
EVOLVABLE HARDWARE DESIGN OF

COMBINATIONAL LOGIC CIRCUITS

By

Tatiana G. Kalganova

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

NAPIER UNIVERSITY

EDINBURGH, SCOTLAND

MAY 2000

© Copyright by Tatiana G. Kalganova, 2000

DECLARATION OF ORIGINALITY

I hereby declare that this thesis and the work contained herein

was composed and originated entirely by myself, other than those items

acknowledged in the text. The work was completed under a full-time

supervised program at Napier University between September 1997 and

May 2000.

Some materials presented in the thesis has been published as

follows: Chapter 3 in [1]; Chapter 4 in [1], [2], [3]; Chapter 5 in [4],

[5]; Chapter 6 in [6]; Chapter 7 in [7], [8], [9].

Some peripheral but related work, not described in this thesis, has

been published in [2].

Dated: May 2000

Tatiana G. Kalganova

11

To my family.

III

Abstract

Evolvable Hardware (EHW), as an alternative method for logic design, became more

attractive recently, because of its algebra-independent techniques for generating self

adaptive self-reconfigurable hardware. This thesis investigates and relates both eval

uation and evolutionary processes, emphasizing the need to address problems arising

from data complexity.

Evaluation processes, capable of evolving cost-optimised fully functional circuits

are investigated. The need for an extrinsic EHW approach (software models) inde

pendent of the concerns of any implementation technologies is emphasized. It is also

shown how the function description may be adapted for use in the EHW approach.

A number of issues of evaluation process are addressed: these include choice of opti

misation criteria, multi-objective optimisation tedmiques in EHW and probabilistic

analysis of evolutionary processes.

The concept of self-adaptive extrinsic EHW method is developed. This approach

emphasizes the circuit layout evolution together with circuit functionality. A chromo

some representation for such system is introduced, and a number of genetic operators

and evolutionary algorithms in support of this approach are presented. The genetic

operators change the genetic material at the different levels of chromosome represen

tation. Furthermore, a chromosome representation is adapted to the function-level

EHW approach. As a result, the modularised systems are evolved using multi-output

building blocks. This chromosome representation overcomes the problem of long

string chromosome.

Together, these techniques facilitate the construction of systems to evolve logic

functions of large number of variables. A method for achieving this using bidirectional

incremental evolution is documented. It is demonstrated that the integration of a

dynamic evaluation process and self-adaptive function-level EHW approach allows

the bidirectional incremental evolution to successfully evolve more complex systems

than traditionally evolved before. Thereby it provides a firm foundation for the

evolution of complex systems.

Finally, the universality of these techniques is proved by applying them to multi

valued combinational logic design. Empirical study of this application shows that

there is no fundamental difference in approach for both binary and multi-valued logic

design problems.

IV

Acknow ledgments

First and foremost I wish to express my thanks to and acknowledge the assistance of

all those people without whom this thesis would not exist.

Firstly thanks are due to my two supervisors, Prof. T.C. Fogarty (South Bank

University) and Prof. A. Almaini (Napier University) who supervised the work re

ported here.

Thanks are due to the School of Computing at Napier University and EvoNet

office for providing support for this work under my PhD student grant. I would

also like to give special thanks to Dr. J. Miller who originated the approach that I

extended and investigated.

I would also like to thank the following who helped me in various ways dur

ing my life as a PhD student: L. Miramontes Hercog (South Bank University), N.

Gonet (University of Edinburgh), S.-H. Choi (Napier University), J. Bautista Ortega

(Rosslin Institute, University of Edinburgh), A. Stoica (NASA), J. ·Willies (EvoNet),

Marjory and Geoff Horne, Christine and Paul Deponio. Thanks also to my parents

for support, Galina Kalganova (my mother) and Gennady Kalganov (my father) for

emotional support during the writing of this dissertation, and my nephews, Sasha

and Pasha Lipnitskie, for providing such a wonderful distraction during my visit to

Belarus. Special thanks to my sister, Natalia Lipnitskaya for our long chats and

discussion, for emotional support that I was getting from her during time of writ

ing this work. Finally and especially I would like to thank Olivier Fouquet for his

encouragement and understanding.

v

Table of Contents

Table of Contents

List of Tables

List of Figures

List of Symbols

1 Introduction
1.1 Objectives
1.2 The outline of the dissertation
1.3 Some remarks about terminology used in the dissertation

2 Evolutionary design of electronic circuits
2.1 Circuit design problem and evolutionary algorithms
2.2 Main concept of Evolvable Hardware
2.3 Taxonomy of Evolvable Hardware

2.3.1 Evaluation process
2.3.2 Evolutionary process
2.3.3 Evolutionary programming approach
2.3.4 Target application area
2.3.5 Evolving platform.

2.4 An extrinsic EHW in digital circuit design
2.4.1 Louis's EHW approach
2.4.2 Cartesian GP
2.4.3 Assemble and Test
2.4.4 Advantages of an extrinsic EHW
2.4.5 Disadvantages of an extrinsic EHW

2.5 Incremental Evolution

VI

IX

X

XVI

XXIX

1

1
2
6

8
8

11
12
13
18
21
23
29
33
36
38
41
43

44
45

2.6 Motivation of presented research.
2.7 Scope of this Dissertation
2.8 Contribution to knowledge
2.9 Summary

50
52
54
54

3 Analysis and verification of evolved circuits 56
3.1 Introduction.................. 56
3.2 An extrinsic gate-level EHW 58
3.3 Function representation in an extrinsic EHW . 58

3.3.1 Boolean functions specified by truth and minterms tables 59
3.3.2 Boolean functions specified by cubes 62

3.4 Fitness function strategies 69
3.4.1 Pareto Optimum 70
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6

Criteria used in an extrinsic EHW .
Dynamic fitness function, Fl + F2 .
Method of objective weighting .
Method of distance functions
MIN-MAX formulation

71
74
77
78
79

3.4.7 Experimental results 80
3.5 Evolutionary processes specified by dynamic fitness function and their

analysis. .. 100
3.5.1 Analysing the evolved circuits using a probabilistic approach.. 100
3.5.2 Experimental results. 108

3.6 Summary 118

4 Circuit layout evolution 122
4.1 Introduction............................... 122
4.2 Relationships between the circuit layout and algorithm performance 124
4.3 An extrinsic EHW with heterogeneous circuit layout. 133

4.3.1 Encoding 133
4.3.2 Objective Function and Fitness 137

4.4 Evolutionary Algorithm 138
4.4.1 Initialisation.. 138
4.4.2 Mutation ... 139
4.4.3 Recombination 143

4.5 Experimental results . 145
4.5.1 Crossover and mutation strategies. 145
4.5.2 Dynamic fitness strategy in heterogeneous circuit layout evolution155
4.5.3 Distributions of circuit layout and circuit functionality 158

Vll

4.6 Summary 164

5 Function level extrinsic EHW 168
5.1 Introduction . 168
5.2 Chromosome representation 169

5.2.1 Encoding 169
5.2.2 Fitness Function 177

5.3 Connection repair algorithm 180
5.4 Experimental results 182

5.4.1 Algorithm performance . 183
5.4.2 Evolved circuits 186

5.5 Summary 198

6 Bidirectional incremental evolution 200
201 6.1 Introduction

6.2 Basic idea of bidirectional incremental evolution applied to digital logic
design . 206

6.3 BIE with standard functional decomposition 209
6.3.1 Statement of problem. 209
6.3.2 Standard functional decomposition methods 212
6.3.3 Experiment A: BIE with Shannon's decomposition 215
6.3.4 Experiment B: BIE with output decomposition .. 222

6.4 BIE with EHW-oriented decomposition. 226
6.4.1 Stage 1. Evolution towards a modularised system using EHvV-

oriented decomposition 227
6.4.2 Stage 2. Evolution towards an optimised system 232
6.4.3 Experiment C: BIE with output decomposition 232
6.4.4 Experiment D: BIE with Shannon's and output decompositions 239

6.5 Summary 252

7 Multi-valued logic circuit design
7.1 Introduction
7.2 Idea of EHW approach ..
7.3 Background and notations
7.4 An extrinsic EHW .. .

7.4.1 Encoding
7.4.2 Fitness Function .

7.5 Evolved circuit designs for arithmetic circuits
7.5.1 A half adder, add3..2.pla

Vlll

254
255
257
258
262
262
271
273
273

7.5.2 An one-digit full adder, add3_3c.pla . 275
7.5.3 An one-digit multiplier, mult3_2.pla . 277
7.5.4 A 1.5-digit multiplier, mult3_3.pla . . 278

7.6 Gate-level EHvV and algorithm performance 280
7:6.1 Circuit layout and algorithm performance 280
7.6.2 Influence the functional set of logic gates used on the algorithm

performance 289
7.7 Comparison of function and gate level EHW 292
7.8 Summary 293

8 Conclusions
8.1 Future work

A Appendix. Digital circuit design
A.1 Implementation technologies

A.1.1 FPGA
A.1.2 Xilinx FPGA
A.1.3 Unipolar logic families

A.2 Primitive logic gates and their implementation .
A.2.1 Comparison of logic gate implementations

A.3 Combinational building blocks

296
300

302
302
302
303
305
307
311
311

B Appendix. The functional set of logic gates and EHW performance315

C Appendix. Evolved optimal two-bit multiplier designs 322

D Computational effort of EHW approach 325

E Appendix. Distinctive features of the TPRODUCT operator 327

F Appendix. Distinctive features of the TSUM operator 334

Bibliography 336

ix

List of Tables

2.1 Summary of extrinsic EHW approaches for digital circuit design VGA

is a variable-length chromosome GA; GP and EP are a Genetic and an

Evolutionary Programming; CGP is a Cartesian GP; AS is an Ant System;

f(n,m,r) is an n-input m-out'put r--valued logic function; fmux(3, 1, 2) is a

logic function describing the behaviour of multiplexer; F is a fitness function;

Fi defines a correctness of outputs of network evolved; F2 is the minimal

number of logic cells used; F3 is a correctness of input combinations; F4 is

an error based fitness, Fl + F2 is a dynamic fitness function strategy with

execution of criteria Fl at first stage of evolutionary process and criteria

F2 at the second stage; p is the number of input combinations in the logic

function 34

2.2 Cell gate functionality. 40

2.3 Development of cartesian GP. IE is an incremental evolution; ES is an

evolutionary strategy; GA is a genetic algorithm; YES and VGA are the

variable-length chromosome ES and G A respectively; f (n, m, r-) is an n-

input m-output r--valued logic function; fmux(3, 1, 2) is an logic function

described the behaviour of multiplexer; Fl defines the correctness of outputs

of logic circuit evolved; F2 is the minimal number of logic cells used; F3 is

the correctness of input combinations; F4 is an error based fitness; Fl + F2

is a dynamic fitness function.. .. 42

3.1 A 5-digit even parity function given by minterms table (xor5_d.pla)

and by truth table (xor5_dl.pla). X = {XO, Xl, X2, X3, X4}, Y = {YO} 60

x

3.2 The ternary operations. 63

3.3 Boolean logic function given by truth table. 64

3.4 A tested function given by the cube representation (ternary _test2.pla)

and by the truth table (binary_test2.pla). X = {XO,Xl,X2,X3}, y =

{YO,Yl,Y2} 65

3.0 Initial data: Evolving logic functions using gate-level extrinsic EHW.

Ninax (B) is the maximum number of inputs in the building block B. F1 + F2

is the dynamic fitness function. The truth table representation of logic func

tion corresponds to applying binary logic in EHW and the cube representa-

tion - to ternary logic.

3.6 Experimental results: Fitness function strategy and algorithm perfor

mance. X denotes that the corresponding criteria has been activated; Ftf ,

F;f and Fgf are the mean fitnesses F 1, F2 and F3 of the best evolved

chromosomes respectively; F2 (Nf) is the mean fitness function F2 of fully

functional designs evolved during 100 runs; R(Nf) is the number of evolved

67

fully functional circuits, Nf 83

3.7 Initial data: Evolving logic functions optimised by different criteria.

Functional set IF§j is encoded according to the Table 2.2 • 89

3.8 Experimental results: Dynamic fitness function strategy using different

optimisation parameters at the second stage of evolution. F1 and F2 are

the first and second criteria of the dynamic fitness function F, (F1 = Ft};

F4cMOS, F4in10s and F4!vMOS are the number of transistors in CMOS,

dynamic MOS and NMOS circuits respectively; F!f is the mean value of

criteria Fk for the best evolved chromosomes; Nf is the fully functional

circuit; F2 (Nf) is the mean fitness function F2 of N f evolved during 100

runs; R(Nj) is the number of evolved fully functional circuits, Nj. 90

3.9 An example of generating a differential chromosome. ([1 and C2 are two

compared chromosomes;]jJ) is the differential chromosome; 0 = {01 02} is the

circuit output vector; Fe; and F1IJl are the fitness functions of chromosomes

IC; and]jJ) respectively. .. 103

xi

3.10 Initial data Probabilistic analysis. NinuX (B) is the maximum number of

inputs in the building block B. 110

3.11 The functional characteristics of chosen functional sets. 111

3.12 Experimental Results: F[f and F;f are the mean fitnesses Fl and F2 of the

best evolved chromosomes respectively; F2 (Nf) denotes the average fitness

F2 for fully functional circuits evolved; Nf is the fully functional circuit;

R(Nf) defines the number of fully functional circuits evolved. 116

4.1 Initial data: Circuit layout and algorithm performance. The EA pa

rameters used in this experiment and further in experimental results have

been chosen according to empirical study of EA behaviour.

4.2 Gate functionality according to the bo(z) gene in chromosome

4.3 Initial data: Circuit layout evolution using elite genetic algorithm.

:Fl +:F2 is the dynamic fitness with estimation of the number of active gates

in circuit; GGM, BGM and LGM are the global, boundary, local geometry

mutations.

126

136

147

4.4 Experimental results: Using circuit mutation and geometry mutation. 148

4.5 Experimental results: Using geometry mutation only, heterogeneous

geometry. 149

4.6 Experimental results: Using circuit mutation only, homogeneous ge

ometry 4x4(addlc.pla) and 5x5(mult2.pla). 150

4.7 Experimental results: Using circuit mutation only, heterogeneous ge

ometry at the initialisation stage. 152

4.8 Experimental results: Using circuit and geometry mutation, heteroge

neous geometry. .. 153

4.9 Initial data: Dynamic fitness function and heterogeneous circuit geom

etry; fl + f2 is the dynamic fitness with estimation of the number of

active gates in circuit; GGM, BGM and LGM are the global, boundary,

local geometry mutations. .. 156

Xll

4.10 Experimental results: Strategies of fitness function; F1 and F1 + F2 are

the fitness without and with estimation of the number of active gates

in circuit respectively; G M is the geometry mutation.

4.11 Initial data: Circuit layout distribution..

4.12 Experimental results: Algorithm performance during investigation of

157

160

the circuit layout and circuit functionality distributions.. 160

4.13 Experimental results: The circuit functionality distribution. Results

show that the higher number of circuits has been evolved with higher circuit

functionality. 163

5.1 Gate functionality according to the bo(z) gene in chromosome 170

5.2 Initial data 184

5.3 Experimental Results. Functional sets shown in bold correspond to the

function-level EHW approach, otherwise - to gate-level EHW. 185

6.1 Initial data: Evolving the sub-functions of sqn_d.pla synthesized using

Shannon's decomposition and function-level extrinsic EHvV. 215

6.2 sqn_d.pla: Specification of sub-circuits evolved by BIE with standard

decomposition. OD and SD are the output and the Shannon's decomposi

tions (by inputs) respectively; FEHW is the function-level EHW; n, m and p

are the number of inputs, outputs and input combinations in the subsystem

evolved; k is the number of additional logic gates involved to connect sub

systems; F2 (N?t) is the number of active logic gates in the most efficient

evolved circuit. 217

6.3 z5xpLd.pla: Metrics of sub-systems obtained during evolution. The

systems are decomposed according to the metrics shown in bold. For exam-

ple, after analysis of the system 82, the easily evolved system 83 is composed

from the outputs Yo, Ys and Y6. The remaining outputs are evaluated in the

following system 84. .. 235

6.4 z5xpLd.pla: History of the incremental evolution with the EHW-

oriented output decomposition. 241

Xlll

6.5 Parameters of So sub-system obtained during evolution of z5xpLd.pla.

The metrics specified in Eq. 6.4.1 and Eq. 6.4.2 are calculated for sub

system So· f~j defines that the sub-function described by output Yj is

fully functionaL Metrics f;~lxi=O and f;~lxi=l correspond to the Shannon's

decomposition by variable Xi. Hence, fyiolxi=o = fyiolxi=l = 100 for all
.J J

variables Xi· If f~j < 10Q and f;~lxi=O = 100 then the sub-circuit described

the sub-function with Xi = 0 is fully functions. The same implied for metric

fyiolxi=l' .J

6.6 Parameters of sub-systems obtained during evolution of z5xpLd.pla

using the EHW-oriented output and input decompositions (Stage l.

242

Evolution towards a modularised system). 243

6.7 z5xpLd.pla: History of the bidirectional incremental evolution with

the EHvV-oriented output and input decomposition. 249

7.1 Gate functionality according to the bo(z) gene in chromosome

7.2 Truth tables for the circuits shown in Fig. 7.5 (c), (d) and (b)

263

275

7.3 Initial data: Circuit layout and algorithm performance. 282

7.4 Initial data: Functional set of logic gates and algorithm performance. 290

7.5 Experimental Results: Functional set of logic gates and algorithm

performance. Experimental data shows that the algorithm performance

strongly depends on the functional set of logic gates chosen. Similar con

clusion has been made for binary combinational logic design problem (see

Appendix B). .. 291

7.6 Initial data: Performance of gate and function level extrinsic evolvable

hardware approaches. .. 294

XIV

7.7 Experimental Results: Performance of the gate and the function level

extrinsic evolvable hardware. Experimental data obtained show that the

fUIlction-level EHW approach performs better than the gate-level EHW.

This confirms the universality of the EHW approach in question, since sim

ilar results have been obtained when the binary combinational logic design

problem has been considered (see Chapter 5). Ftf and Fgf are the mean

fitnesses Fl and F2 of the best evolved chromosomes respectively; F2(Nf) is

the mean fitness function F2 of fully functional designs evolved during 100

runs; R(Nf) is the number of evolved fully functional circuits, N f . 294

A.1 The number of transistors used in primitive logic circuits. . . . 311

B.1 Initial data: Investigation the influence the functional set of logic gates

used on algorithm performance. '. 316

B.2 The functional characteristics of functional sets. IF§i is the i-th func-

tional set of logic gates; lIF§il is cardinality of set IF§i. 317

B.3 Experimental results: Investigation the influence of the functional set

of logic gates used on (1 + A) ES performance. IF§i is the i-th functional

set of logic gates; Fft, Fgt and F%t are the mean fitnesses F 1, F2 and F3

of the best evolved chromosomes respectively; F2 (Nf) is the mean fitness

function F2 of fully functional designs evolved during 100 runs; R(Nf) is

the number of evolved fully functional circuits, Nt. 319

C.1 The number of primitive logic gates required to implement different

combinations of the two-bit multiplier outputs " 324

D.1 Computational effort of EHvV approach during one run to evolve the

two-bit multiplier. GGM, BGM and LGM are the global, boundary and

local geometry mutations respectively. 326

xv

List of Figures

2.1 Circuit design problem in EHW. In Evolvable Hardware approach, the

circuits in initial population are generated randomly and, therefore, do not

implement correctly the desired logic function. In EHW, an evolutionary

algorithm designs a circuit that correctly implements a given logic function

and optimises to obtain a fully functional circuit. In other words, evolu

tionary algorithms evolves a logic circuit.

2.2 EHW in electronics

2.3 Taxonomy of evolvable hardware.

2.4 Extrinsic EHvV: evaluations of software solutions.

2.5 Intrinsic EHvV: evaluations of hardware solutions.

2.6 Mixtrinsic EHW: evaluations of mixed populations comprised of both

hardware and software solutions.

2.7 Matrix used to represent a circuit to be processed. Each gate gets its

10

12

13

14

14

16

inputs from either of the gates in the previous column. '" 36

2.8 Encoding used for each of the matrix elements that represent a circuit. 37

2.9 An example of the phenotype and corresponding genotype of a chro-

mosome with 3x3 circuit layout used in cartesian GP. 39

2.10 How assemble-and-test reaches the,unknown regions ofthe space of all

representations. 43

3.1 A 5-digit parity circuit evolved using (a) minterms table; (b) truth

table. Functional set: IF§ : {2, 7, 8, 9}. 60

XVI

3.2 Implementation oflogic function given in Eq. 3.3.2 (a) AND-OR PLA;

In the standard logic design, the logic function is implemented according to

the optimised representation, for example Karnaugh map. In given case,

the PLA mapping is generated based on Karnaugh map. (b) circuit is

evolved using cube representation; (c) circuit is evolved using the truth ta

ble. Unlike in the standard logic design, in EHW the circuit is synthesised

independently from the representation form. In this process the represen

tation form can be used in verification of the circuit correctness. In given

case the Karnaught map is used to verify the correctness of evolved circuits. 66

3.3 Behaviour of dynamic fitness function. The graph depicts the best fit

nesses :;:1 and :;:2 of the best chromosome. The two-bit multiplier is evolved

during 5000 generations using dynamic fitness function. During Y Fl only

the circuit functionality criteria Fi is taken into account, hence F4 = o.
During Y F2 the circuit functionality should remains the same (Fl = 100)

and the number of active gates is targeted to minimise. The graph shows

clearly that two distinctive evolutionary processes are performed to evolve

a cost-optimised fully functional two-bit multiplier. 76

XVll

3.4 Experimental results: Method of objective weighting. FI and F3 define

the correctness of evolved circuits; F2 determines the quality of evolved

circuits; Graphs A and B illustrate that there is no dominated criteria

among FI and F.3, since the evolutionary algorithm with different weights

for both criteria performs similar for both logic functions: two-bit adder and

two-bit multiplier. Graphs C and D demonstrate that FI is a dominated

criterion. Thus, in the case when the weight of FI is less than the weight of

F2 , no fully functional solutions have been evolved for both logic functions.

Graphs E and F evidence that F3 is a dominated criterion. Similarly to

the previous case, the fully functional solutions have been obtained, if the

weight of F3 .is large enough. With increasing the weight of F3, the algorithm

performance has been improved. Conclusion: In evolution process is the

criterion defining the correctness of evolved circuits dominates other criteria,

determined the quality of evolved circuits.

3.5 Most efficient evolved two-bit multiplier design optimised by the num

ber of used transistors (A): Functional set: IF§1 :{2, 6, 7, 8, 9, 10, 11,

84

21, 22, 23, 24} .. 91

3.6 Evolved two-bit multiplier design (B): Functional set: IF§2 :{6, 10, 11,

21,22,23, 24} .. 93

3.7 Most efficient evolved two-bit multiplier design optimised by the circuit

delay(C): Functional set: IF§1 :{2, 6, 7, 8, 9, 10, 11, 21,22, 23, 24} .. 94

3.8 Evolved two-bit multiplier design (D): Functional set: IF§1 :{2, 6, 7, 8,

9, 10, 11, 21, 22, 23, 24} .. 95

3.9 Evolved two-bit multiplier design (E): Functional set: lli"§2 :{6, 10, 11,

21, 22, 23, 24} .. 95

3.10 Evolved two-bit multiplier design (F): Functional set: IF§3 :{6, 7, 8, 9,

10} .. 97

3.11 Evolved two-bit multiplier design (G): Functional set: IF§6 :{4, 6, 10,

12, 23, 24} .. 98

XVlll

3.12 Evolved two-bit multiplier design (I): Functional set: IF§6 : {4, 6, 10,

12, 23, 24} .. 98

3.13 Evolved two-bit multiplier design (J): Functional set: IF§6 :{ 4, 6, 10,

12, 23, 24} .. 99

3.14 Circuit Output Genes. The horizontal axis defines the outputs in the

evolved circuits. The vertical axes in Graphs A and C correspond to the

conditional probabilities calculated according to Eq. 3.5.6 for the two-bit

multiplier and the two-bit adder respectively. These graphs describe the

evolutionary process aimed to evolve a fully functional circuit, Y F J • Condi

tional probabilities calculated for both tested functions 1.1sing Eq. 3.5.10 are

mapped to the vertical axes of Graphs Band D. These graphs illustrate the

evolutionary process that produces cost-optimised circuit, Y F2. A compar

ison of these graphs shows that the conditional probabilities obtained for

evolutionary process aimed to evolve fully functional circuits Y FJ 2 times

lower than the similar probabilities obtained for evolutionary process Y F2.

Conclusion: The circuit output genes are more essential during evolution

YF2·

XIX

112

3.15 Connection Genes. The horiz;ontal axis defines the positions oflogic gates

in the circuit layout. The vertical axes in Graphs A and C correspond to the

. conditional probabilities calculated according to Eq. 3.5.6 for the two-bit

multiplier and the two-bit adder respectively. These graphs describe the

evolutionary process aimed to evolve a fully functional circuit, Y Fl' Condi

tional probabilities calculated for both tested functions using Eq. 3.5.10 are

mapped to the vertical axes of Graphs Band D. These graphs illustrate the

evolutionary process that produces cost-optimised circuit, Y F2' Compari

son of these graphs shows that the conditional probabilities in all evolution

processes are higher for genes located in more essential positions. The condi

tional probabilities for evolutionary process Y F2 in logic gates located in less

essential positions are higher than the similar probabilities for evolutionary

process Y FI . Conclusion: The genes located in more essential positions

are very important in both evolutionary processes. The genes located in less

essential positions become more essential in evolutionary process YF2' 113

3.16 Input Type Genes. Horizontal axe defines the positions of logic gates

in the circuit layout. Vertical axes in Graphs A and C correspond to the

conditional probabilities calculated according to Eq. 3.5.5 for the two-bit

multiplier and the two-bit adder respectively. These graphs describe the

evolutionary process aimed to evolve a fully functional circuit, Y Fl' Condi

tional probabilities calculated for both tested functions using Eq. 3.5.9 are

mapped to the vertical axes of Graphs Band D. These graphs illustrate the

evolutionary process that produces cost-optimised circuit, Y F 2 • Comparison

of these graphs shows that the conditional probabilities in all evolution pro

cesses are slightly higher for genes located in more essential positions. No

differences between two evolutionary processes have been noticed. Conclu

sion: There is no difference between two evolutionary processes. The genes

in logic gates located in more essential positions are a bit more essential

than in logic gates located in less essential positions. 114

xx

3.17 Cell Type Genes. The horizontal axe defines the positions of logic gates in

the circuit layout. The vertical axes in Graphs A and C correspond to the

conditional probabilities calculated according to Eq. 3.5.3 for the two-bit

multiplier and the two-bit adder respectively. These graphs describe the

evolutionary process aimed to evolve a fully functional circuit, l' Fl. Condi-

tional probabilities calculated for both tested functions using Eq. 3.5.8 are

mapped to the vertical axes of Graphs Band D. These graphs illustrate the

evolutionary process that produces cost-optimised circuit, l' F2. Compari-

son of these graphs shows that the conditional probabilities in all evolution

processes are slightly higher for genes located in more essential positions.

No differences between two evolutionary processes have been noticed for

the two-bit multiplier. In case of evolving the two-bit adder, during cir-

cuit functionality evolution (1' FJ) the conditional probabilities obtained for

logic gates located in less essential positions are slightly higher than in cost

optimised circuit evolution l' F2. Conclusion: There is no clear difference

between the two evolutionary processes for both logic functions tested. .. 115

4.1 Dependence the algorithm performance on the connectivity parameter.

Graphs illustrate that the algorithm performance depends on the connec-

tivity parameter. There are four specific ranges of areas for connectivity

parameter showing that the algorithm performs differently. 127

4.2 Relationship between the connectivity parameter and the minimal depth

of logic circuit that can be implemented using given circuit layout.

Graph shows that there is a range where the minimal depth of the logic cir-

cuit is relatively high for a specific range of connectivity parameter. Com

paring this range with one obtained empirically, we can notice that they are

identical. .. 129

XXI

4.3 Dependence of the algorithm performance on the number of columns.

Graphs A and B demonstrate that with increasing the number of columns

in the circuit without connectivity restrictions (Nconnect = N cols), the num

ber of primitive active logic gates in the fully functional circuits increases.

