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Abstract

Segmentation-based methods are widely used for scene text detection due to their superiority in describing arbitrary-shaped text
instances. However, two major problems still exist: (1) current label generation techniques are mostly empirical and lack theo-
retical support, discouraging elaborate label design; and (2) as a result, most methods rely heavily on text kernel segmentation
which is unstable and requires deliberate tuning. To address these challenges, we propose a human cognition-inspired framework,
termed, Conceptual Text Region Network (CTRNet). The framework utilizes Conceptual Text Regions (CTRs), which is a class
of cognition-based tools inheriting good mathematical properties, allowing for sophisticated label design. Another component of
CTRNet is an inference pipeline that, with the help of CTRs, completely omits the need for text kernel segmentation. Compared
with previous segmentation-based methods, our approach is not only more interpretable but also more accurate. Experimental
results show that CTRNet achieves state-of-the-art performance on benchmark CTW 1500, Total-Text, MSRA-TD500, and ICDAR
2015 datasets, yielding performance gains of up to 2.0%. Notably, to the best of our knowledge, CTRNet is among the first de-
tection models to achieve F-measures higher than 85.0% on all four of the benchmarks, demonstrating remarkable consistency and

stability.
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1. Introduction

Scene text detection has received much attention from re-
searchers because of its wide applications such as image trans-
lation, road sign recognition, and license plate reading. On ac-
count of the recent developments in object detection [1, 2] and
semantic segmentation [3, 4, 5] based on Convolutional Neu-
ral Networks (CNNs) [6, 7], scene text detection has achieved
substantial progress [8, 9, 10, 11, 12, 13]. Over the past few
years, many deep learning-based methods have been proposed
to conquer one of its most challenging tasks, arbitrary-shaped
text detection. Among these methods, segmentation-based ap-
proaches [10, 11, 12, 13] have become the mainstream because
such methods are more capable of describing text instances of
irregular shapes. However, two major problems still exist: (1)
current label generation techniques adopt rule-based algorithms
[10] or simple operations such as polygon clipping [11, 13],
which makes them mostly empirical and lacks theoretical sup-
port, discouraging elaborate label design; and (2) as a result,
most methods [10, 11, 13] rely heavily on the unstable text ker-
nel segmentation, which means directly segmenting the center
lines of text instances, to separate adjacent text blocks. Such
approach is deficient since it is prone to noise, as stated in [10],
and requires deliberate tuning, as practiced in [11].

To settle these problems, we introduce a human cognition-
inspired scene text detection framework called Conceptual Text
Region Network (CTRNet) (see Fig. 1). It includes a class of
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novel label generation tools termed Conceptual Text Regions
(CTRs), a Feature Pyramid Network-based (FPN-based) [14]
segmentation network, and a well-designed post-processing
algorithm. Observing the solid advantages of introducing
cognition-based computing [15, 16, 17], we design CTRs to
represent the text instances inside our mind when we per-
ceive arbitrary-shaped text instances. Specifically, as shown in
Fig. 1 (c¢), a CTR is a well-defined rectangular area that math-
ematically inheres a smooth bijection from itself to the corre-
sponding arbitrary-shaped text instance. The very bijectivity
allows us to not only define with ease the width, height, and
distortion of an arbitrary-shaped text instance but also transfer
the geometric features defined within a CTR directly into its
corresponding text instance (see Fig. 1). Afterwards, we utilize
the segmentation network to learn the geometric features gen-
erated by CTRs in order to make predictions on unannotated
images. Finally, a robust and interpretable post-processing al-
gorithm makes full use of the geometric features and converts
them into the detection result.

To demonstrate the effectiveness of our proposed CTR-
Net, we conduct extensive experiments on four challenging
benchmark datasets including CTW 1500 [18], Total-Text [19],
MSRA-TD500 [20], and ICDAR 2015 [21]. Among these
datasets, CTW1500 and Total-Text are explicitly designed for
arbitrary-shaped text detection. MSRA-TD500 and ICDAR
2015, on the other hand, focus on multi-oriented text. CTRNet
consistently outperforms state-of-the-art methods on all four of
the datasets in terms of F-measure, yielding performance gains
of up to 2.0%. Notably, to the best of our knowledge, CTRNet
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Figure 1: Overview of the CTRNet framework. The red arrows represent the label generation process, during which the original text instances are mapped into
their respective CTRs, and the geometric features are generated. The blue arrows, on the other hand, represent the network prediction pipeline, during which the
segmentation network substitutes the functionalities of CTRs and predicts the geometric features, given only the original image as input. The black arrow represents
the post-processing algorithm which converts the geometric features into the final detection result.

is among the first methods to achieve F-measures higher than
85.0% on all these datasets.

In summary, our contributions are threefold: (1) we propose
CTRs as a class of well-designed label generation tools which
inhere good properties such as bijectivity; (2) we propose a seg-
mentation network and a post-processing algorithm that are ca-
pable of learning and processing geometric features, omitting
the need for text kernel segmentation while establishing an ac-
curate and interpretable inference pipeline; and (3) our CTRNet
achieves state-of-the-art performances on a comprehensive set
of benchmarks, showing great accuracy and consistency.

2. Related Work

Deep learning-based text detection methods have achieved
outstanding results over the past few years. The majority of
these methods utilize CNNs and can be roughly categorized
into anchor-based methods and segmentation-based methods.
In addition, it is of interest that text detection methods in
general adopt specific and tailored label generation and post-
processing methodologies to utilize the geometric nature of text
instances. Thus, we also introduce the label generation and
post-processing techniques adopted by text detection methods.

2.1. Anchor-Based Methods

Anchor-based methods are often based on popular object de-
tection frameworks such as Faster R-CNN [1] and SSD [2].

