
A Study on the Effect of Feature Selection on Malware
Analysis using Machine Learning

Kehinde Oluwatoyin Babaagba
Edinburgh Napier University

Scotland, UK EH10 5DT
kehinde.babaagba@napier.ac.uk

Samuel Olumide Adesanya
Department of Mathematical Sciences,

Redeemer’s University Ede, Nigeria
adesanyaolumide@yahoo.com

ABSTRACT
In this paper, the effect of feature selection in malware detection
using machine learning techniques is studied. We employ
supervised and unsupervised machine learning algorithms with and
without feature selection. These include both classification and
clustering algorithms. The algorithms are compared for
effectiveness and efficiency using their predictive accuracy, among
others, as performance metric. From the studies, we observe that
the best detection rate was attained for supervised learning with
feature selection. The supervised learning algorithm used was
Multilayer Perceptron (MLP) algorithm. The analysis also reveals
that our system can detect viruses from varying sources.

CCS Concepts
• Computing methodologies➝Machine learning; Feature
selection • Security and privacy➝Malware and its mitigation.

Keywords
Malware Detection, Feature Selection and Machine Learning

1. INTRODUCTION
In recent times, malware detection and analysis are becoming key
issues. This is because malware is increasingly posing a threat in a
number of computer systems and networks owned by companies
and individuals, coupled with the fact that malicious software can
easily be created and launched. Upon analyzing common security
risks, it can be observed that the rate at which Internet crimes are
increasing surpasses the strategies most companies employ in
curbing them. Each year, cyber criminals launch novel attacks that
are capable of causing more harm than the previous years.
It is evident that hundreds of millions of new samples of malware
such as computer viruses, among other malicious software, have
been created in recent years. This implies that almost one million
new threats are released daily. In view of this, several researchers
have put in a lot of effort in analyzing malware. One common
definition of malware is that of [1], that explained a malware as any
kind of code modification by a software system deliberately aimed
at damaging or preventing a system from performing optimally. [2]
also described malware as a term that refers generally to all forms
of spywares, viruses, trojans, among other harmful and malicious
software. [3] categorized any program that has a malevolent
objective as a malware.
Malware are generally created to compromise the confidentiality,
integrity, or availability of the data/information in a computer
system or network. Since it is evident that better hypotheses can be
made upon knowing what the malware does, some of the categories
in which most malware fall into as explained by [4] are outlined
herewith: backdoor, botnet, downloader, information-stealing mal-

ware, launcher, rootkit, scareware, spam-sending malware, viruses,
worms, trojan horses.
Interestingly, computer networks especially the internet are
increasingly becoming determining factors in the smooth running
of many organizations, hence the need to secure them is
increasingly important. In the previous paragraphs, we have
defined malware. However, securing our computer networks will
require detecting these malware. Two basic approaches to malware
analysis and detection include: static analysis (observing the
malware without running it), and dynamic analysis (observing the
malware while running it). Several malware analysts have proposed
static analysis techniques for malware detection. However, these
techniques can be problematic.
[5] explored the shortcomings of static analysis for detecting
malware, and they argued that the use of pattern matching to
identify malware can be easily evaded by simply changing the code
structure. [6] explained that the diversity and amount of malicious
software variants severely undermine the effectiveness of classical
signature-based detection. [3] presented a malware detection
algorithm that helps in curbing the limitation caused by including
instruction semantics to detect malicious program characteristics.
From their experimental evaluation, we see that their malware
detection algorithm can discover various kinds of malware with a
reasonably low run-time overhead. Also, their semantics-aware
malware detection algorithm is resilient to prevalent obfuscation
techniques used by hackers. Interested readers can go through refs
[[7], [8], [9], [10], [11] and [12]] for more literature on malware
detection.
Due to the limitations of the static means of malware detection and
analysis, the need for intelligent approaches to malware detection
is thus imperative. One of such intelligent approaches is machine
learning which can be seen as the acquisition of structural
descriptions from examples. The kind of descriptions found can be
used for prediction, explanation, and understanding [13]. At the
forefront of this research is the work done by [14] who proposed a
method of identifying previously unseen malware by collectively
classifying them. From their work, we see that most machine
learning models try to identify malicious software by training
classification algorithms. They do the training using datasets that
consist of many typical features of malicious code. They pointed
out the fact that using Byte n-gram representation, for instance, we
can train our machine learning classifiers to be able to detect
unknown malicious software.
[15] introduced a scalable clustering approach to detect and group
malware samples that demonstrate similar behavior. The aim of
their system was to cluster large groups of malware instances on
the basis of their behavioral structure. Their system attempted to
find a partitioning of a specific set of malware software to ensure
that subsets share some common traits. [16] explained that some of

