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Abstract—Both algorithm-selection methods and hyper-
heuristic methods rely on a pool of complementary heuristics.
Improving the pool with new heuristics can improve performance,
however, designing new heuristics can be challenging. Methods
such as genetic programming have proved successful in automat-
ing this process in the past. Typically, these make use of problem
state-information and existing heuristics as components. Here
we propose a novel neural approach for generating constructive
heuristics, in which a neural network acts as a heuristic by
generating decisions. We evaluate two architectures, an Encoder-
Decoder LSTM and a Feed-Forward Neural Network. Both are
trained using the decisions output from existing heuristics on a
large set of instances. We consider streaming instances of bin-
packing problems in a continual stream that must be packed
immediately in strict order and using a limited number of
resources. We show that the new heuristics generated are capable
of solving a subset of instances better than the well-known
heuristics forming the original pool, and hence the overall value
of the pool is improved w.r.t. both Falkenauer’s performance
metric and the number of bins used.

Index Terms—Automatic Heuristics Generation, Hyper-
Heuristics, Encoder-Decoder LSTM, Streaming Bin-packing.

I. INTRODUCTION

Given a large set of problem instances in a combinatorial
optimisation domain, it is well-known that the performance
of any given heuristic will vary significantly from instance to
instance. Hence, a pool of heuristics that have complementary
performance within the instance space is likely to be beneficial.
This performance complementarity can be exploited in multi-
ple ways. For example, given a set of heuristics, an algorithm-
selector can be used to choose the best heuristic for a particular
instance. This task of automatically selecting a heuristic from
a given set is known as the per-instance algorithm selection
problem [1]. Alternatively, a Hyper-Heuristic (HH) [2] can
combine low-level human-designed heuristics in a manner
which allows the resulting method to outperform any of the in-
dividual heuristics when solving a combinatorial optimisation
problem. Both approaches rely on a pool of quality heuristics.
Adding new heuristics to the pool can improve performance
across a set of instances, particularly if a new heuristic is
diverse w.r.t the existing heuristics.

While heuristics can be selected from existing literature, the
hyper-heuristic community have focused on new automated
methods to generate new heuristics. The aim of generative
constructive HH is to produce new low-level constructive
heuristics, rather than designing them manually based on
human intuition, which is a time-consuming and laborious
process [3], [4]. Automating this process reduces the man-
hours involved in deriving low-level heuristics and may lead
to the induction of new constructive heuristics that humans
would not think of [4]. Typical approaches to this use Genetic
Programming (GP) [5] with its variations including: tree-
based GP [3], [6]–[9], grammar-based GP [3], [10], gene
expression programming [11], [12] and grammatical evolution
[13]–[15]. Some studies have investigated other techniques for
this purpose including, genetic algorithms [16], [17], single-
node genetic programming [18] and artificial immune systems
combined with genetic programming [19], [20].

Most of these methods rely on an existing pool of heuristics
which become components of new heuristics, e.g. exist as
nodes in a tree evolved using GP. We propose a novel approach
in which we train neural network heuristics that learns from the
decisions generated by a set of low-level heuristics — this is in
stark contrast to typical methods for heuristic generation that
combine low-level heuristics into new heuristics. We apply the
approach to solving streaming bin-packing problems: domains
which incorporate streaming data — data points that arrive
in a continual stream, which may be large and potentially
unbounded, and in which the order of data points cannot
be influenced — which still pose considerable challenges for
existing methods. Many real-world problems also have an
additional constraint in that the items arriving in the stream
have to be dealt with by limited resources, e.g. packing items
from a conveyor into trucks in a holding area, or stacking
problems (common in shipping and steel industries [21], [22])
in which large items are moved by crane between arrival,
holding and delivery stacks, each with fixed capacity. Our
method generates a heuristic that makes a decision per-item
as it arrives in the stream1.