Graphs C, E and G shows that with higher connectivity restrictions the

number of columns required to evolve fully functional two-bit multipliers

decreases. The smaller the connectivity parameter, the narrower the range

of the number of columns, that can produce fully functional solution. Simi

lar conclusion can be made considering Graphs D, F and I that correspond

to the full adder. .. 130

4.4 Dependence the algorithm performance on the number of rows. Graphs

illustrate that the algorithm performance does not depend on the number

of rows in the rectangular array. .. 132

4.5 Schematic of chromosome structure implementing a 3-input 2-output

logic function .. 133

4.6 An example of the phenotype and corresponding genotype of a chro-

mosome with 3x3 circuit layout .. 135

4.7 The geometry mutation process for a chromosome with geometry 3x3 142

4.8 Parents for cell-uniform crossover 144

4.9 The circuit layout distribution The graphs illustrate how the evolution-

ary algorithm defines the circuit layout automatically and evolves the fully

functional solutions. Graphs illustrate that there is a favourite area of cir

cuit layout, where the evolutionary algorithm produces some fully functional

solutions. For example, no circuit layout with 3 columns has been chosen

during evolution of two-bit multiplier. In the case of the two-bit adder, no

circuit layout with less than 6 columns has been chosen by evolutionary

algorithm. 162

XXll

4.10 The distribution of the number of active logic gates used in circuits

evolved using circuit layout heterogeneous approach. The graphs show

. that there is a specific range of the number of primitive active logic

gates, that contain evolved circuits. 165

5.1 Building block level representation 172

5.2 Circuit level representation. 174

5.3 An example of the phenotype and corresponding genotype of a chro-

mosome with 5x2 circuit layout The number of building blocks employed

is 9. The logic gate labeled 8 implements a I-digit full adder, that requires 3

primitive logic gates to be implemented. Therefore, the number of primitive

logic gates is 11. .. 176

5.4 Evolved two-bit adder design (A); # logic gates = 10; # building

blocks = 2; HA is half adder. 186

5.5 Evolved two-bit adder design (B); # logic gates = 18; # building

blocks = 7; FA is full adder; mult2 is a two-bit multiplier.. 187

5.6 Evolved two-bit multiplier design (A); # logic gates = 7; # non

redundant primitive logic gates = 7; # building blocks = 6; HA is

the half adder.. .. 188

5.7 Evolved two-bit multiplier design (B); # logic gates = 7; # non

redundant primitive logic gates = 7; # building blocks = 6; HA is

the half adder. .. 189

5.8 Most efficient conventional gate-level three-bit multiplier (# logic gates

= 34; # non-redundant primitive logic gates = 34; # building blocks

= 21). .. 190

5.9 Evolved 3-bit multiplier design (A): Functional set: {2, 7, 8, 9, 18};

logic gates = 32; # non-redundant primitive logic gates = 28; #
building blocks = 13; mult2 is the 2-bit multiplier.. 191

XXlll

5.10 Evolved 3-bit multiplier design (B): Functional set: {2, 7, 8, 9, 18};

logic gates = 51; # non-redundant primitive logic gates = 33; #
building blocks = 12; mult2 is the 2-bit multiplier.. 194

5.11 Evolved 3-bit multiplier design (C): Functional set: {2, 7, 8, 9, 18};

logic gates = 50; # non-redundant primitive logic gates = 39; #
building blocks = 20; mult2 is the two-bit multiplier. . . 195

5.12 Evolved 3-bit multiplier (D): Functional set - {2, 7, 8, 9, 18, 22};

logic gates = 40; # non-redundant primitive logic gates = 31; #
building blocks = 16; HA is the half adder, mult2 is the 2-bit multiplier. 196

5.13 Evolved 3-bit multiplier (E): Functional set - {2, 7, 8, 9,18, 22}; # logic

gates = 42; # non-redundant primitive logic gates = 37; # building

blocks = 18; HA is the half adder, mult2 is the two-bit multiplier. .. 197

5.14 Evolved 3-bit multiplier (design F): Functional set - {2, 7, 8, 9,17,18,

19, 22}; # logic gates = 62; # non-redundant primitive logic gates =
45; # building blocks = 12; FA is the one-bit full adder, 2FA is the

two-bit adder, mult2 is the two-bit multiplier. 198

6.1 The structure of bidirectional incremental evolution (BIE) Incremental

evolution performs in two directions: from complex system to sub-systems

(complex system decomposition) and from sub-system back to the complex

system (complex system optimisation).) 205

6.2 The bidirectional incremental method applied for designing digital sys-

tems of n inputs and m outputs. .. 210

6.3 Circuit diagrams of functional decomposition. (a) Simple generalized

decomposition; (b) Iteractive generalized decomposition; (c) Multiple

generalized decomposition; (d) Cascade generalized decomposition... 214

6.4 sqn_d.pla: Designed circuit using Shannon's decomposition and function

level EHW (Stage 1. Evolution towards a modularised system). The

number of primitive logic gates: 97. 218

X.X1V

6.5 Sub-circuits allocation in the complex circuit genotype (Sub-circuit con

nections include the logic gates that link sub-circuits with each other.. .. 219

6.6 . sqn_d.pla: Designed circuit using Shannon's decomposition and function

level EHW (Stage 2. Evolution towards an optimised system). The

number of primitive logic gates: 93. 221

6.7 sqrLd.pla: Circuit design using BIE with output decomposition and

function-level EHW (Stage 1. Evolution toward a modularised system).

The number of primitive logic gates: 50. 222

6.8 sqn_d.pla: Circuit design using BIE with output decomposition and

function-level EHW (Stage 2. Evolution towards an optimised circuit).

The number of primitive active logic gates: 34. 224

6.9 mLd.pla: Circuit design using BIE with output decomposition and

function-level EHvV (Stage 1: Evolution towards a modularised sys-

tem). The number of primitive logic gates is 61. , 225

6.10 The diagram of EHW-oriented decomposition. IP is the initial popula

tion; IP(R) denotes the randomly generated initial population; ~ is the i-th

truth table; Cbi(Td is the best chromosome genotype evolved using an ex

trinsic EHW for the function given by the truth table~; IP(Cbi(~)) is the

initial population generated using the best chromosome genotype obtained

after the evolutionary process for the i-th truth table. 231

6.11 z5xpLd.pla: Bidirectional incremental evolution (Stage 1: Evolution

towards to a modularised system)

6.12 z5xpLd.pla: Diagram of performing a bidirectional incremental evo

lution (Experiment C). The i-th system Si is evaluated according to the

truth table of n inputs, m outputs and p input-output combinations. This

evaluation process can be defined as So (n, m, p). Dynamic fitness function

[1] contains evaluation of: (1) circuit functionality, F1; (2) the number of

236

logic gates used in the circuit, F2 . Y(Fj) defines the evaluation process

performed using criteria Fj. .., ., 237

xxv

6.13 z5xpLd.pla: Performance of direct and bidirectional incremental evo

lution in the circuit design problem. The maximum fitness per generation

. is plotted for each of the two approaches. The direct evolution (dotted line)

makes slight progress at the first and stalls after about 10 000 generations.

The plot is an average of 100 simulations. Incremental evolution, however,

proceeds through several task transitions (seen as abrupt drop-offs in the

plot), and eventually solves the goal-task. The incremental plot is a result

of one simulation.

6.14 z5xpLd.pla: Diagram of performing bidirectional incremental evolu-

240

tion with output and Shannon's decompositions (Experiment D). 246

6.15 z5xpLd.pla: The ERIN-oriented output and Shannon's decompositions

(Stage 1: Evolution towards a modularised system) (Experiment D).. 248

6.16 Sub-system connectivity in z5xpLd.pla: The EHW-oriented output

and Shannon's decompositions (Stage 1: Evolution towards system

decomposition). .. 250

6.17 z5xpLd.pla: Optimised sub-system OSo = {S2, S3}. The number of

primitive active logic gates is 18. 251

6.18 z5xpLd.pla: Optimised sub-system OSl = {S6,S7}. The number of

primitive active logic gates is 12. 252

7.1 Symbols of the two-input r-valued logic gates 261

7.2 Building block level representation 266

7.3 Circuit level representation 267

7.4 An example of the phenotype and corresponding genotype of a chro-

mosome with 4x2 circuit layout 270

7.5 The evolved for 3-valued half adder designs. 276

7.6 The evolved 3-valued full adders. 277

7.7 The 3-valued 1-digit full adders evolved using the 3-valued half adder

and the one-digit multiplier. 278

7.8 The evolved 3-valued one-digit multiplier. 279

XXVI

7.9 The 3-valued 1.5-digit multipliers evolved using the 3-valued half adder

and the one-digit multiplier. .. 280

7.10 Dependence of the algorithm performance on the connectivity param-

eter. These graphs shows that the algorithm performance depends on the

connectivity parameter. There is a range within which the algoritlun per-

forms very poorly. The curves are similar to ones, obtained for binary logic

design problem (see Fig. 4.1). This confirms that the approach behaves

similar to both application tasks.. .. 286

7.11 Dependence of the algorithm performance on the number of columns.

The experiments depicted in these graphs have been performed with connec-

tivity parameter Nconnect = Ncols , i.e. there is no connectivity restrictions

in the circuit. First, graphs show how with increasing the number of genera-

tions the behaviour of algorithm changes. Thus, with increasing the number

of generations the algorithm performance has been significantly improved.

Comparing the obtained data with ones illustrated in Fig. 4.3 for binary

logic design problem, one can notice that the curves illustrate the same

behaviour. This proves that the algorithm behaves similar for both problems.287

7.12 Dependence of the algorithm performance on the number of rows.

Graphs illustrate that the algorithm performance does not depend on the

number of rows in the rectangular array. Similar results have been obtained

for binary combinational logic design problem (see Fig. 4.4). 288

A.1 Overall view ora Xilinx FPGA (courtesy [10]). . 303

A.2 Virtex Architecture (courtesy [11]). 304

A.3 CMOS dynamic gate. 306

A.4 NOT logic gate, F = A: (a) Truth table, (b) Distinctive-shape symbol,

(c) NMOS circuit, (d) PMOS circuit, (e) CMOS circuit, (f) CMOS

dynamic circuit. 308

XXVll

A.5 NOR logic gate, F = A V B = A + B: (a) Truth table, (b) Distinctive

shape symbol, (c) NMOS circuit, (d) PMOS circuit, (e) CMOS circuit,

(f) CMOS dynamic circuit. .. 30S

A.6 NAND logic gate, F = A i\ B = A . B: (a) Truth table, (b) Distinctive

shape symbol, (c) NMOS circuit, (d) PMOS circuit, (e) CMOS circuit,

(f) CMOS dynamic circuit. .. 309

A.7 AND logic gate, F = A i\ B = A· B: (a) Truth table, (b) Distinctive-

shape symbol, (c) CMOS circuit. 309

A.S OR logic gate, F = A V B = A + B: (a) Truth table, (b) Distinctive-

shape symbol, (c) CMOS circuit. 310

A.9 EXOR logic gate, F = A EB B: (a) Truth table, (b) Distinctive-shape

symbol. 310

A.10 Half-adder: (a) Truth table; (b) Circuit. 312

A.ll One-bit full adder (lBFA): (a) Truth table; (b) Distinctive-shape sym-

bol; (c) Circuit; (d) Circuit with half-adders. 312

A.12 Two-bit multiplier: (a) Truth table; (b) Conventional circuit; (c) Cir

cuit with the one-bit full-adders (lBFA). In this work the two-bit multi

plier is described, by input vector X = {xo, Xl, X2, X3} and the output vector

y = {Yo, YI, Y2, Y3}, where Xo = AI, Xl = Ao, X2 = B l , X3 = Bo, Yo = P3,

YI = P2, Y2 = PI and Y3 = Po·

C.1 Evolved two-bit multiplier design (A)

C.2 Evolved two-bit multiplier design (B)

C.3 Evolved two-bit multiplier design (C)

XXVlll

313

322

323

323

List of Symbols

There follows the lists of symbols and abbreviations used in this thesis.

Abbreviations

BIE Bidirectional Incremental Evolution

BGM Boundary Geometry Mutation

CL Circuit Layout

CMOS Complementary metal oxide semiconductor

DMOS Dynamic CMOS

EA Evolutionary Algorithm

EHW Evolvable Hardware

ES Evolutionary Strategy

Eq. Equation

FA Full Adder

Fig. Figure

FET Field-Effect Transistor

FPGA Field Programmable Gate Array

HW Hardware

GA Genetic Algorithm

XXIX

GGM Global Geometry :vlutation

GM Geometry Mutation

GP Genetic Programming

HA Half Adder

LGM Local Geometry Mutation

mult2 a 2-bit multiplier

mult3 a 3-bit multiplier

MVL Multi-Valued Logic

PLA Programmable Logic Array

SW Software

VES Variable-length chromosome ES

VGA Variable-length chromosome GA

Symbols

y(X) the logic function

r the radix of logic; r = 2 corresponds to the Boolean logic

n the number of variables in the logic function

m the nurriber of outputs in the logic function

p the number of input combinations in the logic function; p = rn corre

sponds to the completely specified logic function; p < Tn defines that

the function is incompletely specified

x
y

F

the set of input variables, X = {xo,xl,---,xn-d

the set of output variables, Y = {Yo, Yl, ---, Ym-d

the fitness function

the dynamic fitness function

xxx

pbc
~

pbc
~

IF§

IF51
N

N j

cost(N)

the percentage of correct output bits in evolved circuit

the number of active primitive logic gates in the circuit

the percentage of correct output combinations in evolved circuit

the cost of circuit in terms of the number of used transistors, resistors,

capacitors, etc.

the i-th fitness criteria of the best evolved chromosome

the mean i-th fitness criteria of the best chromosome

the mean fitness function F2 of fully functional designs evolved during

R runs

the functional set of logic gates

the number of elements in the functional set of logic gates, IF§

the circuit or network

the fully functional circuit

the cost or size of the circuit N

cost (Nmax) the maximum cost of the circuit N

Bz the building block B labeled z

cost(Bz) the cost or size of the the building block Bz

B(ccoz, crow) the building block B located in column Ccol and row Crow

]B the rectangular array of the logic building blocks {BCcolCrow : {BCcolCrow E

]B, Ccol = {O,'" ,1Vcols - l}, Crow = {O,'" ,1Vrows - l}}}

Nmax Nmax the maximum number of columns and rows in the rectangular array cols' rows
respectively

N cols , Nrows the number of columns and rows in rectangular array, respectively,

N cols E {l, ... ,N:~X} and Nrows E {l," . ,N~~~}

N cols X Nrows the circuit layout

lVconnect the connectivity parameter representing the number of columns on the

XXXI

left to which a cell in a particular column Ceol or an output may be

connected and JVeonnect E {l, ... , Neols }

N[;:ax, N:fx the maximum number of inputs and outputs in any building block re

spectively

Nin(B) , Nout(B) the number of inputs and outputs in building block B respectively

Pmc

Pmg

Pc

the population size

the number of algorithm runs

the number of fully functional circuits evolved

the number of generations

the circuit mutation rate

the circuit layout mutation rate

the crossover rate

Chapter 1

Introduction

This thesis relates to the work carried-out in the School of Computing, at Napier

University, between September 1997 and June 2000. The theme of this thesis is an

extrinsic Evolvable Hardware applied to the combinational logic design.

This chapter states the objectives of the research.

1.1 Objectives

The goal of the research was to develop Evolvable Hardware approach capable of

evolving practical digital logic circuits implementing the logic functions of large num

ber of variables. In order to achieve this goal it was necessary to:

1. Investigate the evaluation process in the extrinsic gate-level Evolvable Hardware

approach;

2. Develop a high-level self-adaptive EHvV approach;

3. Design an extrinsic EHvV approach, that is able to evolve circuits of large num

ber of inputs and outputs.

1

1.2 The outline of the dissertation

Chapter 2.

2

This is the introduction to the thesis. The need for an extrinsic evolvable hardware

approach to design cost-optimised combinational digital circuits of large number of

variables is discussed. In this chapter we will consider the main concept of Evolvable

Hardware and discuss some work that has been done in this discipline. In spite of

being a new research area, Evolvable hardware already incorporates a large set of

applications that can be classified according to five important properties summarised

in Evolvable Hardware of the taxonomy properties classification. vVe attempt to cover

as many as possible aspects of research done in the field of evolvable hardware and

especially in the field of extrinsic Evolvable Hardware. This includes research carried

out on how the different genetic algorithm parameters, chromosome representation

and Evolvable Hardware parameters influence the performance of algorithm. The

incremental evolution that has been introduced to overcome the problem of" stalling"

effect of the evolution for a large number of generations is discussed as well. The

outline of this dissertation and the motivation for this research are also presented in

this chapter.

Chapter 3.

In this chapter we consider some aspects of evaluation process that include fitness

function, optimisation criteria and probability analyses of the evolution processes. In

order to improve the quality of evolved circuits we propose to use a dynamic fitness

technique. The circuits are evolved in two phases. Initially the genome fitness in

a given chromosome is evaluated by the percentage of output bits that are correct.

3

Once fully fUIlctional circuits have been evolved, the quality of evolved circuit is taken

into the fitness function. This allows us to evolve circuits with 100% functionality

and minimise the circuit by some of the criteria given in advance. vVe showed that

the algorithm performs better when the dynamic fitness function strategy is used.

The quality of evolved circuit can be defined by a number of criteria. vVe propose

to evaluate the evolved circuit in terms of the number of basic blocks used in the

implementation technologies. Thus, the FPGA-based circuit can be estimated by

the number of primitive active logic cells or by the number of basic building block

used in the FPGA design. The MOS-based circuit can be evaluated in terms of the

number of transistors. Other optimisation criteria such as the circuit delay, circuit

area, connectivity restrictions can be applied, but are not considered in this section.

Therefore, using these criteria we are able to evolve efficient FPGA- as well as MOS

based circuits. The proposed fitness function technique has been compared with such

multi-objective function approaches as MIN-MAX formulation, method of objective

weighting and method of distance function. Also, we investigate how the circuit

evolution is carried out. This allows us to define first what type of genes influences

the most on algorithm performance and second, effectiveness of gate allocation in

circuit design.

Chapter 4.

In this chapter we have discussed one of the possible ways to improve the quality of

evolved circuits. The choice of suitable circuit geometry is a very complicated task

and is intimately linked with the complexity of the function implemented. So, in

order to avoid this we have investigated the possibility of evolving the circuit layout

at the same time as trying to evolve the fully functional circuits. The circuit geometry

4

dictates the length of the chromosome, thus we worked with chromosomes of variable

length. In this scheme, mutation was carried out in two ways. First, we can mutate

genes associated with a circuit in a fixed geometry, and secondly, we can by mutation

choose the circuit geometry. The main purpose of circuit layout evolution was to try

to evolve the best circuit layout together with circuit functionality. However during

the algorithm execution we found the interesting result that actually using a flexible

circuit geometry allows us to reduce the number of active gates in circuit. This was

unexpected. We have defined several strategies for the GA. We have investigated cases

where we use homogeneous, heterogeneous or partially heterogeneous (heterogeneous

only at the initialisation stage of algorithm) circuit layouts during algorithm execution

and determined the algorithm performance as a function of both fitness measures.

Chapter 5.

In this chapter we propose the function-level extrinsic Evolvable Hardware approach.

This approach allows us to evolve circuits using primitive logic cells as well as multi

input multi-output logic functions specified in advance or generated during evolution.

The connectivity of complex building blocks used in evolution is specified in advance

and the functionality of these blocks is outlined during evolution. The behaviour

of complex building blocks can be defined by one- or multi-output logic functions.

The proposed chromosome representation allows us to reduce the size of chromosome

significantly, that is essential in the complex problem solving area. The experimental

results show that the proposed function-level extrinsic Evolvable Hardware evolves

the fully functional circuits easier than the similar gate-level extrinsic Evolvable Hard

ware.

Chapter 6.

Evolvable Hardware has been proposed as a new technique to design complex sys

tems. However, complex systems turn out to be very difficult to evolve. The problem

is that a general strategy is too difficult for the evolution system to discover directly.

This chapter proposes a new approach that performs incremental evolution in two

directions: from complex system to sub-systems with sufficient complexity and from

sub-systems to a complex system. In this approach, first, the complex problem is

gradually decomposed into some sub-tasks during evolution, and, then, the problem

is evolved incrementally, by starting with simpler behaviour and gradually making the

task more challenging and general. The system discovers the evaluation tasks, their

sequence as well as dimensions of circuit layout automatically. Since the complexity

of the evaluation tasks is unknown, the self-adaptive Evolvable Hardware approach

has to be used in order to define the initial parameters of a system automatically.

Hence, the method combining the circuit layout evolution together with circuit func

tionality described in Chapter 4 is applied to evolve sub-tasks. Additional to this

method the function-level chromosome representation is used (see Chapter 5) in or

der to improve the algorithm performance. Thus, the defined sub-tasks are evolved

using the self-adaptive function-level extrinsic Evolvable Hardware approach. The

evaluation of each sub-tasks is performed using a dynamic fitness function introduced

in Chapter 3. The method is tested in the digital circuit task, and compared with

direct evolution. The bidirectional incremental approach evolves more effective and

more general circuits and should also scale up to harder tasks.

6

Chapter 7.

In this chapter we apply the extrinsic Evolvable Hardware approach to multi-valued

combinational logic design. vVe consider the possibility of evolving the multi-valued

logic functions using both the gate- and the·function- level extrinsic Evolvable Hard

ware described in Chapter 3 and Chapter 5 and applied previously to binary circuit

design problem. We discussed the optimal parameters of both approaches. vVe show

that the behaviour of the proposed extrinsic Evolvable Hardware is similar in both

multi-valued and binary logic cases.

vVe end the thesis with some concluding remarks, which review the contribution

of this work and include topics for further research.

1.3 Some remarks about terminology used in the
dissertation

In this work we refer to some terminology that should be explained.

A logic circuit is evolved means that the evolutionary algorithm started with

randomly generated non-functional circuit that, through evolution, finds a fully func-

tional circuit. The circuit is evolved based on the test-and-assemble method.

A functional set of logic gates, JF§ is a set of logic gates, from which the circuit

can be assembled. For example, considering the AND-OR PLA, the functional set

of logic gates contains AND, OR and NOT logic gates. In evolvable hardware any

set of logic gates can be chosen. Each logic gate in a functional set of logic gates is

encoded with an integer. Thus, 1F§ : {5, 7, 8} means that the logic gates, encoded by

integers 5, 7 and 8, are used to evolve the logic circuit.

A fully functional circuit is a circuit that correctly implements the desired truth

7

table. In other words the functionality of this circuit is 100%.

In this dissertation all minimisation techniques are performed using evolutionary

algorithms, unless otherwise cited in the text.

The uncommitted or redundant logic gate is a logic gate that is in chromosome

genotype but is not actually used in the circuit structure. The active logic gate is a

logic gate that is not redundant.

The AND/OR/NOT and the AND/EXOR/NOT approach (commonly known as

Reed-Muller) are used. We will refer to logic gate implementing a primitive logic

operation from any of these algebras as primitive logic gate. So, from the algebraic

point of view, the circuit can be evaluated in terms of the number of primitive logic

gates. The cost of the circuit can be defined by the number of primitive active logic

gates.

Chapter 2

Evolutionary design of electronic
circuits

This chapter provides an overview of the background to Evolvable Hardware and the

need to investigate the extrinsic Evolvable Hardware (EHW) is identified. In spite

of being a new research area, Evolvable hardware already incorporates a large set of

applications that can be classified according to five important properties summarised

in EHW taxonomy classification and first proposed in 1996 [12]. Special attention

will be paid to the progress made in the area of extrinsic Evolvable Hardware (EHW)

applied to digital circuit design. The needs of the EHW realm are discussed and the

research area of this work is drawn.

2.1 Circuit design problem and evolutionary algo
rithms

Evolutionary algorithms are employed in different application problems. One ofthem

is circuit design problem, where a traditional circuit is implemented once the repre-

sentation of the function is optimised.

There are two main approaches for the synthesis of combinational logic circuits

8

9

using evolutionary algorithms.

1. The first approach optimises the formal representation of the function and de

signs the circuit based on the optimal function representation. In this case a

functionally complete basis is chosen and the genetic algorithm is applied to

optimise the form of the function representation. For example, variable order

ing of Binary Decision Diagrams for multi-level functions using evolutionary

algorithm has been discussed in [13], [14], [15]. Using the obtained optimised

representation the circuit structure is synthesised. It is clear that the circuit

design is obtained by the application of algebraic rules associated with the rel

evant algebra. Further, the synthesised circuit can be tested using evolutionary

algorithms. The verification of circuits by means of evolutionary algorithms has

been reported in [16].

2. The second approach namely Evolvable Hardware (EHW) begins from randomly

connected and randomly chosen gates and gradually evolves the target function

ality. So, there is no specific knowledge about circuits generated in the initial

population. The particular set of gates used is fixed in advance, but whether

or not any particular gate is used, or, how many times a gate is used, is en

tirely free. The advantage of this approach is that it allows us to synthesize the

circuit using any set of logic gates. Consequently, it permits the synthesis of

compact and unusual circuit structures. In this way we can abandon the restric

tions associated with conventional design [9]. The basic idea of this approach

is demonstrated in Fig. 2.1.

EHW process:
1. Initialisation: randomly generated
initial population
2. Evaluation: chromosomes in initial
population
3. Evolution: change the genotype of
chromosOlues
4. Evaluation : chromosomes in current
population
5. If terminate = "no", then GO to Step
3, Else GO to Step 6
6. Evaluation : chromosomes In final
population

Evolved logic circuit

Inputs

00 ... 0
00 ... 1

1 1 ... 1

Chromosome:

Circuit geometry

o

-617

2<L-'.~, -".
2 =-1~ __ -

-1234

3<3

.m.....:;---~.
><1-,1 11 .. -
~/

~3 103

lK2.-.~~ Y1
~-1112 .-

'~' _./

-1268

Circuit outputs : 16 12

Fitness: 103.0

2

~r;:---
'-' _/

-121112

-91311

W o
13 16

10

10913

10

Desired logic function

}(j JY2 .•• Xf\l l'/ l'z ... Y,'\.1

o 0 1 0 0
o 1 o 1 o

1 1 1 1 0

?
•

Outputs

1 1 o

Figure 2.1: Circuit design problem in EHW. In Evolvable Hardware approach, the cir
cuits in initial population are generated randomly and, therefore, do not implement correctly
the desired logic function. In EHW, an evolutionary algorithm designs a circuit that cor
rectly implements a given logic function and optimises to obtain a fully functional circuit.
In other words, evolutionary algorithms evolves a logic circuit.

11

2.2 Main concept of Evolvable Hardware

Evolvable Hardware (EHW) is technique to synthesise and optimise electronic circuits

using evolutionary algorithms.

In the context of electronic synthesis the configuration of evolved circuits as well

as connecting elements inside circuits are represented by chromosomes. A circuit

can be implemented in hardware or simulated in software. An evolutionary process is

employed to the population of circuits in order to synthesise a target circuit. An initial

population is generated randomly. Genetic operators are applied to the chromosome

and obtained new circuits are compared with the target logic function. Connecting

elements can represent any electronic element or device. Connecting elements are

linked with each other according to the connectivity restrictions applied to the target

implementation technology. One of the main tasks of the evaluation process is to

define how the functionality of the evolved circuit approaches the target function.

Once the fully functional circuit is evolved, a number of optimisation criteria can

be applied in order to obtain the circuit with desired efficiency. The process in

usually ended after a given number of generations or when the closeness to the target

response has been reached. If the connecting element is represented by a primitive

logic function, a gate-level EHW approach is applied. In the function-level EHW

approach, high level hardware functions such as adders, multipliers, etc. rather than

simple logic functions are used as primitive functions in evolution [17], [18]. Therefore,

the connecting element, or so called building block, implements the one-output or

multi-output logic function. Fig. 2.2 depicts the basic idea of EHvV in electronics.

Taken as a design methodology, evolvable hardware offers a major advantage over

12

Figure 2.2: EHW in electronics.

classical methods; the designer's job is reduced to that of specifying the circuit re

quirements and the basic elements, whereupon evolution" takes over" to "design" the

circuit [19]. The Evolvable Hardware exploits the search space that has been unreach

able before by classical design methodologies. EHW conquers new application areas,

and currently the future of EHvV is considered as self-adaptive, self-reconfigurable

hardware, capable to adjust to new problem without the designer's help.

2.3 Taxonomy of Evolvable Hardware

In this section the main directions of EHW and their development will be considered.

The classification of current EHW can be roughly derived in accordance with the

following five key properties specified as a taxonomy of evolvable hardware in [12]

(see Fig. 2.3):

1. Evaluation process;

2. Evolutionary process;

3. Evolutionary programming approach;

1 Ex1:rin:sic
2. IntrinsIC
:3 MIX[l'"IrISIC

Evaluation
process

Evolutionary
programming

approach

1
2 Gonetlc progl'"arnn"llng
3. Evolutionary
prograrnnllng
4. Ant system

1 Ga1:G-levgl Qvolu'tion

2. Func'tion_lovel evolut:ion
:3 Incro::.)s('}d corllploxltV
evolution

Target
application

area

1 Circuit: design (digital
and annlng)
2 Control ond Robotics
3 Pattern roco~nltlon
4. ConlrTlUnlCatl<>n sys[or-n
s. Prediction appllCHtion

1 Progran'lrn.ablo intogra1:ed clrcuit:s
2_ Into-grated CirCUit lnyou[

Figure 2.3: Taxonomy of evolvable hardware.

4. Target application area;

5. Evolving platform.

2.3.1 Evaluation process

13

In EHW, the evaluation of chromosomes can be performed on software or hardware.

Depending on how the evaluation process is implemented, three types of evolutionary

processes can be defined:

1. Extrinsic evolution, [20], [21];

2. Intrinsic evolution, [22], [23], [21];

3. Mixtrinsic evolution, [24];

Extrinsic EHW. In extrinsic evolution, the candidate solutions are evaluated as

software (SvV) models and evaluations are done using a simulator. Extrinsic EHvV is

schematically illustrated in Fig 2.4. The population is homogeneous and consists of

Populittion of c:::a:ndidate~9rutloh~ .

<I·· SW111S~2 '>J,~ll· S~ n I>
&~~J;~iI0h#k~~;~~~~~~~;I~····

Figure 2.4: Extrinsic EHW: evaluations of software solutions.

Parallel Search
Algorithm

Figure 2.5: Intrinsic EHW: evaluations of hardware solutions.

14

SvV models (e.g. SPICE netlists, VHDL, etc.) that describe an electronic circuit to

a certain degree of accurancy. The extrinsic evolution is widely applied to the digital

circuit design problems since it operates with logic gates and can always produce a

correct solution that is replicable to HW [25], [26], [27], [1). Extrinsic EHvV has been

applied to evolve such analogue circuit design problems as

1. low pass filter (Miller et al. [28), [29), [30));

2. passive filter (Koza et al. [31));

3. high gain amplifier (Koza et al. [32));

4. 60 decibel amplifier (Bennett III et al. [33));

o. operational amplifier (Bennett et al. [34)).

These problems can be solved only with some approximation in extrinsic EHW.

15

Intrinsic EHW. In intrinsic EHW, the candidate solution are implemented on

physical HW configurations on programmable devices/architectures, which are evalu

ated using some test/evaluation equipment (see Fig. 2.5). There are major advantages

in using this approach: the speed of the evolutionary process and the fact that no

simulation models are needed to evaluate the circuit [22], [12], [35]. In intrinsic EHW

individual candidates influence each other because each candidate performs on the

same chip as its predecessors. Intrinsic EHvV has been applied in order to evolve

1. tone discriminator (Thompson et al. [36], [37]);

2. switched capacitor circuits (Zebulum et al. [21]);

3. oscillator circuits (Huelsbergen et al. [38]);

4. electronic stethoscope circuit (Lohn et al. [39]);

5. electric filters (Zebulum et al. [40], [41]);

6. intermediate frequency filters (Murakawa et al. [42]);

7. Butterworth low-pass filter (Lohn et al. [39]);

8. non-liner digital filter (Perkins et al. [43]);

9. band-pass filter (Zebulum et al. [44]).

Mixtrinsic EHW. Mixtrinsic evolution relates to evolving on mixed (heteroge

neous) populations, composed partly of models and partly ofreal HW. This constrains

the evolution to a solution that jointly simulates well in SvV and performs well in HW.

In other words, it produces a solution that exploits only HvV characteristics included

in the SW model for producing the desired behaviour (Fig. 2.6). Mixtrinsic EHvV

16

p;;ptJ,ation ofc:andid atEisoluti().ns

il· Sw,· II ·HW 2 ·1*\.iII s.:v n lui
> ··• •..•. · •• ·.·.~iij~~TI~8·~~~~:~~f&<tr~·· ...

Figure 2.6: Mixtrinsic EHvV: evaluations of mixed populations comprised of both
hardware and software solutions.

has been proposed to solve a portability problem, since for several reasons (includ

ing mismatches between models and physical HW, limitations of the simulator and

testing system, etc.) circuits evolved in SW may not perform the same way when

implemented in HW, and vice-versa.

