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Abstract  1 

Background:  2 

Exercise mobilizes angiogenic cells, which stimulate vascular repair. However, limited 3 

research suggests exercise-induced increase of endothelial progenitor cell (EPCs) is completely 4 

lacking in type 1 diabetes (T1D). Clarification, along with investigating how T1D influences 5 

exercise-induced increases of other angiogenic cells (hematopoietic progenitor cells; HPCs) 6 

and cell surface expression of chemokine receptor 4 (CXCR4) and 7 (CXCR7), is needed. 7 

Methods: 8 

Thirty T1D patients and 30 matched non-diabetes controls completed 45 minutes of incline 9 

walking. Circulating HPCs (CD34+, CD34+CD45dim) and EPCs (CD34+VEGFR2+, 10 

CD34+CD45dimVEGFR2+), and subsequent expression of CXCR4 and CXCR7, were 11 

enumerated by flow cytometry at rest and post-exercise. 12 

Results: 13 

Counts of HPCs, EPCs and expression of CXCR4 and CXCR7 were significantly lower at rest 14 

in the T1D group.  In both groups, exercise increased circulating angiogenic cells. However, 15 

increases was largely attenuated in the T1D group, up to 55% lower, with CD34+ (331±437 16 

Δcells/mL vs 734±876 Δcells/mL p=0.048), CD34+VEGFR2+ (171±342 Δcells/mL vs 17 

303±267 Δcells/mL, p=0.006) and CD34+VEGFR2+CXCR4+ (126±242 Δcells/mL vs 218±217 18 

Δcells/mL, p=0.040) significantly lower.   19 

Conclusion: 20 

Exercise-induced increases of angiogenic cells is possible in T1D patients, albeit attenuated 21 

compared to controls. Decreased mobilization likely results in reduced migration to, and repair 22 

of, vascular damage, potentially limiting the cardiovascular benefits of exercise. 23 

Trial registration: ISRCTN63739203 24 

Keywords: Type 1 diabetes, exercise, angiogenic cells, haematopoietic progenitor cells, 25 

endothelial progenitor cells, exercise-induced mobilisation, CXCR4, CXCR7 26 

 27 
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Background: 1 

Endothelial progenitor cells (EPCs), first discovered in 1997, are mononuclear cells which have 2 

the potential to stimulate vascular repair1. Evidence demonstrates that these cells can 3 

differentiate into endothelial cells in vitro1,2, incorporate into sites of angiogenesis in vivo3,4 4 

and exert proangiogenic abilities via paracrine action2. First identified as cells in peripheral 5 

blood expressing CD34, a marker of haematopoiesis5, these precursor cells are now known as 6 

haematopoietic stem/progenitor cells (HPC). It is suggested that a more focused phenotype that 7 

includes endothelial markers, such as VEGFR2, identifies a sub-population that can 8 

differentiate into endothelial cells and therefor are true EPCs6.  9 

The number and function of both HPCs and EPCs are clinically relevant, with lower 10 

concentrations associated with endothelial dysfunction7 and a greater risk of cardiovascular 11 

events and mortality8,9. Within individuals with type 1 diabetes, most10–13, but not all studies14, 12 

have found reduced circulating numbers of HPCs and EPCs compared to matched non-diabetes 13 

controls. In combination with hyperglycemia and glucose fluctuations, it is possible that 14 

dysfunctional HPCs and EPCs contribute to increased vascular damage15,16 and progression of 15 

micro and macrovascular complications17, with individuals with type 1 diabetes having a 2- to 16 

8-fold increase in mortality rates compared with the general population largely due to 17 

cardiovascular diseases (CVD)18–20. Whilst improved glycemic control is associated with 18 

reduced development of CVD21, incidence remains elevated even in individuals who have 19 

successfully addressed modifiable risk factors18.  20 

In healthy individuals, acute exercise can mobilize both HPCs and EPCs into circulation, and 21 

improve their angiogenic function22–24. However, exercise-induced increases of EPCs appears 22 

attenuated in those with chronic diseases25,26, which may partially explain the increased CVD 23 

risk in these populations. Indeed, increased pre-operative exercise-induced mobilization of 24 

EPCs is correlated with reduced post-operative complications after major thoracic surgery27, 25 

while HPCs response to exercise was a stronger predictor of myocardial ischemia and mortality 26 

than resting circulating count in patients with coronary artery disease over a subsequent 3 year 27 

period28. Insight into the ability of these cells to respond to a stimulus, such as exercise, 28 

migrating into circulation and homing to ischemic tissue can be measured by the surface 29 

expression of chemokine (C-X-C motif) receptor 4 (CXCR4) and 7 (CXCR7)29,30, although 30 

evidence on the influence of type 1 diabetes is lacking. Within other chronic diseases, 31 

diminished number of CD34+CXCR4+ cells may be a better predictor of mortality than CD34+ 32 
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cells alone9, while the expression of CXCR7 has been linked to cell survival in diabetic 1 

condition in vitro, although limited evidence exists in human studies30. 2 

While mobilisation of HPCs and EPCs appears attenuated to direct stimulation in both type 1 3 

and 2 diabetes31,32, and exercise-induced increases appears attenuated in type 2 diabetes26, there 4 

is limited information in Type 1 diabetes, a vastly different disease. Type 1 diabetes patients 5 

are typically not obese, tend to be diagnosed at an early age (if not childhood), and generally 6 

live much more active lives with higher levels of cardio-respiratory fitness33, albeit slightly 7 

lower than the general non-diabetes general public34. At present, the two studies that have had 8 

investigated EPC mobilization with acute exercise in individuals with type 1 diabetes have 9 

found total lack of mobilisation35,36. However, as previous studies have measured EPCs as a 10 

percentage of circulating mononuclear cells, where any mobilization is likely masked by 11 

increases in overall leucocyte counts with exercise37, they failed to capture the expected post-12 

exercise mobilization in the non-diabetes controls.  13 

Thus, due to the increased risk of vascular complications in this disease, this study aimed to 14 

definitely explore whether exercise-induced increases of HPCs and EPCs is possible for people 15 

with type 1 diabetes. Additionally, this study aimed to explore how type 1 diabetes influences 16 

deeper phenotypes of angiogenic cells, including not previously measured cell surface 17 

expression of key chemotactic receptors CXCR4 and CXCR7, comparing to age-, sex-, fitness- 18 

and BMI- matched controls at rest and during exercise-induced mobilisation. We hypothesized 19 

that the type 1 diabetes group will have reduced resting and exercise-induced increases of HPCs 20 

and EPCs compared to healthy controls. 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 
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Methods 1 

Participants 2 

Participants were recruited from the Newcastle Diabetes Centre and Newcastle University. 3 