1An alternative would be to consider a sliding window and consider batches
as distinct sub-problems978-1-7281-8393-0/21/$31.00 ©2021 IEEE



We train two types of neural model. The first uses a
sequential-based architecture, namely an Encoder-Decoder
LSTM2. This is compared to a classic Feed-Forward Neural
Network (NN). These models take the size of the current item
from a stream and the current state of open bins BS as input
and output a decision: i.e. whether the item should be packed
in a bin, or whether a bin should be closed and the item
packed into a new one. Therefore, the trained models act as
constructive heuristics in determining where an item is packed.
The models are trained using decisions generated from each
of a set of low-level heuristics using a large set of instances
as training data.

We test the approach by evaluating the contribution of the
new heuristics to a pool created by combining them with
a set of existing well-known heuristics in the field of bin-
packing on a large set of instances with increasing number
of available bins. Specifically, we consider an online packing
with streaming data in which items arrive one at a time, must
be immediately packed and arrival items size are unknown in
advance. The goal of the paper is to evaluate a new method
for automated heuristic generation. The resulting pool can be
used either with an algorithm-selector or a selective hyper-
heuristic. Many methods exist for both the former and the latter
and therefore we constrain our evaluation to the contribution
of the heuristics to the pool. Results show that the generated
heuristics are able to produce superior results to any of the
heuristics used in training in 26%-31% of cases using a small
number of available bins. Thus, expanding the baseline pool
of three well-known heuristics from the literature with the new
generated heuristics can obtain better overall performance.

The major contribution of the paper is to describe a
novel approach to generating constructive heuristics using an
Encoder-Decoder LSTM or NN that directly outputs decisions.
The new method is rigorously evaluated on a streaming bin-
packing problem by:

• Conducting an investigation of the scalability of the
proposed approach with respect to the number of bins
available for packing.

• Establishing a comparison of the new pools of heuristics
that include Encoder-Decoder LSTM and/or a Feed-
Forward Neural Network heuristics to the baseline pool
of three constructive heuristics, in order to determine
whether the new generated heuristics provide significant
overall improvement.

As far as we are aware, this is the first time that such an ap-
proach has been used, and provides an alternative method for
generating heuristics that can be used in algorithm-selection or
selective hyper-heuristics. Although the method is evaluated in
this instance on examples from the bin-packing domain, we
expect that the proposed approach should easily generalise
to other streaming domains such as the Block Relocation
Problem (BRP) [21] or dynamic Job-Shop Scheduling [23].

2Long Short Term Memory

II. RELATED WORK

Designing methods to generate new heuristics is an im-
portant sub-field of the hyper-heuristic community. A hyper-
heuristic can be defined generally as “an automated method-
ology for selecting or generating heuristics to solve computa-
tional search problems [2]”. Generation constructive HH have
been successfully applied in many combinatorial optimization
domains including scheduling [3], [6], [7], [20], bin-packing
[16]–[19], [24]–[26], constraint satisfaction [10], vehicle rout-
ing [8], [14] and multidimensional knapsack problems [9].
These generated heuristics can be categorised as disposable
where the heuristics are evolved for solving a single instance
of a problem and not intended for using on unseen problems
(Online learning HH), or reusable where the heuristics are
generated for a set of training instances and they might
generalise to unseen instances (Offline learning HH) [3], [4].

Real-world streaming problems (e.g. production lines) typi-
cally appear in a dynamic environment with stochastic events
such as machine breakdowns and random job arrivals. This
requires flexible responses to the changes in the conditions and
constraints. The packing domain has attracted much previous
attention: for example, generation constructive HH using tree-
based GP approaches are particularly prevalent in the 1-D
online BPP [24], [25], which take into account the size of
the current item, the full capacity and the load of a bin. These
attributes have been reduced to the size of the current item
and the residual capacity of a bin (i.e. how much space is
remaining in the bin) later in [26]. The research conducted
by [25] shows that a simple GP tree can be used to discover
human-designed heuristics such as first-fit by examining each
bin in turn and place the item in the first suitable bin, while the
research in [24], [26] evolved heuristics whose performance
was comparable with best-fit by examining all of the bins
and place the item in the bin which receives the maximum
score. Also, the research in [24] sheds the light on the trade-
off between the performance and generality of the generated
heuristics and their robustness to new problems, where the
choice of the training instances (categorised according to the
item size distribution) is vital in the area of automatic heuristic
generation.