Two types of mixtrinsic EHW have been proposed [24]:

1. Complementary;

2. Combined.

In complementar-y mixtrinsic EHW, candidate solutions are evaluated after being

alternatively reassigned to either a HW or a SW platform (subject to random or

deterministic choice).

In combined mixtrinsic EHvV, each individual is evaluated both in HW and SVV,

and a combined fitness function is calculated. In the simplest case, this can be a

simple average of the two components or may involve adjustable weights, etc.

Mixtrinsic evolution has been applied by Stoica et al. [24] to evolving AND gate

using one field programmable transistor array (FPTA).

In all EHvV methods mentioned above genetic algorithm is implemented in soft-

ware. Recently, complete har-dwar-e evolution has been introduced, where the eva-

lutionary process itself is implemented in hardware [45], [43]. Instead of having all

17

(Extrinsic) or part (Intrinsic) of the evolutionary process in the host processor, a

hardware implementation of the evolutionary process is used to drive evolution. So

far, two works has been reported in this direction:

• Tufte and Haddow [45] proposed a GA pipeline where the evolutionary process

together with the evolving design are implemented on the same chip. They

propose two approaches to overcome the problem of reconfiguring the chip once

a new individual is generated: (1) to set-off an area on the FPGA chip to be used

as re-configurable memory that may be reconfigured internally within the chip

or (2) to use partially reconfigurable FPGA technology which allows selection

of parts of the chip for configuration. The method has been tested on evolving

an one-control multiplexer. One of the disadvantages of this method is that this

prototype limits the possibility of evolving larger more complex designs, where

complexity may be measured in terms of the complexity of both the genotype

required to represent the design and the fitness function required to evaluate

the design. Limited chip size also affects the population size which limits the

amount of genetic information available to help the evolutionary process towards

an acceptable fitness level. Limited genetic information in the form of smaller

populations may cause the evolutionary process to evolve towards a non-optimal

solution .

• Perkins et al. [43] developed a self-contained FPGA-based implementation of

a spatially-structured evolutionary algorithm that provides a significant speedup

over conventional serial processing in three ways: (a) efficient hardware-pipelined

fitness evaluation of individuals, (b) evaluation of an entire population of in

dividuals in parallel and (c) elimination of slow off-chip communication. They

18

find a speedup factor of over 1000 compared to a C implementation of the same

system.

2.3.2 Evolutionary process

Evolution in EHvV can be performed at different levels:

1. Gate-level EHW;

2. Function-level EHW;

3. Increased complexity evolution;

4. Incremental evolution.

Gate-level EHW. The hardware evolution employing the primitive gates such

as AND and OR gates is called gate-level evolution [18]. One of the most common

problem in gate-level EHvV is that this approach is only suitable for small circuits.

So, the gate-level evolution is not powerful for the use in industrial applications.

Nevertheless, gate-level EHvV has been applied for a number of real applications. A

myoelectric artificial hand, which is operated by muscular control signals has been

designed using a gate-level EHvV chip [46]. In this particular application the EHW

performance is slightly better than with neural networks. At the same time the

learning time in this application is considerable reduced. An evolutionary robot

navigation system developed using a gate-level EHvV has been introduced in [47].

Applications with gate-level EHW perform better than with neural networks [46].

Experimental results show that gate-level EHvV operates very well in solving relatively

easy application tasks.

19

Function-level EHW. The function-level evolution has been introduced to be

employed in more practical applications than the gate-level EH\lV. In the function

level evolution, high level hardware functions, such as addition, subtraction, sine,

etc., rather than simple logic functions are used as primitive building blocks in the

evolution [48], [49], [18J. Much more powerful circuits can be evolved using the

function evolution [50], [49]. As an alternative to the function-level EH\lV there has

been work in Genetic Programming for evolving the functions [51J. The method is

called Automatically Defined Functions (AD F) and is used in software evolution.

Function level of evolution have been applied to real applications. Simulations of

data compression using function level evolution indicates performances comparable

to other compression methods like JPEG compression [52]. The scheme is designed for

implementation in a custom ASIC device. A function based FPGA has been proposed

for applications like ATM cell scheduling [50] and adaptive equalizer in digital mobile

communication [49]. Function-level EH\lV shows better performance than similar

gate-level EHW [52]' [49]' [50]. In all applications mentioned above, function-level

EHW is implemented using intrinsic evolution. The most complex connecting element

used in extrinsic EHW is an one-control multiplexer [53], [9], [25]. No extrinsic

EHW has been designed that uses multi-input multi-output connecting elements.

One of possibilities of evolving a digital circuit using function-level extrinsic EHW

will be discussed in Chapter 5. An FPGA model consisting of 100 programmable

floating processing units (PFUs) has been applied to such well-known problems as

the two interwined spirals, the Iris data set, 2-D image rotation, synthesis of a 4-state

automation [48], [18]' [17].

20

Increased complexity evolution. The idea of incTeased complexity evolution

is to evolve a system gradually as a kind of divide-and-conquer method [54], [55].

Evolution is first applied individually to a large number of simple cells. The evolved

functions are the basic blocks used in further evolution or assembly of a larger and

more complex system. This may continue until a final system is at a sufficient level
-

of complexity. The main advantage of this method is that evolution is not performed

in one operation on the complete evolvable hardware unit, but rather in a bottom-

up way. The increased complexity evolution has been applied to the problem of

recognizing characters of 5x6 pixels size, where each pixel can be 0 or 1 [54]. As a

result of increased complexity evolution, the number of generations can be drastically

reduced by evolving sub-systems instead of a complete system.

The divide-and Conquer method can be successfully applied to such application

problems where the interaction within complex systems is understood. Torresen [54],

[55] proposed to divide a system into functionally independent sub-systems, that can

be evolved independently. It has been proposed to divide a system without defining

the optimal partition points. This lack of a method can lead to increased complexity

of evolved solution. In order to avoid it, well-known decomposition methods can be

applied together with divide-and-conquer method. This approach will be discussed

in detail later in Chapter 6.

As has been mentioned above, only the relatively easy problems can be handled

successfully using the divide-and-conquer method [56]. This method is not suitable

to problems, where interactions within a complex system are so many, or so little

understood, that we cannot understand how to divide it into smaller comprehensible

pieces. It is for these kinds of problems that artificial evolution is put forward as

21

a means to develop complex systems that work even when they are too complex to

comprehend.

Incremental evolution. Incremental evolution is used for these purposes. It

has been applied successfully to a number of application problems such as control

of robotic system [56], [57], [58] and task of prey capture [59] that are stochastic,

dynamic complex tasks. The incremental approach evolves more effective and more

general behaviours, and should also scale up to harder tasks [59). No attempts to

apply incremental evolution to extrinsic EHW have been made before. This issue will

be raised in Chapter 6. An incremental evolution applied to EHW differs from similar

methods applied in neuro-evolution. This method incorporates the interaction knowl

edge of complex systems and knowledge of successful evolution. The evolution is first

applied to the randomly generated population of chromosomes. Then at some point

the evolved material is analysed on the genetical significance. Genetically important

parts of the chromosome are further evolved in order to complete sub-tasks. Once

the fully functional solution is obtained the system is gradually optimised through

evolution. The incremental evolution is applied to evolve digital circuits extrinsically.

2.3.3 Evolutionary programming approach

In order to exploit the search space and design circuits, EHW uses artificial evolution.

There are basically four approaches to implementing the artificial evolution:

1. Evolutionary algorithms;

2. Genetic programming;

3. Evolutionary programming;

22

4. Ant System.

Evolutionary algorithms have the following basic features:

• Binary encoding to form chromosomes;

• Random initialisation of a population;

• Recombination operators (crossover, mutation);

• Generational replacement of population with elitism.

The evolutionary algorithms include

• genetic algorithms;

• evolutionary strategy.

The evolutionary strategy differs from genetic algorithms mainly in the way recombi

nation is implemented. Instead of using both crossover and mutation operators, the

evolutionary strategy utilises the mutation operator only.

In the genetic programming method chromosomes are represented as trees with or

dered branches, in which the internal nodes are functions and the leaves are terminals

(variables and operands).

In evolutionary programming the chromosomes are encoded using integer or real

numbers. Mainly, evolutionary programming adopts the same operators as in evolu

tionary algorithms.

The ant system is a multi-agent system, where low level interactions between single

agents (i.e. artificial ants) result in a complex behaviour of the whole ant colony, The

idea was inspired by colonies of real ants, which deposit a chemical substance on the

23

ground called pheromone. This substance influences the behaviour of the ants: they

will tend to take those paths where there is a larger amount of pheromone [60], [61]'

[62].

Combination of these four basic methods produces a large variety of other alter

native evolutionary programming methods.

2.3.4 Target application area

Recently evolvable hardware has been applied to a wide range of application areas,

including:

• Digital and analogue circuit design;

• Control and robotics;

• Communication systems;

• Pattern recognition;

• Prediction application.

Circuit design

Some research has been done in the area of analogue and digital circuit design.

Analog circuit design. EHW has been applied to evolve different parts of

communication system that includes

• adaptive equalizer (Murakawa et al. [49]);

• low-pass filter (Miller [28]);

• intermediate frequency filter (Murakawa et al. [42]);

24

• Butterworth low-pass filter (Lohn and Colombano [39]);

• linear filter (Lohn et al. [63]);

• non-linear filter (Lohn et al. [63]);

• electronic stethoscope circuit (Lohn and Colombano [39]);

• microwave circuit (Kasai et al. [64]).

Let us consider in more detail some of applications to EHW.

• Layzell [65] evolved a NOT gate using specially designed motherboard at tran

sistor level.

• Huelsbergen et al. [38] used an evolutionary search to find automatically elec

tronic circuits that toggle an output line at, or close to, a given target frequency.

They found empirically that oscillating circuits can be evolved that closely ap

proximate some of the supplied target frequencies.

• Lohn and Colombano [39] evolve a low pass analogue filter suitable for use

in an electronic stethoscope using a linear representation, a simple unfolding

technique and a parallel genetic algorithm. Circuit size, circuit topology and

device values are evolved in their system. This method helps to minimise the

computer time required to evolve circuits by keeping the decoding and repairing

processes shorter. At the same time this technique is topology-limited.

• Zebulum et al. [21] consider both intrinsic and extrinsic evolution of amplifiers

and oscillators. They use different techniques for analogue circuit representa

tion. They show that in analogue circuit design some precautions can result in

25

imposing constraints to the evolutionary algorithm due to physical limitations

of semiconductor devices.

Digital circuit design. Some work has been done in the area of evolving digital

circuits. Most of them use the extrinsic EHW approach, that will be discussed later

in detail. At the same time some applications have been implemented using intrinsic

EHW.

• Manovit et al. [66] synthesized different types of synchronous sequential logic

circuits such as a counter, serial adder, frequency divider, modulo-5 detector

and parity checker using registered PAL.

• Levi and Guccione [67] evolved at the gate and flip-flop levels an 8-bit counter

and several digital frequency dividers. They show that the evolved digital cir

cuits are stable. A genetic FPGA uses Xilinx's JBits interface to control the

generation of bitstream configuration data and XHvVIF portable hardware in

terface to communicate with a variety of commercially available FPGA-based

hardware.

• Damiani et al. [68] evolve a digital circuit which computes a simple hash func

tion mapping a 16-bit address space into an 8-bit one.

• Hollingworth et al. [11] evolve two-bit adder using Virtex devices through in

ternet reconfigurable logic.

Control and Robotics

EHW can change its own hardware structure to adapt to the environment whenever

environmental changes occur through genetic learning. This feature of EHW can be

26

used in some control applications. The process of genetic learning consists of seeking

the best hardware configuration given a particular environmental condition. Some

overview of evolutionary techniques in physical robotics can be found in [69].

The following systems have been developed using EHW:

1. control system [70], [71], [72];

2. evolutionary robot navigation system [47];

3. learning system for autonomous robot [73], [74].

One of the basic elements in a robotic control system is the controller. Evolving

controllers for autonomous mobile robots becomes one of the attractive application

areas for EHvV.

• A. Thompson [75] evolved a real hardware robot controller for wall-avoidance

behaviour. For the hardware evolution, architecture bits (also called "config

uration memory") of the EHW controller, which was implemented in FPGAs,

were used as genotypes. In this work, the whole function and behaviour of the

EHW controller have been determined in advance.

• In [71] the genetic evolution in the environment was employed to determine

the connections among the elements, thus types of reflexes realised by logic

circuits and the ways of their combinations being obtained automatically by

the interactions between the environment and the system itself.

• T. Higuchi et al [23] developed a V-shape ditch tracer with fault-tolerant cir

cuit that is used as a prototypical welding robot. EHW works as the backup

of the control logic circuit for the tracing, although the EHW is not given any

27

information about circuit. As mentioned in [23] the learned result can be di

rectly translated into a new hardware system, making it suitable for real time

applications.

• Ebner [76] demonstrated the possibility of evolving a hierarchical control archi

tecture using genetic programming on a large physical mobile robot.

• The evolution of a connectionist structure where each node has an associated

program, evolved using genetic programming has been proposed by Silva in [72].

It has been reported that this approach requires less effort to find a solution in

comparison with other known genetic programming based approaches.

• Both topology and tuning of controller with a free variable can be evolved using

extrinsic EHvV implemented by means of genetic programming [77].

• An evolved robotic controller for a four-legged real robot enabling it to walk dy

namically has been proposed in [78]. The evolution has been performed on-line

by a linear machine code GP system. The robot has eight degrees offreedom. It

has been shown that the evolving system is robust against mechanical failures.

• Hamby et al. [79] evolve a ball-chasing behavior that successfully transfers to

an actual AlBO (a registered trademark of Sony Corporation). Their approach

differs from others in that they model an intermediate software layer which

passes processed sensor data to the controller and receives high-level control

commands, instead of simulated ray sensor values. They reported that in this

interpretation a simulator runs over 11000 times faster than real time.

2S

Pattern recognition

• T: Higuchi et al [23] designed the pattern recognition system that has been

tested on recognition of three patterns consisting 64 pixels (black and white,

SxS). The results show that EHW works as a hard-wired pattern recognizer

with such robustness as neural networks.

• Hollingworth et al. [SO] proposed highly parallel image processing tool to detect

edges within a wide range of conventional grey-scale.

• Dumoulin et al. [SI] introduced a method of inventing linear edge enhance

ment operators using evolution and reconfigurable hardware in order to design

a totally automated object recognition system. A technique proposed by them

builds an edge enhancement operator using evolutionary methods and imple

ments and tests each generation using the Xilinx 6200 family FPGA. Images of

640x640 pixels have been processed.

• Yasunaga et al. [S2] proposed a logic circuit design methodology for pattern

recognition chips using genetic algorithms. In the proposed method, pattern

data are transformed into the truth tables and the truth tables are generalized

to adapt the unknown pattern data. The generalized, or evolved truth tables

are then synthesized to logic circuits. In this method no floating point numerical

circuits are required and the intrinsic parallelism in the data is embedded into

the circuits. Consequently, high speed recognition systems can be realized with

acceptable small circuit sizes. The face image and sonar spectrum of SxS pixels

are chosen as examples.

29

Data compression

Tanaka. et al. [83] describe a data compression system using Evolvable Hardware

for digital colour electrophotographic printers. They show that EHW can change

the compression method according to the characteristics of the image. The proposed

EHw-based compression system can compress approximately twice as much data as

JBIG, the current international standard.

Stoica et al. [84] demonstrated the evolution of compression algorithms with

results better than the best-known compression algorithms. Their system was used

to automatically generate a hardware-based image compression algorithm specially

adapted for the class of images captured by the spacecraft. A nonlinear model used

by the compression algorithm is evolved using genetic programming technique, which

can be then compiled to an FPGA configuration, and finally downloaded (up-link to

the spacecraft) to the real FPGA.

Prediction Application

In a prediction application, EHW gets information from the environment in which it

is embedded and tries to predict the next state of the environment [85]. EHvV has

been used in such prediction applications as

• scheduling real-time traffic in Asynchronous Transfer Mode (ATM) networks

(Liu et al. [50]);

• data compression (Salami et al. [86]).

2.3.5 Evolving platform

Different evolving platforms can be used in EHW:

30

1. Programmable integrated circuits;

2. Integrated circuit layout.

Programmable integrated circuits. Programmable integrated circuits can

be divided into three categories [19]: (1) Memories; (2) Microprocessors; (3) Logic

circuits. EHW focuses mainly on the Programmable logic circuits. Logic circuits can

be divided into three sub-categories [19]: PLD (Programmable Logic Device); CPLD

(Complex Programmable Logic Device); FPGA (Field Programmable Gate Array).

A PLD circuit consists of an array of AND gates, which generates product terms

from the system's inputs, and an array of OR gates, which generates the output of

the system. According to their degree of programmability, PLDs can be classified

into PROM (Programmable Read Only Memory), PAL (Programmable Array Logic)

and PLA (Programmable Logic Array) [191.

A CPLD can be seen as a combination of programmable cells consisting usually

of multiplexers or memories and an interconnection network that selects the inputs

of the programmable cells.

FPGAs are the most popular reconfigurable devices in EHW [19], [12]. They

consist of an array of logic cells and IIO cells. Each logic cell consists of universal

function [19] (multiplexer, demultiplexer, memory), which can be programmed to

realize a certain function. FPGAs are highly versatile devices that offer the designer

a wide range of design choice.

Instead of using FPGAs, there is also the possibility to use a memory as the

evolving platform. In this case, the memory contents will be genetically programmed

[12], [75].

31

Integrated· circuit layout. In this method, integrated circuit layers, such as

metal, oxide and silicon, as well as complete devices, such as transistors or transmis

sion gates, are handled by the evolutionary process to create a complete circuit layout

[12]. VLSI design is an example of this approach. In this case, the intrinsic approach

is the only viable scheme to evaluate evolved circuits.

Recently, a number of chips developed especially for EHW has been introduced

in the past.

• Kajitani et al. . [46] introduced an integrated EHW LSI chip that consists of

GA hardware, reconfigurable hardware logic, a chromosome memory, a training

data memory and a 16-bit CPU core. They showed that the EHW performs

slightly better than a neural network and that the learning time is considerably

reduced.

• Laysell [65] presented a test platform designed specifically to tackle the difficul

ties of using FPGAs. The motherboard has been designed to investigate many

important issues arising in current EHW research, including analysis, fault tol

erance, genotype encoding, portability, basic elements and evolved topologies.

• Murakawa et al. [42] proposed an analogue EHvV'chip for Intermediate Fre

quency Filters, which are widely used in cellular phones. There are two advan

tages of the proposed chip, namely, (1) improved yield rates and (2) smaller

circuits, which can lead to cost reductions and efficient implementation.

• Hamilton et al. [87] developed a demonstration board to implement analogue

and mixed-signal arrays. The rich mix of analogue and digital functionality

32

provided by Palmo systems combined with the fact that they may accept ran

dom configuration bit streams them most attractive as platforms for evolvable

hardware. They demonstrate the ability of proposed tool to evolve circuits us

ing different technologies and standard electronic chips such as Motorola device,

Zetex device.

• Langeheine et al. [88] suggested a hardware system devoted to perform evolu

tion of analogue VLSI circuits. The system contains a CMOS chip providing an

array of 16x16 transistors programmable in their channel dimensions and their

connectivity. A genetic algorithm is executed on a PC connected to one or more

programmable transistor arrays. Individuals are represented by a given config

uration of this array. They demonstrate the feasibility of proposed method .

• Stoica et al. [89], [44] proposed a fine grained reconfigurable transistor array

(FPTA) that is integrated on CMOS chip. The FPTA has advantageous fea

tures for hardware evolutionary experiments when compared to programmable

circuits with a coarse level of granularity. They demonstrated the flexibility

and versatility for the implementation of a variety of circuits in comparison

with other models of re-configurable circuits.

A number of EHW design issues concerning robust electronics [37], [90], fault

tolerance [91], [92], [93], fault recognition [94], self-repairing features of hardware

[95], [96], dynamic fitness schedules [63] have been actively discussed in the past, but

have not been covered in this overview.

33

2.4 An extrinsic EHW in digital circuit design

EHW has been applied to a wide range of complicated tasks. The development of

extrinsic EHW approach is very important for the following reasons:

1. The portability problem in EHvV can be solved using mixtrinsic EHW, where

some of solutions are evaluated in software;

2. The EHW exploits the new search space, that is not limited by traditional logic

algebra [9];

3. The circuit evolutionary process is very similar in both intrinsic and extrinsic

EHWs.

Because of reasons mentioned above it is very important to understand the nature

of evolving circuits using extrinsic EHvV.

Most extrinsic EHW approaches have been designed to evolve both the functional

ity and connectivity of interconnected primitive logic gates such as AND, OR, NOT

[97]. The extrinsic EHW approaches have been adopted to synthesize the circuits

intended use on a programmable logic array (PLA) devices [97], Xilinx 6000 Field

Programmable Gate Arrays (FPGAs) [25], Xilinx XC6216 FPGA [98], [99], Virtex

FPGA [100], [101]. Note that the PLA is a device which has an input field of AND

gates whose outputs are fed to an output field of OR gates to form sum-of-product

logic solutions.

A variety of extrinsic EHvV methods have been applied to synthesise digital cir

cuits (see Table 2.1). In most cases, primitive functions or multiplexers have been

considered as connecting elements.

34

Table 2.1: Surinuary of extrinsic EHvV approaches for digital circuit design VGA is a
variable-length chromosome GA; GP and EP are a Genetic and an Evolutionary Program
ming; CGP is a Cartesian GP; AS is an Ant System; f (n, m, r) is an n-input m-output
r-valued logic function; fmux(3, 1,2) is a logic function describing the behaviour of multi
plexer; F is a fitness function; Fl defines a correctness of outputs of network evolved; F2 is
the minimal number of logic cells used; F3 is a correctness of input combinations; P1 is an
error based fitness, Fi + F2 is a dynamic fitness function strategy with execution of criteria
Fi at first stage of evolutionary process and criteria F2 at the second stage; p is the number
of input combinations in the logic function

Author
Building F EA Application
block

Kitano H., 1996 [20] 1(2,1,2) Fl EP 6-1 multiplexer (f(6, 1, 2), p = 64);
Multiple XOR

Zebulum R.S. et aI, 1(2,1,2) F t GA Digital string simulator; 4-1 mul-
1996 [12] tiplexer; 3x8 decoder; 1-bit full

adder
Murakawa M. et aI, 1(n, 1,2) Fi VGA Adaptive equalization
1996 [49]
Thompson A., 1996 1(2,1,2) F t GA Oscillator
[22]
Miller J. et aI, 1997 1(2,1,2) Fi CGP Arithmetic binary circuit design
[25] 1mux(3, 1,2)
Miller J., 1998 [102] 1(2,1,2) Fi GA Real-valued function design

1mux(3, 1, 2)
1(2,1,r) Fi CGP 3-valued half adder

Kalganova T. et aI,
1 mux (r + 1, 1, r) 1998 [7]

Hernandez-Aguirre A. 1mux(3, 1,2) Fl +F2 GP Logic function: f(6, 1, 2), p = 64
et aI, 1999 [103]

1(2,1,2) Fl +F2 CGP 2-bit multiplier (f(4,4, 2), P = 16)
Kalganova T. et aI,

1mux (3, 1,2) 1999 [1]
Coello C.A. et aI, 1999 1(2,1,2) Fi +F2 GA 2-bit multiplier (f(4, 4,2), P = 16)
[26]
Masher J. et aI, 1999 1(2,1,2) F1, F3 GA Sorting network design
[98]
Miller J., 1999 [104] 1(2,1,2) F4 CGP Low pass filter design

1(3,1,2)
1(2,1, r) Fi +F2 CGP 3-bit multiplier (f(6, 6, 2), p = 64);

Kalganova T., 2000
f(n, m, r) 2-bit full adder (f(5, 3, 2), p = 32);

[4] 3-valued 1.5 digit multiplier;
3-valued I-digit full adder

Coello C .A. et aI, 2000 1(2,1,2) Fi , F2 AS 2-bit multiplier (f(4, 4, 2), p = 16)
[105]

1(2,1,r) Fl +F2 BrE sqn_d.pla (f(7, 10,2), p = 128),
Kalganova T., 2000

f(n, m,r) mLd.pla (f(6, 12,2), p = 32),
[6] z5xpLd.pla (f(7, 3, 2), p = 84)

35

Despite the fact that EHW has been actively studied during the last decade, a lot

of work still has to be done in the area of improving the quality of evolved circuits,

understanding the nature of circuit evolutionary process, and discovering new ap

proaches that allow us to apply EHvV to more complex tasks. As it can be seen from

Table 2.1, extrinsic EHvV has been applied to relatively easy problems. For instance,

evolving logic functions of small number of variables. Mostly, research in the area of

extrinsic EHW is directed to exploit the possible application areas and test how vari

ations of evolutionary programming approaches infiuence the algorithm performance.

Standard GA, evolutionary strategy and ant systems have been proposed for use in

extrinsic EHvV.

At the earlier stage of EHvV investigation, the main purpose of EHW was to

evolve fully functional circuits starting with randomly generated populations. The

requirements to EHvV change with time and currently researches intend not only

evolve fully functional solution but also optimise the obtained solution by a number

of optimisation criteria. In respect of these requirements a dynamic fitness function

has been propose by Kalganova et al. [1] and Hernandez-Aguirre et al. [103] at the

same time.

Hernandez-Aguirre et al. [103] proposed to use a vVIRE function in the func

tional set of logic gates. Maximisation of the number of wires in the circuit lead

to the minimisation of the number of logic gates in the circuits. Unfortunately in

this interpretation redundant logic gates with another functionality than vVIRE are

not taken into account, which leads to the unaccurate estimation of the quality of

evolved circuits. The dynamic fitness function proposed by Kalganova in [1] avoids

this disadvantage. The quality of evolved circuit is estimated in terms of the number

36

Figure 2.7: Matrix used to represent a circuit to be processed. Each gate gets its
inputs from either of the gates in the previous column.

of logic gates actually used in circuit.

There are a lot of issues that can be investigated in extrinsic EHW. They include

the circuit layout evolution, function-level evolution and incremental evolution. This

dissertation addresses all of these problems.

The extrinsic EHvV approaches proposed in the past are considered in details

in the following sub-sections. Chromosome representations have a rectangular array

structure in all extrinsic EHW approaches discussed before, since most of evolving

platforms used in EHW have rectangular grid structure.

2.4.1 Louis's EHW approach

Louis [106] is one of earliest sources that report the use of GAs to design combinational

logiC circuits. The chromosome representation introduced by Louis [106] is currently

relatively popular and is used by a number of researchers, mostly by research group

supervised by Coello [26], [107], [108]' [105], [27], [109].

Chromosome representation. The circuit is represented as a matrix in which

each matrix element is a gate (there are 5 types of gates: AND, NOT, OR, EXOR

and WIRE) that receives its 2 inputs from any gate at the previous column as shown

in Fig. 2.7. More formally, we can say that any circuit can be represented as a

37

Input 1 .. \Input 2 .\ Gate Type J

Figure 2.8: Encoding used for each of the matrix elements that represent a circuit.

bidimensional array of gates Si,j, where j indicates the level of a gate, so that those

gates closer to the inputs have lower values of j. (Level values are incremented from

left to right in Figure 2.7). For a fixed j, the index i varies with respect to the gates

that are "next" to each other in the circuit, but without being necessarily connected.

A chromosomic string encodes the matrix shown in Fig. 2.7 by using triplets

in which the 2 first elements refer to each of the inputs used, and the third is the

corresponding gate as shown in Fig. 2.8.

Fitness function. The goal of circuit design as stated in [26] is to produce a fully

functional design (i.e., one that produces all the expected outputs for any combination

of inputs according to the truth table given for the problem) which maximises the

number of WIREs. This is happened because \tVIRE indicates a null operation,

or in other words, the absence of gate, and it is used just to keep regularity in the

representation used by the GA that otherwise would have to use variable-length stings

[27]. Therefore, higher the number of WIREs in the circuit, lower the number of logic

gates. So the dynamic fitness function has been introduced [26]. At the beginning

of the search, only the validity of the circuit outputs is taken into account, and the

GA is basically exploring the search space. Once a functional solution appears, then

the fitness function is modified such that any valid designs produced are rewarded

for each \tVIRE gate that they include, so that the GA tries to find the circuit with

the minimum number of gates that performs the function required. It is at this stage

that the GA is actually exploiting the search space, trying to optimise the solutions

38

found (in terms of their number of gates) as much as possible.

Application. The complexity of solved problem depends on the circuit layout,

the number of primitive logic gates in the functional set, the connectivity restrictions

and the complexity of evolved circuit. Only relatively simple problems, such as im

plementation of a 3-variable logic function, a 2-bit multiplier, have been solved using

this method [107], [26], [105].

2.4.2 Cartesian GP

In this dissertation, an extrinsic EHW (also called Cartesian GP [53]) proposed by

J. Miller and applied to the digital logic circuits design will be extended [25]. The

problem of interest consists of designing a digital circuit that performs a desired

logic function (specified by a truth table). I refer to primitive logic gate if this gate

implements any primitive one- or two-input logic function. The circuit evolution

is performed using a rudimentary (1 +.>-.) evolutionary strategy (ES) with uniform

mutation [29] and an elite genetic algorithm (GA) [25]. In this case a population of

random chromosomes is generated and the fittest chromosome is selected. The new

population is then filled with mutated versions of this.

Chromosome representation. The following chromosome representation has

been reported in [102]. The best way to explain the chromosome representation is to

use a simple example. Fig. 2.9 shows the genotype and phenotype of a gate array with

3x3 circuit geometry (Ncols x Nrows). The gate array implements a full adder. This

function has 3-inputs and 2-outputs, therefore, xo, Xl, X2 represent the primary inputs

of circuit and Yo, Yl are the primary outputs of the circuit. The gate genotype which

describes the behavioral features of logic cell is defined as follows: < Cf io i l i2 >.

The function of each cell is expressed as the first gene cf associated with each cell

Circuit
inputs:

Chromosome:

Circuit geometry . 3 x 3

a

21011

2

~~_1l)::""" "--
14512 22673

~ \--.., y ~8~.\--.:.··
:L_lj 7 '-'- U I--W -

71--.-- r':--:-=-:
6121 16231 15864

~~j \--- ~ \"---
2 ~iIC_ - ~IL~

22120 16 130

Circuit outputs 11 7

Fitness: 100 a

~ ~o
16485

Gate 10:

Fu nctional gene: 15
Input1' 8

Input2: 6
Input3: 4 (redundant)
Type of cell: 2~input

Gate 11:

Functional gene: 16
Input1: 4
Input2: 8

Control input: 5
Type of cell: multiplexer

39

Figure 2.9: An example of the phenotype and corresponding genotype of a chromo
some with 3x3 circuit layout used in cartesian GP.

