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an in-depth study of cortical areas that seem to play a key role in hand’s
open/close preparation.

Keywords Brain Computer Interface · Beamforming · Deep Learning ·
Explainable Machine Learning

1 Introduction

Scalp lectroencephalography (EEG) is a non-invasive technique that collects
the electrical fields produced by the brain and reflects its underlying activ-
ity [34]. EEG is widely used as a basic diagnostics of several sneurological
diseases, and in neuroscience and cognitive research [6,10,18,17]. EEG is com-
monly exploited in brain-computer interface systems (BCI), where the brain
directly communicates with an external device by decoding subject’s inten-
tions from EEG signals and converting them in a set of suitable commands
[26]. EEG is relatively affordable, widely spread, easy to use, and generally
well tolerated by the patients. Unfortunately, it also has some non trivial limi-
tations: 1) a poor signal-to-noise ratio (SNR), and the brain’s waves of interest
are usually corrupted by multiple sources of noise called artifacts [30]; 2) EEG
recordings are non-stationary signals, thus their statistical characteristics vary
across time [47]; 3) poor spatial resolution caused by volume conduction ef-
fects [28]; 4) high inter-subject variability that limits the ability of a classifier,
trained over a cohort of subjects, to generalize well across subjects [38]. One
of the greatest potentials of Deep Learning (DL) is the ability to generalize
even in presence of complex inputs [23]. In the context of the EEG analysis,
this would imply the possibility of identifying patterns relevant to classifica-
tion also in presence of additional non-target waves in the EEGs. However,
the main limitation in the application of DL to EEG processing lays in the
relatively small number of samples typically available in EEG databases, as
compared to the number of samples that can be found in computer vision or
natural language processing (NLP) applications, which made DL so powerful
in such fields. The following tasks have been mostly investigated so far by
applying DL to EEGs: motor imagery (MI) (22%), mental workload (16%),
emotion recognition (16%), seizure detection (14%), event related potential
detection (10%), sleep stage scoring (9%) and other studies (13%) [5]. MI is
task considered in the present study. BCI systems based on MI generally re-
quire the user to imagine performing a given movement in order to allow the
system to classify the imagined movement with good accuracy [27]. However,
sustained motor imagery is not natural neither comfortable for the user; in
addition, it requires intensive training and implies a delay between the onset
of imagination and the time the desired control is issued [32]. Conversely, in
motor preparation investigation, the subject performs or attempts to perform
the movement and the behavior of EEG signals before motion onset/attempt
is investigated to predict the intended movement [43]. Decoding the prepara-
tion of the movement, whether it is actually implemented or just attempted
(in case the subject has a motor disability hindering motor implementation),
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would be much more natural and immediately decodable [36]. Furthermore,
the mechanisms of motor preparation are not clear. Previous studies showed
that premotor cortex is activated contralaterally during motor preparation,
which was observed by fMRI/NIRS and also in EEG signals [45], however it
is not clear if and how the different sub-areas of premotor cortex work to-
gether to develop motion planning. For the aforementioned reasons, in [29]
motor preparation of different sub-movements of upper limbs was investigated
by analyzing frames of EEG signals preceding motion’s onset and by compar-
ing them with frames of EEGs collected in absence of any motion planning
(resting). Mammone et al. [29] reached an accuracy of 90.30±5.6% in pre-
movement vs. resting discrimination and of 62.47±6.7% in the discrimination
of the preparation of different sub-movements. A deep Convolutional Neural
Network (CNN) was designed and trained through stratified time-frequency
maps of 210 EEG source locations in the premotor and primary motor cor-
tex. However, no interpretation of the results was provided, as artificial neural
networks. act as a black-box. Furthermore, training a deep CNN over mul-
tichannel images (time, sources and frequency) requires the adaptation of a
very large number of parameters and hence would require a large database to
be trained. In the present work, we aim at achieving good accuracy in motor
planning classification of hands’ movements by designing a deep CNN to be
trained over single channel images (time vs. sources). In the present work,
explainable machine learning (EML) is proposed to investigate motor prepa-
ration by exploring the behavior of the trained network [31]. In summary, the
aim of the present work is twofold: 1) To design a novel deep CNN that, by
processing EEG source signals of the motor cortex, is able to discriminate
the phases of preparation of hands’ movements (open/close) from resting (no
movement planning); 2) To explain the achieved results by means of EML,
in order to assess which EEG sources (i.e., which cortical locations) play a
decisive role in the classification of hand’s motor preparation phases. The final
aim is to find out possible areas in the motor cortex that are mainly involved
in planning hands’ movements. In fact, while it is well known which areas are
most involved in the implementation of movements of the different parts of
the body [4], because the activation of the movement is triggered by relatively
well localized areas in the primary motor cortex, it is not well known how
motor planning is spatially organized. EML could yield a significant contri-
bution in this field [8]. To this end, a deep CNN was designed and trained to
discriminate hand’s opening (HO) and hand’s closing (HC) motion prepara-
tion phases from resting (RE) phases. The training database was constructed
by processing EEG signals collected from 15 subjects recruited within a BCI
study conducted by Ofner et al. [35]. The paradigm followed in [35] provided
that the subject performed cue-based movements starting from a neutral rest
position. The present analysis is focused on the classification of HC vs. RE and
HO vs. RE. The developed CNN receives as input the electrical activity of 210
sources located in the motor cortex in the time interval of 1 s preceding mo-
tion onset. Such source signals were estimated by solving the inverse problem
starting from EEG scalp signals. The developed CNN was able to discriminate
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premov (HC or HO) vs RE with an average accuracy of 90%. An occlusion
sensitivity analysis was subsequently carried out by passing the time-source
maps as input to the network to find out which sources (i.e., cortical locations)
are estimated to be more relevant in the classification of HC/HO from RE.
We could observe a recurrent spatial pattern across subjects that show greater
activation of the left part of the motor cortex in the central area, close to the
longitudinal fissures between the two hemispheres, together with the extreme
right part of the motor cortex belonging to the temporal lobe.