the machine learning processes required for malware analysis
include firstly taking characteristic features of all binary files in the
training and test dataset. In the training set there will be different
combinations of malware types and clean files. Machine learning
algorithms are then applied to the aforementioned, tuning the
necessary parameters. Finally, the various processes in the malware
detection on the training dataset are analyzed. [17] proposed a
methodology for detecting malicious office documents using
machine learning techniques. The office documents studied were
XML-based and they achieved a high detection rate of malicious
content comparable to the best antivirus engines. The works of
[[18], [19], [20] and [21]] provide resource materials for further
reading.
The proposed work involves the use of machine learning in
detecting malware with an aim to study the effect of feature
selection. In this work, the use of supervised machine learning with
feature selection produced the best results. Supervised learning is
referred to as learning with a teacher. It is a type of learning
comprising of both input and output variables and we employ an
algorithm to learn the function mapping the inputs to the outputs.
In this type of learning, labelled examples are available [22].
Motivated by the works of [15],[16],[17],[18],[19],[20] and [21],
the specific objective of this write-up is to analyze the effect of
feature selection in malware analysis using machine learning which
is important and to the best of our knowledge, after exhaustive
survey of literature, has not been addressed in this manner in other
literature, for which reason the current research is essential.
In order to carry out the analysis, we use Virustotal which contains
a collection of antivirus search engines, for the static analysis. We
go further to carryout dynamic analysis using a sandbox. Finally,
we use some feature selection and machine learning algorithms in
the malware detection process and compare their performance. The
rest of the paper is organized into four sections. Section two
comprises of the research method. The third section is the
evaluation and result description. Finally, section four concludes
our findings.

2. RESEARCH METHOD
An experimental research methodology is adopted in this work.
Firstly, we present some research questions, and then we evaluate
our research outcomes in a bid to put our research questions to test.
The research questions include:

• Is machine learning-based malware detection effective?
• Are dynamic malware detection methods like sandboxing

effective?
• Is there a difference between supervised and unsupervised

machine learning-based malware detection?
• Does feature selection affect the results of the machine

learning-based malware detection?
• What metrics are best used in measuring the performance

of the machine-learning algorithms?
The research is conducted in four phases as explained below:
Data Collection: We collected malware samples as well as clean
samples and a total of 149 samples were analyzed. There were 68
malicious samples gotten from www.virusign.com; the clean
samples (81) on the other hand, were system files located in the
“System32” directory of a Windows XP operating system.

Table 1: Dataset Description

Action Period Between November 2015- January 2016

Action Location
Website: www.virusign.com for
malicious samples and “System32”
directory of a Windows XP Operating
System

Data Set Size 149 (68 malware and 81 benign
samples)

Number of reports logs
issued by the malware
analysis tools

Two (one each for both static and
dynamic analysis)

