 151 

7.3.1 Relationship between the Duration of Driving and a Driver’s Psychophysiological 
Response 152 

CHAPTER 8       SUMMARY AND GENERAL CONCLUSIONS ............................... 154 

8.1 Meeting Research Objectives ........................................................................................ 154 

8.2 Conclusions ................................................................................................................... 159 

8.3 Research Contributions ................................................................................................. 164 

8.4 Limitation ...................................................................................................................... 166 

LIST OF REFERENCES .......................................................................................................... 169 

APPENDIX I ................................................................................................................................. a 

 

 



xii 
 

LIST OF FIGURES 

Figure 1-1: Structure of the thesis .............................................................................. 5 

Figure 2-1: Average permissible deceleration for passenger comfort in ground 

transport …………………………………………………………………………17 

Figure 2-2: The proposed comfort model................................................................. 20 

Figure 2-3: The proposed model of Dose-Response ................................................ 21 

Figure 2-4: European Union driving hours regulations ........................................... 24 

Figure 2-5: EEG brain frequency bands ................................................................... 29 

Figure 2-6: Brain frequency bands (ranges) ............................................................. 30 

Figure 2-7: External sources of artefacts .................................................................. 36 

Figure 3-1: Lothian buses ......................................................................................... 46 

Figure 3-2: Spatial distribution of Lothian bus route ............................................... 47 

Figure 3-3: The GPS device (PB) keypad ................................................................ 48 

Figure 3-4: The NeuroSky Mobile MindSet (MYNDPLAY) and the display screen 

on Window tablet during EEG data collection ........................................................ 50 

Figure 3-5: Participant in TRIL, Edinburgh Napier University ............................... 51 

Figure 3-6: Map of the sampled pre-determined Lothian Bus routes ...................... 57 

Figure 3-7: Lothian Buses and route pavement types .............................................. 58 

Figure 3-8: Participants in the laboratory and onboard bus experiments ................. 59 

Figure 3-9: Data collection system layout ................................................................ 60 

Figure 3-10: Data sample of the EEG used for analysis ............................................ 67 

Figure 4-1: Changes in average driver psychophysiological response relative to the 

influence of driving time in different stages of the experiment………………………..75 

Figure 4-2: Changes in the average driver’s psychophysiological response relative 

to the influence of driving time (age influence). ..................................................... 81 

Figure 4-3: Changes in average psychophysiological response relative to the 

influence of the participants’ gender ....................................................................... 83 

Figure 4-4: Relationship between the change of the average psychophysiological 

response and changes in driver’s subjective fatigue assessments............................ 85 

Figure 4-5: Driver’s psychophysiological response (eSense metric for attention) and 

subjective assessment: gender influence.................................................................. 89 

Figure 4-6: Driver’s psychophysiological response (eSense metric for attention) and 

subjective assessment: age influence. ...................................................................... 90 

Figure 4-7: Relation of driver’s psychophysiological response and perception. ..... 92 



xiii 
 

Figure 4-8: Driver’s psychophysiological response (beta band) and subjective 

responses: gender influence. .................................................................................... 96 

Figure 4-9: Driver’s psychophysiological response (beta band brain activity) and 

subjective responses: age influence. ........................................................................ 97 

Figure 5-1: Passenger responsiveness to the induced stimulus of experimental 

phases: age influence ............................................................................................. 106 

Figure 5-2: Responsiveness of male and female passengers to the influence of 

experimental phases ............................................................................................... 107 

Figure 5-3: Effect of road roughness on sensibility: influence of bus type ........... 109 

Figure 5-4: Effect of road roughness on psychophysiological responses: posture 

influence ………………………………………………………………………..110 

Figure 5-5: Passenger sensibility (beta EEG frequency band): age influence ....... 111 

Figure 5-6: Passenger sensibility: gender influence ............................................... 112 

Figure 5-7: Passenger sensibility: relationship between age and gender influence 113 

Figure 5-8: Passenger sensibility: bus type and posture influence ......................... 114 

Figure 5-9: Cross-correlation of a passenger’s psychophysiological response and 

subjective passenger assessment ............................................................................ 115 

Figure 5-10: Passenger psychophysiological (beta EEG frequency band) and 

subjective responses: age influence ....................................................................... 118 

Figure 5-11: Passenger psychophysiological (beta band) and subjective responses: 

gender influence ..................................................................................................... 119 

Figure 5-12: Effect of speed on passenger comfort ................................................. 120 

Figure 5-13: Impact of Speed on the passenger’s comfort: posture influence ......... 121 

Figure 5-14: Variations in average psychophysiological responses (beta band) of a 

passenger to the influence of experimentally designed variables .......................... 122 

Figure 6-1: Influence of road roughness on comfort for gender characteristics 

(attention eSense meter)......................................................................................... 132 

Figure 6-2: Passenger sensibility (eSense metric for attention): age influence ..... 133 

Figure 6-3: Influence of pavement types on passenger comfort (beta band) for 

vehicle characteristics ............................................................................................ 134 

Figure 6-4: Effect of road roughness on passenger comfort (attention eSense meter): 

posture influence .................................................................................................... 135 

Figure 6-5: Passenger level of distraction, agitation or abnormality (attention 

eSense meter) and comfort assessment .................................................................. 136 



xiv 
 

Figure 6-6: Passenger’s psychophysiological response (attention eSense meter) and 

subjective responses: age influence ....................................................................... 139 

Figure 6-7: Passenger’s psychophysiological response (attention eSense meter) and 

subjective responses: gender influence .................................................................. 140 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

LIST OF TABLE 

Table 2-1: Comfort index definition ........................................................................... 12 

Table 2-2: Average acceleration to loss balance ........................................................ 16 

Table 2-3:      Interpretation of EEG frequency bands .................................................... 32 

Table 3-1: Summary of fatigue-phase instrumentation in the TRiL........................... 56 

Table 3-2: Driving fatigue data points ........................................................................ 57 

Table 3-3: Passenger comfort experimental phase ..................................................... 61 

Table 3-4: Passenger discomfort data point................................................................ 62 

Table 3-5: Interpretation of the eSense metric for attention ....................................... 65 

Table 3-6: Interpretation of the EEG band to mental and emotional feeling ............. 66 

Table 3-7: The parametric approaches used for statistical analysis ........................... 69 

Table 4-1: Driving fatigue data point ......................................................................... 73 

Table 4-2: Changes in driver fatigue as a function of the length of time spent driving 

before a break and no break (eSense metric for attention) ...................................... 77 

Table 4-3:  Changes in driver’s psychophysiological response as a function of the ...... 78 

Table 4-4: Changes in a driver’s response to the influence of driving time before a 30 

minute break and no break for the first two hours (beta EEG frequency band) ...... 79 

Table 4-5: Changes in a driver’s response to the influence of driving time after a 30 

minute break and no break of the last two hours. .................................................... 80 

Table 4-6: Changes in psychophysiological response and driver’s perception relative 

to the influence of the length of driving time (eSense metric for attention) ............ 86 

Table 4-7: Evaluation of the relationship between the psychophysiological response 

and drivers’ perception (eSense meter for attention) ............................................... 88 

Table 4-8:    Evaluation of the perception of driver’s relative changes in their 

psychophysiological responses (beta EEG frequency band). .................................. 93 

Table 4-9: Evaluation of psychophysiological response and driver’s perception of the 

influence of the length of driving time .................................................................... 95 

Table 5- 1:     Experimentally designed phase ............................................................... 101 

Table 5-2: Passenger discomfort data points ............................................................ 102 

Table 5-3: Experimental phases and their corresponding mean and standard 

deviations ............................................................................................................... 103 

Table 5-4: Changes in passenger’s comfort as a function of experimental design ....... 104 

Table 5-5: Relationship between experimentally designed variables and passenger 

comfort (beta brain activity): Parameter of Estimate ............................................. 105 

Table 5-6: Changes in passenger’s response to the influence of experimental ........ 116 



xvi 
 

Table 5-7: Evaluation of psychophysiological response and passenger’s perception of 

the influence of experimental phases ..................................................................... 117 

Table 5-8: Inter-subject variability of passenger psychophysiological response ..... 123 

Table 5-9:  Statistical analysis of inter-subject variability ....................................... 124 

Table 6-1: Attention eSense meter interpretation and subject’s average response .. 127 

Table 6-2: Passenger’s psychophysiological response to the influence of 

experimentally designed phases............................................................................. 129 

Table 6-3: Analysis of the influence of experimental phases on passenger’s 

psychophysiological responses .............................................................................. 130 

Table 6-4: ANOVA of the experimental phase on passenger responsiveness 

(Attention eSence) ................................................................................................. 131 

Table 6-5: Changes in passenger’s responses to the influence of experimental phases 

(eSense metric for attention) .................................................................................. 137 

Table 6-6: Evaluation of psychophysiological response and a passenger’s perception 

of the influence of experimental phases ................................................................ 138 

Table 6-7: Statistical analysis of inter-subject variability ........................................ 141 

Table 6-8: Analysis of Inter-Subject variability (Attention eSense meter) .............. 142 

 



1 
 

CHAPTER 1  INTRODUCTION 

1.1 Background 

People currently living in urban areas accounts for 55% of the world's population, and 

this is expected to increase to about 68% by 2050 (United Nation, 2018). Consequently, 

many cities face significant transport and mobility-related challenges, such as traffic 

congestion, air quality, noise and many others. The desire to improve the bus transport 

system’s quality and increase user satisfaction has been essential for many years across 

the globe. Increasing bus users and reducing private car users have economic benefits and 

journey time savings, along with congestion reduction and environmental benefits (JMP 

consultants limited, 2009). Passenger cars represent the majority of road transport in 

almost all cities in the UK, including Edinburgh. For example, statistics show that 72% 

of households in Scotland had access to one or more cars in 2017 (Scottish Transport 

Statistics, 2018). This estimation is similar to the 2011 Scotland population census results, 

which showed that 69% of households in Scotland had access to one or more cars, with 

27% having two or more cars. Therefore, the public bus transport system should serve as 

an alternative mode of travel to passenger cars, which could significantly reduce the 

volume of vehicles on the road and serve as a means of managing urban traffic challenges. 

Bus passenger comfort deteriorates due to road-vehicle interactions and passengers 

experiencing sensations that do not target specific organs of the body, but create potential 

harmful effects (stress) to virtually all parts of the body. However, such effects are not 

limited to tractor drivers, workers operating industrial vehicles and people travelling on 

a bus, train or car (Mansfield, 2005). Factors of human sensations in a dynamic 

environment(s) are often complex and change over time. Some occur in many directions, 

and exposure to them causes a complex distribution of oscillatory motions and forces 

within the body. Human stability in a dynamic environment is controlled and managed 

by the brain, and is supported by the cerebellum, basal ganglia and visual cortex (Powell 

and Palacine, 2015). As the human body responds to the effects of road-vehicle 

interactions, it could cause a series of negative sensations that may lead to performance 

decrements, impaired health and interference with activities, along with posing health and 

safety risks, such as pathological damage or physiological change (Griffin, 1990).  

The human physiological abilities and competence are critical factors for maintaining 

productivity and safety in all transport industries (including truck driving). Fatigue is 

psychophysiological; therefore, human psychological and physiological factors must be 
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defined, examined and evaluated in order to understand it (Phillips, 2015). A driver’s loss 

of alertness due to fatigue has been recognised to constitute one of the major factors 

responsible for road incidents or accidents of intercity Heavy Goods Vehicles (HGV) for 

many decades. Prolonged driving affects the alertness of truck drivers operating on day-

to-day schedules and unscheduled trips. HGV driver’s unscheduled operations, prolonged 

driving time from the management or unforeseen circumstances (such as traffic 

congestions due to road accident or adverse weather), a changing schedule or other 

additional tasks, such as fuelling and loading/offloading of goods usually contributes to 

the level of fatigue on both local- and long-distance haul. A significant decrease in a 

driver’s physiological arousal impaired reaction time, information processing, and slow 

sensorimotor functions could result in a driver’s performance decrements and reduce the 

ability to respond effectively and efficiently to sudden and unexpected situations (Lal and 

Craig, 2002).  

The human brain is characterised by vibrant spatiotemporal dynamics, and physical and 

emotional states influence the brain’s activity. The human brain activates neuropeptide-

secreting systems in response to internal or external stimuli (Makeig et al., 2010; Gwin et 

al., 2010). Discomfort or fatigue indicates a psychophysiological response to perceived 

demands and pressures within and without that produce adverse emotional reactions. The 

application of electroencephalography (EEG) is well known to be an approach capable of 

characterising individual brain states in the processing of different semantic categories 

that make the application of real-time decoding systems possible (Muller et al., 2008). 

EEG can potentially be used to collate reliable data and use it as an analytical approach 

for detecting changes in psychological or physiological states due to its degree of 

temporal resolution (Lal and Craig, 2002). EEG is one of the best approaches to evaluate 

brain dynamics associated with perceiving comfort disturbance in motion mainly because 

of its portability (Yu et al., 2010). Most cognitive processes usually occur within tens to 

hundreds of seconds, and the events activating those cognitive processes occur in time 

sequences that span from hundreds of milliseconds to a few seconds (EEG Pocket Guide, 

2016). Therefore, EEG directly measures and collates data on neural activity. This 

information has an excellent sub-second time resolution because EEG captures hundreds 

to thousands of neural activities across multiple electrodes within a single second.  
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1.2 Research Questions 

This research framework aims to characterise HGV driver’s fatigue and public transport 

passenger ride comfort by measuring the psychophysiological responses via EEG. The 

following research questions will be answered.  

a. What are the factors affecting the fatigue of HGV drivers? In particular, 

a. How does the duration of driving and rest breaks affect the driving 

fatigue/performance decrement? 

b. How does a driver’s gender and age influence driving fatigue/performance 

decrements? 

b. What are the factors affecting the comfort of bus passengers? In particular,  

a. How do pavement and bus type affect the comfort of bus passengers? 

b. How does passenger posture under the same/similar real-life traffic conditions 

affect the comfort of bus passengers? 

c. What is the impact of gender and age on bus passenger comfort?  

1.3 Research Objectives  

The aim of this research is to investigate driver fatigue and public transport passenger 

ride comfort by measuring psychophysiological responses. In order to achieve this 

research aim, the following objectives are pursued. 

1. To investigate change in the psychophysiological responses (from the state of 

focus or vigilance to the state of fatigue or performance decrements) of a group 

of subjects with different sociodemographic characteristics as a function of 

the duration of driving an HGV in a driving simulator.  

2. To quantify changes in a passenger’s psychophysiological responses in a 

group of subjects with different sociodemographic characteristics while riding 

a real bus, considering different types of buses, pavements, and postures.  

1.4 Justification of the Study 

Public transport systems must meet passenger’s needs in order to offer maximum comfort 

desired, with more emphasis placed on the travel environment. Passenger comfort can be 

used to evaluate the quality of mass urban transit services and fundamental factors that 
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influence a passenger’s choice of their mode of traffic (Eboli and Mazzulla, 2011). The 

quality of public transport system services is influenced by many factors that are not 

limited to speed, convenience, travel time, cost, reliability, safety and accessibility. Due 

to the variety of contexts in which bus passengers may be exposed to sensations, there is 

a general conclusion that travelling can negatively impact a user’s well-being. Therefore, 

improving bus transportation systems in urban agglomeration requires the investigation 

of a passenger’s physiological and psychological feelings as well as their perceptions on 

comfort (Morton et al., 2016; Beurier, 2012).  

Generally, in the UK, the transport sector contributes 34% of all carbon emissions (124.4 

Mt) and the significant parts of this is from the road transport sector, mainly passenger 

cars (National Statistics, 2018). Passenger cars represent the majority of road transport in 

almost all cities in the UK. Increased car ownership was observed to go hand in hand with 

the general decline in the passenger’s journey on a bus. Urban bus transport systems must 

have the tendency and potential to be used as policy tools in order to reduce the number 

of cars on urban roads, and thus, reduce urban traffic pollution and traffic congestion. 

Therefore, there is a need for constant research on the factors responsible for the 

continuous decline in an average journey on a bus in the country. 

Driving fatigue is now generally recognised as a serious threat to road safety. Fatigue-

related accidents are more common on motorways than on urban roads due to drowsiness 

and inattentive causes by monotony and constant speed. Research has found that driving 

fatigue is the main contributing factor in almost 3% of road transport accidents, and up to 

20% of these accidents usually occur on motorways (Bener et al., 2017; Stein & Jones, 

1987). It is essential to examine the physical and psychological antecedents of driving 

fatigue, along with its consequences; therefore, there is a need to conduct studies that will 

offer an exclusive and stimulating opportunity to examine and conceptualise driver 

engagement during fatigued driving. 

1.5 Structure of the Thesis 

The research thesis is organised into eight chapters. Chapter 1 presents the introduction 

to this research, and discusses the background of the study, research questions, aim and 

objectives. A critical review of literature on passenger comfort, driver fatigue and the 

application of EEG are discussed in Chapter 2. The research methodology is presented in 

Chapter 3, which discusses the research design, case studies, the data collection approach, 
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data cleaning and analysis. Chapter 4 presents the analysis of laboratory studies (the HGV 

driving simulator). Chapters 5 and 6 present the general analysis of bus passenger ride 

comfort by using beta EEG frequency and the eSense metric for attention. An overview 

chapter then synthesises the knowledge and results into two chapters: general discussion 

and summary and general conclusion, which enable the accomplishment of the research 

aim and objectives. 

INVESTIGATION OF BUS PASSENGER dDISCOMFORT AND DRIVER 
FATIGUE 

 
Figure 1-1: Structure of the thesis 

 

 

Chapter 1:   General Introduction 

 

Chapter 2:   Literature Review 

Passenger comfort                        Driver Fatigue                         Application of EEG 

 

Chapter 3:   Methodology 

 

Study Design   Experimental Procedure   Participant   Data Collection   Statistical Analysis 

 

Chapter 4:   Fatigue Responses of the HGV Driver: Influence of driving time and break  

IV: Driving time, age and gender      DV:       EEG brain activity (beta and attention) 

 

Chapter 5:   Urban Bus Passenger Ride Comfort: Application of Beta EEG Brain     
Activity 

IV: Road roughness, posture, bus type, age and gender        DV: Beta EEG brain activity  

 

Chapter 6:   Urban Bus Passenger Ride Comfort: Application of eSense Metric of 
Attention 

IV: Road roughness, posture, bus type, age and gender      DV: eSense metric for attention 

Chapter 7:    General Discussion 

Chapter 8:    Summary and General Conclusion  

                      Where IV: Independent Variable (s) and DV: Dependent Variable(s) 
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1.6 Chapter-by-Chapter Summary 

Chapter 1 of this research presents the general background of bus passenger comfort, 

driving fatigue and EEG as well as the aim and objectives of the study. The second part 

of this research is a general review of buses’ roles, mechanisms of human brain 

sensitivity, driving fatigue, and the application of EEG (Chapter 2). From this review, it 

was clear that numerous researches have been conducted relative to broad-range issues in 

this research area. Even with previous research, several vital issues were identified in 

which no works or very few works have been published. These issues are not limited to 

applying EEG on bus passenger comfort relative to the influences of road roughness 

characteristics, bus type and passenger posture. Chapter 3 outlines the experimental 

design, equipment, the data collection’s designed layout, artefact removal, and analysis 

techniques of this research. 

The first study involved a laboratory investigation conducted on HGV driving fatigue 

(Chapter 4). Measurements of participant brain activity were collated to quantify HGV 

driver’s psychophysiological responses as a function of the duration of driving. The 

results of Chapter 4 were used to inform the bus comfort study. Based on the results 

presented in Chapter 4, the brain activity (beta EEG frequency band and eSense metric 

for attention) showed correlations between the duration of driving time and 

psychophysiological responses.  

Chapters 5 and 6 involved a field investigation conducted on pre-determined Lothian Bus 

routes designed to investigate the extent to which variations in road roughness 

characteristics, passenger posture and bus type influenced a passenger’s comfort. An EEG 

was used to collate human electrocortical brain dynamics (beta and eSense metric for 

attention brain activity) that were associated with cognitive processes during mobile 

activities or whole-body vibrations as a function of the effects of vehicle-road 

interactions. Chapter 5 presents the application of the beta EEG frequency band, which is 

aimed to access a passenger’s posture influence on the psychophysiological response of 

individuals exposed to different road roughness characteristics in both single- and double-

decker buses. On the other hand, Chapter 6 presents the eSense metric for attention by 

using the same experimentally designed variables in Chapter 5. Understanding these 

psychophysiological responses presented in Chapters 5 and 6 can provide a significant 

understanding of the mechanism that causes passenger discomfort in dynamic 

environments. The results of this research demonstrated that there are variations between 
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male and female participants. Also, an individual’s adaptation to the impacts of exposure 

varies, and people sustain a different level of discomfort, which usually occurs at the 

expense of magnitudes of the sensations. In general, the passenger’s psychophysiological 

responses showed significant variations between the seated and the standing postures, 

asphalt and set pavements, and single and double-decker buses. The results of this 

research supported previous findings reported in the literature. However, many of the 

published studies have only used a subjective approach emphasising the seated posture. 

None or few reported investigations used objective data collated directly on the 

participants, which provided a direct comparison of a passenger’s comfort while in a 

seated and in a standing posture. Chapter 7 discusses the overall results found in the 

various studies and literature review (Chapter 2). The study’s conclusions and 

recommendations are summarised in Chapter 8. Chapter 8 highlights the study’s 

contributions to research knowledge by referring to the aim and objectives of the research. 
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CHAPTER 2       LITERATURE REVIEW 

2.1 Introduction 

Chapter 1 provides an overview of the research background, research questions, research 

aim and objectives. This chapter describes the literature related to the context surrounding 

driving patterns, along with human responses to vehicle speed profile factors and 

vibrations. This chapter of the literature review focuses on building an understanding of 

the appropriateness and method of using EEG in a different area of study. It has been 

observed that the amount of literature available on the application of EEG has grown 

dramatically over the last three decades.  

2.2 Bus Passenger Comfort 

An urban bus public transport system is known to be one of the leading facilitators of 

maximising productivity. The socioeconomic benefit of buses is significant in every town 

and city, and the benefits are not limited to providing efficient connections of wealth and 

labour to the marketplaces, but also reducing traffic congestion. It also has significant 

benefits for low-income households and those with limited or no opportunity to have or 

use a car, such as the disabled and younger and older people (Lucas et al., 2019). Bus 

transport systems provide opportunities for private individuals, cooperate bodies, and 

governments to increase asset value and income (Tourism & Transport Forum., 2010). 

Furthermore, urban bus transport systems benefit people by allowing access to health and 

education services and employment and recreation opportunities, and many of those that 

use public transport enjoy the benefits of being able to use their travel time more 

productively. For instance, Stradling et al. (2017) revealed that people travelling on a bus 

could sit back, chat, send and read emails or relax compared to those who drive a car, 

which requires a high level of concentration. Also, Litman (2015) revealed that the quality 

of public transport has many significant impacts on people’s health because the degree of 

public transport integration into the community influences travel activity. Urban bus mass 

transit is known for providing or improving people’s fitness by removing fatigue 

associated with driving a private car, most notably during peak hours. 

2.3 Bus Transport System  

Urban bus public transport system is known to be one of the leading facilitators of 

maximising productivity.  The socio-economic benefit of bus is significant in every town 
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and city. The benefits are not limited to providing efficient connection of wealth and 

labour to the marketplaces and reducing traffic congestions. It also has significant benefit 

for low-income household and those with limited or no opportunity to have or use a car 

such as disable, young and older people (Lucas et al., 2019). Bus transport systems 

provide private individuals, cooperate bodies, and government opportunities to increase 

asset value and income (Tourism & Transport Forum., 2010). 

In the last few decades, related transport and environmental policies and strategic plans 

of the government and public transport operators to promote urban mass transit and 

reduce private cars focusing on creating, improving or promoting eco-friendly urban 

society, control traffic congestions or improve health and safety (Government Office for 

Science, 2019). In addition, using bus reduces the likelihood of being obese by a 6% 

increase compared to the driving car (Jacobson et al., 2011) and reducing fatality rate 

compared to the private car. For instance, public transport's fatality rate is accounted for 

only about 4% of what is associated with a private vehicle (APTA, 2007). London, 

Glasgow and Edinburgh are examples of the United Kingdom cities where public bus 

transport operators have strengthened their efforts to improve supply. However, the share 

of trips made by public transport system in Great Britain and Scotland continues to be 

lower than that of the private car. Despite all the benefits of the public transport system 

and continues increases in government and bus operator's (such as Lothian Buses) 

investment in Scotland and Great Britain, there is still a decrease in passengers' average 

journey across the country. For instance, the Scottish Transport Statistics, 2018 showed 

that total passenger journey made by bus in Scotland is about 388 million in 2017-18, 

which is a decreased of 1.5% of an average journey made in 2016-17 (394 million) and a 

20% fall from the total peak journey made in 2007-08 (487 million). Therefore, there is 

need for constant research on the factors responsible for continuous falling in an average 

journey made by bus in the country. 

In the UK transport sector contributing 34% of all carbon emission (124.4 Mt) and the 

significant parts of this is from the road transport sector, mainly passenger cars (National 

Statistics, 2018). Passenger car represents the highest road transport modes in almost all 

cities in the UK, including Edinburgh. Several countries invest in public transport systems 

to make them more comfortable, attractive, greener and more competitive than private 

cars (European Environment Agency, 2013). Nevertheless, a qualitative or quantitative 

increase in supply does not bring about a corresponding increase in public transport 

system acceptance than passenger cars (Scottish Transport Statistics, 2019).  For example, 



10 
 

the Scottish Transport Statistics, 2018 shows that 72% of household in Scotland had 

access to one or more car in 2017.  The desire to improve the urban bus transport system's 

quality and quantity and increase user satisfaction has become essential for many decades. 

Increase bus users has an economic benefit because whenever urban busload more than 

25%, there is net economic benefit such as journey time saving due to lower congestion 

levels on the network during the peak hours (JMP consultants limited, 2009). Therefore, 

urban bus mass transit should serve as an alternative mode of travel to the passenger car, 

reducing vehicles' volume on the road and managing urban traffic challenges. 

Despite the significant roles of buses in rural and urban areas worldwide, their services 

in Scottish cities still require additional effort to meet passenger needs and satisfactions. 

For instance, there was a trend in the falling of bus speeds in Edinburgh for one decade 

between 1986 and 1996. The scheduled bus speeds increased by 5% due to better 

conventional Edinburgh's radical Greenways Bus Priority Scheme. This increase in bus 

speed was dissipated through weak enforcement, removing bus priority lane during off-

peak periods and improper maintenance (failure to paint the lanes green). Therefore, since 

1996 Edinburgh bus speed has reverted to the UK broad trend and declined by about 20% 

(Begg, 2016).  

Human sensibility (ride comfort) and passenger satisfaction in the public transport system 

are currently more important than ever. In the last few years, the bus operators have made 

efforts to improve the qualities of buses and services, passengers' ride comfort, customer 

care initiative, and network modification (JMP consultants limited, 2009). Also, attempts 

have been made to improve driver and passenger ride comfort through research and 

design suspensions and seats that attenuate vibration. However, this may still not 

guarantee the desirable ride comfort when travelling on some road sections (rough road) 

and speed (Mashino et al., 2015). For intra-urban buses to keep and attract more 

passengers, urban bus transports system must possess high-quality service that satisfies 

and meet a broader range of different passenger needs (Ponrahono et al., 2016). Therefore, 

improving passenger satisfaction will increase the system's use and encourage new 

customers (passengers).  

2.3.1 Passenger Discomfort in Public Transport 

The primary approach to study passenger discomfort is to subject the passenger to 

different driving conditions in real traffic situation or special equipment (Hoberock, 
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1976). Comfort refers to the pleasant state of the person's relaxing feeling in reaction to 

the physical environment and forms part of people's daily experience; therefore, users 

interact with a product or services and share their satisfaction level (Mansfield et al., 

2020). The road-vehicle interactions usually expose driver or passenger to factors of 

emotions. The feelings have significant impacts on their level of satisfaction (Beurier, 

2012). Determining passenger comfort in public transport may be challenging and involve 

significant tasks because it depends on human perception and many factors that vary from 

person to person (Government Office for Science, 2019). Several studies have been 

carried out to evaluate passenger satisfaction and dissatisfaction and develop a public 

transport system that meets a wide range of commuters' needs.  

Comfort perceived by passenger in-ground public transport system varies on the types of 

vehicle, road quality, posture or orientation of the body, and passengers' ability to 

withstand stress. These factors interact to cause short or long-time changes in passengers' 

psychological and/or physiological state. Evaluation of discomfort often depends on the 

objective quantifications of subjective judgment, due to the reference points, the 

sensitivity, the responsiveness and assessment based on the adaptation and motivation 

that varies from person to person (Fotios, 2015, Tan et al., 2008).  

Many studies on passenger sitting comfort focused on passenger eats in public transport 

(De Looze et al., 2003) operator seats in cars, buses, and farm machinery (Tan et al., 

2008). Passengers' comfort was associated with es in motion perceived from all directions 

and environmental factors (Powell and Palacine, 2015). The factors of motion 

(acceleration, deceleration and jerk) are continually making passengers lose their balance 

and balance in the human being are control and manage by the brain and supported by the 

cerebellum, basal ganglia and visual cortex (Powell and Palacine, 2015).  

Bus passengers experience discomfort on transit that sometimes results in 

musculoskeletal disorders (MSDs) (Armstrong et al., 1993). Some of these disorders are 

usually referred to as repetitive trauma disorders, cumulative trauma disorders or 

repetitive strain injuries that can affect muscles, bones, and joints (Armstrong et al., 

1993). Studies have shown that passenger responds differently on large vehicles than 

small-sized vehicles (Lima et al., 2015, Cooper at el, 1978). The correct designs of road 

pavement also depend on the type of vehicles using the route. Some road could effectively 

tolerate some vehicular types such as passenger cars, and that same road may penalise 

other vehicles such as PCVs. Lima et al., 2015 compared driver and passenger comfort 
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of different vehicles (car, bike and bus) travelling on a speed bump. The authors 

concluded that heavy vehicles occupants such as bus or truck are subject to more 

considerable discomfort than occupants of light vehicles such as cars and motorcycles. In 

Edinburgh, some Lothian bus routes were primarily designed a long time ago to 

accommodate small vehicles. Using those roads or street as part of Lothian Buses route 

has significant influences on both driver and passenger perceive sensations. Driven by 

these conclusions, further study is needed to evaluate both the transit users' perceptions 

of the quality and adequacy of the public transport service and characterisation of 

different bus types' mobility patterns.  

The ISO, 1997b describes comfort as ''subjective state of well-being or absence of 

mechanical disturbance relative to the induced environment''. Apart from using 

acceleration to estimate an urban bus passenger's comfort, other parameters such as the 

rate of acceleration (Jerk) and the root mean square (RMS) acceleration could also use. 

The ISO, 1997a recommends RMS value calculated from the weighted acceleration as a 

factor of estimating passengers comfort and defined comfort index (Table  2-1). 

Table 2-1: Comfort index definition  
Index Range (G) Comfort description 

0 Greater than 0.229 Extremely uncomfortable 

1 0.145 - 0.229 Very uncomfortable 

2 0.092 - 0.145 uncomfortable 

3 0.057 - 0.092 Fairly uncomfortable 

4 0.032 - 0.057 A little uncomfortable 

5 Less than 0.032 Not uncomfortable 

Sources ISO, 1997b 

Wu et al. (2009) used a brake comfort model based on the car-following model to evaluate 

the relationship between vehicle deceleration and passenger comfort. The emphasis on 

ride discomfort resulted from the influence of longitudinal acceleration. The study used 

the car's speed, the friction coefficient between the car and road and the distance between 

the two cars as the input parameter. The critical value of 2.0 m/s2 was average comfortable 

longitudinal acceleration. Castellanos and Fruett (2011) developed an embedded system 

for monitoring passenger comfort in public transport using triaxial accelerometer and 
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GPS data collated. A threshold of 1.5g was set for Z acceleration, while ±0.5g for X and 

Y acceleration. The authors found that the maximum acceleration of 2.127 g in the Z-

axis, while X and Y-axes' values did not exceed the threshold. They concluded that 

monitoring passenger comfort in public transport provides the opportunity to identify and 

quantify passenger discomfort sources relative to the vehicle longitudinal, lateral and 

vertical acceleration. 

Castellanos and Fruett (2014) developed a system Hardware, Firmware and Software 

(LabVIEW™ interface) to determine the dynamic motion factors that affect passenger 

comfort in public transportation systems. An on-board data collection approach using tri-

axial accelerometer and GPS in conjunction with algorithms permit the system to evaluate 

driver behaviours and defects on the pavement. The authors used Jerk-Acceleration 

Threshold Detection (JATD) and jerk levels above the comfort range, Comfort Index (CI) 

and the average ride comfort recommended by the ISO2631-1. Their findings revealed 

that comfort deteriorates due to fast turn, break manoeuvre, abrupt starts and imperfection 

or obstacles on the road.  

The correlation of the participant’s subjective assessment and average acceleration shows 

that 70% of the subjects experienced discomfort at the acceleration of 0.7 g, 0.8 g and 1.4 

g for lateral, longitudinal and vertical respectively. Powell and Palacine (2015) examined 

the effects of regular operations of longitudinal acceleration of railways on passenger 

comfort and safety. The authors used the biological theory of balance in human and used 

a multi-channel data acquisition system. The authors found that the quasi-static 

accelerations are always close to 1.4 m /s2, generally acceptable. Shen et al. (2016) used 

a two-day survey of bus passenger perceptions in Harbin in peak and off-peak hours to 

evaluate bus passenger comfort based on passenger load factor and in-vehicle time. The 

authors sampled 300 (seated) and 240 (standing) passengers who regularly used bus 

service 63. The study results demonstrated that as the comfort perception score increases, 

the in-vehicle time and degree of congestion (passenger load factor) increase for both 

seated and standing passengers.  

Qualitative techniques such as questionnaire, focus groups and interviews with 

passengers as well as quantitative measurement alongside with applications of qualitative 

approach have used to enhance the understanding concerning the specific factors that 

influence the perceptions of passengers on service quality of public transport system 

(Morton et al., 2016, Shen et al., 2016, Zhang et al., 2014, Sumaedi et al., 2012 Eboli & 
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Mazzulla, 2009, Eboli & Mazzulla, 2007, Cascajo & Monzón, 2007). For instance, Lai & 

Chen, 2011 investigate people's intentions to use the public transport system.  The authors 

used measurement scale of perceived service quality that identifies two scopes connected 

with core factors that affect bus transport system and services (fare, service coverage, 

frequency and real-time information) and physical environment (stability, safety and 

cleanliness). Integrating quantitative and qualitative factors of passenger ride comfort will 

improve an understanding of transit customers' perceptions of service quality.  Bus 

service providers could use bus service providers to retain the existing customers and 

attract new customers from other transport modes, primarily passenger cars (Zhao et al., 

2016,  Li & Hensher, 2013, Eboli & Mazzulla, 2011, Eboli & Mazzulla, 2010). 

2.3.2 Passenger Ride Comfort and Posture Influence 

The quality of public transport system services is influence by many factors that are not 

limited to speed, acceleration/deceleration, safety and accessibility. In every automated 

or semi-automated vehicle such as urban bus transit (single or double-decker), sharp 

accelerations and decelerations are inevitable. It usually requires avoiding or reducing the 

vitality of incident/accident, obey traffic rules, or merge vehicles into high-speed traffic 

at close headways. Standing passengers in urban buses are not provided with any safety 

provisions, except for handholds, and the seated passengers are not required to wear seat 

belts (Rutenberg & Hemily, 2003). Standing passengers usually experience a significant 

amount of discomfort due to sudden accelerations/decelerations (George et al., 2013). 

Therefore, passengers' overall safety, most especially standing passengers, is based on the 

public transport system's regular operating conditions. However, higher longitudinal and 

lateral acceleration levels compromise passenger comfort safety if they are adequate to 

cause passengers to lose their balance (Powell & Palacin, 2015). Urban bus passenger 

comfort assessment/evaluation is essential to monitor and sustain the bus operators' 

services. 

Passengers often stand in public transport for all or part of the journey while exposed to 

different rates of speed profile factors (speed, acceleration and deceleration) and vibration 

that could cause discomfort or inconvenience. Although Powell & Palatine (2015) 

highlighted the three basic strategies by which standing passenger could preventing 

severe discomfort/falling. First, ankle strategy, which is the contract of the leg muscles 

and bends the ankle to withstand external acceleration, keep body balance and prevent 

falling under the influence of small acceleration. The hip approach also applies to period 
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when the degree of acceleration is higher; in this approach, there must be a change in 

body position to withstand the induced stimuli to the influences of vehicle speed and jerk. 

The final method is stepping strategy, in which one or more steps are required to prevent 

or avoid falling due to the influence of higher acceleration/deceleration or jerk. 

Nevertheless, there is no universally acceptable approach(s) to evaluate bus passenger 

discomfort since the buses, road roughness characteristics and operations vary from place 

to place. Therefore, it is worth using a different method to examine the relationships 

between various ride comfort indices and compare them. For example, Munawir et al., 

2017 compared Sperling's Ride Index and BS EN 12299 to evaluation passengers of ride 

comfort of seated and standing subjects using Sperling's Ride Index. The authors find that 

standing posture discomfort shows a higher ride index value than the seating posture in 

both approaches. The International Standard ISO 2631-1, British Standard 6841 and 

European pre-standard ENV 12299 provide frequency weightings for evaluating 

vibration for standing discomfort. All the three standards advocate frequency weighting 

Wd for evaluating vibration discomfort of both seated and standing people relative to the 

influence of longitudinal and lateral vibration posture (Thuong & Griffin, 2011). 