The paper is organized as follows: in Section 2 the proposed method is
presented. The preprocessing steps including beamforming technique and cor-
tical sources extraction are also described. Section 3 shows the proposed deep
CNN for the pre-movements tasks classification, whereas, Section 4 introduces
the salient cortical source recovery procedure by means of EML (i.e. occlusion
sensitivity analysis). In Section 5 experimental results are reported. Section 6
discusses the achieved findings and Section 7 concludes the paper.

2 Methodology

The proposed methodology is shown in Figure 1; it includes the following
processing modules:

1. Extraction of premotor EEG epochs: EEG segments preceding the (open/close)
movements of the right hand as well as the rest condition are extracted from
the available EEG dataset.

2. Inverse problem solution and extraction of the cortical EEG sources: beam-
forming technique is applied to reconstruct EEG sources corresponding to
a given EEG epoch. It is worth noting that among the 2000 cortical lo-
cations of the adopted head model, those related to the areas 4 and 6 of
Brodmann (i.e., the primary motor and the premotor cortex) are consid-
ered. Specifically, 210 EEG sources are extracted.

3. DL-based system for pre-movements tasks classification: the extracted 210-
EEG sources are fed into a DL-based classifier. Specifically, a deep CNN is
developed to perform the following binaries classifications: HC vs. RE and
HO vs. HO. The deep CNN receives time-source maps as input (matrices
sized 210 x 512, where 210 are the source locations under consideration
and 512 is the sampling rate).

4. Explainable DL system, salient cortical source recovery : occlusion sensitiv-
ity analysis is applied to investigate which cortical area are more relevant
to the open/close hand motion planning. Specifically, portions of the in-
put maps (i.e., time-source maps) are occluded with the aim of detecting
the cortical area that mostly affected the classification. K-means cluster-
ing technique is then used to segment the saliency maps and automatically
detect the cortical source locations most relevant to the task prediction.
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Explainable Machine Learning Inverse Problem Solution for EEG-based BCI 5

Fig. 1 Flowchart of the proposed framework. The subject is initially in a rest condition
watching a monitor in front of him/her. After a beep (at 0 s), a fixation cross is produced on
the monitor in order to make him/her focus his/her attention on it. Next (at 2 s), the cue
of the desired task (i.e., HC/HO) is shown. The subject performs the cued movement and
then returns to the original neutral position. The temporal window of 1s preceding motion
execution (i.e., pre-motion EEG epoch) is extracted and the inverse problem is solved by
means of beamforming technique in order to reconstruct the EEG sources. Notably, 210-
EEG cortical sources (i.e., pre-motion EEG sources epoch) belonging to the motor cortex are
taken into account and used as input to a customized deep CNN which is trained to perform
the following binary classification tasks: HC vs. RE and HO vs. RE. Finally, an occlusion
sensitivity analysis is carried out to detect the most significant regions in the input map (i.e.,
epoch of the EEG signals) involved in the classification process. The achieved saliency map
is then segmented by k -means clustering and the cluster associated to highest saliency is
identified. Sources belonging to that cluster interpreted as providing the largest contribution
in decoding the specific movement.