Static Analysis: We used Virustotal for the static analysis. We
chose Virustotal because it consists of different updated antivirus
engines which are used for static malware analysis. We uploaded
the files and recorded the reports generated from each scan.
Sand-boxing: The dynamic analysis tool used was Malwr. Malwr
is based on the Cuckoo sandbox and it has been tested and proven
to be efficient for dynamic analysis. We uploaded the files to the
Malwr site and downloaded an XML report of each scan action
upon its analysis.
Data Transformation: The xml reports generated from the sand-
box were parsed using JDOM parser and the required features
selected. The parsed files were represented as comma-separated
values to serve as input for machine learning.
Machine Learning: Finally, we carried out the machine learning
task. Supervised and unsupervised learning were carried out. The
supervised learning also known as learning with a teacher was done
using Random Forest, Decision Table, Bayesian Classifiers,
Multilayer Perceptron (MLP), LazyIBK and LogitBoost
algorithms. The Unsupervised learning was done using EM
(Expectation-Maximization) algorithm.
3. RESULT AND DISCUSSION
One of the key objectives of this research was to study the
behaviour of malware through learning and close observation of
their features. The results of the dynamic analysis carried out in the
sandbox show some API calls, which have been modeled as
attributes that malicious and clean files make. These attributes were
used to learn the behavior of the dataset.
WEKA API was used for feature selection and machine learning;
we employed Information Gain algorithm for feature selection,
Random Forest, Decision Table, Bayesian Classifiers, Multilayer
Perceptron (MLP), LazyIBK and LogitBoost were used for
supervised learning; and Estimation-Maximization algorithm was
employed for unsupervised learning.
We began the machine learning by running experiments with the
dataset with and without feature selection in order to study the
effect of feature selection. Then, we compared the results. The
experimental procedure is outlined as follows: Firstly, we carried
out supervised learning with feature selection. Then, we carried out
unsupervised learning with feature selection. Furthermore, we
carried out supervised learning without feature selection. Finally,
unsupervised learning without feature selection was done.

3.1 Evaluation Metric
In order to measure the performance of the algorithms, we used the
following metrics [23]:
Classification Accuracy: This is used to determine the machine
learning algorithm’s accuracy. It is defined as:

number	of	correct	predictions	/	total	number	of	predictions
Confusion Matrix: This is a matrix that gives a holistic view of the
algorithm’s performance. It is described in table:2.

Table 2: Confusion Matrix

Area Under the Curve (AUC): As the name suggests, AUC
is the area under the curve of the plot of false positive rate
((𝐅𝐚𝐥𝐬𝐞𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞)/(𝐅𝐚𝐥𝐬𝐞𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 + 𝐓𝐫𝐮𝐞𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞)) and true
positive rate ((𝐓𝐫𝐮𝐞𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞)/(𝐅𝐚𝐥𝐬𝐞𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 +
𝐓𝐫𝐮𝐞𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞))	at various points within [0, 1].
F1 Score: This represents the harmonic mean between the precision
and recall values.
Training Time: This represents the time taken to train the model.

3.2 Machine Learning Algorithms
The Supervised Learning Algorithms used are described below.
Random Forest: It also referred to as random decision forest. This
is a machine learning ensemble that combines several algorithms to
derive better learning results [24].
Decision Table: This is a means of knowledge representation using
tables in which outcomes are jointly determined by a group of
conditions [25].
Bayesian Classifiers: Bayesian classifiers e.g. Bayes Networks
work by assigning the most probable class to a particular example
described by its feature vector. Assuming that characteristics and
features are not dependent on a given class makes learning such
classifiers greatly simplified [26].
Multilayer Perceptron (MLP): This is a deep artificial neural
network with several layers comprising at least of an input layer, a
hidden layer and an output layer. The input layer is often used for
input reception, the hidden layer is the computation engine and the
output layer is used for decision making or predictive analysis [27].
LazyIBK: This is one of the simplest machine learning algorithms
which implements the k-Nearest Neighbor algorithm. It is an
instance-based learning algorithm whose function is a local
approximation. It does not compute any values until classification
[28].
LogitBoost: This is a boosting classification algorithm that reduces
the logistic loss. It greedily optimizes the classification probability,
provided that the base learner reduces the squared error [29].
The Unsupervised Learning Algorithm used is described below.
EM (Expectation-Maximization) algorithm: This is a way of
determining an approximation of the maximum likelihood of
parameters in a distribution. It is suited for data sets containing
values that are either missing or incomplete [30].
Feature Selection Algorithm
The filter method of feature selection is a very straight- forward and
less computationally expensive method of feature selection [31]
which is why it was chosen as the feature selection algorithm to be
used. The filter method used Information Gain for attribute
evaluation. This assesses the value of an attribute by evaluating the

information gain with respect to the class. This is given in the
equation below;
InfoGain(Class, Attribute) = K(Class) − K(Class|Attribute)