Participants with type 1 diabetes had a confirmed clinical diagnosis; age 18-65 years with a 4 

diabetes duration ≥3 years; HbA1c <86 mmol/mol (10.0%); and absence of diabetes-related 5 

complications apart from non-proliferating retinopathy. Eligibility criteria for the non-diabetes 6 

participants comprised being aged between 18-65 years, non-smoker, and free from any history 7 

of chronic diseases. 8 

All participants provided written informed consent and the study was approved by the NHS 9 

HRA North East Tyne & Wear South Research Ethics and Newcastle University Ethics 10 

Committees (code:16/NE/0192, registry:ISRCTN63739203). All methods were performed in 11 

accordance with the relevant guidelines and regulations. 12 

Screening Visit 13 

All participants attended the Newcastle NIHR Clinical Research Facility (CRF) on two 14 

occasions. Firstly, a screening visit to determine eligibility, medical assessment and peak 15 

oxygen uptake (�̇�𝑉O2peak). Participant height, body mass (Seca 220 stadiometer / Seca 889 scales, 16 

Seca, Germany) and medical history were taken. Participants underwent a modified 12-lead 17 

resting and exercising electrocardiogram to screen for cardiac abnormalities. Eligible 18 

participants completed a maximal graded exercise treadmill (Valiant 2 CPET, Lode, 19 

Groningen, Netherlands) test using the Bruce protocol38 to determine �̇�𝑉O2peak. Glucose levels 20 

in participants with type 1 diabetes were managed as per the guidance of Riddell et al.39  21 

Main Trial Visit 22 

Participants attended the CRF at least 7 days after the initial screening. Individuals arrived at 23 

the exercise lab at ~8.30am after an overnight fast, having been instructed to avoid structured 24 

exercise in the 48 hours preceding the visit.  25 

The participants with type 1 diabetes maintained their normal basal insulin regimen. If they 26 

experienced a hypoglycemic event overnight prior to the study visit, the visit was reorganised. 27 

If blood glucose on waking was >10 mmol/L, they were instructed to have a small corrective 28 

bolus of rapid-acting insulin (≤2 units). 29 
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Upon arrival, the non-dominant arm of each participant was cannulated and resting (baseline) 1 

blood samples were drawn. The initial 4 mL drawn was discarded to avoid contamination of 2 

mature circulating endothelial cells with cells released from the punctured vein during the 3 

cannulation. One 10 mL EDTA vacutainer (Becton, Dickinson and Company, New Jersey, 4 

USA) was collected at baseline and, immediately post-exercise. An additional 4 mL EDTA 5 

Vacutainer was drawn at baseline for analysis of HbA1c at the Newcastle Clinical Laboratory. 6 

Capillary blood was collected at all-time points and analysed by a HemoControl analyser (EKF, 7 

Cardiff, UK) to determine haematocrit and haemoglobin concentration. 8 

Participants consumed a 30g carbohydrate snack (Belvita, Mondelēz International, USA) 9 

immediately after baseline blood draws and remained rested for 20 minutes. Participants 10 

walked on an incline for 45 minutes at 60% �̇�𝑉O2peak at a comfortable stride length (8.06 ± 11 

5.09% at 4.30 ± 0.47 kph). Participants’ treadmill velocity and gradient were calculated using 12 

�̇�𝑉O2, velocity, and gradient data from the preliminary �̇�𝑉O2peak test40. Breath-by-breath 13 

respiratory parameters (Metalyzer 3B-R3 CPET, Cortex, Leipzig, Germany) were continuously 14 

recorded throughout, with gradient adjusted at 10 and 30 minutes if �̇�𝑉O2  was >10% different 15 

than target �̇�𝑉O2. Participants with type 1 diabetes had a target capillary blood glucose >7 16 

mmol/L for the duration of the exercise with 6 individuals given 10g of additional 17 

carbohydrates, administered via a glucose drink. 18 

Upon completion of the exercise, venous blood samples were immediately drawn from the 19 

cannula. Participants rested for 60 minutes before another venous blood sample was drawn and 20 

being discharged from the CRF if capillary blood glucose concentration >3.9 mmol/L (70 21 

mg/dL). 22 

 23 

Flow Cytometry Enumeration of Hematopoietic and Endothelial Progenitor Cells 24 

HPCs and EPCs were quantified on a flow cytometer (BD LSRFortessa X20; BD Biosciences, 25 

USA) within 4 hours of blood draw6. Briefly, 200 µL of whole peripheral blood collected in 26 

EDTA was incubated with 10 µL anti-CD34 FITC, 10 µL anti-VEGFR2 APC, 10 µL anti-27 

CD45 BV421 (BioLegend, San Diego, CA, USA), 10 µL anti-CXCR4 APC Cy7, and 10 µL 28 

anti-CXCR7 PE (BioLegend, San Diego, CA, USA) in a BD Trucount (BD Biosciences, USA) 29 

tube at 4°C for 30 minutes in the dark. Four mL of red blood cell lysis buffer (BD Pharm 30 

LyseTM, BD Biosciences, United Kingdom) was added and left to incubate for a further 30 31 



7 
 

minutes at 4°C in the dark before enumeration by flow cytometry. The samples were vortexed 1 

at low speed to resuspend beads and reduce cell aggregation. Samples were analysed for 45 2 

minutes or until 500,000 CD45+ events had been enumerated, whichever occurred first. The 3 

LSRFortessa was equipped with a blue, yellow/green, red, violet and ultra violet lasers (488nm, 4 

561nm, 635nm, 405nm and 355nm wavelengths, respectively). 5 

Compensation using BD CompBead (BD Biosciences, USA), was performed prior to 6 

collecting each participant’s data to correct for any spectral overlap. Due to highly unreliable 7 

nature of isotype controls in rare event analysis6, positive (VEGFR2) and negative (VEGFR2, 8 

CXCR4, CXCR7) control samples were used to help determine the gating of positive events 9 

by histogram and dot plot (Figure 1F,H,J). Between samples, FACS clean (BD Biosciences, 10 

USA) and deionized water was used to decontaminate the flow cytometer for 5 minutes.  11 

 12 

Following data acquisition, flow cytometry files were analysed using FCS Express 7 (De Novo, 13 

California, USA). Counts of HPC and EPC numbers were converted to cells/mL using BD 14 

Trucount, with the number of positive cell events divided by the number of Trucount bead 15 

event, and then multiplying by the known total BD Trucount bead concentration. Haematocrit 16 

and haemoglobin concentration measures were used to adjust absolute cell counts changes in 17 

blood volume using the Dill and Costill method41. Instead of presenting as a proportion of total 18 

events enumerated by flow cytometry, a valid methodology for the measuring of rare cells at 19 

rest6, the use of Trucount tubes permits the acquisition of absolute cell counts of cells, and 20 

allows the exact changes in response to a stimulus to be measured. As overall leucocyte counts 21 

acutely increase with exercise37, any changes in rare cells are likely masked or hidden when 22 

measure as a percentage of total events.  23 

The gating strategies for enumeration of the HPCs (CD34+, CD34+CD45dim)5 and EPCs 24 