2.1 Extraction of premotor EEG epochs

In the present research, a publicly available database of EEG recordings co-
registered with signals collected from motion sensors [35] was used to con-
struct the training and testing dataset. The database can be found at http :
//bnci − horizon − 2020.eu/database/data − sets together with detailed in-
formation about channel layout, recording settings and paradigm description.
The study involved 15 healthy subjects (aged 27±5 years, nine of the them are
females). EEG signals were acquired by Ofner et al. [35] by means of 61 ac-
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6 Cosimo Ieracitano et al.

tive EEG electrodes and four 16-channel amplifiers (g.tec medical engineering
GmbH, Austria). Right mastoid channel was used as reference one and AFz
was set as ground channel. EEG signals were band-pass filtered between 0.01
Hz and 200 Hz (8-th Chebyshev filter), notch filtered at 50 Hz and sampled
at 512 Hz. The database consists of a motor execution and a motor imagery
part. Since the goal of the present study was to investigate motor preparation,
the first part was included in the analysis. During the experiment, subjects
remained seated on a comfortable chair and an anti-gravity exoskeleton (Ho-
coma, Switzerland) supported their right arm. The paradigm consisted in ex-
ecuting cue-based movements of the right upper limb starting from a neutral
position (lower arm extended to 120 degree and in a neutral rotation, hand
half open) [35]. The experiment consisted of 10 runs, every run included 6
trials and every trial included one hand open (HO), one hand close (HC) and
one rest (RE) cues. The timeline of the paradigm can be summarized as fol-
lows: At second 0, a fixation cross appeared on a computer screen, positioned
in front of the subject, to attract her/his gaze on it and limit eye movements.
At second 2, the cue of the task to be performed (HC/HO/RE) appeared on
the computer screen. After task execution, the subject moved her/his hand
back to the starting neutral position. In order to train a neural network to
decode motor preparation phases from EEG signals, a dataset of EEG epochs
preceding motion onset was necessary. To this purpose, the onset of movement
was estimated by processing motion data collected by glove sensors. Specifi-
cally, the onset of movement was detected by processing the signals recorded
from motion sensors embedded in the glove, following the procedure described
in [35]. The marked onset timing was manually checked for all of the 1800
pre-motion epochs under examination and the frames (epochs) of EEG sig-
nals preceding the marked onset were extracted accordingly. Such epochs were
included in the analysis together with a balanced set of resting EEG epochs.
Specifically, 900 EEG epochs (derived from 10 runs x 6 trials x 15 subjects)
per movement class (hand open/hand close) were taken into account. In order
to generate a balanced dataset, a comparable number of resting state EEG
epochs was extracted. In the end, 2700 EEG epochs (derived from 10 runs
x 6 trials x 15 subjects 3 classes) were extracted from the EEG recordings
and included in the dataset. As regards the choice of the length of the frame
preceding motion onset, it was set at 1 s after taking into account the typical
timeline of motor related cortical potentials (MRCP) which are brain waves
that arise together with movements’ preparation and initiation [40,29].

2.2 Inverse problem solution and extraction of the cortical EEG sources

It is known that the EEG has a very good temporal resolution but a poor spa-
tial resolution, due to volume conduction effects [34,11,13]. Inverse problem
solution is a possible way to deal with such effects. In the proposed method-
ology, EEG signals are used to reconstruct a set of source signals where every
source signal represents the contribution of a source location (current dipole)
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Explainable Machine Learning Inverse Problem Solution for EEG-based BCI 7

located in the cortex [11,13]. Solving the “inverse problem” means reconstruct-
ing source locations’ contribution to the overall EEG signals collected at the
scalp. EEGs can be hypothesized to be the projection of sources’ contributions
from cortical locations to scalp sensors through a “forward model” [7]. Such
forward model takes into account the structural and conductive properties
of brain tissues. In the frequency range of EEG signals, the quasi-static ap-
proximation of Maxwell’s equations can be assumed hence the forward model
becomes linear [14] and be formulated as follows:

x(t) = Lqr(t) (1)