TextBoxes [22] modifies anchor boxes and convolutional ker-
nels of SSD to handle the unique aspect ratios of text instances.
TextBoxes++ [23] further introduces quadrangle regression to
allow for multi-oriented text detection. RRD [24] extracts
rotation-invariant and rotation-sensitive features for text classi-
fication and regression respectively, eliminating the incompat-
ibility between these two tasks when detecting multi-oriented
text. RRPN [25], based on Faster R-CNN, developed Rota-
tion Region Proposal Networks to detect multi-oriented text in-
stances. SPCNet [26] and Mask Text Spotter [27] view text de-
tection as an instance segmentation problem and utilize Mask

R-CNN [28] for arbitrary-shaped text detection. More recent
anchor-based methods, such as Boundary [29], use Region Pro-
posal Networks [1] and regression methods to obtain the bound-
ary points of text instances and later rectify the detection results
with differentiable operations such as Thin-Plate Splines (TPS)
[30]. These structures include text recognition and enable the
model to train in an end-to-end manner.

Anchor-based methods normally require few post-processing
steps and perform reasonably well when handling multi-
oriented text. However, most of them rely on complex multi-
ple stages and hand-crafted anchor settings, which makes these
approaches overcomplicated and less effective when handling
long text instances.

2.2. Segmentation-Based Methods

Segmentation-based methods mainly view text detection as
a segmentation problem and utilize Fully Convolutional Net-
works (FCNs) [3] or their variants.

Zhang ct al. [31] first employ an FCN to extract text blocks
and apply MSER to detect character candidates from the text
blocks. Yao et al. [32] adopt an FCN to predict multiple prop-
erties of text instances, such as text regions and orientations.
They then implement a clustering algorithm to obtain the detec-
tion result. PixelLink [33] performs link prediction to separate
adjacent text regions. EAST [9] and DeepReg [34] detect the
bounding boxes of words in a per-pixel fashion without using
anchors or proposal networks. Newer segmentation-based ap-
proaches, such as TextSnake [10], PSENet [11], and PAN [13],
detect arbitrary-shaped text instances through similar pipelines
that involve text kernel segmentation and text reconstruction.
Similar to anchor-based methods, there are also attempts to
train segmentation-based models in an end-to-end manner. Text
Perceptron [35], for example, adopts an FPN to predict fiducial
points for TPS transformations.

Segmentation-based models are generally suitable for
arbitrary-shaped text detection thanks to their flexibility. How-
ever, current approaches tend to endure less ideal label gener-
ation techniques and rely heavily on text kernel segmentation,
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Figure 2: The inference pipeline of CTRNet. (a) The FPN-based segmentation network. The structure includes downsampling, upsampling, and the aggregation
of features from different convolutional stages. For each input image, the network predicts 6 geometric features in a pixelwise manner. The produced feature map
has 6 channels and is of the same width and height as the input image. (b) Illustration of the post-processing pipeline. Utilizing the predicted geometric features, a
robust algorithm locates the text kernels and reconstructs the text instances. After post-processing, the detection result is obtained.

which is unstable and requires deliberate tuning. In contrast,
our method includes CTRs, a class of well-designed tools for
label generation, and omits the need for text kernel segmenta-
tion through elaborate label design.

2.3. Label Generation and Post-Processing Techniques

Text detection methods generally adopt tailored label gen-
eration and post-processing algorithms to make full use of the
geometric nature of text instances. In particular, segmentation-
based models tend to develop more sophisticated label gener-
ation techniques than anchor-based models and classical text
detection methods.

Yin et al. [36] adopt multiple stages of post-processing steps
including automatic threshold learning and machine learning-
based text candidates filtering to refine the results generated
by MSER. As a typical anchor-based method, RRPN [25]
adopts a post-processing algorithm to compensate for the wrong
detection results when handling long text instances. As for
segmentation-based models, TextSnake [10] uses sophisticated
label generation methods including a rule-based algorithm to
extract text kernels. It later adopts a series of post-processing
algorithms to reconstruct text instances and filter out false pos-
itives. PSENet uses polygon clipping for label generation. For
post-processing, it utilizes an algorithm which expands the re-
gions of the segmented text kernels to reconstruct the text in-
stances. Moreover, according to its open-sourced official imple-
mentation, PSENet adopts a threshold-based filtering technique
to filter out false positive predictions.

Current label generation and post-processing techniques gen-
erally take advantage of the geometric nature of text in-
stances. However, the label generation methods are generally
rule-based, and lacks theoretical support. Also, most post-
processing techniques do not utilize much of the geometric fea-
tures of text instances. In contrast, the label generation process

of CTRNet is based on better mathematical principles, and its
post-processing pipeline better utilizes the geometric features
of text instances.

3. Methodology

In this section, we first introduce the inference pipeline of
CTRNet. Next, we present the components of CTRNet, includ-
ing the definition of a CTR, the network and label design, and
the post-processing algorithm. Finally, the label generation pro-
cess and the loss design are presented.

3.1. Inference Pipeline

The inference pipeline of the CTRNet framework is divided
into two parts: a segmentation network and a post-processing
algorithm (see Fig. 2).

We first employ an FPN-based segmentation network to pre-
dict 6 geometric features for each pixel, as shown in Fig. 2 (a).
The post-processing algorithm later utilizes the geometric fea-
tures and converts them into pairs of colinear offsets from text
kernels and text edges, as illustrated in Fig. 2 (b). Using the
offsets, the algorithm can easily locate the text kernels and re-
construct the text instances, obtaining the detection result.

For the details of the inference pipeline, Sec. 3.3.1 includes
the specifics of the network structure, Sec. 3.3.2 explains the
selection of the geometric features, and Sec. 3.4 contains a thor-
ough introduction to the post-processing algorithm.

3.2. Conceptual Text Regions

In this section, we introduce Conceptual Text Regions, a
class of human cognition-inspired tools aiming to describe the
impression inside our mind when we conceive an arbitrary-
shaped text instance. We argue that such impression ought to
be a text line of rectangular shape since it is the natural form
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Figure 3: (a) Original text instance S. (b) Illustration of the triangulation and
the prominent corner vertices. The prominent corners are highlighted in green.
By our convention, vi = v,41 = V. Please note that in our implementation,
the triangulation has a maximum triangle area of 107>, which it is a lot denser.

of text and corresponds to the way we read. In addition, such
impression should be smooth and invertible, since we are able
to conceive every pixel within the text instance.