(CD34+VEGFR2+, CD34+CD45dimVEGFR2+)6,42 and subsequent cell surface expression of 25 

CXCR4 and CXCR7 are displayed in Figure 1. Selected time-points were run in duplicate, with 26 

blood from a single vacutainer separated and fluorescent-labelled antibodies added before 27 

analysis by flow cytometry, with an intra-individual CV% of 8.68%.  28 

 29 

 30 

***Insert Figure 1*** 31 
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 1 

 2 

Statistical Analysis 3 

Statistically significant differences between the type 1 diabetes and non-diabetes control group 4 

were determined by independent sample T-test. Data were assessed for normality and outliers 5 

by box-plots and Shapiro-Wilk test. Excessively skewed data were transformed using square 6 

root and logarithmic transformation. When transformation failed, group difference data were 7 

assessed by Mann-Whitney U Test. Time course change data (pre, immediately post and 1 hour 8 

post exercise) was analysed by mixed-effects model. GraphPad Prism 8.0.1 (San Diego, USA) 9 

and IBM SPSS Statistics (version 24, IBM, Armonk NY) software packages were used to 10 

analyse the data. Statistical significance set at p≤0.05. Data are presented as mean ± standard 11 

deviation throughout. 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 
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Results 1 

Demographic data are shown in Table 1. Age, BMI and �̇�𝑉O2peak were comparable between the 2 

matched groups.  3 

Table 1. Participant demographic data.  4 

 Type 1 diabetes group Non-diabetes control group p-value 

N 30 30  

Male/female 16/14 16/14  

Age (years) 38.2 ± 12.0 37.6 ± 12.1 0.840 

HbA1c (mmol/mol) 58.5 ± 9.1 33.5 ± 2.3  < 0.001 

(%) 7.5 ± 3.0 5.2 ± 2.4 < 0.001 

BMI (kg/m2) 25.2 ± 3.7 24.7 ± 4.6 0.656 

�̇�𝑽O2peak (ml/kg/min) 38.8 ± 9.5 42.4 ± 12.4 0.205 

Age at diagnosis 18.2 ± 8.6 -  

Range (years) 8 to 35   

Duration of diabetes 20.0 ± 13.0 -  

Range (years) 3 to 47   

Method of control 
(MDI/CSII) 15/15 -  

Data presented as mean ± SD. P value from independent samples t-test 5 

 6 

On average, participants exercised at 58.8% of their �̇�𝑉O2peak, with no differences between the 7 

groups (p= 0.907). There were no episodes of hypoglycemia (<3.9 mmol/L) during the exercise 8 

bout.  9 

 10 

Resting Levels of Circulating HPCs and EPCs are Lower in the Participants with Type 1 11 

Diabetes than Non-Diabetes Controls 12 

Circulating numbers of HPCs CD34+ (type 1 diabetes; 1468 ± 611 cells/mL, CON; 2048 ± 768 13 

cells/mL, p= 0.001) and CD34+CD45dim (type 1 diabetes; 1189 ± 536 cells/mL, CON; 1684 ± 14 

765 cells/mL, p= 0.003) were significantly lower at rest in the type 1 diabetes group compared 15 

to the non-diabetes controls (Figure 2.A). Resting counts of EPCs CD34+VEGFR2+ (type 1 16 

diabetes; 411 ± 159 cells/mL, CON; 664 ± 217 cells/mL, p< 0.001) and 17 

CD34+CD45dimVEGFR2+ (type 1 diabetes; 292 ± 121 cells/mL CON; 462 ± 177 cells/mL, p< 18 

0.001) were also significantly lower at rest within the type 1 diabetes group compared to the 19 

non-diabetes controls (Figure 2.A). Additionally, circulating number of all HPCs and EPCs 20 
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expressing CXCR4 and CXCR7 were significantly lower in the type 1 diabetes group than the 1 

matched non-diabetes controls (Figure 2.B+C).  2 

 3 

 4 

 ***Insert Figure 2*** 5 

 6 

 7 

When expressed as a percentage of the HPC and EPC phenotypes, CXCR4 expression at rest 8 

tended to be similar between groups. However, percentage of CD34+CD45dimVEGFR2+ 9 

expressing CXCR4 was significantly higher in in the type 1 diabetes group (p= 0.050) (Figure 10 

3.A). Percentage of cells expressing CXCR7 at rest tended to be lower in the type 1 diabetes 11 

group, with CD34+CXCR7+ significantly so (p= 0.035) (Figure 3.B). 12 

 13 

***Insert Figure 3*** 14 

  15 

 16 

 17 

Type 1 Diabetes Patients Display Attenuated HPC and EPC Mobilization in Response to Acute 18 

Exercise 19 

The mean delta change (Δ) in pre to post-exercise cell numbers is displayed in Figure 4. The 20 

type 1 diabetes group had attenuated mobilization of HPCs and EPCs, ranging from 39 to 55% 21 

lower across the phenotypes when compare to the non-diabetes group, with CD34+ HPCs (331 22 

± 437 Δ cells/mL vs 734 ± 876, Δ cells/mL p= 0.048) and CD34+VEGFR2+ EPCs (171 ± 342 23 

Δ cells/mL vs 303 ± 267 Δ cells/mL, p= 0.006) significantly lower.  24 

There were no significant differences between the groups in the Δ of CXCR4+ or CXCR7+ 25 

HPC and EPC phenotypes (p> 0.05), other than for CD34+VEGFR2+CXCR4+ EPCs, where the  26 

mobilization in the type 1 diabetes group was 42% lower compared to controls (126 ± 242 Δ 27 

cells/mL vs 218 ± 217 Δ cells/mL, p= 0.040).  28 
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***Insert Figure 4*** 1 

 2 

Within the type 1 diabetes group, exercised-induced increases of the HPCs and EPCs was 3 

significantly greater in the cells that also expressed CXCR4 or CXCR7, with the progenitor 4 

cells negative for a chemokine receptor having between 64 to 101% less mobilization (Table 5 

2). In comparison, within the controls, only the CD34+VEGFR2+ EPCs positive for CXCR4 6 

had significantly higher mobilization than the CXCR4 negative cells (218 ± 217 Δ cell/mL vs 7 

85 ± 143 Δ cell/mL, p= 0.007). Additionally, the CD34+VEGFR2+  and  8 

CD34+CD45dimVEGFR2+ EPCs positive for CXCR7 also had significantly greater 9 

mobilization than those negative for CXCR7 (248 ± 213 Δ cell/mL vs 55 ± 132 Δ cell/mL, p< 10 