qr(t) is the 3 dimensional directed current dipole associated to cortical
location “r” (where r=1,...,Ns and Ns is the number of possible source loca-
tions in the cortex); L is knows as “lead field” matrix, which represents the
head model that projects the current dipole qr(t) into the scalp potential x(t)
[14]. The number of sources Ns is typically larger than the number of chan-
nels Nc thus estimating qr(t) from x(t) is inherently an ill posed problem. The
adopted head model consists of 2000 cortical locations (Ns=2000) whereas the
number of scalp channels of the EEG recordings analysed in the present work
is Nc=61. In this work, the New York Head (NYH) forward model, developed
by Haufe et al. [15], was adopted. Such head model is based on the popular
ICBM152 anatomy, a nonlinear average of T1-weighted structural MR images
collected from 152 adults. By solving the inverse problem, cortical current
dipoles qr(t)) are estimated starting from the recorded EEG signals x(t) and
from the lead field matrix L. Several inverse problem solution approaches can
be found in the literature on EEG source imaging: minimum-norm solutions,
beamformers, and dipole modeling [11,41]. Beamforming solves the inverse
problem by maximizing the contribution of a given source location while sup-
pressing contributions from the other ones and was proved very effective in
BCI applications by Grosse-Wentrup et al. [12]. The premotor and primary
motor cortex are considered crucial in movement planning and execution [16,
19]. Such regions fall in the Brodmann’s Areas 4 and 6 of the brain [3]. Each
one of the 2000 available source locations was associated to the corresponding
Brodmann Area through its Montreal Neurological Institute (MNI) stereotaxic
coordinates. MNI coordinates of every source locations were known. First of all,
they were indeed converted into Talairach coordinates [22] and then matched
with Talairach Atlas labels [1], in order to come up with the corresponding
Brodmann area of every source location. In the end, 210 locations belonging
to Brodmann areas 4 and 6 were selected out of the 2000 available ones.

3 Deep Learning-based system for pre-movements tasks
classification

A deep learning classifier is proposed to discriminate EEG source epochs be-
longing to the pre-movement (close/open) of the right hand (HC/HO) or to
the resting state (RE) class. Notably, a deep Convolutional Neural Network
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8 Cosimo Ieracitano et al.

(CNN) is developed to perform the 2-ways classification tasks: the HC vs. RE
and HO vs. RE.

3.1 Convolutional Neural Network

CNN is a well-known deep learning model widely used especially in computer
vision [25,42] and image recognition [9,24]. It is composed of subsequence lay-
ers of convolution, activation, pooling followed by a multi-layer fully conneted
neural network for classification purpose [21]. The convolutional layer includes
a bank of J filters used to estimate the dot product (i.e., covolution operation)
with the input map T sized t1 x t2. More specifically, each filter (sized j1 x
j2) performs the convolution with the selected local area and sweeps over the
input representation with a specific stride using the same values of weights.
This operation results in the so called features maps Z of size z1 x z2:

z1 =
t1 − j1 + 2 × p

s
+ 1 (2)

and

z2 =
t2 − j2 + 2 × p

s
+ 1 (3)

where p is the zero padding parameter. The activation layer introduces
nonlinearity in the model. Specifically, here, the Rectified Linear Unit (ReLU)
is employed for its ability to achieve good generalization and training time
[33]. The pooling performs a downsampling operation of the feature maps
resulting from the previous layer. The max pooling operation is used for its
good translation-invariant properties [39]. It has a filter sized j̄1 x j̄2 that scans
the input feature map with stride s̄. This operation outputs a reduced map
sized t̄1 x t̄2, with:

r̄1 =
t1 − j̄1
s̄

+ 1 (4)

and

r̄2 =
t2 − j̄2
s̄

+ 1 (5)

The CNN ends with a standard feed-forward MLP composed of a softmax
output function used for discriminations tasks.

3.2 Design of the deep CNN

The proposed CNN is developed to accept as input time-source maps (i.e.,
EEG sources epochs) sized t1 x t2, where t1=210 represents the number of
sources taken into account in this study, and t2=512 represents the number
of samples included in 1s temporal epoch before the movement onset. The
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deep learning model consists of three stacked modules of convolutional (convi,
with i=1,2,3), ReLU and max pooling (mpooli) layers followed by a common
MLP for performing the 2-ways classification: HC vs. RE and HO vs. RE.
Figure 2 shows the architecture of the proposed deep CNN. Note that the
topology of the developed model was set-up after several tests and using a
trial-and-error strategy. Specifically, the temporal data (210 x 512) are firstly
convolved with 4 learnable filters sized 5 x 5 (conv1). Every filter scans the
input representation with stride 1 resulting in 4 feature maps sized 206 x 508
(according eq. 2, with p=0). After applying the ReLU activation function,
max pooling is used to squeeze the input space from 206 x 508 to 68 x 169
(mpool1). This layer has the filter size 5 x 4 and stride equal to 3. Next, the four
features maps extracted from mpool1 are fed into a new layer of convolution
(conv2) composed of 8 filters sized 5 x 5 and unit stride, producing 8 maps
of dimension 64 x 165 to which the ReLU activation function is applied. The
second max pooling layer (mpool2) has filter size 4 x 6, stride=3 and outputs
8 downsampled representation of size 21 x 54. Similarly, the last convolutional
layer (conv3) has 16 filters sized 5 x 5 and unit stride. The resulting features
maps have dimension of 17 x 50. Finally, the ReLU activation function is
applied and the third max pooling layer (mpool3) generates 16 maps sized 5
x 16 (filter size 5 x 5, stride 3). The flatten vector of dimension5 x 16 x 16 =
1280 inputs a standard 2-hidden layers MLP consisted of 500 and 50 hidden
units respectively, employed to perform the binaries classifications: HC vs. RE
and HO vs. RE.