To achieve that, we develop a harmonic mapping-based rec-
tifying method. The reason behind this choice is that harmonic
mappings enable our proposed rectifying method to be smooth
and bijective [37], while other rectifying methods, such as TPS,
do not ensure bijectivity [38]. To prove the necessity of using
harmonic mappings instead of TPS, a comprehensive ablation
study is provided in Sec. 4.3.1.

We start with the construction of a harmonic mapping that
maps an arbitrary text instance into an arbitrary rectangle. We
first denote a rectangle of width w and height & by R, ,. After-
wards, a harmonic mapping, denoted by H,,;, which maps an
arbitrary text instance S to R, is constructed as follows:

1. We first define a bijective boundary mapping

b:3S — ORy, D

using the second boundary parameterization method de-
scribed in Sec. 1.2.5 of [39]. The rationale behind this se-
lection is that such method has good physical implications
and ensures bijectivity [39].

2. H, is then obtained by solving the Laplace’s equation

AH,, =0 2)

subject to the continuous Dirichlet boundary condition

H,plos =b. (3)

To implement the above discussed procedure, we first obtain
a refined triangulation 7' of an arbitrary-shaped text instance S
using the constrained Delaunay triangulation method [40] with
the maximum triangle area set to 107> (see Fig. 3 (b)). Sec-
ond, we identify the four prominent corners of the text instance
according to its reading sequence, which is illustrated as the
green dots in Fig. 3 (b). Please note that this piece of informa-
tion is provided in most text detection datasets, including the
datasets we work with. Third, we obtain the boundary vertices,
{1, ..., Vus1}, of triangulation 7. For convenience, (1) vi = v,41;

HWA h =
s h
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Figure 4: (a) Original text instance S. The red lines and green lines represent
the horizontal lines and vertical lines mapped from R,, j, respectively. (b) A
visualization of R, . The red lines depict the horizontal lines, and the green
lines depict the vertical lines. Please note that choosing a different set of w and
h for R,, , does not affect this mapping of horizontal and vertical lines.

(2) vy is the top left corner; and (3) the vertices follow clock-
wise order. Fourth, we obtain the indices of the corner vertices,
{c1,c2,¢3,¢4}, With ¢; < ¢ < ¢3 < c4. After these prepara-
tions, Algorithm 1 generates H,,, and H;lh. The Finite Element
Method (FEM) [41] is used in this algofithm, and the imple-
mentation details of the FEM is provided in Sec. 4.2.
Following the Radd-Kneser-Choquet theorem [42, 43, 44],
H, , is bijective due to the convexity of R,,; [37]. With the
help of H,, , and H;,lh, we define the horizontal and vertical lines
within § by constructing Hl‘{ : Ry — S and afterwards map-
ping the horizontal and vertical lines within R ; back into S.

Algorithm 1 The Calculation of H,,, and H.',

Input:
Triangulation: T
Boundary vertices: {vi, ..., Vy+1}
Corner indices: {cy, ¢2, 3, C4}
Target width and height: {w, &}
Output: H,, H;,lh

// Obtain the bijective boundary mapping b.
1: Define b(v.,), b(v.,), b(v.,), and b(v.,) as (0,h), (w,h),
(w,0), and (0, 0), respectively.
2: ¢s:=n+ 1 //Itis for convenience.
3: foriin{l,2,3,4} do
: fOI‘jil’l {Ci,Cl’+ 1,...,Cl‘+1—1}d0

j
2 ke = will

k=C,'
5: b(Vj) = P (b(VcM) - b(Vc,-)) + b(Vc,)
kg- Vst = vill
. end for I
7: end for

// Solve the Laplace’s equation on T using the FEM.
8: H,,(T) =FEM(T,AH,,, = 0,Hplor = b)
// Obtain H,, , and H;lh through interpolation.
9: Hyp= LinearInterpol,ation(T, H, (T))
10: H;}h = LinearInterpolation(H,, 5(T), T)
11: return H,,, H‘;’lh




Fig. 4 illustrates a visual explanation of this definition. Please
note that the width and height of the rectangle R,, ;, do not affect
this definition, thus, we select R, ; for convenience.

We may now define a CTR as R, , where w. and h. are
the average length of all horizontal and vertical lines within S,
respectively. They can be calculated through the formulae:

W = f 10, H; ! (e, y)ldor @
Ri

he = f 10,57 (x. )lldor 5)
Ry

In our implementation, we calculate w, and &, through numeri-
cal integration.

We now conclude that, for any text instance S, there ex-
ists a unique CTR, that is R,, ;. It inheres the bijection
Hy p, S — R, p,. This means that for any given (x,y) € §,
there is a one-to-one corresponding (x’,y’) € R, 5, and vice
versa. This property will be sufficiently utilized in Sec. 3.5 for
label generation.

3.3. Network and Label Design

In this section, we explain in detail the architecture of our
segmentation network and our label design.

3.3.1. Network Design

The purpose of the segmentation network is to predict the
geometric features which can be later used. To achieve that, we
adopt the well-tested FPN-based segmentation neural network.
We now introduce the details of its architecture.

In a general sense, the segmentation network takes in an im-
age of arbitrary shape and produces a feature map of the same
width and height. The feature map has 6 channels, which cor-
responds to 3 classification results and 3 regression results.

Specifically, the detailed construction is demonstrated in
Fig. 5. To ensure a fair comparison, we adopt the ResNet50
[6] as our backbone network, consistent to multiple recent
works achieving state-of-the-art performances [11, 12, 13]. The
ResNet50 structure is responsible for downsampling and is di-
vided into 4 stages. Feature maps generated during downsam-
pling are recorded and aggregated with their peer upsampling
stages. To generate the prediction result, each one of the fea-
ture maps from the upsampling stages, illustrated in orange in
Fig. 5, are upsampled and concatenated together. Finally, af-
ter a convolutional layer, a pixelwise prediction layer, and an
upsampling layer, the prediction result is obtained.