0.001 and 166 ± 158 Δ cell/mL vs 46 ± 112 Δ cell/mL, p= 0.005, respectively).  11 

 12 

Table 2. Mean delta change (Δ) in pre to post-exercise cell numbers of HPCs and EPCs 13 

expressing CXCR4 and CXCR7 versus those negative for CXCR4 and CXCR7 for the type 1 14 

diabetes and control groups.   15 

Data presented as mean ± SD. P value from dependent samples t-test 16 

 17 

Time Course Kinetics and Association Between Clinical Variables and Resting and 18 

Exercise-Induced Progenitor Cell Number 19 

All HPC and EPC phenotypes, and their cell surface expression of CXCR4 and CXCR7, had a 20 

main effect of time with immediately post-exercise sample significantly higher than the 21 

baseline samples (p< 0.002). Additionally, CD34+, CD34+CXCR4+, CD34+CXCR7+  HPCs had 22 

a significantly higher count 1-hour post-exercise compared to pre-exercise levels (p= 0.042, p= 23 

 CXCR4+ CXCR4- p CXCR7+ CXCR7- p 

Type 1 Diabetes Group       

CD34+ 297 ± 378 34 ± 268 0.006 286 ± 383 45 ± 293 0.018 
CD34+CD45dim 237 ± 333 40 ± 267 0.031 203 ± 283 74 ± 279 0.105 

CD34+VEGFR2+ 126 ± 242 44 ± 178 0.084 171 ± 298 -1 ± 85 0.002 
CD34+CD45dimVEGFR2+ 124 ± 186 5 ± 75 0.003 130 ± 175 -1 ± 75 <0.001 

Control Group       
CD34+ 332 ± 337 403 ± 641 0.468 337 ± 348 397 ± 766 0.686 

CD34+CD45dim 206 ± 278 391 ± 631 0.173 227 ± 243 380 ± 631 0.311 
CD34+VEGFR2+ 218 ± 217 85 ± 143 0.007 248 ± 213 55 ± 132 <0.001 

CD34+CD45dimVEGFR2+ 130 ± 161 82 ± 131 0.276 166 ± 158 46 ± 112 0.005 
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0.010 and p= 0.013, respectively). There was a group x time interaction for the CD34+ HPCs, 1 

remaining elevated at 1hr post exercise in the type 1 diabetes group but not the healthy controls 2 

(Supplementary Figure 1).  3 

Clinical variables (HbA1c, BMI, age, �̇�𝑉O2peak, age at diagnosis and duration of diabetes) were 4 

assessed for correlations with resting concentrations and Δ from pre- to post-exercise 5 

(cells/mL) (Supplementary Table 1 + 2). HbA1c was negatively correlated with HPC and EPC 6 

concentration at rest for all participants (n=60, r>-0.272, p<0.036). However, when split into 7 

the type 1 diabetes (n=30) and non-diabetes control (n=30) groups, the relationships were no 8 

longer significant, except for HbA1c and CD34+CD45dimVEGFR2+CXCR7+ EPCs (r= -0.364, 9 

p= 0.048) in the type 1 diabetes group. An older age of type 1 diabetes diagnosis positively 10 

correlated with CD34+CD45dim cells (r= 0.361, p= 0.050). Within the type 1 diabetes group, no 11 

clinical variable correlated with Δ in HPCs or EPCs from pre- to post-exercise.  12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

Discussion 26 

We investigated the influence of type 1 diabetes on circulating HPC and EPC numbers, and the 27 

cell surface expression of CXCR4 and CXCR7 on these cells, at rest and in response to a 28 
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submaximal exercise bout. For the first time, we demonstrate that individuals with type 1 1 

diabetes are able to increase HPCs and EPCs into circulation in response to exercise. However, 2 

mobilization of these angiogenic cells is attenuated in comparison to matched non-diabetes 3 

controls, which may play a role in the increased risk of vascular complications seen in type 1 4 

diabetes   5 

Our primary finding that individuals with type 1 diabetes can mobilize HPCs and EPCs in 6 

response to exercise is of interest, as exercise-induced mobilization has been shown to be a 7 

more powerful predictor of complications and mortality than basal circulating count in thoracic 8 

surgery and coronary artery disease patients27,28, and contrasts previous research which found 9 

no mobilisation of EPCs in type 135,36 or 2 diabetes26. Differences between our study and those 10 

previously exploring exercise-induced mobilisation in people with type 1 diabetes likely arose 11 

due to alternative ways of quantifying circulating angiogenic cell numbers. While our study 12 

used BD Trucount tubes to calculate absolute cell counts and adjusted these results for changes 13 

in blood volume41, accurately determining cell changes in response to an exercise stressor, 14 

previous studies have only measured circulating EPCs as a percentage of circulating 15 

mononuclear cells, where any exercise-induced mobilization was likely concealed by increases 16 

in overall leucocyte counts around exercise37. Additionally, we included a much deeper 17 

examination of angiogenic cell phenotypes, demonstrating that both HPCs and EPCs are 18 

mobilised by individuals with type 1 diabetes. 19 

These results again demonstrate that type 1 diabetes has a detrimental impact on circulating 20 

EPCs and HPCs, with previous research demonstrating a reduced resting count10–12 and 21 

impaired angiogenic function including: impaired ability to differentiate into endothelial cells, 22 

reduced migration to areas of ischemia, reduced angiogenic paracrine secretion, and increased 23 

apoptosis43. As these circulating cells play an important role in maintaining endothelial 24 

integrity7, the reduced circulating numbers seen in this study may play an important causative 25 

role in the development of diabetic complications and increased CVD through reduced 26 

endothelial repair8, with lower levels of both HPCs and EPCs counts associated with extensive 27 

multi-site atherosclerosis44. Our study is the first to demonstrate that circulating numbers of 28 

these angiogenic cells expressing CXCR4 and CXCR7 are also significantly lower in 29 

individuals with type 1 diabetes, findings similar to those seen in people with type 2 diabetes45. 30 

The reduced number of cells expressing CXCR4 and CXCR7 likely results in the reduced 31 

ability to migrate into circulation and to ischemic tissue within diabetes29,30,46, which may 32 
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further exacerbate endothelial dysfunction and microvascular abnormalities and increase the 1 

risk of mortality47.    2 

Within our study, both groups were well matched, the participants were not obese or old, and 3 

had moderate cardiorespiratory fitness (38.8 ± 9.5 mL/min/kg), which contrasts enormously to 4 

work conducted exploring exercise-induced mobilisation of EPCs in type 2 diabetes26. 5 

Additionally, our participants with type 1 diabetes had no major diabetes-related complications. 6 