(shown in bold typeface). Each cell is assumed to possess three input connections

i o, i l , i 2 . If the cell function does not require inputs then the corresponding genes are

ignored. For example, the cell with output labeled 8 has input connections 1, 3 and O.

This means that the first input is connected to the primary input Xl, the second input

is connected to the output of cell labeled 3 located in Oth column Oth row, and the

third input is connected to the primary input Xo. The cell 8 is described by function

of 2 variables. This means that third input gene is ignored. The primary outputs

of the gate array are also expressed as connections. For example, Yo is connected

to the output of the cell labeled 11. The gate array is envisaged as being divided

into vertical columns of cells. In order to define the feed-forward nature of circuit

the representation is so constrained that columns of cells may only have their inputs

connected to connection points on their left. The number of columns (including the

primary inputs) to which the inputs of cell in question can be connected is assigned by

connectivity parameter Nconnect. The allowed cell functions can be chosen to be any

40

Table 2.2: Cell gate functionality.

f
0 "0" 5 Zl 10 io EB i 1 15 io V i 1 20 io EB (i 1 1\ i2)
1 "1" 6 io 1\ i 1 11 io EB i1 16 (io 1\ i2) V (i 1 1\ i2) 21 io EB i1

-
2 Zo 7 io 1\ i 1 12 io V i 1 17 (io 1\ i2) V (i 1 1\ i2) 22 io EB it
3 Zl 8 io 1\ i 1 13 io V i 1 18 (io 1\ i2) V (i1 1\ i2) 23 io 1\ i l
4

- -
14 (io 1\ i2) V (i 1 1\ i2)

--
Zo 9 io 1\ i1 io V i 1 19 24 io V i1

subset of those shown in Table 2.2, where 1\, V, EB represent AND, OR and exclusive

OR (EXOR) operations respectively, io indicates NOT i o. Functions 0-15, 21-22 are

the basic binary functions. Functions 16-19 are all binary multiplexers with different

inputs inverted. The multiplexer (MUX) implements a simple (IF-THEN) statement

(i.e. IF i2 = 0 THEN io ELSE it).

For many circuits there will be cells that are not actually connected to any of

the outputs, as indeed is the case for cells with outputs 9 and 10 in the example

above. These are redundant for the circuit they define, and may be removed when

the chromosome is analysed. There are other forms of the cell redundancy possible

which cause a particular cells outputs to be stuck at either one or zero even though

the inputs to the cell are not fixed. This happens when the inputs change together.

There is also logic redundancy. This is the case when the cell can be removed from

the circuit and the functionality of circuit has not being changed. For example, the

cell labeled 6 can be redundant, because the inputs of this cell are connected to the

output of the cell 5 and as a result the functions describing the behaviour of logic

cells 5 and 6 are equal. Hence, cell 6 can be removed from the circuit.

Objective Function and Fitness. The fitness function defines the percentage

of output bits which are correct. A fitness function, that is equal to 100%, defines

the fully functional design. The algorithm immediately terminates on achieving 100%

41

functionality. For example, the fitness function F for the one-bit adder with carry

(Fig. 2.9) is 100.0. This means that this circuit is fully functional and this implements

the full adder.

Application The cartesian GP has been applied to such problems as binary

circuit design [25], [110], [28], [53], real-valued function design [102]' multi-valued

logic design [7], [8], low pass filter design [29], [104] (see Table 2.3). The progress of

this approach is given in Table 2.3.

2.4.3 Assemble and Test

The principles of Assemble and Test in Cartesian G P have been considered in detail

in [9]. Every binary and multiple-valued function is specified by a truth table. The

truth table specifies what values the outputs of a function are for all values taken by

the function inputs. There are certain special collections of operators that act on a

binary or multiple-valued function that have the property that any function can be

represented by expressions involving these operators and the input variables. The

collection of these operators and the sets they operate on is often referred to as an

algebra. In the case of binary functions there are two well-known algebras: Boolean

which uses AND, OR and NOT and Reed-Muller (R-M) which uses AND, EX-OR

and NOT. Multiple-valued logic also has its own algebras and often are referred to

as functionally complete bases. vVhen these algebras are used, a given function can

only be represented by a particular class of expressions. The basic concept is shown

in Fig. 2.10.

The unknown region in Fig. 2.10 depicts all the representations of logic functions

which are written as an expression which does not use operations taken from the

set [NOT, AND, OR, EX-OR]. Any expression in this region, once known, could be

42

Table 2.3: Development of cartesian GP. IE is an incremental evolution; ES is an evo
lutionary strategy; GA is a genetic algorithm; YES and VGA are the variable-length chro
mosome ES and GA respectively; f(n, Tn, r) is an n-input Tn-output r-valued logic function;
fmux(3, 1,2) is an logic function described the behaviour of multiplexer; F1 defines the cor
rectness of outputs of logic circuit evolved; F2 is the minimal number of logic cells used; F3
is the correctness of input combinations; F4 is an error based fitness; F1 + F2 is a dynamic
fitness function

Author
Building Fitness

Circu
EA Application

block func- . t

tion lay-
out

Miller J. et aI, 1997 [25], 1(2,1,2) F1 Fixed GA Arithmetic binary cir-
[111], [110], [112] 1mux(3, 1,2) cuit design

Miller J., 1998 [102] 1(2,1,2) F1 Fixed GA Real-valued function

fmux(3, 1,2) design

Kalganova T. et al1998 1(2,1,2), Fl Fixed GA Multi-valued circuit de-
[8], [7], [9] f mux (r - 1, 1, 2) sign

Kalganova T. et al1999 1(2,1,2), :F1 +:F2 Flexibl VGA Binary circuit design
[1], [3], [2] 1mux (3,1,2)
Miller J., 1999 [104], 1(2,1,2) F4 Fixed ES Low pass filter design
[28], [104] 1mux(3, 1,2)
Miller J., 1999 [53] 1(2,1,2) F1 Fixed ES Parity function design

1mux(3, 1, 2)
Kalganova T., 2000 [4] 1(m, n, 2) . :F1 +:F2 Fixed YES Binary circuit design .
Kalganova T., 2000 [4] 1(m,n,r) :F1 +:F2 Fixed YES M ulti-valued circuit

design.
Miller J. et al 2000 [113] 1(3,1,2) F1 Fixed GA Symbolic regression

problem

Miller J. et al 2000 [113] 1(3,1,2) F1 Fixed ES Santa Fe Ant Trail
problem

Kalganova T., 2000 [6] 1(m, n, r) :F1 +:F2 Fixed IE Binary circuit design

The space of all
Truth Tables

Applying
Boolean Rules

The space of all
representations

43

Figure 2.10: How assemble-and-test reaches the unknown regions of the space of all
represen ta tions.

manipulated to become an expression in either the R-M or Boolean regions.

2.4.4 Advantages of an extrinsic EHW

One of the main advantages of extrinsic EHW methods proposed in the past is that

evolution explores the whole search space without restriction to the function rep-

resentation forms and logic algebras used. This allows us to synthesise new, more

optimal logic circuits, principles [9]. For example, the evolved three-bit multiplier is

more efficient in term of the number of primitive active logic gates, than a conven-

tional one [9]. Scrupulous analysis of these circuits can produce some new principles

to synthesise logic circuits and discover new logic algebra relations. For example,

logic algebra involves four logic operators. For instance, some attempts to expose the

new principles of construction the multipliers have been reported in [9]. In Chapter

7 some circuits that are not equal from point of view well-known logic algebra are

discussed. More careful analysis of these circuits can produce new logic algebra re-

lations. Although the extrinsic EHW methods have been actively studied in terms

44

of their possible- application areas, no work directed to investigate these methods in

depth has been reported before.

2.4.5 Disadvantages of an extrinsic EHW

The extrinsic EHvV approaches mentioned above are not capable of solving the com

plex design problems because of obstacles that appeared in the evaluation process.

• Direct evolution is inefficient at evolving a long chromosome string. This

problem has been solved by introducing the variable length chromosome [114],

function-level evolution [17], [4], automatically defined functions [51] and the

divide-and-conquer approach (as a increased complexity evolution) [54], [55].

• Computation time requirements. The computation time required to process

one chromosome increases exponentially with increasing the number of inputs

in the implemented logic function. The problem can be solved by using a cube

representation of logic function instead of a binary truth table. This issue will be

discussed in Chapter 3. Cube representation has less number of input/output

combinations in comparison with the truth table. Also, this problem can be

diminished by using the parallel calculations [115].

• The number of generations required to perform a task can increase drastically

with the complexity of the task. This is often called a stalling effect. For ex

ample, a two-bit multiplier (4 inputs, 4 outputs) can be easily evolved after

5, 000 generations [9]. Similarly, evolution of a fully functional three-bit mul

tiplier (6 inputs, 6 outputs) at gate-level requires between 3, ODD, 000 [9] and

10, ODD, 000 generations [116]. According to this data we can predict that

billions of generations are required to evolve a fully functional 4-bit multiplier

45

(8 inputs, 8 outputs). A similar trend can be observed in evolutionary robotics.

In order to overcome this problem several researchers in the field of robotics

have demonstrated that incremental evolution can be successfully applied to

stochastic dynamic problems when implemented using neural networks [117],

[59], [118]. In incremental evolution, neUl:al networks learn complex general

behaviour by starting with simple behavior and incrementally making the task

more general.

• It should be mentioned that although at first sight the size of the search space

for some instances of this problem may seem too small to even attempt to use

a heuristic function, that is not true [26]. For the representation used in this

dissertation, if we assume that a number of gates, to which the logic gate can

be connected is NconnectNrows, a chromosomic length of connectivity genes is

Ninp'UtsNcolsNrows and a number of logic gates in the functional set of logic gates
Ninp'Uts Neals N rOW3

is [JF§ [, the size of intrinsic search space is [IF§, [NconnectNrows . So it can

be seen the size of search space depends on the number of columns and rows .in

the rectangular array, connectivity parameter and the number of logic gates in

the functional set of logic gates.

The contribution of this work is to overcome the difficulties of extrinsic EHW

mentioned above.

2.5 Incremental Evolution

While a number of researchers have used incremental evolution with different eva-

lutionary learning methods, there seems to be no general comparison of different

implementations of the technique. The incremental evolution can be applicable to

46

the tasks where often a natural hierarchy of behaviours from simple to complex ex

ists. As it can be seen below, incremental evolution is actively applied to synthesize

controllers and closely incorporates with neuro-evolution.

Harvey et al. [119]' [120] proposed strategy of incremental evolution. They use

incremental evolution to train robots to move towards a white triangle on a dark

background, but not towards a similarly-sized white rectangle. The robots are first

trained to orient themselves to face a large white rectangle. Then the target is changed

to a smaller white rectangle and robot pursuit is tested as this target moved. Finally,

training focuses on the actual task of interest, which includes not moving towards the

very rectangles the robots have already been trained to pursue. Comparisons made to

those trained from search find incremental evolution provides more robust solutions.

Floreano et al. [57] discussed some hardware solutions that can support investiga

tions in incremental evolution, namely modularity and cross-platform compatibility.

Experiments demonstrate that the time required to generate interesting solutions

(which is comparable or shorter than the time required by other learning techniques,

such as reinforcement learning) does not imply that the approach is not viable. They

discovered that it is possible for incremental evolution to be successful, when the

intermediate task is more difficult than the final task.

Nolfi et al. [121] used incremental evolution to train controllers for robots. Ma

neuvering physical hardware in real time makes training with robots prohibitively

expensive. However, any simulation of the robot uses an approximate model, which

simplifies the noise and environment and can influence learning. This research finds

significant degradation in performance when solutions trained in simulation are trans

ferred to physical hardware. Training the simulation-evolved controllers for a few

47

generations with the actual robots raises the real-world performance to simulation

levels.

vVinkeler et al. [122] present a study of the different methods of incremental

evolution described in [121] and [120], as well as some alternative methods. Mixed

incremental training differs significantly from the methods in theses previous works.

Standard incremental evolution begins with a population already trained on a single

task that is simpler than, but related to the task at hand. In mixed increments,

multiple populations trained on a number of simplified tasks are combined to create

a starting point. Thi$ new technique is shown to be robust against poor choices of

simplified tasks.

Chavas et al. [123] used an incremental evolution to simulate the evolution of

neural controllers for robust obstacle-avoidance in a Khepera robot and proved to be

more efficient than a direct approach. During a first evolutionary stage, obstacle

avoidance controllers in medium-light conditions are generated. During the second

evolutionary stage, controllers avoiding strongly-lighted regions, where the previously

acquired obstacle-avoidance capacities would be impaired, are obtained.

Gomez and Miikkulainen [59] proposed to apply incrementally neuro-evolution to

achieve the desired complex behaviour. In this approach, enforced sub-populations

allow evolution of recurrent networks which are necessary for tasks that require mem

ory. The Delta-Coding technique allows the evolution of transitions between tasks

even when the population has lost diversity during the previous task.

King and Novak [124] advocated incremental evolution ofthe database layer (based

on integrating only those pieces of the schema that are somehow semantically inter

related). Making persistence evolution, an incremental process does not only reduce

48

the cost of doing this evolution, but it, in many instances, turns intractable processes

into tractable ones.

Ramakrishnan [125] modeled business rules in resource allocation jobs and shows

how this resource allocation model allows an incremental evolution of the system by

enabling the behaviour of resource allocation classes to be extended through reuse

mechanisms, and how this facility of incremental evolution of systems can be extended

by capturing the dynamic components of the system explicitly as a second level of

constrains.

Fukunaga et al. [58] reported some experiments to show that incremental evolu

tion can be used as a technique for improving the performance of genetic program

mmg.

Kintano [126] tried to establish a methodology for building very large complex

system which has functional structures. He presented a method of developing very

complex structures based on a grammar-based approach. The introduction of novel

meta-node and associated operations is the essential feature of the method. The

performance of the method has been demonstrated by actually generating neural

network topologies in human neural subsystems; receptive field of skin somatic sensors

and cerebeller cortex.

Artificial evolution with genetically converged populations occurs under the fol

lowing circumstances [56]:

1. Incremental evolution, when the problem itself changes over time, for instance

a sequence of related problems of increasing complexity may be tackled by a

continuing evolutionary algorithm.

2. This may include cases where the genotype length may change in the course of

49

evolution, particularly where increasingly complex solutions require increasing

genotypes in order to specify them.

3. It is becoming increasingly recognized that even in standard GA optimisation

problems, an initially random population typically becomes genetically conver

gent after very few generations.

4. This may include cases where the computation requirements to evaluate one

chromosome, describing a complex problem, are significantly high and there

fore requires a lot of computational efforts in order to proceed the task using

standard GA.

All these four principles can be directly applied to the EHvV that solves the digital

circuit design problem.

The first case occurs in digital logic design with EHvV when the quality of evolved

circuit can be changed during evolution, even if the functionality of the circuit remains

the same. For example, in [103], [1] a dynamic fitness function is used to evolve a

fully functional circuit with optimal structure.

The size of genotype in extrinsic EHW depends on the number of logic gates

involved in the evolution. The second case appears, when in order to solve the complex

problem, a large number oflogic gates is required. This increases the size of genotype.

The third case has been studied at extrinsic EHW in the context of evolving

arithmetic digital functions such as two-bit and three-bit multipliers. The number

of generations required to perform a task increases drastically with increasing the

complexity of task. Thus, a two-bit multiplier can be easily evolved after;) 000

generations [9]; at the same time the evolution of fully functional three-bit multiplier

50

at gate-level requires from 3 000000 generations [9] up to 10 000 000 generations [116].

According to this data we can predict that billions of generations are required to

evolve fully functional 4-bit multiplier. In this case, it becomes practically impossible

to perform this task.

The last case can be studied on the example of implementing logic function of

large number of variables. The number of input-output combinations in logic function

increases exponentially with increasing the number of variables. At the same time

the complexity of logic function expands with enlarging the number of variables. This

means that it requires a large number of logic gates to implement the desired logic

function. All these facts mentioned above lead to increasing the computational time

required to evaluate one chromosome. In this case, application of GA to digital circuit

design becomes practically impossible.

Therefore this makes artificial evolution not only possible but also essential when

the EHW is applied to solve complicated task.

2.6 Motivation of presented research

In the previous chapters it has been shown despite the fact that the EHW is very

new research, a lot of work has been done by exploring the new application areas

of this new method. The empirical study of this approach shows that the extrinsic

and intrinsic EHW perform similar tasks. Using the extrinsic EHW approach at the

first stage of investigation allows designer reduce the cost and efforts of investigation

of the basic behaviour of EHvV. Therefore, in order to understand the circuit evo

lution in general, it is important to investigate the comportment of extrinsic EHW

specifically. Overview of research that has been achieved in this area shows that most

51

of researches are concentrated on attempts to demonstrate applicability of extrinsic

EHW to different problems rather then have a look more deeper inside the circuit evo

lutionary process. Understanding of this process allows us to improve its performance

and evolve more optimal circuits.

From this point of view, we outline our research in the area of evaluation and

evolutionary processes performed in the extrinsic EHW. It could form the basis of

a dynamic fitness function and evaluation process in general and of a self-adaptive

function-level EHvV method. The first is important because the correct evaluation

process benefits the evolutionary process and, further, allows to evolve cost-optimised

circuits. The second is important because there is a lack of an existing extrinsic

EHvV approach to design of combinational logic circuits. This is especially true in

the case of those systems where the logic function is given by a truth table and

direct evolution is used to synthesise the circuit. The number of input combinations

in the truth table increases exponentially with increasing the number of variables

in logic function. Therefore, the computational efforts to estimate a circuit increases

exponentially as well. Furthermore, the "stalling" effect is occurred in direct evolution

when the complex problem is evolved. By these two reasons it becomes practically

impossible to evolve complex circuits using existing EHW methods.

The bidirectional incremental evolution presented in Chapter 6 will be a step

towards evolving more complex circuits, basic to the variety of EHW approaches

being developed for digital circuit design problems. This approach combines such

discovered features of extrinsic EHW as dynamic circuit evaluation (Chapter 3), self

adaptability of EHvV parameters (Chapter 4), higher-level evolution (Chapter 5).

The discovered characteristics of extrinsic EHW are proved to be universal at least

52

for digital circuit -design problems, since the EHvV behaviour has been explored for

binary and multi-valued circuit design problems (see Chapter 7).

2.7 Scope of this Dissertation

This work is concerned with the latter of the two goals attributed to extrinsic EHW

above, namely evolving circuits that implement logic functions of large number of

variables and that are optimised by a number of criteria chosen by designer. I will be

content to demonstrate that it is possible to evolve logic functions of large number of

variables using extrinsic EHW. The actual implementation of the extrinsic EHW on

actual chip is left for future work.

Understanding the nature of the extrinsic circuit evolution process will help a

researcher to comprehend the behaviour of the circuits evolved on real hardware.

Instead of focusing on exploring the application area of extrinsic EHW approach, I

focused on "strengthening" of existing extrinsic gate-level EHW approach, investiga

tion the behaviour of this method and possibilities to design fully automatic EHvV

that will solve relatively complex problem efficiently.

So, I concentrated on inquisition of evaluation and evolution processes in extrinsic

EHW. First process defines the quality of evolved circuits and the second one responds

on the performance of EHW. It is very important to comprehend how the evaluati"on

process affects the problem statement. The choice of optimisation parameters can

change the implementation technology and the quality of evolved tasks (see Chapter

3).

The set of EHW parameters chosen can drastically influence the EHvV perfor

mance. Automatic choice of these parameters can avoid this problem. Analysing the

53

experimental results obtained for gate-level EHvV and understanding their nature, we

can improve and speed up the evolutionary process as well as to solve more complex

tasks. Thus, empirical knowledge of circuit layout behaviour in gate-level EHvV gives

us some idea about the necessity of evolving the circuit layout together with circuit

functionality in order to define the correct circuit layout suitable for a considered

problem (see Chapter 4). Automatic choice of EHW parameters can simplify the life

of designer, but it will not be able to solve the complex problems.

There are a number of limitations, that we have to overcome to improve existing

EHW approach. One of them is the chromosome length. In extrinsic EHW at hand

the chromosome length depends on the complexity of solving task. More complex task

is represented by larger genotype. In order to overcome this problem, the building

blocks of higher complexity can be used (see Chapter 5).

Another problem that impedes the successful evolution of complex circuits is the

computation time. The number of generations required to solve the problem success

fully increases drastically with increasing the complexity of problem. This obstacle

can be overcome by evolving the logic circuit incrementally. By this reason, the

emergency of introducing the mixed incremental evolution, that combines the stan

dard functional decomposition methods with evolutionary approach, can be explained

(see Chapter 6). During incremental evolution we can not only evolve fully functional

circuit, by also optimise it by given criteria. The techniques to improve the EHW

performance can be used at each incremental step, that only improve the EHvV per

formance in terms of the number of generations required and simplify the choice of

the circuit layout necessary to perform each incremental task.

54

'While the opportunistic nature of these methods presents difficulties in fully in

terpreting the results of an experiments, it may ultimately pose an advantage for

automatic problem solving.

2.8 Contribution to knowledge

This work introduces a novel method, namely bidirectional incremental evolution

that allows us to evolve complex combinational circuits. The method overcomes

such disadvantages of previously proposed extrinsic EHW approaches, as long string

chromosome, computational requirements and the" stalling" effect in evolution. Au

tomatisation of this method requires designers to develop an extrinsic EHW approach

that self-adapts to initial parameters, such as circuit layout, connectivity restrictions.

Essential reductions of chromosome strings can be made using the function-level EHW

approach.

An additional contribution of this work is the identification of requirements in

evaluation process and optimisation criteria of evolved circuits.

The application of the extrinsic EHW approach to evolve combinational multi

valued logic circuits serves to demonstrate the similarities in EHW behaviour for

both bInary and multi-valued logic design.

2.9 Summary

In this chapter, the foundation has been laid for understanding a basic principles of

evolvable hardware. Previous research has shown that evolvable hardware is efficient

as it adapts to wide ranging environments both in analytical and empirical studies.

It has been shown that in almost all applications EHW have some advantages over

i)i)

well-known classical and leaning design approaches. Despite the fact that Evolv

able hardware area has been established only during the last decade a huge amount

of applications have been found already, that include application areas from pattern

recognition to control of complex robotic systems. The detailed extrinsic EHW meth

ods and their advantages and disadvantages have been presented. And finally, the

research area of this dissertation is justified.

Chapter 3

Analysis and verification of evolved
circuits

In this chapter some specific features of the evaluation process in EHW are considered.

Such aspects of the circuit evaluation as function representation, optimisation criteria,

fitness function strategy are discussed. Probabilistic analysis of the genotypes and

dynamic fitness function are also introduced in this Chapter.

3.1 Introduction

Previously the number of logic gates has been used as one of the design metrics to

be minimised in a circuit, so that the goal was to generate fully functional circuits

that required the smallest possible number of gates (chosen from a certain set defined

by user) [103], [1], [26]. This metric is applied very well if the produced circuit is

implemented using FPGA technology [25]. However, the use of this metric may not

be realistic in VLSI systems design, where the emphasis is to decrease the whole

manufacturing cost rather than reducing the total number of components used [127],

[128], [129]. Therefore, the circuit design problem for VLSI systems design has to be

restated in such a way that the issues previously mentioned are taken into account.

56

57

Therefore, we rephrase our goal so that now we are interested in generating fully

functional circuits in which the whole manufacturing cost is minimum. In order to

achieve this goal we introduce a dynamic fitness junction, that contains two stages. At

the beginning ofthe search, only compliance with the truth table is taken into account.

Once the first fully functional solution appears, the evaluation process switches to a

new fitness function in which fully functional circuits that have less manufacturing

cost are rewarded. Each of these two fitness functions can optimise the circuit by a

number of criteria. For example, the second fitness function can be represented using

any multi-objective function in which a number of criteria are taken into account.

FPGA, CMOS, NMOS, PMOS, dynamic MOS have been chosen as target imple

mentation technologies. The manufacturing cost of a MOS circuit is estimated by the

number of transistors. The number of basic logic gates employed is used as an opti

misation criteria for the FPGA-based circuit. Note that such criteria as the circuit

area, the circuit delay, the circuit composition, etc. can be chosen as optimisation

criteria of the manufacturing cost. Such multi-objective methods as the method of

objective weighting, the method of distance functions, the MIN-MAX formulation

can be employed to combine any of these criteria ·in one objective fitness function,

that is used at the second stage of the dynamic fitness function.

Clearly, utilising the dynamic fitness function, we manipulate with two different

evolutionary processes: (1) evolution toward a fully functional circuit and (2) evolu

tion toward an optimised circuit. The structures of these two evolutionary processes

can be different. In order to investigate how different types of genes located differ

ently in genotype participate in both evolution processes, a probabilistic approach is

58

introduced in first time. This approach analyses the circuits that bring some improve

ments in the evolutionary process, i.e. their fitness functions have been ameliorated

in comparison with the previous one.

3.2 An extrinsic gate-level EHW

In this section we will describe an extrinsic evolvable hardware approach applied to

digital circuit design. The problem of interest to us consists of designing a digital

cost-optimised circuit that performs a desired logic function (specified by a truth

table). The circuit can be optimised according to any chosen manufacturing cost,

such as the number of primitive active logic gates, the number of transistors, circuit

delay, etc.. vVe refer to a gate as a primitive logic gate if this gate implements any

primitive one- or two-input logic function. The circuit evolution has been performed

using a rudimentary (1 +),) evolutionary strategy with uniform mutation [29]. In this

case a population of random chromosomes is generated and the fittest chromosome is

selected. The new population is then filled with mutated versions of this. The basic

concept of the chromosome representation has been considered in Section 2.4.2, [25],

[110], [1].

3.3 Function representation in an extrinsic EHW

The evaluation process in most EHW approaches, applied to the digital circuit design,

contains the testing of evolved network on correctness. In this case, the function is

defined using truth table [98], [25], [115]. This function representation is not suitable

for evolving circuits having a large number of inputs, because the computational

efforts increase exponentially with increasing the number of inputs in logic functions.

59

The evaluation process can be speeded up by using the so called sub-machine-code

GP technique [115]. This approach exploits the internal parallelism of sequential

CPUs and allows to speed up the program performance, but it will not help to solve

the problem of evolving logic functions of large number of variables. In order to

overcome this problem, we propose to use the ternary function representation. The

input combinations are given by cubes. The logic function can be given by both

complete and incomplete set of input combinations. Hence, both completely and

incompletely specified logic functions can be evolved. In this section we will consider

the specific features of the evaluation process performed for logic functions specified

by truth tables, minterm tables and cubes.

3.3.1 Boolean functions specified by truth and minterms ta
bles

The test as to whether the evolved circuit performs the desired logic translation of

inputs to outputs is achieved by running all test inputs through the network, and

comparing the results with the desired functionality in a bit-wise fashion. The number

of input combinations for the n-input completely specified Boolean logic function is 2n.

Therefore, this approach can be applied to design the logic functions of small number

of variables, because the number of input combinations, needed to be evaluated,

increases exponentially with increasing the number of inputs.

A PLA file (truth table oflogic function) contains the target function, and this is .

used as a basis for comparison. The percentage of total correct outputs in response

to appropriate inputs is then used as the fitness measure for the evolutionary algo

rithm. In other words, the nearer the evolved circuit comes to performing the desired

functionality, the fitter it is deemed to be. Therefore, the fitness function is defined

TI'I·~:-xDor5_d1~,-----~::,:yO i,xxr'TD~Y' I~~~L/:
L _________________ _

(a) (b)

60

Figure 3.1: A 5-digit parity circuit evolved using (a) minterms table; (b) truth table.
Functional set: JF§ : {2, 7, 8, 9}.

as follows:

,\,p-l ,\,~-12i-l.1 . - d.1
F = Dfc=O Dt=O Yz t * 100.

m*p
(3.3.1)

where nand m are the number of inputs and outputs in logic function respectively;

p is the number of ON and OFF sets (ignoring DON'T CARE conditions) in the

Boolean logic function (if p = 2n , then the Boolean function is completely specified,

else the function is incompletely specified); {Yo, Yl, ... , Ym-d are the m digits of the

output combination produced by the evaluation of the circuit, {do, d1 , ... , dm-d are

the desired outputs (for the fitness case Ie), IYi - dil is the absolute difference between

the actual output and the desired output.

Table 3.1: A 5-digit even parity function given by minterms table (xor5_d.pla) and
by truth table (xor5_d1.pla). X = {XO,Xl,X2.X3,X1}. Y = {yo}

xor5_d.pla xor5_d1.pla
X y X Y X Y X Y X Y X Y

00001 1 10000 1 00000 0 01000 1 10000 1 11000 0
00010 1 10011 1 00001 1 01001 0 10001 0 11001 1
00100 1 10101 1 00010 1 01010 0 10010 0 11010 1
00111 1 10110 1 00011 0 01011 1 10011 1 11011 0
01000 1 11001 1 00100 1 01100 0 10100 0 11100 1
01011 1 11010 1 00101 0 01101 1 10101 1 11101 0
01101 1 11100 1 00110 0 01110 1 10110 1 11110 0
01110 1 11111 1 00111 1 01111 0 10111 0 11111 1

61

Note, that the desired function has to be given on all ON and OFF sets. In

some cases the function is defined only on the input combinations where the value of

function is 'T'. In this case we have to complete the truth table and specify all ON

and OFF conditions. If the truth table is not complete, the EHW assumes that the

function is incompletely specified. In other words the input conditions that are not

included in the truth table are considered as DON'T CARES. Hence, the generated

circuit correctly implements only the input-output combinations given in the desired

truth table. The following example demonstrates how the circuit structure is changed

with altering the set of input combinations for given function.

Let us consider the 5 digit even parity function. This function can be represented

by the minterms table given in xor5_d.pla and the truth table defined in xor5_d1.pla

(see Table 3.1). The xor5_d.pla describes the input-output combinations ofthe 5-digit

even parity logic function, where this function takes the value" 1". This representation

is often used in * .pla files for one-output logic functions. The point is that the function

representation defined by the *. pIa file is employed to implement the function on

PLA structure. Therefore, the specific features of this regular structure are taken

into account in the representation form. In order to avoid it during evolution of the

logic function, this has to be defined by the truth table given in xor5_d.pla. The

xor5_d1.pla minterms table contains all possible input-output combinations for the

5-digit even parity function. The gate-level extrinsic EHW has been used to evolve

the circuits implementing the logic function given by xor5_d.pla and xOLd1.pla files.

The evolved circuit structures are shown in Fig. 3.1. The design depicted in Fig.