To train the segmentation network, label design, label gen-
eration, and a loss function are needed. They are discussed in
Sec. 3.3.2, Sec. 3.5, and Sec. 3.6, respectively. Besides, hy-
perparameters used to train this network in our experiments are
unreservedly provided in Sec. 4.2.
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Figure 5: Illustration of the segmentation network structure. Without loss of
generality, we use an image of shape 512 x 512 as an example, although the in-
put shape is not constrained. The convolutional kernel sizes are represented by
“1x17” or “3x3”. The numbers after the convolutional stages are the output chan-
nel numbers, and the numbers after the upsampling stages are the scale factors.
We use bilinear interpolation as the upsampling method to ensure smoothness.

3.3.2. Label Design

In this section, we design the geometric features that are
learnable by the segmentation network and can be later con-
verted into the offsets required by the post-processing algo-
rithm.

For each point within a text instance, the post-processing
algorithm takes in two colinear offsets and locates the cor-
responding text kernel and text edge. We represent each
pair of those offsets with two colinear vectors vy = (ry, 6) and
ve = (—7,,0) (represented using the polar coordinate system),
where v, points to the text kernel, and v, points to the text edge.
Thus, for each pixel within a text instance, there is a corre-
sponding pair of v; and v,.

For our segmentation network to predict a pair of v, and v, in
a pixelwise manner, we design the labels with caution to ensure
they are learnable by the network. Specifically, we first use one
classification head to predict the text regions. Second, we adopt
two regression heads to predict radiuses r; and r,. As for the
angle 0, instead of predicting it directly like the text regions and
the radiuses, it is conventional [10] to decompose it into

sin 6 )
0= 2arctanm, ifcosd # —1 (6)

T, otherwise
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Figure 6: Illustration of the heat maps of «, sin 6, and cos 6. It can be observed
in (b) that the heat map of « is generally smooth and continuous, whereas in (c)
and (d), drastic jump discontinuity can be observed near the text kernels.

and predict sin 6 and cos € instead. However, in our case, the
feature maps of sin 8 and cos @ exhibit drastic jump discontinu-
ity (see Fig. 6 (c-d)). Such discontinuity and rapid change make
regression heads hard to train and yield inferior results [45, 46].
Numerical experiments proving this deficiency are provided in
Sec. 4.3.2. Inspired by [46], we propose the reference angle-
based encoding, which instead deconstructs 6 into

O=(D"a+(q +q)r, (N

where « is the reference angle of 6, and the combination of g,
and ¢, depicts the quadrant that 6 is located in. Specifically,
q1 is 0 if € [0,7) and is otherwise 1. Likewise, ¢, is O if

b
6 e [5
transformation is to convert the regression target from the dis-
continuous # into @, which is generally smooth and continuous
within text instances (see Fig. 6 (b)), and handle the discontinu-
ity through classification. We subsequently predict a, g, and
q> with one regression head and two classification heads, re-
spectively. To summarize, we adopt three classification heads
to predict text regions, ¢, and ¢», and we adopt three regression
heads to predict 7, r,, and a@.

3n
X 7) and is otherwise 1. The motivation behind this

3.4. Post-Processing

To acquire the detection result, a robust algorithm is intro-
duced in this section to convert the geometric features predicted
by the segmentation network into text predictions.

After prediction, the network produces 6 geometric features
for each pixel, which are text regions, ry, r., @, q;, and g,. To
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Figure 7: Illustration of the clustering and reconstruction operations: (1) the
larger circles represent p and the smaller circles represent either py or pe; (2)
the red arrows depict v and the blue arrows depict v,; (3) the dashed arrows in
(b) represent the extensions, which are of the same length as their corresponding
Vi or ve; and (4) we use distinct colors to illustrate different clusters, and being
gray means unclustered.

begin with, we define the confidence value of a point as its con-
fidence value for text region segmentation. As a preprocessing
procedure, we first discard all points whose confidence value
is lower than 0.65, and binarize ¢, and ¢, with a threshold of
0.5. For each remaining point, we then obtain its corresponding
pairs of colinear vectors vy = (ry,60) and v, = (—r,,6), where
@ is calculated through Eq. 7. Afterwards, the post-processing
algorithm takes in all pairs of v; and v,. It is divided into three
simple operations: clustering, reconstruction, and filtering.

3.4.1. Clustering

As shown in Fig. 7 (a), for the points within text instances,
denoted by p, we first locate their corresponding kernel points,
defined as p; = p + v. Next, the connected-components algo-
rithm is applied to all kernel points py, assigning a class to each
kernel point. Finally, we let all p adopt the same class as their
corresponding kernel points, forming distinct clusters.

3.4.2. Reconstruction

For each clustered point p, we first locate its corresponding
kernel point, py = p + v, and edge point, p, = p +v,. Next, we
further extend the line segment p;p, to restore the full height
of the text instance, as shown in Fig. 7 (b). Finally, all points
on the line segment are assigned the same class as the clustered
point p, obtaining the reconstruction result.

3.4.3. Filtering

During clustering and reconstruction, rich information about
the text instances are generated, which can be used to filter out
false positives.

Specifically, for cach text instance, we first define its confi-
dence value as the average of the confidence values within it.



Second, we define its distortion as o, that is the standard devi-
ation of all & values within the text instance. Third, we calcu-

late its aspect ratio through formula ———, where A represents

2
Hitr,

the area of the text instance, and y,, ., is the average value of
ry + r, within the text instance. Please note that this formula
gives a good estimation to the aspect ratio, because

A We-he  we-he we-he  we ®
4/’t%k+re 4ﬂ%k+re ,U%r”zrf h? he’

where w, and A, are the width and height of the corresponding
CTR. To better understand this approximation, please recall the
definition of w, and &, explained in Sec. 3.2. Finally, we train
a Support-Vector Machine (SVM) [47] taking the confidence
values, distortion, and aspect ratios as features to filter out the
false predictions.

The reasons behind the choice of an SVM instead of other
techniques, for example a Deep Neural Network (DNN) [48],
are twofold:

1. SVMs yield good performance with less data. In our case,
the training samples are mostly identical, since most of the
text instances are horizontal or alike. It results in a small
amount of effective data. However, DNNs require a lot
of data to avoid overfitting, while SVMs do not [49], thus
SVMs are optimal in this case.