Other techniques have also been employed to solve the 1-D
online BPP. For example, genetic algorithms have been used
to evolve low-level constructive heuristics in the form of a
policy matrix [16], [17]. Depending on the residual space of
the bin and the item size, a policy matrix indicates the weight
for packing an item in a bin where the item is packed in
the bin with the highest weight. This research shows that the
generated heuristics are specialised to the distribution of item
sizes and outperform the existing human-designed heuristics.
Generation constructive HH are also applied successfully to
solve offline BPP including [18], [19].

This paper presents a completely new approach to generat-
ing constructive heuristics using an Encoder-Decoder LSTM
or a Feed-Forward Neural Network in the context of streaming
1-D BPP with limited resources (i.e. bins), trained using de-



cisions generated from low-level heuristics. Unlike generative
HH approaches that search in the space of possible heuristics
that may be suitable for solving a problem, the proposed
approach navigates the space of possible decisions that create a
solution for a given problem instance. This approach can han-
dle an unbounded stream with stochastic arrival of individual
items which are packed on arrival. It also examines all the
available bins and uses dynamic information regarding bins-
state to close full bins when necessary and open new ones if
required. These trained neural models themselves essentially
act as heuristics, directly outputting decisions. Thus, they are
considered reusable heuristics that can be applied to new
similar BPP instances with the same item size distribution.

We are of course aware that different methods for decision-
making in a dynamic environment such as Monte Carlo Tree
Search [27] are also likely to be able to solve the problem
at hand. However, as described in section IV, the problem
at hand is a sequence-to-sequence problem. Given the fact
that Encoder-Decoder LSTM topologies have been applied
successfully to solve sequencing problems in the Natural
Language Processing field [28], [29], our driving motivation
is to investigate whether they can also be used to generate
heuristics to solve a combinatorial optimization problem.

III. STREAMING BIN-PACKING DATA INSTANCES

We consider the following streaming bin-packing/stacking
problem scenario (Fig 1): “Given a production line where the
packing/stacking is carried out by a fixed robot arm/crane at
the end of the line, the items (e.g. steel slabs) arrive one by
one to be packed/stacked into a certain set of containers. When
the item doesn’t fit in any container, then the container with
the lowest free space is closed and a new one is opened to
pack/stack the item into.”

Fig. 1. The Packing Process

We use 900 bin-packing instances from datasets3 first de-
fined in [30], each of which has 120 items and is initialised
with item sizes drawn from two different distributions. In order
to solve this as a streaming instance, we consider the items
to arrive in the order defined in each instance. From these
instances, we define two balanced data sets DS(1,2) each with
450 instances as shown in table I as follows. Each instance
is solved best by one of the heuristics under investigation

3https://github.com/Kevin-Sim/BPP.

(according to the Falkenauer fitness function [31] given in
equation 1). The heuristics considered are — Best-Fit; First-
Fit and Worst-Fit [30] (BF, FF and WF). Thus, 150 instances
are solved best by each one of them.

Fitness =
1

b

b∑
i=1

(
filli
c

)k (1)

Where c = bin capacity which is fixed at 150, k is set to 2,
filli is the sum of the item sizes in bini and b is the number
of bins used.

Each row of training data describes the input to the net-
work as [Item0, BinState0, BinState1, BinState2] and the
related output as sequence of actions as [Abin0, Abin1, Abin2]:
a bin state is defined as the residual capacity of each bin (i.e.
how much space is remaining in the bin) and an action Abin

specifies whether or not an item should be placed in a bin, or
whether or not a bin should be closed and the item packed into
a new one. This process of extracting this data is explained in
the following steps:

1) Label each instance with the best performing heuristic,
as described above.

2) Split the data set into 300 instances for training and 150
instances for testing purposes.

3) Concatenate all the training instances to create a long
training stream of 36,000 items (300x120); this is re-
peated for the test set, resulting in a test stream with
18,000 items. Label each item with the heuristic Hitem

that best solved the instance the item came from.
4) For each item i in the training stream, determine the

current bin states BS, and denote the input data as [item,
BS].