Despite this, we showed that the increased circulating HPCs and EPCs from pre- to post-7 

exercise in the type 1 diabetes group, CD34+ HPCs, CD34+VEGFR2+, 8 

CD34+VEGFR2+CXCR4+ EPC counts were significantly attenuated compared to the non-9 

diabetes controls. Strikingly, mean post-exercise concentrations of most the phenotypes were 10 

lower in the type 1 diabetes group than the resting concentrations of the controls.  The reduced 11 

exercise-induced mobilization is similar to previous studies that found no mobilisation of  12 

HPCs and EPCs to indirect CXCR4+ stimulation31 and slightly attenuated mobilisation to direct 13 

CXCR4+ antagonists  in a mixed group of type 1 and 2 diabetes participants32. It is unclear why 14 

a direct CXCR4+ antagonist can mobilise angiogenic cells from the bone marrow while an 15 

indirect cannot. As exercise mobilised HPCs and EPCs negative for CXCR4 and CXCR7 in 16 

the controls, but not the type 1 diabetes group, this suggests pathways other than stromal cell–17 

derived factor-1α (SDF-1α)/CXCR4 are also impaired by deregulated glucose control seen in 18 

diabetes. 19 

While the exact mechanism for mobilising angiogenic cells in response to exercise has not been 20 

fully elucidated, mobilization is dependent on both duration and intensity, with a higher 21 

intensity potentially needed in this study in order for all participants to achieve mobilisation23. 22 

Post-exercise counts have been shown to positively correlate with increased circulating levels 23 

of SDF-1α, VEGF, erythropoietin and tissue expression of hypoxia-inducible factor 1-α. 24 

Suppressed release of VEGF and SDF-1α, key for the mobilization and homing of progenitor 25 

cells from the bone marrow to areas of ischemia, have been  demonstrated in a murine model 26 

of diabetes48, and may explain the reduced increase in HPCs and EPCs seen in this study. 27 

Additionally, high glucose conditions have been shown to reduce the angiogenic function of 28 

HPCs and EPCs49, as well as increasing senescence and apoptosis43. Within type 1 diabetes 29 

mouse models, it has been demonstrated that increased vascular damage ultimately results in 30 

the exhaustion and depletion of progenitor cells stored within the bone marrow. Moreover, 31 

dysfunctional osteoblastic niches and microangiopathy damage to the blood vessels in the bone 32 

resulting in an impaired ability to egress these cells into circulation in response to ischemia50. 33 
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Microvascular dysfunction and altered blood flow can occur in the early stages of Type 1 1 

diabetes, with hyperglycaemia and oxidative stress reducing the bioavailabilty of nitrix 2 

oxide51,52. Endothelial nitrix oxide synthase induces smooth muscle relaxition and blood vessel 3 

dilation, and is strong modulator of circulating angiogenic cells funtion and homing53. It has 4 

been demonstrated that pancreas transplants improves endothelial function in conjunction with 5 

the normalisation of glucose metabolism by restoring endothelial nitric oxide synthase54, which 6 

likely explains the post islet-transplant improvements in circulating angiogenic cell function55. 7 

This raises the intriguing possibility that exercise, improvements in glycemic control and 8 

vasodilatory dietary supplements could increase endothelial nitric oxide synthase, improving 9 

endothelial and angiogenic cells functions within people with type 1 diabetes, warranting 10 

further study56.  11 

There is growing evidence for separate and important functions of CXCR7, promoting 12 

endothelial proliferation and angiogenesis, and plying a critical role in the survival of EPCs. 13 

Our results are supported by the observations by Dai et al.,30 demonstrating that the percentage 14 

of EPCs expressing CXCR7 but not CXCR4 was reduced in a diabetes mouse and in vitro 15 

model, but not Vigorelli et al.,57 who showed reduced CXCR4 protein expression when 16 

exposing CD34+ cells to a high glucose environment in vitro. As knockdown of CXCR7 17 

impairs vascular tube formation and upregulation rescues angiogenic function of diabetic 18 

EPCs30, the reduction in CXCR7 angiogenic cells within this study is of clinical significance, 19 

highlighting the dysfunctional nature of these cells in people with type 1 diabetes.  The effect 20 

of glucose upon CXCR4 is controversial, with high glucose reported to both increase58 and 21 

inhibit expression59.  22 

Limitations of this study include the lack of an apoptosis marker, making it likely that non-23 

viable cells were quantified. This especially true of EPCs within the type 1 diabetes group, 24 

where increased apoptosis is likely due to hyperglycemia43, and mean fluorescence intensity of 25 

VEGFR2 staining is slightly greater in dead versus live cells60. Measuring progenitor cell 26 

mobilising stimuli would also have been beneficial, especially as the number of HPCs negative 27 

for a chemokine receptor mobilized with exercise was substantially lower in the type 1 diabetes 28 

group suggesting impairment of an additional pathway other than the SDF-1α/CXCR4 axis. 29 

Future research needs to explore whether different methods of diabetes management and 30 

improving glycemic control results in improvement in exercise-induced mobilization of these 31 

cells within individuals with type 1 diabetes. Improving HbA1c, and reducing glycemic 32 

variability (by switching diabetes management to continuous subcutaneous insulin infusion) 33 
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both increase basal concentrations of EPCs13,61, while severe hypoglycemia is associated with 1 

a marked depletion of circulating HPCs and EPCs in individuals with type 2 diabetes62.  2 

Potentially, they also influence exercise-induced mobilization. Regular exercise training, in 3 

both healthy and diseased populations, has also been shown to increase basal concentration of 4 

EPCs and HPCs62. Therefore, determining if exercise training could increase basal 5 

concentration and restore exercise-induced mobilization in individuals with type 1 diabetes, 6 

with the aim of improving vascular repair and reducing both micro and macrovascular diabetes 7 

complications merits further study.  8 

Conclusion 9 

In conclusion, people with type 1 diabetes have reduced resting and attenuated mobilization of 10 

EPCs and HPCs with exercise compared to matched controls. Reduced mobilization of HPCs 11 

and EPCs with exercise may play a role in the increased cardiovascular risk in individuals with 12 

type 1 diabetes. 13 

 14 

List of abbreviations 15 

Cardiovascular diseases (CVD) 16 

Chemokine receptor 4 (CXCR4) 17 

Chemokine receptor 7 (CXCR7) 18 

Endothelial progenitor cells (EPCs) 19 

Haematopoietic progenitor cells (HPCs) 20 

Newcastle NIHR Clinical Research Facility (CRF) 21 

 22 

 23 

 24 

 25 

 26 

 27 



17 
 

Declarations 1 

 2 

Ethics approval and consent to participate 3 

All participants provided written informed consent and the study was approved by the NHS 4 