2. SVMs are easier to train. Unlike DNNs, SVMs generate
training results quickly and deterministically [49]. Allow-
ing us to adopt cross-validation to perform an efficient grid
search for the optimal hyperparameters.

Compared with the conventional false positive filtering tech-
niques that rely on hand-crafted thresholds for confidence and
area values, as observed in TextSnake [10] and PSENet [11],
our approach not only omits the need for human tuning but also
leverages the more interpretable geometric information such as
the distortion and aspect ratios.

An ablation study is carried out in Sec. 4.3.3 to evaluate our
SVM-based filtering process and to validate the necessity of
including the additional geometric information.

The implementation details of the SVM are provided in
Sec. 4.2. Besides, a running time analysis for the SVM is car-
ried out in Sec. 4.5.2.

3.5. Label Generation

In this section, we leverage CTRs to obtain the labels de-
signed in Sec. 3.3.2, which are text regions, r¢, 7., @, g1, and q».
For each point within a text instance, to calculate these geomet-
ric features, we need to first obtain its corresponding v and v,.
These offset vectors can then be converted into the geometric
features with Eq. 7.

Specifically, for any text instance, it takes four steps: (1)
defining the text kernel and text edge within its CTR, denoted
by Cy and C,; (2) defining the offset vectors within its CTR,
denoted by v, and v;; (3) obtaining v; and v, by mapping v, and
v, back into the text instance using H;Ll’h(_; and (4) calculating
the geometric features using Eq. 7. Detailed explanations are
provided below.

h/2 /
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Figure 8: (a) Illustration of the text kernel and text edge defined within a CTR.
The red and blue lines depict the text kernel and text edge, respectively. The
black double-headed arrows indicate the lengths. (b) Illustration of the offset
vectors defined within a CTR. The blue dots depict p’, the red arrows represent
vl’(, and the blue dashed arrows represent v,.

3.5.1. Defining Cy and C,

For any given text instance, we first obtain its CTR, denoted
by C, and C = R, 5., where w, and &, are calculated through
Eq. 4 and Eq. 5.

It is trivial to define the text edge as C, = dC. The text kernel,
on the other hand, is defined as:

(el T2t

XIWIN7 S XSWe— —y= =1, N <Wwe

_ 2 2 2

=3 R
{(7, E)}’ otherwise

Fig. 8 (a) provides an illustration for the above definitions.

3.5.2. Defining v, and v,

For the CTR, C, we use p’ to represent a point inside it. For
each p’, it corresponds to a point in Cy and a point in C,. They
are denoted by p; and p;, respectively. For p;, it is defined as
the nearest point to p’ in Cy. For p,, on the other hand, it is
defined as the intersection between C, and a ray cast from p;
through p’ (see Fig. 8 (b)). We then define the offset vectors v;
and v/, as:

Vi=pi—p, (10)
e=Pe—D. (11

An illustration for the above definitions can be found in
Fig. 8 (b).

3.5.3. Obtaining vy and v,

As explained in Sec. 3.2, a CTR naturally inheres a bijective
harmonic mapping H,,.;, that maps any point within its corre-
sponding text instance into itself. With the help of H,,__, map-
ping v; and v, back into the original text instance is as simple
as:

ve=H,'\, (p)—H,, (), (12)
ve =H,'\ (p))—H,!, (p). (13)

Please note that after this mapping, v; and v, do not theoreti-
cally ensure collinearity. However, the variance is generally un-
noticeable. Due to this reason, for v, = (ry, 6;) and v, = (r,, 6,),
we use v, = (—r,0;) to approximate the latter. The approx-
imation is reasonable, since it hardly sacrifices any precision,
and is necessary since our segmentation network is designed to
handle colinear vectors. After this approximation, we use 6 to
represent 6; for simplicity.



3.5.4. Obtaining the Labels

For the given text instance, we have obtained all of its v
and v,. We now utilize Eq. 7 to convert them into the trainable
geometric features required by the segmentation network.

Specifically, for each point within the text instance, denoted
by p, its corresponding offsets are vy = (¢, ) and v, = (-r,, ).
We first set the value for text regions as 1, at point p. Second,
the features r; and r, are naturally obtained from the above ex-
pressions. Third, according to Eq. 7, we can deconstruct 6 into
(=1)?'a +(q) + g2)m, thus obtaining the values for e, ¢, and ¢,
at point p.

To be complete, for the points that are not included in any
text instance, the values for text regions are set to 0, and the
values for the other geometric features are set to -1, since they
are undetermined.

3.6. Loss Function

In this section, we introduce the loss function adopted to train
the segmentation network.
The loss function can be formulated as:

L=ALiex+ (1 =) (Ly + Ly + Ly, + L, + L)), (14)

where A balances the importance of L.y. The binary cross-
entropy loss is adopted for Liey, Lg,, and L,, and the Smooth-
L1 loss is selected for L,, L, and L, , to ensure a more stable
training process [1]. To overcome the data imbalance problem
when segmenting text regions, we adopt OHEM 3:1 [50] for
Liex:- Please note that all losses except for Ly, are set to 0 out-
side text instances, since the geometric features are undefined
there.

4. Experiments

In this section, we first conduct a comprehensive ablation
study for CTRNet. Then we evaluate the proposed method
on four challenging public benchmarks: CTW 1500, Total-Text,
MSRA-TD500, and ICDAR 2015 to compare with other state-
of-the-art methods. Finally, the overall results and running time
analysis are presented.

4.1. Datasets
4.1.1. CTWI1500

CTWI1500 is a challenging dataset mainly focuses on long
curved text instances. It consists of 1,000 training images and
500 test images, with each image containing at least 1 curved
text instance.

4.1.2. Total-Text

Total-Text consists of word-level curved text instances. Hor-
izontal, multi-oriented text instances are also included. It con-
sists of 1,255 training images and 300 test images.