3.1(a) implements the logic function given by the xor5_d.pla file and Fig. 3.1(b)

shows the generated circuit performed the function defined by the xOLd1.pla file. It

62

is clear that the circuit shown in Fig. 3.1(a) does not realize the o-digit even parity

function. The point is that the xoro_d.pla file describes only the input combinations

where the function is "1" and the input combinations where the function is "0" are

considered as DON'T CARE and, hence, are not taken into account. Therefore, the

circuit shown in Fig. 3.1(a) implements correctly the function given in file xoro_d.pla.

The circuit utilises only the input X4 and the circuit output is "1" for any output

combinations. In other words, this circuit implements the constant" 1". In this case

the input combinations, where the function is "0" , are considered as DON'T CARE.

In this case, the algorithm defines the variables xo, Xl, X2 and X3 as DON'T CARE

and generates the constant output equal to "1". In the case of defining the logic

function on all ON and OFF sets (xor5_d1.pla), the circuit given in Fig. 3.1(b) is

generated. This circuit fully implements the 5-digit even parity function, because

during evaluation process the input combinations where the function is "0" are taken

into account. All inputs are employed in the circuit design.

So, we can conclude that the function has to be defined on all ON and OFF

conditions. Evolution of the logic function given by minterms table will produce

wrong functionality circuit. Therefore, the representation of logic function using

minterms table is not suitable if the EHW approach is used to implement the logic

function.

3.3.2 Boolean functions specified by cubes

In order to apply the ternary representation of logic function to the extrinsic EHW,

the ternary logic has to be introduced.

63

Notions from ternary algebra

In this section we present for later use some concepts and notation from ternary

algebra. For more details see [130].

vVe use 0 and 1 to denote the usual logic values, and <I> to denote a third value,

which will have several interpretations. The uncertainty partial order ~ on the set

{O, <I>, I} is defined as follows:

o ~ 0, <I> ~ <I> , 1 ~ 1, 0 ~ <I>, 1 ~ <I>,

and no other pairs are related by ~. The value <I> is considered uncertain whereas 0

and 1 are certain.

The smallest ternary algebra is 1I' =< {O, <I>, I}, ., V, -', 0, <I>, 1 >, where the set has

only three elements, and ., V and -, are the ternary OR, AND and NOT operations

as defined in Table 3.2.

Table 3.2: The ternary operations.

\

Xl \0 0 0 <I> <I> <I> 1 1 1\
X2 .0 <I> 1 0 <I> 1 0 <I> 1.

xlII 1 <I> <I> <I> 0 0 0
X 1 V X2 0 <I> 1 <I> <I> 1 1 1 1

Xl 1\ X2, or XIX2 0 0 0 0 <I> <I> 0 <I> 1
Xl EEl X2 0 <I> 1 <I> <I> <I> 1 <I> 0

A ternary function of n variables is any function f from {O, <I>, l}n to {O, <I>, I},

for n 2: O. To each n-tuple a = (al, ... ,an) E {O,<I>,I}n, the function f assigns an

unique value f(a) E {O, <I>, I}. The Boolean function can be described using ternary

representation as follows: To each n-tuple a = (aI, ... , an) E {O, <I>, l}n, the function f

assigns an unique value f(a) E {O, I}. The n-tuple describes the cube of 2 * Nip input

64

combinations,where Nit> is the number of uncertain values in the cube. For example,

the n-tuple (11<T?0<T?) represents 4 input combinations: {11000, 11001, 11100, 11101}.

Any Boolean function can be represented using ternary logic.

Table 3.3: Boolean logic function given by truth table.
Xo Xl X2 Yo

0 o 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

A three-input one-output logic function, y is given by the truth table shown in

Table 3.3. This function of Xl, X2 and X3 variables can be also defined using ternary

representation:

<T? <T? 1 1

0 1 <T? 1

<T? 0 0 0

1 1 0 0

and analytical representation as follows:

Note that one Boolean function can be represented by different ternary matri-

ces. The optimal representation of logic function is the representation using ternary

matrices with minimal number of rows in it. The n-input m-output logic function,

given as a truth table in Table 3.4 (binary _test2.pla), can be described using ternary

65

representation as follows.

1 0 <I> 1 1 0 1

<I> 1 0 <I> 0 1 1

x= 1 <I> 1 0)
y= 0 0 1

0 0 <I> <I> 1 1 a
0 <I> 1 <I> 1 1 a

This function is incompletely specified since it is not given on the input combinations

< 1000 > and < 1111 >. This function can be also defined analytically as:

(3.3.2)

The implementation of this function on PLA in shown in Fig. 3.2(a).

Table 3.4: A tested function given by the cube representation (ternary _test2. pIa) and
by the truth table (binary_test2.pla). X = {XO,Xl,X2,X3}, Y = {YO,Yl,Y2}

ternary_test2.pla binary_test2.pla
X y X Y X Y X Y

1 o <I> 1 101 0000 110 0101 011 1011 101
<I> 1 o <I> 011 0001 110 0110 110 1100 Oll
1<I>10 001 0010 110 0111 110 1101 011
00 <I> <I> 110 - DOll 110 1001 101 1110 001
o <I> 1 <I> 110 0100 011 1010 001

Fitness function

The ternary representation of logic function can be used in evaluation process of the

extrinsic EHW approach if the functional set of logic gates contains the logic functions

described by the ternary logic operations shown in Table 3.2. A PLA file contains the

66

Implementation process .,

00 10 ~~
00 l1\ X xl{>

x~
l-!)

y
y

01
xox, - ~ 11

10

1 111\
V1 1\ X ~1J
N! V

Verification process
(a)

ternarLtest2.pla --------'1 xox,
Y, - ~

)--__ -'1 - "\ 00
1 ~ ~~~---r---r~~

: ::, ~:,~f ~: f-::;~f---.<rlr---=l!=:::::::--i
15 3 1 ,"l

r,~_-_-_-_~ _________________ l 10

(b)

x" x,,,, 1- binary_test2.pla --------,
1

11

Mapping

(c)

Figure 3.2: Implementation of logic function given in Eq. 3.3.2 (a) AND-OR PLA;
In the standard logic design, the logic function is implemented according to the optimised
representation, for example Kamaugh map. In given case, the PLA mapping is generated
based on Kamaugh map. (b) circuit is evolved using cube representation; (c) circuit is
evolved using the truth table. Unlike in the standard logic design, in EHW the circuit is
synthesised independently from the representation form. In this process the representation
form can be used in verification of the circuit correctness. In given case the Karnaught map
is used to verify the correctness of evolved circuits.

67

Table 3.5: Initial data: Evolving logic functions using gate-level extrinsic EHvV.
N[~ax(B) is the maximum number of inputs in the building block B. Fl +F2 is the dynamic
fitness function. The truth table representation of logic function corresponds to applying
binary logic in EHW and the cube representation - to ternary logic.
ICircuit, *.pla file Ilxor5_dl test2 IIadd2cl mult2

EHW parameters
Circuit layout,
Ncols x Nrows 1 x 10 1 x 35 1 x 10 1 x 10
Connectivity parameter,
Nconnect 15 35 15 10
Functional set, 1F§ {2,6,8} {2,6,7,8}
Function representation Truth table Truth table

Cube representation
Gate distribution Proportional Proportional
Type of layout Fixed Fixed
N[;;ax(8) 4 4

EA parameters
Type of EA (1 + A) ES (1 + A) ES
N umber of generations, Ngen 5000 I 10000 15000 T 5000
Population size, A 5 5
N umber of algorithm runs 100 100
Circuit mutation rate, Pcm 0.05 0.05
Fitness strategy (Fl + F 2) (Fl + F 2)

MIN-MAX formulation
Method of distance functions

Method of objective weighting

target function that is described by the ternary representation. In other words, the

input combinations of desired logic function are given by cubes. This representation

is used as a basis for comparison. The percentage of total correct outputs in response

to appropriate input cubes is then used as the fitness measure for the evolutionary

algorithm. The fitness function is defined as follows:

"c-l ,,~-l 2i - 1 . I . - d.1
F = Dfc==O Dz==O Yt t * 100. (3.3.3)

m*c

68

where nand m are the number of inputs and outputs in the logic function respectively;

c is the number of cubes defining the input combinations of the desired Boolean logic

function; {Yo, Yl, ... , Ym-d are the m digits of the output combination produced by

the evaluation of the circuit, {do, d1, ... , dm-d are the desired outputs (for the fitness

case Ie), !Yi - di\ is absolute difference between the actual output and the desired

output (the Hamming distance between Yi and di).

The functional set of logic gates allowed to be used in evolution is defined by the

primitive ternary logic operations such as AND, OR, NOT, NAND, EXOR, NOT

with primary and inverted inputs and outputs given in Table 3.2.

Experimental results

Let us consider a 4-input 3-output incompletely specified logic function described

in previous section and given in Table 3.4. Ternary _test2.pla file contains the cube

representation of given logic function and binary _test2. pIa file includes the truth table

of this function (see Table 3.4). The truth table of this logic function contains no

< 1000 > and < 1111 > input combinations. Therefore, the logic circuits are not

tested on these input combinations. The gate-level extrinsic EH\tV approach has been

used to evolve the circuits given by ternary _test2. pIa and binary _test2. pla files. If the

logic function is specified in cubes, the primitive logic gates in the functional set are

defined according to the Table 3.2. If the logic function is given by truth table, the

primitive logic operations discussed in Chapter A are used in the functional set.

The circuit designs synthesized by EHW given by cube and truth table are illus

trated in Fig. 3.2(b), (c) respectively. These designs have been evolved using initial

data given in Table 3.5. Calculating the circuit for all input combinations we can no

tice, that the circuits are not equal. Thus, the output Yo is 1 on the input combination

69

< 1111 > for the circuit illustrated in Fig. 3.2(b) and is 0 on the input combination

< 1111 > for the circuit shown in Fig. 3.2(a). Therefore, from algebraic point of

view the outputs (Yo) in both circuits are not equal. But, since the logic function is

incompletely specified, and this input combination is considered as DON'T CARE,

the circuits correctly implement the given logic function. The designs depicted in

Fig. 3.2(b) and (c) have been tested using both ternary and binary function repre

sentations. The result of test proves that both designs implement the function given

either by the truth table or by the ternary representation. Thus, this exemplifies that

the correct fully functional design can be evolved if the logic function is given by the

truth table or by cubes.

3.4 Fitness function strategies

In this section we will introduce two-stage fitness function (F1 + F2), also called

dynamic fitness function [1]. This fitness function strategy allows us to evolve the

fully functional circuit and optimise the circuit structure by a number of criteria.

The algorithm performance with the dynamic fitness function is compared with per

formances of similar algorithms utilising the multi-objective techniques such as the

MIN-MAX formulation, the method of distance functions and the method of objective

weighting. We choose these methods, because the optimisation of the single objec

tive may guarantee a Pareto-optimal solution [131]. These methods work effectively

if the objectives are clearly specified or have no discontinuous variable space [131].

This is applicable for our problem. We achieved relatively good results using these

methods because we had knowledge of the priority of each objective before forming

the single objective from a set of objectives and the knowledge of the value of optimal

70

solution. In the following section we will consider some optimisation criteria used in

an extrinsic EHW.

3.4.1 Pareto Optimum

The Pareto-Optimal solution can be defined as follows. Let find the vector x*

[x~,x~, ... ,x~JT, which will satisfy the m inequality constraints [107], [132]:

gi(X) 2: 0, i = 1,2, ... ,m (3.4.1)

the p equality constraints

hi(x) = 0 i = 1,2, ... ,p (3.4.2)

and optimises the vector function

(3.4.3)

where x = [Xl, X2, ... , xnjT is the vector of decision variables. In other words, the par-

ticular set x~, x~, ... , x"k which yields the optimum values of all the objective functions

has to be determined from the set F of all numbers which satisfy Eq. 3.4.1 and Eq.

3.4.2.

A point x* E F is Pareto optimal is for every x E F either,

/\ (Ji(X) = fi(X*) (3.4.4)
iEJ

or, there is at least one i E I such that

(3.4.5)

In words, this definition says that x* is Pareto optimal if there exists no feasible

vector x which would decrease some criterion without causing a simultaneous increase

71

in at least one other criterion. The Pareto optimum almost always gives not a single

solution, but rather a set of solutions called non-inferior or non-dominated solutions.

3.4.2 Criteria used in an extrinsic EHW

The main purpose of the extrinsic EHW approaches is to evolve the fully functional

circuit with optimal parameters. Any type of circuit parameters can be chosen to

define the quality of evolved circuit. It can be the number of primitive logic cells in

the circuit, the number of transistors in evolved circuit, the circuit delays, etc .. In

this work the following optimisation criteria are investigated:

1. the percentage of correct output bits, F1;

2. the number of active primitive logic gates in the circuit, F2 ;

3. the percentage of correct output combinations, F3 ;

4. the cost of the circuit in terms of the number of used transistors, resistors,

capacitors, etc., F4 .

One of the objective of the circuit design is to construct a fully functional circuit

optimised by given criteria. In EHvV approaches the search for the desired circuit

begins with the random generated circuits. This means that initially the chosen

circuits are not fully functional. Hence, there are two main objectives in EHvV:

1. to evolve a fully functional circuit;

2. to optimise the evolved circuit by given criteria.

The first objective of EHW can be achieved by checking the actual circuit for

correctness. It can be provided by criteria Fl and F3 mentioned above. These criteria

72

show how close the actual circuit functionality to the requested one. The FL and F3

criteria can be calculated as follows:

""p-L ""m-L 2i - L ·1 . - chi
Fl = ufc=O Ui=O Yz * 100;

m*p
(3.4.6)

""P-L·I - d I
F3 = ufc=o Yfc fc * 100;

p
(3.4.7)

where p is the number of input combinations in the given logic function; {Yo, Yl, ... ,

Ym-L} are the m digits of the output combination produced by the evaluation of the

circuit; Yfc is the circuit output vector corresponding to the Ie input combination; {do,

d1, ... , dm- 1} are the desired outputs (for the fitness case Ie); d fc is the desired output

vector corresponding to the Ie input combination; IYi - dil is the absolute difference

between the actual output and the desired outputs; IYfc -dfc I is the absolute difference

between the actual and the desired output vectors.

Depending on the circuit design task the evolved circuit can be optimised by

different criteria. These allows us to evolve the optimal circuit structures optimised

by given criteria and, therefore, achieve the second objective of EHvV. Note that

any optimisation criteria can be applied, such as delay in the circuit, connectivity

restrictions, the number of primitive logic cells in the circuit, the circuit area, the

number of transistors used etc.. In this work we limit our investigation to evolving

the circuits with the minimal number of active primitive logic cells used, F2 (FPGA

design) and the minimal number of transistors in the circuit, F4 (MOS design). It

is clear that these criteria have to be minimised during the evolutionary process and

the criteria Fl or F3 have to be maximised. In order to perform the maximisation

process, the inverted criteria, such as the number of non-active primitive logic gates

73

in the circuit, (F;"ax - F2) and the cost of the circuit in terms of the number of non-

used transistors, resistors, capacitors, etc., (F:(LaX - PI), are applied, where F;"ax and

F,rnax are the maximum possible number of logic gates and transistors in the circuit

respectively. These two criteria can be calculated as follows. Let cost(.N» be the size

or cost of the fully functional circuit Nt that can be defined as follows:

j<Ncols*NTows-l

cost (Nt) = 2: cost(Bj)

j=O

and the cost of the building block Bj is calculated as

cost(Bj) = J'
{

NT!

0,

Bj is committed building block

Bj is uncommitted building block.

(3.4.8)

(3.4.9)

where Ncols and Nrows are the number of columns and rows in rectangular array re-

spectively, NJ is the minimal implementation cost of the building block Bj . If criteria

F2 is applied, then NJ defines the minimum number of primitive logic cells in the

building block Bj and cost(Nf) represents the criteria F2. If criteria F4 is activated,

then NJ determines the minimal number of transistors required to implement the

building block Bj using chosen implementation technology such as CMOS, NMOS,

PMOS or dynamic CMOS and cost (Nt) describes the criteria Ft!.

The maximum cost of network, Nt can be calculated as follows:

j<Ncols*NTows-l

cost(Niax) = 2: cost(Bcomplex)
j=O

(3.4.10)

where Bcomplex is the most complex logic function from the functional set of logic gates

used in evolutionary process; cost(Bcomplex) is the minimal (optimal) implementation

cost of the building block Bcomplex. If criteria F2 is employed, then cost(Bcomplex) de

fines the minimum number of primitive logic cells required to implement the building

74

block Bcamplex. If criteria F4 is activated, then cost(Bcomplex) determines the number

of transistors in the circuit implementation of the building block Bcamplex.

The number of primitive unused logic cells (Ffax - F2) and the number of unused

transistors (F,rax - F4) can be calculated as follows:

(3.4.11)

where cost(Njax) and cost (Nf) are calculated according to the given criteria F2

or F4. The number of transistors in the circuit is defined according to the type of

implementation technology used (for more details see Appendix A).

We consider the building block Bj as sub-circuit with the structure that is not

allowed to be changed. So, the cost of the building block does not take into account

how many outputs of building block have been involved. This means that both the

uncommitted and committed gates inside the building block are taken into account.

So, according to the objectives of EHvV, all optimisation circuit criteria can be

divided into two main categories. The first category includes the criteria which de

scribe the circuit functionality (Fl' F3) and the second category contains any criteria

which define the quality of evolved circuit (in our case: F2, F4). Since the criteria F2

and F4 are defined for different implementation technologies, there is impossible to

use both at the same time in the evaluation process.

3.4.3 Dynamic fitness function, F1 + F2

Our goal is to produce a fully functional design (i.e., one that produces the expected

behaviour stated by its truth table) and produces the optimal structure by chosen

criteria. Therefore, we decided to use the dynamic fitness function Fl + F 2 . At the

75

beginning of the search, only compliance with the truth table, defined by fitness func-

tion :F1, is taken into account, and the evolutionary approach is basically exploring

the search space. Once the first functional solution appears, we switch to a new fit

ness function :F2 in which fully functional circuits with the best optimised parameters

are rewarded. According to two main objectives of EHvV, the circuit evolutionary

process 1 can be divided into two sub-processes, that:

1. Produces the fully functional circuit, 1 FJ ;

2. Improves the quality of evolved fully functional circuits, 1 F2'

Defining the fully functional circuit as well as its optimisation is performed entirely

by evolutionary algorithm. Thus, the optimisation process is based completely on

evolution rather than on well-known logic optimisation techniques. Each of :F1 and

:F2 can represent a single optimisation criteria or a function forming a single objective

from a set of objectives. The forming of function can be performed using any of c1as-

sical multi-objective optimisation methods: the MIN-MAX formulation, the method

of distance functions, the method of objective weighting, etc .. The criteria used in :F1

and :F2 can be chosen according to the final result that is produced once these criteria

is applied. During first stage of evolution 1 FJ' one of F1 or F3 criteria or both of

them are used (i.e., :F1 E {Fll F3 }). :F1 = 100 defines that the fully functional solu

tion has appeared. The criteria F2 and F4 or both of them are utilised during second

stage of evolutionary process, IF2 (i.e.,:F2 E {F2,F4})' So, the fitness function:F2 is

activated if :F1 = 100%. The dynamic fitness function is calculated as follows:

>-
.'!:::
(1i
s:::
0
:;:
(.)
s:::
::J --·5
(.)
'-
C3

,....
u...
ui
(/)
cu
s::: -:;:::

100

95

90

85

80 ~ !
~

75 - m ... w 'm.ww ... w.'_wmJ
C') L() I'- (J) ,- C') L()
C') (Q (J) N (Q (J) N
C') (Q (J) C') (Q (J) C')

,- ,- N

The number of generations

16

--Circuit functionality fitness, F1 .~ The number of active logic gates,F4

76

Figure 3.3: Behaviour of dynamic fitness function. The graph depicts the best fitnesses
F1 and F2 of the best chromosome. The two-bit multiplier is evolved during 5000 genera
tions using dynamic fitness function. During T Fl only the circuit functionality criteria Fi is
taken into account, hence F4 = O. During T F2 the circuit functionality should remains the
same (Fi = 100) and the number of active gates is targeted to minimise. The graph shows
clearly that two distinctive evolutionary processes are performed to evolve a cost-optimised
fully functional two-bit multiplier.

The members of the population have their fitness calculated, if their genotype has

been changed during evolution. It is the fitness function the only agent responsible

for the life span of the individuals.

Let us consider an example of using dynamic fitness function. Let the problem of

interest is to evolve the cost-optimised fully functional two-bit multiplier. According

to the problem, two optimisation criteria can be chosen to participate in evaluation

process: Fl and F4 . Criteria Fl is responsible for evolving the fully functional circuit.

F4 is liable for evolving the cost-optimised circuit. Therefore, Fl = Fl and F2 =

FIj. Fig. 3.3 demonstrates the how these criteria changes with time. The graph

depicted in Fig. 3.3 shows clearly the difference between two evolutionary processes

defined by dynamic fitness function. The evolutionary process T Fl begins at the 0-

th generations and terminates at generation 1100. The second evolutionary process

starts at generation 1100 and terminates at generation 5000. At the beginning of both

evolutionary processes, a significant improvement can be noticed. Thus during T F2

the number of active logic gates is reduced significantly during the first generations.

This example shows that these two processes have to be investigated separately since

the nature of evaluation process has been changed.

3.4.4 Method of objective weighting

In this method, objective functions are combined into one overall objective function,

F, as fo1lows [131]' [133]:

N

F = L Wdi(X), (3.4.12)
i=l

where x E X, X represents the feasible region; the weights Wi are fractional numbers

(0 ::; Wi ::; 1), and a1l weights are summed up to 1, or I:t~l Wi = 1. In this method,

the optimal solution is controlled by the weight vector w. It is clear from Eq. 3.4.12

that the preference of an objective can be changed by modifying the corresponding

weight. A solution obtained with equal weights to all objectives may offer least

objective conflict. But as a real-world situation demands a satisfying solution, priority

must be introduced into the formulation. In our case each objective is first optimised

and all objective function values are computed at each individual optimum solution.

Thereafter, depending on the importance of objectives a suitable weight vector is

chosen and the single-objective problem given in Eq. 3.4.12 is used to find the desired

78

solution.

In this method applied to logic design problem, the weights are assigned to any

chosen optimisation criteria Fl , F2 , F.3 and F4 representing fi(X). For example,

criteria Fl and Ftl be chosen to participate in evaluation process and Wl = 0.6,

W2 = 0.4. In this case the fitness function F can be defined as follows:

F = 0.6Fl + 0.4F4. (3.4.13)

3.4.5 Method of distance functions

In this method, the scalarisation is achieved by using a demand-vector y, which

has to be specified by the decision maker. This method is similar to the method

of objective weighting. The only difference is that in this method the goal for each

objective function is required to be known whereas in the previous method the relative

importance of each objective is required. The single objective function derived from

multiple objectives is as follows [131]' [133]:

N

F = [2: Ifi(X) - Yil e
] lie, 1:::; e :::; 00, (3.4.14)

i=l

where x E X (the feasible region). Usually a Euclidean metric e = 2 is chosen, with y

as individual optima of objectives [134]. Therefore the fitness is calculated as follows:

N

F = 2: Ifi(X) - Yi1 2
. (3.4.15)

i=l

It is important to note that the solution obtained by solving Eq. 3.4.15 depends on

the chosen demand-level vector. Arbitrary selection of a demand level may be highly

undesirable.

For instance, let the problem of interest is to evolve a two-bit multiplier with

a minimal number of primitive active logic gates. Hence, Fl and F4 are chosen to

79

be the optimisation criteria. Since the goal is to evolve a fully functional solution

(Fl = 100), then Yl = 100. The most efficient synthesized two-bit multiplier contain

7 primitive logic gates (see Appendix C). This means that Y4 = 7. So, for a given

task, the fitness function can be defined as follows:

F = JIFl - 10012 + IF4 - 71 2 .

3.4.6 MIN-MAX formulation

(3.4.16)

This method is different in principle from the above two methods. This method

attempts to minimise the relative deviations of the single objective functions from the

individual optimum [131]' [133]. That is, it tries to minimise the objective confEct

between circuit functionality and cost-optimised criteria. For a minimisation problem,

the corresponding MIN-MAX problem is formulated as follows:

minimise F(x) = max[Zj(x)], j = 1,2,· .. ,iV, (3.4.17) .

where x E X (the feasible region) and Zj(x) is calculated for a nonnegative target

optimal value I j > 0 as follows:

Z;(x) = Ij 7/;' j = 1,2,··· , N. (3.4.18)

This method can yield the best possible compromise solution when the objectives with

equal priority are required to be optimised. However, the priority of each objective

can by varied by introducing dimensionless weights in the formulation. This can also

be modified as a goal-programming technique by introducing a demand-vector in the

formulation.

For example, in the case of evolving the fully functional cost-optimal two-bit

multiplier implemented using FPGA technology, Fl and F4 can be chosen as the

80

optimisation criteria. As it has been mentioned in previous section, the most optimal

two-bit multiplier design contains 7 primitive logic gates. Then, F4 = 7. The target

circuit functionality is 100%, then Fl = 100. Therefore, the fitness function defined

by MIN-MAX formulation is calculated as follows:

. .. 'L() [Fl - 100 minliinse .r X = max ,
100

(3.4.19)

3.4.7 Experimental results

In the following sub-sections we will consider some experimental results obtained

for the two-bit adder and the two-bit multiplier. We investigate 1) Fitness function

strategies in the extrinsic gate-level EHW; 2) Evolved circuit structures optimised by

such criteria as the number of uncommitted primitive logic gates or the number of

transistors in CMOS, NMOS, PMOS, dynamic CMOS circuits. The initial data for

this series of experiments are given in Table 3.5.

Fitness strategies

The following experiment shows us how using different fitness function strategies

with different optimisation criteria affects the algorithm performance and the quality

of evolved circuits. For this purpose the same experiments have been performed

using the dynamic fitness function, the method of distance functions, the MIN-MAX

formulation and the method of objective weighting. The percentage of correct bits,

F1 , the number of active primitive logic gates in circuit, F2 and the percentage of

correct output combinations, F3 have been chosen as the criteria to compare the

algorithm performance. The experimental results obtained are summarised in Table

3.6 and Fig. 3.4.

81

Table 3.6 makes a summary of the experimental results received for algorithms

with the dynamic fitness function, the MIN-MAX formulation and the method of

distance functions. In further discussion the following notations have been adopted.

Ftf , F;f and F;f are the mean fitness functions F l , F2 and F3 of the best evolved

chromosomes respectively. Nf denotes a fully functional circuit. F2 (Nf) is the mean

fitness function F2 of the fully function designs evolved during 100 runs. R(Nf) is

the number of evolved fully functional circuits N f .

Fig. 3.4 shows the algorithm performance for different combinations of chosen

criteria using method of objective weighting for the two-bit multiplier (mult2.pla)

and the two-bit adder (add2c.pla). Curves in Fig. 3.4 show the fitnesses F1 , F2

and F3 of the best evolved chromosomes, F~f, F;f and F;f and the number of fully

functional circuits evolved R(Nf) as a function of the weight, for the two bit multiplier

and the two-bit adder. Each data point gives the average of 100 runs. The results

obtained during evolution of the two-bit multiplier are displayed at the left side of

the graph. A summary of evolving the two-bit adder is shown at the right side of the

graph. The horizontal a.."Xis defines the weight of fitness function Fl (Graphs A - Din

Fig. 3.4) and F3 (Graphs E F in Fig. 3.4). The weight vector is defined as follows:

(3.4.20)

where Wl is the weight shown in the horizontal a.."Xis. For example, graph A in Fig.

3.4 shows some experimental results obtained during the evolution of the two-bit

multiplier. Two criteria have been chosen to perform this experiment: Fl and F3 ·

The horizontal axe defines the weight of criteria, Fl. Then, the weight of criteria F3 ,

W(F3) is calculated according to the Eq. 3.4.20. Thus, if the weight of F1 , W(Fl) is

0.7, then the weight of F3, W(F3) is 0.3. A similar process is applied to define the

82

weights of other criteria for experimental results shown in Fig. 3.4

Using Fl and F2 criteria

This combination of criteria has been applied for all multi-objective methods dis

cussed above. The fitness function Ftf is higher for the algorithm with the dynamic

fitness function. The same conclusion is made about the quality of evolved fully TImc

tional circuits F2 (Nf) and the number of received fully functional solutions R(Nf).

This is evidence of the effectiveness of using the dynamic fitness function. The value

of F2 (Nf) shows fairly good performance consistently on both tested functions. Let

us consider the results obtained for the two-bit multiplier evolved using an algorithm

with dynamic fitness function. The following data has been obtained: F;f = 99.75,

F~f = 7.28, F 2 (Nf) = 7.25 and R(Nf) = 90. The fully functional circuits evolved

using the algorithm with the MIN-MAX formulation and the method of distance

functions require at least 8 primitive logic gates (F~f). This means that the fully

functional circuits Nf evolved using these methods contain approximately one prim

itive logic gate more than the similar circuits evolved using the algorithm with the

dynamic fitness function. In other words more compact logic circuits have been ob

tained when the algorithm with the dynamic fitness function has been applied.

Analysing the experimental data obtained for the algorithm with the method

of objective weighting we can conclude that the fully functional designs have been

received when wl(F1) 2: 0.4 for mult2.pla function and wl(F1) 2: 0.6 for add2c.pla

function. This means that the functionality fitness has to dominate, if the goal

of evolution is to evolve a fully functional circuit. The optimal weight Wi (F1) for

add2c. pIa function is 0.8 and is 0.6 for mult2. pIa function. The highest number of fully

functional solutions has been obtained when these parameters have been employed.