where	K	is	the	information	entropy		

3.3 Machine Learning without Feature
Selection
The results of the unsupervised and supervised machine learning
algorithms without feature selection are described with the table
and diagram below. Recall that the machine learning algorithms
used include Random Forest, Decision Table, Bayesian Classifiers,
Multilayer Perceptron (MLP), LazyIBK and LogitBoost for the
supervised learning and EM algorithm for the unsupervised
learning.
The results from table:3 and figure:1 show that for machine
learning without feature selection with algorithms Random Forest,
Decision Table, Bayesian Network, Multilayer Perceptron,
LazyIBK and LogitBoost, the values obtained for accuracy are
73.1544%, 76.5101%, 68.4564%, 77.1812%, 74.4966% and
76.5101% respectively.
From the values obtained for accuracy and other metrics such as
TPR, FPR, AUC and F1Score, we observe that Multilayer
Perceptron performs the best with an accuracy of 77.1812% for
supervised learning without feature selection. It however takes the
longest time to train, with a training time of 14.87seconds.

Figure 1: Machine Learning without Feature Selection

Table 3:Machine Learning without Feature Selection

3.4 Machine Learning with Feature Selection
In this section, we follow the processes described in subsection:3.3
above. However, we employ feature selection. Information Gain
algorithm was used for feature selection. The result description
from table:4 and figure:2 shows that for machine learning with
feature selection with algorithms Random Forest, Decision Table,
Bayesian Network, Multilayer Perceptron, LazyIBK and
LogitBoost, the values obtained for accuracy are 74.4966%,

76.5101%, 69.7987%, 77.1812%, 75.1678% and 77.1812%
respectively.
According to the values obtained for accuracy and other metrics
such as TPR, FPR, AUC and F1Score, we observe that Multilayer
Perceptron still performs the best with an accuracy of 77.1812% for
supervised learning with feature selection. It however still takes the
longest time to train, with a training time of 14.87seconds.
In the previous section, we focused solely on the effect of feature
selection on supervised machine learning. From the tables:3 and 4
as well as the figures:1 and 2, we can also see the effect of feature
selection on unsupervised machine learning. It can be seen that
when feature selection is applied to EM algorithm, the accuracy
increases to 74.4966%. This is in contrast to the 54.5624% accuracy
obtained when no feature selection was applied.
In general, it can be noted that for supervised learning, the use of
feature selection does not very noticeably increase the accuracy of
the algorithms. In algorithms such as Decision Table and MLP, the
results for accuracy even remains the same with or without feature
selection. However, for unsupervised learning we see the accuracy
jump from 54.3624% to 74.4966%. The best accuracy for both
supervised and unsupervised machine learning with or without
feature selection is obtained by MLP with an accuracy of
77.1812%.

Figure 2: Machine Learning with Feature Selection

Table 4: Machine Learning with Feature Selection

4. CONCLUSION
In this work, we developed a system that allows a malware analyst
to analyze and detect malicious code using machine-learning
techniques. Given the threat that malicious software in the form of
viruses and trojan horses, just to name a few, continuously pose, it
is obvious, as we have discussed that the static analysis tools
normally used are inefficient in discovering these malware.
The use of the feature selection method based on Information Gain
led to higher values for accuracy. Upon comparing the performance
of the machine learning algorithms with and without feature
selection, MLP emerged with the best result with an accuracy of

77.1812%, TPR of 0.772, FPR of 0.232, AUC of 0.786 and F1Score
of 0.772.
The results show that machine learning-based malware detection is
effective. We were also able to describe the difference between
supervised and unsupervised machine learning in terms of their
detection accuracy. Although in this work, almost all the
performance metrics employed were useful in determining the best
machine learning algorithm, some were more useful than others.
The training time for instance, was not very relevant as most of the
models were built in less than one second.
There are a number of areas in this work that are still open for
further research work. In this work, a lot of focus was placed on
viruses and its attacks, another area to look at would be on other
forms of malware like trojans and spyware. Also, more samples can
be analyzed, say thousands of samples, to observe the machine
learning process more accurately.

5. REFERENCES
[1] G. McGraw and G. Morrisett. Attacking malicious code: A

report to the infosec research council. IEEE Software,
17(5):33–41, Sep. 2000. ISSN 0740-7459. doi:
10.1109/52.877857.