HRA North East Tyne & Wear South Research Ethics and Newcastle University Ethics 5 

Committees (code:16/NE/0192). 6 

 7 

Consent for publication 8 

Not applicable 9 

 10 

Availability of data and materials 11 

The datasets used during the current study are available from the corresponding author 12 
(Daniel J West; Email: daniel.west@newcastle.ac.uk, telephone: +44 (0)191 20 87076) on 13 
reasonable request. 14 

 15 

Competing interests 16 

The authors have no conflict of interest to declare. 17 

 18 

Funding 19 

This study was funded by the Diabetes Research and Wellness Foundation (SCA/OF/12/15) 20 

award to DW. Funding was also provided by philanthropic award to DW from the Francis 21 

James Bell Endowment Fund, Country Durham Community Foundation. 22 

 23 

Authors' contributions 24 

G.S.T. recruited participants, designed study, researched data, wrote the manuscript. D.J.W. 25 

and M.R designed study, researched data, wrote the manuscript. J.A.S. recruited participants, 26 

designed study, provided clinical cover and reviewed/edited the manuscript. A.S and M.C 27 

processed data, reviewed/edited the manuscript.  A.B. and A.F. recruited participants, provided 28 

mailto:daniel.west@newcastle.ac.uk


18 
 

clinical cover and reviewed/edited the manuscript. E.S and M.D.C. reviewed/edited the 1 

manuscript.  K.S., J.H.S. and T.C. contributed to data collection and reviewed/edited the 2 

manuscript.   3 

 4 

Acknowledgements 5 

The authors thank the study participants for their time, effort, and commitment, as well as the 6 

research teams at the Newcastle National Institute for Health Research Clinical Research 7 

Facility, Newcastle-upon-Tyne, for their assistance with data collection, and the Newcastle 8 

University Flow Cytometry Core Facility (FCCF) for assistance with the generation of Flow 9 

Cytometry data. 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 



19 
 

References 1 

 2 

1. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 3 

(1997). 4 

2. Hur, J. et al. Characterization of two types of endothelial progenitor cells and their different contributions 5 

to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 24, 288–293 (2004). 6 

3. Ananthaseshan, S. et al. Locally Transplanted CD34+ Bone Marrow–Derived Cells Contribute to Vascular 7 

Healing After Vascular Injury. vol. 49 (Elsevier, 2017). 8 

4. Leor, J. et al. Human umbilical cord blood–derived CD133+ cells enhance function and repair of the 9 

infarcted myocardium. Stem Cells 24, 772–780 (2006). 10 

5. Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S. & Hopkinson, A. Concise review: evidence for 11 

CD34 as a common marker for diverse progenitors. Stem Cells 32, 1380–1389 (2014). 12 

6. Van Craenenbroeck, E. M. et al. Quantification of circulating CD34+/KDR+/CD45dim endothelial 13 

progenitor cells: analytical considerations. Int. J. Cardiol. 167, 1688–1695 (2013). 14 

7. Bruyndonckx, L. et al. Endothelial progenitor cells and endothelial microparticles are independent 15 

predictors of endothelial function. J. Pediatr. 165, 300–305 (2014). 16 

8. Rigato, M. & Fadini, G. P. Circulating stem/progenitor cells as prognostic biomarkers in macro-and 17 

microvascular disease: a narrative review of prospective observational studies. Curr. Med. Chem. 25, 4507–18 

4517 (2018). 19 

9. Samman Tahhan, A. et al. Progenitor cells and clinical outcomes in patients with heart failure. Circ. Heart 20 

Fail. 10, e004106 (2017). 21 

10. Palombo, C. et al. Circulating endothelial progenitor cells and large artery structure and function in young 22 

subjects with uncomplicated type 1 diabetes. Cardiovasc. Diabetol. 10, 88 (2011). 23 

11. Sibal, L. et al. Circulating endothelial progenitor cells, endothelial function, carotid intima-media thickness 24 

and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular 25 

disease or microalbuminuria. Diabetologia 52, 1464–1473 (2009). 26 

12. Loomans, C. J. et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular 27 

complications of type 1 diabetes. Diabetes 53, 195–199 (2004). 28 

13. Hörtenhuber, T. et al. Endothelial progenitor cells are related to glycemic control in children with type 1 29 

diabetes over time. Diabetes Care 36, 1647–1653 (2013). 30 



20 
 

14. Arcangeli, A. et al. Circulating Endothelial Progenitor Cells in Type 1 Diabetic Patients: Relation with 1 

Patients’ Age and Disease Duration. Front. Endocrinol.  8, 278 (2017). 2 

15. James, S., Gallagher, R., Dunbabin, J. & Perry, L. Prevalence of vascular complications and factors 3 

predictive of their development in young adults with type 1 diabetes: systematic literature review. BMC Res. 4 

Notes 7, 593 (2014). 5 

16. Fadini, G. P., Albiero, M., Bonora, B. M. & Avogaro, A. Angiogenic Abnormalities in Diabetes Mellitus: 6 

Mechanistic and Clinical Aspects. J. Clin. Endocrinol. Metab. 104, 5431–5444 (2019). 7 

17. Yu, C. G. et al. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes? 8 

Stem Cells Int. 2016, 1803989 (2016). 9 

18. Rawshani, A. et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N. Engl. J. Med. 376, 10 

1407–1418 (2017). 11 

19. Lind, M. et al. Glycemic control and excess mortality in type 1 diabetes. N. Engl. J. Med. 371, 1972–1982 12 

(2014). 13 

20. Secrest, A. M., Becker, D. J., Kelsey, S. F., LaPorte, R. E. & Orchard, T. J. Cause-specific mortality trends 14 

in a large population-based cohort with long-standing childhood-onset type 1 diabetes. Diabetes 59, 3216–15 

3222 (2010). 16 

21. Bebu, I. et al. Risk Factors for First and Subsequent CVD Events in Type 1 Diabetes: The DCCT/EDIC 17 

Study. Diabetes Care 43, 867–874 (2020). 18 

22. Ross, M. D., Wekesa, A. L., Phelan, J. P. & Harrison, M. Resistance exercise increases endothelial 19 

progenitor cells and angiogenic factors. Med. Sci. Sports Exerc. 46, 16–23 (2014). 20 

23. Laufs, U. et al. Running exercise of different duration and intensity: effect on endothelial progenitor cells 21 

in healthy subjects. Eur. J. Cardiovasc. Prev. Rehabil. 12, 407–414 (2005). 22 

24. Emmons, R., Niemiro, G. M., Owolabi, O. & De Lisio, M. Acute exercise mobilizes hematopoietic stem 23 

and progenitor cells and alters the mesenchymal stromal cell secretome. J. Appl. Physiol. 120, 624–632 24 