3.3 Learning parameters set-up

The Adaptive Moment (Adam) optimization procedure [20] was used to train
the proposed deep CNN (Figure 2), using mini-batches size of 28. Training
options were set-up by using the practical recommendations reported in [2,20],
specifically: learning rate α=10−2, first moment decay rate β1=0.9, and second
moment decay rate β2=0.999. The network was implemented with MATLAB
R2019a and trained over about 50 iterations on two Nvidia GeForce RTX
2080 Ti GPU, each with 11 GB memory, installed on a processor Intel(R)
Core(TM) i7-8000K CPU @ 3.70GHz and RAM of 64 GB. Furthermore, the
proposed deep CNN was trained and tested iteratively by using epochs of the
each subject under analysis. Thus, 15 CNN classifiers were trained and tested.
The estimated training time was of about 10 min per subject (applying the
k-folds cross validation procedure, with k=10).
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10 Cosimo Ieracitano et al.

Fig. 2 Architecture of the proposed deep CNN. It consists of three convolutional layers
(followed by ReLU non-linearity) and three max pooling layers. The network ends with a
2-hidden layers MLP employed to perform the 2-ways classifications: HC vs. RE and HO
vs. RE.

4 Explainable Deep Learning system: salient cortical source
recovery

4.1 Occlusion sensitivity analysis

Occlusion analysis has been widely used in image classification to show the
sensitivity of a pre-trained CNN to different areas of an input image [46]. It
consists in systematically occluding different patches of the input data with a
grey mask and estimating the related effect on the network output. For each
mask location the discrimination is performed using a pre-trained CNN and
estimating the change in classification score for a specific class than the initial
prediction (input without occlusion). Such changes in classification result in
the so called heatmap or saliency map H with a coloration ranging from blue
to red and with the same input dimension. This representation reveals which
area of the image is the most essential for the classification. Specifically, red
color corresponds to higher values and consequently represent the most signif-
icant area that contributed to identify the specified class. When this region is
occluded the classification performance decreases. Blue color corresponds to
lower values and represents the areas not relevant during the discrimination
task. In this study, the occlusion technique is applied to recover the cortical
sources that are activated during the (open/close) hand’s movement prepara-
tion. Given a subject under analysis, the eth EEG source epoch (sized 210 x
512) is repeatedly occluded with a 42 x 256 pixel grey mask that moves across
the input data with a vertical and horizontal stride of 21 and 51, respectively.
It is worth noting that the dimension and stride of the mask has been set-
up empirically, after several experiments. For each position of the mask, the
2-way discrimination task (i.e., HC vs. RE or HO vs. RE) is performed by
using the proposed pre-trained CNN (Sect. 3.2). The output is a heatmap
sized 210 x 512. As an example, Figure 3a shows the input map (i.e., EEG
sources epoch) when a portion is occluded by a grey mask; whereas, Figure 3b
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Explainable Machine Learning Inverse Problem Solution for EEG-based BCI 11

reports the achieved saliency representation map. In this case, as can be seen
the red area, roughly corresponding to the sources ranged between (130-180)
and in the temporal window (0.7-0.9), denotes the most relevant zone in the
classification process. Further considerations and analyses are reported in the
Experimental Results Sect. 5.2.

Fig. 3 (a) EEG sources epoch when a sub-region is occluded by a grey mask, that slides
along the whole input size. (b) Saliency map with a coloration ranging from blue to red. Blue
color represents low values that correspond to regions not significant for the classification
task, vice-versa, red color represents high values that correspond to regions significant for
the specified discrimination class.

4.2 Saliency maps segmentation through k-means

In order to provide a deeper understanding of which sub-areas in the motor
cortex gave the largest contribution to decode movements’ planning, a seg-
mentation of the saliency maps was necessary in order to extract the high
saliency zones automatically. To this end, the k -means clustering algorithm
was applied to partition each saliency map to k=10 clusters. K-means is a
widely applied clustering algorithm [44]. Its aim is to gather data points into
a given number of clusters by following an iterative four-steps procedure:

1. the initial cluster centers are set randomly;
2. data points are assigned to the nearest cluster by estimating the euclidean

distance between the data point and the cluster centers, in this way clusters
are redefined;

3. update the clusters’ centers;
4. go back to step 2. and repeat the procedure from 2. to 4. until the cluster

centers do not change or the specified iteration number is reached.
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12 Cosimo Ieracitano et al.