4.1.3. MSRA-TD500

MSRA-TD500 is a multi-language dataset that focuses on
long multi-oriented text instances. It includes 300 training im-
ages and 200 test images.

4.1.4. ICDAR 2015

ICDAR 2015 focuses on incidental scenes that mainly con-
sists of word-level multi-oriented text instances. It has 1,000
training images and 500 test images.

4.1.5. ICDAR 2017

ICDAR 2017 MLT [51] is a multi-language dataset including
9 languages representing 6 different scripts. There are 7,200
training images, 1,800 validation images and 9,000 test images
in this dataset. We use this dataset only for pre-training.

4.2. Implementation Details

We use ResNet50 pre-trained on ImageNet [52] as our back-
bone. All networks are trained with a batch size of 32 on 4
GPUs and tested with a batch size of 1 on a RTX2080Ti GPU.
The optimization is done by using Adam optimizer [53] with
the default beta values of (0.9, 0.999).

The data augmentation techniques adopted are (1) random
rotation within range [—10°, 10°]; (2) random resizing with ra-
tio 0.75, 1.0, or 1.25; (3) random cropping of size 512 x 512;
(4) random flipping; and (5) random color jittering.

During training, the A for loss balancing is set to 0.67 and the
negative-positive ratio of OHEM is set to 3. Following [11], we
pre-train our model on ICDAR 2017 MLT for 50K iterations
with a learning rate of 1 x 1073. We fine-tune the pre-trained
model on each benchmark dataset for 10K iterations with a
learning rate of 1 x 107> and compare the performance against
other state-of-the-art methods. For CTW1500 dataset specif-
ically, we also train it from scratch for 10K iterations with a
learning rate of 1 x 107 to convey a fair comparison against
other methods that do not utilize external data.

During both training and inference phase, all images are pro-
portionally resized to ensure a suitable shorter side length (736
for ICDAR 2015 and 640 for others).

For the construction of CTRs, we use scikit-fem [54] to
implement the FEM and solve the Laplace’s equation. All
of the partial differential equations are solved with the results
recorded before training to ensure a faster training process.

The SVM adopts the Radial Basis Function (RBF)
[55] kernel, and its hyperparameters C and gamma are
tuned through grid search within sets {0.1,1, 10,100} and
{1,0.1,0.001,0.0001,0.00001}, respectively. We use 5-fold
cross-validation to evaluate each pair of the hyperparameters.
The training data for the SVM is generated by running the seg-
mentation model on the training set after each training epoch,
so there is no test data leakage during the process.

4.3. Ablation Study

We conduct a comprehensive ablation study on CTW 1500
and ICDAR 2015 datasets to demonstrate the effectiveness of
our framework design.

4.3.1. Harmonic Mappings

We now explain the necessity of using harmonic mappings
instead of TPS to construct CTRs.
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Figure 9: Comparison between the TPS method and our proposed harmonic
mapping-based method. “HM” indicates harmonic mappings. It can be ob-
served in (a) that the results of harmonic mappings fit the target rectangle per-
fectly, also they are smoother and more uniform. In contrast, the rectifying
results of TPS in (b) are irregular, and they do not fill in the whole rectangle
region.

From a theoretical perspective, TPS does not promise bijec-
tivity [38], and there is no simple condition that can ensure a
bijective TPS transformation. Thus, it is impossible for TPS to
map the geometric features back into the arbitrary-shaped text
instances without relying on complicated rules. In comparison,
a harmonic mapping-based transformation is bijective as long
as the target polygon is convex [37], which is not only elegant
but also consistent to our needs. Fig. 9 shows the quality dif-
ference between our bijective harmonic mapping-based method
and the TPS method.

From a practical perspective, although TPS performs well in
many end-to-end text recognition tasks [29, 35], it is not suit-
able for our CTRNet framework which requires a refined map-
ping. To show that, we first adopt the nearest-neighbor inter-
polation method to process the irregular results generated by
the TPS transformation. Second, distinct negative effects on
the inference pipeline caused by the TPS method can be ob-
served in Fig. 10. Third, the numerical experiments prove our
standpoints. As shown in Tab. 1, using TPS introduces a 0.6%
performance drop on CTW1500.

Please note the statistical bias that a considerable portion of
text instances in CTW 1500 are of rectangular shapes. Consider-
ing that harmonic mappings and TPS are almost identical when
handling rectangular text instances, the negative impact of TPS
is a lot more significant than what the number shows. Due to
the same reason, we do not perform the same experiment on IC-

Table 1: Experiment results under diflerent settings. “HM” means harmonic
mappings, “SF” refers to the SVM-based filtering process, “GI” represents geo-
metric information, and “RAE” indicates reference angle-based encoding. “P”,
“R”, and “F” represent precision, recall, and F-measure respectively.

CTW1500 ICDAR 2015
HM RAE SF GI P R T P R T

- v vV v 897 809 85.1 - - -

v - v v 849 725 782 86.0 674 75.6
v v - v 822 831 827 850 81.5 832
v v v - 862 836 849 873 83.9 85.6
v oo v v v 882 833 857 89.5 83.5 864

(a) HM

(b) TPS

Figure 10: Comparison between the TPS method and our proposed harmonic
mapping-based method. “HM” indicates harmonic mappings. It can be ob-
served in (a) that the feature maps produced by harmonic mappings are smooth,
and the text kernel location is accurate. However, in (b), the feature maps en-
dure defects such as abrupt jump discontinuity, and the kernel location results
are disordered.

DAR 2015. Since ICDAR 2015 only contains rectangular text
instances, there is no significance in such experiment.

We also perform a comparison on the time complexity. To
perform the same task of label generation for CTW 1500, on av-
erage, the harmonic mapping-based method took 1.27 seconds
per text instance, and the TPS method took 1.09 seconds per
text instance. We conclude that both methods introduce run-
time overheads, and TPS is faster. However, it does not affect
the training efficiency, since label generation is only performed
once before training. The labels are reused efficiently during
training, with no run-time overhead.