[2] Amit Vasudevan and Ramesh Yerraballi. Spike: Engineering
malware analysis tools using unobtrusive binary-
instrumentation. In Proceedings of the 29th Australasian
Computer Science Conference - Volume 48, ACSC ’06,
pages 311–320, Darlinghurst, Australia, Australia, 2006.
Australian Computer Society, Inc. ISBN 1-920682-30-9.

[3] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. Semantics- aware malware detection. In 2005 IEEE
Symposium on Security and Privacy (S P’05), pages 32–46,
May 2005. doi: 10.1109/SP.2005.20.

[4] Michael Sikorski and Andrew Honig. Practical Malware
Analysis: The Hands-On Guide to Dissecting Malicious
Software. No Starch Press, San Francisco, CA, USA, 1st
edition, 2012. ISBN 1593272901, 9781593272906.

[5] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis
for malware detection. In Twenty-Third Annual Computer
Security Applications Conference (ACSAC 2007), pages
421–430, Dec 2007. doi: 10.1109/ACSAC.2007.21.

[6] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick
Du ̈ssel, and Pavel Laskov. Learning and classification of
malware behavior. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2008. ISBN
3540705414. doi: 10.1007/978- 3- 540- 70542- 0_6.

[7] Fei Tong and Zheng Yan. A hybrid approach of mobile
malware detection in android. Journal of Parallel and
Distributed Computing, 103:22 – 31, 2017. ISSN 0743-7315.
doi: https://doi.org/10.1016/j.jpdc.2016.10.012.

[8] Shamsul Huda, Jemal Abawajy, Mamoun Alazab, Mali
Abdollalihian, Rafiqul Islam, and John Yearwood. Hybrids
of support vector machine wrapper and filter-based
framework for malware detection. Future Generation
Computer Systems, 55: 376 – 390, 2016. ISSN 0167-739X.
doi: https://doi.org/10.1016/j.future.2014.06.001.

[9] Ping Wang and Yu-Shih Wang. Malware behavioral
detection and vaccine development by using a support vector
model classifier. Journal of Computer and System Sciences,

81(6):1012-1026, 2015. ISSN 0022-0000. doi:
https://doi.org/10.1016/j.jcss.2014.12.014.

[10] Mohd Faizal Ab Razak, Nor Badrul Anuar, Rosli Salleh, and
Ahmad Firdaus. The rise of fimalwarefi: Bibliometric
analysis of malware study. Journal of Network and Computer
Applications, 75:58 – 76, 2016. ISSN 1084-8045. doi:
https://doi.org/10.1016/j.jnca.2016.08.022.

[11] Nizar Kheir. Behavioral classification and detection of
malware through http user agent anomalies. Journal of
Information Security and Applications, 18(1):2 – 13, 2013.
ISSN 2214-2126. doi:
https://doi.org/10.1016/j.jisa.2013.07.006.

[12] Adriana Leite and Rosario Girardi. A hybrid and learning
agent architecture for network intrusion detection. Journal of
Systems and Software, 130:59 – 80, 2017. ISSN 0164-1212.
doi: https://doi.org/10.1016/j.jss.2017.01.028.

[13] I H Witten, Eibe Frank, and M A Hall. Data Mining Practical
Machine Learning Tools and Techniques. 2005. ISBN
0080890369. doi: 0120884070,9780120884070.

[14] Igor Santos, Yoseba K Penya, Jaime Devesa, and Pablo G
Bringas. N-Grams-Based File Signatures for Malware
Detection. In Iceis 2009: Proceedings of the 11Th
International Conference on Enterprise Information Systems
(ICEIS), 2009. ISBN 978-989-8111-85-2. doi:
10.1016/j.ijpharm.2015.02.045.

[15] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek,
Christopher Kruegel, and Engin Kirda. Scalable, Behavior-
Based Malware Clustering. Proceedings of the Network and
Distributed System Security Symposium, NDSS 2009, 2009.
ISSN 00278424. doi: 10.1073/pnas.1835725100.