After applying k-means to the saliency maps, the cluster associated to the
highest saliency values was detected, the corresponding highly salient sources
were extracted and mapped onto the cortex by red dots.

5 Experimental Results

5.1 Classification performance of the pre-movements tasks

The classification performance of the proposed deep CNN were evaluated using
standard metrics (accuracy, recall, precision, F1-score):

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1 − score = 2 × Precision×Recall

Precision+Recall
(9)

where TP and TN are true positive and negative, respectively; whereas, FP
and FN are false positive and negative, respectively [37]. Notably, TP is the
number of EEG sources epochs belonging to HC/HO category and correctly
classified as HC/HO; TN is the number of EEG sources epochs belonging to
RE category and correctly classified as RE; FP is the number of EEG sources
epochs belonging to RE misclassified as HC/HO and vice-versa FN are EEG
epochs of HC/HO class erroneously identified as RE. In this study, 15 CNNs
were trained and tested, 1 per subject, and the following 2-ways discrimination
tasks were performed: HC vs. RE and HO vs. RE. The dataset of each binary
classifier was composed of 120 EEG epochs (i.e., 60 belonging to HC/HO and
60 to RE). The k -fold cross validation technique was applied (with k=10), in
particular: the train set included 70% of data (i.e. EEG sources epochs) and
the test set the remaining 30%.
Table 1 reports results of the HC vs. RE classification. Remarkable discrim-
ination values were observed in all subjects, reporting average recall, preci-
sion, F1-score and accuracy of 89.14±7.24% and 91.19±7.88%, 89.69±4.98%,
89.65±5.29%, respectively. It is worth noting that the highest individual clas-
sification performance was achieved by Sb08 with accuracy of 98.02±2.10%,
F1-score of 97.94±2.21%, recall of 96.03±4.20% and precision of 100%; while
the lowest individual classification performance was achieved by Sb07. How-
ever, also in this case high discrimination scores were observed, but with higher
standard variation: accuracy of 79.76±10.11%, F-score of 79.86±9.60%, recall
of 80.16±12.77% and precision of 80.83±12.36%
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Explainable Machine Learning Inverse Problem Solution for EEG-based BCI 13

Table 2 reports results of the HO vs. RE classification. Also in this scenario
very good performance were observed (average recall of 89.31±8.02%, average
precision of 93.04±7.66%, average F1-score of 90.41±5.32% and average accu-
racy of 90.50±5.35%). Notably, Sb08 and Sb02 achieved the best performances
in terms of accuracy and F1-score; while, Sb07 reported the worst individual
classification performance with an accuracy value of 75.79±9.72% and F1-score
of 76.95±5.87%.

5.2 Salient cortical source locations recovery

Occlusion sensitivity analysis was performed by using the proposed pre-trained
deep CNN to estimate the saliency of each one of the 210 EEG sources. Specif-
ically, for each subject, an averaged saliency map was estimated by averag-
ing the saliency maps corresponding to the HC/HO EEG epochs correctly

classified during the testing procedure and herein denoted as H̃
tk

Sbi , where tk
represents the pre-movement task (i.e., HC/HO) and Sbi is the subject under
analysis (with i=1,2,..15). As an example, Figure 4a illustrates the average

saliency map of Subject 08 while preparing to perform hand closing (H̃
HC

Sb08).
Saliency is encoded with a coloration going from blu (low saliency) to red (high
saliency). Highly salient EEG source locations can be recovered by detecting
the EEG sources associated to red areas in the saliency map. Notably, red ar-
eas denote that the classification score decreases when the corresponding local
regions of the input were hidden by the mask, which means that the occluded
area is relevant to classification. In the example map shown in Figure 4a, the
area located around 0.85s and approximately associated to the EEG sources
ranging from 70 to 170, looks colored in red hence it resulted relevant to the
decision making. Average saliency maps were then segmented as described in
Sect. 4.2. Figure 4b depicts the clustered saliency map of Subject 08. Notably,
the red area represents the cluster with the highest saliency and refers to the
most relevant EEG sources, which were then mapped onto the cortex (red dots
in Figure 4c). In the example shown in Figure 4c), EEG sources located in the
left central zone (close to the longitudinal fissure) and in the right-temporal
zone contributed the most to decoding hand closing motor planning. Following
the aforementioned procedure, salient source locations in HC and HO motor
preparation were estimated for every subject and are shown in Figure 5. It is
worth to note the a recurrent spatial pattern of cortical activation (left central
zone close to the longitudinal fissure and right-temporal zone) which occurred
similarly during HC or HO motor preparation. Such pattern occurred in 10 out
of 15 subjects during hand closing preparation and in 11 out of 15 subject in
hand opening preparation. Nine out of 15 subjects exhibited the same spatial
pattern in HC as well as in HO motor planning.
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14 Cosimo Ieracitano et al.