4.3.2. Reference Angle-Based Encoding

In this section, we compare the reference angle-based encod-
ing technique explained in Sec. 3.3.2 with the conventional en-
coding technique which utilizes Eq. 6. As shown in Tab. 1, the
reference angle-based encoding technique brings performance
gains of 7.5% and 10.8% on CTW1500 and ICDAR 2015 re-
spectively. Thus, we conclude that regression heads do not
work well when their target feature maps exhibit abrupt jump
discontinuity (see Fig. 6 (c-d)).

4.3.3. SVM-Based Filtering and Geometric Information

To validate the necessity of our SVM-based filtering process
and the geometric information introduced in Sec. 3.4.3, we per-
form the following experiments: (1) we compare the SVM-
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Figure 11: The influence of the kernel scale. The red lines and blue lines repre-
sent the results on CTW1500 and ICDAR 2015, respectively.



based filtering process with a conventional filtering scheme,
which discards any text instance with an area smaller than 10
or a confidence value lower than 0.65; and (2) we abandon the
use of the geometric information introduced in Sec. 3.4.3, that
is the distortion and aspect ratios, and evaluate the effect.

For the first experiment, as shown in Tab. 1, by including
the SVM-based filtering process, we obtain a 3.0% gain on
CTW1500 and a 3.2% gain on ICDAR 2015, showing the effec-
tiveness of our filtering scheme. As for the second experiment,
utilizing the additional geometric information, during the filter-
ing process brings a 0.8% performance gain on both CTW1500
and ICDAR 2015 (see Tab. 1), proving the necessity of utilizing
such information during the filtering process.

4.3.4. Kernel Scale

It is stated in [10] that text kernels should be granted thick-
ness since a single-point line is prone to noise. And such state-
ment has been practiced in various methods [10, 11, 13]. We
are able to increase the thickness of text kernels by assigning
radiuses to all kernel points during post-processing. For each
text instance, the radiuses of its kernel points are equal to s - A,
where s is a constant named the kernel scale, ranging from 0 to
1, and h is the height of that text instance, given by 2ry + 2r,.
As shown in Fig. 11, in our case, the F-measure has a nega-
tive correlation with the kernel scale, while the inference speed
is observed to have a positive correlation with the kernel scale.
However, the gain in inference speed is minor. It is thus optimal
to set the kernel scale to 0.

4.4. Comparisons With State-of-the-Art Methods

We compare our proposed method with previous methods
on four standard benchmarks, including two benchmarks for
arbitrary-shaped text, and two benchmarks for multi-oriented
text.

4.4.1. Detecting Arbitrary-Shaped Text
Our CTRNet demonstrates great performance and shape ro-
bustness on two arbitrary-shaped text benchmarks: Total-Text

Table 2: Experiment results on CTW1500. “Ext.” indicates whether external
data is used. “P”, “R”, and “F” represent precision, recall, and F-measure re-
spectively. * indicates the results from [18].

Method Ext. Venue P R F
CTPN* [8] - ECCV’16 60.4* 53.8* 56.9%
EAST* [9] - CVPR’17 78.7* 49.1*% 60.4*
CTD+TLOC [18] - - 774 69.8 73.4
TextSnake [10] v ECCV’18 679 853 75.6
PSENet-1s [11] - CVPR’19 80.6 75.6 78.0
CSE [56] v. CVPR’19 81.1 76.0 78.4
PAN-640 [13] - ICCV’19 846 77.7 81.0
PSENet-1s [11] v. CVPR’19 84.8 79.7 822
Text Perceptron [35] v* AAAT’20 88.7 782 83.1
DB-ResNet50 [12] v AAAT'20 869 80.2 834
CTRNet - - 88.6 79.0 83.5
PAN-640 [13] v ICCV’19 86.4 81.2 83.7
CTRNet v - 88.2 83.3 85.7
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Table 3: Experiment results on Total-Text. “P”, “R”, and “F” represent preci-
sion, recall, and F-measure respectively. * indicates the results from [10].

Method Venue P R F
EAST* [9] CVPR’17 50.0% 36.2*% 42.0%
TextSnake [10] ECCV’18 82.7 74.5 78.4
CSE [56] CVPR’19 814 79.1 80.2
PSENet-1s [11] CVPR’19 84.0 78.0 80.9
Text Perceptron [35] AAAI'20 88.1 78.9 83.3
Boundary [29] AAAT20 852 835 843
DB-ResNet50 [12] AAAT’20 87.1 82.5 84.7
PAN-640 [13] Iccv’l9 893  81.0  85.0
CTRNet - 884 829  85.6
Table 4: Experiment results on MSRA-TD500. “P”, “R”, and “F” represent
precision, recall, and F-measure respectively.
Method Venue P R F
EAST [9] CVPR’17 873 674 76.1
RRPN [25] TMM’18 82 68 74
PixelLink [33] AAAT'18 830 732 778
TextSnake [10] ECCV’'18 83.2 739 783
RRD [24] CVPR’18 87 73 79
PAN [13] ICCV’'19 844 838 84.1
DB-ResNet50 [12] AAAT'20 915 79.2 84.9
CTRNet - 927 79.1 854
and CTW1500.

As shown in Tab. 2 and Tab. 3, our method consistently
outperforms previous methods by a large margin, in terms of
F-measure. Specifically, CTRNet outperforms the previous
state-of-the-art methods by 2.0% and 0.6% on CTW1500 and
Total-Text respectively, demonstrating the superiority of CTR-
Net when detecting arbitrary-shaped text.

Moreover, when training from scratch on CTW1500, com-
pared with other results that do not rely on external data, CTR-
Net outperforms the most accurate method PAN-640 by 2.5%.
Notably, it is only 0.2% behind the previous state-of-the-art
method, which is trained with external data, proving the out-
standing robustness of our method.

It is worth noting that, compared with PSENet-1s, whose net-
work architecture is almost identical to ours, CTRNet brings
huge improvements of 3.5% on CTW1500 and 4.7% on Total-
Text. Such improvement is a solid proof for the validity of
CTRs and our post-processing algorithm.

4.4.2. Detecting Multi-Oriented Text

Experiments on MSRA-TD500 and ICDAR 2015 show that
CTRNet is robust when detecting multi-oriented text.