83

Table 3.6: Experimental results: Fitness function strategy and algorithm perfor

mance. X denotes that the corresponding criteria has been activated; F~f, F;f and Ff1
are the mean fitnesses FLl F2 and F3 of the best evolved chromosomes respectively; F2(Nf)
is the mean fitness function F2 of fully functional designs evolved during 100 runs; n(Nf)
is the number of evolved fully functional circuits, Nf

Fitness Criteria
-

strategy FL F2 F3 Fbf
1 F bf

2 F2(Nf) F bf
3 R(Nf)

mult2.pla
One-stage X - - 99.7812 7.96 7.98 99.1250 89

Dynamic X X - 99.75 7.28 7.25 99 90
fitness - X X 95.4843 8.96 7.8 91.25 5

MIN-MAX X X - 97.125 7.44 8.5 95.125 24
formulation X - X 98.2656 6.49 0 93.0625 0

- X X 96.9531 7.14 7.21 94.6875 24

Method of X X - 99.6719 7.96 8.08 98.8125 82
distance X - X 99.6719 8.02 7.54 98.1250 77
functions - X X 97.375 7.95 7.67 95.5 34

add2c.pla
One-stage X - - 96.5729 16.1 16.5 90.3438 26

Dynamic
fitness X X - 97.1875 15.29 13.5882 92 34

MIN-MAX X X - 93.0987 13.93 16.2778 85.6562 18
formulation X - X 95.4062 14.32 11.75 87.0938 4

- X X 92.75 13.68 13 84.1875 7

Method of X X - 95.4687 15.97 15.53 88.625 15
distance X - X 96.8958 29.99 30 91.0625 29
functions - X X 96.0729 29.6 29.79 90.875 29

too ,Graph A: mult2.pla 'optimised by F1, F3
I _______ /' ~ ____ _

99,5 ~ "-

! J '\.
99j "

T 92

l 90 ,

tea

t 66

t64

965

1
96

1 9i.S

, l~
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.9

walghtof F1

......... F1 --F3 _ - # 100% cases

100 Graph C: mult2.pla optimised by F1, F2 T 10

901 ~ '9

:~ j -- - -:- ~:-: ~:- - !~: ~
~ 5~
~ ~ 4~

;~~~----~.~~~~~~~~~~*t~
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

weight of F1

__ F1 # 100Q/o cases - _ F2 100F2

100 Graph E: mult2.pla optimised by F2, F3

i~ 1 5~

:: +-----''-r~~~~~~~~~~~~_I_W '
90 -"- - - - - - - - - - - - .

h--~'------~~~----------
80

weillhtof F3
__ F3 F2 .. ,. 100F2 _-# 100% cases

98 Graph B: add2c.pla optimised by F1, F3

96 - - - - - ___ - -- - - - - - - ___ - - -- - - I

94 I
I ---------....................

'"- -I

90

88

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

weight of F1

- - _ .F1 __ F3 __ # 1000/0 cases

100 ' Graph D: add2c.pla optimised by F1, F2

90 j
80 I

70

60

50

~

30 /

20 /

10 /

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

weight of F1
__ F1 __ F2

100F2 '" ... # 100% cases

100 Graph F: add2c.pla optimised by F2, F3

95 J >

:~ 1
80 ~
75 j

:~J l
55 /
50 _,.......~-+--~

.
,
,

, '

.' , '
, '
, '

.. , ,
, .

T 35

130

25 .
20~

15~
10~

14

16

14

12~

10~
~

8 ..

6 ~
* 4 ~
~

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

weight of F3
__ F3

F2 -100F2 --+-#100%cases

84

Figure 3.4: Experimental results: Method of objective weighting. Fl and F3 define the
correctness of evolved circuits; F2 determines the quality of evolved circuits; Graphs A
and B illustrate that there is no dominated criteria among Fl and F3 , since the evolutionary
algorithm with different weights for both criteria performs similar for both logic functions:
two-bit adder and two-bit multiplier. Graphs C and D demonstrate that Fl is a dominated
criterion. Thus, in the case when the weight of Fi is less than the weight of F2 , no fully
functional solutions have been evolved for both logic functions. Graphs E and F evidence
that F3 is a dominated criterion. Similarly to the previous case, the fully functional solutions
have been obtained, if the weight of F3 is large enough. With increasing the weight of F3 ,

the algorithm performance has been improved. Conclusion: In evolution process is the
criterion defining the correctness of evolved circuits dominates other criteria, determined
the quality of evolved circuits.

85

These results indicate that the priority has to be given to the functionality fitness

during evolution of fully functional circuits.

So, we can conclude that the algorithm with the introduced dynamic fitness func

tion performs much better than the algorithms with other multi-objective fitness

functions for the task of evolving fully functional solutions optimised by given crite-

ria.

Using Fi and F3 criteria

Both Fi and F3 criteria define the circuit functionality, interpreted differently. Fi

shows the correctness fitness in terms of each output bit. F3 points at the correctness

of the circuit by the output combinations. In other words, these criteria participate

actively during evolution of the fully functional circuit, 1'/1 and they do not improve

the quality of evolved circuit. Therefore, the evolutionary process can be terminated

once the fully functional solution has appeared. For this reason the dynamic fitness

function strategy has not been considered in this experiment.

Considering the method of objective weighting, we can conclude that the fitness

functions Ftf and F;f show fairly good performance consistently on all combinations

of weights. The fitness function Ftf achieves higher value for the algorithm with the

method of distance functions than for the method of objective weighting. At the

same time, the fitness function F;f is the worst for the algorithm with the method

of the distance functions. vVe can see that the algorithm with any combinations of

weights shows nearly the same performance in terms of the number of fully functional

solutions evolved. The higher number of fully functional solutions R(Nf) has been

evolved with the method of objective weighting. Thus, this number varies from 81 to

91 in the case of using the method of objective weighting for the two-bit multiplier.

86

In the case of employing other methods, the highest R(Nf) has been achieved with

employing the method of distance functions (R(Nf) = 77.0). We obtain from 17 to 30

fully functional two-bit multipliers when the algorithm with the method of objective

weighting has been applied. 29 two-bit adders had been evolved when the method of

distance functions has been applied. So, we can conclude that the method of distance

functions and the method of objective weighting perform nearly the same in terms of

evaluating the circuit using R(Nf) and F~f criteria.

F2 (Nf) for add2c.pla is more than 2 times greater for the algorithm with the

method of distance functions, than for the algorithms with other multi-objective

methods. This means that evolved fully functional circuits contain 2 times more

primitive logic gates than similar circuits obtained using other multi-objective meth

ods.

It is obvious that for both tested logic functions the method of objective weighting

performs better, as can be seen from the higher fitness functions Ftf , F;f and the

number of fully functional designs evolved R(Nf) that have been acquired.

Using F2 and F3 criteria

Next, we look at the results obtained using F2 and F3 criteria. Let us remember

that the criteria F2 determines the quality of evolved circuits in terms of the num

ber of active primitive logic gates used in a circuit and that the criteria F3 points

at the percentage of correct output combinations in evolved circuit. Therefore, two

types of evolution are involved: evolving the circuit functionality, l' fl and improving

the quality of evolved circuits, l' f2' vVe can see that the weight of F3 has to be

higher than 0.3 for mult2.pla and greater than 0.3 for add2c.pla, in order to achieve

some fully functional solutions. The algorithm with the method of distance functions

87

shows better performance for evolving add2c.pla function. At the same time the al

gorithm with the method of objective weighting gives better performance for evolving

mult2.pla function. Therefore, there is no clear evidence which of the multi-objective

methods performs better.

In this subsection first, we were able to confirm that the dynamic fitness function

in evaluation process has a good performance on both tested arithmetic functions if

the criteria Fl and F2 are activated. Next, the method of objective weighting has

a good performance on optimisation by Fl and F3 criteria. Also, it has been shown

that the weight of circuit functionality has to dominate when the criteria of circuit

functionality and the quality of evolved circuits have been applied. The experimental

results suggest that the bit-by-bit circuit functionality criteria Fl performs better

than the criterion F3 , comparing the correctness of output combinations.

Evolving logic circuits using criteria F2 and F4

In this section we will consider some experimental results obtained for the two-bit

multiplier. The main idea of this experiment is to define whether using different

optimisation criteria during the second stage of dynamic fitness function affects the

evolved circuit structures and algorithm performance or not. The initial data for

the experiment are given in Table 3.7. The circuit structures are optimised using

such criteria as the number of primitive logic active gates, the number of transistors

in different circuit implementations (CMOS, NMOS, PMOS, dynamic MOS). vVe do

not consider evolution of the PMOS circuits. The point is that the NMOS and PMOS

implementations of the primitive logic gates require the same number of transistors.

In order to examine how the functional set of logic gates used impacts the quality

of evolved circuits, 6 functional sets have been chosen. Only primitive logic gates of

88

one- and two-inputs are allowed to participate in evolution. Each gate is considered

as a separate chromosomic element. vVe count each of them, including NOTs that

associated with AND, OR and EXOR gates. For instance, the NAND gate contains

two basic logic gates.

The obtained experimental results are summarised in Table 3.8. Let us remember

that the quality of evolved cir'cuits is defined by the number of primitive logic gates

in circuit, F2 , and the number of transistors in the circuit produced using different

implementation technologies, F4CMOS, F4DMOS, F4NMOS. The algorithm performance

can be measured by the number of fully functional solutions achieved, R(Nf).

The results shown in Table 3.8 illustrate the dependence of the algorithm perfor

mance and the quality of evolved circuits on the functional set of logic gates IF§ for

all optimisation criteria used. For example, F 2 (Nf), achieved when F2 = F 2 , varies

from 11.0526 to 7.28846 for different functional sets oflogic gates. The most efficient

circuits in terms of the number of primitive logic gates used can be evolved using

IF§4' The criteria F:/JMOS (F2 = F4DMOS) alters from 57.85 to 73.3 in the case of

using the functional sets JF§ L, -, IF§6' The experimental results demonstrate that the

most efficient dynamic MOS circuits optimised by the number of transistors can be

evolved using IF§6. F4NMOS acquired for the case of F2 = F 4NMOS changes from 42.18

to 53.22. The results show that the most efficient NMOS circuits optimised by the

number of transistors can be produced using IF§6. The same conclusion can be made

about evolving the CMOS circuits.

So, the most efficient logic circuits optimised by the number of transistors can

be produced using the functional set of logic gates IF§6' This confirms that the

'favourable' functional set is the same for the circuits implemented using different

89

Table 3.7: Initial data: Evolving logic functions optimised by different criteria. Func
tional set IF§j is encoded according to the Table 2.2

ICircuit, * .pla file II mult2
. EHW parameters

Circuit layout,
Ncols x Nrows 1 x 10
Connectivity parameter,
Nconnect 10
Functional sets,
1F§1 : {2,6, 7,8,9, 10,11,21,22,23,24}
1F§2 : {6, 10, 11,21,22,23,24}
1F§3 : {6,7,8,9,10}
1F§4 : {4,6,10}
1F§5 : {6,7,10}
1F§6 : {4,6, 10, 12, 23, 24}
Function representation Truth table
Gate distribution Proportional
Type of layout Fixed
Type of building blocks Two-Input One-Output
Nir;ax(s) 2

EA parameters
Type ofEA a rudimentary (1 + A) ES
N umber of generations 5000
Population size 5
Number of algorithm runs 100
Circuit mutation rate 0.05
Fitness strategy Dynamic fitness function, ;:1 + ;:2
Criteria for optimisation Circuit functionality

FETs in CMOS circuit
FETs in NMOS circuit
FETs in PMOS circuit

FETs in dynamic CMOS circuit

gO

Table 3.8: . Experimental results: Dynamic fitness function strategy using different
optimisation parameters at the second stage of evolution. :Fl and :F2 are the first and
second criteriaofthe dynamic fitness function:F, (:Fl = Fd; FIjCMOS, FWMOS and FIjNMOS

are the number of transistors in CMOS, dynamic MOS and NMOS circuits respectively; Fi j

is the mean value of criteria Fk for the best evolved chromosomes; Nj is the fully functional
circuit; F 2(Nj) is the mean fitness function F2 of N j evolved during 100 runs; R(Nj) is the
number of evolved fully functional circuits, N j .

F
bj

F2 F bj
F 2(Nj) Fbj bj Fbj R(Nj) 1 2 4CMOS FIjDMOS 4NMOS

Functional set: IB"§1 : {2, 6, 7, 8, g, 10, 11,21,22,23, 24}
F2 97.5156 12.04 11.0526 66.08 77.3 55.17 38

F4CMOS 97.4531 12.64 12.1111 63.76 74.48 53.18 36
F4DMOS 97.8438 12.2 11.6585 61.62 71.89 51.35 41
F4NMOS 97.2344 12.55 11.4706 63.86 74.51 53.22 34

Functional set: 1F§2 : {6, 10, 11,21,22,23, 24}
F2 97.7969 10.83 10.1707 64.62 73.87 53.09 41

F4CMOS 98.0469 11.15 11.05 59.8 68.08 48.98 40
F4DMOS 98.2969 10.76 10.5641 61.54 70.27 50.52 39
F4NMOS 98 10.96 10.6047 60.38 68.81 49.5 43

Functional set: 1F§3 : {6, 7, 8, g, 1O}
F z 98.3125 9.44 8.40351 65.68 76.78 54.81 57

F4CMOS 98.3438 9.85 8.71429 63.6 74.78 53.29 49
F 4DMOS 98.4844 9.86 9 62.2 73.3 52.2 56
F4NMOS 98.2031 9.69 9.15385 62.06 73.01 52.02 52

Functional set: IB"§4 : {4, 6, 10}
F2 98.7812 7.26 7.28846 59.4 68.3 49 52

F4CMOS 98.625 7.3 7.37255 57.38 66.15 47.42 51
F 4DMOS 98.5781 7.41 7.46667 58.7 67.65 48.5 45

F4NMOS 98.3594 7.42 7.42857 58.4 67.32 48.26 42

Functional set: IB"§5 : {4, 6, 10, 12, 23, 24}
F2 99.2812 7.87 7.63636 61.62 71.19 51 77

F4CMOS 98.9844 8.26 8.08955 58.18 67.71 48.4 67

F4DMOS 99.2656 8.38 8.25333 59.2 68.92 49.26 75

F4NMOS 99.0469 8.5 8.22857 60.08 69.94 49.99 70

Functional set: IB"§6 : {4, 6, 10, 12, 23, 24}
F2 98.0569 9.6 9.55263 54.48 61.86 44.55 38

F 4CMOS 97.9844 9.92 9.90698 53.2 60.24 43.42 43

F4DMOS 98 9.76 9.81818 51.1 57.85 41.7 44

F4NMOS 97.9531 9.58 9.86047 51.6 58.56 42.18 43

X, .. 'C,.X:?;(;3 r- rnult2~pla - -- - -- -- - -- ---1

I
I
I
Iy,

P<a-___ -;Iy 0

p--===~----~IYl
~~==~ _______ ~IYJ

rti:;L--~ I L _____________________ J

Ngates = 14;
NVTcMOS = 36; N VT DMOS = 38; N VTNMOS = 28

91

Figure 3.5: Most efficient evolved two-bit multiplier design optimised by the number
of used transistors (A): Functional set: JF§1 :{2, 6, 7, 8, 9, 10, 11,21, 22, 23, 24}

technologies and optimised by the number of transistors. Nevertheless, the most

efficient logic circuits optimised by the number of primitive active logic gates can

be evolved using functional set JF§4. It is clear that the algorithm chooses different

'favourable' functional sets for the circuits optimised by the number of transistors

and the number of primitive logic gates.

It is necessary to note that the quality of evolved circuits optimised by the cri-

teria F4CMOS, F4NMOS and F4DMOS is nearly the same. For example, the crite

rion F;!:MOS obtained with JF§3 changes from 62.06 to 63.6 for optimisation criteria

FWMOS , F4CMOS and F4NMOS. That is not a big difference in comparison with

F;!:MOS = 65.68 obtained during optimisation by F2 criterion. Similar results have

been obtained for other functional sets of logic gates and for optimisation criteria

F4NMOS and F4DMOS. This shows that there is no need to perform separate optimi-

sation by the number of transistors for different implementation technologies. Note,

that this is not extended to another circuit parameters that can be optimised (the

circuit delay, the area used, etc.).

Next we will look at the structures of circuits optimised by the number of transis-

tors and compare them with the circuits optimised by the number of primitive active

92

logic gates.

The most efficient evolved two-bit multiplier design optimised by the number

of used transistors is depicted in Fig. 3.5 (design A). This design represents the

most efficient evolved circuit that can be implemented using NMOS, PMOS and

dynamic MOS technologies. The number of transistors is different for different circuit

implementations. Thus, the CMOS circuit contains only 36 transistors, the NMOS

circuit consists of 28 transistors and the dynamic MOS circuit needs 38 transistors.

The design in question requires 14 primitive logic gates offour types (NOT, AND, OR

and EXOR). Note that EXOR gates are not used in this circuit implementation. The

design contains 4 levels. The number of levels in a circuit is defined by the maximum

number of primitive logic gates that are connected to each other interactively. The

first level of design shown in Fig. 3.5 contains 4 logic gates indexed 1, 2, 3 and 4. The

second level of the circuit in question consists of 2 logic gates labeled 5 and 6. The

third level of the circuit has only one logic gate indexed 7 and the last level includes

one logic gate marked 8. It is obvious that the circuit delay depends on the number

of levels in the circuit. Greater number of levels in the circuits mean slower circuits.

It has been reported in literature [26], [9] that the most efficient evolved two-bit

multiplier optimised by the number of primitive logic gates used in the circuit requires

only 7 logic gates. Therefore, the design given in Fig. 3.5 is not efficient in terms of

the number of primitive active logic gates. It is necessary to note that it is impossible

to evolve the efficient design with the minimal number of transistors and the minimal

number of primitive active logic gates because the following statements contradict

each other:

1. The most efficient gate implementations in terms of the number of transistors

93

~')X X,:X3 l-mult2.pla ---- __________ ...,

Ii.'
4 ~-----------l 0'

L ____________________ J
Nqatcs = 13;

NVTCMOS =38;N~DMOS =41;N VT
N MOS =30

Figure 3.6: Evolved two-bit multiplier design (B): Functional set: If§2 :{6, 10, 11,
21, 22, 23, 24}

used are NAND and NOR. They require fewer transistors than AND and OR

logic circuits produced using NMOS, CMOS or dynamic MOS technologies.

2. In our interpretation a primitive logic gate is a gate implementing the primitive

logic operator such as NOT, OR, AND or EXOR. This means that the NAND

and NOR gates contain 2 primitive logic gates: (AND, NOT) and (OR, NOT),

respectively.

Therefore, reducing the number of active primitive logic gates leads to increasing the

number of transistors used in circuit. This can be confirmed by two designs shown in

Fig. 3.6 (design B) and Fig. 3.7 (design C).

It can be seen that the circuit given in Fig. 3.6 requires less number of primitive

logic gates than the design depicted in Fig. 3.5. Also, the circuit design B contains

more transistors than design A. Analysing the circuit structures we found out that

the implementations of the circuit outputs Yo, Yi and 1'3 are identical. The designs

A and B are different by the implementation of the circuit output 1'2. The sub

circuit containing gates labeled 1, 2 and 5 in design A requires 5 primitive logic gates

distinct from the fact that the similar sub-circuit in design B needs only 4 primitive

94

X{l_~,X:::X3 r-lTlult2.pla _______ ,

~~:~ I

I

N = 12"
gates '

NvrCMOS = 42; N vr
DMOS = 45; N VT

NMOS = 33

Figure 3.7: Most efficient evolved two-bit multiplier design optimised by the circuit
delay(C): Functional set: Nil 1 :{2, 6, 7, 8, 9, 10, 11,21, 22, 23, 24}

logic gates. Also, the circuit shown in Fig. 3.7 is faster than the circuits discussed

above. The circuit design C is the most efficient evolved circuit in terms of minimal

circuit delay. Nevertheless, this sub-circuit in design A contains less transistors than

the similar sub-circuit in design B. This demonstrates that the size of evolved circuit

can be altered by changing the sub-circuit structures.

The circuit design discussed above contains 4 levels and is distinct from design C

shown in Fig. 3.7 in that it consists of only 2 levels. This design needs less primitive

logic gates than designs A and B scrutinized above. At the same time, this design

requires more transistors than designs A and B. The analysis of designs A, Band C

shows that the efficient circuits have different configurations for different optimisation

criteria. The designer implementing the MOS circuits would be more interested in

efficient circuit implementation optimised by the circuit delay, the employed area, the

compactness of connections, the number of transistors, etc. In this case designs A or

C can be chosen as efficient. From another point of view, the designer of the FPGA

circuits would be interested in minimisation of the number of primitive active logic

gates or the number of any 'atomic' devices. Using different optimisation criteria we

can satisfy the requirements of both designers. This is an evidence of universality of

95

I I _____________________ J

N = 7·
N CMOS = 62· N '6'~8s - ~1· N VTNMOS = 51 VT 'VT -,

Figure 3.8: Evolved two-bit multiplier design (D): Functional set: IF§l :{2, 6,7,8,9,
10, 11, 21, 22, 23, 24}

8-ti

(-4>--------1 0

}+-==="---____ -,IY,

I
I

~y"
I
I ~ _________________ J

N = 7·
N CMOS = 62· N 'I5'~6s = 71· N VT NMOS = 51

VT 'VT •

Figure 3.9: Evolved two-bit multiplier design (E): Functional set: IF§2 :{6, 10, 11,21,
22, 23, 24}

this method in terms of implementation technologies used.

Next we will compare the efficient circuits optimised by the number of transistors

and the number of primitive logic gates. Fig. 3.8 (design D) and Fig. 3.9 (design E)

depict the best evolved two-bit multipliers optimised by the number of primitive logic

gates used. Both of these circuits require 62 transistors to be implemented using

CMOS technology or 51 transistors to be produced using NMOS technology or 71

transistors to be performed using dynamic MOS technology. Obviously, these are

not the most efficient designs optimised by the number of transistors used. Both of

these circuits contain 5 AND and 2 EXOR gates connected differently. It is necessary

to note that all evolved efficient two-bit multipliers optimised by the number of

96

primitive logic gates contain the same number of transistors. This means that all 7-

gate circuits for the two-bit multiplier have an identical 'atomic' structure. Note that,

during an experiment discussed in Section 3.4.7, 1173 fully functional solutions have

been analysed. Among them, 183 solutions have 7 primitive active logic gates. The

number of evolved 7-gate logic circuits is relatively small because in most experiments

the optimisation by the number of transistors used has been applied and therefore,

the number of primitive logic gates in evolved designs has been relatively high.

The logic gates are connected differently inside the 7-gate two-bit multiplier cir

cuits. Let us consider closely the circuit structures of the 7-gate two-bit multipliers

shown in Fig. 3.8 (design D) and Fig. 3.9 (design E). Both designs have two in

dependent sub-circuits. In circuit D one involves Yo, Y1 and Y2 and the other, Y3 .

This circuit structure is very similar to one conventional efficient two-bit multiplier

reported in [9]. In conventional design, the gate labeled 7 is EXOR and the gate

marked 6 is AND, whereas in design D the 7-th gate is AND and the 6-th one is

EXOR. Therefore, we can consider design D as an example of a conventional circuit

implementing the two-bit multiplier. In circuit E, one sub-circuit includes Yo, Y1 and

1'3 and the other, 1'2. The last circuit reveals some strangeness, because it implements

differently the output 1'2, that will never happen in conventional design because of

multiplication principles. In the conventional model of multiplication one output Yo

is re-used. The circuit outputs 1'3 and Yo are re-used in circuit E. Y1 is produced by

four gates in the circuit E, whereas it needs five in the conventional circuit (design

D). The circuit for Y2 in both designs is effectively the same. In the conventional

circuit Y3 has nothing to do with Y1 ; in design E, Y3 is used to produce Y1. This shows

that the 7-gate two-bit multiplier evolved does not always replicate the principles of

I
I

~Y2
I
I

L _________________ J

Nates = 8;
N CMOS = 54" N 15Mos - 63" N v"r NMOS = 45 VT 'VT -,

97

Figure 3.10: Evolved two-bit multiplier design (F): Functional set: JF§3 :{6, 7, 8, 9,
10}

multiplication.

Since no circuit designs evolved with the minimal number 'of transistors have been

previously reported in the literature, the comparison of evolved circuits with another

similar approaches is impossible.

Next, we will look at 293 8-gate two-bit multipliers evolved during the experi-

ments described in Section 3.4.7. Examining these circuits reveals that the number of

transistors in all circuits evolved is constant. Thus, the CMOS circuits contain only

54 transistors, the NMOS circuits consist of 45 transistors and the dynamic MOS

circuits need 63 transistors. The evolved logic circuits have different structures with

different number of primitive logic gates involved. One of the evolved 8-gate two-bit

multipliers is illustrated in Fig. 3.10 (design F). This circuit is more efficient in terms

of the number of transistors used than the similar one with 7 primitive logic gates

(Fig. 3.8, Fig. 3.9). Design F contains 7 logic gates and 8 primitive logic gates. The

structure of the circuit is very similar to the one shown in Fig. 3.9. The difference is in

gate labeled 7. This gate is EXOR gate in design E and AND gate with one inverted

input in design F. Because of inversion the circuit in question requires more primitive

logic gates. The analysis of this structure reveals that some of evolved circuits have

I

~
I}"

5 2

I

~. k
~

7 I}.
6 1

I

~---------'/'3
L _________________ J

Ngatcs = 10;
NVTcMOS = 46; N VT

DMOS = 51; N VT
NMOS = 37

98

Figure 3.11: Evolved two-bit multiplier design (G): Functional set: IF§6 :{4, 6, 10,
12, 23, 24}

I

~}"
~-

I

) >J ,~:, 6 1

I
~----------11}"3

L _________________ l

Ngatcs = 12;
NVTcMOS = 46; N VT DMOS = 51; N VT NMOS = 37

Figure 3.12: Evolved two-bit multiplier design (I): Functional set: IF§6 :{4, 6, 10, 12,
23, 24}

the same connection between gates but involve different logic gates.

Introducing such new optimisation criteria as the number of transistors used in the

fully functional circuits evolved brings a new aspect of circuit structure analysis. vVe

consider the evolved circuit not only in terms of the number of primitive logic gates,

but also compare the evolved circuits using other optimisation criteria. We discover

that the circuits with the same number of transistors required in NMOS, CMOS

and dynamic MOS circuits can contain different number of primitive logic gates.

This can be illustrated by the circuits shown in Fig. 3.11- Fig. 3.13. The CMOS

implementation of these circuits contain only 46 transistors, the NMOS circuits consist

of 37 transistors and the dynamic MOS circuits need 51 transistors. The circuit given

99

~---'t3
~ _________________ J

Ngates = 14;
NVTcMOS = 46; N VT DMOS = 51; N VT NMOS = 37

Figure 3.13: Evolved two-bit multiplier design (J): Functional set: IF§6 :{4, 6,10,12,
23, 24}

in Fig. 3.11 (design G) requires 10 primitive logic gates, the circuit shown in Fig.

3.12 (design I) - 12 and the circuit presented in Fig. 3.13 (design J) - 14 primitive

logic gates. The designs G and I differs by logic gate labeled 1, and therefore one

more inversion is added in design I. The design I can be easily reduced to the circuit

shown in Fig. 3.11, using the double inversion rule. Another two inversions are added

to the circuit shown in Fig. 3.13 in comparison with the design G. In this case the

circuits first differ by the logic gates marked 2 and 4. The size of all circuits in terms

of the number of transistors is the same because adding an inversion gate can be

compensated by changing the type of logic gate. Thus in the case of designs G and

I, we changed the type of gate marked 1 and added one more inverter. The cost of

this su b-circui t is (cost (N AND) + cost (N OT)), that equals to cost (AN D) for any

implementation technologies, where cost(NAND) , cost(NOT) and cost(AND) are

the cost of logic gates NAND, NOT and AND in terms of the number of required

transistors, respectively. Note that according to the design rule of basic logic gates

cost(AND) = cost(NAND) + cost(NOT). Therefore, the cost of circuit does not

alter. The same analysis can be applied to designs G and J or designs I and J.

So, we can conclude that comparison of logic circuits by the number of transistors

100

used does not allows us to find if the compared circuits have some logical reduction

or not.

3.5 Evolutionary processes specified by dynamic
fitness function and their analysis.

The objective of the work reported in this section is to investigate how the circuit

evolution is carried out. This is interesting thing to do for three main reasons. Firstly,

to investigate what type of genes have most influence on the algorithm performance.

Secondly, to see how effective an allocation of active logic gates might be in a digital

circuit design task. And thirdly, to define the difference between two evolutionary

processes specified by dynamic fitness function. In order to achieve these goal we

investigate the genotypes of the best chromosomes, which bring some improvements

in the evolution process.

3.5.1 Analysing the evolved circuits using a probabilistic ap
proach.

In this section we will present a probabilistic approach, that define how the differ

ent types of genes located differently participate in the evolutionary process. The

analysis is carried out under the collection of differential chromosomes. A differential

chromosome shows the dissimilarity between genotypes of two chromosomes encoding

the circuit structure. Phenotype of this chromosome defines the difference between

phenotypes of two compared chromosomes. A number of events are generated to ex-

pound the conditions that are applied to produce the differential chromosome. The

conditional probabilities of these events are calculated. The analysis of experimental

results is based on the examination of the conditional probabilities calculated for each

101

type of gene and its location. The proposed approach is scrutinized in the following

su b-sections.

Genotype of a differential chromosome.

The genotype of differential chromosome, IDlc! C2 refiects the difference between two

genotypes of chromosomes C1 and Cz. Chromosome ~ encodes the circuit structure.

The genotype of chromosome ~ contains the rectangular array of logic gates and

the set of circuit output connections. Each logic gate is described by the set of

connectivity genes and the functionality gene [1].

The genotype of differential chromosome has the equivalent structure to the geno

type of chromosome ~ and consists of the same types of genes. The chromosome

IDlc! C2 has identical rectangular structure to the chromosomes tel and Cz. Each gate

contains functionality and connectivity genes, which define the dissimilarity between

the corresponding genes in the chromosomes C1 and Cz. The functionality genes in

the gate genotype define the functional difference between functionality genes of the

considering gate in the compared chromosomes. Let us consider the i-th logic gate

in IDlc! C2. The functional gene of this gate defines the dissimilarity between the i- th

functional gene in the gate in C1 and Cz. A circuit output gene represents the number

·ofcircuit genes which.are .not.equal in chromosomes. C1 and Cz. The functional set

represents any primitive logic gates AND, OR, EXOR, NOT with inverted and pri

mary inputs. In order to receive a more accurate analysis of the circuit evolution, the

"two-gene" interpretation of gate functionality is introduced as follows: < dgt dit >,

where dgt is the primitive gate type, dgt E {AND, OR, NOT, EXOR} and the dit

defines the number of different inputs (primitive or inverted) used in the logic cell.

Thus, the gate Ci in IDlC1C2 can be described by three genes: Ci = {dgt dit id}, where

102

dgt defines whatever the primitive type of the i-th gate is the same or not for the

chromosomes «::\ and ~; dit determines the number of different input types in the

i-th cell and id is the number of different uncommitted connections. The gate geno-

type contains an uncommitted connection or input, if the logic function describing

the behaviour of logic cell does not depend on this input. Note, that if all genes of

the differential chromosome are 0, then chromosomes C1 and ~ are equivalent and

describe the same circuit.

Phenotype of differential chromosome.

The fitness function of the differential chromosome is defined .as follows:

FFJJ = FlD1c 1 C2 {

FC2 - FCl' F1 (C1) < 100, Fl(~) < 100;

100+Fcl + FC2 , F1(Cd = 100,Fl(~) = 100.

where Fl (~) defines the functionality of the circuit described by the chromosome ~.