Fig. 4 (a) Saliency map of Subject 08 while planning to perform HC task, achieved by
occlusion sensitivity analysis. (b) Clustered Saliency map achieved by k-means technique
with k=10. Note that red areas represent the cluster with the highest saliency. (c) Cortical
surface representation with highly salient cortical sources depicted with red dots.

6 Discussion

The present research aims at exploring the interpretability and explainabil-
ity of the proposed DL-based system in order to provide further insight into
the hidden mechanism of cortical sources activation when the brain is prepar-
ing hand’s open/close movement. To this end, the dataset [35] composed of
EEG signals recorded from 15 subjects who performed several repetitions of
hand’s open and close always starting from a common neutral resting posi-
tion. EEG recorded during resting (no motion planning) were also analyzed.
First, a dataset of EEG epochs of 1s preceding motion onset was constructed.
The onset of motion was determined through the signals collected by motion
sensors embedded in a glove that the participant had worn throughout the ex-
periment. Beamforming was then applied to EEG epochs to solve the inverse
problem and reconstruct the electrical sources in the cortical locations belong-
ing to the primary motor and premotor cortex (i.e., 210 cortical locations,
as described in Sect.2.2). Next, such premotor EEG source epochs (1s width)
were used as input to a customized deep CNN to perform the following binary
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classifications: HC vs. RE and HO vs. RE, reporting very good discrimination
performance: average accuracy rate up to 89.65±5.29% and 90.50±5.35%, re-
spectively. Hence, the temporal trend of electrical sources in the motor cortex
allows in principle for motion planning discrimination from resting phases.
However, since the ultimate goal of the present study was to provide an in-
depth understanding of which cortical locations contributed the most to the
discrimination of HC/HO motion planning from resting phase in the frame of
1s preceding the execution of the movement, an occlusion sensitivity analysis
was proposed. Specifically, after training and testing the proposed CNN, EEG
time-source epochs were systematically occluded with a grey mask and used
as input to the pre-trained deep CNN, producing the so called heatmaps or
saliency maps. This technique allows to highlight which areas of the input map
(i.e., EEG time-sources epochs) are relevant to the decision making process.
In order to detect the high saliency parts in the map, k-means clustering was
applied and the high-saliency cluster was identified as described in Sect. 5.2.
By detecting the high saliency areas in the time-sources maps, the correspond-
ing highly relevant source locations could be pinpointed. The more relevant
sources were then mapped onto the cortical surface and represented with red
dots. As can been seen in Figure 5, a recurring pattern can be detected in
each subject. Specifically, the cortical sources located in the central area of
the motor cortex (close to the longitudinal fissure) and the temporal zone of
the right motor cortex resulted highly relevant during HC/HO movement’s
planning preparation. It is to be noted that, to date, it is still not well known
whether and how motion planning is spatially organized over the motor cor-
tex. A contralateral involvement of the premotor cortex in motion planning
was reported in the literature [45] but further details about sub-areas involve-
ment are still to be investigated. Hence, our findings may shed a new light
on motor preparation and suggest that the aforementioned motor cortical re-
gions (i.e., central and temporal right) are the mostly involved in the HC/HO
sub-movement preparation. It is also worth noting that intra-subject differ-
ences can be observed. For example, in Subjects 01 and 07 (Figure 5), only
the right-central sub-region resulted highly relevant to HC detection; whereas,
the left-central and also the right-temporal sub-regions look involved in HO
detection. To the best of our knowledge, this is the first attempt to study
motor preparation through explainable machine learning. Furthermore, this is
the first work that attempts to detect the subareas of motor cortex that are
more salient to the preparation open/close hand’s movement. Recurrent spa-
tial patterns of cortical activation could be detected across subjects, namely,
the central area close to the longitudinal fissure and the right temporal area of
the premotor and primary motor cortex. However, the proposed methodology
has some limitations. First, the number of EEG channels used in this study
was 61, we think that using a higher number of electrodes would have a pos-
itive impact on inverse problem solution, leading to a more accurate cortical
source reconstruction. Second, the number of EEG epochs used to train the
proposed CNN was limited. Overall, each class (HC, HO, RE) included only
60 EEG epochs. Third, movement’s onset was marked by processing the data
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collected by the motion sensors embedded in the glove that the participant
used to wear during the experiment. Motion data collected through the glove
are smooth and do not allow to detect onset instantaneously, which means
the epochs used for training may have captured the early ms of motion imple-
mentation, causing, in principle, the similar activation patterns visible in HC
and HO (Figure 5). For the aforementioned reasons, in the future, we intend
not only to enroll a larger cohort of subject and record high-density EEGs
(128-256 channels) but, for a more precise motion onset detection, EEG will
be co-registered with electromiography (EMG).