However, there are limited studies on the standing bus passengers' dynamic comfort, 

especially for buses. Studies on seated passenger comfort have been carried out on 

discomfort from the vibrations (Beurier, 2012). 

Suzuki et al., 2000 also pointed out that the evaluation of railway passenger discomfort 

is significantly different depending on the posture, seated or standing due to lateral 

acceleration. Also, Thuong & Griffin, 2011 used method of magnitude evaluation to 

investigate how the discomfort of standing people exposed to vertical and horizontal 

vibration. The authors found that the seated and standing people's responsiveness is 

similar for vertical vibration, but significant differences for horizontal vibration due to 

instability in standing posture. Furthermore, Hirshfeld, 1932 used a small car riding on a 

smooth track that could accelerate from 0 to 0.373 g in a laboratory experiment, to 

investigate the effects of longitudinal acceleration on the balance of standing passengers. 

The participants stood on a platform that moved with variable acceleration profiles. The 

author found that different levels of jerk influence passengers' ability to balance and the 

least tolerant for unsupported passengers facing forward to lose balance is 0.13 g. The 

corresponding proportions of average acceleration that an unsupported standing 

passenger used overhead strap and passenger supported with a vertical grab rail are 0.27 
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g and 0.15 g respectively. The study revealed that different acceleration or jerk produces 

a different level of discomfort related to experimental conditions (Table 2-2).  

Table 2-2: Average acceleration to loss balance 

S/N Condition 
Average acceleration 

attained (g) 
1 Facing backward, unsupported 0.19 
2 Facing sideways, unsupported 0.23 

3 Facing forward, holding overhead strap 0.27  
4 Facing forward, holding vertical stanchion 0.15 
5 Facing forward, unsupported 0.15  

  a.                   Males, high heels 0.15 

  b.                  Males, low heels 0.16 
  c.                   Females, high heels 0.16 
  d.                  Females, low heels 0.10 

Source:  (Hirshfeld, 1932) 

Wilson, 1940 investigated the deceleration distance of high-speed vehicles to understand 

the braking system of automobiles. He examined the average deceleration required for 

the vehicle to stop from the speed of 112.7k/h (70m/h) and its impacts on passenger 

comfort. The study demonstrated that 0.43 g is severe and uncomfortable to passengers 

because it can slide off objects from the seat (classify as emergence stop by the driver).  

Sudden jerks on starting or stopping of automobile causes standing passenger to lose 

balance (Gebhard, 1970). The author demonstrated that longitudinal and lateral 

accelerations/decelerations acceptable for passenger comfort based on rider rating range 

from 0.11 to 0.15 g and 0.06 to 0.22 g.  

Hoberock (1977) investigate the discomfort of seated and standing passengers. The author 

found that the average acceptance rate of the seated passenger's acceleration can be as 

high as 0.5 g or more while standing passenger in public ground systems cannot exceed 

the acceleration value of 0.16 g before perceiving a significant level of discomfort (Figure 

2-1). However, the study concluded that it is difficult to set a standard limit of acceleration 

or jerk at which passenger loss balance. The passenger's ability to retain balance varies 

from person to person. Therefore, the study suggested a range of 0.11 g – 0.15 g as the 

maximum permissible accelerations. 
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Figure 2-1: Average permissible deceleration for passenger comfort in ground 
transport  
Hoberock (1977) 
 

A sharp increase in acceleration/deceleration tends to increases the likelihood of injury to 

the passengers, thereby degrade safety (Abernethy et al., 1977). Abernethy et al., (1980) 

used an instrumented vehicle controlled by automatic brake system to determine the 

maximum deceleration and jerk level tolerated by the passenger sitting in an automobile. 

The participants were exposed to an average deceleration of 0.25g and 0.75g and average 

jerk of 1.25 g/s. Seat sensors and passenger ratings were used to collate the deceleration 

at which passengers began to move off their seat. The study results demonstrated that 

seated passenger facing forward or backwards feels discomfort at a deceleration of 2.45 

m/s2. In comparison, the limit longitudinal acceleration for a passenger seated and facing 

side is 1.4 m/s2. 

2.3.3 Passenger Ride Comfort and Road Surface Irregularity  

The essence and significance of providing an even road surface on reconstructed and 

newly constructed roads have been recognised in the United Kingdom for a very long 

time recognised. The essence of even road surface documented in the standard of road 

profile attributes required by the Department of Transport specifications for constructing 

road and bridges (Cooper et al., 1978 part 1). Road roughness has been an essential factor 

in investigating and evaluating the roadway condition because it influences the driver and 

passenger ride comfort. Urban bus passengers are sometimes across some rough roads 

that could expose them to whole-body sensations higher than the action value set by 

European Union directive of 2002/44/EC. These could result in the suffering of stress-

related heart diseases and even musculoskeletal poor conditions in the neck, back and 
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shoulders (Sezgin and Arslan, 2012). Road vehicle's ride comfort primarily depends on 

the roughness of road surface, vehicle suspension system and vehicle speed. These factors 

combined to form or produce body sensations that could initiate a different form of 

passenger discomfort, cause pain or injuries to the passenger and driver (Austroads, 

2007). Human response to vehicle speed profile, rough road, and other factors through 

the passenger's seat, the vehicle floor, and weight in the frequency range of human 

sensitivity. These sensations influence the level of perceived comfort, affects 

performance and could lead to long-term health effects of the subject (Nahvi, 2009; 

Swedish Road Administration, 2005). 

The assessment of road roughness's influence on vehicle ride comfort depends on the 

vehicle's dynamic attributes and the travelling speed (Soliman, 2006). The degree of road 

roughness provides information about the road profile quality, without any direct 

measurement of ride comfort perceived by the vehicle occupants. Therefore, ride comfort 

is dependent on the interaction between the vehicle and road characteristics. Road 

pavement roughness causes vibration phenomena and usually reduces the driver and 

passenger ride quality. It increases user fatigue, discomfort and reduces vehicle load-

transmission, particularly steering and braking actions (Cantisani & Loprencipe, 2010).  

The study of Soliman, 2006 investigate the effect of road roughness on the vehicle ride 

comfort and rolling resistance. The author developed a mathematic model to evaluate the 

vehicle ride comfort. The author found that the passenger ride comfort deteriorates as the 

road roughness coefficient increases. As the road roughness coefficient increases, the 

rolling resistance force induced by road roughness also increases. Road roughness is 

indirectly associated with urban bus passenger ride comfort (Swedish Road 

Administration, 2005). It is assessed by the International Roughness Index (IRI) and can 

be linked with induced detrimental effects in driver and passenger ride comfort 

(Loprencipe and Zoccali, 2017). However, the assessment quantity provided by IRI is 

different from ride vibrations perceived by the passengers. Therefore, IRI assessment 

cannot adequately evaluate ride comfort because the performance indicators were based 

on the vehicle axle and body (Blum, 2015). The result of several vehicle simulation 

studies revealed the driver/passenger ride comfort controlled by vehicle dynamics are the 

suspension stiffness and damping, tire pressure, and speed of the vehicle (Zehsaz et al., 

2014).   

Cooper et al., 1978, part 1 used a laboratory experiment to investigate the relationship 

between road surface irregularity and driving style and quantified in the form of comfort 
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characteristics curve. The study results revealed that the ride comfort curves increase 

linearly with speed, vehicle types and road roughness characteristics. They concluded that 

variability associated with using the root-mean-square acceleration as an approach to 

evaluate comfort does not exceed 0.004g. Gomes and Savionek, 2014 investigate cyclist 

discomfort due to hand-arm vibrations on asphalt, precast concrete slab, and interlocking 

concrete blocks pavements. The correlation between objective and subjective evaluations 

demonstrated that riding on asphalt pavement is more comfortable than the interlocking 

concrete blocks. However, rough pavement causes road-vehicle dynamic interactions that 

vary from place to place as well as causing a significant decrease in the driver and 

passenger comfort. Comfort is difficult to evaluate objectively because the perception of 

the users' dynamic effects also needs to be considered. Therefore, the useful indications 

for the objective evaluation of both roughness pavements and passenger ride quality could 

be achieved solving equations that describe the mechanical system on a riding vehicle 

(Cantisani & Loprencipe, 2010). 

2.3.4 Comfort Models  

Discomfort could be interpreted as an unpleasant state of human body reaction to its 

physical environment. However, there is no generally accepted definition of comfort or 

discomfort (De Looze et al., 2003). However, it is a feeling or an emotional state that are 

subjective. Also, long man dictionary of contemporary English defines comfort as "the 

absence of pain or suffering and having all one's bodily wants satisfied; discomfort is 

lack of comfort".  Discomfort occurs as a result of people interacting with the environment 

that affects their physiological and psychological state. Presently, evaluation of comfort 

or satisfaction derived from products or services has developed to a stage that the end-

users consider and producers or services providers also see comfort as a significant selling 

point. The level of comfort or satisfaction plays fundamental roles in product-buying and 

services-using decisions.  

Generally, to formulate a hypothesis or build a conceptual framework or develop a 

comfort model that can evaluate discomfort for shape optimisation purposes, a model 

relates psychological, physiological or emotional response to induce experimental design 

variable or phenomena. Vink & Hallbeck (2012) pointed out three major stages that need 

to occur before discomfort can perceive (Figure 2-2). The stages are interaction (I), effect 

in the internal body (E) and perceived effects (P).  
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Figure 2-2: The proposed comfort model 
Source: (Vink & Hallbeck, 2012) 

 

The authors used the concept of interaction (I) between a person, product, and usage/tasks 

in an environment to propose a comfort and discomfort model, which was inspired by 

Moes's study, 2005 and Looze et al., 2003. The interaction produces an internal human 

body effect (H). As the body posture change, tactile sensations, muscle activation, and 

the perceived effects (P) influenced by the body affect and expectation (E). Therefore, 

this cause-effect could either results to comfort (C) or feel nothing (N) or interpreted as 

discomfort (D) that produce musculoskeletal.  

The proposed dose-response model of Armstrong et al. (1993) is characterised by four 

sets of interacting variables (exposure, dose, capacity and response), such that the 

response at one phase can act as a dose at the next phase (Figure 2-3). In this model, 

exposure refers to the external factors that cause the disturbance of the individual's 

internal state (dose). This disturbance is classified as mechanical (tissue forces and 

deformation that occur due to exertion or movement of the body), physiological (such as 

consumption of metabolites, ion displacement and tissue damage) or psychological 

disturbance associated with anxiety resulting from workloads. On the other hand, the 

response refers to as changes that may occur in the psychophysiological state of individual 

due to the extent at which the external exposure leads to an internal dose such a change 

in temperature, ion concentrations or shape of tissues. The study reveals that one response 

can result or lead to the new dose that results in another response. For instance, an exertion 

in any part of the body can result from changes in tissue shape and metabolite levels, 
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which in turn cause discomfort. The authors define capacity as the ability of the individual 

to resist the psychophysiological destabilisation.  

           
Figure 2-3: The proposed model of Dose-Response 
Sources: Armstrong et al. (1993) 
 

2.4 Assessment of Driver Fatigue 

The constant advancement in technology and necessity to travel makes modern society 

rely on general twenty-four hours of operations in the transport sector (rail, aviation, 

haulage or bus), health care sectors, military and many public and private services. These 

factors expose many people to different working hours at a different time of the day, 

which could cause severe disruptions in sleep and circadian rhythms. The side effect is 

that it brings about fatigue, reduced waking alertness and impaired performance and 

ability (Bonnet, 1985). Three significant factors describe how and why sleep-related 

accidents: duration of time spent on a task, time of the day and rest deprivation. Therefore, 

there is evidence of performance decrements, when humans' continues performing a task 

over a long time (Parkes et al., 2009).     

Driver's fatigue often arises from long hours of continuous driving or sleep debt, 

especially if a person has been deprived of sleep twenty-four hours before the driving 

task. Therefore, fatigue's psychological and physiological aspects need to be investigated 

to understand its causes-effects on the driver. The more the driver(s) continues, the more 

fatigued they become. Fatigue has modelled in both transport and non-transport 

researches. There are many fatigue-related incidents or accidents of the truck driver in 

both short and long-haul trucking across the globe (ROSPA, 2001). Fatigue in HGV 
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drivers often causes significant risk to other road users. Its general consequence is 

impaired human efficiency, feeling extremely tired and generally unwell, and, most 

importantly, continuing the current task after becoming aware of fatigue (Phillips, 2015). 

The human physiological abilities and limitations are critical factors in maintaining 

productivity and safety in all transport industries (including truck driving). Fatigue is 

psychophysiological; therefore, human psychological and physiological factors related to 

fatigue must be defined, examined, and measured to understand it (Phillips, 2015). 

Fatigue is a transition period between awake and sleeps that is gradual, cumulative in-

process and capable of reducing efficiency, alertness and mental performance (Lal & 

Craig, 2001). It is abstract and multidimensional (Phillips, 2014). Furthermore, the study 

of Nilsson et al. (1997) described fatigue as an experience of tiredness that arises from a 

person psychophysiological state. For instance, the metabolic condition, level of 

attention, heart rate, and respiration could result from the disliking of the present 

duty/activity and unwillingness to continue. Phillips (2014) describes fatigue as the 

suboptimal psychophysiological disorder caused by physical or mental effort. The degree 

and dimension of the condition of fatigue vary and depend on the form, dynamics and 

context of exertion. Whereas, the context of exertion is the value and meaning of 

performance to the individual; rest and sleep history; circadian effects; psychosocial 

factors, spanning work and home life; individual traits; diet; health, fitness and other 

individual states; and environmental conditions (Phillips, 2014).  

The length of working hours, the arrangement of duty, time available for rest, and the 

number of sleeping hours within each 24-h cycle interact to contribute to the human level 

of fatigue. Rosekind et al. (2000) revealed that an understanding of sleep and circadian 

rhythms play a fundamental role in evaluating fatigue. Asleep loss affects some aspects 

of the human system, which are not limited cognitive processes, physical coordination, 

vigilance, judgment, or decision-making. Therefore, factors that affect the circadian 

system and sleep are likely to affect fatigue. For instance, the study of Wu et al. (2017) 

used the combination of a subjective approach (KSS fatigue assessment) and video 

recognition technology to evaluate drives' level of fatigue. The experiment was carried 

out in a laboratory equipped with driving simulator, computers, cameras, projector and 

brain wave equipment. The authors found that the method based on the rough set theory 

fusing multi-index decision to judge the drive fatigue level is accurate than single index 

detection method.  
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Dorrian et al. (2011) demonstrated that sleeping less than five hours in twenty-four hours 

before work will negatively influence the likelihood of fatigue-related error at work.  

HGV drivers' activities are characterised by unscheduled operation(s) and extended duty 

time due to unforeseen circumstances resulting in prolonged driving time. Changes in 

schedule and other additional tasks such as fuelling and load/offload contribute to local 

and long-distance haul fatigue. The possibility of driving hours to cause fatigue has been 

identified long ago as a severe transport problem. It is known to be one of the significant 

factors contributing to road accidents across the globe. Prolong driving bring about the 

intensification of fatigue and affects driver cardiovascular and neurophysiological 

functions (Bonnet, 1985). It could also affect alertness and fatigue driver operating on 

day to day scheduled and unscheduled trips. It is driving fatigue limited drivers' ability to 

respond effectively to unexpected situations, whereas these pose a significant risk to the 

concern's drivers and other road users. Despite that studies highlighted the contributions 

of driving fatigue or performance decrement to road crashes/accidents, the relationship 

between driving fatigue and duration of driving it is still less clear (Parkes et al., 2009). 

Fatigue had different effects on driving. There is a significant relationship between 

drowsiness-related factors, factors that might counteract drowsiness, duration of driving 

and rest break and crash risk.  

Cummings et al., 2001 pointed out that fatigue is a major contributor to the road crash 

risk. The risk of accident increased exponentially relative to increases in driving time. 

The authors found that road accident risk was significantly less for drivers who used a 

highway rest to stop and drink coffee within the last two hours. Department for transport, 

2014 points out that there is no daily limit on the amount of working time for drivers in 

one day. A total of nine hours daily driving limit can be increased to ten hours twice a 

week and maximum fifty-six hours weekly driving limit or maximum ninety-hour 

fortnightly driving limit. However, the driver has 45 minutes of rest break after 4 hours 

and 30 minutes of driving. The rest break can be split into two periods, the first being at 

least 15 minutes and the second at least 30 minutes that must be completed after four 

hours and thirty minutes of driving. The Department for Transport suggested that the 

driver could have included additional rest break of a minimum of 30 minutes in between 

the final four hours of driving If the driver had taken less than 45 minutes to rest on the 

journey. However, take an additional 30 minutes rest break at the destination would have 

complied with split breaks rules. Therefore, the day's work would become legal due to 

the splitting of a rest break before four hours and thirty minutes of continuous driving 
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(Department for Transport, 2014). The regulation (EC) No. 561/2006 and British 

domestic drivers hour regulations defined drivers of large commercial vehicles and 

passenger vehicles subject to EU driver rules limiting driving time and a rest break. The 

regulation exempts drivers who do not drive for more than four hours on each day of the 

week from the daily limit (Parkes et al., 2009).  

The example in the figure below shows the legal and illegal spread of day shift. The illegal 

driving shows fifteen hours of a shift from the start of the shift to reduced rest of nine 

hours within the twenty-four hours from the beginning of the workday. While the illegal 

shift fifteen hours working time was recorded, and the shift spread of the shift is 18 hours 

leaving only six hours with the twenty-four hours from the start of the working day for a 

daily rest period. 

 
Source: Department for Transport, 2014 
Figure 2-4: European Union driving hours regulations   

 

Duration of driving and rest break is closely associated with driver fatigue or performance 

decrement (Chai et al., 2017; Mu et al., 2017; Yin et al., 2016). However, there is 

inconsistency in the literature on the average time requires to drive to prevent road crash. 

For instance, Horne and Reyner, 1995 found that the majority of the sleep-related accident 

of HGV usually occurs in the first two hours of the driving time. Also, to some extent, 

the driver hours regulations are flawed. They have criticised increasing road crash 

occurrence because circadian rhythms are not incorporated with the studies; thereby, 

required driver rest when awake and drive when sleepy (ROSPA, 2001). Miller & Mackie 

(1978) point out in his study that there is a significant increase in the participants' coarse 
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steering after four to five hours of driving. The previous study also shows that the driver 

must ensure that they take no less than 30 minutes of break after no more than four hours 

of driving (Parkes et al., 2009). Besides, Horne and Reyner, 1999 points out that the EU 

regulations on drivers driving hours do not seem to base on any evidence of safe driving 

times. The regulations were designed to checkmate the drivers for driving the 

unreasonable length of time without a rest break. The amount of time they can drive a day 

and the amount of time they are on duty with a reasonable rest period, the regulation still 

authorises drivers to drive for a long time (ROSPA, 2001). For instance, the EU drivers' 

hours regulations stipulated that drivers can drive up 4 hours and 30 minutes without a 

rest break or even more. There is a significantly flawed in drivers' hours' regulations 

(Department for Transport, 2014,  ROSPA, 2001). 

Several approaches have been used in space and time to investigate fatigue. A qualitative 

research technique (questionnaires and Focus Group Discussion) have used to investigate 

drivers and pilots fatigue (Rosekind et al. 2000, Hanowski et al. 2003, Naweed et al. 2015, 

Filtness and Naweed 2017). For instance, the study of Filtness and Naweed (2017), used 

data gathered from FGD to evaluate the contributions of fatigue to Signal passed at danger 

(SPAD) using the train driver's perception. Drivers with less than one year and those with 

more than ten years driving experience were sampled. There was an emphasis on why 

they experience fatigue, how fatigue impacted their work, and what they usually do to 

control its effects. The authors found that there is reliable evidence that fatigue increases 

the risk of safety in road transport. Hanowski et al. (2003) investigated fatigue in 

local/short-haul trucking. The drivers provided their view on issues of safety and fatigues. 

Data was gathered from eleven (11) FGD conducted in eight cities, across five states. 

Information on driver alertness, performance measures, attention and near-accidents or 

critical incidents was gathered and analysed. The study results demonstrated that drivers 

who perceived fatigue and involved in local haul driver at-fault incidents affected by their 

quantity and quality of sleep compared to those who do not show sign of fatigue. The 

actual length of continuous work and daily working hours, the arrangement of duty, time 

available for rest, and many sleeping hours within each twenty-four hours cycle interact 

to contribute to the human level of fatigue. A survey of fatigue factors was conducted in 

an aviation company in the US by Rosekind et al., 2000. The factors that can be measured 

to indicate fatigue were performance, perceptual, electro-psychophysiological and 

biochemical measurement. The authors used 107 questions questionnaire that targeted six 

main areas of the respondents (demographic characteristics, sleeping habit, flight 
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experience, duty/rest pattern, fatigue and work environment). The results showed that 

49% of the respondents believe that they usually experience fatigue during extended day 

duty, while 40% often experience fatigue during early morning departures. The 

corresponding percentage of the respondents that usually experience fatigue due to 

multiple flight legs, night flight, workload, consecutive duty days are 33%, 26%, 15% 

and 14% respectively. Also, 15% always experiencing fatigue whenever they cross time 

zone, while 10% are due to weather/turbulence, and 15% are usually due to long waiting.   

2.5 Human Brain Activities and EEG 

The brain is the most complex organ in the body that controls all body responses to 

internal and external stimuli through the nervous system (Namazi and Kulish, 2015). 

Scientists revealed that the human brain consists of a hundred billion neurons. It consists 

of right and left hemispheres and right hemisphere is associated with cognitive activities 

such as the ability to understand, think, remember, perceive and emotional feelings, while 

left side performing the language, arithmetic, analysis and speech (Fuad and Taib, 2014).  

2.5.1 Mechanism of Human Brain Sensitivity  

The brain fills the cranium and consist of four major parts; the brain stem, diencephalon, 

cerebellum and cerebrum. The thalamus is known to form part of the limbic system, 

which is associated with the emotions or feelings because it recognises to be the final 

transmit region for data or information before transfer to the cerebral cortex. The specific 

nuclei are responsible for scanning the cerebral cortex to determine the brain's active 

parts. Most importantly, those firing at around 40Hz and transferring this information to 

the rest of the thalamus. The brain electrical current generally comprises NA+, K+, Ca++, 

and Cl-ion regularly pumped through the neuron membrane channels (Souza et al., 2014). 

However, one way to understand the brain's activities and evaluate its response to stimuli 

is Brain-Computer Interface (BCT). BCI refers to a system that translates “brain signals 

into new kinds of outputs” (Daly & Huggins, 2016).  BCI translates brain signal into 

messages relative to an external stimulus (Daly & Huggins, 2016). It is a process of 

collating the brain signal and extracts signal features that have proven useful for task 

performance. Souza et al. (2014) point out that the bio-potential electrical signals 

originated from the brain can be detected by invasive (surgery) and non-invasive 

(measurement from the surface).  
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The nervous system receives information relative to the human environment (sensation) 

and generates responses relative to the information's types and magnitudes (motor 

responses). The nervous system divided into parts responsible for sensation (sensory 

functions) and response (motor functions). Its detects, process and response to changes 

within the body system and external environment. (Mitsukura et al., 2009). For instance, 

homeostatic is an example of a nervous system that sense changes, interpret the changes 

and automatically adjust to the changes. The nervous system is divided into the Central 

Nervous System (CNS), consists of the brain and the spinal cord and the Peripheral 

Nervous System (PNS). The PNS consists of the Somatic Nervous System (SNS) and 

Autonomic Nervous System (ANS), including the sympathetic and parasympathetic. 

Changes in psychophysiological states influence the brain that rules the sensation centre 

(Mitsukura et al., 2009). This change could be in forms of internal or external body 

sensations transmitted by receptor to the CNS. Previous studies demonstrated that brain 

response to the stimulus is not limited to the pleasant and unpleasant olfactory stimuli, 

emotional stimuli, periodic simulations, silence and random noise, visual stimuli or 

auditory stimuli (Namazi & Kulish, 2015). However, the brain responses depend on the 

type, magnitude and the location of the stimuli.   

2.5.2 Introduction to EEG 

The EEG is a visual record of the bioelectrical activity of the brain. It was first measured 

and described in 1929 by Hans Berger. The cerebral cortex produces bio-electrical 

activity due to the body cells' electrical activity, which changes relative to the mental 

condition, cerebration and emotion (Mitsukura, 2016). The word electroencephalogram 

was first used by Berger to described humans brain electric potentials (Rahman et al., 

2012). EEG records the brain's bio-electrical activity by placing electrodes on the scalp 

(Teplan, 2002). EEG is a non-invasive brain imaging modality that uses sensors 

characterised by time resolution to record brain activity on motor behaviours' time scale. 

It is portable for subject locomotive or vehicle on-board survey (Gwin et al., 2010). The 

degree of the portability and weight (light) of the EEG systems allows for flexible data 

collections in real-world stable or dynamic environments (Imotion Users Guide, 2019; 

Cohen, 2011). An excellent temporal resolution of EEG makes it widely used as an 

experimental technique to investigate human brain function by tracking the temporal 

neural dynamics (brain activity) correlated to experimental events (Mognon et al., 2011). 

Winkler et al. (2011) revealed that EEG reflects the brain's spontaneous electrical activity 

and activity specific to a well-defined experimental event(s).  
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EEG is a sophisticated device in neurology and neurophysiology due to its ability to 

reflect the normal and abnormal electrical activity. Previous neuroscientific research 

conducted to establish the relationship between EEG signals and cognitive processing or 

behavioural changes has led to neurology theories (Cohen, 2011). According to Souza et 

al. (2014), brainwaves usually form sinusoidal shapes in nature, ranging from 0.5 to 100 

µV in amplitude and lower in about 100 times than EEG signals. Most cognitive processes 

usually occur within tens to hundreds of seconds, and the events activating cognitive 

processes occur in time sequences that span hundreds of milliseconds to a few seconds 

(Imotion Users Guide, 2019; EEG Pocket Guide, 2016). Therefore, EEG is one of the 

best approaches to evaluating brain dynamics associated with perceived comfort 

disturbance in a motion environment mainly because of its high temporal resolution and 

portability (Yu et al., 2010). EEG is characterising with high time resolution and capable 

of captures cognitive, perceptual emotional and others within the time frame which the 

cognition processes occur. 

Furthermore, it can capture the physiological changes underlying the cognitive processes 

better than other brain imaging techniques such as Magnetic Resonance Imaging (MRI) 

and Position Emission Tomography (PET) scanners). However, MRI has a significant 

spatial resolution, but measures neural activity indirectly, therefore MRI requiring an in-

depth understanding of the relationship between what is measured and how it relates to 

cognitive processing (Cohen, 2011, Imotion Users Guide, 2019). These qualities make 

EEG the right tool for collating data for research that require precise timing of cognitive, 

attentional and emotional processing (Cohen, 2011).  

The Mandalay is one of the first research-grade customisable EEG Neurofeedback 

headsets incorporated directly into Visual Reality (VR) headsets, which allowed 

brainwave activity to go beyond the lab screen into the real world. It is characterised by 

a dry sensor on the forehead and two sensors on the ear to measure brainwave activity at 

512Hz (Rahman, 2012). The collected data transmitted via Bluetooth to a window base 

device in real-time. Generally, Myndplay (EEG) measures the brain's electrical potential 

responses that flow during the dendrites' synaptic excitations in the cerebral cortex 

(Rahman, 2012). 

2.5.3 EEG Frequency Bands  

The event-related models, which focus on EEG activity evoked by sensory stimuli or 

bodily movement onsets, frequency-based EEG analysis methods allow the oscillatory 
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activity of specific frequency bands related to the cognitive-affective states, engagement 

and motivation (Cohen, 2011). EEG signal has a wide range of frequency bands, though 

clinical and physiological studies interest is concentrated on the frequency of 0.5 to 30 

Hz. The EEG Frequency refers to the oscillation speed and has the unit Hertz (Hz), the 

number of oscillations per second (Imotion Users Guide, 2019; EEG Pocket Guide, 

2016).  This frequency range is divided into delta, theta, alpha, beta and gamma frequency 

bands (Yildirim & Varol, 2016). Delta waves are characterising by frequencies range of 

0.5 - 4 Hz and an amplitude of 20 - 400 μv. It is encountered when the brain shows very 

low activity. Theta brain waves frequencies range from 4 to 8 Hz, and amplitudes vary 

from 5-100 μv. Delta frequency band usually encounters healthy individuals whenever 

there is low brain activity such as dreaming sleep, medium depth of anaesthesia and stress. 

Alpha wave frequencies range from 8 - 13 Hz, and amplitudes vary between 2 - 10 μv. 

They appear in the state of the physical and mental rest state, absence of external stimulus, 

closed eyes of individuals in the awake state. At the same time, beta waves frequencies 

are more than 13 Hz and characterised with amplitudes vary from 1 - 5 μv. Beta EEG 

frequency band is encountering in the phase of focused attention, mental work, sensory 

information processing and tension (Figure 2-5).  

 
Figure 2-5: EEG brain frequency bands  
Sources: (Imotion Users Guide, 2019,  EEG Pocket Guide, 2016 
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Although EEG frequency bands classification varies over time, for example, the study of 

Taghizadeh-Sarabi, et al., (2013) presented the EEG power spectrum as delta (1–4 Hz), 

theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (from 30 HZ). The EEG 

frequency bands are delta 0.5–3.5 Hz; theta was 3.7–7.5 Hz; alpha was 7.5–13.5 Hz; and 

beta was 13.5–22 Hz (Shulman et al., 2006).  EEG frequency bands are classified into; 

delta: <4 Hz; theta: 4-8 Hz; alpha: 8-12 Hz; beta: 12-30 Hz; and gamma: 30-70 Hz or 

higher (Stelt and Belger, 2007; Teplan, 2002). Neurosky, 2011, point out that EEG power 

data value represents the current magnitude of 8 commonly recognised types of EEG 

frequency brainwaves. The frequency bands includes eight 4-byte floating-point numbers 

of delta (0.5 - 2.75Hz), theta (3.5 - 6.75Hz), low-alpha (7.5 - 9.25Hz), high-alpha (10 - 

11.75Hz), low-beta (13 - 16.75Hz), high-beta (18 - 29.75Hz), low-gamma (31 - 39.75Hz), 

and mid-gamma (41 - 49.75Hz). Whereas, Fuad and Taib, (2014) revealed that the neural 

oscillations could be measured with EEG. The frequency ranges from gamma (40 – 80 

cycles per second), beta (13 – 39 cycles per second), alpha (8 – 13 cycles per seconds) 

theta (4 – 7 cycles per seconds) to delta (0.5 – 4 cycles per seconds). Also, Imotion Users 

Guide, 2019 and EEG Pocket Guide, 2016 distinct the EEG frequency bands as delta band 

(1 – 4 Hz), theta band (4 – 8 Hz), the alpha band (8 – 12 Hz), the beta band (13 – 25 Hz) 

and gamma band (> 25 Hz) see (Figure 2-6). However, the EEG phase values have no 

units or scale of measurement; it will be only meaningful compared to each other and 

themselves in terms of their relative quantity and temporal fluctuations or oscillations 

(Imotion Users Guide, 2019; EEG Pocket Guide, 2016).  

 
Figure 2-6: Brain frequency bands (ranges) 
Sources: (Imotion Users Guide, 2019; EEG Pocket Guide, 2016; Rahman et al., 2012)  
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The EEG is a complex quasi-rhythmical signal within a time-frequency band of 0.1 - 100 

Hz and hundreds of microvolts' amplitude at the scalp. The frequency range is 0.5 - 50 

Hz and  divided into five bands for clinical reasons (Zamora, 2001a), which the power is; 

I. Delta (δ) activity: [0.5 - 4] Hz  

II. Theta (θ) activity: [4 - 8) Hz 

III. Alpha (α) activity: [8 -13] Hz 

IV. Beta (β) activity: [15 - 25] Hz 

V. Gamma (γ) activity: [30-50] Hz 

 

2.5.4 Beta EEG Frequency Band  

The beta EEG frequency band integrates the multi-modal cerebral cortex responses 

relative to the experimental design phases and variables. Beta EEG frequency band is one 

of the four periodic rhythms recorded in the EEG. Its amplitude range between 5 and 10 

µV (Yao et al., 2009). The beta EEG frequency band integrates the multi-modal cerebral 

cortex responses relative to internal or external stimuli. ERPs are known to be a suitable 

approach for investigating both normal and abnormal aspects of cognitive processes. The 

fluctuations in power (amplitude) of EEG frequency bands are associated with diverse 

brain states, such as increased beta brain activity associated with alertness or cognitive 

demands (Mavros et al., 2016). Also, a significant increase of EEG power spectra in the 

beta band demonstrates an increase individual level of arousal and alertness (Borghini et 

al., 2014, Okogbaa et al., 1994), and following this stress has found caused an increase 

EEG beta band power (Saeed et al., 2018; Saeed et al., 2017). Previous studies indicate 

that single-channel EEG can be used to examine emotion at the front region and cortical 

activation in the brain during the induced stress stimulus indicated a significant increase 

in beta brain activity (Al-Shargie et al.; 2016). Another study found that the negative 

linear relationship between the power ratio of beta brain activity and the subjective score 

indicates stress (Abdul-Hamid et al., 2010). Therefore, beta brain activity varies 

(increased) relative to stimuli difficulty (Saeed et al., 2018; Al-Shargie et al.; 2016). 

However, an interpretation of significant changes in beta EEG brain wave ranges from 

the optimal (baseline) to too little or too much as detailed in Table 2-3. 
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Table 2-3:      Interpretation of EEG frequency bands 
Brain 
wave Too Much 

Optimal (an idea or 
best) Too little 

Gamma 
Anxiety, High 
arousal and stress 

Information processing, 
learning perception and 
rem of sleep  

Depression, learning 
disability  

Beta  

Anxiety, high 
arousal and inability 
to relax and stress 

Conscious focus, 
memory and problem-
solving   

Daydream, 
depression and 
cognition 

Alpha 
Inability to focus and 
too relax Relaxation  

Anxiety, high stress, 
insomnia 

Theta 

Depression, 
hyperactivity, 
impulsivity and 
inattentiveness 

Creativity, emotional 
connection, intuition, 
relaxation 

Anxiety, poor 
emotional awareness 
and stress 

Delta 

Brain injuries, 
learning problem, 
inability to think 

The immune system, 
natural healing, 
restoration or deep 
sleep 

Anxiety, poor 
emotional awareness 
and stress 

Source: NeuroSky, 2011 

 

2.5.5 eSense(cm) Meters (Attention and Meditation)  

Attention and meditation eSenses, the meter value is presented on a relative eSense scale 

of 1 to 100. The unsigned one-byte value reports the user's eSense attention meter 

indicated the user's mental focus level during intense concentration and directed (but 

stable) mental activity (Zhu et al., 2015). However, distractions, wandering thoughts, lack 

of focus, or anxiety may lower the attention meter levels (Baltar & Filgueiras, 2018; 

Chow, 2014; Neurosky., 2009). Meditation eSense, on the other hand, refers to as the 

unsigned one-byte value reports the current eSense meditation meter, which indicates the 

level of user's mental calmness or relaxation. Meditation is the extent of a person's mental 

levels, not physical levels; therefore, simply relaxing all the body muscles may not 

immediately result in a heightened meditation level (Chow, 2014; Eberth & Sedlmeier, 

2012). However, relaxing the body often helps the mind to relax. Meditation is related to 

reduced activity by the brain's active mental processes, and distractions, wandering 

thoughts, anxiety, agitation, and sensory stimuli could reduce meditation eSense meter 

(EEG Pocket Guide, 2016).  

The signal processing was conducted using the NeuroSky's MindSet Research Tools 

(MRT). The eSense metric of attention interpreted following the NueroSky eSense meter 

scales. The eSense metric value of attention reported on a relative eSense scale of 1 to 
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100 (Neurosky., 2009), in which any values between 40 and 60 are considered "neutral", 

and is similar in notion to "baselines" that are established in conventional EEG 

measurement techniques. The value from 60 to 80 considered slightly elevated. It may be 

interpreted as levels being possibly higher than normal levels of attention or meditation. 

Also, values from 80 to 100 considered elevated, indicating heightened levels of the 

eSense. The values between 20 and 40 indicate reduced levels of the eSense. In contrast, 

the value between 1 and 20 represent strongly lowered levels of the eSense, which could 

be interpreted as an indication of the states of distraction, agitation, or abnormality 

(Imotion Users Guide, 2019; Neurosky, 2010). An eSense meter value of 0 is a unique 

value indicating the Myndband cannot calculate an eSense level with a reasonable amount 

of reliability that might occur due to excessive and uncontrollable noise levels. 