(2016). 25 

25. Van Craenenbroeck, E. M. et al. The effect of acute exercise on endothelial progenitor cells is attenuated in 26 

chronic heart failure. Eur. J. Appl. Physiol. 111, 2375–2379 (2011). 27 

26. Lutz, A. H., Blumenthal, J. B., Landers-Ramos, R. Q. & Prior, S. J. Exercise-induced endothelial progenitor 28 

cell mobilization is attenuated in impaired glucose tolerance and type 2 diabetes. J. Appl. Physiol. 121, 36–29 

41 (2016). 30 



21 
 

27. Schier, R. et al. Endothelial progenitor cell mobilization by preoperative exercise: a bone marrow response 1 

associated with postoperative outcome. Br. J. Anaesth. 113, 652–660 (2014). 2 

28. Moazzami, K. et al. Association Between Change in Circulating Progenitor Cells During Exercise Stress 3 

and Risk of Adverse Cardiovascular Events in Patients With Coronary Artery Disease. JAMA cardiology 5, 4 

147–155 (2020). 5 

29. Tu, T. C. et al. A chemokine receptor, CXCR4, which is regulated by hypoxia-inducible factor 2α, is crucial 6 

for functional endothelial progenitor cells migration to ischemic tissue and wound repair. Stem Cells Dev. 7 

25, 266–276 (2016). 8 

30. Dai, X. et al. Elevating CXCR7 improves angiogenic function of EPCs via Akt/GSK-3β/Fyn-mediated Nrf2 9 

activation in diabetic limb ischemia. Circ. Res. 120, e7–e23 (2017). 10 

31. Fadini, G. P. et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes 11 

Care 36, 943–949 (2013). 12 

32. Fadini, G. P. et al. Diabetes Limits Stem Cell Mobilization Following G-CSF but Not Plerixafor. Diabetes 13 

64, 2969–2977 (2015). 14 

33. Röhling, M. et al. Differential Patterns of Impaired Cardiorespiratory Fitness and Cardiac Autonomic 15 

Dysfunction in Recently Diagnosed Type 1 and Type 2 Diabetes. Diabetes Care 40, 246–252 (2017). 16 

34. Komatsu, W. R. et al. Aerobic exercise capacity in normal adolescents and those with type 1 diabetes 17 

mellitus. Pediatr. Diabetes 6, 145–149 (2005). 18 

35. West, D. J. et al. The inflammation, vascular repair and injury responses to exercise in fit males with and 19 

without Type 1 diabetes: an observational study. Cardiovasc. Diabetol. 14, 71 (2015). 20 

36. Waclawovsky, G. et al. Exercise on progenitor cells in healthy subjects and patients with type 1 diabetes. 21 

Med. Sci. Sports Exerc. 48, 190–199 (2015). 22 

37. Peake, J. M., Neubauer, O., Walsh, N. P. & Simpson, R. J. Recovery of the immune system after exercise. 23 

J. Appl. Physiol. 122, 1077–1087 (2017). 24 

38. Bruce, R., Kusumi, F. & Hosmer, D. Maximal oxygen intake and nomographic assessment of functional 25 

aerobic impairment in cardiovascular disease. Am. Heart J. 85, 546–562 (1973). 26 

39. Riddell, M. C. et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes 27 

Endocrinol 5, 377–390 (2017). 28 

40. Glass, S., Dwyer, G. B. & Medicine, American College of Sports. ACSM’S metabolic calculations 29 

handbook. (Lippincott Williams & Wilkins, 2007). 30 



22 
 

41. Dill, D. B. & Costill, D. L. Calculation of percentage changes in volumes of blood, plasma, and red cells in 1 

dehydration. J. Appl. Physiol. 37, 247–248 (1974). 2 

42. Ross, M. D. et al. Lower resting and exercise-induced circulating angiogenic progenitors and angiogenic T 3 

cells in older men. American Journal of Physiology-Heart and Circulatory Physiology 314, H392–H402 4 

(2018). 5 

43. Kang, H., Ma, X., Liu, J., Fan, Y. & Deng, X. High glucose-induced endothelial progenitor cell dysfunction. 6 

Diab. Vasc. Dis. Res. 14, 381–394 (2017). 7 

44. Hayek, S. S. et al. Circulating Progenitor Cells Identify Peripheral Arterial Disease in Patients With 8 

Coronary Artery Disease. Circ. Res. 119, 564–571 (2016). 9 

45. Egan, C. G. et al. Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral 10 

blood cells in type 2 diabetes. Diabetologia 51, 1296–1305 (2008). 11 

46. Fadini, G. P. & Avogaro, A. Diabetes impairs mobilization of stem cells for the treatment of cardiovascular 12 

disease: a meta-regression analysis. Int. J. Cardiol. 168, 892–897 (2013). 13 

47. Samman Tahhan, A. et al. Progenitor cells and clinical outcomes in patients with acute coronary syndromes. 14 

Circ. Res. 122, 1565–1575 (2018). 15 

48. Dong, L. et al. Insulin modulates ischemia-induced endothelial progenitor cell mobilization and 16 

neovascularization in diabetic mice. Microvasc. Res. 82, 227–236 (2011). 17 

49. Witkowski, S., Guhanarayan, G. & Burgess, R. Glucose and acute exercise influence factors secreted by 18 

circulating angiogenic cells in vitro. Physiological reports 4, e12649 (2016). 19 

50. Oikawa, A. et al. Diabetes mellitus induces bone marrow microangiopathy. Arterioscler. Thromb. Vasc. 20 

Biol. 30, 498–508 (2010). 21 

51. Feng, W. et al. Comparison of cerebral and cutaneous microvascular dysfunction with the development of 22 

type 1 diabetes. Theranostics 9, 5854–5868 (2019). 23 

52. Lespagnol, E. et al. Early Endothelial Dysfunction in Type 1 Diabetes Is Accompanied by an Impairment 24 

of Vascular Smooth Muscle Function: A Meta-Analysis. Front. Endocrinol.  11, 203 (2020). 25 

53. Heiss, C. et al. Nitric oxide synthase expression and functional response to nitric oxide are both important 26 

modulators of circulating angiogenic cell response to angiogenic stimuli. Arterioscler. Thromb. Vasc. Biol. 27 

30, 2212–2218 (2010). 28 



23 
 

54. Ziaja, J. et al. Type 1 diabetic patients have better endothelial function after simultaneous pancreas-kidney 1 

transplantation than after kidney transplantation with continued insulin therapy. Diab. Vasc. Dis. Res. 15, 2 