7 Conclusion

In this paper we proposed a novel deep CNN capable of classifying time-source
maps (i.e., EEG sources epochs) related to hands’ sub-movements (open/close)
phase from resting state, achieving remarkable results, namely, average accu-
racy of 89.65±5.29 in HC vs. RE and average accuracy of 90.50±5.35 in HO
vs. RE discrimination task. Furthermore,in order to investigate which cortical
source has mostly contributed in the classification of hand’s motor prepara-
tion phase, EML was applied. Occlusion sensitivity analysis allowed to produce
suitable saliency maps, from which to identify the most relevant areas of the
input. The highest saliency region was detected though k-means clustering
technique and the enclosed cortical sources were mapped onto the cortical
surface. Experimental results mainly showed that the central and the right-
temporal cortical sub-regions are activating while the subject was planning
hand’s movements (i.e., HC/HO). It is worth noting that the cortical activa-
tion rules that govern the motion planning are still not well known. Hence,
on the basis of the achievements here reported, we believe that the proposed
approach may be considered to be an interesting breakthrough in BCI appli-
cations.
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Table 1 Performance of the proposed deep CNN in terms of recall, precision, F1-score and
accuracy for the HC vs. RE classification task.

Subject Recall Precision F1-score Accuracy

S01 86.51±7.76 89.45±11.45 87.36±6.16 87.30±6.58
S02 93.65±5.00 95.92±6.97 94.46±2.00 94.44±2.27
S03 87.30±9.47 91.96±13.10 88.67±7.36 88.49±8.70
S04 92.06±6.30 93.67±7.89 92.48±3.33 92.46±3.48
S05 89.68±8.13 81.42±6.57 84.96±4.00 84.13±4.45
S06 88.10±8.13 90.69±6.58 89.09±5.51 89.29±5.18
S07 80.16±12.77 80.83±12.36 79.86±9.60 79.76±10.11
S08 96.03±4.20 100.00±0.00 97.94±2.21 98.02±2.10
S09 96.83±4.37 98.41±2.73 97.57±3.05 97.62±2.97
S10 96.83±4.37 97.86±5.67 97.25±4.09 97.22±4.24
S11 81.75±14.24 86.29±15.31 82.29±8.76 82.14±10.25
S12 90.48±4.20 91.76±8.15 90.95±5.04 90.87±5.25
S13 87.30±8.91 90.99±9.62 88.72±7.06 88.89±7.17
S14 83.33±5.56 89.37±5.94 86.05±3.50 86.51±3.37
S15 87.14±5.24 89.18±5.87 87.68±2.97 87.65±3.29
Average 89.14±7.24 91.19±7.88 89.69±4.98 89.65±5.29

Table 2 Performance of the proposed deep CNN in terms of recall, precision, F1-score and
accuracy for the HO vs. RE classification task.

Subject Recall Precision F1-score Accuracy

S01 84.13±14.50 96.10±8.13 88.62±8.14 89.68±6.15
S02 92.86±6.18 99.25±1.99 95.82±2.97 96.03±2.71
S03 85.71±16.31 94.24±8.11 88.57±10.49 89.68±7.81
S04 89.68±5.00 100.00±0.00 94.50±2.80 94.84±2.50
S05 92.86±7.67 91.52±9.13 91.83±6.10 91.67±6.42
S06 96.03±4.20 87.63±11.93 91.05±5.50 90.08±6.96
S07 77.78±11.11 80.13±18.01 76.95±5.87 75.79±9.72
S08 94.44±4.54 97.86±5.67 96.00±3.75 96.03±3.88
S09 90.48±8.91 97.74±5.97 93.70±6.11 94.05±5.65
S10 92.06±5.42 97.02±5.73 94.32±3.91 94.44±3.93
S11 76.98±12.18 94.62±9.21 84.04±7.29 85.71±6.09
S12 95.24±5.94 83.83±11.60 88.53±4.83 87.30±5.97
S13 88.89±8.49 94.39±6.71 91.35±5.97 91.67±5.78
S14 95.24±3.83 90.23±7.10 92.42±2.79 92.06±3.37
S15 87.31±6.01 91.03±5.66 88.40±3.32 88.50±3.35
Average 89.31±8.02 93.04±7.66 90.41±5.32 90.50±5.35

8.4 Code availability

Custom code will be available on request to the corresponding author.
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Fig. 5 Cortical surface representations of each subject. Red dots indicate the highly salient
cortical sources locations that have mostly involved in the prediction task (i.e. HC/HO).
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