2.5.6 Event-Related Potential (ERP) 

Brain frequencies provide an avenue to combine analysis of sensory and cognitive 

functions of EEG or MEG at the level of a single neuron and the field of potentials (Basar 

et al., 1999). Changes in ongoing or spontaneous EEG brain activity that term as 

oscillatory responses temporally associated with a specific event(s) (Zhu et al., 2015; 

Başar et al., 1999). The evoke ERP oscillations in the EEG frequency ranging from delta 

to gamma represent a group of neural population responses to an event in superposition 

manners due to transition from a disordered to ordered state (Basar et al., 2000). The 

practical application of oscillatory neural activity begins to emerge from analysing the 

relationship between responses to well-defined events such as event-related oscillations 

and phase-or time-locked to a sensory or cognitive (Başar et al., 1999).   Basar et al., 

1999) point out that brain theory's oscillation shows that EEG oscillations permit analysis 

and interpretation of sensory and cognitive functions in thinking and feeling in the human 

brain and any other freely behaving organism. Evaluating detail frequencies of EEG 

provides an understanding of the signals' functional cognitive relationships (Başar et al., 

1999). The most common approaches are to concentrate on ERPs by averaging and 

applying event-related oscillations (EROs). The hemodynamic response to neural activity 

in response to specific events (Cohen, 2011).  Therefore, brain activity can be investigated 

by frequency domain analysis of event-related potential. 

In contrast, David et al., 2006 depict that the cortical reactions can be investigated in the 

time domain to evaluate ERPs or in the time-frequency domain to examine the oscillation 

activity. However, the evoked power of the EEG can be estimated by average the EEG 
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signal over trials and subject it to time-frequency analysis to produce an event-related 

response (EER). In contrast, the induced oscillation, on the other hand, can be estimated 

by apply time-frequency decomposition to each trial and average the power across the 

trials (David et al., 2006).  

The local field potentials (LFPs) and EEG record cortical oscillatory activity as an evoked 

oscillation that reflects different neuronal processes. Operationally, evoked and induced 

oscillation phase-relationships with stimulus by the processes of trial averaging and 

spectral analysis/estimation. The event-related oscillations evaluated relative to a 

cognitive event(s) can be categorised as an evoked oscillation directly phase-locked to 

the event or non-phase-locked induced oscillation (Başar et al., 1999). The ERP or evoke 

potential is a significant fluctuation in brain activity result from induced neural activity 

in the Central Nervous System (CNS) either from the internal or external stimulus 

(Teplan, 2002) and known for their high temporal resolution (Zhu et al., 2015).  ERPs is 

a suitable approach for investigating both normal and abnormal aspects of cognitive 

processes.  

2.5.7 EEG Data and Artifacts 

One of the most common problems associated with EEG application is that EEG signals 

usually consist of artefacts with an amplitude that are sometimes higher than those 

generated by neural sources. Therefore, artefacts in EEG study or experiment refer to the 

potential difference due to an extracerebral source activity initiating from others tissue 

(Anderer et al., 1999) and non-phase locked signals non-neural artefacts (Jung et al., 

2000). Winkler et al., 2011 revealed that typical artefacts of the EEG data are causing by 

the non-neural physiological state of the subject such as eye blink and movement, muscle 

activity and heartbeat, or external technical and mechanical sources (Figure 2-7). 

Mechanical artefacts in EEG signals are generally associated with a head swing during 

locomotion or vehicles on-board survey, which may sometime be characterised by 

amplitude larger in magnitude than the underline EEG signals (Gwin et al., 2010). 

This unsigned one-byte integer value that ranges in value from 0 to 200 defines the fidelity 

of the signal measured by the Myndband (Neurosky, 2010). Any non-zero value indicates 

that noise is detected and the higher the value, the lesser the data's fidelity. The value is 

usually output every second and indicates the degree of the most recent measurements 

(Imotion Users Guide, 2019; Neurosky, 2010). The value of 200 has a special meaning 

specifically that the Myndband contacts reference does not touch the user's skin. The poor 
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contact could be due to hair in the way, excessive motion of the wearer, when used in 

some environments characterised by strong electric signals or static electricity build-up 

in the person wearing the sensor (Neurosky, 2010).  

EEG data is highly prone to noise (Gwin et al., 2010) and contaminated by different 

artefacts such as muscle activity, eye movements and blinks, and several other line noise 

(Li and Principe, 2006), see Table 2-7. Artefacts also affect the correct analysis and 

interpretation of ERP (Jung et al., 2000). Therefore it is essential to remove artefacts from 

experimental data, without altering the underlying brain activity,  because artefacts are 

sometimes characterised by amplitude higher than the EEG signal of interest (Gwin et al., 

2010, Li and Principe, 2006). Tran et al., 2009 pinpoint that artefact is always overlapping 

with brain activity and influences the analysis of ERP(s) EEG data.  Therefore, there is a 

need to understand and identify different artefacts against event-related brain activity to 

minimise artifactual components. Neurosky, (2010) points out that EEG data filtering 

technology and eSense™ algorithm were designed to detect, correct, compensate for, 

account for, and tolerate different types of non-EEG artefacts. However, users interested 

in using the eSense values (Attention and Meditation) do not need to worry too much 

about the EEG data-poor signal (Imotion Users Guide, 2019; EEG Pocket Guide, 2016; 

Neurosky, 2011). 

Artefact removal strategy to adopt depends on the aim and objective of the study and data 

availability. Moreover, careful handling of artefacts is crucial for EEG data processing 

because what defined as artefacts in some research may sometime become or contain 

valuable information in another study (iMotions, 2016). One of the most common 

strategies is to reject all EEG epochs contain artefact higher than some selected EEG 

voltage value or above the voltage threshold (Jung et al., 2000). Nevertheless, in some 

cases, data rejection may not be acceptable because it can potentially result in the loss of 

a large volume of data (Jung et al., 2000). Kerick et al., 2009 investigated the assessment 

of EEG signal in motion environment to quantify EEG signals' integrity as a function of 

diverse motion artefacts in the real-life study. The experiment was carried out in three 

different ambulatory and three-vehicle motion environments. The authors used spectral 

analyses to characterise the nature and the degree of the artefacts present in each condition 

of the experiments. They found that brain-related EEG signals could be measured under 

different conditions, even within moving vehicles which are more dynamic and real than 

the simulated laboratory settings.  The authors concluded that the brain's electrical activity 

could be reliably recorded in operational environments, such as driving on paved or 
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washboard surfaces. They concluded that advanced artefacts reduction algorithms are 

required to improve signal fidelity in both ambulatory and vehicle motion environments.  

 
Figure 2-7: External sources of artefacts 
Source: (iMotions, 2016) 

An approach based on regression in either time domain or frequency domain has been 

proposed for removing ocular artefacts (Li & Principe, 2006). The authors pointed out 

that using any of the regression approaches can result in a considerable alteration of 

relevant brain activity or ERPs, mainly because the electrooculogram (EOG) contain both 

eye and brain activity.  

2.6 Application of EEG 

EEG has been used to investigate the systematic change(s) that arises from the specific 

external or internal event(s), which are temporally related to a sensory, cognitive or motor 

event. EEG a powerful non-invasive tool for recording bio-electrical signal to obtain data 

for study brain mechanisms of attention and information in health and disease (Stelt and 

Belger, 2007). Although recording psychological and physiological response is not a 

perfect neurocognitive function measurement (Cohen, 2011). However, EEG can provide 

a direct and real-time index of neuronal activities at a millisecond scale resolution which 

is relatively easy and inexpensive to utilise (Rahman et al., 2012; Oken and Chiappa, 

1988). Despite the limitations of EEG application, it is more preferred to study rapid 

changes in the pattern of brain activities that underline human cognitive function and 

dysfunction due to its degree of temporal resolution (Stelt and Belger, 2007). Apart from 
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using EEG in experimental psychology, clinical psychology, and biomedical engineering, 

it has also been widely used in different application areas such as consumer neuroscience, 

marketing research, transport research and advertisement, trailer and media testing 

(iMotions, 2016).  

Advancement in technology and interest of many researchers has brought about the recent 

development in the context of Brain-Computer Interfaces (Biomedical Engineering). The 

study of Yasui (2009) used two experimental phases to understand the brain's 

psychophysiological states. An EEG sensor with a dry electrode was used to obtain 

subjects' brain wave of a 22-year-old student in awake and sleeping states in real-life 

situations. The morning was characterised by higher frequency due to regular school 

activities, more low frequencies shown after lunch and higher frequencies observed again 

during the afternoon class until the end of all school activities. The same author compared 

the brain activity of 32 years driver, in a condition of driving without using a phone and 

another condition of driving and receiving a phone call. The author ensures uninterrupted 

data collection of baseline and post-intervals of the phone conservation (Yasui, 2009).  

The study demonstrated that using a cell phone while driving created high-frequency 

components data compared to pre and post driving (without using a cell phone).  

Landström and Lundström., 1985 used EEG to monitored change in wakefulness during 

exposure to whole-body vibration. The authors exposed the subjects to three vibration 

stimulus sections, and four paused sections for 15 minutes each. An increase in theta and 

decreased alpha brain activity was found to reduce wakefulness, as the average value of 

theta activity during exposure always exceeded that of paused. The authors concluded 

that the sensation evokes during exposure to vibration are transfer to the brain and 

integrate to produce a subjective response to the stimulus.  

2.6.1 Application of EEG for Motion Sickness  

The common sickness in real life is carsickness, airsickness, space sickness and 

seasickness. Motion Sickness (MS) occurred in the occipital, parietal and somatosensory 

part of the brain, unusually high amplitude and frequency brainwaves pattern of the theta 

frequency band (4 – 7 HZ) and alpha frequency band (8 – 13 HZ) (Chen et al. (2010; Lin 

et al., 2007). Yu et al. (2010) used EEG data collected in a realistic driving environment 

to simulate real-life motion stimuli that consist of seven identical Personal Computers 

synchronised by Land Area Network. The EEG brainwaves are related to MS in the 

occipital, parietal, and somatosensory part of the brain and observed a general increase in 
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both theta and alpha bands when the baseline is compared to the MS stage induced 

stimulus. The authors concluded that the proposed approach could predict the subject's 

MS level in real-life conditions because it shows the classification performance is greater 

than 95%.  

A VR-based dynamic 3D system consists of a six-degree-of-freedom motion platform 

that can impose a real-life traffic conditions stimulus to the subject’s wad developed. An 

EEG was used to monitor ten healthy subjects (six males and four females) with no history 

of gastrointestinal, vestibular disorders and cardiovascular were sampled (Lin et al., 

2007). The subjects are not also on any medication and had normal or corrected to normal 

vision. The experiment was divided into three stages of baseline stage of a straight road, 

motion sickness stage of consecutive-curve road, and the straight road's final stage for 10 

minutes, 40 minutes and 15 minutes respectively. The study results demonstrated that 

theta brain activity increased relative to motion sickness in the brain's parietal and motor 

area. A similar approach to Lin et al. (2007) was used by Chen et al. (2010) to examines 

motion-sickness-related brain response. A VR-based driving simulator that consists of a 

32-channel EEG system and a joystick were used for the study. A total of twenty-four 

subjects with no history of gastrointestinal, vestibular disorders and cardiovascular, no 

drug or alcohol abuse, and not on any medication and had normal or corrected to normal 

vision were sampled. The subjects' EEG brain activity was monitored under three 

different driving conditions (pre-MS, stage of MS and recovery stage of post-MS). A 

significantly increased alpha power band was found in the somatosensory areas, reflected 

the dominance of vestibular inputs to eliminate the conflict with subjects' visual 

perception.  

2.6.2 EEG and in-vehicle Driver and Passenger Responses  

Human sensitivity induced by vibration factors in a dynamic environment is sometimes 

challenging to investigate and evaluate due to variation frequency, intensity, and 

direction. The sensations transfer to the brain and integrate to produce a subjective 

response to the stimuli and cause a disturbance, unpleasant, annoying, alarming and 

fatiguing (Landström & Lundström, 1985). The application of EEG is well known to be 

an approach that is capable of characterising individual brain states in the processing of 

different semantic categories that makes the application of real-time decode system 

possible (Muller et al., 2008). The study of Chin-Teng et al., 2005 proposed a system that 

incorporates EEG spectral estimation, ICA and fuzzy neural network model to evaluate 
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cognitive driver states in a dynamic environment. Chin-Teng et al., 2006 investigate the 

relationship between driving behaviours and driver ERP responses. The authors classified 

the drivers into a group of gentle and aggressive driving based on the analysis of ERP 

variations using analysis of the power spectrum of ICA. Also, in 2008 the research group 

of Chin-Teng investigated changes in EEG power spectral to examine the dynamic brain 

responses to the influence of experimental design variables in both time and frequency 

domains (Chin-Teng et al., 2008). The authors studied changes in EEG response to 

distraction during simulated driving and found a significant impact of dual tasks on ERP 

theta EEG brain activity.  

Muto et al., (2013) used EEG and electromyogram (EMG), speed profile factors and 

questionnaire to estimate riding comfort changes of subjects riding a bicycle in a stable 

experimental room. The authors found that there are variations between subjects EEG 

patterns relative to riding comfort changes. Chang and Hwang (2011) used EEG data and 

sensory questionnaire to improve vehicle ride comfort. The result of the statistics obtained 

from EEG data used to modify the suspension parameters of the vehicle. The authors 

found a significant relationship between EEG brainwaves and subjective comfort 

assessment, and they concluded that EEG could assist in understanding and evaluating 

passenger comfort.  

Furthermore, researches showed that human sensations influence the 

psychophysiological patterns of the brain. Using EEG allows to measure and evaluate 

human response to external stimulus objectively. EEG and a sensory questionnaire were 

used to evaluate car ride comfort based on the different vehicle tire types (Mitsukura et 

al., 2009; Fukai et al., 2009). The authors found a cross-correlation between the subject's 

EEG brain activity and subjective comfort assessment, which verified the proposed 

approach's effectiveness.  Koizumi et al., (2006) evaluate ride comfort of rail passenger 

using brain waves and questionnaire. The author used comfort contours measured from 

EEGs and four patterns of how discomfort was perceived differently by each subject. The 

author found that the coefficient of determination of multiple regression analysis 

demonstrated the adequacy using EEG to investigate ride comfort. 

2.6.3 EEG and Driver Fatigue  

Driving fatigue is one of the leading factors of the road traffic accident, accounting for 

14% - 20%  (Ma et al., 2019). Fatigue is a transition period between awake and sleeps 
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that is gradual, cumulative in-process and capable of reducing efficiency, alertness and 

mental performance (Lal & Craig, 2001). It is abstract and multidimensional (Phillips, 

2014). The study of fatigue is complicated because of dissociation that sometimes occurs 

between the experience of fatigue and the presence of psychophysiological indicators of 

fatigue. For instance, some may feel fatigued even though their psychophysiological state 

and indicators are normal. Simultaneously, some may not perceive fatigue even though 

their performance is impaired, and psychophysiological level is an imbalance (Lal and 

Craig, 2002). Therefore, EEG is capable of measures overall inhibitory and excitatory 

postsynaptic potentials of nerve cells at different frequencies of delta waves associated 

with sleepiness and theta waves that associated with low alertness and decreased 

processing activity (Lal and Craig, 2002). 

Several studies have investigated EEG's ability to examine driving fatigue, and it is likely 

effects on road crash. For instance, Wei et al. (2012) used a self-assessment driving 

simulator to estimate driving fatigue. EEG was used to collate bio-electric signals of 

twenty subjects in an experiment conducted in dawn (02:00 – 06:00) afternoon (13:30 – 

16:30) and evening (19:00 – 22:00). The authors found that the approach can evaluate the 

drivers' fatigue level with an accuracy of about 92.3%.  

Lal et al. (2003) developed an algorithm for an EEG based driver fatigue countermeasure. 

The authors used nineteen channels EEG on a sensory-motor driver simulator. A total of 

ten male subjects with valid truck drivers, licences and with no medical contraindications 

were sampled. The driving task consists of a 10 minutes familiarisation stage, followed 

by two hours driving less than 80 km/h until they showed physical signs of fatigue. The 

observed changes in subjects' brain activity were used to develop the algorithm to identify 

fatigue levels. The results revealed that the subjects were in the alert phase for about 40% 

of the study durations. The corresponding average percentage of the durations that the 

subject was in the transitional phase,  transitional to post-transitional and post-transitional 

are 25%, 20% and 15% respectively. Lal and Craig (2002) study to investigate 

psychological factors associated with fatigue and the EEG frequency bands most sensitive 

to psychological factors. Subjects were instructed to sleep for two hours a night before 

the study to boost the chance of fatigue during the experiment. The authors used data 

obtained from simultaneous physiological driving task conducted in a temperature-

controlled laboratory on a standardised sensory-motor simulator using EEG, 

electrooculogram (EOG) and video. The video image that showed the physical 

characteristics and EOG signs of fatigue was used to validate the changes in subject brain 
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activity (EEG) relative to fatigue. Lal and Craig classified the EEG fatigue as drowsiness 

transitional to post-transitional phase and the early stage of sleep, followed by an arousal 

phase. The authors found that fatigue is significantly associated with delta, theta and beta 

brain activity and observed persistent increases in delta and theta brain activity as fatigue 

progressed from the baselined through transitional to post-transitional phase. The video 

analysis revealed the changes in EEG associated with the physical sign of fatigue. The 

more the level of fatigue, the higher the propensity of subjects driving-related error and 

accident.  

2.6.4 EEG and Stress 

Stress is known as physical and psychological responses to internal and external 

emotion/stimuli that usually produces negative body reactions. Stress occurs whenever 

the body system cannot adapt successfully to environmental conditions changes (Noor 

Hayatee Abdul-Hamid, Sulaiman et al., 2010). Human discomfort/stress is a form of 

psychophysiological response to perceived demands and pressures within and without 

that produces a negative emotional reaction (Subhani et al., 2011). Discomfort is 

associated with psychophysiological response to any situation(s) that requires 

homeostasis imbalance, which occurs when there is any significant variation(s) between 

what it is and what ought to be (Subhani et al., 2011). The extent of stress can be evaluated 

from the cortical responses using non-invasive neuroimaging approach. The human brain 

activates neuropeptide-secreting systems in response to stress and demonstrated by 

changes in EEG power spectral (delta, theta, alpha and beta brain activity) (Subhani et 

al., 2011). Al-shargie et al. (2018) used bio-electrical activity collated by EEG to evaluate 

mental stress. The results showed dominant right prefrontal cortex (PFC) to the influence 

of mental stress (reduced alpha rhythm); therefore, the EEG Power Spectrum ratio could 

be used to determine human stress. 

Acute and chronic stress create functional change in some brain regions such as the 

hippocampus, prefrontal cortex, amygdala and many other brain parts. In neurology, 

researchers use stress stimuli to induce mental stress. EEG was used to monitor and 

evaluate psychophysiological stress (Subhani et al., 2011). An objective EEG (alpha and 

beta) brain activity and subjective stress assessment questionnaire were used to monitor 

stress. The results showed a negative linear correlation between the power ratio of beta 

and alpha EEG brain activity and subjective stress assessment scores. Also, there is a 

correlation between mental stress and suppression of alpha EEG brain activity, whereas, 
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beta EEG brain activity varies by the task difficulty. Therefore, alpha brain activity 

becomes dominant in the absence of stress.  

2.7 Driving Pattern and Vehicle Acceleration Characteristics  

In the last few decades, researchers have used different parameters to describe driving 

patterns, in which average speed is the most common one (Ericsson, 2000). The driving 

pattern and all the test procedure were laid out to provide a realistic representation of 

vehicles' real-life driving conditions on the road (Franco et al., 2014). It has been widely 

used in different parts of the world to evaluate driver behaviours, traffic management and 

environmental studies. Over the years, several approaches and different parameters have 

used to model factors influencing variability in the driving pattern. For instance, 

Ericsson's (2000) study examines the cause-effect model on variability in urban areas' 

driving patterns. He identified 26 parameters that are hypothetically affecting driving 

pattern under the influences of street environment, driver, vehicle, traffic, weather and 

driving behaviours factors. 

Time-speed profile factors are often complex, changes over time, some occur in many 

directions, and exposure to them causes a complex distribution of oscillatory motions and 

forces within the body (ISO2631–1, 1997b). The human body responds to these 

parameters may also cause sensations (e.g. discomfort or annoyance), influence human 

performance ability and fitness or present a health and safety risk (e.g. pathological 

damage or physiological change). Several studies have been conducted to quantify the 

comfort of public ground transport (train or bus) and car with changes in the vehicle rate 

of acceleration (George et al., 2013; El Sayed et al., 2012). Very few of such studies 

considered the urban bus mass transit (Delton and Dale, 2008). The typical acceleration 

rates of vehicles in motion are not often up to the maximum level, because drivers rarely 

apply the maximum acceleration of their vehicles except when there is an emergency. 

Although whenever vehicle velocity reaches zero and does not reverse, the acceleration 

displays a very sharp or sudden change. It imposes a large jerk to all elements in motion 

with the vehicle loads, including the passengers (Delton and Dale, 2008). About 90% of 

all drivers, deceleration rate, is more than 3.4 m/s2, which is still within their ability to 

maintain lane and steering control during the braking manoeuvre even on wet roadways. 

Therefore, a comfortable deceleration rate of 3.4 m/s2 is recommended as the threshold 

for determining to stop sight distance  (Maurya & Bokare, 2012; AASHTO 2001). 
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The study of  Kuhler and Karstens (1978) used a set of 10 parameters to described, 

developed and accessed driving pattern; the average acceleration (for all acceleration 

stages, when a > 0.1) and average deceleration (for all acceleration stages when r < -0.1) 

see Table 2-4. The average speed of the entire driving, average driving speed (excluding 

the period of the stop) and proportion of time of acceleration time (a > 0.1 m/s2). In 

addition, the proportion of time of deceleration time (a < 0.1 m/s2) and proportion of time 

at constant speed (|a| < 0.1 m/s2). The average number of acceleration-deceleration 

changes (and vice versa) within one driving period, mean length of a driving period (from 

a start to a standstill) and the proportion of the standstill time (v < 3 km/h, |a| < 0.1 m/s2).  

2.8 Gaps Identified in the Literature 

The primary approach to study passenger discomfort is to subject the passengers to 

different driving conditions in real traffic situation or special equipment (Wang et al., 

2020; Hoberock, 1976). Urabe & Nomura, 1964 indicated that evaluating a vehicle's ride 

comfort requires data on passenger's sensations and quantitatively evaluates them under 

various conditions.  Studies used questionnaire survey, interview and FGD, in which the 

subjects were asked to make a subjective evaluation on riding experience during or after 

the journey (Shen et al., 2016;  Zhao et al., 2016; Zhang et al., 2014;  Kottenhoff & 

Sundström, 2012; Eboli & Mazzulla, 2011; Lin et al., 2010; Cascajo & Monzón, 2007;  

Hoberock, 1977; Hoberock, 1976). The subjective approach to evaluating passengers’ 

discomfort of most of these studies is characterised by the problem of indistinctness of 

the evaluation criteria'. Some authors established the relationship between vehicle 

motions parameters and passengers' subjective comfort assessment, characterised by the 

evaluation criteria' indistinctness (Muto et al., 2013).  

The questionnaire survey, interview, and FGD have no spatial and temporal relationship 

with the vehicles' operations.  Therefore, the relationship between passenger discomfort 

and vehicle motion parameter, road roughness characteristics and probably posture 

cannot be fully investigated. Other studies based on verbal rating using digital comfort 

assessment score method, in which the passengers were required to rate their perceived 

comfort/discomfort per minute (Wang et al., 2020). Although the approach provides a 

possibility to record passenger discomfort in-vehicle time, this approach's limitation is 

that passengers' comfort/discomfort and the evaluation criteria cannot be investigated in 

relation with vehicles' operations characteristics specific moment.  
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Some previous studies are limited by the passenger's inability to evaluate the discomfort 

in real-time, which result to inability to accurately analyse the impacts of vehicle speed 

profile factors, road toughness characteristics, in-vehicle time, posture or bus type on 

passenger discomfort. Evaluation of discomfort often depends on the objective 

quantifications of subjective judgment, due to the reference points, the sensitivity, the 

responsiveness and assessment based on the adaptation and motivation that varies from 

person to person (Tan et al., 2008, Fotios, 2015). Consequently, there is a need for 

evaluation methods based on biological signals that can directly reflect human 

psychophysiological states or sensations (Muto et al., 2013). Therefore, an objective 

measure that can relate the qualitative assessment of road users' response (perception) to 

the influence of road surface irregularity characteristics, posture and bus type on 

passenger comfort is needed.  

Furthermore, the interpretation of emotions and how they are perceived vary from person 

to person. Therefore, a subjective evaluation may not provide adequate evaluations since 

people verbal reports or perception seemingly determined by the awareness of their inner 

mind, verbal proficiency, norm and culture. Using physiological measures that are general 

and quantified than the subjects' verbal report, or perception will provide reliable 

information about the subject matter. For instance, the assessment quantity provided by 

the International Roughness Index (IRI) is different from ride vibrations perceived by the 

passengers. It cannot indicate the ride comfort because the performance indicators were 

based on the vehicle axle (Blum, 2015; Cantisani & Loprencipe, 2010). The common 

subjective approach of evaluating driving fatigue does not always reliably reflect 

objective performance measures. Many studies have investigated the driver's fatigue. 

However, no or very few studies have used EEG to investigate driving 

fatigue/performance decrement with driving and rest break duration. 

Several studies have proposed the method and application of EEG on a vehicle's ride 

comfort. However, very few have used EEG to investigate or evaluate urban bus 

passenger comfort in a real-life situation. A significant change in postsynaptic neurons 

instantly reflected in the EEG, making this approach outstanding for examining the rapid 

shift in brain activity relative to the influence of experimental design variables (Bell & 

Cuevas, 2012). The ability of EEG to monitoring the rapid shift in brain activity induced 

by the influence of dynamic vehicular motion conditions (real-life) due to its portability, 

time-series data capture capability and high temporal resolution (Yu et al., 2010; Chen et 

al., 2010). These attributes make the EEG approach a unique method of monitoring any 
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significant changes in driver and passenger psychophysiological responses to 

experimental design variables compared to baseline. 
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CHAPTER 3      METHODOLOGY: STUDY DESIGN, EXPERIMENTAL 

PROCEDURE AND DATA COLLECTION 

3.1 Introduction 

Chapter 2 discussed the literature review on urban bus passenger comfort, EEG rhythms 

and oscillations, and the application of EEG, which are the main factors affecting bus 

passenger journeys. The review of data collection techniques in transportation research 

and subsequent analytical approaches is used in data analysis. Chapter 3 discusses the 

research methodology used for this study. This chapter provides an outline of 

experimental design, the equipment and the data collection technique.  

3.2 Lothian Buses 

Lothian Buses is the largest urban bus transit operator in the United Kingdom and the 

primary bus service provider in Lothian that operates buses from Annandale Street, 

Longstone and Marine at Seafield depots. The City of Edinburgh Council owns 91% of 

the Transport for Edinburgh Company while the remainder belongs to East Lothian, West 

Lothian and Middle Lothian councils. The buses operate mainly in Edinburgh by 

providing services to nooks and crannies of the city, and also providing feeder services 

to train or tram stations as well as many parks and rides. It also extends services to some 

suburbs, towns and villages. 

 
Figure 3-1: Lothian buses 
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There are also limited-stop express routes, night bus services, park and ride services, 

airport services and many tourist services. Lothian buses run several bus trips daily, 

between 1200 midnight and 0500 to different parts of the city, and the frequency of the 

bus to each location varies according to land use and the total population of that 

geographical location (Figure 3-1). 

Lothian Buses Route Map 

Bus services in Lothian form the core of the Lothian Buses group, and most buses still 

follow the same route since the beginning of the operation of trams in the 1950s. 

However, some modifications have occurred in space and time, which have created 

confusion in details, such as letter-suffixed routes and clockwise/counter-clockwise 

circular services. Presently, most of the routes pass through the city centre to the various 

locations (Figure 3-2). These made Lothian Buses’ operations unique and user friendly 

(cost-effective) because services are not terminated at the city centre. It is worth noting 

that Lothian Buses are equipped with CCTV cameras for driver and passenger safety. One 

of the recent improvements in the Lothian Buses’ services was the introduction of the 42 

Alexander Dennis Enviro400 XLB-bodied Volvo B8L 13.4 buses that began operation in 

early 2019. These buses seat 100 passengers and are equipped with front and middle doors 

to reduce waiting time at the bus stops.  

 
Figure 3-2: Spatial distribution of Lothian bus route 
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3.3 Ethical Approval 

Ethical approval for the experimental techniques/conditions used in this thesis was 

obtained from the School of Engineering and Built Environment (SEBE), Edinburgh 

Napier University Ethical Advisory Committee before the study’s commencement.  

3.4 Equipment 

3.4.1: GPS-based Performance Box 

The GPS-based Performance Box (PB) device (Figure 3-3) can measure vehicle speed, 

throttle position, time, distance of travel and driver performance accurately, and it is used 

for data collection. The Global Positioning System (GPS) depends on the satellites’ 

signals to give the moving vehicle’s geographical locations in second-to-second intervals. 

The device is a high performance 10Hz GPS that measures 10Hz logging of time, 

distance, speed, position, lap times and split times. The time-scale resolution of this data 

acquisition system is 0.1 seconds. The system designed for data collection contained non-

contact 10Hz speed and distance measurement with the aid of GPS, internal and external 

GPS antennas, g-force measurement of lateral and longitudinal acceleration and an 

internal yaw sensor. There is also an RS-232 socket for connecting to a PB Mini Input 

Module, a USB interface for reading an SD card, streaming data and upgrading firmware 

(Figure 3-3). The 256Mbyte removable SD card can store up to about 200 hours of 

continuous logging (VBOX User Guide, 2014).  

 
Figure 3-3: The GPS device (PB) keypad    
 

The average speed is defined as (V2-U2) / (2 x S), where V is the final velocity, U is the 

initial velocity and S the distance travelled (VBOX User Guide, 2014). The PB software 

is based on a Graphical User Interface (GUI) and a Command-Line Interface (CLI) that 
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permit data analysis and presentation, using Racelogic software and Microsoft excel. The 

software also comprises the part that allows communication with a GPS receiver, a yaw 

sensor and a 2-axis accelerometer. The PB aids the organisation and configuration of data 

in terms of routes names and types, bus type and ID, time of the day, day of the week and 

weather conditions. It could also organise and delete data from the SD card and permit 

analysis and presentation of acceleration and jerk threshold. 

Furthermore, whenever the ‘Write Results File’ option is enabled, the PB creates two 

results files on an SD card. The first file, ‘RESULTXX.TXT’, produces the test results 

every time data is appended onto the file’s end. The second file, ‘BESTXX.TXT’, 

displays only the best result of every test by overwriting previous results in order to 

increase data quality assurance.  

3.4.2 Myndplay Electroencephalography (EEG) 

An excellent temporal resolution of EEG makes it widely used as an experimental 

technique to investigate human brain function by tracking the temporal neural dynamics 

(brain activity) correlated to experimental events (Mognon et al., 2011). Presently, fewer 

channel EEG devices are available, and the study conducted by Saeed et al., 2018; Saeed 

et al., 2017 and Van Der Wal & Irrmischer, 2015 showed that a single-channel headset 

could be used to investigate emotion recognition at the frontal region. The Myndplay’s 

MindBuilder (MB)-EEG equipment has been developed as bio-sensor equipment to 

interpret and collate the brains’ electrical activity, and was used to gather the time series 

quantitative eSense metric power spectrum data in this study. The (MB)-EEG device is a 

single channel produced by MyndPlay and consists of five main parts: an ear clip, a 

battery area, a power switch, an adjustable headband, and an internal Myndband chipset. 

MyndPlay EEG is technology that is used in this study, and it enables a device to interface 

with the user’s brainwaves. It is characterised by a sensor that touches the participants’ 

forehead. The contact and reference points are located on the ear pad, and the onboard 

chip processes all data (Saeed et al., 2018; Bright & Nottage, 2018; Saeed et al., 2017; 

Borghini et al., 2014). The principle of operation of MyndPlay EEG used in this study is 

relatively simple; the two dry sensors are used to detect and filter the EEG signals. The 

sensor tip detects electrical signals from the brain’s forehead and ambient noise generated 

by human muscles and electrical devices (Crowley et al., 2010; Yao et al., 2009; Yasui, 

2009). The second sensor, the ear clip, is ground and reference that allows the Myndband 

chip to filter out the electrical noise. The MyndPlay EEG measures the raw signal, power 
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spectrum (delta, theta, alpha, beta and gamma), attention level, mediation level and blink 

detection. The raw EEG data is received at a rate of 512 Hz while other measured values 

are on a second-by-second basis (Figure 3-4). The Myndplay is significantly different 

from the typical EEG in size, the number of electrodes, the complexity, the resolution 

capabilities and the cost. The Myndplay comprises software that allows easy connection, 

recording, viewing, and presentation of data in real-time, and the MATLAB module gives 

the user the ability and opportunity to define custom MATLAB scripts and functions for 

data processing and analysis. It is wirelessly connected to a computer that includes all-

new mentally-driven capabilities in supported software. 

  
Figure 3-4: The NeuroSky Mobile MindSet (MYNDPLAY) and the display screen 
on Window tablet during EEG data collection 

 

Myndplay EEG Software 

The MyndBand EEG technology comprises software that permits recording electrical 

data at the precise time-course of cognitive and emotion processing, underlying 

behaviour. Besides, the EEG technology used for data collection is characterised by the 

excellent time resolution of receiving hundreds to thousands of electrical activity 

information within a second (it has a temporal resolution on the order of milliseconds). 

In recording data from the brainwaves, the transmission part of the EEG is connected to 

a window tablet via Bluetooth. The NeuroView software was used to process the signal 

(data) received while the information was stored in a spreadsheet. The MyndBand 

software allows easy connection, recording, viewing and presentation of data in real-time, 

and it gives users the ability and opportunity to define custom MATLAB scripts for data 

processing and analysis. This study’s collated data was exported to a Comma-Separate-

Values (CSV) file and opened in Excel software for data processing, analysis, and 

presentation. The bio-electrical signals obtained were converted into numeric values 
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(attention and meditation) that range from 0 to 100 and the power spectrum of the delta, 

theta, alpha, beta and gamma. It consists of two specialised applications (NeuroView and 

NeuroSkyLab) in which the NeuroView is designed for the beginner and intermediate 

EEG researchers wishing to view and record EEG data in real time. The measurement of 

bioelectrical signals can be taken in the form of:  

 Raw signal 

 EEG Power spectrum (delta, theta, alpha, beta and gamma) 

 eSense metric for attention  

 eSense metric for meditation  

3.4.3 The EURO Truck Driving Simulator 

Inexpensive and relatively realistic EURO Truck simulator equipment consists of the 

steering wheel, accelerator, brake, clutch, and gears to function with a personal computer 

and a speaker (Figure 3-5). The HGV driving simulator Logitech Software runs on 

Windows 7, Windows 8, Windows 8.1, Windows 10 and Xbox One. The wheel is 

characterised by 270 mm height, 10.94 mm width, 260 mm depth and 2.25 kg weight. 

The digital environment in which subjects were driving was created by the software, Euro 

Truck Simulator 2. The corresponding proportion of pedal height, width, depth and 

weight is 167 mm, 311 mm, 428.5 mm and 3.10 kg, respectively.  

 
Figure 3-5: Participant in TRIL, Edinburgh Napier University 



52 
 

3.5 Sample Size Estimation 

The purposive sampling method, which is synonymous with a type of non-probability or 

non-random sampling technique that does not require underlying theories was applied in 

this research. In this approach, the participants’ selection is based on the researchers’ 

judgment (Palys, 2008; Tongco, 2007) with the willingness (readiness to wear the EEG) 

of the participants that meet the details of the experimental conditions. Several 

approaches, including power analysis, cost or return on investment (ROI) analysis or local 

standards are used to determine the number of participants required for a study (Caine, 

2016; Bacchetti et al., 2011). A feasibility analysis conducted in the study consisted of 

the number of experiments, the cost, the duration of the study and the willingness of the 

participants that meet the experiment’s conditions (Caine, 2016; Bacchetti et al., 2011; 

Tilburt & Kaptchuk, 2008). These constraints form part of the basis of guidelines for 

determining the sample size used in this research. Therefore, a local standards guideline 

was used to determine this study’s sample size, and it was obtained through a systematic 

literature review. It manually extracted information, such as research method, sample 

size, the gender breakdown of the participants, the contribution type and the paper status 

of studies that have already been published on the application of EEG on passenger 

discomfort and driving fatigue (Jing et al., 2020; Saeed et al., 2017; Al-Shargie et al., 

2016; Al-shargie et al., 2015; Taghizadeh-sarabi et al., 2013; Lin et al., 2013; Ko et al., 

2011; Sulaiman et al., 2010; Yu et al., 2010; Chen et al., 2010; Kerick et al., 2009; Huang 

et al., 2009; Lin et al., 2007; Philip et al., 2005; Lal et al, 2003; Teplan, 2002; Landström 

and Lundström, 1985). The summary information and average manually extracted sample 

size were used to generate the typical sample sizes used in this study (Caine, 2016; 

Bacchetti et al., 2011). 

3.6 Experimental Design 

3.6.1 Drivers Fatigue Experiment  

An experimental function-related analysis that permits a multi-level method of data 

collection was used in this study. The participant’s psychophysiological response (EEG) 

and subjective fatigue assessment data were collated relative to the influence of the 

duration of time spent in driving. The driver fatigue assessments tasks were performed 

by using the Transport Research Institutes Laboratory (TRiL), Edinburgh Napier 

University. The section of TRiL used for this experiment comprised of an HGV driving 
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simulator, The NeuroSky Mobile MindSet (MYNDPLAY), Window Tablet with 

Bluetooth and computers that run the NeuroSky Mobile MindSet research tool (software) 

as part of NeuroSky’s MindSet Research Toolkit (MRT). This section of TRiL was 

designed to investigate changes in psychophysiological states and other brain-event-

related tasks at the quality level specified in the NeuroView user’s guide of 2009. The 

trial (driver fatigue assessments) study was designed so that, where possible, the 

approach, result and conclusion would inform the design and strategy of the next stage of 

the study. The driver fatigue assessments observed (see Chapter 4) were used to 

understand the equipment’s performance (e.g., Electroencephalography). For instance, it 

aided in the understanding of the application of EEG. It provided adequate information, 

proper understanding and interpretation of various EEG frequency bands, along with an 

attention eSense meter. It also enabled the understanding of the various types of artefacts 

and their influences on the actual EEG data (ERP). These procedures were used in data 

processing and artefacts removal as well as delimiting the scope of field study (passenger 

ride comfort) presented in Chapters 5 – 6. 