5) Apply Hitem which determines which bin the item will
be placed in (assuming there are a fixed number of bins
b available at any one time, each with bin capacity c =
150). Assign an action sequence A to the item as the
desired output, e.g. [0,0,1] indicating the item is placed
in the 3rd bin.

TABLE I
DATA SETS DETAILS [30]. BIN CAPACITY IS FIXED AT 150

DS total nitems Lower - Upper Bounds Distribution
DS1 450 120 [40-60] Gaussian
DS2 450 120 [20-100] Uniform

IV. THE NEURAL APPROACH FOR DECISION MAKING

The proposed approach aims to make a sequence of actions
per bin based on an item size and a sequence of current bins
states, following which the item is packed accordingly, as
presented in Fig 1. The decision is the non-zero action and
this is checked for validity (e.g. to ensure an item can fit in
a bin, explained in section V), then the approach packs the
item and updates the current bin states. Dynamic information
regarding the current bin states is fed back into the network
to pack the next item in the stream (Fig 2).



TABLE II
RANGE OF VALUES THAT USED IN THE ENCODER-DECODER LSTM HYPER-PARAMETERS TUNING; THE TABLE ALSO SHOWS THE FINAL SELECTED

VALUES AND THE NEURAL NETWORK HYPER-PARAMETERS

#Epoch Batch Size #Layer Memory Units/Neurons Optimiser Loss Function
Tuning Range 100 [16, 2048] [1 1 - 4 1, 2 2] [32, 2048] adam categorical crossentropy
Best-LSTM 100 128 1 1 + Full-Connect Layer 1024 adam categorical crossentropy

NN 600 128 4 (16)-(32)-(16)-(6 or 40) adam categorical crossentropy

As previously noted in the literature [28], sequence-to-
sequence (seq2seq) problems can be challenging since the
input/output can have different lengths and come from differ-
ent spaces. Encoder-Decoder LSTM topologies [28], [29] have
been designed to deal with such problems and delivered out-
standing results, particularly in Natural Language Processing
field. As shown in Fig 2, an Encoder-Decoder LSTM topology
comprises two main models: an encoder to summarise the
input sequence into fixed vector and a decoder to predict a
sequence based on the encoder output. This architecture uses
a training technique called teacher forcing [32] as an effective
and alternative to the normal BackPropagation Through Time
(BPTT) for training RNNs architecture. A detailed explanation
of the model is outwith the scope of this paper, the reader is
referred to [28], [29] for a full explanation. As an additional
neural approach, a non-sequential neural network [33] is
employed, this is further described in the next section.

Fig. 2. The workflow of the Encoder-Decoder LSTM decisions making

V. METHODOLOGY

Keras functional API4 is used for the LSTM implemen-
tation, where the input is a size of the item to be packed
and a sequence of the current bin states, and the output is a
sequence of actions per bin. The input and output are both
one-hot encoded. A preliminary empirical investigation was
conducted to tune the Encoder-Decoder LSTM architecture
and hyper-parameters using the ranges shown in table II. The
“Adam” optimiser [34] was used in all tuning experiments due
to its reported accuracy, speed and low memory requirements.
Using Keras, we also implement a classical neural network
where the input/output are the same as in LSTM approach
except that we do not one-hot encode them, and output actions
(described below) are represented using two neurons (e.g. the
last NN layer includes 6 neurons in the experiments with 3

4https://github.com/fchollet/keras

bins and 40 neurons with 20 bins). The hyper-parameters of
both the LSTM and NN are shown in table II. All experiments
are conducted on Google Colab5 with GPU run-time used to
execute the experiments.