122–130 (2018). 3 

55. Petrelli, A. et al. Improved function of circulating angiogenic cells is evident in type 1 diabetic islet-4 

transplanted patients. Am. J. Transplant 10, 2690–2700 (2010). 5 

56. McCarthy, O. et al. Supplementary Nitric Oxide Donors and Exercise as Potential Means to Improve 6 

Vascular Health in People with Type 1 Diabetes: Yes to NO? Nutrients 11, (2019). 7 

57. Vigorelli, V. et al. Abnormal DNA Methylation Induced by Hyperglycemia Reduces CXCR 4 Gene 8 

Expression in CD 34+ Stem Cells. J. Am. Heart Assoc. 8, e010012 (2019). 9 

58. Jie, W. et al. SDF‐1α/CXCR4 axis is involved in glucose‐potentiated proliferation and chemotaxis in rat 10 

vascular smooth muscle cells. Int. J. Exp. Pathol. 91, 436–444 (2010). 11 

59. Zafar, N. et al. Circulating angiogenic stem cells in type 2 diabetes are associated with glycemic control 12 

and endothelial dysfunction. PLoS One 13, e0205851 (2018). 13 

60. Cappellari, R., D’Anna, M., Avogaro, A. & Fadini, G. P. Plerixafor improves the endothelial health balance. 14 

The effect of diabetes analysed by polychromatic flow cytometry. Atherosclerosis 251, 373–380 (2016). 15 

61. Maiorino, M. I. et al. Reducing glucose variability with continuous subcutaneous insulin infusion increases 16 

endothelial progenitor cells in type 1 diabetes: an observational study. Endocrine 52, 244–252 (2016). 17 

62. Volaklis, K. A., Tokmakidis, S. P. & Halle, M. Acute and chronic effects of exercise on circulating 18 

endothelial progenitor cells in healthy and diseased patients. Clin. Res. Cardiol. 102, 249–257 (2013). 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

Tables 29 

 30 



24 
 

Table 1. Participant demographic data.  1 

 Type 1 diabetes group Non-diabetes control group p-value 

N 30 30  

Male/female 16/14 16/14  

Age (years) 38.2 ± 12.0 37.6 ± 12.1 0.840 

HbA1c (mmol/mol) 58.5 ± 9.1 33.5 ± 2.3  < 0.001 

(%) 7.5 ± 3.0 5.2 ± 2.4 < 0.001 

BMI (kg/m2) 25.2 ± 3.7 24.7 ± 4.6 0.656 

�̇�𝑽O2peak (ml/kg/min) 38.8 ± 9.5 42.4 ± 12.4 0.205 

Age at diagnosis 18.2 ± 8.6 -  

Range (years) 8 to 35   

Duration of diabetes 20.0 ± 13.0 -  

Range (years) 3 to 47   

Method of control 
(MDI/CSII) 15/15 -  

Data presented as mean ± SD. P value from independent samples t-test 2 

 3 

Table 2. Mean delta change (Δ) in pre to post-exercise cell numbers of HPCs and EPCs 4 

expressing CXCR4 and CXCR7 versus those negative for CXCR4 and CXCR7 for the type 1 5 

diabetes and control groups.   6 

Data presented as mean ± SD. P value from dependent samples t-test 7 

 8 

 9 

Figures  10 

 11 

 CXCR4+ CXCR4- p CXCR7+ CXCR7- p 

Type 1 Diabetes Group       

CD34+ 297 ± 378 34 ± 268 0.006 286 ± 383 45 ± 293 0.018 
CD34+CD45dim 237 ± 333 40 ± 267 0.031 203 ± 283 74 ± 279 0.105 

CD34+VEGFR2+ 126 ± 242 44 ± 178 0.084 171 ± 298 -1 ± 85 0.002 
CD34+CD45dimVEGFR2+ 124 ± 186 5 ± 75 0.003 130 ± 175 -1 ± 75 <0.001 

Control Group       
CD34+ 332 ± 337 403 ± 641 0.468 337 ± 348 397 ± 766 0.686 

CD34+CD45dim 206 ± 278 391 ± 631 0.173 227 ± 243 380 ± 631 0.311 
CD34+VEGFR2+ 218 ± 217 85 ± 143 0.007 248 ± 213 55 ± 132 <0.001 

CD34+CD45dimVEGFR2+ 130 ± 161 82 ± 131 0.276 166 ± 158 46 ± 112 0.005 
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Figure 1. Enumeration of HCPs and EPCs by flow cytometry. 1A- Gating of the fluorescent 1 

beads from the Trucount Tubes to determine absolute cell count. 1B- Forward scatter height 2 

versus forward scatter area density plot for gating doublet exclusion. 1C- Gating of CD45+ 3 

mononuclear cells. 1D- Identification of CD45+ cells expressing CD34+ with low side scatter 4 

(CD34+ cells). 1E- Gating of low expression of CD45+ (CD34+CD45dim cells). 1F- Negative 5 

controls for the identification the gating of positive VEGFR2+ events. 1G- Identification of 6 

VEGFR2+ on CD34+ or CD34+CD45dim cells. 1H- Negative controls for the identification the 7 

gating of positive CXCR4 events. 1I- Identification of CXCR4 cell surface expression upon all 8 

HPC and EPCs phenotypes. 1J- Negative controls for the identification the gating of positive 9 

CXCR7 events. 1K- Identification of CXCR7 cell surface expression upon all HPC and EPCs 10 

phenotypes. 11 

 12 

Figure 2. Resting circulating number of CD34+, CD34+CD45dim HPCs and CD34+VEGFR2+, 13 

CD34+CD45dimVEGFR2+ EPCs (3A), and the number of these cells expressing CXCR4+ (3B) 14 

and CXCR7+ (3C) between the type 1 diabetes (red circles) and non-diabetes (blue circles) 15 

groups. # - signifies significant difference between the type 1 diabetes and non-diabetes groups. 16 

Data shown are mean ± SD. 17 

 18 
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Figure 3. The percentage of CD34+, CD34+CD45dim HPCs and CD34+VEGFR2+, 1 

CD34+CD45dimVEGFR2+ EPCs expressing CXCR4+ (A) and CXCR7+ (B) between the type 1 2 

diabetes (red circles) and non-diabetes (blue circles) groups. # - signifies significant difference 3 

between the type 1 diabetes and non-diabetes groups. Data shown are mean ± SD. 4 

 5 

 6 

 7 

Figure 4. Pre to post exercise delta change (∆ cells, cells/mL) of HPCs and EPCs (4A), HPCs 8 

and EPCs expressing CXCR4+ (4B), HPCs and EPCs expressing CXCR7+ (4C) in participants 9 

with type 1 diabetes (red circle) and non-diabetes controls (blue circle) in response to a single 10 

bout of moderate-intensity exercise. # - signifies significant difference between the type 1 11 

diabetes and non-diabetes groups. Data shown are mean ± SD. 12 
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