3.6.1.1   Participants  

The experiment was carried out on healthy male and female subjects between 22 and 42 

years of age. Nine subjects (five males and four females) were sampled. All the 

participants were healthy and not suffering from any illnesses or taking any medication, 

with no history of brain malfunction or mental illness (Saeed et al., 2018). All the 

participants had no record of cardiovascular or gastrointestinal disorders (Lin et al., 2013; 

Ko et al., 2011; Chen et al., 2010). Each participant received information regarding the 

experimental conditions and protocols for at least seven days before the day of the 

experiment. They were instructed to avoid smoking, drinking alcohol and caffeine for at 

least 12 hours before the experiment (Ko et al., 2011, Chen et al., 2010). Besides, they 

must have a good sleep for one night preceding the experiment, and they were not allowed 

to use a mobile phone or any other electronic gadget because all these factors could cause 

additional significant activity of the brain. The willingness to participate in the 

experiment was obtained from all the participants. All the participants that met the 

specified conditions are permited to particiate in the experiments.    Participants were 

trained to know the study’s scope, and they were given adequate time to practice and 

understand the EURO Truck driving simulator system before starting the actual 

experiment. The participants drove HGV-simulated urban roads and highways 
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characterised by other road users (vehicles and pedestrians). The experimental protocol 

was approved by the Edinburgh Napier University Ethical Advisory Committee. 

Duration of driving and rest break is closely associated with driver fatigue or performance 

decrement (Chai et al., 2017; Mu et al., 2017; Yin et al., 2016). Since the study seeks to 

understand the influence of driving time and rest break on the driver’s 

psychophysiological response, this research was designed to collect data for driving time 

long enough to cause significant changes in cortical activation (psychophysiological 

response) of the participants (Mu et al., 2017; Lal & Craig, 2005). Consequently, four 

hours of driving with no break and four hours of driving with a break of 30 minutes after 

two hours of driving were used in this study. This was based on the conclusion of previous 

studies. For instance, Lal et al., 2003 developed an algorithm for an EEG-based driver 

fatigue countermeasure in which the participants were engaged in two hours of 

continuous driving to induce physical signs of fatigue. In addition, Williamson et al. 

(1996) demonstrated that there was significant changes in the magnitude of steering wheel 

deviations at the beginning of the second hour and the third and last hour of the driving 

task. Also, the study of Miller & Mackie, (1978) demonstrated a significant increase in 

coarse steering and decreases in fine steering of the participants after four to five hours 

of driving. The previous study also shows that the driver must ensure that they take no 

less than 30 minutes of break after no more than four hours of driving (Parkes et al., 

2009).  

Furthermore, a significant increase in beta brain activity indicated increased cortical 

activation of participants who drove for four to five hours. Finally, the regulation (EC) 

No. 561/2006 and British domestic drivers hour regulations defined that drivers of large 

commercial vehicles and passenger vehicles are subject to EU driver rules that limit 

driving time and ensure adequate breaks, and exempts drivers who do not drive for more 

than four hours on each day of the week from the daily limit (Parkes et al., 2009). This 

study examines the impacts of time spent driving and rest breaks on the participants’ 

psychophysiological responses. Therefore, four hours of driving each with 30 minutes of 

break and without a break were used as the minimum requirements for this study because 

it is enough to cause changes in the participants’ cortical activation (psychophysiological 

response).   
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3.6.1.2   Driving Fatigue Data Acquisition  

The subjects were assessed during an HGV simulator task to investigate and evaluate 

EEG changes during baseline measure as well as early or extreme fatigue stages. The 

collected data was transmitted via Bluetooth to a Windows-based device in real-time. The 

experiment was conducted in a laboratory under the controlled temperature of (180C) and 

light, with a noise level below 60 dB. The EEG data was measured between 11:00 and 

17:00 hours with speed ranging from 20 – 60 km/h with few road stimuli. During the data 

collection, an observer who was seated two to three meters away from the subjects 

monitored the subject’s behaviour without causing any distractions. Factors such as the 

circadian cycle and fatigue or performance decrements could be quickly induced and were 

controlled by ensuring that all the participants had a normal sleep one night before the 

experiment because sleeping less than five hours within 24 hours before work will 

negatively influence the likelihood of fatigue-related error at work (Dorrian et al., 2011). 

During each experiment, the subjective fatigue assessment was reported in real time based 

on the participants’ experience relative to the influence of the duration of driving and the 

break’s impact. The Samn-Perelli seven-point fatigue assessment scale shows that human 

sensations and functionality were used in this study. The fatigue assessment scale ranges 

from fully alert and wide awake to completely exhausted and unable to function as 

detailed below.  

1. Fully alert and wide awake. 

2. Very lively and response, but not at peak. 

3. Okay, somewhat fresh. 

4. A little tired, less than fresh. 

5. Moderately tired, let down. 

6. Extremely tired, very difficult to concentrate.  

7. Completely exhausted, unable to function effectively.  

The researchers explained the questionnaire to the subjects before the commencement of 

the experiment. During the driving task, if the participants felt more fatigued compared 

to the last condition (30 minutes), they were prompted to pick a number that best defined 

their level of perceiving sensations and functionalities at the interval of every 30 minutes. 
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Changes in fatigue level were reported in real time without interrupting the experiment. 

The Samn-Perelli seven-point fatigue assessment scale was applied and synchronised 

with EEG data after each experiment in order to provide overall fatigue and performance 

decrement rating information.  

Table 3-1: Summary of fatigue-phase instrumentation in the TRiL 
Phase 1 

EEG component Range Duration 

Spectral power  Beta brain activity that ranges from 
frequency of between 15 – 25Hz 

four hours no break 

Attention User’ level of mental focus that ranges 
from 0 – 100 

four  hours no break 

Phase 2 

EEG component Range Duration 

Spectral power Beta brain activity that ranges from 
frequency of between 15 – 25Hz 

four hours with 30 
minutes break after 
two hours of driving 

Attention User’ level of mental focus that ranges 
from 0 – 100 

four hours with 30 
minutes break after 
two hours of driving 

 

During the fatigue driving task, the EEG data was categorised and grouped based on  two 

hours of driving before a 30 minute break, two hours of driving after a 30 minute break 

and four hours of driving with no break (Table 3–1). After the noises are filtered out of 

the driving fatigue assessments’ experimental EEG data, a total of 238,717 data points 

(second) was obtained from all of the nine sampled participants in all phases of the 

experiment. The corresponding proportion of data points for driving two hours before a 

30 minute break, two hours after a 30 minute break and four hours with no break are 

59,663, 59681 and 119,373, respectively (Table 3-2). Independent variables were 

designed to compare the participants’ performance and psychophysiological responses to 

the influence of driving with a break and without a break. A comparison between the 

participant’s age and gender influence was made to compare the amount of performance 

deterioration and psychophysiological evidence of fatigue experienced by each age and 

gender group. The details of the driving fatigue data point per subject on each phase of 

the experiment can be found in table 1 in appendix I. 
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Table 3-2: Driving fatigue data points  
Time  Before break After break No break 

30 minutes 14,891 N/A 14,899 
60 minutes 14,909 N/A 14,907 
90 minutes 14,947 N/A 14,916 
120 minutes 14,916 N/A 14,924 
150 minutes 30 minute 

break 
30 minute 

break 14,930 
180 minutes N/A 14,899 14,915 
210 minutes N/A 14,908 14,929 
240 minutes N/A 14,962 14,953 
270 minutes N/A 14,912 N/A 

Total 59,663 59681 119,373 

 

3.6.2 Urban Bus Passenger Ride Comfort Experiment 

3.6.2.1   Sampled Rroute 

The psychophysiological signal measurement was conducted in the laboratory (control 

experiment) and on Lothian Buses routes in the urban part of Edinburgh, UK (Figure 3-

6). Onboard data collections were carried out during the regular off-peak hours to control 

the influence of noise, temperature, overcrowding and in-vehicle time on passenger 

comfort. The bus passenger comfort experiment was conducted on selected Lothian bus 

routes characterised by asphalt and sett pavements. This study investigated passenger 

discomfort on bus service 36 and 21 from Morningside to Ocean Terminal and Ferry 

Road to Royal Infirmary Edinburgh, respectively (Figure 3-7). 

 
Figure 3-6: Map of the sampled pre-determined Lothian Bus routes 



58 
 

 

 
Figure 3-7: Lothian Buses and route pavement types 

 

3.6.2.2   Participants 

The general participant information, such as gender and age, was collected before the 

study’s commencement. The experiments involved twenty healthy volunteers (12 males 

and eight females aged from 21 to 50 years). All the participants were healthy and not 

suffering from any illnesses and not on any medication, with no history of brain 

malfunction or mental illness. The participants had no record of cardiovascular or 

gastrointestinal disorders (Lin et al., 2013; Ko et al., 2011; Chen et al., 2010). The 

volunteers had normal sleep the previous night of the experiment because these factors 

could significantly arouse the subject’s cognitive state (Taghizadeh-sarabi et al., 2013; 

Lal & Craig, 2005; Lal & Craig, 2002). Also, all the participants had normal or corrected-

to-normal vision. Before the start of the real experiment, participants were trained to know 

the scope of the study. Each participant reported total compliance with the experiment’s 

standards and regulations and adhered to instructions, such as not to move, not to restrict 

the motion stimulus and not to fall asleep, but rather concentrate on the reading task. The 

MyndPlay headset was placed on the subjects, and the experiment began when the 

participants were set and ready for the onboard reading task. 

3.6.2.3  Bus Passenger Discomfort Data Acquisition 

A significant change in postsynaptic neurons instantly reflected in the EEG, making this 

approach outstanding for examining the rapid shift in brain activity (Bell & Cuevas, 

2012). Using the EEG is one of the best approaches for monitoring the rapid shift in brain 
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activity induced by the influence of dynamic vehicular motion conditions (real-life) due 

to its portability, time-series data capture capability and high temporal resolution (Yu et 

al., 2010; Chen et al., 2010). This study was interested in bus passenger discomfort and 

experimental design stage-related changes in measured EEG by using baseline periods 

for comparisons. Consequently, datasets in two stages were collected for each subject 

(passenger) in this study, including the stationary laboratory (control) and dynamic 

onboard bus environment experiments (Bell & Cuevas, 2012; Ko et al., 2011). The control 

experiment for the passenger comfort study was conducted in a laboratory under the 

control temperature of 180C and light, with a noise level below 60 dB (Figure 3-8). Each 

participant was informed about the scope of the experiment, and gave their written 

consent for participation. The participants arrived at the laboratory at 09:00 after a regular 

night’s sleep and had breakfast, and the investigators ensured that they all met the 

experiment’s conditions. 

 
Figure 3-8: Participants in the laboratory and onboard bus experiments 

 

The EEG data started at 09:30 in the laboratory. All the participants were instructed to 

sit, relax in a stable laboratory environment and read on their mobile phone for the 

experiment’s duration (10 minutes). The control experiment was designed to evaluate or 

test the effects of independent variables (road roughness, posture and bus type) on the 

participant’s level of discomfort as it was used in the studies of Azizan et al., 2016; Lin 

et al., 2013; Ko et al., 2011; Yu et al., 2010; Chen et al., 2010; Kerick et al., 2009; Huang 

et al., 2009; Lin et al., 2007; Lal et al, 2003. 

The second stage of the study demonstrates real-life urban bus passenger discomfort that 

comprises of an EEG system and the recommended passenger comfort assessment scale 

of the international standard ISO 2631-1 for public transport. Afterward, the laboratory 
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experiment and the subjects were conveyed to the starting point of the real-life onboard 

bus experiment by a car and were allowed to settle down for 15 minutes before the 

experiment commenced. An instrumental vehicle data collection approach was adopted. 

The installed system on the bus was a prototype designed by Suryawanshi et al., 2015 and 

Castellanos et al., 2011. The PB was mounted close to the subjects’ feet in a fixed position 

that made the PB active with the vehicle’s speed. The system collected different real-time 

speed profile data, such as the peak-to-peak value of velocity, acceleration, and 

deceleration. The investigators were seated in a passenger seat to monitor the data 

collection processes (Figure 3-9). 

 
Figure 3-9: Data collection system layout 

 

EEG brain activity is sensitive to any environmental change (Chen et al., 2010). 

Consequently, this study stage focused on road roughness characteristics, passenger 

posture and bus type on the participant’s psychophysiological responses. The 

psychophysiological signal was measured on this stage of the experiment with two 

dynamic vehicle motion conditions with participants seated for 15 minutes and standing 

for 10 minutes on asphalt pavement in single- and double-decker buses. Secondly, two 

dynamic vehicle motion conditions of five minutes each for seated and standing on sett 

pavement in both single- and double-decker buses, the psychophysiological signal was 

measured (Table 3–3). Therefore, the onboard urban bus passenger discomfort-related 

beta EEG, and the eSence metric of attention brain activity (psychophysiological 

response) were collated in the following eight stages of the experiments: (1) seated on 
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asphalt pavement in a single-decker bus, (2) standing on asphalt pavement in a single-

decker bus, (3) seated on asphalt pavement in a double-decker bus, (4) standing on asphalt 

pavement in a single-decker bus, (5) seated on sett pavement in a single-decker bus, (6) 

standing on sett pavement in a single-decker bus, (7) seated on sett pavement in a double-

decker bus and (8) standing on sett pavement in a double-decker bus. 

Table 3-3: Passenger comfort experimental phase 
Phase Experiment 

1 Stationary seated condition in laboratory.  

2 Dynamic vehicle motion condition: seated and standing conditions on 
asphalt pavement. 

3 Dynamic vehicle motion condition: seated and standing conditions on sett 
pavement. 

 

The subjective comfort assessment was based on the participant’s experience on each 

stage of the experiments by using the recommended passenger comfort assessment scale 

of the international standard ISO 2631-1 for public transport (ISO2631–1, 1997b). The 

researchers explained the questionnaire to the subjects before the commencement of the 

experiment. This questionnaire has perceived levels of discomfort, which include not 

uncomfortable, a little uncomfortable, fairly uncomfortable, uncomfortable, very 

uncomfortable and extremely uncomfortable (ISO2631–1, 1997b). The questionnaire was 

administered immediately after the onboard bus experiment by using a self-administered 

survey technique because any experiment where the subject’s cognitive state is 

monitored, interrupting the experiment to administer the questionnaire could significantly 

arouse the subjects (Chen et al., 2010). The questionnaire was designed to capture the 

perception of passenger-level discomfort on each experiment phase.   

The EEG data recorded during urban bus passenger discomfort was categorised and 

grouped based on the baseline and eight stages of the onboard experiment. After data 

cleaning, 11,169 and 65,607 data points were obtained from all the 20 sampled 

participants in baseline and onboard experiments, respectively. The corresponding 

proportion of data points of single decker-seated-asphalt, asphalt-double-standing, sett-

single-standing and sett-double-seated are 15,500, 9,339, 3,997 and 4,034, respectively 

(Table 3–4). The details of each participant’s data points in all stages of the experiment 

are in appendix II. The independent variables were designed to compare the participants’ 

performance and psychophysiological responses to the experimental design variables’ 
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influence. Also, the comparison between the participant’s age and gender influence was 

incorporated to evaluate the variations in the level of discomfort experienced by each of 

the age and gender groups.  

Table 3-4: Passenger discomfort data point  

Variable Data point (second) 

Baseline 11,169 

Asphalt-single-seated 15,500 

Asphalt-single-standing 9,369 

Asphalt-double-seated 15,464 

Asphalt-double-standing 9,339 

Sett-single-seated 3,939 

Sett-single-standing 3,997 

Sett-double-seated 4,034 

Sett-double-standing 3,965 
 

 

3.6.3 Speed-Time Data 

A series of approaches have been used to collect data to develop vehicle driving patterns 

and estimate passenger comfort disturbance (Kottenhoff & Sundström, 2012). Presently, 

driving patterns or cycles are developed with data collected by using the onboard data 

collection approach that is usually stratified by vehicle type, road type, and level of speed 

and time. Second-by-second speed data was collected for this study on selected Lothian 

bus routes. In this study, an instrumented vehicle approach that permits quantitative 

assessments of vehicle performance under actual road conditions was used to gather time-

series data (Bosetti et al., 2014). The speed data logging device (PerformanceBox) was 

installed on selected single- and double-decker buses on selected Lothian bus routes. The 

real-life traffic situations linked directly with the real-time speed-time measurements, 

which were based on the instantaneous driving conditions of speed, acceleration, 

deceleration, cruise and idle.  

3.7 Data Preparation and Analysis 

The degree of portability and weight (light) of the EEG systems allows for flexible data 

collection in real-world stable or dynamic environments (Imotion Users Guide, 2019; 

Mavros et al., 2016; Cohen, 2011). The recorded EEG signals were fed to the MindSet 
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Research Toolkit (MRT) before the Fast Fourier Transform (FFT). The data was filtered 

and grouped based on the experimental independent variables. The event-related beta 

EEG oscillations were evaluated by decomposing the signals into magnitudes relative to 

the experimental designed phases and variables. The magnitudes were determined by 

obtaining the average of all the amplitudes (EEG activity) of the beta band’s frequency 

range to a data point per second for each subject across all the experimental conditions 

(Bell & Cuevas, 2012). Urban bus passenger discomfort evaluation includes two parts: 

the statistical analysis by using both objective and subjective methods, and the ride quality 

models that are developed to establish the relationships between dependent variables 

(beta EEG frequency band and eSense metric for attention) and independent variables 

(road roughness, posture, speed profile factors and bus type). The data provided the model 

of a human’s feelings to the influence of road characteristics and driving behaviours in 

both single- and double-decker buses in different postures (seated and standing). The ERP 

beta and eSense metric of attention brain activity were exported as American Standard 

Code for Information Interchange (ASCII) to Statistical Package for Social Sciences 

(SPSS) for statistical assessment (Delorme & Makeig, 2004). Statistical analysis was 

performed by using ANOVA, the post hoc test and testing of the subject-effect via the 

SPSS. Estimating the marginal mean of beta brain activity and eSense metric for attention 

was used to determine the relationship between the dependent and independent variables.  

3.7.1 Factors of Data Dnalysis (dependent variables) 

In this study, the advance EEG data view software (license) MRT produced by Myndplay 

Ltd., which gives the most control over the raw data by exporting the data into CSV or 

MATLAB format was used. The bioelectrical signals obtained were converted into 

numeric values of eSense metric of attention and meditation that ranged from 0 to 100 

and the power spectrum of the delta, theta, alpha, beta and gamma. The EEG measures 

the brain’s electrical potential responses that flow during the dendrites’ synaptic 

excitations in the cerebral cortex (Rahman et al., 2012). The EEG frequency brainwaves 

(activity) consists of five-byte floating-point numbers of delta (δ) activity [0.5 - 4] Hz, 

theta (θ) activity [4 - 8) Hz, alpha (α) activity [8 - 13] Hz, beta (β) activity [15 - 25] Hz 

and gamma (γ) activity [30-50] Hz (Escobar et al., 2020; iMotions, 2016; Zamora, 2001). 

These values have no units, and therefore, are only meaningful compared to each other 

and themselves in terms of their relative quantity and temporal fluctuations or oscillations 

(Mitsukura, 2016; iMotions, 2016; Liu & Sourina, 2014; NeuroSky, 2011; Lewis, 2000). 

In this study, the dependent variables are eSense of attention, and the beta EEG frequency 



64 
 

band, which are found to be associated with the experience of stress and fatigue (Saeed 

et al., 2018; Al-Shargie et al., 2016). 

3.7.1.1   EEG eSense Metric Value of Attention 

Brain response to external or internal stimulus is a function of different patterns of neural 

interaction. The unsigned one-byte value reports the eSense metric of attention of the 

subject(s) and indicates the users’ degree of mental focus during intense concentration 

and focus. The prolongation of the theta EEG spectrum correlates with the selective level 

of attention, and a coordinated response that indicated arousal, alertness or readiness is 

associated with theta oscillations during motor behaviour (Basar et al., 1999) (Basar et 

al., 1999). Although brain oscillations are correlated with multiple functions depending 

on sensation and event(s), the descriptions are informed of sensory registration movement 

and cognitive processes that are associated with attention (Basar et al., 1999). Also, 

attention-related responses were found in humans over the frontal and central 

electrophysiological changes in the frontal cortex and in the parietal cortex. The ERP 

stimuli gave rise to high states of induced focused attention in subjects (Başar et al., 

2001). 

In this study, the ERP eSence metric of attention signal processing was conducted by 

using the NeuroSky’s MindSet Research Tool (MRT). The eSense metric of attention 

interpreted following the NueroSky eSense meter scales of 1 to 100 (NeuroSky Inc., 

2009). Any values between 40 and 60 is considered “neutral” and is similar in notion to 

“baselines” that are established in conventional EEG measurement techniques. A value 

from 60 to 80 is considered slightly elevated. It may be interpreted as a level of being 

possibly higher than a normal level of attention or meditation. Also, values from 80 to 

100 are considered elevated, indicating heightened levels of eSense (Table 3-5). Values 

between 20 and 40 indicate reduced eSense while values between 1 and 20 represent 

enormously lowered levels of eSense, which could be interpreted as an indication of the 

states of distraction, agitation, or abnormality (iMotions, 2016; NeuroSky, 2011). The 

interpretation of the eSense metric of attention values between 1 and 39 makes it suitable 

as the dependent variable in the driving fatigue and passenger discomfort study.  
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Table 3-5: Interpretation of the eSense metric for attention 

Value Interpretation 

81 - 100 Considered as elevated, which strongly indicates heightened 

levels.  

61 - 80 Considered as slightly elevated and may be interpreted as levels 

being possibly higher than normal levels. 

41 - 60 Neutral (similar in notion to baseline). 

21 - 40 Distraction, agitation, or abnormality. 

1 - 20 Distraction, agitation, or abnormality. 
Source: (iMotions, 2016; NeuroSky, 2011) 

 

3.7.1.2   EEG Power Spectrum and Interpretation of the Beta Frequency Band 

The ERP or evoke potential is a significant fluctuation in brain activity that results from 

induced neural activity in the Central Nervous System (CNS) either from internal or 

external stimuli (Teplan., 2002). ERPs are known to be a suitable approach for 

investigating both normal and abnormal aspects of cognitive processes. Beta EEG 

frequency bands [15 - 25] were chosen from the five-byte floating-point values of EEG 

frequency bands as the second dependent variable because it is found to be associated 

with stress, anxiety and the inability to relax when there are significant changes relative 

to the influence of the experimental design variable or event (Subhani et al., 2011; 

Sulaiman et al., 2010; NeuroSky Inc., 2009). The beta EEG frequency band is associated 

with integrating the multi-modal cerebral cortex responses relative to internal or external 

stimuli. The fluctuations in power (amplitude) of the EEG frequency bands are associated 

with diverse brain states, such as an increase in beta brain activity associated with 

alertness or cognitive demands (Mavros et al., 2016). Also, a significant increase in the 

EEG power spectra in the beta band demonstrates an increase in individual arousal level 

(Borghini et al., 2014; Okogbaa et al., 1994), and an increase in motion sickness (Chen et 

al., 2010). 

Stress has also been found to cause an increase in EEG beta band power (Saeed et al., 

2018; Saeed et al., 2017). Al-Shargie et al. (2016) indicated that a single-channel EEG 

could be used to examine emotion at the front region and cortical activation in the brain 

during induced stress stimulus as an indication of change (increase) in beta brain activity. 

Another study found the negative linear relationship between the power ratio of beta brain 
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activity and the subjective score as an indication of stress (Abdul-Hamid et al., 2010). 

Furthermore, other studies have shown that beta brain activity varies (increased) relative 

to stimuli difficulty, demonstrating that workload and stress can be successfully 

monitored via a single-channel EEG device (Escobar et al., 2020; Saeed et al., 2018; Al-

Shargie et al., 2016). A significant change in beta EEG brain waves ranges from the 

optimal (that could be termed as baseline) to too little or too much as detailed in Table 3-

6, making the beta EEG frequency band suitable for investigating driving fatigue and 

passenger discomfort. 

Table 3-6: Interpretation of the EEG band to mental and emotional feeling 
  

S/N 
  

Brain 
wave 

Interpretation 

Optimal Too little Too much 

1 Beta  Conscious focus, 
memory, problem 
solving 

Depression, poor 
cognitiveability, 
Attention Deficit 
Hyperactivity 
Disorder (ADHD) 

Anxiety, high arousal, 
inability to relax, stress 

Source: NeuroSky, 2011 

 

3.7.1.3   Artefact Removal 

EEG data/signals are sensitive to noise that does not originate from the brain and usually 

mixes with the data. The noise sources in EEG data are not limited to technical error, 

subject behaviour and physical activities. EEG signals are also liable to artefacts 

whenever there is insufficient contact of the sensors or reference contacts to a person’s 

skin due to hair in the way or excessive motion of the wearer. According to the ThinGear 

manual 2010, the NeuroSky’s EEG data filtering technology and eSense™, the algorithm 

was designed to detect, correct, compensate for, account for, and tolerate different types 

of non-EEG artefacts. 

In this study, the following approaches were used to denoise data to the minimum level. 

The first attempt to minimise artefacts from EEG signals started from the time of data 

collection in which the manufacturer’s user guide and data collection procedures were 

followed by ensuring that the headset fit snug on the head and the electrodes and ear clip 

were securely attached to the skin. Secondly, an artefact rejection method was applied in 

which the contaminated signals were discarded (Subhani et al., 2011). The artefact 

removal was based on the unsigned one-byte integer value that ranges in value from 0 to 
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200 and defines the fidelity of the signal measured by Myndband. This value is usually 

output every second and indicates the degree of the most recent measurements’ poorness. 

Any non-zero value indicates that some noise contamination is detected in the process of 

data collection (Figure 3-10). The higher the number, the more noise is detected. The 

value of 200 has a special meaning, and it shows that the Myndband contacts (sensors) 

are not touching the user’s skin. In this study, any section of the data where the noise 

signal is more than five units was filtered out since physiological noise can rarely be 

avoided. 

 

Figure 3-10: Data sample of the EEG used for analysis 

 

The participant’s psychophysiological measurements were characterised by noisy values, 

which made the extraction of the temporal features of the data challenging (Guo et al., 

2020; Luck & Gaspelin, 2017). Since the raw EEG data for both driving fatigue and 

passenger discomfort were skewed, an outlier analysis was conducted by using individual 

box plots for each driving fatigue and passenger discomfort beta EEG brain activity in 

order to identify extreme data points (Caine, 2016). Based on this analysis, simple 

negative and positive amplitude thresholds of 2.5 and 97.5 percentiles, which enclosed 

the 95% of the beta brain activity and eSense metric of attention were defined and applied 

separately to all the subject’s psychophysiology responses on each stage of the 

experiment (Pollet & Meij, 2017; Adil & Irshad, 2015). Values smaller than the 2.5% 

percentile or larger than the 97.5% percentile were considered outliers and were removed 
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as artefacts. There were 20,483 data points (7.9%) of driving fatigue and 19,224 data 

points (20%) of passenger discomfort experiments that were identified and removed as 

noise, leaving 238,717 and 76,776 data points as the final dataset processed for analysis 

and modelling for the driving fatigue and passenger discomfort study, respectively.  

3.7.2 Data Analysis 

This study’s valuable point of data analysis and discussion is to evaluate ERP from the 

modern event-related time-frequency analysis of EEG. The logical oscillatory deflections 

are evident in the averages of the EEG epochs phase, or are time-locked to a group of 

repeated stimulus or response events (Guo et al., 2020). Several approaches have been 

used for representing psychophysiological time-series data (minimum or maximum 

observation, mean, mode or median). For example, a median sample can be determined 

from aligning experimentally designed variable data. The median values on each stage of 

the experiments were determined in order to form the representative data for experimental 

conditions (Voith & Milwaukee, 2002). The most common method for representing the 

psychophysiological time series is to summarise the data by determining the average 

features of data points containing independent variables and concatenating them as a 

representative of the participant(s) (Guo et al., 2020, Luck & Gaspelin, 2017; Cohen, 

2011). The average values often reflect the fluctuation range of the participant’s 

psychophysiological response for the experiments’ conditions or events (Hoormann et 

al., 1998). In this study, the data segments on each stage of the experiments are aligned; 

the average representative data on each stage of the experimental conditions is generated 

by using the SPSS data aggregate function. The mean value of the ERPs for each stage of 

the experimental condition in this study was obtained by computing the average value of 

the total psychophysiological responses on each stage of the experimental conditions per 

subjects in order to form the representative data for each of the experimental conditions 

(Campos et al., 2020, Guo et al., 2020, Hoormann et al., 1998). The computed ERP 

average values represent the subjects’ responsiveness on each stage of driving fatigue and 

passenger discomfort experimental conditions  (Campos et al., 2020).  

Statistical Analysis 

This research used regression analysis to model the ERP responses of urban bus passenger 

discomfort and driver fatigue. This study examined the effects of road roughness, 

passenger posture and bus type on passenger comfort as well as the influence of time 
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spent driving on driver fatigue. A two-way analysis of variance (ANOVA) was conducted 

to test the predictor in the model under different conditions of the experiments  

(independent variables) (Kim et al., 2019; Luck & Gaspelin, 2017; Dien, 2017). Statistical 

significance and interaction effects were accepted at p < 0.01. The statistical method was 

used to determine whether there were significant differences between different conditions 

of the experiment and the nature of the relationship between dependent and independent 

variables. The F test of significance of effects of the data analysis and the eta-squared 

measure of the effect size of GLM univariate in the Tests of Between-Subjects Effects 

was used to compare and evaluate the predictors in the model. The partial eta-squared or 

correlation ratio is a fundamental procedure for analysing ERP responses, which has been 

widely used as effect size measures for ANOVA to evaluate the relationship between the 

dependent and independent variables (Shen et al., 2016). Also, a parametric method was 

used to analyse objective performance, and the subjects’ inter variabilities were evaluated 

(Table 3-7). The researcher ensured that before the parametric tests were used, the 

assumptions of normality were met. Statistical analyses were used to assess any 

significant variations or effects between the control experiment (a stationary seated 

condition in the laboratory) and dynamic vehicle motion conditions of seated and standing 

passengers on asphalt and sett pavements in single- or double-decker buses. The graphical 

analysis of interactions (profile plot) was plotted across each group to demonstrate the 

trends and effects by using Graphically Univariate GLM-predicted mean cell values. The 

X-axis shows the independent variables, and the Y-axis is the estimated means. 

Table 3-7: The parametric approaches used for statistical analysis 
Experimental 
study 

Dependent 
variable 
(factors) 

Experimental Design 
variable 

Statistical 
Method 

Study 1 
Simulator trial 

EEG power 
spectrum 
(beta band)  

Driving time, age and 
gender   

GLM Univariate 
(ANOVA) 

Study 2 
Simulator trial 

eSense attention  Driving time, age and 
gender 

GLM Univariate 
(ANOVA) 

Study 3 
Bus comfort 
study 

eSense attention  Speed profile factor, 
bus type, pavement 
type, posture, age and 
gender 
 

GLM Univariate 
(ANOVA) 

Study 4 
Bus comfort 
study 

EEG power 
spectrum 
(beta) 

Speed profile factor, 
bus type, pavement 
type, posture, age and 
gender 
 

GLM Univariate 
(ANOVA) 



70 
 

3.8 Summary 

In this chapter, the study design, the experimental procedure, data collection, and data 

analysis were discussed. Also, the equipment and data cleaning/artefact removal were 

discussed. The Lothian Bus routes characterised by asphalt and sett pavements were 

identified and selected as primary data collection routes. In chapter 4, the general analysis 

of the dataset obtained for the driving fatigue trial is presented and discussed. The 

influence of duration of driving on driver fatigue or performance decrements are also 

discussed. 
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CHAPTER 4 PSYCHOPHYSIOLOGICAL RESPONSES OF THE DRIVER: 
INFLUENCE OF DRIVING TIME 

4.1 Introduction 

Chapter 3 presents the research design, experimental procedure and data collection 

system layout. It also highlights the case study, sample size and details of the equipment 

used for data collection. Driver fatigue could lead to a reduction in a driver’s alertness 

and performance decrements over short- or long-term driving. In the transport system, 

cumulative fatigue due to driving time could have strong impacts on a driver’s vigilance 

and performance; therefore, a better understanding of the cause and effect of fatigue in 

the transport system is required. Generally, vigilance is known to be the central factor of 

safety for all transport operators, and there is also a significant relationship between 

vigilance and sleepiness or circadian factors (Filtness & Naweed, 2017). Also, the natural 

circadian cycle in psychophysiological response could have significant impacts on a 

driver’s level of alertness and fatigue (Philip et al., 2005; Miller & Mackie, 1978). 

Consequently, the data collection and analysis for this study was performed within the 

framework of time spent driving. The investigation of fatigue underwent some 

refinement, and all the likely influence of equipment and environmental and operational 

factors were controlled. 

Therefore, chapter 4 aims to investigate the cumulative fatigue of driver relative to the 

influence of time spent driving.  In this chapter, the average beta EEG frequency band 

and eSence metric for attention brain activity were computed, filtered and integrated to 

produce the psychophysiological response of the participants to the influence of duration 

of time spent on a driving task. The psychophysiological response of the participants with 

the influence of four hours of driving with no break, two hours of driving before a 30 

minute break and two hours of driving after a 30 minute break were computed. During 

the data collection, the investigators ensured that all the participants had a good sleep the 

night before the experiment. Furthermore, issues related to participants’ lives outside of 

work, such as driving experience, health disorders and individual proneness were 

considered when designing the approach to data collection. For instance, all participants 

had more than three years of driving experience, and they were all healthy adults with no 

display of any symptom of brain malfunction or mental illness. They had no record of 

mental therapy nor a history of mental health-related issues. None of them was on any 

prescribed medication because all this could influence brain activity.  
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4.2 Processing the Driving Datigue Psychophysiological Time Series Data 

The EEG data was partitioned into 30 minutes of periodic variations (stages) in order to 

evaluate the variance that is associated with each periodicity separately.  Therefore, the 

impacts of the duration of driving and breaks on the psychophysiological activation on 

participants’ sense of fatigue and performance decrements were investigated. The 

psychophysiological response of the subjects in each of the conditions were summarised 

by averaging the underlying data (brain activity) spanning the entire epoch, called 

principle ERPs (pERPs). The algorithms for estimating the underlying EEG brain activity 

were used to reduce data not only across the subjects, but also across all the experimental 

conditions (independent variables). A total of 238,717 data points was obtained for each 

of the beta EEG brain activities and eSence metrics of attention. The value of data points 

and the assignment of subjects to the conditions of the experiment for each of the subjects 

in relation to the study’s experimental conditions are detailed in appendix I. 

The mean values of the dependent variables (beta and eSence metric of attention) were 

obtained by using the SPSS aggregate data function. The variable participant and 

independent variables (experimental stages, age and gender) were used as the break 

variables to obtain the aggregated mean value of the dependent variables across cases. 

Therefore, new variables in the active dataset that contain aggregated (mean) data were 

created to replace the active dataset with aggregated results. Consequently, the data was 

reduced to a smaller set that explained variations between subject effects within the 

framework of subject and experimental conditions. Therefore, the aggregated mean of the 

ERPs was computed across all the conditions of the driving fatigue experiment (Luck & 

Gaspelin, 2017, Hoormann et al., 1998). The computed ERP is the average of all the 

psychophysiological response epochs of each of the subjects and conditions of the driving 

fatigue experiments. The experimental conditions (independent variables) and the 

obtained aggregated mean data (psychophysiological responses) were used for data 

analysis and modelling. The data points and assignment of subjects to the conditions of 

the experiment is detailed in Table 4-1. 
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Table 4-1: Driving fatigue data point  
Time  Before break After break Time  No break Total 

30 minutes 9 N/A 30 minutes 9 18 

60 minutes 9 N/A 60 minutes 9 18 

90 minutes 9 N/A 90 minutes 9 18 

120 minutes 9 N/A 120 minutes 9 18 

30 minutes 
break 

30 minutes 
break 

30 minutes 
break 

150 minutes 9 9 

150 minutes N/A 9 180 minutes 9 18 

180 minutes N/A 9 210 minutes 9 18 

210 minutes N/A 9 240 minutes 9 18 

240 minutes N/A 9 N/A N/A 9 

Total 36 36 - 72 144 

 

A fundamental approach and procedure for ERP that generates datasets and presents 

chances for some basic analyses, such as repeated measure analysis of variances, was 

applied. In the analysis of typical ERP in this study, an ANOVA with within-subject 

factors was applied for conditions, and between-subject factors was also used to test group 

differences (Dien, 2017). The driver vigilance and alertness decrement in this study were 

evaluated and validated by using the correlations between psychophysiological response 

(EEG brain activity) and the Samn-Perelli seven-point scale of fatigue assessment relative 

to the influence of driving time. The details of the Samn-Perelli seven-point scale of 

fatigue that asked about human sensations and functionality are: 

1. Fully alert, wide awake. 

2. Very lively, responsive, but not at peak. 

3. Okay, somewhat fresh. 

4. A little tired, less than fresh. 

5. Moderately tired, let down. 

6. Extremely tired, very difficult to concentrate.  

7. Completely exhausted, unable to function effectively.  

4.3 Relationship between a Driver’s Psychophysiological Response (Fatigue) and 

Duration of Driving 

Driving time forms an integral part of the operation, planning and understanding of 

driving fatigue. This section of the study focused on investigating the effects of prolonged 
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driving on the level of fatigue and performance decrements of a driver. The amount of 

time driving could cause adverse effects on a driver’s performance, attention, vigilance 

and reaction time (Parkes et al., 2009; Nilsson et al., 1997). Reducing the undesirable 

impact(s) of long-duration driving requires an in-depth understanding of the average 

driving time that is needed before a break is essential. The neuronal brain activity for this 

study was collated by using an EEG in response to a simulated driving task. The 

participants experienced different fatigue states and performance decrements after four 

hours of driving with no break and after two hours of driving before and after a 30 minute 

break. The first 30 minutes of the experiment in this research was used as a condition of 

a driver being fully alert and wide awake. Based on the information obtained during the 

experimental study of driver fatigue, it was observed that the majority of the subjects 

experienced gradual transitions from the state of being fully alert and wide awake to the 

state of being extremely tired and very difficult to concentrate or completely exhausted 

and unable to function effectively (performance decrements).  