As previously described in section III, each dataset was split
into a training set (67%) and test set (33%). These sets were
created for two scenarios, each using a different number of
bins (3 and 20). Each training set contains a list of input-
output pairs in which the input is item size and list of the
current bin states, and the output is a list of actions for each
bin. Each experiment was repeated ten times, thus produces
20 different LSTM- and NN-generated heuristics. For each
experiment, we save the model that provides the lowest error
from the training phase then we test the trained models on the
testsets. We consider three possible actions:

• No packing in this bin (denoted by 0).
• Pack the item in this bin (denoted by 1).
• Close this bin, open a new one and pack the item in it

(denoted by 2).
As mentioned before, the LSTM model outputs a sequence

of actions per bin. We define the decision as the non-zero
action; the item is packed into the bin indicated by the ‘1’ in
the action sequence. As the decoder predicts an action per bin
recursively, the LSTM approach might output a sequence of
conflicting actions (e.g. the item should be packed in multiple
bins). In this case, we break the tie by applying the first non-
zero action then correct all subsequent actions to 0 so that
there is only one non-zero action. Despite the fact that using
an architecture that can produce conflicting actions comes with
a cost associated with their repair, in practice, this rarely
happens: for instance, for DS2 using 20 bins only 1% of
actions are conflicted per instance. NN approach predicts a
decision directly (i.e. non-recursively) and thus only one non-
zero action is output, i.e. there are no conflicting actions. Now
after having a decision (the non-zero action), it is possible
that the LSTM and NN can output an invalid decision, e.g.
attempting to overfill a bin or not to place the item in any
bin. We therefore apply a correction to these cases, ensuring a
valid decision is always produced. These special cases and the
corrections applied are listed in table III. It is worth noting that
this technique of dealing with invalid decisions is common in
the literature related to generating heuristics with constraints
[16], [17], [24]–[26].

We determine the quality of the decisions made by con-
sidering a sequence of n = 120 decisions as a batch, and
measuring the quality of the overall solution created for the

5https://colab.research.google.com/notebooks/welcome.ipynb



TABLE III
SPECIAL CASES: CORRECTIONS APPLIED TO HANDLE CASES WITH INVALID DECISIONS OR MULTIPLE CONFLICTING ACTIONS WITH USING 3 BINS AS AN

EXAMPLE

Sequence of Actions Description Type Corrected Decision Description
0,0,0 No packing action is provided Invalid 2,0,0 Close the first bin and open new one to pack the item in

1,0,0 / 0,1,0 / 0,0,1 The bin-capacity is broken Invalid 2,0,0 / 0,2,0 / 0,0,2 Close the chosen bin and open new one to pack the item in
1,1,0 / 1,1,1 / 0,1,1 Multiple packing actions Conflicting 1,0,0 / 1,0,0 / 0,1,0 Pack the item in the first chosen bin
2,2,0 / 2,2,2 / 0,2,2 Multiple ”open new bin” actions Conflicting 2,0,0 / 2,0,0 / 0,2,0 Close the first chosen bin and open new one to pack the item in
2,1,0 / 2,1,1 / 2,1,2 Multiple mixed actions Conflicting 2,0,0 Close the first chosen bin and open new one to pack the item in

entire batch as a result of applying each decision. we define
the baseline oracle as the best of the three low-level heuristics
(BF, FF and WF) used to create the training data. ‘Best’ is
defined in terms of the Falkenauer fitness metric or number
of used bins, depending on the experiment. Also, we define
Validity: the percentage of decisions per batch that are valid
in the sense that (1) there is at least one decision with value
1 or 2 (i.e. the item is packed) (2) no constraints regarding
bin-capacity are broken.

VI. RESULTS

This section describes the experiments results as presented
in tables IV to VIII. The section presents experiments to
(A) Establish how often the Encoder-Decoder LSTM and
Neural Network generated heuristics produce valid decisions;
(B) Compare the generated heuristics performance to the
individual constructive heuristics performance; and (C) Gain
insight into how much benefit the generated heuristics bring
to the baseline pool of heuristics.