Chromosome C1 is generated first during evolutionary process followed by chromo-

some C2 .

J=;ut c reflects the phenotypic difference between C1 and C2 and defines the func-
r 2 .

tionality of analysed circuits. If the chromosomes C1 and C2 do not implement the

desired function completely, then these chromosomes participate in the l' FI evolu

tionary process. Otherwise, the structures of C1 and ~ are generated during the l' F2

-evoiutionaryprocess. FiDler C2 < 100 defines that the 'compaTed chromosomes are not

fully functional. FlD1c
r

C2 = 100 means that the differential chromosome compares two

fully functional circuits.

An example.

Let us consider the differential chromosome]]]JCl C2 shown in Table 3.9. This chromo

some defines the dissimilarity between chromosomes C1 and C2 (also given in Table

103

Table 3.9: An example of generating a differential chromosome. <CL and <C2 are two
compared chromosomes; 1Dl is the differential chromosome; 0 = {01 02} is the circuit output
vector; Fr:.; .and f;n are the fitness functions of chromosomes ~ and lDl respectively.

te cell 0, Co cell 1, Cl cell 2, C2 cell 3, C3 0
{ 0 '0 '0 'O} c f ~o ~l ~2 {c} i6 it in {c} i5 ii in {c} i5 i{ in {al a2} Fe.

tel {22 1 2 O} {15 2 1 O} {15 3 4 O} {16 2 4 O} {56} 88.97

~ {22 0 2 O} {9 2 0 I} {6 3 4 I} {16 2 4 I} {56} 93.03

IT» do d 1 d 2 d 3 Od
{d~t d?t in {d~t d}t i~} {d~t dlt i~} {d~t dtt iD {adl Od2} FilJJ

IT»iCl C2 {O 0 I} {I 0 I} {I 2 O} {O 0 I} {OO} 4.06

3.9). The unequal genes in the chromosomes ((\ and C2 are shown in bold. Let us

consider cell C3 (Cd = {16 2 4 O} and C3 (C2) = {16 2 4 I}. The gate genotypes

are non-identical by gene i~. The functional gene c} corresponds to a multiplexer,

which involves 3 inputs. Thus, the genotype of cell 3 in differential chromosome is

C3 (IT»CliC2) = d3 = {O 0 I}. Now let us consider cell 1. The genotype of cells Cl (Cd

and Cl (C2) are different by genes c}, it and i~. The cell Cl (Cl) implements the logic

function io V i l and the cell Cl(~) represents the logic function io 1\ i l (Table 2.2).

Both logic functions employ inverted inputs i o, i l , but the primitive logic operator is

different. Therefore, we can define genes d}t = 0 and d~t = 1 in IT»iCliC2 for cellI. Note

that the input i~ in this case is redundant. The number of different connections is

defined as follows. The number of unequal connections is two, but gene i2 is redun

dant, therefore i~ = 1. The logic functions describing the behaviour of cell 2 is io V i l

in tel and io 1\ i l in C2. In this case the primitive operator has been changed from

AND to OR and the inputs involved change their type from i5 to i5 and from ii to ii·

Therefore, the genotype for this gate is {I 2 O}. A similar analysis has been carried

out to define the genotypes of the rest of the cells in the differential chromosome

104

Probabilistic ;:lnalysis.

The issue of this work is to define how genes influence the evolution process. There

fore, the differential chromosomes with FTD # 0 are considered. The probabilistic

analysis is based on the analysis of differential chromosome genotypes. The differ

ential chromosomes analysed have been calculated based on ordinary chromosomes

involved in a successful evolution. Successful evolution produces fully functional de

sign.

In order to explain how the analysis is carried out, the following notations have

been adopted. Let us define the outcomes of experiment ~M with functional set JII£ to

be the genotype and phenotype of the differential chromosomes. The sample space

D associated with an experiment ~M is the collection of all possible phenotypes and

genotypes of differential chromosome in ~M. The intersection of events El and E2 ,

written as El . E2 , is defined as the set of outcomes which belong to both El and

E2 . Given two subsets of D, say E l , E2 , the union of E l , E2 , written as El U E2 , is

defined as the set of outcomes which belong to either El or E2 or both. The circuit

evolutionary process l' carried out during algorithm execution contains two evolution

su b-processes:

1. Evolution of the circuit functionality, 1'.7="1;

2. Evolution aimed at improving the quality of evolved fully functional circuit,

1':F2 .

Note that these two processes can not be performed at the same time. The first

process is carried out when the functionality of the best chromosomes is less then

100% and the second process is performed if the evolutionary strategy (ES) tends to

105

improve the quality of evolved circuits. In this piece of work, the quality of evolved

circuit is defined by the number of active logic gates in the circuit. According to

the representation of differential chromosome, there are 4 types of genes which could

influence the ES performance: (1) the cell type gene; (2) the input cell type gene;

(3) the connection gene; (4) the circuit output gene. So, we can define the following

events, which could be associated with an experiment ~M:

Eo the fitness function of differential chromosome is greater than 0, Fw > 0;

Ei the functionality fitness function Fld is less than 100%, Fid < 100.0 (i.e. the

circuit functionality evolution T.rl is considered);

Eg the cell type gene dgt located in the j-th cell is greater than 0;

Ei the input cell type gene dit located in the j-th cell is greater than 0;

E~ the connection gene id located in the j-th cell is greater than 0;

Eg the circuit output gene Od located in the k-th circuit output is greater than O.

The event Eo defines that the differential chromosome is calculated using two chro

mosomes with different fitness functions. Event El shows that the compared chro

mosomes are not fully functional. This means that the compared chromosomes have

been involved in evolutionary process T.rl' Note that El defines that the functionality

fitness function Fld of differential chromosome is greater than or equal to 100.0. So,

the event El agrees with the case when the differential chromosome compare the fully

functional circuits. In other words, the compared chromosomes have participated in

the evolutionary process T.r2' The events Eg - E~ and Eg define how the compared

chromosomes are different.

106

The probabilities of the events E1 . Eo and E1 . Eo can be defined as

()
NEoEl

P E1 . Eo = N
gen

* R(N); (3.5.1)

(
-) NEoE;

p E1 . Eo = N
gen

* R(N) (3.5.2)

where N EoEl is the number of differential chromosomes with FilJJ =1= 0 and Fld =1=

100.0 (i.e. defines the execution of process 1'.rJ; N EoEl is the number of differential

chromosomes with FrY =1= 0 and F 1d = 100.0 (i.e. defines the execution of process

1'.1'"2)' N is the final evolved network or circuit; R(N) is the number of algorithm

runs; Ngen is the number of generations. The conditional probability of E4, given

that E1 has occurred, is defined as

(3.5.3)

where jNfr~El is the number of times Eo, E1 and E2 occurred (i.e. the number of

non-zero cell type genes d~t in differential chromosomes with F1d < 100 and FrY =1= 0).

The conditional probabilities of Eg, E~ and Ei, given that Eo . E1 has occurred, are

calculated analogously to Eq. 3.5.3:

(3.5.4)

(3.5.5)

(3.5.6)

where jNFoEl and jNEoEl are the number of non-zero input cell and connection genes

of the j-th cell in the differential chromosomes with functionality fitness function

Fld < 100 and fitness function Fil) =1= 0 respectively; kNEoEl is the number of non-zero

circuit output genes located in the k-th position in differential chromosomes with

107

Fld < 100 and ED =I- O. The conditional probabilities calculated in Eq. 3.0.3 - Eq.

3.0.6 correspond to the evolutionary process 1 FJ' such that the functionality of the

circuit is evolved.

The conditional probabilities shown below correspond to the evolutionary process

1 F2' which forces the improvement of the functional circuit in terms of the number

of active gates used.

(3.5.7)

(3.5.8)

Ne
(Ejl(E . E)) = j F! .

P 4 0 1 N _ * N:nax '
EoE! zn

(3.5.9)

(kl(-)) kNF! p E5 Eo· El = N _ * N
EoEJ out

(3.5.10)

For example, let us compute the conditional probability p(Egl(Eo . E1)) with

N~ax = 4, N gen = 5000, R(N) = 100. In this case, the average number NEOE!

of differential chromosomes with F'ilJ =I- 0 and Fld = 100.0 per one successful run

is 30. There are 200 non-zero connection genes in the differential chromosomes in

question that are located in the 5-th logic cell. Then the conditional probability can

be calculated as follows: p(E~I(Eo· E1)) = 200/(100 * 30 * 4) = 0.0167.

The conditional probabilities calculated above define the probability with the

genes influencing positively the evolution process. In other words, these genes belong

to the chromosome that have just changed fitness value and the whole evolutionary

process has been successful. This means that as a result of the evolution process, a

fully functional solution has been evolved.

108

3.5.2 Experimental results.

In this .section we will consider some experimental results obtained for two-bit mul

tiplier (mult2.pla) and two-bit adder with carry (add2c.pla). The main idea of these

experiments is to define how diverse types of genes located differently influence on

successful ES performance. The analysis of obtained data has been performed in two

stages. Firstly, the dependence of ES performance on the functional set of logic gate

has been defined. Secondly, the influence of gene type and its location on the ES

performance have been investigated.

The initial data for the experiment are given in Table 3.10. Any type of gene in

the chromosome genotype was allowed to change with constant mutation probability

Pm. The chosen functional sets of logic gates contain a specific subset of the primitive

logic functions. For example, all functional sets involved in evolution of the two-bit

multiplier have OR and EXOR primitive logic gates. {OR, EXOR, AND} has been

used during evolution of the two-bit adder. Let Pt({and}) be the percentage of the

primitive logic gate AND in the functional set. Pt({or}), Pt({not}) and Pt({exor})

are defined analogously. Let Pi ({not}) be the percentage of the inverted inputs

in the functional set. Let us consider the computation process of the percentages

mentioned above using the following example. Let us consider the functional set

NI5 = {6, 7, 10} that can be interpreted as follows: lVI5 = {io 1\ i l , io 1\ i l , io EB it}.

There are 3 types of logic gates. 6 and 7 encode the AND logic gate with and without

using the inverted inputs. 10 interprets EXOR gate with primary inputs. Therefore,

Pt({and}) = 2/3 = 0.66 and Pt({exor}) = 1/3 = 0.33. No logic gates OR and NOT

are in the examined functional set. Hence, Pt({not}) = 0 and Pt({or}) = o. All

logic functions in M5 are two-input. So, 6 inputs in these functional circuits can be

109

considered. There is only one logic function labeled 7 which contain an inverted input.

Therefore, Pi({not}) = 1/6 = 0.16. Pt and Pi describe the functional characteristics

of the functional set. Table 3.11 summarises these characteristics for the functional

sets used in this work. Note that all functional sets have different number of logic

gates.

Two strategies have been applied in order to choose the functional set: (1)

Pt({and}) and Pt({exor}) are not equal; (2) Pt({and}), Pt({or}) and Pt({exor}) are

equal. The two-bit multiplier has been evolved using functional sets M1 - 1'115 gen

erated according to the first strategy. Thus, Pt({and}) = 0.8 and Pt({exor}) = 0.2

for the functional set M3 (Table 3.11)). The two-bit adders have been synthesised

using the functional sets produced according to the second strategy. For instance, the

functional set A5 used to evolve the two-bit adder has the following characteristics:

pt({and}) =pt({or}) =pt({exor}) = 0.33 (Table 3.11).

Analysing the experimental results shown in Table 3.12, we can conclude that the

ES performance depends on the proportion of primitive logic cells used in evolution.

Thus, the functional sets 1'114 and 1'115 have the same set of primitive logic cells, but in

terms of performance the better results have been achieved with functional set 1'115.

Similar results have been obtained for the two-bit adder. The ES performs better

with the smaller percentage of inverted inputs involved. It is interesting to note, that

the ES performance deteriorated when the primitive logic operations were employed

instead of using inverted inputs.

In order to define how the different types of genes and their location influence the

EA performance, the differential chromosomes have been generated and the condi

tional probabilities mentioned in the previous section have been calculated as follows:

110

Table 3.10: Initial data Probabilistic analysis. N[;;;ax(B) is the maximum number of
inputs in the building block B.

[Circuit, * .pla file mult2 add2c

EHW parameters
Circuit layout,
N cols X Nrows 1 x 10 1 x 15
Connectivity parameter,
Nconnect 10 15
Functional set, .IF§ lvI1, lvI2, NI3, lvI4, lvI5 A1, A2, A3, A4
Function representation Truth table (Boolean logic)
Gate distribution Proportional
Type of layout Fixed
Type of building blocks Two-Input One-Output
N[;:,ax(s) 4

EA parameters
Type ofEA a rudimentary (1 + A) ES
N umber of generations, N gen 5000 r 15000
Population size, A 5
N umber of EA runs 100
Circuit mutation rate, Pcm 0.05
Fitness strategy Dynamic fitness function, Fl + F2

1. Consider the history of the best chromosomes, if the final functional solution

has been evolved during ES performance;

2. Select Ct
1

created at generation tl such that the fitness ofthe best chromosome

in question has been changed in comparison with the previous one;

3. Choose Ct
2

produced at generation t2 such that the fitness of the best chro-

mosome in question has been increased in comparison with chromosome Ct1 ,

t2 > t l , Ftl < Ft2 and there is no improvement in terms of fitness function

between generations tl and t 2;

4. Generate the differential chromosome J[)Ctl Ct2 .

111

Table- 3.11: The functional characteristics of chosen functional sets.
Functional set Ilpt({or}) Ipt({and}) Ipt({exor}) !Pt({not}) !!Pi({not}) I

lvIl = {6,7,S,9,10,11, 0 0.5 0.5 0 0.5
21,22}

lVI2 = {6,10,11,21,22} 0 0.2 O.S 0 0.4
lvI3 = {6,7,S,9,10} 0 O.S 0.2 0 0.4

lVI4= {4,6,10} 0 0.33 0.33 0.33 0
lVI5 = {6, 7, 10} 0 0.66 0.33 0 0.16

Al = {4, 6, 10, 12} 0.25 0.25 0.25 0.25 0
A2 = {6,7,10,11,12,13} 0.33 0.33 0.33 0 0.25

A3 = {6, 7, S, 10, 11, 0.33 0.33 0.33 0 0.33
12,13,14,21}

A4 ={ 6 78 d 91D 11 , , " , , 0.33 0.33 0.33 0 0.5
12,13,14,15,21,22}

The selection procedure mentioned above ensures that the differential chromosomes

have been generated from the chromosomes with improved fitness.

The conditional probabilities given in Eq. 3.5.1 - Eq. 3.5.10 have been calcu-

lated for all differential chromosomes separately for experiments eMi, i = 1,'" , 5

and eAi, i = 1,," , 4 and reported in Fig. 3.14 - Fig. 3.17. The location of logic

cells inside circuit can be represented as a string of logic cells, because the number

of rows in circuit layout is 1. If we labeled the logic cells located from left to right

as 0,' .. , (Ncols - 1), then we can represent them in figures on horizontal axes (Fig.

3.15 - Fig. 3.17). Thus, the horizontal axe defines the location of the logic gates in

the rectangular array. Because the number of columns in the rectangular array is 1,

location of each logic gate can be defined by the index of the column. For example, 5

at horizontal axe defines the logic cell located in the 5-th column. We apply similar

approach to show the location of the circuit outputs (Fig. 3.14). In further discussion

we will refer to the cell located at less significant position as to the position is located

at the left side of the rectangular array and to the most significant position if it is

0.1 Graph A : Circuit functionality evolution in

mult2.pla· Circuit output genes
0.09

0.08

0.07

0.06

0.05 +----~----_.__---_...

2 outputs 3

-+- M1 -.-- M2 --*- M3 -*-M4 -e- M5

0.11

0.09

0.07

Graph C: Circuit functionality evolution in

add2c.pla· Circuit output genes

0.05~ •

4

0.03 +1-------,--------,
2

outputs
-+-A1 ___ A2-k-~-+-A4

3

0.1 -praph B: Cost·optimised circuit evolution in

0.09

0.08 fj :::::::::;;~--..;:;~~~S~2~~~
0.07

1

0.
06 1

0.05 +-1 ----.,------,-----

1 2 3 4
outputs

-+- M1 ___ M2 -.-M3 -+- M4 -B- M5

Graph D: Cost·optimised circuit evolution in

add2c.pla· Circuit~_

0.11 ~~~.~~==::::::
0.09~
0.07

0.05

0.03 ~------r--

2
outputs

-+-A1 ___ ~--*-A3-*-A4

3

112

Figure 3.14: Circuit Output Genes. The horizontal axis defines the outputs in the evolved
circuits. The vertical axes in Graphs A and C correspond to the conditional probabilities
calculated according to Eq. 3.5.6 for the two-bit multiplier and the two-bit adder respec
tively. These graphs describe the evolutionary process aimed to evolve a fuHy··functional
circuit, Y Fl. Conditional probabilities calculated for both testedfunctions using Eq. 3.5.10
are mapped to the vertical axes of Graphs B and D. These graphs illustrate the evolution
ary process that produces cost-optimised circuit, Y F2. A comparison of these graphs shows
that the conditional probabilities obtained for evolutionary process aimed to evolve fully
functional circuits Y F1 2 times lower than the similar probabilities obtained for evolutionary
process T:F2. Conclusion: The circuit output genes are more essential during evolution

TF2·

Graph A: Circuit functionality evolution in

mult2.pla Cell connecuon genes

~~~~0.029j --.. --~ 0.029 

Graph B: Cost optimised circuit evolution 

mult2.pla Cell connection genes 

0.024 

0.019 

0.014 't'---r--r---,--.--.----r--...-----.--, 

o 2345678 
logic cells 

--+-M1 -.-M2 ~M3 ~M4 -i3-M5 

0.025 

0.023 

0.021 

0.019 

0.017 

0.015 

0.013 
0.011 

Graph C: Circuit functionality evolution 

inadd2c.pla Cell connection genes 

0.009 ,!,,-,---,---.-.-.-.-.--.-,-,--.-,-,.---, 

9 

3 5 7 9 11 13 15 
logic cells 

--+- A 1 -.-A2 ~ A3 -+-A4 

0.024 

0.019 

I 
0.014 +I--,------.--r---r--,--r---r---.---. 

o 2345678 
lo~ic cells 

--+- M1 -.-M2 ~ M3 ~ M4 -a- M5 

Graph D: Cost opumised circuit evolution in 

0.025 add2c.pla· Cell connection genes 

0.023 

0.021 

0.019 

0.017 

0.015 ~..:<:lI~ 

0.013 i 
0.011 

0.009 +---,----,----,--,-,-,--.---r-r--r-<--r--r-----, 

9 

3 5 7 9 11 13 
logic cells 

15 

--+- A1 -.-A2 ~A3 -+-A4 

113 

Figure 3.15: Connection Genes. The horizontal axis defines the positions of logic gates 
in the circuit layout- The vertical axes in Graphs A and C correspond to the conditional 
probabilities calculated according to Eq. 3.5.6 for the two-bit multiplier and the two-bit 
adder respectively. These graphs describe the evolutionary process aimed to evolve a fully 
functional circuit, 'IF!. Conditional probabilities calculated for both tested functions using 
Eq. 3.5.10 are mapped to the vertical axes of Graphs Band D. These graphs illustrate the 
evolutionary process that produces cost-optimised circuit, 'I F2' Comparison of these graphs 
shows that the conditional probabilities in all evolution processes are higher for genes located 
in more essential positions. The conditional probabilities for evolutionary process 'I F2 in 
logic gates located in less essential positions are higher than the similar probabilities for 
evolutionary process 'IF!. Conclusion: The genes located in more essential positions are 
very important in both evolutionary processes. The genes located in less essential positions 
become more essential in evolutionary process 'I F2' 



0.05 

Graph A: Circuit functionality evolution in 

mult2.pla· Cell input type genes 

0.04 

0.03 

o 

0.055 j 
0.045 j 
0.035 

0.025 , 

0.015 i 

23456789 
logic cells 

-.-M1 ___ M2 -a-M3 -a- M5 

Graph C: Circuit functionality evolution in 

add2c.pla· Cell input type genes 

~~~~~~~---~~~ 

0.005 +--,-.--,----.~~---r---r-,-__r_--r--.--_,___,

3 5 7 9 11 13 15
logic cells

_A2 -a-A3 ~A4

0.05

1 0.04 1
I

0.03

o

0.055 i
0.045 ~
0.035 J

0.025]

0.015

Graph B: Cost·optimised circuit evolution in

mult2.pla· Cell input type genes

2345678 9
IOQic cells

-.- M1 _ M2 -a- M3 -i3- M5

Graph D: Cost optimised circuit evolution in

add2c.pla· Cell input type genes

3 7 9 11
lo"ic cells

_A2 -a-A3_A4

13 15

114

Figure 3.16: Input Type Genes. Horizontal axe defines the positions of logic gates in the
circuit layout. Vertical axes in Graphs A and C correspond to the conditional probabilities
calculated according to Eq. 3.5.5 for the two-bit multiplier and the two-bit adder respec
tively. These graphs describe the evolutionary process aimed to evolve a fully functional
circuit, T FJ' Conditional probabilities calculated for both tested functions using Eq. 3.5.9
are mapped to the vertical axes of Graphs Band D. These graphs illustrate the evolutionary
process that produces cost-optimised circuit, T F2' Comparison of these graphs shows that
the conditional probabilities in all evolution processes are slightly higher for genes located
in more essential positions. No differences between two evolutionary processes have been
noticed. Conclusion: There is no difference between two evolutionary processes. The
genes in logic gates located in more essential positions are a bit more essential than in logic
gates located in less essential positions.

Graph A: Circuit functionality evolution in

0.03 mult2.pla - Cell type genes

0.025

0.02

0.01

0.005 +---r-.,----r-..,.---,--.,----..-..,.--,

o 23456789
logic cells

~M1 -.-M2 -.-M3 -.-M4 -S-M5

0.03

1
0.025

0.02 i
0.015 ~

0.01

Graph C: Circuit funcitonality evolution in

add2c.pla· Cell type genes

3 5 7 9 11 13
logic cells

~A1 -.-A2 -.-A3-.-A4

15

Graph B: Cost·optimised circuit evolution in

0.03 _ mult2.pla . Cell type genes

I

0.025 -
I

0.01 _ --

o 234 5 6 789
logic cells

~ M1 ___ M2 -.-M3 -.-M4 -€I- M5

Graph 0: Cost-optimised circuit evolution in

add2c.pla· Cell type genes

3 5 7 9 11 13
logic cells

~A1 -a-A2-.-A3-*-A4

15

115

Figure 3.17: Cell Type Genes. The horizontal axe defines the positions of logic gates
in the circuit layout. The vertical axes in Graphs A and C correspond to the conditional
probabilities calculated according to Eq. 3.5.3 for the two-bit multiplier and the two-bit
adder respectively. These graphs describe the evolutionary process aimed to evolve a fully
functional circuit, T Fl. Conditional probabilities calculated for both tested functions using
Eq. 3.5.8 are mapped to the vertical axes of Graphs Band D. These graphs illustrate the
evolutionary process that produces cost-optimised circuit, T F2. Comparison of these graphs
shows that the conditional probabilities in all evolution processes are slightly higher for genes
located in more essential positions. No differences between two evolutionary processes have
been noticed for the two-bit multiplier. In case of evolving the two-bit adder, during circuit
functionality evolution (T Fl) the conditional probabilities obtained for logic gates located
in less essential positions are slightly higher than in cost-optimised circuit evolution Y F2 .

Conclusion: There is no clear difference between the two evolutionary processes for both
logic functions tested.

116

. bf bf
Table 3.12: Experimental Results: Fl and F2 are the mean fitnesses Fl and F2 of
the best evolved chromosomes respectively; F2(Nf) denotes the average fitness F2 for fully
functional circuits evolved; Nf is the fully functional circuit; R(Nf) defines the number of
fully functional circuits evolved.

Circuit nm Functional

set, JF§ Fbf
1 F bf

2 F 2 (Nf) R(Nf)
mult2.pla 4 4 Ail 97.3484 7.665 7.41 332

NI2 98.0812 7.138 7.14 390
NI3 98.2109 7.499 7.32 517
11-14 98.6609 7.254 7.24 534
NI5 99.0844 7.222 7.09 707

add2c.pla 5 3 A1 94.1437 10.184 10.9529 85
A2 94.1833 10.038 10.4434 106
A3 93.7333 9.956 10.4902 102
A4 93.7041 10.104 10.5290 85

located at the right side of the rectangular array. Analysing Fig. 3.14 - Fig. 3.17, we

can conclude:

1. The conditional probabilities behave similarly for both tested logic functions:

two bit multiplier and two-bit adder. So, the conclusions drawn below can be

extended to the class of arithmetic logic functions.

2. The conditional probabilities for the circuit output and connection genes are

higher for the evolution process 1 F2 than for 1 Fl. This means that the circuit

output and connection genes are more actively participating in the evolution of

fully functional circuits (1 F2);

3. The conditional probabilities for connection genes in logic gates located in less

significant positions (i.e. in the low-level columns) are lower then in the same

genes located in the high-level columns. This means that these genes are more

active participant during evolution 1 F2 than in 1 Fl. In other words ES considers

117

the less significant logic gates as more essential if the evolution Y F2 is carried

out.

4. The conditional probabilities for the circuit output genes are approximately 5

times higher than for other types of genes. In other words, the circuit output

gene is the most significant gene in the given chromosome representation.

b. The level of conditional probabilities for input cell type is 2 times higher than

conditional probability for cell type gene. This means, that during evolution

changes of input cell genes have more influence ES performance, than the cell

type gene.

One should remember remind that the experimental results discussed above have

been obtained using a rudimentary (1 + >.) ES. This algorithm involves only mutation

that applied to the population generated from the best chromosome. Therefore, the

examined experimental results reflect the behaviour of the circuit mutation operator.

Hence, the performance of ES can be improved if these suggestions are taken into

account in the mutation operator. In other words, during mutation, different type

of genes located differently have to participate differently during the evolutionary

processes Y Fl and T F2" This is an issue of further work. Also, we can conclude that

the functionality of logic gates has to be described by two genes. The point is that

the experimental results prove that input and gate functionalities influence differently

on ES performance.

118

3.6 Summary

In this chapter some issues concerning analysis and verification of evolved circuits

in the gate-level EHW have been considered. Firstly, some function representations

and their suitability for the extrinsic EHW have been examined. Secondly, the dy

namic fitness strategy has been introduced to improve the quality of evolved circuits.

Thirdly, new optimisation criterion to evolve different types of circuit has been sug

gested. And finally, two evolutionary processes defined by proposed dynamic fitness

function are investigated using a probabilistic analysis approach, that shows the dif

ference of these evolutionary processes.

Analysis of the function representations, that can be suitable for using in the

extrinsic EHW illustrates that

1. The truth table can be used in any occasion because it defines the logic function

for all ON and OFF conditions.

2. The minterms table is not suitable to use in the extrinsic EHW because in this

case the input combinations where function is "0" are considered as not DON'T

CARE.

3. The cube representation is appropriate to evolving logic circuits if the logic

operators are redefined according to the cube representation.

In this chapter we have introduced the dynamic fitness function and showed that

the extrinsic EHW can be applied to design the FPGA-based as well as MOS-based

circuits.

The idea of the dynamic fitness function is employed firstly to evolve the fully

functional circuit and secondly to improve the quality of evolved circuits. At each

119

stage of dynamic fitness function the multi-criteria optimisation can be performed.

The performance of dynamic fitness function has been compared with performance of

classical multi-objective methods, such as the :\InN-MAX formulation, the method of

distance functions and the method of objective weighting. The experimental results

show that the dynamic fitness is better or comparable with the methods mentioned

above, if criteria Fl and F3 are activated. Using the dynamic fitness function allows

us to decrease the computational time of program, because the quality of evolved

circuits is estimated at the second stage of evolution .

. FPGA technology considers each basic logic gate as a building block. Therefore,

the number of primitive active logic gates can be considered as an optimisation criteria

during evolution of FPGA-based circuit. Defining the level ofFPGA used, the number

of primitive active logic gates can be substituted by the number of building blocks

in FPGA-based circuit. For example, at the gate-level, the quality of FPGA-based

circuit can be defined by the number of primitive logic gates such as NOT, AND,

OR or EXOR. At the function-level, the quality of the FPGA-based circuit can be

estimated by the number of such components as multiplexer, half adder, multiplier,

full adder, etc .. These components are considered as a basic building blocks. In this

case the quality of the evolved circuit can be defined by the number of active building

blocks used in the circuit, regardless of the cost of these blocks.

CMOS, NMOS and dynamic MOS circuits consist of transistors, diodes, etc ..

Hence, the quality of these circuits can be defined by the number of transistors used

in circuit. The number of transistors required to implement each of these circuits is

different, therefore the optimisation process for each of these technologies has to be

considered separately.

120

The FPGA- -and ::VIOS-based circuit structures evolved have been compared. It

has been shown that the most efficient designs strongly depend on the implementation

technology. In other words, the most efficient FPGA-based circuit does not coincide

with the most efficient MOS-based circuit. An analysis of the most efficient 7-gate

FPGA-based circuits of two-bit multiplier shows that all evolved circuits contain

the same number of transistors in the CMOS, NMOS and dynamic MOS circuits.

This means that all existing efficient FPGA-based circuits have the same structural

features, i.e. they contain 2 EXOR and 5 AND logic gates. At the same time, an

analysis of the circuits with the same number of transistors show that these circuits

can contain different number of primitive logic gates.

So, we can conclude that the proposed dynamic fitness function strategy can be

used to design the circuit of any technology. This is an evidence of universality of

this method. Also, this fitness function can be used in both gate- and function

level extrinsic EHW, because the FPGA-based design assumes using the high-level

elements.

The probabilistic analysis has been performed in order to define how different types

of genes and their location influence the algorithm performance. The experimental

results show that the algorithm performance depends on the proportion of logic gates

used in functional sets. It has been shown that different types of genes influence

differently the algorithm performance. Thus, the conditional probabilities for circuit

output genes are 5 times higher than for connections genes. It means that the circuit

output gene has" been changed 5 times more often in chromosomes with improved

fitness function. The connection genes influence differently in different locations of

logic gate. Thus the conditional probability for connection genes located to the left

121

side of circuit is lower then for genes located in the right side of circuit. It has

been found that there are two type of functionalities in logic cell: gate and cell

functionalities. It has been defined that they have different influence the algorithm

performance. The evolutions involved activating while the first and second fitness

functions behave differently.

Two criteria to define the functionality of the logic function are introduced. These

are:

1. the type of primitive logic function describing the behaviour of the building

block {AND, OR, .NOT, EXOR);

2. the type of inputs used in the building block (primary or inverted).