4.3.1 Correlation between Driver Psychophysiological Response and Driving Time 

with and without a break: eSense Metric for Attention 

This section presents the relationship between the driver’s psychophysiological state and 

time spent driving in all stages of the experiments (four hours of driving with no break 

and two hours of driving before a 30 minute break and two hours of driving after a 30 

minute break). The evidence of the influence of time spent driving on the driver’s level 

of fatigue or distraction or abnormality in this study was evaluated by examining the 

variation(s) in average psychophysiological responses (brain activity) of the subjects on 

each stage of the experiments (Figure 4-1A-D). For example, there is no significant 

difference between prolonged driving without a break and two hours of driving before a 

30 minute break. On the other hand, prolonged driving without a break (between 150 

minutes and 240 minutes of driving) was compared to the experimental phase of two 

hours of driving after a 30 minute break. The results of driving without a break 

demonstrated significant reductions in the psychophysiological responses of all the 

participants compared to driving after a break of 30 minutes (Figure 4-1). These results 

showed the significant impacts of 30 minute breaks on a driver’s level of fatigue and 

performance decrements. These results also confirmed that the drivers exhibited signs of 

quicker recovery as a result of the short breaks (Figure 4-1A and B) when the 

psychophysiological response of driving before a 30 minute break is compared to driving 

after a 30 minute break. However, the effectiveness of breaks on psychophysiological 
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responses of the drivers solely depends on their duration of driving and their fatigue state 

at the time the break was taken. It could, therefore, be concluded that the longer the 

duration of the scheduled break is, the better the recovery and the more likelihood of 

psychophysiological and performance functions of both male and female or young and 

old drivers. The findings could be interpreted as prolonged driving having a negative 

impact on the psychophysiological functioning and ability of the drivers to react to 

incidents/accidents, and time spent driving is an essential construct for understanding 

driver fatigue.  

 
Figure 4-1: Changes in average driver psychophysiological response relative to the 
influence of driving time in different stages of the experiment 

4.3.2 Correlation between Driver Psychophysiological Response and Driving with 

and without Breaks (Beta EEG frequency band) 

The investigation of the influence of prolonged driving and breaks on a driver’s 

psychophysiological responses demonstrated that there is variation in average beta brain 

activity of driving without a break and driving with a 30 minute break. An increase in 

average beta EEG brain activity appears to demonstrate deterioration in the level of 
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alertness of the driver’s as a function of time spent driving. These findings demonstrate 

that the sequence alterations of the beta EEG power spectrum indicate signs of changes 

in the psychophysiological responses of driver’s relative to the influence of the driving 

time.  For instance, the average beta brain activity in the first 30 minutes of the driving 

task without a break and before a break are 1.72 and 1.58, respectively (Figure 4-1C). On 

the other hand, the average responsiveness of the drivers in the first 60 minutes of driving 

after the break and 180 minutes of driving without a break are 3.75 and 5.82, respectively 

(Figure 4-1D). Therefore, the observed variability in average beta EEG brain activity as 

a function of driving time could be interpreted as a gradual deterioration in the driver’s 

level of fatigue or alertness. The findings demonstrate that there is a significant difference 

between the psychophysiological responses (fatigue state) of driving after 30 minutes of 

break and driving without a break (Figure 4-1C and D). The driver’s psychophysiological 

states deteriorate as the duration of driving increases. The average beta brain activity was 

at the highest level at 240 minutes of driving for both driving with and without a break. 

For example, the average beta brain activity relative to 210 and 240 minutes of driving 

without a break is 8.02, and 9.83, respectively while the corresponding proportion of 

driver’s responsiveness after 30 minutes of break is 6.01 and 7.24, relative to the influence 

of driving for 210 and 240 minutes, respectively (Figure 4-1D). These findings 

demonstrated the significance of taking a break on the psychophysiological response 

(fatigue) of the long-distance driving task. The effectiveness of a rest break on the 

psychophysiological response of the drivers is good control measure and management of 

a driver’s fatigue and alertness.  

4.4 Modelling the Effects of Fatigue Associated with Length of Time Driving 

An increase in urban population size requires more good delivery services that sometimes 

expose the HGV drivers to unscheduled operations or extended duty time from the 

management. In some areas, drivers experience prolonged driving without a break due to 

unforeseen circumstances (such as traffic congestion, changing schedules and other 

additional tasks, such as fuelling and loading/offloading of goods), which contribute to 

fatigue in both local and long-distance hauling. This section presents the modelling of 

driver-fatigue associated effects on performance decrements and the ability to react to 

factors of road incidents/accidents as a result of prolonged driving time. The models 

established the relationship between the influence of induced stimuli effect of driving 

time, along with age and gender on driver fatigue. Cumulative fatigue due to prolonged 
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driving could be associated with decreases in driver’s psychophysiological activation 

(decline in the level of fatigue or performance decrements) (Nilsson et al., 1997). 

4.4.1 Evaluation of Driver’s Psychophysiological Response to the Influence of 

Driving Time (before a 30 minute break and no break of the first two hours: eSense 

metric for attention) 

The validation of the results was carried out by modelling the driver’s 

psychophysiological response relative to the influence of the duration of driving. The 

corrected model row shows that the overall model was significant (p < 0.01) and the effect 

size shows that model explains 44.9% of the variance in the subject’s responsiveness 

(fatigue or performance decrements). There is no significant difference between the 

experimental phases of driving before a 30 minute break and the first two hours of driving 

without a break. The durations of driving were also found to be statistically significant (p 

< 0.01). The effects size shows that time spent driving explains 43.5% of the variance of 

the dependent variable (brain activity) or driver fatigue (Table 4-2). It could be interpreted 

as the cumulative effects of prolonged driving having a significant impact on the extent 

of driver fatigue. 

Table 4-2: Changes in driver fatigue as a function of the length of time spent driving 
before a break and no break (eSense metric for attention) 

Source 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Corrected Model 514.376 6 85.729 8.817 0.00 0.449 

Intercept 170615.2 1 170615.2 17546.71 0.00 0.996 

Phase 0.84 1 0.84 0.086 0.77 0.001 

Time 486.283 3 162.094 16.67 0.00 0.435 

Gender 4.783 1 4.783 0.492 0.48 0.008 

Age 24.357 1 24.357 2.505 0.12 0.037 

Error 632.027 65 9.723    
a. R Squared = .449 (Adjusted R Squared = .398)  

4.4.2 Evaluation of a Driver’s Psychophysiological Response to the Influence of 

Driving Time (After a 30 minute break and no break of the last two hours: eSense 

Metric for Attention) 

The validation of results was carried out by modelling the eSense metric for attention 

(psychophysiological response) relative to time spent driving. The model “Test of 

Between-Subjects Effect” was applied by using ANOVA. There is a significant difference 
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between the experimental phases of driving after a break of 30 minutes and driving for 

the last two hours with no break. The effect size shows that time spent driving attributed 

to 49.3% of the variance in driver fatigue (Table 4-3). The corrected model row shows 

that the overall model was significant (p < 0.01), and the effect size shows that the model 

explains 61.7% of the variance in a subject’s responsiveness (fatigue or performance 

decrements). The duration of driving was also found to be statistically significant (p < 

0.01). It could be interpreted as the cumulative effects of prolonged driving having a 

significant impact on the extent of driver fatigue. 

Table 4-3:  Changes in driver’s psychophysiological response as a function of the  
length of time spent driving after a break and no break (eSense metric for attention) 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

Partial Eta 
Squared 

Corrected Model 1925.679 6 320.947 17.42 0.00 0.617 

Intercept 134155 1 134155 7281.52 0.00 0.991 

Phase 342.177 1 342.177 18.572 0.00 0.222 

Time 1162.37 3 387.457 21.03 0.00 0.493 

Gender 82.797 1 82.797 4.494 0.04 0.065 

Age 302.473 1 302.473 16.417 0.00 0.202 

Error 1197.56 65 18.424    

R Squared = .617 (Adjusted R Squared = .581) 
 
 

4.4.3 Driver’s Psychophysiological Responses as Function of the Influence of 

Driving Time (before a break and after the first two hours of no break: Beta Brain 

Activity) 

The model “Test of Between-Subjects Effect” was applied using ANOVA to model the 

relationship between a driver’s psychophysiological response on the experimental stage 

of driving for two hours before a 30 minute break and after the first two hours with no 

break. The results indicated that there is no significant difference between the 

psychophysiological responses of the subjects to the influence of the experiment’s 

designed phases. The corrected model row shows that the overall model was significant 

(p < 0.01) levels, and the effect size indicates that the model explains 61.9% of the 

variance in fatigue or performance decrements, which can be attributed to the influence 

of the duration of driving (Table 4-4). It could be concluded that the cumulative effects 

of prolonged driving have significant impacts on the extent of driver fatigue. Also, the 
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driver’s related variables, such as age and gender, were introduced as part of the model. 

The results demonstrated that age is statically significant (p < 0.01). These results suggest 

that a driver’s age has a significant impact on driver fatigue or performance decrements 

relative to the influence of the duration of driving.  

Table 4-4: Changes in a driver’s response to the influence of driving time before a 
30 minute break and no break for the first two hours (beta EEG frequency band) 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

Partial Eta 
Squared 

Corrected Model 87.673 6 14.612 17.633 0.00 0.619 

Intercept 583.627 1 583.627 704.299 0.00 0.916 

Phase 0.384 1 0.384 0.463 0.49 0.007 

Time 75.759 3 25.253 30.475 0.00 0.584 

Gender 10.083 1 10.083 12.167 0.00 0.158 

Age 2.293 1 2.293 2.767 0.10 0.041 

Error 53.863 65 0.829       

R Squared = .619 (Adjusted R Squared = .584) 
 
 

4.4.4 Driver’s Psychophysiological Responses as a Function of the Influence of 

Driving Time after a Break and for the Last Two Hours with no Break (beta brain 

activity) 

The validation of the results was carried out by modelling the relationship between the 

average beta EEG brain activity relative to the subject’s time spent driving after a 30 

minute break and driving without a break. The model “Test of Between-Subjects Effect” 

was applied using ANOVA. In this model, the duration of driving was found to be 

significant (p < 0.01). The results indicated that the variation between the average 

psychophysiological response of the participants to the influence of driving time after a 

30 minute break and driving without a break after 120 minutes of driving is statistically 

significant (p < 0.01). The effects size indicates that the model explains 47.0% variance 

in participants’ responsiveness to the influence of driving time. The corrected model row 

also shows that the overall model was significant at p < 0.01 levels and the effect size 

demonstrate that the model explains 61.7% of the variance in a subject’s responsiveness 

(fatigue or performance decrements) to the influence of the duration of driving. This result 

could be interpreted as cumulative effects of prolonged driving having a significant 
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impact on the extent of driver fatigue. Besides, the driver’s related variables, such as age 

and gender, were introduced as part of the model. The results demonstrated that age is 

statically significant (p < 0.01) while the influence of gender is not. The results suggest 

that a driver’s age also has a significant impact on driver fatigue or performance 

decrements relative to the duration of driving time (Table 4-5). 

Table 4-5: Changes in a driver’s response to the influence of driving time after a 30 
minute break and no break of the last two hours. 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

Partial Eta 
Squared 

Corrected Model 403.350 6 67.225 17.485 0.00 0.617 

Intercept 2512.33 1 2512.33 653.466 0.00 0.910 

Phase 66.63 1 66.63 17.331 0.00 0.211 

Time 221.292 3 73.764 19.186 0.00 0.470 

Gender 99.439 1 99.439 25.864 0.00 0.285 

Age 8.889 1 8.889 2.312 0.13 0.034 

Error 249.9 65 3.845    

 Squared = .617 (Adjusted R Squared = .582)  

4.4.5 Age Influence on Driver Fatigue: eSense metric for attention 

The impact of fatigue on different age groups is found to manifest at different rates to 

changes in a driver’s ability to react to factors of incidents/accidents. The result of this 

study demonstrated that there is a significant relationship between the subject’s 

psychophysiological response (eSense metric for attention) of different age groups and 

the duration of time spent driving (Figure 4-2A-B). The responsiveness of the drivers that 

are less than 30 years old after 120 minutes of driving indicated that the younger the 

driver, the greater their level of fatigue becomes over time. The results could be 

interpreted as prolonged driving having a significant impact on both young and old 

drivers’ psychophysiological responses, but is more prominent on the participants that are 

less than 30 years old (Figure 4-2B). 
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Figure 4-2: Changes in the average driver’s psychophysiological response relative to 
the influence of driving time (age influence) 

 

The results showed that drivers of different age groups exhibit and repeat different states 

of fatigue relative to the influence of driving time. Although the beta brain activity of 

both young and old drivers showed a significant increase relative to the influence of the 

duration of driving, the younger drivers exhibited higher levels of fatigue as a function of 

the duration of driving, as reflected by the psychophysiological response compared to 

older drivers (Figure 4-2C–D). For example, the average response of drivers who are less 

than 30 years old at 120 minutes, 210 minutes and 240 minutes of driving are 5.23, 7.43 

and 8.66 beta brain activity, respectively, compared to those who are older than 30 years, 

with an average beta brain activity of 4.43, 6.5 and 7.83, at 120 minutes, 210 minutes, 

and 240 minutes, respectively (Figure 4–2D). However, the drivers who are older than 30 

years appear to show more significant recovery from the rest breaks compared to those 

below 30 years. The results of the investigation demonstrated that the age of the driver 
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should always form parts of the essential variable in research aims in order to establish 

the relationship between driver fatigue and driving time.  

4.4.6 Gender Influence on Driver Fatigue: eSense metric for attention 

This section presents the influence of a driver’s gender on the analysis of the extensive 

simulated driving tasks conducted to establish the correlations between driver fatigue and 

duration of driving time. The effect of fatigue on drivers could vary by the gender of the 

participants. The evidence of variations in male and female driver performance 

decrements was validated by using the average psychophysiological response of the 

participants to the influence of driving time. The results demonstrated that both male and 

female brain activity change when there were transitions from the states of fully alert and 

wide-awake to fatigue relative to the influence of time spent on a driving task (Figure 4-

3A-D). The results indicated that a more significant loss of psychophysiological 

activation and decrements in performance probably occur in female drivers compared to 

male drivers. The results showed that a lower average value eSense metric for attention 

was observed in females during the prolonged driving period compared to males (Figure 

4-3B). However, the observed differences are not statistically significant (p < 0.01). 

Considering the beta brain activity, the observable increase in a driver’s responsiveness 

to the influence of the duration of driving are statically significant (p < 0.01) see Figure 

4-3D. Female drivers consistently rate themselves as being extremely tired compared to 

males. These results could be interpreted as female drivers exhibiting more of a level of 

fatigue and performance decrements that could impair their level of alertness, distractions 

and reaction time compared to male drivers. 
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Figure 4-3: Changes in average psychophysiological response relative to the 
influence of the participants’ gender 

 

4.5 Relationship between the Average eSense Metric for Attention and a 

Drivers’s Perception of Fatigue and Performance Decrements 

This section presents the relationship between the average brain activity and subjective 

fatigue assessment ranking scale relative to the influence of driving time. The results of 

the analysis demonstrated that there is a significant relationship between the driver’s 

psychophysiological response and subjective fatigue assessment (Figure 4-4A and B). 

Furthermore, the results demonstrated the correlations between the average 

psychophysiological response and transitions from a state of being fully alert and wide 

awake to being extremely tired and very difficult to concentrate or completely exhausted 

and unable to function effectively as a function of experimental stages seems to exist. 

Consequently, using the average eSense meter for the attention of the first 30 minutes on 
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the HGV driving simulator as the baseline of psychophysiological response, and being 

fully alert and wide awake as the subjective assessment as the references point. The results 

of this study confirmed that a driver’s level of attention decreases significantly in 

proportion to the ranking of the subjective fatigue assessment (Figure 4-4A and B). These 

findings could be interpreted as being when the psychophysiological response decreases, 

changes in subjective fatigue assessment scale also increase. The results could be 

concluded as the more the eSense meter of attention decreases, the more the driver’s level 

of alertness, fatigue or performance deteriorates. For instance, the average 

psychophysiological responses of subjects that felt fully alert and wide awake, extremely 

tired and very difficult to concentrate and completely exhausted and unable to function 

and concentrate effectively are 51.96, 37.27 and 35.23, respectively (Figure 4-4B).
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Figure 4-4: Relationship between the change of the average psychophysiological response and changes in driver’s subjective fatigue 
assessments 
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4.5.1 Assessment of a Driver’s Perception Relative to Changes in their 

Psychophysiological Response (eSense metric for attention) 

Driver performance decrements relative to the influence of prolonged driving is generally 

known to be one of the significant human factors causing road incidents/accidents, 

injuries and damage of property (Nilsson et al., 1997). The validation of the relationship 

between the psychophysiological response and subjective fatigue assessment relative to 

time spent in driving was conducted by using the “Tests of Between-Subjects Effects” 

model. The results of the statistical analysis in Table 4-6 indicated that both the corrected 

model and the subjective fatigue assessment ranking scale concerning driver fatigue or 

performance decrement are statically significant (p < 0.01). The results of this finding 

demonstrated the possibility of using EEG as a tool to monitor driver fatigue (Lal & Craig, 

2002). Also, the model extended further to test the influence of participant’s age and 

gender on fatigue or performance decrements. The results revealed that the age of the 

participants is statistically significant (p < 0.01) and the effect size demonstrated that 

9.9% of the variances in driver fatigue (eSense attention meter) could be attributed to the 

influence of age.  

Table 4-6: Changes in psychophysiological response and driver’s perception 
relative to the influence of the length of driving time (eSense metric for attention) 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

Partial Eta 
Squared 

Corrected Model 2120.304 8 265.038 16.649 0.00 0.679 

Intercept 58629 1 58629 3682.81 0.00 0.983 

Gender 46.246 1 46.246 2.905 0.09 0.044 

Age 109.938 1 109.938 6.906 0.01 0.099 

Subjective 1699.17 6 283.195 17.789 0.00 0.629 

Error 1002.94 63 15.92    

R Squared = .679 (Adjusted R Squared = .638 

 

4.5.2 Psychophysiological Response and Driver’s Perception of Fatigue (eSense 

metric for attention): Parameter of Estimates 

The concept that prolonged driving without a break may significantly affect driver fatigue 

is one of the factors that prompt the need for investigation in this study. Therefore, this 

study clarified the point that brain activity could produce an indication of changes in the 

psychophysiological response of drivers to influence the duration of driving. Table 4-7 

presented the relationships between passengers’ psychophysiological response (eSense 
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metric for attention) and subjective fatigue assessment relative to the influence of the 

duration of driving. The statistical analysis “Parameters Estimate” showed that the 

correlation between the subjective fatigue assessment and psychophysiological responses 

are statistically significant (p < 0.01). The model intercept was significant (p < 0.01) and 

the effect size shows that the model explains 86.6% of the relationship between EEG 

brain activity and subjective fatigue assessment. 
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Table 4-7: Evaluation of the relationship between the psychophysiological response and drivers’ perception (eSense meter for 
attention) 

Parameter B Std. Error t Sig. 
99% Confidence Interval 

Partial Eta 
Squared Lower 

Bound 
Upper Bound 

Intercept 35.71 1.77 20.179 0.00 31.009 40.41 0.866 

Gender 1.672 0.981 1.704 0.09 -0.934 4.279 0.044 

Age -2.633 1.002 -2.628 0.01 -5.294 0.028 0.099 

Fully alert, wide awake 
 

16.734 4.343 3.853 0.00 5.199 28.27 0.191 

Very lively, but not at peak 
 

14.211 2.211 6.427 0.00 8.338 20.085 0.396 

Okay, somewhat fresh 
 

14.231 2.142 6.643 0.00 8.541 19.922 0.412 

A little tired, less than fresh 
 

13.314 1.94 6.862 0.00 8.16 18.467 0.428 

Moderately tired, let down 
 

8.205 1.724 4.758 0.00 3.624 12.785 0.264 

Extremely tired 2.048 1.948 1.052 0.29 -3.126 7.222 0.017 

The parameter “Completely exhausted” is set redundant 
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4.5.3 Evaluation of the Relationship between the Psychophysiological and 

Subjective Responses of the Participants: Gender Influence 

The graphical representation of the relationship between male and female driver’s EEG 

brain-induced signals and their subjective assessment on the level of fatigue or alertness 

to the influence of the duration of driving is shown in Figure 4-5. These results 

demonstrated that there are no significant differences between male and female 

psychophysiological responses relative to the subjective assessment as a function of the 

duration of driving by using the eSense metric for attention. These could be explained as 

there is no significant difference in evaluating the relationship between male and female 

psychological responses and subjective assessments.  

Figure 4-5: Driver’s psychophysiological response (eSense metric for attention) and 
subjective assessment: gender influence 
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4.5.4 Evaluation of the Relationship between Psychophysiological and Subjective 

Responses: Age Influence 

The results in Figure 4-6 shows the graphical illustration of the correlations between the 

average eSense metric for attention EEG brain activity and the subjective fatigue 

assessment of different age groups relative to the influence of the duration of driving. The 

results demonstrated that the psychophysiological activation of drivers who are less than 

30 years old is lower compared to those who are older than 30 years. These results could 

be interpreted as young drivers exhibit a high level of fatigue and performance decrements 

compared to older ones relative to the influence of prolonged driving. Therefore, 

investigation of the transition from the state of being fully alert to the state of being 

extremely tired or completely exhausted (fatigue state) demonstrated a decrease in the 

eSense metric for attention brain activity. 

 
Figure 4-6: Driver’s psychophysiological response (eSense metric for attention) and 
subjective assessment: age influence 
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4.6 Relationship between Average Beta Brain Activity and Driver’s Perception 

of Fatigue and Performance Decrements 

Driver’s fatigue and distraction are related to cognitive functions and difficulties (Lal & 

Craig, 2001). This section presents the relationship between the average beta brain 

activity and subjective fatigue assessment. The results were used to validate the impacts 

of the duration of driving and rest breaks on driver fatigue (psychophysiological 

response). The results of this study revealed that the more the driver’s 

psychophysiological signals (beta brain activity) increase relative to changes in rank of 

the seven-scale subjective fatigue assessment, the more the driver’s level of alertness 

deteriorates. For instance, the average psychophysiological responses of subjects who felt 

fully alert and wide awake, extremely tired and very difficult to concentrate and 

completely exhausted and unable to function and concentrate effectively are 1.5, 7.79 and 

10.44, respectively (Figure 4-7A and B). Therefore, it is evident that the more fatigue the 

drivers felt, the higher the average values of EEG beta brain activity were 

(psychophysiological responses). 
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Figure 4-7: Relation of driver’s psychophysiological response and perception 
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4.6.1 Assessment of Driver’s Perception relative to Changes in their 

Psychophysiological Response (beta brain activity) 

A driver’s cognitive impairment and distraction is known to be one of the factors 

responsible for road-related incidents/accidents (Phillips, 2014). A significant increase in 

average beta brain activity relative to prolonged driving without a break and with a 30 

minute break reflects the possibility of cumulative impacts of fatigue. It could be 

concluded that the beta brain activity increases significantly in proportion to the transition 

of drivers from the state of being full alert and wide awake to the state of being extremely 

tired and very difficult to concentrate or completely exhausted and unable to function 

effectively (Table 4-8). The results of the statistical analysis in Table 4-8 indicated that 

the corrected model and subjective fatigue assessment ranking scale are statistically 

significant (p < 0.01) and the effect size shows that the subjective fatigue assessment 

explains 49.4% of the variance in driver’s psychophysiological response. Also, the model 

extended further to test the influence of participant’s age and gender on fatigue and 

performance decrements. The results show that the influence of gender is statistically 

significant (p < 0.01). 

Table 4-8:    Evaluation of the perception of driver’s relative changes in their 
psychophysiological responses (beta EEG frequency band). 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

Partial Eta 
Squared 

Corrected Model 381.202 8 47.65 11.035 0.00 0.584 

Intercept 905.468 1 905.468 209.685 0.00 0.769 

Gender 77.999 1 77.999 18.063 0.00 0.223 

Age 0.174 1 0.174 0.04 0.84 0.001 

Subjective 265.775 6 44.296 10.258 0.00 0.494 

Error 272.048 63 4.318    

R Squared = .584 (Adjusted R Squared = .531) 
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4.6.2 Correlation between Psychophysiological Response and Driver’s Perception 

of Fatigue (beta EEG frequency band): Parameter of Estimates 

This section presents the “model parameter of estimate” on the investigation of 

correlations between driver’s psychophysiological response and subjective fatigue 

assessment by using beta EEG brain activity. The results of the statistical analysis in Table 

4-9  indicated that the model intercept is statically significant (p < 0.01) and the effect 

size established that 22.3% of the variances in driving fatigue and performance 

decrements (psychophysiological response) can be attributed to the duration of driving. 

The results in Table 4-9 demonstrated that all parameters of fatigue assessment scales are 

statistically significant (p < 0.01). 
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Table 4-9: Evaluation of psychophysiological response and driver’s perception of the influence of the length of driving time  

(beta EEG frequency band)  

Parameter B Std. Error t Sig. 
99% Confidence Interval Partial Eta 

Squared Lower Bound Upper Bound 

Intercept 11.582 0.922 12.566 0.00 9.134 14.03 0.715 

Gender -2.172 0.511 -4.25 0.00 -3.529 -0.815 0.223 

Age -0.105 0.522 -0.201 0.84 -1.491 1.281 0.001 

Fully alert, wide awake 
 

-7.272 2.262 -3.215 0.00 -13.279 -1.264 0.141 

Very lively, but not at peak 
 

-7.107 1.152 -6.171 0.00 -10.166 -4.048 0.377 

Okay, somewhat fresh 
 

-6.65 1.116 -5.96 0.00 -9.614 -3.687 0.361 

A little tired, less than fresh 
 

-5.487 1.011 -5.43 0.00 -8.171 -2.803 0.319 

Moderately tired, let down 
 

-4.74 0.898 -5.278 0.00 -7.126 -2.355 0.307 

Extremely tired -2.659 1.015 -2.621 0.01 -5.354 0.036 0.098 

The parameter “Completely exhausted” is set redundant.
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4.6.3 Correlation between Psychophysiological Response and Driver’s Perception 

(beta EEG frequency band): Age Influence 

Figure 4-8  shows the graphical representation of the correlations between the average 

beta EEG brain activity and the subjective fatigue assessment of different age groups 

relative to the influence of time spent driving. The results in Figure 4-8 prove that there 

is no significant difference between the responsiveness of the young and old drivers to 

the influence of the duration of driving. 

 
Figure 4-8: Driver’s psychophysiological response (beta band) and subjective 
responses: gender influence 
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4.6.4 Correlation between Psychophysiological Response (beta EEG frequency 

band) and Driver’s Perception: Gender Influence 

The correlation between the average beta EEG brain-induced signals and the subjective 

assessment of drivers were investigated to evaluate the psychophysiological activation 

(level of fatigue and alertness) of male and female passengers relative to the influence of 

the duration of driving. A significant increase in average responses was found in female 

passengers compared to male passengers. The results showed that the 

psychophysiological activation is higher in female passengers compared to male 

passengers Figure 4-9. These results could be interpreted as female drivers experiencing 

more decline in fatigue and performance decrements relative to the influence of the 

duration of driving compared to male drivers. Therefore, it is evident that designing a 

study for investigating driver performance decrements or fatigue as a function of the 

influence of the duration of driving requires the influence of the driver’s gender. 

 
Figure 4-9: Driver’s psychophysiological response (beta band brain activity) and 
subjective responses: age influence 
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4.7 Summary 

The results of this chapter add to the growth of research, indicating the appropriateness 

of using the beta EEG frequency band and the eSense metric for attention brain activity 

in understanding driver fatigue as a function of time spent driving. Changes in a driver’s 

psychophysiological states were reflected through the cerebral cortex and neural changes 

associated with the performance of driving an HGV simulator relative to the influence of 

driving time (as captured by EEG) were presented and modelled. The variables (duration 

of driving, experimental stage and subjective fatigue assessment) were analysed by using 

“Tests of Between-Subjects Effects” and “Parameter of Estimate”. The subjective fatigue 

assessment was used to validate the psychophysiological response of the drivers to the 

influence of the duration of driving. The results of the statistical analysis showed that 

there is a positive correlation between the subjective comfort assessment and a driver’s 

psychophysiological responses, and the correlation is statistically significant (p < 0.01). 

Also, the model extended further to test the influence of age and gender in order to 

ascertain their effects on the fatigue or performance decrements. The experimental results 

demonstrated significantly enhanced performance in fatigue detection and assessment as 

it is demonstrated by the study of (Lal & Craig, 2002). The results of the study also 

demonstrated the appropriateness of using EEG as a reliable approach to investigate the 

influence of driving time on driver fatigue. 

The next chapter discusses the analysis of the application of beta brain activity on 

passenger comfort. It discusses the analysis of the effect of experimentally designed 

variables, such as road roughness, passenger posture, bus type and speed profile factors 

on urban bus passenger ride comfort. 
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CHAPTER 5 URBAN BUS PASSENGER RIDE COMFORT: APPLICATION OF 

BETA EEG BRAIN ACTIVITY 

5.1 Introduction 

Chapter 4 presented the application of EEG on driver fatigue, the effectiveness of driver 

rest breaks on fatigue and the cumulative effects of fatigue associated with the length of 

driving time by using an HGV simulator. This chapter presents the investigation of the 

effect of experimentally designed variables, such as road roughness, passenger posture 

bus type and speed profile factors on urban bus passenger ride comfort. The Event-

Related Synchronisation (ERS) that shows the transient event-related changes in the 

amplitude of beta brain activity relative to the experimentally designed variables was also 

presented. Passenger ride comfort was investigated as the effect(s) of uncomfortability 

induced by the influence of the experimentally designed variables. The 

psychophysiological responses (comfort/discomfort) in this study were evaluated by 

examining the induced changes in the subject’s cortical activities as captured by EEG 

signals.  

Road roughness has been recognised for a long time as being a means of measuring and 

evaluating road performance and ride comfort. The influence of road roughness 

characteristics (pavement types) appears to be more prominent on passenger ride comfort 

compared to several other factors, such as passenger posture, ability, age, gender, bus 

type and many more. For instance, the study of Magnusson and Arnberg, (1976) 

demonstrated that the effects of road roughness are not limited to causing discomfort to 

drivers and passengers, but they also cause fatigue to be experienced during actual 

travelling or afterwards. Also, previous studies have suggested that prolonged exposure 

to psychophysiological stress could trigger various diseases associated with depression, 

heart attack, stroke and some other mental disturbance symptoms (Al-shargie et al., 

2016). Furthermore, discomfort caused by the influence of road roughness, passenger 

posture, vehicular type and many other source(s) can sometimes lead to the activation of 

hypothalamus-pituitary-adrenocortical axis hormones (cortisol) in the adrenal cortex, 

which could cause poor health conditions.  

5.2 General Overview of Human Response and Experimentally Designed Phases 

This section presents a brief overview analysis of the influence of the experimentally 

designed variables (road roughness characteristics, passenger posture, bus type and 
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driving behaviours) on a passenger’s psychophysiological responses (level of comfort) 

by using the beta EEG brain spectral band. Generally, road-vehicle interaction produces 

a different form of sensation that does not have one specific human organ target, but 

affects all parts of the body of both drivers and passengers to some degree, which could 

have long-term health implications on passengers (Nahvi et al., 2009). Human 

psychophysiological responses associated with dynamic systems sometimes vary 

according to the frequency, direction and characteristics of the variable(s) that the 

sensations originated from and where they are transferred to. These cause-effects in public 

transport depend on the driving mode, road roughness characteristics and subject postures 

as well as vehicle types. Many researchers have used different approaches that are not 

limited to subjective assessment, such as physiological responses and behavioural change 

to evaluate emotion. The evaluation of the effects of experimentally designed variables 

on a passenger’s response in the bus compartment for this study was carried out by using 

beta EEG brain activity (ERP). In this study, the ERP oscillations (beta brain activity) 

were evaluated by decomposing the beta EEG signals into magnitudes and phase 

information.  

Generally, the human brain responds to changes that occur in both the internal and 

external environment. However, body neurons do not react without being triggered by a 

behaviour or an event. Therefore, our bodies respond directly to given events or 

conditions. For example, for a long time, the stress response has been traced to the central 

nucleus part of the brain known as the amygdala. This stress response causes a series of 

physiological changes, such as rapid breathing, change in blood flow to extremities, and 

increased heart rate and blood pressure. The nervous system allows the human body to 

respond to changes perceived in both internal and external environments. Variations in 

the responsiveness of the participants depend on the strength of force presented to the 

CNS. Sensation and cognitive events induce superimposed oscillations transmitted to 

brain tissue. These oscillations are characterised by various degrees of intensity that are 

proportional to the stimuli effect because the conditions in the human body need to be 

carefully controlled in order to function efficiently and survive. The stimuli effect causes 

changes in the activation of the electrical signal in response to the stimuli from the 

influences of experimentally designed variables. The experimentally designed phases 

(Table 5-1) for this study are based on the characteristics of variables, such as road 

roughness, passenger posture and bus type. These performance indicators (road 

roughness, passenger posture and bus type) are incorporated to form a system that serves 
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as the basis for data collection. The feature of beta brain activity (participant’s responses) 

was collated, processed and analysed in relation to the experimentally designed phase and 

variables. 

Table 5- 1: Experimentally designed phase 
Experimental phase Stage Parameter of estimate 

Phase 1 N/A Baseline (control) 

 

 

 

Phase 2 

Stage 1 Single-decker-seated asphalt pavement 

Stage 2 Single-decker-standing asphalt pavement 

Stage 3 Double-decker-seated asphalt pavement 

Stage 4 Double-decker-standing asphalt pavement 

Stage 5 Single-decker-seated sett pavement 

Stage 6 Single-decker-standing sett pavement 

Stage 7 Double-decker-seated sett pavement 

Stage 8 Double-decker-standing sett pavement 

 
 

5.3 Processing Psychophysiological Time Teries Data 

The data collection and analysis for the investigation of urban bus passenger comfort was 

performed within the framework of the road type, passenger posture and bus type, and 

controlled the effects of the operational variables (in-vehicle time, waiting time at the bus 

stop, or peak- or off-peak hours). Therefore, the nature of the impacts of the independent 

variables in psychophysiological activation on a passenger’s sense of discomfort was 

investigated. The psychophysiological response of the subjects in each of the conditions 

were summarised by the average beta EEG and eSense metric of attention data. The 

algorithms for assessing the underlying EEG brain activity were used to reduced data not 

only among the subjects, but also across all the experimental conditions (independent 

variables). A total of 76,756 data points were obtained for each of the beta EEG and 

eSence metrics of attention brain activity. The corresponding proportion of the data points 

for the experimental phases of the baseline and onboard are 11,169 and 65,587, 

respectively.  The value of the data points and the assignment of subjects to the conditions 

of the experiment for each of the subjects in relation to the study’s experimental phases 

and conditions are detailed in Appendix I. The time series brain wave patterns were used 

to model how the brain reacts to certain stimuli under various experimental conditions. 
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The average values often reflect fluctuations ranging in the participant’s 

psychophysiological responses over the duration of the experiments relative to the 

influence of the experimental conditions or events. In this study, the psychophysiological 

response of the subjects in each of the conditions of the experiment was summarised not 

only among the subjects, but also across all the experimental conditions (independent 

variables). Therefore, the data was reduced to a smaller set that explains variations 

between subject’s effects (factors) and experimental conditions (Table 5-2). 

The aggregated results (mean values) of the dependent variables (beta and eSence metrics 

of attention) were obtained by using the SPSS aggregate data function. The variable 

(participant) and the independent variables (road pavement type, posture and bus type) 

were used as the break variables to obtain the aggregated mean value of the dependent 

variables across cases (Hoormann et al., 1998). The computed ERP is the average of all 

the psychophysiological response epochs of each of the subjects as well as the conditions 

of passenger discomfort experiments. The experimental conditions (independent 

variables) and the obtained aggregated mean data (psychophysiological responses) were 

used for data analysis and modelling. The data points and assignment of subjects to the 

conditions of the experiment are detailed in Table 5-2. 