A. Returning Valid Decisions

Tables IV shows that when using 3 bins both LSTM- and
NN-generated heuristics obtain similar results in terms of
generating valid decisions. It is clear that the NN heuristics
fails to handle larger numbers of bins (20), generating many
more invalid decisions. The poor performance of the standard
neural network with the long sequences of bin states is not
surprising, as a standard architecture cannot learn the mapping
between the temporal information implicit in the bins states
and the sequence of actions. Furthermore, the results show
that the LSTM heuristics make valid decisions (that is, do not
require correction for not packing an item or breaking bin-
capacity) the majority of the time: [97%-99%] and [94%-99%]
for DS1 and 2 respectively. The DS2 results in more invalid
decisions than DS1. This is possibly due to a broader range of
item sizes [20, 100] that are used to build DS2 instances (DS1
ranges from[40, 60]): the encoder may have more difficulty
summarising instances with a wide range of values, potentially
requiring more encoder layers for the model.

B. Comparing Neural-Generated Heuristics To Human-
Designed Heuristics Performance

The oracles and their heuristics are presented in table V. The
baseline Oracle(1) includes the human-designed constructive
heuristics (BF, FF and WF); Oracles(2) and (3) expand the
baseline oracle with the best-of-run (in terms of valid deci-
sions) generated heuristic using LSTM and NN respectively;

TABLE IV
MEAN/STD OF THE VALIDITY RESULTS OBTAINED FROM 10 EXPERIMENTS
OF LSTM AND NN APPROACHES ON 150 TESTING INSTANCES FROM DS1

AND DS2

# LSTM NN

DS1-3bins 99.87%
(+/- 0.03%)

99.59%
(+/- 0.26%)

DS1-20bins 97.79%
(+/- 0.56%)

82.04%
(+/- 1.95%)

DS2-3bins 99.37%
(+/- 0.15%)

99.54%
(+/- 0.25%)

DS2-20bins 94.14%
(+/- 0.49%)

76.51%
(+/- 3.19%)

TABLE V
THE HEURISTICS USED IN EACH ORACLE

BF FF WF LSTM NN
Oracle(1) — —
Oracle(2) —
Oracle(3) —
Oracle(4)
Oracle(5) ×10 ×10

and Oracle(4) includes the best-of-run generated LSTM and
NN heuristics. Tables VI shows the number of instances that
are uniquely best solved using the oracles for DS(1,2) in terms
of both Falkenauer’s performance and number of bins used.
The uniquely best heuristic is the heuristic that outperforms
the other heuristics in a pool to solve a given instance, i.e.
it has best performance and without being equal to any other
heuristic performance. One would notice that the numbers of
instances in table VI (especially in terms of number of bins)
do not sum up to number of test instances (150 instances).
Since we are only interested in the unique contribution of each
heuristic, we do not present the number of instances that are
solved equally using heuristics in a pool.

As we use balanced dataset in terms of Falkenauer’s per-
formance (described in section III), the heuristics in oracle(1)
solve the same number of instances each in DS(1,2) however,
these numbers can be different in terms of bins used. In
the experiments using 3 bins from Falkenauer’s performance
perspective, the generated heuristics solve a good number of
instances and sometimes exceed those solved by the well-
known human-designed heuristic BF. The LSTM heuristic
solves 31% of the test instances (47 instances) uniquely best
outperforming BF that solves 29% (44 instances) in DS1.
The LSTM heuristics are considered as first and second best
performance heuristics in the oracle(2) solving uniquely 26%



and 31% of the testsets on DS(1,2) respectively while NN
heuristics are considered second and third best performance in
oracle(3) solving 26% and 27% of test instances on DS(1,2)
respectively. In terms of number of bins, many instances are
solved equally using the heuristics in the pools however the
new generated heuristics in oracles(2 and 3) are considered
second and third best performance. Also, Extending the base-
line oracle(1) to oracle(4) by adding the new heuristics, LSTM
and NN heuristics solve very few instances equally and better
than the original heuristics, i.e. 2 and 3 instances from DS1
and 2 respectively.

In the experiments using 20 bins, it is clear that the NN
heuristics fail to handle larger numbers of bins (20), failing
to solve any instance with performance better than the other
methods. While LSTM heuristics solve 35 and 14 in DS1 and
DS2 respectively from Falkenauer’s performance perspective.
In general, the new heuristics solve less instances in DS2
comparing to DS1. This is possibly due to a broader range
of item sizes [20, 100] that are used to build DS2 instances
(DS1 ranges from[40, 60]): the encoder in LSTM approach
may have more difficulty summarising instances with a wide
range of values, potentially requiring more encoder layers for
the model.