On MSRA-TD500, as shown in Tab. 4, CTRNet outperforms
the state-of-the-art methods by 0.5%. Specifically, it surpasses
PAN and TextSnake, which relies heavily on text kernel seg-
mentation, by solid 1.3% and 7.1%. Such results prove the great
consistency of CTRNet and the advantage of omitting text ker-
nel segmentation.

For ICDAR 2015, it can be observed in Tab. 5 that CTRNet
achieves state-of-the-art performance and is second only to DB-
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Figure 12: Qualitative results of CTRNet. Each section includes the detection result (left), kernel visualization (top right), and reconstruction result (bottom right).

ResNet50 (1152). However, it is not a fair comparison since
DB-ResNet50 (1152) receives input images with height 1152,
which is far larger than the input images of CTRNet. When in-
stead compared with DB-ResNet50 (736), whose input size is
similar to ours, CTRNet surpasses it by 1.0%. Further, when
compared with PSENet-1s, which differs from us only in la-
bel design and post-processing, CTRNet yields an increase of
0.7%, showing the solid improvement that our label design and
post-processing algorithm bring.

Please note that no specific trick, such as minimal area rect-
angles fitting, is implemented when handling MSRA-TD500
and ICDAR 2015, whereas some of the methods [11, 13] do.
Still, the results on multi-oriented text datasets demonstrate the
great consistency and robustness of CTRNet. Moreover, exper-
iment results on MSRA-TD500 show that CTRNet is excep-
tionally effective when handling long text instances.

Table 5: Experiment results on ICDAR 2015. The values within parentheses
indicate the height of the input image. “P”, “R”, and “F” represent precision,
recall, and F-measure respectively.

Method Venue P R F
CTPN [8] ECCV’16 742 51.6 609
EAST [9] CVPR’17 83.6 735 782
RRPN [25] TMM’18 82 73 77
RRD [24] CVPR’18 85.6 79.0 822
PixelLink [33] AAAT’18 829 81.7 823
TextSnake [10] ECCV’18 849 804 82.6
PAN [13] ICCV’'19 84.0 819 829
Boundary [29] AAAT’20 88.1 822 850
DB-ResNet50 (736) [12] AAAT’20 88.2 827 854
CSE [56] CVPR’19 923 799 85.7
PSENet-1s [11] CVPR’19 869 84.5 857
Text Perceptron [35] AAAT'20 916 81.8 86.4
DB-ResNet50 (1152) [12] AAAI'20 91.8 832 873
CTRNet - 89.5 83,5 864
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Table 6: Overall results on all four benchmark datasets. “F” represents F-
measure. “SVM?”, “Post.”, and “Total” indicate the average time consumption
of the SVM module, the post-processing algorithm, and the inference pipeline
as a whole.

Time (s)
Dataset F SVM Post.  Total
CTW1500 85.7 483 x10™* 0.154 0.191
Total-Text 85.6 526x10™* 0.092 0.127
MSRA-TD500 854 124x10™* 0.072 0.103
ICDAR 2015 86.4 198x10™* 0.060 0.108

4.5. Overall Results and Running Time Analysis
4.5.1. Overall Results

Qualitatively, it can be observed in Fig. 12 that through
elaborate label design, our CTRNet generates stable and ac-
curate predictions for text kernels, without the need of di-
rectly segmenting them. Meanwhile, CTRNet consistently pro-
duces accurate and shape-robust detection results when han-
dling horizontal text, multi-oriented text, and arbitrary-shaped
text. Quantitatively, it can be observed in Tab. 6 that CTR-
Net consistently achieves excellence on all four of the datasets.
Notably, to the best of our knowledge, CTRNet is among the
first methods to achieve F-measures higher than 85.0% on all
these datasets, which proves the solid superiority of CTRNet,
in terms of accuracy and consistency.

4.5.2. Running Time Analysis

We use a single RTX2080Ti GPU and the Dual Intel Xeon
E5-2650 v4 @ 2.20GHz processor for running time analysis.
As shown in Tab. 6, it takes an average of 0.132 seconds for
CTRNet to process an image. While the SVM module poses un-
noticeable time cost, the post-processing as a whole generally
takes up more than 70% of the inference time. However, it is
worth noting that unlike other segmentation-based methods that
implement the post-processing algorithms using the more effi-
cient C++, such as PSENet-1s, our post-processing algorithm,
for the purpose of this study, is implemented purely in Python.



Nevertheless, the inference speed of CTRNet is still signifi-
cantly higher than a large set of recent methods [10, 11, 56],
including PSENet-1s.

To carry out a fair comparison, we implement PSENet-1s us-
ing its open-sourced official implementation, under our hard-
ware environment. According to our tests on CTW1500, its
average running time for each picture is 0.334 seconds. It
is slower than CTRNet, which takes 0.191 seconds under the
same experimental configuration. This shows that CTRNet has
a competitive running time performance.

5. Conclusion

In this paper, we propose an effective framework to de-
tect arbitrary-shaped text with outstanding accuracy and sta-
bility. We first introduce Conceptual Text Regions, a class of
cognition-inspired tools for elaborate label generation. Further,
we propose a well-designed inference pipeline to predict text
instances using the geometric features generated by CTRs. The
fact that CTRs allow for sophisticated label design and that the
inference pipeline omits the need for text kernel segmentation
establishes CTRNet as a robust and accurate arbitrary-shaped
text detector. Achieving F-measures greater than 85.0% on
all four of CTW 1500, Total-Text, MSRA-TD500, and ICDAR
2015, CTRNet demonstrates superior advantages in terms of
accuracy and consistency when compared with previous state-
of-the-art text detectors.

For future study, we consider it meaningful to investigate the
possibility of establishing the CTR method as a universal text
label generation technique. It is also of interest to utilize the
potential of CTRs and evolve CTRNet into an end-to-end train-
able text recognition framework. Last but not least, we will seek
to utilize deep reinforcement learning and multi-task learning
algorithms [57, 58, 59, 60] to optimize the generalization capa-
bility of such text recognition framework.
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