Table 5-2: Passenger discomfort data points  

 Seated Standing Baseline Total 
Baseline - - 20 20 

Asphalt-Single-Seated 20 - - 20 

Asphalt-Single-Standing - 20 - 20 

Asphalt-Double-Seated 20 - - 20 

Asphalt-Double-Standing - 20 - 20 

Sett-Single-Seated 20 - - 20 

Sett-Single-Standing - 20 - 20 

Sett-Double-Seated 20 - - 20 

Sett-Double-Standing 
 

20 - 20 

Total 80 80 20 180 

 

5.4 Average Response of Passengers to the Impact of the Experimentally 

Designed Phase 

In this study, passenger comfort was evaluated by comparing changes in average 

psychophysiological responses of the passengers to the influence of the experimentally 

designed phases or variables and baseline (control experiment) see Table 5-3. This result 
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demonstrated that EEG brain activity is spontaneous, but context-related; the EEG 

generated during the control experiment is quantitatively different from that generated 

during each experiment’s stages. For instance, the average responsiveness of participants 

in control experiments is 1.45. In contrast, the corresponding average responsiveness of 

the subjects to the influence of sett pavement single-decker-seated and sett pavement 

double-decker-seated experimentally designed phases are 6.67 and 11.48, respectively. 

The results demonstrated that the influence of the experimentally designed variable’s 

stimuli on bus passengers elicit a variety of cognitive and behavioural responses.  

The results could be interpreted as the subjects exhibiting a different degree of strain 

(discomfort) relative to the influence of the characteristics of the experimentally designed 

variables compared to the control experiment. The evidence of variations in the 

psychophysiological responses of the passengers corroborated in the passenger response 

data, which showed higher average beta EEG brain activity relative to the influence of 

the experimentally designed variables (onboard bus), which is compared to the control 

experiments. This proves that beta brain activity is sensitive to the variations in evoked 

stimuli from the influences of variables that formed the experimental phases. The findings 

are in agreement with the study conducted by Basar et al., (1999) in the analysis of 

existing variation(s) in brain oscillation(s). Also, the results show that the experimental 

phases of asphalt pavement single-decker-seated buses seem to have little effect on 

passenger’s discomfort when compared to other phases. 

Table 5-3: Experimental phases and their corresponding mean and standard 
deviations 

Beta Brain Activity 

Experimental Phase Mean Std. Deviation 

Baseline 1.45 3.80 
Asphalt-Single-Seated 3.93 2.08 

Asphalt-Single-Standing 5.91 4.49 

Asphalt-Double-Seated 6.09 3.14 

Asphalt-Double-Standing 8.41 4.61 

Sett-Single-Seated 6.67 3.45 

Sett-Single-Standing 9.84 7.54 

Sett-Double-Seated 11.48 6.90 

Sett-Double-Standing 12.63 6.99 
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5.5. Influence of Experimentally Designed Phases on a Passenger’s 

Psychophysiological Responses 

The results of the statistical analysis show the influence of the experimentally designed 

variables on urban bus passenger discomfort by using the “Test of Between-Subjects 

Effect”. The results indicated that the impacts of experimental phases were statistically 

significant (p < 0.01). The corrected model row shows that the overall model was 

significant (p < 0.01) and the effect size shows that the model explains 47.7% of the 

variance of beta EEG brain activity (passenger comfort), see Table 5-4. This study proves 

that there is an existing relationship between stimulus induced by the influence of the 

experimentally designed variables and passenger responsiveness (beta brain activity). The 

outcome of the model shows that experimental variables (independent variables) are 

statistically significant (p < 0.01). The effects size shows that road environment, posture 

and bus type explain 27.0%, 10.5% and 7.9% of the variance in a passenger’s 

psychophysiological response, respectively. Passenger’s related variables, such as age 

and gender, were introduced as part of the model. The results demonstrated that gender 

and age explain 6.0% and 2.9% of the variance in passenger comfort, respectively (Table 

5-4). 

Table 5-4: Changes in passenger’s comfort as a function of experimental design  
variables (beta EEG brain activity). 

Source 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Corrected Model 4170.473a 6 695.079 26.343 0.00 0.477 

Intercept 6189.772 1 6189.772 234.586 0.00 0.576 

Road Environment  1689.440 1 1689.440 64.028 0.00 0.270 

Posture 536.760 1 536.760 20.343 0.00 0.105 

Bus Type 393.141 1 393.141 14.900 0.00 0.079 

Gender 290.487 1 290.487 11.009 0.00 0.060 

Age 136.820 1 136.820 5.185 0.02 0.029 

Error 4564.772 173 26.386 
   

Squared = .477 (Adjusted R Squared = .459) 
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5.5.1 Passenger’s Psychophysiological Response to the Influence of 
Experimentally Designed Variables 

The sensations induced by the influence of experimentally designed variables are 

transferred to the brain and integrated to produce a subjective response relative to the 

stimuli effects. Therefore, the effects of a passenger’s exposure to different road 

pavement types in this study could be described as a form of whole-body vibration that 

does not target a specific organ of the body. These usually lead to the activation of a large 

number of body receptors and the CNS, which could cause unbearable sensations 

(discomfort) to the passengers. Table 5-5 summarises the effect of experimental variables 

on bus passenger comfort. The results demonstrated that the correlation between the 

experimental variables (road environment, bus type and posture) and changes in beta EEG 

brain activity (psychophysiological response) seem to exist. This conclusion was 

supported by the results of the output of the model “Parameter estimate”. The model 

intercept, road environment, age and gender are statically significant at p < 0.01 while 

bus type and posture are statistically significant at p < 0.05. The intercept model row also 

shows that the model explains 62.7% of the variance in passenger comfort (beta EEG 

frequency band RR).  Furthermore, the model shows that 27.0% and 1.5% of the variance 

of the dependent variable (passenger comfort) can be explained by the influence of sett 

and asphalt pavements on a passenger, respectively.  

Table 5-5: Relationship between experimentally designed variables and passenger 
comfort (beta brain activity): Parameter of Estimate 

   

t 

 
95% Confidence 

Interval   

Parameter B 
Std. 

Error Sig 
Lower 
Bound 

Upper 
Bound 

Partial Eta 
Squared 

Intercept 19.153 1.124 17.040 0.00 16.935 21.372 0.627 

Asphalt 
Pavement  

-15.071 1.408 -10.707 0.00 -17.849 -12.293 0.399 

Sett 
Pavement 

-6.499 0.812 -8.002 0.00 -8.102 -4.896 0.270 

Posture -3.664 0.812 -4.510 0.00 -5.268 -2.061 0.105 

Bus Type -3.136 0.812 -3.860 0.00 -4.740 -1.532 0.079 

Gender -2.728 0.822 -3.318 0.00 -4.350 -1.105 0.060 

Age -1.801 0.791 -2.277 0.02 -3.363 -0.240 0.029 
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5.5.2 Passenger’s Psychophysiological Response (beta frequency band) as a 

Function of Experimental Phases: Age Influence 

The results demonstrated that the influence of experimentally designed phases on the 

psychophysiological responses of young and old passengers is statistically significant (p 

< 0.01). Significantly increased beta brain activity was noted during the experimental 

phase of double-decker-standing sett buses and double-decker-seated sett buses compared 

to single-decker-seated asphalt buses. The older subjects (greater than 30 years old) 

experienced a more significant shift from a state of being not uncomfortable to a state of 

being slightly or very uncomfortable compared to younger ones (less than 30 years old). 

Therefore, the psychophysiological responses of both young and old passengers were 

observed to increase as a function of change in induced stimuli strength from the influence 

of experimentally designed variables. The results in Figure 5-1 could be interpreted as 

old passengers being more tense or strained compared to those who are less than 30 years 

old.  

 
Figure 5-1: Passenger responsiveness to the induced stimulus of experimental phases: 
age influence 

 

5.5.3 Effect of Experimental Phases on Passenger Comfort: Gender Influence 

Figure 5-2 shows the psychophysiological responses of male and female passengers to 

the stimuli induced in experimentally designed conditions. The results in Figure 5-2 
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showed that there are variations in the average responsiveness of males and females to 

the stimuli effect of experimentally designed variables. The variations and effects of 

experimentally designed variables in the psychophysiological responses of bus 

passengers are more prominent in females compared to males. For instance, the minimum 

average responses of males and females to the influence of the experimental phases of 

single-decker-seated asphalt buses are 5.65 and 6.59, respectively. Furthermore, the 

maximum average psychophysiological responses of male and female passengers to the 

influence of double-decker-seated sett are 10.35 and 11.70, respectively. An increase in 

the psychophysiological response of female passengers compared to male passengers was 

observed in all phases of the experiments. This increase could be interpreted as female 

passengers being more tense compared to male passengers due to the influence of road-

vehicle interactions. These results agreed with the study of Hoberock, 1976, which 

compared male and female average bus acceleration before losing balance, even though 

the author incorporated other variables, such as “the height of subject’s shoes”. The 

results of his study revealed that average accelerations (for both high- or low–heal shoes) 

obtained by male and female subjects before losing balance were 0.16g and 0.11g, 

respectively. 

 
Figure 5-2: Responsiveness of male and female passengers to the influence of 
experimental phases 
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5.5.4 Effect of Road Roughness on Passenger Comfort: Influence of Bus Type 

Studies have shown that passengers respond differently on large vehicles compared to 

small vehicles (Lima et al., 2015; Cooper at el., 1978). The correct designs of road 

pavement also depend on the type of vehicles using the route. Some roads could 

effectively tolerate the operating performance of some vehicular types, such as passenger 

cars, and that same road may penalise other vehicles, such as urban single- or double-

decker buses. In the city of Edinburgh, some sections of Lothian bus routes were designed 

a long time ago to accommodate small vehicles. Using those roads or streets as part of 

Lothian Buses route has significant influences on sensations perceived by both the driver 

and the passengers. The results of the investigation of the influence of bus types on 

passenger ride comfort show that the sensory information sharply increases when the 

psychophysiological response of the participants are on single-decker buses compared to 

that of double-decker buses; most notably on sett pavement (Figure 5-3). These results 

were probably attributed to the association of the cerebral cortex and the degree of stimuli 

transmitted to the CNS, which prove that there is a significant difference (p < 0.01) 

between the responsiveness of passengers on single- and double-decker buses. For 

example, the average responsiveness of subjects on single- and double-decker buses to 

the influence of asphalt pavement are 4.67 and 5.42, respectively (Figure 5-3). These 

results could be interpreted as passengers being more strained on double-decker buses 

compared to that of single-decker buses under similar or the same experimental 

conditions. The results also show that passengers on double-decker buses are more 

strained on sett pavement compared to asphalt pavement. In addition, passengers reported 

that they are much more tense and unable to focus while on a moving double-decker bus, 

most importantly on sett pavement, compared to passengers on a single-decker bus on the 

same pavement. The results of this study showed that it is possible to investigate and 

evaluate the discomfort of passengers in relation to vehicular types by using EEG.   
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Figure 5-3: Effect of road roughness on sensibility: influence of bus type 
 

5.5.5 Effect of Road Roughness Characteristics on Passenger Comfort: Posture 

Influence 

Bus passengers are often found to adopt different postures (seated or standing) depending 

on the time of the day (peak- or off-peak hours) or their personal choice of posture. 

Knowledge of physiological and psychological responses of drivers or passengers to the 

mechanical characteristics, road characteristics and vehicle environmental factors during 

transit could assist in understanding the extent of the comfort, health and wellbeing of the 

people. Many factors contribute to urban bus passenger ride comfort; therefore, posture-

related discomfort induced by experimental design that permits the possibility of 

examining changes in beta EEG power (responses) relative to the influence of posture 

was developed. This section presents the evaluations of the influence of posture (seated 

or standing) on psychophysiological responses (level of discomfort) of urban bus 

passengers. The results demonstrated that the psychophysiological curve of standing 

passengers increased sharply on both asphalt and sett pavements compared to seated 

passengers. Variations in the psychophysiological responses (RR) of standing passengers 

compared to seated ones are statistically significant (p < 0.01), see Figure 5-4. These 

results could be interpreted as bus passengers being more strained while standing 

compared to those who are seated, irrespective of the degree of the roughness of the road.  
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Figure 5-4: Effect of road roughness on psychophysiological responses: posture 
influence 

5.5.6 Effect of Road Roughness Characteristics on Passenger Comfort: Age 

Influence 

The passenger’s age on psychophysiological responses of passengers to the influence of 

road roughness characteristics was validated in this study. The psychophysiological 

responses showed an increase in the activation of the activity of the CNS in old passengers 

compared to younger passengers (Figure 5-5). Also, older passengers consistently rated 

themselves as being more uncomfortable. Therefore, these results could be interpreted as 

older passengers exhibiting a higher level of discomfort that could impair their physical 

and mental fitness compared to younger passengers. 
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Figure 5-5: Passenger sensibility (beta EEG frequency band): age influence 
 

 

5.5.7 Effect of Road Roughness Characteristics on Passenger Comfort: Gender 
Influence 
 

It was hypothesised that the comfort of male and female bus passengers would vary 

significantly. The evidence of variations in psychophysiological responses of male and 

female passengers was validated by using the influence of road roughness characteristics. 

The results demonstrated that higher psychophysiological responses were observed in 

female passengers on both asphalt and sett pavements compared to male passengers. Also, 

female passengers consistently rated themselves as being more uncomfortable (Figure 5-

6). The results seemed clear that the potential effect of experimentally designed variables 

has more influence on female passengers compared to male passengers. Therefore, this 

could be interpreted as female passengers exhibiting a higher level of discomfort that 

could impair their physical and mental fitness in the dynamic environment compared to 

male passengers. 
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Figure 5-6: Passenger sensibility: gender influence 

 

5.5.8 Passenger Psychophysiological Response (Comfort): Age and gender 

Influence 

Figure 5-7 shows the responsiveness of male and female subjects to the influence of the 

experimentally designed variables relative to their age. The results of the estimated 

marginal mean showed that the subjects’ gender and age have significant impacts on their 

psychophysiological responses. The results also demonstrated that event-related beta 

oscillations of young and old female passengers have a greater amplitude compared to 

male passengers. These variations are statistically significant (p < 0.01), and it could be 

interpreted as female passengers being more strained or tenser (experiencing more 

discomfort) compared to male passengers, irrespective of their age. For instance, the 

average psychophysiological response of female passengers older than 30 years is 8.68 

while that of male passengers is 6.34 (Figure 5-7). This result demonstrates that the higher 

the influence of the experimentally designed variable is on passengers, the more activated 

the electrical potential of the brain becomes.  
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Figure 5-7: Passenger sensibility: relationship between age and gender influence 
 
 

5.5.9 Passenger Sensibility: Influence of Bus Type and Posture 

The results of the investigation of passenger ride comfort relative to the influence of bus 

types and posture show that the sensory information of double-decker bus passengers 

sharply increases compared to single-decker bus passengers as well as in standing 

compared to being seated. These results are probably attributed to the cerebral cortex and 

the degree of stimuli transmitted to the CNS. Figure 5-8 shows that there is a significant 

difference between the responsiveness of seated passengers and standing passengers in 

single-decker and double-decker buses. The average responsiveness of seated passengers 

in single- and double-decker buses is 5.29 and 7.32, respectively. This result could be 

interpreted as passengers (seated or standing) being more comfortable on single-decker 

buses compared to double-decker buses. 
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Figure 5-8: Passenger sensibility: bus type and posture influence 
 

5.6 Relation between Psychophysiological Response and a Passenger’s 

Perception of Discomfort 

This section of the study estimated ride comfort by investigating the relationship between 

the feature of beta EEG brain activity and subjective comfort assessments. The subjective 

evaluation of the subject’s opinions on average ride comfort on each phase of the 

experimentally designed variables was carried out by using the recommended assessment 

scale of the International Standard ISO 2631-1 for public transport. The results of this 

study revealed that the more the subject’s psychophysiological signals increase, the more 

the level of the passenger’s comfort deteriorates. For instance, the subjects with an 

average beta EEG brain activity of 8.8, 10.1 and 12.8 felt uncomfortable, very 

uncomfortable and extremely uncomfortable, respectively (Figure 5-9). Therefore, it is 

evident that the more uncomfortable a passenger felt, the higher their average 

psychophysiological responses were. Furthermore, the average beta EEG brain activity 

attained a peak value of 12.8 when the participants believed that they felt extremely 

uncomfortable. The results of this study finally prove that there is a strong positive 

relation between the beta EEG spectra activity and ISO 2631-1 subjective comfort 

assessment for public transport (Figure 5-9).  
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Figure 5-9: Cross-correlation of a passenger’s psychophysiological response and 
subjective passenger assessment 

 

5.6.1 Relationship between a Passenger’s Psychophysiological Response and 

Subjective Passenger Assessment  

The induced internal or external sensations of superimposed oscillations are transmitted 

to the cerebral cortex or brain tissues and the response is in proportion to the degrees of 

stimuli. The synchronisation of oscillations varies depending on the intensity of stimuli 

from the influence of experimentally designed phases or variables. Therefore, the 

response of the passenger to the influence of experimental design variables solely depends 

on the strength of the induced stimuli presented to the Central Nervous System (CNS). 

The parameter of estimates (subjective comfort assessments) was found to be significant 

(p < 0.01). The results showed that there is an existing relationship between stimulus 

intensity and a passenger‘s psychophysiological response. The corrected model row 

shows that the overall model was significant (p < 0.01) and the effect size shows that 

model explains 51.1% of the variance in beta brain activity (passenger comfort), see Table 

5-6. In addition, variable age and gender were introduced to the model, and the results of 

the statistical analysis indicate that age and gender are also statistically significant (p < 

0.01). 
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Table 5-6: Changes in passenger’s response to the influence of experimental  
phases (beta EEG frequency band) 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

Partial Eta 
Squared 

Corrected Model 3640.470a 14 260.034 9.179 0. 00 0.511 
Intercept 10575.6 1 10575.6 373.295 0. 00 0.752 
Comfort 
Assessment 

477.939 5 95.588 3.374 0.01 0.121 

Experimental 
Phase 

1111.91 7 158.845 5.607 0. 00 0.242 

Age 588.204 1 588.204 20.762 0. 00 0.144 
Gender 291.151 1 291.151 10.277 0.00 0.077 
Error 3484.64 123 28.33       

R Squared = .511 (Adjusted R Squared = .455) 

 

5.6.2 Influence of Experimental Designed Variables on Psychophysiological 

Response and Passenger’s Perception 

Table 5-7 presented the relationships between a passenger’s psychophysiological 

response (beta EEG brain activity) and subjective comfort assessment (not 

uncomfortable, slightly uncomfortable, uncomfortable, very uncomfortable and 

extremely uncomfortable) in relation to experimentally designed variables. The multiple 

comparisons of average beta EEG under different ISO 2631-1 subjective comfort 

assessment parameters is shown in Table 5-7. The validation of the influence of the 

experimentally designed variable on a passenger’s psychophysiological responses by 

using the passenger’s perceptions demonstrated that experimentally designed variables 

seem to have significant impacts on a passenger’s discomfort. The evaluation of the 

parameters that form the subjective comfort assessment relative to a passenger’s 

psychophysiological responses are statistically significant (p < 0.01). The corrected 

model row shows that the overall model was significant (p < 0.01) and the effect size 

shows that the model explains 64.3% of the variance in beta brain activity. The results 

proved, as it’s hypothesised, that the induced stimulus effects from the influence of 

posture, road roughness, characteristics and bus type could significantly affect the 

passenger’s level of discomfort (psychophysiological response). The results also 

demonstrate that the passenger’s comfort can be investigated and validated by examining 

the relationship between the objective measures (psychophysiological responses) and 

subjective comfort assessment in a dynamic environment. The results indicated that both 

age and gender are statistically significant and double-decker-standing, with the 

extremely uncomfortable parameter, are set to be redundant.  
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Table 5-7: Evaluation of psychophysiological response and passenger’s perception of the influence of experimental phases 
(beta EEG band) 

Parameter B Std. Error t Sig. 
99% Confidence Interval 

Partial Eta 
Squared 

Lower 
Bound 

Upper 
Bound 

Intercept 25.707 1.727 14.885 0.00 21.188 30.226 0.643 

Not uncomfortable -6.727 2.836 -2.372 0.02 -14.148 0.695 0.044 

A little uncomfortable  -6.263 2.029 -3.086 0.00 -11.573 -0.953 0.072 

Fairly uncomfortable  -6.796 1.945 -3.495 0.00 -11.884 -1.708 0.090 

Uncomfortable -6.322 1.73 -3.655 0.00 -10.848 -1.796 0.098 

Very uncomfortable -4.559 1.529 -2.981 0.00 -8.56 -0.558 0.067 

Single-decker seated asphalt -9.781 2.217 -4.412 0.00 -15.581 -3.981 0.137 

Single-decker standing asphalt -6.015 2.057 -2.924 0.01 -11.397 -0.633 0.065 

Double-decker seated asphalt -7.834 1.944 -4.03 0.00 -12.92 -2.747 0.117 

Double-decker standing asphalt -7.173 1.838 -3.903 0.00 -11.982 -2.364 0.110 

Single-decker seated sett -6.505 2.136 -3.046 0.00 -12.093 -0.917 0.070 

Single-decker standing sett -4.479 1.858 -2.411 0.02 -9.339 0.381 0.045 

Double-decker seated sett -1.154 1.863 -0.619 0.54 -6.029 3.722 0.003 

Age -4.866 1.068 -4.557 0.00 -7.66 -2.072 0.144 
Gender -3.536 1.103 -3.206 0.00 -6.422 -0.65 0.077 
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5.6.3   Effect of Experimentally Designed variables on Psychophysiological and 

Subjective Responses: Age influence 

Figure 5-10 shows the graphical representation of the correlations between the average 

psychophysiology responses (beta EEG brain activity) and the subjective comfort 

assessment of different age groups relative to the influence of the experimentally designed 

variables. A significant (p < 0.01) increase in average responses was found in passengers 

who were less than 30 years old compared to those who were older than 30 years. This 

increase could be interpreted as younger passengers being more strained or tenser 

(experiencing more discomfort) compared to older passengers. However, the 

psychophysiological activation and discomfort of bus passengers usually occur in both 

young and older passengers. Therefore, it was evident that when designing a study 

investigating passenger comfort as a function of the influence of road roughness, posture 

and bus type, along with the influence of passenger age on psychophysiological activation 

must be considered. 

 
Figure 5-10: Passenger psychophysiological (beta EEG frequency band) and 
subjective responses: age influence 
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5.6.4   Effect of Experimentally Designed variables on Psychophysiological Response 
and Passenger Perceptions: Gender Influence 

The correlation between the average beta EEG brain-induced signals and the subjective 

assessment of passenger comfort was investigated to evaluate the psychophysiological 

activation (level of comfort) of male and female passengers relative to the influence of 

the experimentally designed variables. The results in Figure 5-11 prove that male 

passengers exhibited lower psychophysiological response compared to female 

passengers. Also, the average responsive rate (EEG brain activity) of a passenger to the 

influence of the experimentally designed variables attained peak values for both males 

and females when the subjects believed they were extremely uncomfortable.  

 
Figure 5-11: Passenger psychophysiological (beta band) and subjective responses: 
gender influence 
 

5.7 The Effect of Speed on Passenger Sensibility 

In urban bus transport systems, sharp starts and stops are inevitable as the bus is merging 

into high-speed traffic at close headway. The study of Castellanos & Fruett, (2014) 

investigated the dynamic factors that affect passenger comfort in public transport and 

define them as comfort disorders (jerk and uneven speed). The sensations evoke due to 

the experimentally designed factors that are transferred to the brain and integrated to yield 
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subjective responses to the stimuli effects. This section presents the effect of urban bus 

driving speed on passenger comfort. The responsiveness of the passengers (beta brain 

activity) to the influence of induced stimuli from vehicular driving patterns shows that 

passengers are tenser when the average speed ranges from 11–20, 21–30 and 31–40 km/h 

compared to when the average speed is 0–10 and 51–60 km/h (Figure 5-12). In this study, 

the beta brain activity (the participant’s psychophysiological response) showed 

significant variations relative to the influence of the vehicle speed compared to the control 

experiment. Therefore, it could be concluded that passenger ride comfort could be 

influenced by evoking forces produced by the change in vehicle acceleration, deceleration 

or speed. 

 
Figure 5-12: Effect of speed on passenger comfort 

 

5.7.1 Effect of Speed on Passenger Comfort: Posture Influence 

Bus passenger comfort is directly linked to factors of the bus driver’s driving behaviours, 

such as rate of acceleration/deceleration, speed or jerk. The influence of bus speed on 

passenger comfort relative to a passenger’s posture creates different magnitudes 

characteristic of beta brain activity (response). The results demonstrated that there is a 

significant difference between the responsiveness of seated and standing passengers to 

the influence of speed profile factors under the same/similar experimental conditions 

(Figure 5-13). Both seated and standing passengers showed variations in 

psychophysiological responses related to changes in vehicle speed. Therefore, it could be 

concluded that the psychophysiological responses showed either an increase or a decrease 
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in the activations of CNS as the speed of the vehicle changes. Also, the results 

demonstrated that the responsiveness of the seated and standing passengers follows a 

similar pattern, even though standing passengers showed increased psychophysiological 

activation as a function of vehicle speed compared to seated ones. Generally, both seated 

and standing passengers are more strained when the average speed is 11–20 km/h, 21–30 

km/h and above 50 km/h compared to 0–10 km/h and 41–50 km/h.  

 
Figure 5-13: Impact of Speed on the passenger’s comfort: posture influence 

 

5.8 Inter-Subject Variability 

The psychophysiological response of passengers to the influence of road roughness 

characteristics, driving style, bus type or posture vary from one person to the other 

(Mcewen, 2000). Also, the effect of stimuli induced by the influence of experimentally 

designed variables in this study vary from one person to the other due to the influence of 

factors that are not limited to age, personality traits, social environment, genotype and 

gender. Therefore, as the psychological and physiological profiles of people vary, the 

subject’s psychophysiological responses to the influence of the road-vehicle effects vary. 

For instance, the average responses of subject 1 (12.7), subject 4 (11.4), subject 7 (12.8) 

and subject 12 (10.5) as well as subject 13 (12.7) and subject 18 (11.8) are slightly high 
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compared to the responses of other subjects (Figure 5-14). This result could be interpreted 

as subjects exhibiting a higher level of discomfort compared to others because the more 

uncomfortable a passenger is feeling, the higher the psychophysiological activation (beta 

brain activity) is. Therefore, whenever the brain is perceiving induced stimuli effects like 

stress or discomfort, the responses usually lead to allostatic and adaptation, which vary 

from passenger to passenger (Mcewen, 2000). 

 
Figure 5-14: Variations in average psychophysiological responses (beta band) of  
a passenger to the influence of experimentally designed variables 
 
 

5.8.1 Inter-subject Variability in Psychophysiological Responses of Passengers to 

the Influence of Experimentally Designed Variables 

The patterns of variation in a subject’s level of comfort in this section are associated with 

the ability of each subject to withstand the induced sensations from the influence of 

experimentally designed variables/phases. The observable variations in the average 

responses of subjects depends on the magnitude of induced sensations in the brain’s 

cerebral cortex as captured via EEG. The results demonstrated that the overall model is 

significant (P < 0.01) and the effect size shows that the model explains 22.7% of the 

variance in beta brain activity (Table 5-8). 
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Table 5-8: Inter-subject variability of passenger psychophysiological response 

Source 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Corrected Model 1978.614 19 104.138 2.466 0.00 0.227 

Intercept 14000.116 1 14000.116 331.529 0.00 0.674 

Subject 1978.614 19 104.138 2.466 0.00 0.227 

Error 6756.631 160 42.229 
   

R Squared = .227 (Adjusted R Squared = .135) 
 
 

5.8.2 Evaluation of Inter-subject Variability as a Function of the Influence of 

Experimentally Designed Variables 

 The transient ERS of the beta EEG spectral band relative to the influences of the 

experimentally designed variables in this study varies from passenger to passenger. Table 

5-9 presents the variability in psychophysiological responses (level of comfort) of the 20 

sampled subjects in relation to the experimentally designed phases and variables. The 

results demonstrated that psychophysiological responses (level of discomfort) of the 

participants to the influence of the experimental conditions vary from passenger to 

passenger (Table 5-9). 
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Table 5-9:  Statistical analysis of inter-subject variability 

Parameter B Std. Error t Sig. 
99% Confidence Interval 

Partial Eta 
Squared Lower 

Bound 
Upper 
Bound 

Intercept 7.924 2.166 3.658 0.00 3.646 12.202 0.077 
Subject 1 5.938 3.063 1.938 0.05 -0.112 11.988 0.023 

Subject 2 -2.951 3.063 -0.963 0.34 -9.001 3.099 0.006 

Subject 3 0.611 3.063 0.200 0.84 -5.438 6.661 0.000 

Subject 4 6.168 3.063 2.013 0.05 0.118 12.217 0.025 

Subject 5 -1.186 3.063 -0.387 0.69 -7.236 4.864 0.001 

Subject 6 0.882 3.063 0.288 0.77 -5.168 6.932 0.001 

Subject 7 3.970 3.063 1.296 0.19 -2.080 10.020 0.010 

Subject 8 -2.650 3.063 -0.865 0.39 -8.699 3.400 0.005 

Subject 9 -2.914 3.063 -0.951 0.34 -8.964 3.136 0.006 

Subject 10 2.529 3.063 0.826 0.41 -3.521 8.579 0.004 

Subject 11 -2.667 3.063 -0.871 0.39 -8.717 3.383 0.005 

Subject 12 4.169 3.063 1.361 0.18 -1.880 10.219 0.011 

Subject 13 6.289 3.063 2.053 0.04 0.239 12.339 0.026 

Subject 14 -3.438 3.063 -1.122 0.26 -9.488 2.611 0.008 

Subject 15 -1.712 3.063 -0.559 0.58 -7.762 4.338 0.002 

Subject 16 5.230 3.063 1.707 0.09 -0.820 11.279 0.018 

Subject 17 -2.339 3.063 -0.763 0.45 -8.389 3.711 0.004 

Subject 18 1.171 3.063 0.382 0.70 -4.879 7.221 0.001 

Subject 19 0.805 3.063 0.263 0.79 -5.245 6.855 0.000 

The parameter “Subject 20” is set to be redundant. 
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5.9 Summary 

The emerging concept of the perceived satisfaction of the ground public transport system 

provides a means of augmenting the concept of “ride comfort” as a conceptual approach 

for explaining how the influences of road roughness, passenger posture, bus type, driving 

styles and other factors combine to affect the psychophysiological responses of 

passengers. The evidence available in the literature suggests that no or little attention was 

given to the investigation of bus passenger comfort by using objective data obtained 

directly from the passenger. There was also the need for reliable and accurate objective 

and subjective data to produce a more reliable and acceptable level of passenger comfort 

due to the influence of posture, road roughness and characteristics of bus type. The main 

contribution in this chapter is the investigation of bus passenger comfort by using reliable 

objective (EEG) and subjective datasets. This study produces new sets of analyses and 

models of impacts of posture, type of road roughness and type of bus on passenger’s 

psychophysiological responses (discomfort).  

The ERP beta power spectral (magnitude) of this study depends on the induced variations 

in the passenger’s cerebral cortex and somatosensory nervous system activities as 

captured by EEG relative to the influence of experimentally designed phases and 

variables. The findings of the influence of road-vehicle interactions in this study are in 

agreement with the study conducted by Soliman (2006) in an investigation on the effect 

of road roughness on vehicle ride comfort. In an investigation of vehicle ride comfort, the 

author found that passenger ride comfort deteriorates as the road roughness coefficient 

increases. The next chapter discusses the influences of the study’s experimentally 

designed variable on bus passenger discomfort by using eSense for attention EEG brain 

activity. It also discusses the modelling of influences of road roughness characteristics, 

posture, bus type, gender and age of the bus passengers. 
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CHAPTER 6 URBAN BUS PASSENGER RIDE COMFORT: APPLICATION 

OF THE eSENCE METRIC FOR ATTENTION 

6.1 Introduction 

The previous chapter presented the analysis of the influence of the experimentally 

designed phases and variables on bus passenger ride comfort by using the beta EEG 

spectral frequency band. In this chapter, the influence of experimentally designed 

variables (posture, road types and bus type) that affect bus passenger comfort are analysed 

by using the eSense metric for attention. This chapter aims to establish the extent to which 

road roughness characteristics, driving styles, posture and bus types is causing significant 

changes in bus passenger discomfort by using objective data (EEG brain activity) and a 

subjective comfort assessment questionnaire. This chapter presents evidence of a 

passenger’s psychophysiological activation (response) as a function of experimentally 

designed phases or variables, along with their gender and age.  

6.2 General Overview of Analysis 

In this chapter, the novelty includes the evaluation of passenger’s ride comfort and the 

linking of psychophysiological responses. This chapter presents the analysis of the effects 

of road roughness types (asphalt and sett pavements) and bus types (single- and double-

decker) on seated and standing passengers. Generally, road-vehicle interaction causes 

severe sensations to the driver and the passengers. These results could trigger the 

activation of body receptors connected to the CNS. Sett pavement was installed to reduce 

vehicle speed in order to improve the safety of pedestrians and people within the 

neighbourhood. Vehicle occupants usually experience different forms of discomfort when 

travelling on sections of sett pavement because of vibrations from road-vehicle 

interactions. This section presents changes in the level of distraction, agitation and 

abnormality of bus passengers contingent to road roughness characteristics, posture, bus 

type and other factors. In an attempt to understand passenger and driver discomfort, 

Soliman (2006) investigated the effects of road roughness on ride comfort. The author 

found that as the road roughness coefficient increases, the ride comfort deteriorates. 

Additionally, the study by Ismail et al. (2015) revealed that a rough surface induces higher 

force excitations to a cyclist, thereby increasing the level of discomfort compared to 

smooth pavement. Therefore, in order to understand urban bus passenger discomfort, this 

study investigated the change in a passenger’s psychophysiological response (level of 
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distraction and abnormality) as a function of the influence of road roughness 

characteristics, postures, bus types and gender and age influences.   

6.3 Influence of Experimentally Designed Phases on Passenger Response 

The average responsiveness (attention eSence meter) of the subject on a bus exhibits a 

decrease in average oscillations when compared to the control experiment (baseline). The 

values shown in Table 6-1 represent the mean, frequency and percentage of the 

responsiveness of the bus passengers in control and in dynamic (onboard bus) 

experiments. The study results showed that passenger(s) in a dynamic environment 

exhibit a repeated higher level of distraction, agitation or abnormality (discomfort) 

compared to baseline (control experiment). For instance, the corresponding percentage of 

the urban bus passenger’s responses (brain activity) for 41–60 (neutral scale) of stable-

seated-laboratory and onboard bus experiments are 55.54% and 38.51%, respectively 

(Table 6-1). These results showed a significant correspondence between the impacts of 

experimentally designed variables (control and dynamic experiments) on passengers and 

the degree of psychophysiological activation within the scale of 1–40 of the eSense metric 

for attention. Furthermore, the percentage of passenger responses in the stable-seated-

laboratory experiment that is within 1–40 on the eSense metric for attention scale 

representing distraction, agitation or abnormality is 10% compared to the responses in the 

dynamic environment (41.44%). The results demonstrated that brain activity could show 

the degree of responsiveness of the subjects to the influence of experimentally designed 

variables. Therefore, significant activation of the cerebral cortex and somatic sensation 

as a result of the influence of experimentally designed variables is an indication of 

passenger stress. 

Table 6-1: Attention eSense meter interpretation and subject’s average response 

Scale Control Experiment Dynamic Environment Experiment 

Average Frequency Percentage 

(%) 

Average Frequency Percentage 

(%) 

81 - 100 89.92 797 7.14 88.88 2,779 4.24 

61 - 80 68.39 3,053 27.33 68.14 10,375 15.82 

41 - 60 50.53 6,203 55.54 49.54 25,256 38.51 

21 - 40 32.51 959 8.59 31.80 22,167 33.80 

1 – 20 14.50 157 1.41 13.65 5,010 7.64 

Total  11,169 100.00  65,587 100.00 
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6.4 Average Passenger’s Psychophysiological Responses to the Influence of 

Experimentally Designed Phases 

The brain-induced signals investigated in this study were used to evaluate the 

psychophysiological state (level of mental fitness) of the bus passengers relative to the 

impacts of experimentally designed phases. The results demonstrated that bus passengers 

exhibit and repeat different emotions when travelling on sett pavement compared to 

asphalt pavement as well as when standing compared to sitting. The influence of these 

experimentally designed variables creates different amplitude components for 

information related to the awareness and alertness in the brainwaves. Table 6-2 shows 

that urban bus passengers exhibited different signature (responses) relative to changes in 

experimentally designed variables. For instance, the average responses (eSense metric for 

attention) of the passengers relative to the influence of the experimental phase of single-

decker-seated asphalt and single-decker-seated sett experimental phases are 53.84 and 

46.07, respectively (Table 6-2). The decrease in average psychophysiological responses 

could be interpreted as an indication of a reduction in cognitive ability and comfort. This 

result proves that variations in road pavement characteristics could influence bus 

passenger’s mental states. Additionally, if the experimental phase of double-decker-

seated sett is compared to double-decker-standing sett, the corresponding proportions of 

the average eSense metric for attention are 39.04 and 36.34, respectively. These results 

show that a relationship between bus passenger postures and changes in brain activity 

(attention eSence meter) seems to exist. It would otherwise cause an increase in bus 

passenger’s levels of distractions, agitation and abnormality. Therefore, bus passengers 

and passengers of other public transport, such as rail, could experience undesired 

sensations that may require them to maintain full alertness due to their posture. Variations 

in the comfort of standing passengers compared to seated passengers have previously 

been found to occur in public transport (Beurier, 2012; Suzuki et al., 2000; Hoberock, 

1976). Table 6-2 shows a constant and significant decrease in the average level of 

passenger attention relative to the variations in experimentally designed phases.  
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Table 6-2: Passenger’s psychophysiological response to the influence of 
experimentally designed phases 

Experimental phase Mean Attention Std. Deviation 

Baseline 53.84 5.92 
Single-decker-seated asphalt 57.34 7.93 

Single-decker-standing asphalt 54.17 6.96 

Double-decker-seated asphalt 50.84 5.69 

Double-decker-standing asphalt 47.49 5.71 

Single-decker-seated sett 46.07 5.01 

Single-decker-standing sett 42.67 4.53 

Double-decker-seated sett 39.04 4.34 

Double-decker-standing sett 36.34 4.65 
 
 

6.5 Analysis of the Impacts of Experimental Phases on Passenger Comfort 

The models presented in this section established the relationship between the influence 

of induced stimuli of experimentallly designed variables (road roughness, passenger 

posture and bus type) and passenger’s psychophysiological response (comfort). In order 

to evaluate the effect of experimentally designed variables on bus passenger discomfort, 

the experimental design variables were further divided into road roughness characteristics 

(asphalt and sett), posture (seated and standing and bus type (single- and double-decker). 