As an example to show the instances that are solved equally
best, figure 3 shows the number of instances that are solved
using Oracle(4) heuristics on DS1 using 3 bins in terms of
number of bins used. Each heuristic is a bubble with a size
refers to the number of instances uniquely best solved by
that particular heuristic. The width of the edges between the
bubbles refers to the number of instances solved equally using
the two related heuristics. As it is complicated to show the
different combination of heuristics that solve the instances
equally, we decompose the combinations into pairs, e.g. if an
instance solved equally best using this set of heuristics (BF,
FF and LSTM) then we count this instance in (LSTM, BF),
(LSTM, FF) and (BF, FF) edges.

C. Comparing The Oracles

As we described in the introduction I, our aim is to improve
the overall performance by adding new generated heuristics to
a pool of human-designed heuristics. Assuming a perfect per-
instance algorithm selector using three, four and five heuristics,
i.e. Oracles 1, 2/3 and 4 respectively. Table VII shows the total
performance from both Falkenauer’s performance and number
of bins perspectives on DS(1,2) using 3 and 20 bins. In gen-
eral, adding LSTM-generated heuristic to the original oracle
significantly improve the overall performance in the most cases
while adding the NN-generated heuristic significantly improve
the performance in the experiments using 3 bins only. Adding
both the neural generated heuristics (LSTM and NN) leverage
the complementary strength of both heuristics.

In order to exploit the performance complementarity of the
different heuristics that cover different parts of the instance
space, we create Oracle(5) that includes all the heuristics, i.e.
the human-designed constructive and all the neural generated
heuristics (10 LSTM heuristics and 10 NN heuristics). A pool

with more well-designed heuristics is expected to achieve bet-
ter results than pool with less number of heuristics. The results
mainly back this up. Ultimately, the number of containers
(bins) determines the cost of any real-world solution. Oracle(5)
obtains the best performance improving over Oracle(1) and
saving 38 and 53 bins in the experiments using 3 bins for
DS(1 and 2) respectively. Using 20 bins, Oracle(5) uses 4
and 33 less bins than the baseline Oracle(1) on DS(1 and 2)
respectively. Although saving 4 bins could be seen a small
number of saving, those bins might be ships or planes and
thus saving potential millions of dollars. Table VIII shows the
results obtained from applying a Wilcoxon signed-rank test
[35] with 5% confidence level to evaluate significance in a
pairwise fashion of the new oracles to the baseline oracle.
It is clear that adding more generated heuristics provides
significant improvement in the most cases. It should be noted
that Wilcoxon signed-rank test is a rank sum test( not median
tests) and thus it is possible for the ranks to differ but the
medians to be the same.

VII. CONCLUSION

We proposed a novel neural approach to generating con-
structive heuristics for dealing with streaming bin-packing
problem that directly output decisions to pack items account-
ing for current bin states. Unlike typical methods to generate
heuristics such as hyper-heuristics that search the heuristics
space for potential good heuristics, our approach navigates the
decision space for solving the problem instance. We test the
approach by evaluating the contribution of the new generated
heuristics to a pool created by combining them with a set of
existing well-known heuristics in the bin-packing field with
increasing number of available bins. We have used two datasets
including long streams drawn from two different distributions.
The results showed that the expanded pool with the best-of-run
generated heuristics brings improvement in 26%-31% of cases
in terms of Falkenauer’s performance using small number
of available bins. Also, since the different heuristics cover
different parts of the instance space, adding all the generated
heuristics leverages the performance complementarity strength
and provides more improvement with saving up to 53 bins.
Furthermore, as far as we are aware, it provides the first
example of using a Encoder-Decoder network with long-short-
term memory as a generative heuristic technique for streaming
data with limited resources. Future work will extend the
approach to deal with other dynamic streaming domains such
as job-shop scheduling which has additional constraints.
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