[16] D. Gavrilu, M. Cimpoeu, D. Anton, and L. Ciortuz. Malware
detection using machine learning. In 2009 International
Multiconference on Computer Science and Information
Technology, pages 735–741, Oct 2009. doi:
10.1109/IMCSIT.2009. 5352759.

[17] Aviad Cohen, Nir Nissim, Lior Rokach, and Yuval Elovici.
Sfem: Structural feature extraction methodology for the
detection of malicious office documents using machine
learning methods. Expert Systems with Applications, 63:324
– 343, 2016. ISSN 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2016.07.010.

[18] Rafiqul Islam, Ronghua Tian, Lynn M. Batten, and Steve
Versteeg. Classification of malware based on integrated
static and dynamic features. Journal of Network and
Computer Applications, 36(2):646 – 656, 2013. ISSN 1084-
8045. doi: https: //doi.org/10.1016/j.jnca.2012.10.004.

[19] JuiHsi Fu, PoChing Lin, and SingLing Lee. Detecting
spamming activities in a campus network using incremental
learning. Journal of Network and Computer Applications,
43:56 – 65, 2014. ISSN 1084-8045. doi: https://doi.org/10.
1016/j.jnca.2014.03.010.

[20] Rafiqul Islam and Jemal Abawajy. A multi-tier phishing
detection and filtering approach. Journal of Network and
Computer Applications, 36(1):324 – 335, 2013. ISSN 1084-
8045. doi: https://doi.org/10.1016/j.jnca.2012.05.009.

[21] Martin Grill, Tom Pevn, and Martin Rehak. Reducing false
positives of network anomaly detection by local adaptive
multivariate smoothing. Journal of Computer and System
Sciences, 83(1):43 – 57, 2017. ISSN 0022-0000. doi:
https://doi.org/10. 1016/j.jcss.2016.03.007.

[22] Taiwo Oladipupo Ayodele. Types of machine learning
algorithms. In Yagang Zhang, editor, New Advances in
Machine Learning, chapter 3. IntechOpen, Rijeka, 2010. doi:
10.5772/9385. URL https://doi.org/10.5772/9385.

[23] Aditya Mishra. Metrics to Evaluate your Machine Learning
Algorithm, 2018. URL https://towardsdatascience.com/
metrics- to- evaluate- your- machine- learning- algorithm-
f10ba6e38234.

[24] Katrina Wakefield. A guide to machine learning algorithms
and their applications, 2018. URL https://www.sas.com/en{
}gb/insights/articles/analytics/ machine- learning-
algorithms.html.

[25] E Lima, C Mues, and B Baesens. Domain knowledge
integration in data mining using decision tables: case studies
in churn prediction. Journal of the Operational Research
Society, 60(8):1096–1106, 2009. ISSN 1476-9360. doi:
10.1057/jors.2008. 161.

[26] Nir Friedman, Dan Geiger, and Moises Goldszmidt.
Bayesian network classifiers. Machine Learning, 29(2):131–
163, Nov 1997. ISSN 1573-0565. doi: 10.1023/A:
1007465528199.

[27] Skymind. A Beginner’s Guide to Multilayer Perceptrons
(MLP), 2018. URL https://skymind.ai/wiki/multilayer-
perceptron.

[28] Guilherme O. Campos, Arthur Zimek, Jo ̈rg Sander, Ricardo
J. G. B. Campello, Barbora Micenkova ́, Erich Schubert, Ira
Assent, and Michael E. Houle. On the evaluation of
unsupervised outlier detection: measures, datasets, and an
empirical study. Data Mining and Knowledge Discovery,
30(4):891–927, Jul 2016. ISSN 1573-756X. doi:
10.1007/s10618-015-0444-8. URL https://doi.org/10.1007/
s10618- 015- 0444- 8.

[29] S. B. Kotsiantis and P. E. Pintelas. Logitboost of simple
Bayesian classifier. In Informatica (Ljubljana), 2005.

[30] Maya R. Gupta and Yihua Chen. Theory and use of the em
algorithm. Found. Trends Signal Process., 4(3):223–296,
March 2011. ISSN 1932-8346. doi: 10.1561/ 2000000034.

[31] M Shardlow. An Analysis of Feature Selection Techniques.
Student- net.Cs.Manchester.Ac.Uk, 2007.