The above principle was adopted because it is presumed that bus passenger comfort could 

vary depending on road roughness, posture, driving style and bus type. Different methods 

of passenger comfort could, therefore, be established to describe each of the situations or 

conditions. In this study, the ANOVA method, the “Tests of Between-Subjects Effects” 

and “Parameters Estimate” was applied to test the impact of each of the experimentally 

designed variables on passenger comfort in order to obtain F-test and partial eta-squared 

effect sizes for each of the experimental variables. 

6.5.1 Passenger’s Psychophysiological Responses to the Influence of 

Experimentally Designed Variables 

Validation of the results was carried out by modelling the psychophysiological response 

of passengers (eSense metric for attention brain activity) relative to the influence of 

experimentally designed variables. The model “Test of Between-Subjects Effect” was 

applied. The corrected model row shows that the overall model was significant (p < 0.01) 

and the effect size shows that the model explains 71.2% of the variance of a passenger’s 
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level of distraction, agitation or abnormality. The road environment, posture and bus type 

are statistically significant (p < 0.01) and the effect size shows that road environment, 

posture and bus types highly indicated the variance of the dependent variable (passenger’s 

discomfort) at 56.7%, 9.6% and 30.2%, respectively. Passenger’s related variables, such 

as age and gender, were introduced as part of the model (Table 6-3). The results 

demonstrated that both age and gender are statistically significant.  

Table 6-3: Analysis of the influence of experimental phases on passenger’s 
psychophysiological responses 

Source 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Corrected Model 9878.608 6 1646.435 71.343 0.00 0.712 
Intercept 260497.335 1 260497.335 11287.885 0.00 0.985 

RoadEnvironment 5225.849 1 5225.849 226.447 0.00 0.567 
Posture 423.293 1 423.293 18.342 0.00 0.096 

Bus Type 1727.939 1 1727.939 74.875 0.00 0.302 

Gender 1608.444 1 1608.444 69.697 0.00 0.287 

Age 31.956 1 31.956 1.385 0.24 0.008 

Error 3992.426 173 23.078 
   

a. R Squared = .712 (Adjusted R Squared = .702) 
 
 

6.5.2 Evaluation of Passenger’s Psychophysiological Response to the Influence of 

Experimentally Designed Variables 

Table 6-4 defined the model’s parameters and presented the correlation ratio, standard 

deviation error with individual lower- and upper-bound at a 99% confidence interval and 

their corresponding p-values. Exposure to the influence of experiment variables in this 

study could be described as a form of activation of the whole body receptors and CNS 

(Byung-Chan et al., 2002). The emotions were evoked due to factors that formed the 

experimental phases, and were transferred to the brain and integrated to produce a 

subjective response to the stimuli effect of the influences of posture, bus type and road 

surface characteristics (experimental phases). Table 6-4 shows the correlation between 

the experimental phases and changes in attention (eSense meter). The statistical analysis 

supports the conclusion of the analysis of “Parameter estimate”, which shows that the 

variations in the responsiveness of the passenger to the influence of asphalt and sett 

pavements are significant (p < 0.01). The effect size shows that the influence of asphalt 

and sett pavements explains 56.7% and 52.1% of the variance of passenger discomfort. 
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The intercept model row shows that the overall model was significant (p < 0.01), and the 

effect size indicates that the model explains 83.8%% of the variance in 

psychophysiological response of the passenger.   

Table 6-4: ANOVA of the experimental phase on passenger responsiveness 
(Attention eSence) 

   
 

 
95% Confidence 

Interval  

 Parameter B 
Std. 

Error 
      t 

Sig. 
Lower 
Bound 

Upper 
Bound 

Partial Eta 
Squared 

Intercept 31.466 1.051 29.935 0.00 29.391 33.541 0.838 

Asphalt 
Pavement  

18.049 1.316 13.710 0.00 15.450 20.647 0.521 

Sett 
Pavement 

11.430 0.760 15.048 0.00 9.931 12.929 0.567 

Posture 3.254 0.760 4.283 0.00 1.754 4.754 0.096 

Bus Type 6.575 0.760 8.653 0.00 5.075 8.074 0.302 

Gender 6.419 0.769 8.348 0.00 4.901 7.936 0.287 

Age 0.871 0.740 1.177 0.24 -0.590 2.331 0.008 
 

 

6.6 Effect of Road Roughness on a Passenger’s Psychophysiological Response: 

Gender Influence 

Figure 6-1 showed that the sensory information of males and females sharply reduced on 

both asphalt and sett pavements. This result was probably conveyed to the association of 

the cortex and the degree of stimulus transmitted to the CNS. Figure 6-1 shows that there 

is a significant difference (p< 0.01) between the responsiveness of male and female 

subjects. For example, the average responsiveness of male and female passenger 

responses to the influence of asphalt pavement are 40.09 and 46.69, respectively. The 

existing variations in the responsiveness of male and female passengers relative to road 

pavement characteristics (asphalt or sett pavements) are statistically significant (Figure 

6-1). The lower psychophysiological response of female passengers compared to male 

passengers revealed significant main effects of road roughness characteristics. 
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Figure 6-1: Influence of road roughness on comfort for gender characteristics 
(attention eSense meter) 

 

6.6.1 Effect of Road Roughness on a Passenger’s Psychophysiological Response: 

Age Influence 

The impact of a passenger’s age on psychophysiological responses of passengers to the 

influence of road roughness characteristics was validated in this study. The estimated 

marginal mean demonstrated that the psychophysiological response of young and old 

passengers vary significantly on both asphalt and sett pavements. In other words, the 

extent of activation of the activity of CNS on passengers older than 30 years is more 

significant compared to young ones (Figure 6-2). These results could be interpreted as 

older passengers exhibiting a higher level of discomfort that could impair their physical 

and mental fitness compared to young passengers. 
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Figure 6-2: Passenger sensibility (eSense metric for attention): age influence 

 

6.6.2 Effect of Road Roughness on a Passenger’s Psychophysiological Response: 

Influence of Bus Type 

When considering the influence of bus types on passenger’s psychophysiological 

responses to the influence of road pavement characteristics, the results of this research 

demonstrated that it is statistically different (p < 0.01) between the responsiveness of 

passengers on single-decker buses compared to passengers on double-decker buses. An 

incongruent relationship was found between the psychophysiological response of 

passengers of single- and double-decker buses on both asphalt and sett pavements. The 

results indicated that vehicular types have a significant impact on a passenger’s level of 

distraction, agitation and abnormality Figure 6-3).  
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Figure 6-3: Influence of pavement types on passenger comfort (beta band) for 
vehicle characteristics 
 

6.6.3 Effect of Road Roughness on a Passenger’s Psychophysiological response: 

Gender Influence: Posture Influence 

Considering the actual Lothian Buses operational situations, this section presents a 

sensitivity analysis of the variations between the extent of dissatisfaction, agitation or 

abnormality of seated and standing bus passengers under the influence of induced stimuli 

of asphalt and sett pavements. The results demonstrated that standing bus passengers were 

tenser compared to seated passengers. The average responsiveness of passengers on sett 

pavement, both seated and standing, reduced compared to asphalt pavement. For instance, 

the average responsiveness of seated and standing passengers on sett pavement is 48.1 

and 45.5, respectively. The corresponding proportion of the average attention eSence 

meter of seated passengers on asphalt and sett pavements is 44.79 and 41.81, respectively 

(Figure 6-4). These results suggest that standing passengers experience more distractions 

and level of discomfort than seated ones. Therefore, standing passengers may require 

more attention and concentration to ensure stability and prevent falling in all forms of 

ground public transport. This study concluded that more significant losses of 

psychophysiological activation and alertness probably occur among standing passengers 

than among seated ones.  However, it is speculated that standing passengers and those 
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who are using buses regularly may be more sensitive to changes in physical and mental 

states, and they compensate for it in their responses. 

 
Figure 6-4: Effect of road roughness on passenger comfort (attention eSense meter): 
posture influence 
 

6.7 Relation between Average Psychophysiological Response and Passenger 
Perception 

The impacts of passenger’s exposure to the influence of experimental design variables in 

this study could be described as activation of body receptors and the cerebral cortex. The 

emotions evoked during each phase of the experiments are transferred to the brain and 

integrated to produce a subjective response to the stimulus effects of the posture, bus type, 

road surface characteristics and other factors. Many researchers use approaches that are 

not limited to a physiological response, a behavioural change or a subjective assessment 

in order to investigate human responses (feelings) to internal or external stimuli. This 

section presents the statistical analysis of the brain-induced signals (attention eSence 

meter) as evaluations of bus passenger psychophysiological states (level of distraction, 

agitation or abnormality) or level of mental fitness relative to the ISO 2631-1 subjective 

comfort assessment. This study used the baseline of the objective data (average eSense 

metric for attention) of being not uncomfortable and a little uncomfortable on the 

subjective comfort assessment in order to establish the relationship between 

psychophysiological response and raking of the subjective comfort assessment. The 

observed decrease in psychophysiological signals (eSense metric for attention) in relation 
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to an increase in ranking factors of the subjective comfort assessment could be interpreted 

as an increase in the passenger’s level of distraction, agitation or abnormality 

(discomfort). For instance, the mean values of the brain activity of not uncomfortable, 

fairly uncomfortable and extremely uncomfortable relative to the influence of the 

experimentally designed variables are 67.0, 50.2 and 46.7, respectively. This result proves 

that the urban bus passenger state of distraction, agitation or abnormality could be 

objectively evaluated by observing the relationship between the average EEG brain 

activity and a passenger’s perception (subjective comfort assessment). The results of this 

study prove that there is a positive relationship between the average eSense metric for 

attention (EEG brain activity) and the subjective comfort assessment (Figure 6-5). 

 
Figure 6-5: Passenger level of distraction, agitation or abnormality (attention eSense 
meter) and comfort assessment 

 

6.7.1 Correlation between Psychophysiological Responses and Passenger’s 

Perception of the Influence of Experimental Design Variables 

The modelling of the effect of road roughness, passenger posture, bus type, and the 

demographical characteristics of the subjects are presented in this section. The statistical 

analysis of cross-correlation of the eSense metric for attention and the subjective comfort 

assessment information of the twenty participants were presented in Table 6-5, relative to 
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the influence of experimentally designed variables, passenger responses (attention eSence 

brain activity) and subjective comfort assessment. The model test of the Between-

Subjects Effect was applied to test the participant’s level of distraction, agitation or 

abnormality by using ANOVA. The evaluation of comfort assessments relative to the 

experimental designed phases was found to be significant (p < 0.01). The corrected model 

row shows that the overall model was significant (p < 0.01) and the effect size shows that 

the model explains 78.9% of the variance of a participant’s level of distraction, agitation 

or abnormality (Table 6-5).  

Table 6-5: Changes in passenger’s responses to the influence of experimental 
phases (eSense metric for attention) 

Source 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Corrected Model 10002.628 14 714.473 32.803 0.00 0.789 

Intercept 187446.461 1 187446.461 8606.073 0.00 0.986 

Comfort 
Assessment 

5343.886 5 1068.777 49.070 0.00 0.666 

Experimental 
phase 

206.489 7 29.498 1.354 0.23 0.072 

Age 23.609 1 23.609 1.084 0.30 0.009 

Gender 13.449 1 13.449 0.617 0.43 0.005 

Error 2679.029 123 21.781 
   

R Squared = .789 (Adjusted R Squared = .765) 
 
 

6.7.2   Influence of Experimentally Designed Variables on Psychophysiological 

Responses and a Passenger’s Perception 

(Table 6-6 shows the analysis of the correlation between the average attention eSense 

meter and subjective comfort assessments by using the “Parameter of Estimate model”. 

The results of the model indicate that the subjective comfort assessment is statistically 

significant (p < 0.01). These results keep with the reduction in psychophysiological 

responses (level of distraction, agitation or abnormality) of passengers relative to the 

subjective comfort assessment ranking. The model intercept row shows that the overall 

model is significant (p < 0.01), and the effect size shows that the model explains 80.3% 

of the variance in a passenger’s psychophysiological response (passenger comfort) 

((Table 6-6).  
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Table 6-6: Evaluation of psychophysiological response and a passenger’s perception of the influence of experimental phases 
(eSense metric for attention) 

Parameter B Std. Error t Sig. 
99% Confidence Interval 

Partial Eta 
Squared Lower 

Bound 
Upper Bound 

Intercept 33.960 1.514 22.425 0.00 30.962 36.957 0.803 
Not uncomfortable 31.998 2.487 12.866 0.00 27.075 36.921 0.574 

A little uncomfortable  18.096 1.779 10.169 0.00 14.574 21.618 0.457 

Fairly uncomfortable  18.479 1.705 10.837 0.00 15.103 21.854 0.488 

Uncomfortable 7.450 1.517 4.912 0.00 4.447 10.452 0.164 

Very uncomfortable 3.599 1.341 2.684 0.01 0.944 6.253 0.055 

Single-decker-seated asphalt 0.120 1.944 0.062 0.95 -3.727 3.968 0.000 

Single-decker-standing asphalt 1.134 1.804 0.629 0.53 -2.436 4.705 0.003 

Double-decker-seated asphalt -2.510 1.705 -1.473 0.14 -5.884 0.864 0.017 

Double-decker-standing asphalt -0.878 1.612 -0.545 0.59 -4.068 2.312 0.002 

Single-decker-seated sett -2.960 1.873 -1.581 0.12 -6.667 0.747 0.020 

Single-decker-standing sett -1.675 1.629 -1.028 0.31 -4.899 1.549 0.009 

Double-decker-seated sett -0.533 1.634 -0.326 0.75 -3.767 2.702 0.001 

Age 0.975 0.936 1.041 0.30 -0.879 2.828 0.009 
Gender -0.760 0.967 -0.786 0.43 -2.674 1.154 0.005 
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6.7.3 Effect of Experimentally Designed variables on Psychophysiological and 

Subjective Responses: Age Influence 

The results in Figure 6-6 show the average psychophysiological responses (EEG brain 

activity) of different age groups. The evaluations are based on the average value of the 

eSense metric for attention and factors of subjective comfort assessment. An increase in 

the level of distraction or abnormality (discomfort) of the passengers was indicated by 

the low eSense meter of attention. Therefore, this study confirmed that there is a slight 

variation between the average level of distraction, agitation or abnormality of young and 

old passengers. However, the existing variation between the responsiveness of the age 

groups is not statistically significant. This could be explained as the age of a passenger 

has no significant influence on their level of attention.  

 
Figure 6-6: Passenger’s psychophysiological response (attention eSense meter) 
and subjective responses: age influence 
 

6.7.4 Relationship between Psychophysiological Response and Subjective Comfort 

Assessment: Gender influence 

Figure 6-7 shows that statistically, there is no significant difference between male and 

female levels of distraction, agitation or abnormality in a dynamic environment by using 

the attention eSense scale. These results could be interpreted as both male and female 

passengers exhibiting the same/similar patterns of discomfort in a dynamic environment. 
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Figure 6-7: Passenger’s psychophysiological response (attention eSense meter) and 
subjective responses: gender influence 
 
 

6.8 Inter-subject Variability 

The perceived ride comfort in public ground transport is known to vary from one vehicle 

to another as well as from person to person. For instance, the study of Richard et al. (1978) 

indicated that the responsiveness of individuals in the vehicle environment is not limited 

to only physical inputs, but also the individuals’ characteristics. Generally, EEG in the 

human brain could demonstrate significant variations and fluctuation patterns within or 

between sampled subjects. Also, NeuroSky, 2010 indicated that EEG brain activity has a 

propensity of normal ranges of fluctuation and variation. Therefore, it could be difficult 

to obtain the same brain signals (level of distraction, agitation or abnormality) from all 

the participants even though they are exposed to the same/similar experimental 

conditions. This section presents the average, lower bound and upper bound responses of 

the 20 sampled passengers to the influence of experimentally designed variables (Figure 

6-8). The results show the effects of the experimental phases on a passenger’s level of 

distraction, agitation or abnormality as well as variations in average EEG brain activity 

of all the subjects.  
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Figure 6.8: Inter-subject variability  
 

6.8.1 Inter-subject variability (eSense metric for attention) 

The effects of experimental phases on inter-subject variability of bus passenger’s levels 

of distraction, agitation or abnormality are shown by using ANOVA. As shown in Table 

6-7, the p-value of the subject (passenger) variability using the Test of Between-Subject 

Effect is much higher than 0.05, indicating no significant difference between the 

responsiveness of all the passenger’s levels of distraction, agitation or abnormality in all 

phases of the experiment.  

Table 6-7: Statistical analysis of inter-subject variability 

Source 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Corrected Model 3230.873 19 170.046 2.557 0.00 0.233 

Intercept 406717.376 1 406717.376 6115.958 0.00 0.975 

Subject 3230.873 19 170.046 2.557 0.00 0.233 

Error 10640.161 160 66.501 
   

R Squared = .233 (Adjusted R Squared = .142) 
 
 

6.8.2 Inter-subject Variability: Parameter of Estimates 

Table 6-8 presents the analysis of the inter-subject variability of urban bus passenger’s 

levels of distraction, agitation or abnormality by using the eSense metric for attention. 

There is no evidence from this study to support the factor(s) responsible for the existing 

variations in the average responsiveness (discomfort) of all the 20 participants.  
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Table 6-8: Analysis of Inter-Subject variability (Attention eSense meter) 

Parameter B Std. Error t Sig. 
99% Confidence Interval 

Partial Eta 
Squared Lower 

Bound 
Upper 
Bound 

Intercept 47.152 2.718 17.346 0.00 41.784 52.520 0.653 
Subject 1 1.810 3.844 0.471 0.64 -5.782 9.402 0.001 

Subject 2 7.642 3.844 1.988 0.05 0.050 15.233 0.024 

Subject 3 -5.249 3.844 -1.366 0.17 -12.841 2.343 0.012 

Subject 4 0.307 3.844 0.080 0.94 -7.285 7.899 0.000 

Subject 5 5.203 3.844 1.353 0.18 -2.389 12.795 0.011 

Subject 6 -4.424 3.844 -1.151 0.25 -12.016 3.168 0.008 

Subject 7 -3.176 3.844 -0.826 0.41 -10.768 4.416 0.004 

Subject 8 -1.461 3.844 -0.380 0.70 -9.053 6.131 0.001 

Subject 9 4.126 3.844 1.073 0.29 -3.466 11.718 0.007 

Subject 10 0.549 3.844 0.143 0.89 -7.043 8.141 0.000 

Subject 11 -0.241 3.844 -0.063 0.95 -7.833 7.351 0.000 

Subject 12 4.705 3.844 1.224 0.22 -2.887 12.297 0.009 

Subject 13 -8.625 3.844 -2.244 0.03 -16.217 -1.033 0.031 

Subject 14 -2.142 3.844 -0.557 0.58 -9.734 5.450 0.002 

Subject 15 -2.869 3.844 -0.746 0.46 -10.461 4.722 0.003 

Subject 16 -0.416 3.844 -0.108 0.91 -8.008 7.176 0.000 

Subject 17 4.848 3.844 1.261 0.21 -2.744 12.440 0.010 

Subject 18 -0.844 3.844 -0.219 0.81 -8.436 6.748 0.000 

Subject 19 7.913 3.844 2.058 0.04 0.321 15.505 0.026 

The parameter “Subject 20” is set to be redundant. 
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6.9 Summary 

This chapter presented a laboratory and field study designed to investigate the influence 

of experimentally designed variables (road roughness, passenger posture and bust type) 

on a passenger’s level of discomfort by using the attention eSense meter of EEG. The 

subjective evaluation of a subject’s opinion on average ride comfort on each type of 

pavement was carried out by using the recommended assessment scale of the International 

Standard ISO 2631-1 for public transport. The approach used in this study is referred to 

as biophysical approaches of investigating brain responses to ERP in which the electrical 

signals’ (attention eSense meter) magnitude depend on the sensory or cognitive state. The 

results show that the states of agitation or abnormality could be objectively determined 

by observing the relationship between the changes in responses of the bus passengers to 

the influence of road roughness characteristics, posture and bus type. 
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CHAPTER 7 GENERAL DISCUSSION 

7.1 Study Background 

The overall aim of the thesis is to investigate the appropriateness of using EEG in 

transport research. The primary objectives are to examine the extent of bus passenger 

comfort associated with the influence of road roughness characteristics, passenger posture 

and bus type, along with the level of driver fatigue relative to the impacts of driving 

duration. The results of the evaluation of bus passenger’s psychophysiological responses 

could be used to improve the representation of the human body in a seated and in a 

standing position within the current comfort assessment standards for public transport 

systems (such as ISO 2631–1 (1997)). Previous studies have reported bus passenger 

comfort by using different approaches and factors (Mongelli et al., 2018; Šalinic et al., 

2013; Beurier, 2012; Stradling & Carreno, 2007). However, none have considered the 

influence of road roughness characteristics, passenger posture and bus type by using the 

application of EEG. The approach taken in this thesis was to model these factors together 

and assess them separately through a series of field studies, and then provide an overall 

relationship between seated and standing passenger’s responses to the influence of road 

roughness in single- and double-decker buses. Also, the results of the fatigue assessment 

could be used to improve a driver’s attention and corresponding fatigue countermeasures 

as a function of the duration of driving. Several studies were previously carried out to 

investigate the nature of driving fatigue and its likely effects on traffic safety of other road 

users (Ma et al., 2019; Yin & Mu, 2016; Hanowski et al., 2003; Amundsen & Sagberg, 

2003). 

7.2 Overview of Urban Bus Passenger Comfort 

Apart from the frequency of bus departures, the cost of the ticket, the number of transfers 

and punctuality, passenger comfort is an essential part of the element of the users. The 

investigation of bus passenger comfort appears to be challenging due to many factors, 

such as frequent stopping at bus stops and other road infrastructural facilities. Also, in 

order to understand the effectiveness of the bus public transport systems, researchers are 

trying to model and predict passenger demand and comfort, which increases the 

passenger’s attractiveness and encourages more people to choose to use the bus (Kubek 

et al., 2019). The emotion that arises from the induced stimuli effects from road-vehicle 

interactions, driving behaviour and passenger posture could have significant impacts on 
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psychophysiological states, health and the mental fitness of the driver and the passengers. 

Minimising such undesirable impacts requires an investigation of driver and passenger 

responsiveness to the influence of vibrations arising as a function of road-vehicle 

interactions. Sensations arisen from road-vehicle interactions could be classified as being 

unpleasant, uncomfortable, disturbing or annoying, and long-term exposure to it could 

result in chronic health-related issues.  

The practical application of oscillatory neural activity through the CNS in this study 

began with the analysis of participant’s responses to the experimental events. The nervous 

system allows the human body to respond to changes in an internal or external 

environment. Variations in the degree of responsiveness of the participants depend on the 

degree of force presented to the CNS. The sensation and cognitive events induce 

superimposed oscillations that are transmitted to brain tissue. These oscillations are 

characterised with various degrees of intensity that are proportional to the stimuli effect 

because the conditions in the human body must be carefully controlled in order to function 

efficiently and survive. For example, event-related oscillations of a passenger’s sensory 

or cognitive ability as a function of the influence of stimuli effects of the variables that 

form the experimental designed phases and variables in this study were investigated and 

analysed. It is, therefore, essential to know that any observable change(s) in spontaneous 

EEG brain waves, which are referred to as oscillatory responses in this study, is 

temporally associated with a specific event, which is defined as experimentally designed 

phases or variables (Başar et al., 1999).  

There are many situations when seated or standing passengers in the bus transport system 

are exposed to vibrations evoked by the influence of road roughness or driving styles, and 

they cause various stresses and/or discomfort. The higher the degree of perceived stress, 

the more likely the stress allostatic load will influence the brain and people’s wellbeing 

and health. The approach used in this study is similar to what is described by Basar et al. 

(1999) as biophysical approaches of investigating brain responses in which the electrical 

signals’ (beta brain activity or eSense metric for attention) magnitude depends on the 

sensory or cognitive state. Landström & Lundström (1985) revealed that the activation of 

the human brain varies depending on the degree of the stimuli evoked to the receptors of 

the body. In this study, a bus passenger’s level of comfort was evaluated by using data 

collated via EEG.  
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7.2.1 Relationship between Road Roughness Characteristics and a Passenger’s 

Psychophysiological Response 

Different approaches have been used in space and time to assess mental and physical non-

specific responses of the mind or body to any demand change relative to the influences 

of road roughness characteristics. Furthermore, uneven pavement causes road-vehicle 

dynamic interactions that sometimes reduce driver and passenger ride comfort 

(Loprencipe & Zoccali, 2017; Dedovic et al., 2013; Cantisani & Loprencipe, 2010). The 

weight criteria from ISO 2631–1, 1997 revealed that vibrations have significant impacts 

on bus passenger comfort. However, the effects of road roughness characteristics on 

passenger comfort depend on factors, such as the quality of the seat, adaptability, posture, 

age and gender. Road roughness is variations in road surface elevation that induce 

vibrations in traversing vehicles (Cantisani & Loprencipe, 2010), which has been 

recognised for a long time as a means of measuring and evaluating road performance and 

ride comfort (Soliman, 2006). The influence of the road roughness characteristics 

(pavement types) appears to be more prominent on bus passenger ride comfort compared 

to several other factors, such as passenger posture, ability, age, gender and bus type. A 

series of studies have been conducted to establish the relationship between road roughness 

and penalties imposed on road users. Therefore, in order to obtain a valid correlation 

between road irregularity and a bus passenger’s ride comfort, standard riding comfort 

provided by the different road roughness characteristics as well as the extent of cause-

effects of passenger discomfort as a function of road roughness characteristics need to be 

investigated. Therefore, passenger comfort was evaluated by comparing the average 

physiological and psychological responses of the passengers in baseline (control) 

experimental conditions with the responsiveness of the passengers being relative to the 

influence of experimentally designed variables. 

The human capacity to withstand additional stressors, yet sustain attention has been 

discussed in previous studies (Hancock, 1989). The passenger level of comfort can be 

investigated and evaluated in terms of behavioural, perceptual and physical responses 

(Subhani et al., 2011). The results of the series of experimental investigations presented 

in chapters 5 and 6 indicated that the influence of road roughness on bus passenger 

comfort had yielded varying results.  The results demonstrated that standing passenger’s 

psychophysiological curve increased sharply on sett pavement compared to asphalt 

pavement in both seated and standing postures. An increase in beta EEG brain activity 

and a decrease in the Sense metric for attention are associated with the integration of the 
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multi-modal somatosensory information or the cerebral cortex as a whole, which is 

essential for motor planning of bodily movement. It is evident from this study that the 

more the subject’s psychophysiological sensations increase (beta EEG brain activity) or 

decrease (eSense metric for attention) relative to the influence of experimentally designed 

variables, the more the subject’s comfort deteriorates. An increase in beta brain activity 

(increased discomfort) was found to be associated with the results of Chen et al. (2010) 

who reported that the component spectra monotonically increased with motion sickness 

levels in delta, theta, alpha and beta frequency bands. 

Magnusson and Arnberg (1976) reported that the effects of road roughness are not limited 

to decreasing the comfort of drivers and passengers, but they also cause fatigue 

experienced during actual travelling or afterwards. Also, previous studies revealed that 

prolonged exposure to mental stress could lead to different diseases, such as depression, 

heart attack, stroke and other mental disturbance symptoms (Al-shargie et al., 2016). 

Furthermore, discomfort caused by the influence of road roughness or similar source(s) 

could sometimes lead to the activation of hypothalamus-pituitary-adrenocortical axis 

hormones (cortisol) in the adrenal cortex, which could cause poor health conditions. The 

average responsiveness (eSense metric for attention) of passengers on sett pavement in 

both seated and standing positions reduced compared to the responsiveness of passengers 

on asphalt pavement. For instance, the responsiveness of seated and standing passengers 

on sett pavement is 48.1 and 45.5, respectively. 

7.2.2 Relationship between Passenger’s Psychophysiological Responses, Passenger 

Posture and Bus Type 

The psychophysiological response relative to the influence of passenger posture and bus 

type could make it possible to relate human physiological or psychological responses to 

the impact of the posture or the bus type. The objective of this study was not to develop 

a complex psychophysiological model to represent each passenger’s posture impact 

relative to the influence of the driving style or the bus type. However, this study 

investigated and examined the application of a passenger’s psychophysiological 

responses as an approach for identifying specific conditions where a passenger’s comfort 

would likely be degraded. The comfort of seated or standing passengers due to the 

influence of vibrations or excitations in public transport has been presented in previous 

studies  (Tirachini et al., 2016; George et al., 2013; Beurier, 2012; Thuong & Griffin, 

2011; Robert, 2007). Standing passengers in public ground transport systems sometimes 



148 
 

struggle to maintain balance, and experience a significant level of discomfort due to the 

influences of accelerations or decelerations, road-vehicle interactions and bus types. 

Table 5-4 demonstrates that the effect of passenger posture and bus type on bus passenger 

comfort is statistically significant (p < 0.05). The results of the model indicates that the 

influence of the posture and bus type explains 4.3% and 5.8% of the variance of passenger 

ride comfort, respectively. This may be interpreted as standing passenger’s experiencing 

higher levels of discomfort and distractions compared to seated ones. It could be as a 

result of the degree of floating or fluttering of standing passengers in double-decker buses 

compared to single-decker buses.  

The variations in the psychophysiological responses of standing passengers compared to 

seated passengers are statistically significant (p < 0.01). It could be concluded that 

standing passenger(s) require more attention to ensure stability and prevent falling 

compared to seated passenger(s) in all forms of ground public transport systems. Previous 

studies also showed that there are variations between the comfort of seated and standing 

passengers in public transport. For instance, the study of Suzuki et al. (2000) revealed 

that after a lateral acceleration of 1.0 m/s2, the discomfort of standing passengers began 

to increase while the discomfort of seated passenger slowly evolved at 1.2 m/s2. Also, the 

study of Shen et al. (2016) showed that the comfort perception of standing passengers 

decreased sharply compared to seated passengers. This study demonstrated that a 

correlation between passenger posture, bus type and psychophysiological response seems 

to exist, which might be because the activation of the brain occurs in relation to the 

induced stimulus effect of the influence of the experimentally designed variables to the 

body’s receptors.  

The variation in sizes of buses used by bus operators, such as Lothian Buses, depends on 

factors including the volume of passenger traffic on those routes. Both single- and double-

decker buses have their strengths and weaknesses to the service users as well as bus 

operators. The results of this study indicated that bus types have a significant impact on 

passenger ride comfort. The impacts were observed when the responsiveness of the 

participants on single-decker buses is compared to those on double-decker buses, most 

importantly on sett pavement (Figure 5-3). These effects probably alluded to the 

association of the cerebral cortex and the degree of stimulus transmitted to the CNS. The 

findings prove that there is a statistically significant difference (p < 0.01) between the 

responses of passengers on single- and double-decker buses. For example, the average 

responsiveness of passengers on single- and double-decker buses to the influence of 
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asphalt pavement is 4.67 and 5.42, respectively (Figure 5-3). It could be interpreted that 

passengers are more strained in double-decker buses compared to single-deckers under 

similar or the same experimental conditions. 

The findings were in agreement with the study of Lima et al. 2015, which demonstrated 

that passengers of heavy vehicles are often subjected to a higher level of discomfort than 

passengers of light vehicles. The variations in the mass, height and geometry of single- 

and double-decker buses could form the factors responsible for the observable variations 

in ride comfort.  Besides, changes in passenger comfort could arise due to the vehicle’s 

suspension system and structural differences as mentioned in the study of  Gillespie and 

Sayers, 1981. The results showed that passengers are more strained in double-decker 

buses compared to single-deckers on both asphalt and sett pavements. The variations in 

the average responsiveness of single- and double-decker buses on asphalt and sett 

pavements are 0.75 (16.06%) and 1.63 (26.63%), respectively. 

Also, it is noted that vehicle designers ensure to keep the vehicle body’s resonant 

frequency low in order to maximise the attenuation of the vehicle. Vehicle resonance that 

it is as low as 1 Hz. is achieved in some vehicles. The high frictional suspension that is 

common in commercial vehicles is 3 Hz. resonance, which could also vary depending on 

the size of the commercial vehicle. Previous research has shown that there is a linear 

relationship between the objective comfort assessment and speed, which is varied 

depending on vehicle type and road roughness characteristics (Cooper et al., 1978). In 

this study, the passengers reported that they were more strained in a moving double-

decker bus, most importantly on sett pavement, compared to a single-decker on the same 

pavement type. The results of this study have shown that it is possible to examine and 

evaluate the degree of comfort of bus passengers based on vehicular types by using EEG. 

The results of the subjective comfort assessment were used to validate the passenger’s 

psychophysiological responses. The activation of the ERPs of the subjects occurs in 

various stimulus to the different receptors of the body relative to the influence of the 

experimentally designed variables. The subjective evaluation of the subjects’ perceptions 

on average ride comfort in each phase of the experiments was carried out by using the 

recommended assessment scale of the International Standard ISO 2631-1 for the public 

transport of not uncomfortable, a little uncomfortable, fairly uncomfortable, 

uncomfortable, very uncomfortable or extremely uncomfortable (Loprencipe & Zoccali, 

2017, ISO 2631–1, 1997b). However, using the baseline of the objective data (beta brain 
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activity and eSense metric for attention) and not comfortable or a little uncomfortable of 

subjective evaluation as the reference point, the results confirmed that passenger comfort 

changes in relation to changes in the stage of the experimentally designed variables. The 

findings in this study reveal that the more the subject’s psychophysiological signals 

increase (beta brain activity), the more the level of the subject’s comfort deteriorates. For 

instance, passengers with an average beta EEG brain activity of 8.8, 10.1 and 12.8 felt 

uncomfortable, very uncomfortable and extremely uncomfortable, respectively (Figure 5-

9). The average beta EEG brain activity attained the peak value of 12.8 when the 

participants believed that they felt extremely uncomfortable. Therefore, it is evident that 

the more uncomfortable the passenger felt, the higher the values of beta EEG brain 

activity were (psychophysiological responses). The results of the study revealed that the 

passenger’s level of comfort could be objectively identified and determined by examining 

the relationship between beta EEG brain activity and the eSense metric for attention, and 

a subjective assessment as a function of the degree of stimuli from the influence of 

experimentally designed variables. Thus, it was evident that when designing a study 

investigating passenger comfort as a function of the influence of road roughness, posture 

and bus type as well as age and gender variations in psychophysiological activation must 

be considered. Also, the results prove that the passenger’s level of comfort could be 

objectively identified and determined by observing the relationship between a passenger’s 

psychophysiology and subjective response. The results demonstrated that there are cross-

correlations between the objective evaluations and subjective responses of the passengers. 

For instance, the more uncomfortable the passenger felt, the higher the values of EEG 

beta brain activity were. Consequently, the cross-correlation of objective (beta EEG brain 

activity) data and subjective response demonstrates that the average beta EEG brain 

activity attained the peak value of 12.8 when the subject felt extremely uncomfortable. 

In automated vehicles, especially urban bus transport systems, sharp starts and stops are 

inevitable as the vehicle merges into high-speed traffic at close headway. The changes in 

bus speed profile factors felt in all directions often influenced passenger comfort in the 

public transport system. The study of  Castellanos & Fruett (2014) investigated the 

dynamic factors that affect passenger comfort in public transport and define them as 

comfort disorders (jerk and uneven speed). The perceived comfort is associated with the 

types and magnitudes of the stimuli transferred to the Reticular Activating System of the 

brain (Min et al., 2002). The influence of induced stimuli from vehicular driving patterns 

shows that passengers are tenser when the average speed ranges from 11–20, 21–30 and 
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31–40 km/h compared to when the average speed was 0–10 and 51–60 km/h (Figure 5-

13). The study of Urabe & Nomura (1964) indicated that evaluating a vehicle’s ride 

comfort requires data on a passenger’s sensations and evaluating them quantitatively 

under various conditions.   

7.3 Overview of Driver Fatigue 

Driver fatigue is known as one of the leading factors of road traffic accidents, accounting 

for 14%–20%  (Ma et al., 2019). It is a general and common disabling sign of many 

drivers that interfere with attention, reaction time and the ability to manage the occurrence 

of unforeseen road-related incidents or accidents. As captured via EEG, the investigation 

of the relationship between changes in beta brain activity and the eSence metric for 

attention (fatigue or alertness), along with time spent driving, were used for the 

assessment. In the transport system, cumulative fatigue due to driving time could have 

substantial impacts on a driver’s vigilance and performance; therefore, a better 

understanding of the cause-effect of fatigue is required. 

Generally, vigilance is known to be the central factor of safety for all transport operators, 

and there is also a significant relationship between vigilance and sleepiness or circadian 

factors. Additionally, the natural circadian cycle in psychophysiological response could 

have considerable impacts on a driver’s level of alertness and fatigue. Consequently, the 

data collection for this study was performed within the framework of time spent in 

driving. For example, we ensured that all the participants had a good sleep the night before 

the experiments. Moreover, issues related to participant or individual life outside work, 

such as driving experience, health disorders and individual proneness were put into 

consideration when designing the experimental stages and the participant’s quality. For 

instance, we ensured that all the participants were healthy adults with no display of any 

symptom of brain malfunction or mental illness. They had no record of psychological 

therapy nor a history of mental health-related issue(s). None of them was on any 

prescribed medication because all this could influence brain activity. Measurement of 

fatigue in this research underwent some refinement, and all the likely influence of 

equipment, environmental and operational factors were controlled.  
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7.3.1 Relationship between the Duration of Driving and a Driver’s 

Psychophysiological Response 

By analysing the measured brain activity of the participants to the influence of prolonged 

driving, the variations in psychophysiological responses of the participants could be 

compared over time. Duration of driving is one of the more frequently used factors for 

characterising the “to-the-body” physiological or psychological responses of the drivers 

(Miller & Mackie, 1978). Previous research shows that changes in wakefulness often lead 

to an increase in driving impairment as investigated by both road driving and simulated 

studies (Philip et al., 2005; Arnedt et al., 2005).  

Changes in a passenger’s psychophysiological responses as a function of driving time 

were assessed by using ANOVA. The findings demonstrated that there is a significant 

relationship between the total time spent driving and performance decrements (fatigue). 

For instance, there is a substantial increase in the levels of psychophysiological activation 

of drivers to the influence of driving time with a break (two hours after a break compared 

to two hours before). In the case of prolonged driving without a break, a significant and 

steadily higher level of psychophysiological responses was observed. This study proved 

the usefulness of the applications of EEG on driving fatigue and performance decrements. 

The most crucial finding in this study contradicted the results of the previous research of 

Philip et al. (2005) that demonstrated a lack of effect of the duration of driving on 

performance and sleepiness. However, the results of the analysis of Philip’s group could 

be due to the length of the experiments (105 minutes). The average eSense meter of 

attention of driving without a break decreased sharply below the experimental phases of 

driving after a break when the simulated driving task was above 120 minutes. Figure 4-3 

demonstrates that the longer the driving time, the lower the corresponding average of the 

eSense meter of attention of the participants is. This could be interpreted as prolonged 

driving time negatively impacting the psychophysiological functioning and ability of 

drivers to react to factors of incidents or accidents. Consequently, time spent driving is 

an essential construct for understanding driver fatigue.   

Additionally, the results indicated that there is a significant difference between the fatigue 

state of male and female drivers. It is observed that the variations between the 

psychophysiological responses of male and female drivers and the influence of the 

duration of the driving task are statistically significant (p < 0.01). A good example is the 

average responsiveness (eSense metric for attention) of male and female drivers at 240 
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minutes of driving, which is 38.6 and 36.91, respectively. It could be interpreted that the 

female drivers exhibited a higher level of fatigue and performance decrements, which 

could impair their level of alertness and reaction time compared to male drivers. The age 

of the drivers also influences their psychophysiological responses to the influence of 

prolonged driving. The younger drivers (< 30 years old) perceived higher fatigue rates 

compared to the older ones (> 30 years) as a function of the duration of driving time. 

This study was in support of the common notion that the duration of driving is an essential 

factor that needs to be controlled and managed in order to promote road safety (Parkes et 

al., 2009). The results also demonstrated a certain degree of congruency with previous 

research findings in which fatigue is classified as one of the distressing and disruptive 

symptoms in transit. It may be interpreted that prolonged driving could negatively impact 

psychophysiological functioning and the ability of the drivers to react to incidents or 

accidents.  
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CHAPTER 8       SUMMARY AND GENERAL CONCLUSIONS 

The research presented in this thesis was designed to enhance the knowledge of the 

application of EEG in transport research studies in two key areas that have not been fully 

investigated. The areas included: i) the influence of driving time on driver fatigue or 

performance decrements, and ii) the effect of road roughness characteristics, passenger 

posture and bus type on bus passenger comfort.  

8.1 Meeting Research Objectives 

In recent years, there have been improvements in managing urban bus passengers comfort 

by bus operators and authorities in order to attract more passengers. This impact has been 

significant in managing traffic congestion and further reducing vehicle emissions. In an 

attempt to improve passenger comfort, different datasets (qualitative and quantitative) 

were used as an index of measuring and modelling the service quality of public transport 

systems with great emphasis on both passenger and driver overall satisfaction and 

perceptions. In data collection, there are still some limitations to the type and efficiency 

of data obtained. Further investigations are required to identify some of these shortfalls 

in type and method of data collection in order to improve passenger comfort evaluation 

and modelling. The following points outline the main conclusions of the thesis and 

summary of the key findings: 

Examine the change in a driver’s psychophysiological responses (from the state of 

focus or vigilance to fatigue or performance decrements) as a function of the 

duration of driving. 

The use of driving as part of the factors to evaluate driving fatigue followed the recent 

trend and future forecast of managing road crashes. The influence of driving time on 

fatigue and fatigue-related accidents for drivers identified by Parkesat et al. (2009) and 

the European Parliament and the Council (EEC, 2006) were confirmed by the results and 

observations presented in chapter  4. Additionally, an interactive effect was found 

between the driver’s average psychophysiological response and the time spent in driving. 

There were persistent increases in beta brain activity and decreases in the eSense metric 

for attention as fatigue progressed from the baseline through transitional states or stage 

performance decrements (fatigue). For example, the first 30 minutes of the experiment 

was meant to serve as the baseline of the experiments. The average psychophysiological 

responses demonstrated that the beta frequency band and the eSense metric of attention 
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EEG brain activity were still within the optimal level compared to the driving time of 180 

minutes and above.   

The results of driving fatigue as a function of prolonged driving corroborated the standard 

acceptable view that human performance decrements on specific tasks reach their lowest 

level when the duration of working (working hours) is beyond the acceptable limit or the 

individuals bearing capacity. This period of high-performance degradation or poor 

performance could represent the state of being extremely tired and very difficult to 

concentrate or unable to function effectively in task performance. These effects could 

offer significant benefits in determining the extent of the links between prolonged driving 

or working hours and driver fatigue. It may also have significant implications on the 

extent to which limiting hours of driving or work could help prevent fatigue-related 

incidents/accidents. Therefore, appropriate break time should be provided in all lengthy 

driving task(s) to compensate for any potential loss of performance or 

psychophysiological ability.   

Investigate the effect of road roughness on the passenger’s psychophysiological 

responses in public bus transport systems. 

The emerging concept of perceived satisfaction in the ground public transport system 

provides a means of augmenting the concept of “ride comfort” as a conceptual approach 

for explaining the influences of road roughness. The magnitudes of sensations or 

vibrations found on some sections of Lothian Buses routes (sett pavements) were similar 

to those reported in the previous studies. Statistical analyses (ANOVA) shows an explicit 

agreement between road roughness characteristics and a passenger’s psychophysiological 

response (EEG brain activity). Discomfort is associated with the psychological and 

physiological responses to a situation that requires homeostatic imbalance that occurs due 

to the discrepancy between what is experienced and what ought to be experienced 

(Subhani et al., 2011). Reduced comfort due to rough road exposure positively correlates 

with psychophysiological response as captured via EEG. The results prove that there is a 

significant difference (p < 0.01) between the psychophysiological responses (discomfort) 

of passengers on asphalt and sett pavements. For example, the average responsiveness of 

passengers in single-decker buses to the influence of asphalt and sett pavements is 4.67 

and 6.2, respectively. The corresponding responsiveness of passengers in a double-decker 

bus to the impact of asphalt and sett pavement is 5.42 and 7.9. The results supported the 

assumption that road pavement type might reduce bus passenger comfort, the effects 
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being less produced on asphalt pavement than on sett pavement. Also, by using the eSense 

meter scale, the results demonstrated that the variations between the responsiveness of 

young (< 30 years) and old (> 30 years) passengers are statistically significant (p < 0.01). 

The eSense meter scale shows that values ranging from 0–40 represent distraction, 

agitation and abnormality (Table 3-5). Sett pavement was installed to reduce vehicle 

speed and improve the safety of pedestrians and people within the neighbourhood. 

Vehicle occupants usually experience different forms of unpleasantness when travelling 

on sections of sett pavement because of vibrations from road-vehicle interactions. The 

results showed that passengers were more strained and uncomfortable on sett pavement 

than on asphalt pavement (Figure 6-4). Cantisani & Loprencipe (2010) reported a 

reasonable agreement between road roughness characteristics inducing user discomfort. 

The upsetting effects of road pavements on passenger comfort demonstrated that 

passengers are more strained on sett pavement compared to asphalt pavement. This result 

was in agreement with Soliman’s (2006) study that investigated the effects of road 

roughness on ride comfort and found that as the road roughness coefficient increases, the 

ride comfort deteriorates. Ismail et al. (2015) reported a reasonable agreement between 

passenger comfort decrements and road roughness characteristics. The above study 

revealed that rough surfaces induce higher force excitations to the cyclist, thereby 

increasing participant’s discomfort on sett pavement compared to smooth pavement.  

The results showed that there are variations in the participant’s average responses to the 

influence of posture, road roughness (asphalt and sett pavements) and bus types (single- 

and double-decker) even though they were all exposed to the same or similar 

experimentally designed conditions. The findings demonstrated that there is inter-subject 

variability in the psychophysiological responses of the passengers. The patterns of 

variations are associated with each subject’s ability to withstand the induced sensations 

from the influence of experimentally designed variables. The inter-subject variability 

depends on each passenger’s body system’s ability to regulate or manage the strength of 

the simulation presented to the CNS. Also, whenever the brain perceives induced stimulus 

effects like stress or discomfort, the responses usually lead to allostatic adaptation, which 

vary from passenger to passenger (Mcewen, 2000). Mansfield’s (2005) research 

demonstrated that the impacts of induced sensations differ from one person to another, 

and no evenly adequate approach predicted the variations from the anthropometric 

measurement.  
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Quantify changes in a passenger’s psychophysiological responses in public bus 

transport systems relative to the influence of posture in single- and double-decker 

buses. 

Comfort perceived by the passenger in the ground public transport system varies among 

factors, including vehicle type and size, the passenger’s posture or body orientation, and 

the ability of the individual to withstand the factors of stress. Generally, automatic 

transmission systems used in public transport vehicles produce inevitable sudden and 

sharp accelerations/decelerations relative to the influence of the driving style. Sometimes, 

this effect makes standing passengers struggle to maintain balance or experience a 

significant amount of discomfort (George et al., 2013). These factors interact to cause a 

short- or long-term change in a passenger’s physiological and psychological state. Bus 

passengers usually experience a different level of discomfort on transit that sometimes 

results in musculoskeletal disorders (MSDs) (Armstrong et al., 1993). These disorders are 

usually referred to as repetitive trauma disorders, cumulative trauma disorders or 

repetitive strain injuries that could affect muscles, bones and joints. The influence of 

posture and bus type on a passenger’s psychophysiological response are presented in 

chapters 5 and 6.  

The conditions in which passenger comfort deteriorated were found to correspond to the 

condition that demonstrated the most significant influence on the body’s physiological 

and psychological response. The passenger’s posture, particularly standing posture, 

resulted in the most significant deterioration of passenger comfort. In this study, the 

effects of road-vehicle interactions on the comfort of standing passengers in single-decker 

buses were not significant compared with the extent of double-decker buses. Also, the 

comfort of the seated passengers in single-decker buses was the least affected. 

Measurements of the human body’s psychophysiological responses to the influence of 

the effect of road-vehicle interactions in different postures could, therefore, be used as 

the basis for predicting the likelihood of passenger comfort in single- and double-decker 

buses. 

Furthermore, studies have shown that passengers respond differently to large vehicles 

than to small-sized vehicles (Lima et al., 2015; Cooper et al., 1978 part 1). The correct 

designs of road pavement also depend on the type of vehicle using the route. Some roads 

could effectively tolerate vehicles, such as passenger cars, and that same road may 

penalise other vehicles, such as HGVs or double-decker buses. In Edinburgh, some 
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sections of Lothian bus routes were designed a long time ago to accommodate small 

vehicles. However, using those roads as part of the Lothian bus route significantly 

influences driver and passenger perceived sensations (comfort). An increased average 

beta EEG brain activity and a decreased average eSense metric for attention (sensory 

stimulations) as a function of the influence of road-vehicle interaction predicts a reduction 

in passenger comfort. The variations in average psychophysiological responses of 

passengers in the control experiment, and onboard seated and standing postures in single- 

or double-decker buses support the assumption that posture and bus type could influence 

bus passenger’s comfort. The results prove that the emotions evoked during each phase 

of the experiments were transferred to the brain and integrated to produce a subjective 

response (discomfort) relative to the induced stimulus effects from the influences of a 

passenger’s posture and bus type. This study’s results could have implications for the 

proper planning and allocation of buses to specific routes by the bus operators in order to 

minimise passenger standing, especially during the peak hours. 

Investigation of change(s) in EEG brain activity relative to subjective comfort 

assessments was corroborated in this study. The subjective evaluation of passenger ride 

comfort was carried out by using the recommended assessment scale of the ISO 2631-1 

for public transport. An interaction effect was found between the passenger’s 

psychophysiological response and subjective evaluations. For instance, the more the 

psychophysiological (beta) signals increase or the eSense metric for attention decreases 

relative to changes in the comfort assessment scale, the further the passenger comfort 

deteriorates. The results in chapters 5 and 6 demonstrated that passenger comfort could 

be predicted and validated by the cross-correlation of EEG brain activity and comfort 

assessment for public transport. There are strong positive cross-correlations between 

changes in EEG brain activity and subjective comfort assessment.  

Driving fatigue showed progressive degradation with increasing driving time. In two 

hours of driving before a 30 minute break, there were no significant adverse effects 

associated with duration of driving without a break, and two hours of driving after a 30 

minute break showed variable effects of prolonged driving. The average beta power 

appeared to increase significantly while the average eSense meter of attention decreased 

significantly from 180 minutes of driving during four hours of continues driving tasks. 

The participants were often subjected to a considerable influence of variations in 

psychophysiological activation associated with prolonged driving. The findings show a 

significant relationship between the psychophysiological responses of the drivers and 
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subjective fatigue assessment as a function of time spent driving. The results showed the 

correlations between the psychophysiological response (beta frequency band and the 

eSense metric for attention), and it transitions from a state of being fully alert and wide 

awake to extremely tired and very difficult to concentrate or completely exhausted and 

unable to function effectively as a function of the duration of driving (Figure 4-7). The 

qualitative data’s application alongside quantitative data helped in interpreting and 

providing a better understanding of the implications of the quantitative data. 

8.2 Conclusions 

The EEG signal has temporal resolution, and what generated during quiet rest is 

quantitatively different from what generated during defined cognitive processing. In this 

study, the EEG methodology was used to examine the relationship between brain 

electrical activity and experimentally designed variables. Changes in the postsynaptic 

neurons are immediately reflected in the EEG (Bell & Cuevas, 2012), making the EEG 

methodology outstanding for investigating changes in the psychophysiological response 

of passengers and drivers in this study. Furthermore, EEG is more suitable for studying 

urban bus passenger comfort and driving fatigue because it allows the investigation of 

developmental changes without interfering with regular spontaneous brain activity. In this 

study, the EEG was recorded in all urban bus passenger discomfort stages and driving 

fatigue was compared with the EEG recorded during the baseline experiment.  

Evidence of cumulative fatigue in all the participants is strongly affected by the duration 

of time spent on the driving task and may also be associated with age, gender and 

influence of the break. The evidence for this conclusion includes the average 

psychophysiological responses and subjective fatigue assessment rating involving driver 

performance decrements or inattentiveness that was high for all participants in the last 45 

minutes of all stages of the driving tasks, but more pronounced in the diving task with no 

break.  

The variability in the driver’s psychophysiological responses to the influence of the 

duration of driving occurred in a systematic way when the full-length driving task of four 

hours with no break was compared with driving for four hours with a break of 30 minutes 

after two hours of driving. The variations in the average psychophysiological responses 

of the participants in the baseline (the first 30 minutes) was compared to when the 

participants had spent more than 60 minutes on the driving task, which suggested 
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progressive changes in driver fatigue or performance decrements toward the end of the 

driving tasks. A dramatic change is seen in the driver’s psychophysiological response in 

the last 60 minutes of the driving task compared to the first 30 minutes (baseline) of the 

driving task. These findings indicate that a pronounced psychophysiological response 

exists in the performance of driving tasks. This psychophysiological response is aligned 

such that the driving performance was worse during the last 60 minutes of driving for 

four hours without a break, but better during the first 30 minutes. However, significant 

decreases in the eSense metric of attention and increases in beta EEG brain activity 

occurred during the last 60 minutes of the driving task of hours without a break, and in 

the last 30 minutes of the driving task with a break. This certainly reflects a relaxation of 

cortical arousal following the heightened arousal required to drive effectively at the start 

of the experiments (baseline).  

This study’s findings show that a baseline state of high arousal could be a prerequisite for 

generating functional neurological symptoms. There is no clear evidence of fatigue 

effects or performance decrements in the eSense metric of attention and beta EEG brain 

activity measured during the first 30 minutes of the experiments. These results 

demonstrated that the driver’s performance significantly deteriorated during the last 60 

minutes of the driving task of four hours of driving without a break. Thus, it appears that 

the participants were unable to maintain the sensitive level of cortical arousal of the first 

two hours of the driving task, and that they were equally unable to adequately compensate 

for this loss of arousal in order to maintain a high level of concentration. The eSense 

metric of attention and beta EEG brain activity patterns in the last two hours of driving 

with no break, and in the last 30 minutes of the second stage of four hours of driving with 

a break of 30 minutes show elevations in cortical arousal. The effect appears to be 

progressive, and it is seen particularly to have had significant impacts on the participant’s 

ability to concentrate during the last 45–60 minutes of the experiments. These observed 

effects could be interpreted as the requirement to drive well necessitating progressively 

higher cortical arousal after about three hours of driving, especially in the driving task of 

four hours with no break. Since these effects were not seen during the first 30 minutes 

(baseline), this could be regarded as evidence of a cumulative fatigue effect or a driving 

performance decrement.  

In sum, the eSense metric of attention and beta EEG brain activity patterns demonstrated 

signs of cortical arousal during the last hour of the driving task, and is associated mainly 

with performance decrements or fatigue, regardless of the experiment task (driving 
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without or with a break). The correlation between the average brain activity (increases or 

decreases in responsiveness) and subjective fatigue assessments demonstrates significant 

deterioration in a subject’s fatigue and performance decrements. The observed decreases 

or increases in the psychophysiological responses in this study were statistically 

significant. Furthermore, a slight increase in average eSense metric of attention and 

decreased average beta EEG brain activity following the rest break indicates the post-

break recovery of the participants. The subjective fatigue assessments also demonstrated 

that the driver showed evidence of recovery at the beginning of the second stage of the 

experiment of driving with a break (after 30 minutes of break).  

Variations in duration spent driving are very influential in the extent of the cumulative 

effect seen when hours of driving tasks are concluded without a break. In this study, 

whenever driving time influences a mediate stimulated psychophysiological state, few or 

no cumulative fatigue or performance decrement effects were observed. At the end of the 

driving task of four hours with no break when the psychophysiological effects depressed 

the arousal level, strong cumulative fatigue effects were experienced by all the 

participants. The results also demonstrated a significant change in the driving 

performance and decreases in fine steering were appearing in the last 60 minutes of the 

driving tasks without a break, as compared to 30 minutes of the driving task with a 30 

minute break. There is a significant increase in average beta EEG brain activity, a lower 

average value of the eSence metric of attention and higher ratings of subjective fatigue 

assessment in the last 60 minutes of performing the driving task for four hours without a 

break compared to four hours of driving with a 30 minute break after two hours of driving.  

Elements such as gender and age of the participants showed more variation among factors 

of driving fatigue. This study examined the effect of gender and age of the participants 

on driver fatigue. Female and young participants reported the highest levels of subjective 

fatigue or performance decrements in all of the three stages of the experiments, but they 

were more noticeable in the last 60 minutes of driving without a break. The results of the 

study demonstrate that there is a significant difference in psychophysiological responses 

within genders and different age groups. It was found in this study that female drivers 

express more fatigue than males under the same experimental conditions. These results 

fall in line with the most previous studies, suggesting that female drivers are more inclined 

to fatigue than male drivers. It could be concluded from the results of this study that 

female drivers are more liable to deviate from an optimal condition of being fully alert 

and able to concentrate to a state of being fatigued and unable to concentrate. Such effects 
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would even be more prominent in female drivers due to the relatively lower ability of 

many females to continually engage in challenging tasks for a long time. Therefore, the 

decision-makers should no longer neglect the requirements that the female drivers have 

for driving performance decrements or fatigue. The gender variations in the level of the 

participant’s driving fatigue in this study indicate that females have, on average, a more 

significant need for individual management and adaptive actions of fatigue compared to 

males. Therefore, it could be suggested from the results of this study that females should 

mainly be used as the principal subjects when investigating and evaluating driver fatigue 

requirements.  

Furthermore, there is variation in the psychophysiological responses of drivers of 

different age groups. The results demonstrated that younger drivers exhibit a higher level 

of performance decrement as the influence of time spent in conducting the driving tasks, 

most especially driving tasks of four hours with no break versus older drivers. The 

practical implication is that researchers should no longer neglect the significant needs that 

younger drivers have for driving fatigue. Also, the differences in age groups indicate that 

younger drivers have, on average, a potential need for driving-fatigue adaptive actions 

rather than older drivers. Therefore, it can be concluded from the results of these studies 

that young drivers should be used as the principal subjects in decision making as well as 

in any study to enhance improvements that could help uncover the nature of driving 

fatigue or performance decrement conditions that certain age groups are more vulnerable 

of. 

Passenger discomfort’s multidimensional nature makes it possible to study the interplay 

between the various dimensions of comfort when using EEG. The results of the within-

subject effects analysis test showed that different factors of discomfort could be 

distinguished by using EEG. Road roughness characteristics, passenger posture and bus 

type all affect passenger discomfort in different ways and magnitudes.  

The findings of this research indicated that the brain’s electrical activity could be recorded 

in an operational environment, including on asphalt and sett pavements. The findings 

demonstrated that the impacts of road roughness on passenger comfort are prominent on 

sett pavement compared to asphalt pavement. Such effects could result in poor 

musculoskeletal conditions in the neck, back and shoulders or could even result in stress-

related heart diseases (Sezgin and Arslan, 2012). The psychophysiological effects 

significantly depressed (eSence metric of attention) and activated (beta EEG brain 
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activity) the level of arousal, strong cumulative discomfort, or stress effects that were 

experienced by all the participants. Passenger discomfort effects are evident on sett 

pavement, both while standing or seated in single- or double-decker buses as compared 

to asphalt pavement. The main finding from the data was that travel on sett pavement 

(seated or standing) showed higher passenger discomfort, resulting in dissatisfaction, 

compared to riding on asphalt pavement in seated or standing postures. The evidence for 

this conclusion includes significant changes in the psychophysiological response and 

variations in subjective comfort assessment of all the participants relative to the influence 

of pavement types. These responses demonstrate that discomfort was perceived on sett 

pavement in all postures in both single- and double-decker buses compared to asphalt 

pavement. The results indicate the multidimensional nature of the passenger’s discomfort 

and re-affirms that the passenger’s psychophysiological responses can either benefit or 

detriment the long-term psychophysiological condition of individuals. Besides, the 

subjective assessment results showed that passengers are more strained or tensed on sett 

pavement. The results of this study indicated that passenger comfort deteriorates as the 

road roughness coefficient increases. This effect is probably because significant changes 

were obtained in the passenger’s psychological and physiological responses from the 

optimal states (asphalt-pavement-seated) to the state of discomfort or stress on sett 

pavement.  

Posture is one of the most significant factors in the evaluation of the cumulative effects 

of passenger discomfort. Passengers who are standing in urban buses suffer more 

significant subjective discomfort and psychophysiological stress than passengers who are 

seated on the same bus at the same time. The evidence for this conclusion includes 

significantly greater feelings of discomfort experienced by passengers during the 

experiments (trips) that involved travelling on asphalt or sett pavements in single- or 

double-decker buses. These findings indicate that a pronounced psychophysiological 

response exists relative to the influence of the passenger’s postures. This 

psychophysiological response is aligned such that passenger’s comfort is significantly 

affected while standing and is better while seated on either single- or double-decker buses. 

Also, there are variations in the passenger’s responsiveness to the influence of posture, 

which is characterised by a sharp decrement (eSence metric of attention) and increment 

in beta EEG brain activity.  

This study examines the effect of gender and age on bus passenger’s discomfort. The 

results of the study demonstrate that there is a significant difference in 
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psychophysiological responses within the genders and different age groups. It was found 

in this study that female passengers express more discomfort/dissatisfaction than males 

under the same experimental conditions. It could be concluded from the results of this 

study that female passengers are more sensitive than males to deviation from optimal 

comfort conditions. Therefore, the ergonomics, planners and decision-makers should no 

longer neglect the requirements that the female passengers have for discomfort. The 

gender variations in the psychophysiological responses (comfort or discomfort) in this 

study indicate that females have, on average, a more significant need for individual 

management and adaptive actions of discomfort compared to males. Therefore, it could 

be suggested from the results of this study that females should mainly be used as the 

principal subjects when investigating and evaluating urban bus passenger discomfort 

because if females are satisfied and comfortable, then it is positively sure that males will 

also be satisfied and comfortable. 

Furthermore, there is variation in the psychophysiological responses of passengers of 

different age groups. The results demonstrated that younger passengers are more strained 

than older ones due to the influence of road roughness, posture and bus type. These results 

depict the need to consider the variations and interactions between different types of age 

effects. The age group differences indicate that younger passengers have, on average, a 

potential need for discomfort management and adaptive actions than older passengers. 

The practical implication is that researchers should no longer neglect the needs that 

younger passengers have for discomfort. Therefore, it can be concluded from the results 

of these studies that a decision should be made to enhance improvements that could help 

uncover the nature of travel-stress related discomfort in which certain age groups are 

vulnerable. 

8.3 Research Contributions 

The EEG data application in this study is designed to link the brain activity dynamics to 

changes in experimental design variables or tasks by correlating increased or decreased 

measured brain activity. The primary dependent measure in most studies is determining 

whether the average brain activity measured through event-related-potential or field 

component amplitude increases or decreases relative to the experimental design variables 

or tasks compared to the baseline. The study added values to the implicit assumption that 

localised psychological and physiological processes are specific to brain regions, and can 
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be measured by an increase or a decrease in average psychophysiological responses in 

different experimental conditions. 

Also, this study presented a unique contribution to the body of research on the 

respondent’s psychophysiological responses, impacts of road roughness characteristics, 

posture and bus type on a passenger’s discomfort, and the influence of duration of driving 

and rest break time on driving fatigue. It also presented how passenger discomfort and 

driver fatigue appear to shift across genders and age groups. These findings may be 

leveraged in future research by examining how female and young participants are affected 

by the experimentally designed variables, and thus, help understand how participants 

respond and what they mean. 

Over time, conventional evaluations of passenger ride comfort have been conducted by 

different researchers using subjective approaches, which are characterised by the problem 

of indistinctness of evaluation criteria (Muto et al., 2013). An objective and subjective 

approach of comfort assessment that cannot evaluate human feelings were directly used  

(Zhao et al., 2016; Zhang et al., 2014; (Tan et al., 2008)(Tan et al., 2008)(Tan, 

Delbressine, Chen, & Rauterberg, 2008)(Tan, Delbressine, Chen, & Rauterberg, 

2008)Kottenhoff & Jerker Sundström, 2012; Eboli & Mazzulla, 2011; Lin et al.,  2010; 

Cascajo & Monzón, 2007; Hoberock, 1977; Hoberock, 1976). Consequently, this 

research established the need for evaluation methods of using biological signals that can 

directly reflect the human state and sensations (physiology or psychology). The 

methodology presented in this research and the obtained results could contribute to the 

development of system solutions to significantly optimise passenger comfort in the public 

transport system. The observed changes in average psychophysiological response (brain 

activity) could be used to develop an algorithm to identify the different levels of passenger 

comfort and driver fatigue. The results from this study demonstrate that the EEG analysis 

indicated significant signal alterations in both passenger comfort and driver fatigue. These 

research findings demonstrate the possibility of using EEG as a reliable or potential 

approach to monitoring bus passenger comfort and driver fatigue in real life.  

A few contributions were made in this research. However, this research’s significant 

contributions have been the application of EEG to investigate the influence of road 

roughness characteristics, passenger posture, and bus type on bus passenger comfort in 

real-world driving conditions. Additionally, findings in this research proved the 

effectiveness of using EEG to investigate passenger comfort and monitor driving fatigue. 
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It is also provided with a new perspective and standpoint to adapt a novel machine 

learning procedure and system for investigating the nature of physiological and 

psychological signals relative to the influence of passenger comfort and driving fatigue 

experimentally designed variables. Another contribution of this research has been the 

development of a novel approach that incorporates EEG brain activity and subjective 

assessments. These results corroborate and enhance the classification performance of 

EEG-based bus passenger comfort assessments and driving fatigue detections. 

8.4 Limitation 

There are obvious limitations to this study, mostly related to the generalisability of some 

of the results. This study’s main limitations are the number of artefacts in the EEG data 

regarding the poor-to-noise ratio. The number of artefacts identified in this study is widely 

varied by conditions of the experiments and the participants (Kim et al., 2019; Bell & 

Cuevas, 2012; Mognon et al., 2011). The artefacts’ influence causes small different 

variations in data points that are available to analyse the participant’s 

psychophysiological responses in the same experimental stage (baseline and task-related). 

In the research design for this study, the participants were assigned to different 

experimental tasks. It is essential to verify that the amount of data between each 

experimental task or group is similar per participant. Therefore, EEG data cleaning and 

processing required a significant amount of time, thereby influencing the study sample 

size (Kim et al., 2019; Mognon et al., 2011). Only the EEG data associated with the 

cognitive process of interest (experimentally designed variables) are included in the data 

analysis. Therefore, future studies should work more on designing experimental tasks and 

taking adequate care to ensure a high-quality EEG signal that is free of non-EEG electrical 

signals or “noise during electrode application. 

Many dimensions characterise EEG data; therefore, there are many possible statistical 

comparisons across frequency, time and the power/phase of the EEG data. From the 

feasibility study conducted in this research, the interactions among EEG data dimensions, 

using time-domain averages, make spurious Type I errors possible, especially when using 

exploratory analyses (Cohen, 2011). In this study, the balance opens to unpredicted and 

unexpected, but robust patterns of data analysis results. Therefore, this study’s 

experimental data analysis was conducted by using only the time-domain average 

approach to analyse and present psychophysiological data.  
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Also, due to taking on a cross-sectional design and time available for the study, more 

longitudinal studies would be required to provide more insight into the relationship 

between a passenger’s posture, road roughness characteristics and bus types as well as a 

passenger’s psychophysiological response. Also, the full spectrum of road roughness 

characteristics over every section of the sample route should be investigated to determine 

the degree of roughness that is crucial for a passenger’s ride comfort. Furthermore, an 

urban passenger study was conducted on only two bus corridors, and 20 subjects were 

sampled in only one city. Future studies should include many routes and many 

participants in different cities to generalise results and to have more robust evidence of 

relationships between the dependent and independent variables. In other words, a 

significant number of sample routes and participants will be required to increase the 

research’s statistical power, thereby improving the validity of the findings and making 

them acceptable to larger populations.  

Although the urban bus passenger experimentally designed variables in this study may be 

similar across studies, it is impossible to generalise findings across gender and age groups. 

Also, the missing vulnerable people, such as pregnant women, passengers in a wheelchair 

and old-age groups can be targeted for further study. Therefore, further research can be 

inclusive in approach and extended to cover a larger sample size or studies, different age 

groups, and research contexts based on the method developed in this study by using EEG. 

Thus, more studies are required to conclude the observable variations across such 

variables, most importantly, the age group that is only considered < 30 years and > 30 

years. 

The study on driver fatigue was conducted by using a simulator, and future research 

should be conducted in real life by using a larger sample size. The laboratory experiments 

investigated only the influence of the duration of driving and rest breaks on fatigue. Other 

factors such as circadian cycle, time of the day, time at work and cumulative sleep deficit 

and recovery should be incorporated or form part of the independent variables to increase 

the statistical power of the analysis and improve the results’ validity. 

Despite the compelling results being achieved in this research, future research should 

investigate and use state-of-the-art algorithms to enhance EEG performance on passenger 

discomfort and driver fatigue. Future research should explore other vital factors, such as 

BMI, frequency of using the bus and body fitness that drives and affects urban bus 

comfort or discomfort, along with how these factors are valued across development and 

urban transport ergonomists. This study’s limitations and considerations reinforce the 
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approach that analysing the temporal dynamics of neural activity brings this research 

closer to the real complexity of the relationship between the participant’s 

psychophysiological response and experimentally designed variables. Even though the 

above limitations could prevent using this research to draw a generalised conclusion, the 

outcomes demonstrated the capability of applying EEG in the understanding of human 

behaviours, performance and decisions in transport applications. 
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APPENDIX I 
Table 1: Driving fatigue data onts er subject 

 

Experimental Phase 

Time 

(minute) 

Subject  

Total 1 2 3 4 5 6 7 8 9 

 

 

2 hours of driving before 

30 minutes break 

30 1655 1660 1655 1658 1651 1646 1654 1662 1650 14891 

60 1658 1658 1659 1651 1668 1653 1651 1655 1656 14909 

90 1667 1650 1672 1661 1654 1671 1648 1671 1653 14947 

120 1648 1663 1669 1648 1659 1650 1664 1651 1664 14916 

 

 

2 hours of driving after 

30 minutes break 

30 1646 1653 1669 1654 1649 1665 1652 1653 1658 14899 

60 1669 1660 1651 1659 1663 1655 1649 1650 1652 14908 

90 1660 1664 1657 1662 1662 1662 1665 1667 1663 14962 

120 1649 1673 1653 1640 1655 1652 1658 1664 1668 14912 

 

 

 

 

4 hours driving with no break 

30 1675 1655 1664 1655 1649 1648 1662 1645 1646 14899 

60 1655 1666 1643 1657 1658 1663 1654 1661 1650 14907 

90 1653 1658 1670 1647 1663 1669 1649 1655 1652 14916 

120 1647 1651 1667 1655 1667 1660 1655 1658 1664 14924 

150 1673 1654 1654 1661 1657 1656 1652 1669 1654 14930 

180 1654 1663 1642 1667 1658 1664 1658 1651 1658 14915 

210 1662 1653 1667 1648 1647 1657 1662 1664 1669 14929 

240 1659 1664 1670 1667 1661 1653 1669 1651 1659 14953 

Total  26530 26545 26562 26490 26521 26524 26502 26527 26516 238717 

 



b 
 

Table 2a: Passenger discomfort data point per subject (subject 1 – 10) 
Experimental 

Phase 

Subject 

1 2 3 4 5 6 7 8 9 10 

Bassline 557 560 553 577 575 552 562 548 567 553 

Asphalt-single-seated 761 789 767 782 759 774 772 780 770 778 

Asphalt-single-standing 456 495 447 479 483 483 473 488 466 471 

Asphalt-Double-seated 773 777 768 751 771 778 781 766 772 791 

Asphalt-Double-standing 465 468 489 466 485 446 483 462 453 471 

Sett-single-seated 208 199 196 202 192 188 184 204 199 196 

Sett-single-standing 205 192 204 189 194 201 202 196 201 198 

Sett-double-seated 201 214 199 209 210 203 198 191 202 203 

Sett-doble-standing 207 201 192 207 198 197 205 193 205 195 

Total 3833 3895 3815 3862 3867 3822 3860 3828 3835 3856 

 

Table 2b: Passenger discomfort data point per subject (subject 11 – 20) 
Experimental 

Phase 

Subject 

11 12 13 14 15 16 17 18 19 20 

Bassline 561 552 555 563 559 551 568 561 546 549 

Asphalt-single-seated 775 779 791 751 772 772 790 774 785 779 

Asphalt-single-
standing 

465 467 453 471 450 475 459 469 447 472 

Asphalt-Double-seated 783 760 781 780 782 764 773 769 780 764 

Asphalt-Double-
standing 

466 462 466 465 464 456 464 470 475 463 

Sett-single-seated 190 195 200 197 196 191 199 197 211 195 

Sett-single-standing 188 203 212 192 201 203 208 202 206 200 

Sett-double-seated 195 202 196 202 211 192 195 208 205 198 

Sett-doble-standing 186 191 187 182 198 213 202 218 184 204 

Total 3809 3791 3841 3803 3833 3817 3858 3868 3839 3824 

 