The experimental results show that these two functionality types have different influ

ence the algorithm performance. Therefore, we can conclude that in the chromosome

representation, the functional behaviour of the logic gate has to incorporate two dif

ferent gene types defining the gate functionality: (1) input gate functionality gene

(referred also as input type gene) and (2) primitive gate functionality gene (referred

also as cell type gene).

Chapter 4

Circuit layout evolution

4.1 Introduction

The EHW approach has been introduced in order to develop self-reconfigurable and

self-adaptive hardware. The main application area of such hardware is to perform

efficiently different tasks in dynamically changing environment without human inter

vention. In this case the hardware should be able to define the initial parameters by

itself. This is a very complicated task. At the current stage of research, the initial

parameters of EHW are defined by the designer, since they are ultimately linked with

the complexity of considered problem. In order to overcome this difficulty, we propose

to use evolved EHW parameters together with circuit functionality. This will provide

the EHvV with self-adaptation to required parameters. EHW parameters include the

circuit layout, connectivity restrictions, complexity of building blocks, functional set

of logic functions, etc.. The conducted EHW analysis confirms that these param

eters influence the algorithm performance. The circuit layout and the connectivity

parameter are very important, since they define the configuration of chromosomes

and restrictions of hardware. For this reason, these parameters are chosen to par

ticipate in the circuit evolution. The technique that combines the circuit layout and

122

123

circuit functionality evolution at the same time is introduced in this Chapter. This

is the first attempt to create hardware that adjusts the size of rectangular array dur

ing evolution. The basic idea of evolving the circuit layout together with the circuit

functionality and some experimental results has been first suggested and previously

reported in [1), [2].

In this Chapter we will discuss one of the possible ways to design EHW with

self-adaptation to circuit configuration. The choice of suitable circuit geometry is a

very complicated task and is intimately linked with the complexity of the function

implemented. So, in order to avoid this we investigate the possibility of evolving

the circuit geometry at the same time as trying to evolve 100% functional circuits.

The circuit layout, also referred to as circuit geometry, defines the length of the

chromosome, thus we work with chromosomes of variable length. In this scheme,

mutation is carried out in two ways. First, we can mutate genes associated with a

circuit in a homogeneous geometry, and secondly, we can by mutation choose the

circuit geometry. The main purpose of circuit layout evolution was to evolve the

circuit layout together with evolving circuit functionality.

In our further research we define several strategies for the gate-level extrinsic

EHW with heterogeneous circuit layout. Two types of evolutionary algorithms (EA)

are implemented: a standard elite genetic algorithm (GA) and a rudimentary (1 + A)

evolutionary strategy (ES). The standard elite genetic algorithm contains initialisa

tion, selection, crossover and mutation operators. These operators have been designed

for both circuit layout and gate levels in the chromosome representation. Elitism is

used in order to provide the survival features of the fittest individual. The evolution

ary strategy involves initialisation and mutation operators. The new population is

124

filled with thE; fittest individual. The operators are similar to the ones applied to the

standard elite GA.

In order to evolve better circuits in terms of the number of active gates we use the

dynamic fitness function (Fi + F2) that contains two main stages. At the first stage

the objective in digital evolution behaviour is to merely produce a 100% functionally

correct circuit (functionality criteria, F1, Fl = Fi). So, the evolutionary process is

terminated at this point. Here we continue to evolve the circuit beyond the point of

100% correctness by modifying the fitness function to include a measure of circuit's

efficiency (criteria defined by the number of active logic gates in the circuits, F2)

F2 = F2). vVe will investigate cases where we use homogeneous, heterogeneous or

partially heterogeneous (heterogeneous only at the initialisation stage of evolutionary

algorithm) circuit layouts during algorithm execution and determine the algorithm

performance as a function of both fitness measures.

4.2 Relationships between the circuit layout and
algorithm performance

Justification of evolving circuit layout together with circuit functionality can be de

rived empirically from the following series of experiments. The main purpose of this

series of experiments was to investigate how the connectivity parameter and circuit

layout affect the algorithm performance. The circuit layout can be characterised by

the following parameters:

1. connectivity parameter;

2. the number of rows in rectangular array;

125

3. the number of columns in rectangular array.

The algorithm performance can be estimated by:

1. the mean functionality fitness of the best chromosome over 100 runs, F~f

(av.Fl);

2. the mean number of active gates in fully functional designs evolved over 100

runs, F~f (Nf) (100av.F2);

3. the number of fully functional circuits N f evolved, R(Nf) (# 100% cases).

In order to get the first positive results in a reasonable period of time we arrived at

the parameters shown in Table 4.1. We perform three different experiments. Each

of the experiments has different circuit layout parameters. Therefore, the circuit

parameters are listed separately for each experiment performed (Table 4.1). This

series of experiments has been performed using a rudimentary (1 + .\) evolutionary

strategy with uniform mutation.

These experiments have yielded some very interesting results, e.g. that perfor

mance may be dependent on the number of columns and the connectivity parameter,

rather than EA parameters only. In this case the algorithm performance is defined

by the number of fully functional circuits evolved during 100 runs and by the quality

of evolved circuits. The quality of evolved circuits is determined by the number of

active logic gates in the circuit. Therefore, the target implementation technology for

evolved circuits is FPGA. Such arithmetic logic functions as a half adder (addlc.pla)

and a two-bit multiplier (mult2.pla) are chosen to verify the hypothesis.

126

Table 4.1: Initial data: Circuit layout and algorithm performance. The EA parameters
used in this experiment and further in experimental results have been chosen according to
empirical study of EA behaviour.

Circuit addlc.pla mult2.pla
Functional set {1, 2, 9}
Type of algorithm (1 + A) ES
Population size 5
Number -of generations 100 5000
Number of algorithm runs 100
Mutation rate, Pm 0.05

. InvestIgation of connectivity parameter
Circuit layout,
Ncols X Nrows 50x1 50x1
Connectivity parameter, (1, 50, 1) (1, 50, 1)

(N;;~~ect' N;;~~ect' ~Nconnect) . InvestIgation of the number of columns
Circuit layout,
(N;;t: , N;;l~x, ~Ncols) (2, 50, 1) (2, 50, 1)
Nrows 1 1
Connectivity parameter,
lVconnect 2,5,10,Ncols 2,5,l0,Ncols

.
InvestigatIOn of the number of rows

Circuit layout,
(N~~s, N~r:v~, ~Nrows) (2, 50, 1) (2, 50, 1)
Ncols 4 4
Connectivity parameter,
Nconnect 4 4

u:
,;
~

'00 Graph A: mull2.pla

80

60

40

20

40

3cfl
15

20~

----___ t'o

N ~ 0 ~ m N m 0 v ~ N ~ 0
~ r r N N M M M v v ~

Connectivity parameter

#100%cases -av.F1 --av,100F2

60 j

40;

20 j ~""""""-___ 1

o j-=~~r~~~~~~
N '" a v 00 N ~ 0 m M ~ ~ ~

r ~ ~ N N M N M M v v
Connectivity parameter

#iOO%cases av.Fi __ av.100F2

25

20
N
u..

:58

10~

127

Figure 4.1: Dependence the algorithm performance on the connectivity parameter.
Graphs illustrate that the algorithm performance depends on the comlectivity parameter.
There are four specific ranges of areas for connectivity parameter showing that the algorithm
performs differently.

Connectivity parameter and alg-orithm performance.

In this section we will examine how the performance of the evolutionary algorithm

is influence by increasing the flexibility of internal connections of the circuit. Fig.

4.1 shows the summarised experimental results. For each set of runs the number of

columns and rows has been homogeneous and the connectivity parameter allowed to

vary.

The obtained results show that with increasing the internal connectivity in the

circuit, the number of fully functional solutions acquired increases. Four distinctive

ranges of connectivity parameter can be identified as follows:

1. No fully functional solutions have been evolved;

2. The percentage of fully functional circuits evolved is 5% or less;

3. The percentage of fully functional circuits evolved is more than 5% and less

than 90 %;

4. The percentage of fully functional circuits evolved is 90% or more.

128

No functional solutions have been evolved for both functions if the connectivity

parameter is less then 5.

During the second phase, very few functional solutions are evolved. The size of the

synthesised circuit is very large in comparison with the optimally evolved solution.

For instance, the optimal evolved two-bit multiplier contains 7 primitive logic gates.

The two-bit multipliers evolved during second phase consist of at least 35 logic gates.

The same effect can be noticed when the half adder is evolved.

During the third phase, a sufficient number of fully functional circuits is evolved.

The number of primitive logic gates in the circuit evolved during this stage decreases

with increasing the connectivity parameter in the circuit layout.

During the fourth phase, no improvements in algorithm performance can be no

ticed with increasing the connectivity parameter. The average number of active logic

gates in the circuit is stabilized and no improvements in term of the quality of evolved

circuits can be found with increasing the connectivity parameter during this phase.

So, we can conclude that the connectivity parameter influences the algorithm

performance. The higher the connectivity parameter, i.e. less restrictions inside

circuit results in better algorithm performance. Note that there is undesirable range

of connectivity parameter, within which the algorithm performs poorly.

The algorithm performance illustrated above can be explained as follows. Let

"self-reproductive" logic circuit be the circuit that acts as a wire. For example, circuit

described logically as NOT(NOT(a)) is "self-reproductive because it implements itself

and acts as a wire. The depth of logic circuit is the minimal number of columns

required to implement the circuit in question. Let Neols be the number of columns in

the rectangular array and Neonneet be the connectivity parameter. The minimal depth

¥
S

50

~" 30+

10~

columns Is 50

0~----,~6~~=2~b====~3~b=----~C. ----~50
Connectivity parameter, NUl"n".;t

129

Figllre 4.2: Relationship between the connectivity parameter and the minimal depth
of logic circuit that can be implemented using given circuit layout. Graph shows that
there is a range where the minimal depth of the logic circuit is relatively high for a specific
range of connectivity parameter. Comparing this range with one obtained empirically, we
can notice that they are identical.

of logic circuit that can be implemented on the rectangular array can be defined as

d = NNcQ
{, ,if "self-reproductive" circuit is not allowed to be used.

connect

Fig. 4.2 depicts the relationship between the connectivity parameter and the

minimal depth of logic circuit that can be implemented using the given circuit layout.

In our experiment the number of columns in the rectangular array is set to 50. The

minimal circuit depth is calculated for each value of connectivity parameter starting

with 1. The graph illustrated in Fig. 4.2 shows that only the circuits with a relatively

high number of logic gates can be implemented on rectangular array with circuit

layout 1x50. For example, the depth of the logic circuit has to be 17 or higher, if the

number of columns is 50 and the connectivity parameter is 3.

So, the theoretical foundations summarised in Fig. 4.2 are proved empirically (see

Fig. 4.1). Thus, as it has been mentioned above, no fully functional circuits have

been evolved with relatively low connectivity parameter, since the depth of examined

circuit is relatively low and with these restrictions multi-output functions can not be

mapped into rectangular array.

columns
................. # 1000/0 cases ... - - - av.F1 ---av.l00F2

100

*
80

'" - 60
u"-

"" fij 40 8 .. 20

a
:: ~ [:;; ;;; ~

columns

.,~..,..v.., ~~ # 100%cases - _ av.F1 ---av.100F2

Graph E: mult2.pJa (N(eonneetivity) = 5)

,:~ I---------------------------------------I:: ~
~"'! 178

~ {\ i
20 ,$ »...):>~;..... 12

o ~;~;",cma];liln;'''"'"''''~m'm71",m' 7
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

columns

·,,· ... · ·"' .. #1000/ocases- - .. -av.Fl-__ av.l00F2

'"" (;"~ .. "~""~ .. ' -. "
80 -- .. _- .. -------- -'~----- .. ----- .. -----------.. - ~~ N

60 15 ~
o

40 13 ;:

11 '" :~--L_----------J : ~ ~ ~ ~ ~ ~ ~ ~ ~
columns

.0' ... "" ••• ".0' # 1000/0 cases - .. - .. av.Fl ___ av.l00F2

130

~ ~
columns

.. ···· ... ····· #100%.eases- .. - -av.F1---av.l00F2

N K1 ~ ~
columns

...................................... # 1000/0 cases av.Fl ---av.l00F2

100 Graph F: add 1 c.pla(N(connectivity) = 5)

80 ---'.;,~.;;;;':~'~"~<~~\~--------------------

60 J '''''",\
40 li
20

o /

'" '" N N

columns

~ ~".......,..,... # lOaD/a eases .. - - .. aV.Fl ---av.100F2

':: l~~:~h_'~:~d~:.~~_(:~c~~n::~v~~)_ ~ :) __ --_~ ----j

~ ----------
~ ro _ ~ ~ 0 ~ ~ m N ~ ro

- - - N N N N ~ ~ ~

columns

... ..,... '-..... ~.# 1000
/0 cases .. - av.Fl ---av.l00F2

Figure 4.3: Dependence of the algorithm performance on the number of columns.
Graphs A and B demonstrate that with increasing the number of columns in the circuit
without connectivity restrictions (Neanneet = N eals), the number of primitive active logic
gates in the fully functional circuits increases. Graphs C, E and G shows that with higher
connectivity restrictions the number of columns required to evolve fully functional two-bit
multipliers decreases. The smaller the connectivity parameter, the narrOwer the range of
the number of columns, that can produce fully functional solution. Similar conclusion can
be made considering Graphs D, F and I that correspond to the full adder.

131

The number of columns and algorithm performance.

In this series of experiments we investigate how the number of columns in the rect

angular array influences the algorithm performance. The experimental data are sum

marised in Fig. 4.3. The same experiment has been repeated for circuit layouts with

connectivity parameter equal to 2, 5, 10 and N cols . Analysing the shape of the ob

tained curves we can conclude that the algorithm performs differently for different

values of connectivity parameter. Let us consider the case when Nconnect = N cols .

In this case, the number of fully functional solutions evolved is stabilized relatively

quickly. At the same time, the number of primitive logic gates involved in the cir

cuit increases as the number of columns in rectangular array is increased. Therefore,

in order to evolve the logic function with minimal number of primitive logic gates,

a suitable number of columns has to be chosen. With decreasing the connectivity

parameter in this experiment, the behaviour of the algorithm performance changes.

For example, only few fully functional solutions have been evolved with Nconnect = 2.

This can be explained by the circuit depth limitation specified by chromosome rep

resentation. Based on data, given in Fig. 4.3, we can conclude that the connectivity

parameter is ultimately linked with the number of columns in the rectangular array.

This has drastic influence on the number of fully functional circuits evolved and its

quality.

The number of rows and algorithm performance

In this series of experiments we investigate how the number of rows in the rectan

gular array influences the algorithm performance. For this purpose the number of

columns and the connectivity parameter have been chosen to be constant (Table 4.1).

132

g
l3 ~ u..
g; ~
o

""
.""~.=="
90 :t 7 B
80 if . C-.J

f. rnult2.pla 7.6 l.L

:~ I 7.4 i
50 f 7.2 ,
40 7

/I rows

-.." ·-.. .. ~ ·-..-..··#100Q/ocasos- - - -av.F1--av.100F2
(a)

100 __ - ______________________________________ - 10

90 add1c.pla 8

.~-t\""' ... ~.,/,,-........ ~-./-~\-\~:l-~;-"""'-'-"'''''''''";''~--;:'/~:\,};:;-S-;\;:;"'':/:''''-y-:.~-. -"'_'~"""""~-i,>-""--·'-.:-...:..i~»~~'---'-"'-'~;:\""'~.':$.-\j-/J : :
60

50 ~/"~~ 2

40 o

-----# 10Q%casos - - - -av.F1 __ av.100F2

(to)

Figure 4.4: Dependence the algorithm performance on the number of rows. Graphs
illustrate that the algorithm performance does not depend on the number of rows in the
rectangular array.

Analysing the experimental data shown in Fig. 4.4 we can conclude that the algo

rithm performance does not depend on the number of rows in rectangular array. No

improvements have been found in terms of algorithm performance with increasing the

number of rows in rectangular array.

So, finally we can conclude that the algorithm performance depends on the con-

nectivity parameter and the number of columns in the rectangular array and does

not depend on the number of rows. The dependence of algorithm performance on the

circuit layout has been investigated on relatively small fully functional circuits. Thus,

it is likely that the number of rows in the rectangular array influences the algorithm

performance, if a higher complexity circuit is evolved. The number of active primitive

logic gates in the evolved structures strongly depends op. the connectivity parameter

and the number of columns in the rectangular array.

Circuit size

columns
rows

Inputs

"0"

"I"

Circuit connectivity
1811 i-11-li-141'1 Outputs

'..~'J ~ .. ,.... j:j ~------=.!J

1 9, .1;:1 \ ... 12." lJ 11511 Y I

'.,.~~ Y:

--------_.-
Gate structure

iL...c,
. 1

11~ :;',1 L2.:.J) ... ~

1_, _,

r 1 &-c;'T'-::::":-~1 'I

'._' .~. ' ... \;. I Gate type I

Circuit Outputs '--__ G_at_e_in __ pu_ts __ J
Gate connectivity

133

Figure 4.5: Schematic of chromosome structure implementing a 3-input 2-output logic
function

4.3 An extrinsic EHW with heterogeneous circuit
layout

In this section, an extrinsic EHvV that evolves a circuit layout together with circuit

functionality is introduced.

4.3.1 Encoding

Two aspects are required to define any combinational logic network. The first is the

cell-level functionality and the second is the inter-connectivity of the cells between the

circuit inputs and outputs. An encoding of chromosome was adopted that satisfies

these two aspects.

A combinational logic circuit is represented as a rectangular array of logic gates

(Fig. 4.5). Each logic cell in this array is uncommitted and can be removed from

the network if it proves to be redundant. The inputs to any cell in the combinational

network may be logical constants, primary and inverted inputs, as well as the outputs

of logic cells which are in columns to the left of the cell in question. In the work

reported in this Chapter we define each logic function to be chosen from the set of

functions AND, OR, NOT, EXOR with primary and inverted inputs or a multiplexer.

134

The chromosome is represented by a 3-level structure:

1. Layout structure;

2. Circuit structure;

3. Gate (cell) structure.

At the first level, the global characteristics of the circuit are defined: These are the

connectivity parameter and the number of rows and columns. The circuit geometry

can be changed at this level. At the second level, the array of cells are created and

the circuit outputs are determined. Finally, the third level represents the structure

of each cell in the circuit. This data consists of the number of inputs, the input

connections and the functional gene. The number of inputs in the cell depends on

the type of cell and is defined when the value of functional gene is known (i.e. a

2-1 multiplexer has two inputs and one control input while all others have only two

inputs). Note that the number of inputs as well as the number of outputs are allowed

to be variable, but in this Chapter we consider only 2- or 3-input 1-output gates.

An example of the chromosome representation with the actual circuit structure is

given in Fig. 4.6. Let us examine a possible circuit representing a full adder. This

function has 3-inputs and 2-outputs and is implemented here on a combinational

network with 3x3 circuit geometry (Ncols X Nrows). The circuit inputs are labeled as

follows: 0 and 1, which represent the logical constants 0 and 1 respectively, labels 2, 3

and 4 correspond to the input variables xo, Xl and X2 respectively. The inverted inputs

xo, Xl, X2 are represented as 5, 6 and 7. In this example the functional gene (shown

in bold) represents one of the 13 possible gates (AND, OR, EXOR with primary and

inverted inputs or mUltiplexer). The functional gene may be a positive or negative

Circuit inputs:

0:0
1. 1

2: x1
3: x2
4: x3
5. !x1
6. !x2
7: !x3

Chro~osome;

Circuit geometry 3 X 3

o
a ~\\-.

lxL,J I 8
'-: -'
-1056

~~'"
1 Jx2-J, 9 ~

~.

-617

-1234

10,-. -'.

~l11

-3103

.lx2..c. ;---"
,~~i 12 Y1

I_I _/

-1278

}xL'.-, -',
!L..J) 13

!~._/

-1268

Circuit outputs . 16 12

Fitness.103.0

2

11

12-.),' 14

-121112

..1L~···

u.J" 15, -

-91311

9--f1 YO

~~16 ~
10 L'r

10 913

Gate 15:

Functional gene' -9
Input1: 13
Input2: 11
Type of cell: 2-input

Gate 16:

Functional gene: 10

Input1: 9
Input2: 13
Control input: 10

Type of cell:
multiplexer

135

Figure 4.6: An example of the phenotype and corresponding genotype of a chromo
some with 3x3 circuit layout

integer. If positive then the function is a multiplexer and the integer represents the

control connection. If functional gene is negative, we use an encoding table to define

the type of gate (Table 4.2).

The output of each cell is assigned an individual address. Thus the output of

the cell located in the oth column and in the oth row is labeled as 8. The output

of logic cell in the 2nd column and 2nd row is labeled as 16. The number of circuit

outputs is defined by the number of outputs in the logic function implemented. The

logic cell label determines each of these outputs. Let us examine the encoding of the

12th logic cell in genotype < -12 7 8 >. vVe refer to this representation of gate as

"gate genotype". The functional gene defining the type of this gate is -12. This value

corresponds to the EXOR gate with inverted inputs in the gate-encoding table (Table

4.2).

The examined cell has two inputs. The first input is connected to the input X2

and second to the output of the 8th cell. Cell 8 depends on two variables: Xo and

Table 4:.2: Gate functionality according to the bo(z) gene in chromosome
I Gene functionality, bo (z) I Gate function I

-1 Xl /\ X2

-2 Xl /\ X2

-3 Xl /\ X2

-4 Xl /\ X2

-0 Xl V X2

-6 Xl V X2

-7 Xl V X2

-8 Xl V X2

-9 Xl EB X2

-10 Xl EB X2

-11 Xl EB X2

-12 Xl EB X2

-13 Xl

-14 Xl

136

Xl' So, in this case the logic function that describes the 12th cell depends on three

variables: xo, Xl and X2. Let us consider the 16th gate, with genotype < 10 9 13 >.

Since the functional gene is positive, the gate is a multiplexer and the functional gene

with value 10 corresponds to the control input. The inputs to this multiplexer are

connected to the outputs of gates 9 and 13. The outputs of the circuit are connected

to the outputs of the 16th and 12th logic gates. The fitness F of a chromosome is

defined as follows:

F={ Fl = Fll Fl < 100;

F2 = Fl + F2, Fl = 100.

where Fl is the percentage ofthe circuit output bits that are correct, F2 is the number

of gates that are not involved in the circuit.

The maximum F2 is equal to (100.0 + N~~~ x N:;l'sX). In this case no gates are

used. The fitness function for a full adder is 103.0 for the circuit shown in Fig. 4.6.

This means that this circuit represents a 100% functional full adder and there are 3

137

logic gates that are not involved in the combinational implementation of this circuit.

In other words, there are 6 gates, which are actually used to synthesise the full adder,

because F!{"ax = 100.0 + 3 * 3 = 109.0.

4.3.2 Objective Function and Fitness

One of the objectives of combinational circuit design is to construct a circuit utilising

the minimum number of gates from the behavioural specification of the circuit given

by the truth table. The evaluation process consists of the two main steps. First we

are trying to find the circuits with 100% functionality (Fl criteria) and S€Condwe

are trying to minimise the number of active gates in 100% functional circuits (F4

criteria). An active gate is a gate, which is proved to be not redundant. vVe use two

strategies in our EA:

1. Fl strategy;

2. :Fl + F2 strategy.

In the first strategy, the chromosome is evaluated using Fl criteria only and once

the 100% functional circuit evolved, the evolution process is terminated. In the

case of F1 + :F2 strategy, F2 criteria is activated as soon" as Fl = 100.0 and the

number of inactive gates in circuit is estimated. When heterogeneous circuit geometry

is employed, F2 is calculated based on the maximum available circuit layout. For

example, let the maximum circuit layout is 10 x 10. If the fully functional circuit

has 3 x 8 circuit layout and contains 18 primitive active logic gates (F2 = 10), then

F2 = F2 = 10 x 10 - 18 = 82.

138

4.4 Evolutionary Algorithm

In order to evolve combinational logic circuits, two evolutionary algorithms have been

implemented: (1) an evolutionary algorithm using tournament selection with elitism

and uniform crossover, and (2) a rudimentary (1+.\) evolution strategy. These details

are given in the following subsections. During the evolution process we only allow the

circuit layout to be changed by mutation or crossover by altering the number of rows

or columns. In this case we will refer to this as heterogeneous circuit layout during

evolution. When the circuit layout is not changed during the evolution process, we

refer to it as the homogeneous circuit layout.

4.4.1 Initialisation

The initialisation procedure contains several steps:

1. Define circuit geometry of chromosomes in population;

2. Initialise the genotype of cells;

3. Generate the circuit outputs for each chromosome.

The first step defines the circuit geometry for the chromosomes. In heterogeneous

circuit layout, any circuit geometry may be used up to the maximum number of rows

and columns. In homogeneous circuit layout, all chromosomes have the same circuit

geometry. We say that we have homogeneous circuit layout during the initialisation

process when the circuit layout for all chromosomes is the same. The heterogeneous

circuit layout occurs when the chromosomes are initialised with different circuit lay

outs. During the second and third step the initialisation of cell inputs and circuit

outputs is performed in accordance with the connectivity parameter constraint and

139

the type of variables which are able to be present throughout the circuit. Thus if the

logic constants are allowed as input connections throughout the circuit, then during

the initialisation procedure the inputs of gates can be chosen from the set of inputs

constrained by connectivity parameter or from the set of logical constants. The same

procedure is true for the primary and inverted primary inputs.

4.4.2 Mutation

We use two types of mutation:

1. Circuit mutation;

2. Layout mutation.

The circuit mutation allows us to change the type of genes in a chromosome

but excludes the number of columns and rows. The geometry mutation changes the

numbers of rows or columns in the rectangular array. The maximum numbers of

rows and columns are predefined. In both cases the mutation rate has to be chosen

carefully, since it can dramatically affect the EA performance.

Circuit Mutation:

The circuit mutation allows us to change the following three features of the circuit:

1. Cell input;

2. Cell type;

3. Circuit output.

140

Each of these -parameters is considered as an elementary unit of the genotype.

The circuit mutation rate defines how many genes in the population are involved in

mutation. The chromosome contains 3 different types of genes, whose number is :

>.

Ngenes = L (3 . N;ates + N out)

i=l

(4.4.1)

where Noutputs is the number of outputs in the circuit, N.~ates is the number of gates

in the i- th chromosome, A is the population size.

Geometry Mutation:

Geometry mutation allows us to change the number of rows and columns in a chro

mosome. Geometry mutation is applied to each chromosome with a given probability.

In this case the numbers of rows and columns are treated as an elementary unit of the

genotype. Either the number of rows or the number of columns is changed with equal

probability. The geometry mutation consists of the two main steps: (1) Gene muta

tion; (2) Repair algorithm. In the first step the new number of columns or rows of the

chromosome is randomly defined. At the second step the repair algorithm is applied

to ensure that a chromosome with a new geometry represents a valid genotype.

Let us consider geometry mutation process for chromosome with 3x3 circuit geom

etry. Let Ncols and N rows be the number of columns and rows of chromosome assigned

to be mutated and new_value is the new value of mutated genes chosen randomly.

The gene mutation procedure is as follows:

1. Define the circuit mutation rate, Pmg.

2. Generate random number for each chromosome, rand1 E [0,1].

3. If (rand1 < Pmg) the geometry mutation is applied to the current chromosome.

141

4. Generate random number rand2 E [0,1].

o. If (rand2 < 0.5) the number of columns in chromosome is chosen to be mu

. tated and the new number of columns (new_value) is generated from the range

[1, N:l~X]. Else the number of rows is considered as mutated gene and the new

number of rows (new_value) is generated from the range [1, N~~~].

Let NC'UTTent be the number of rows or columns in chromosome in which the gene is

assigned to be mutated and Nmax is the maximum number of rows or columns which

is allowed to be in circuit structure. Then the new value of the mutated genes can be

defined using one of the following three strategies:

1. Global geometry mutation (GGM), new_value E [1, Nmax];

2. Bounded geometry mutation (BGM), new_value E [1, NC'UTTent];

3. Local geometry mutation (LGM), new_value = NC'UTTent ± 1.

The first strategy allows us to generate a new circuit geometry. The number

of columns and rows is randomly defined in the ranges [1, N:l~X] and [1, N~~~] re

spectively. The new number of columns and rows is not related to the current circuit

geometry. The second strategy is used to reduce the circuit geometry used in chromo

some. The idea of this strategy came from observing that using th€ ·globalgeometry

mutation tended to produce circuits with larger circuit geometry. The third strategy

is based on the idea of a local search of the circuit geometry. This strategy guar

antees to produce comparatively small numbers of new cells in the chromosome in

comparison with the first one.

After new_value is defined, the geometry mutation is performed in the following

manner. First, consider the case when the mutated gene is the number of columns.

142

initialise new gate

Figure 4.7: The geometry mutation process for a chromosome with geometry 3x3

In this case the new circuit structures, shown in Fig. 4.7 (structures A and B),

can be synthesised. If (new_value > N cols) , we have to add new columns in the

chromosome representation (Fig. 4.7 (structure A)). The gates in the new columns are

initialised using the initialisation procedure. It is possible, however, that the circuit

output disobeys the levels-back constraint. Thus, the chromosome may need to be

repaired. The repair algorithm checks whether the circuit outputs obey the levels-

back constraint, and whether all the cell inputs are valid. If the circuit output does

not satisfy this condition a new circuit output is initialised. If (new_value < N cols) we

have to remove some columns in the circuit structure (Fig. 4.7 (structure B)). After

the new structure.is .obtained,-· a repair algorithm-is-applied to the circuit -output,

because the circuit output can refer to a gate, which no longer exists in the circuit.

In the case when the mutated gene is the number of rows, the structures C and D

given in Fig. 4.7 can be synthesised. If (new_value> N rows) the new rows of gates

are added to the circuit structure (Fig. 4.7 (structure C)). Again, these gates are

initialised. There is no need to apply a repair algorithm to the circuit outputs in this

case because the connections are not changed and the circuit outputs will still refer

143

to the correct logic cells in the circuit structure. If (new_value < Nrows) the last

(Nrows - new_value) rows are removed from the circuit structure (Fig. 4.7 (structure

D)). In this case the inputs of the remaining gates as well as circuit outputs can refer

to gates which are no longer present. Therefore each gate genotype and the circuit

outputs have to be repaired.

4.4.3 Recombination

Recombination is implemented with uniform crossover. For two chromosomes, the

uniform crossover generates two new chromosomes by swapping two genes in the

chromosomes. Because our chromosome structure contains three levels, on each level

the components of the chromosome can be examined like a "gene" or "swapping

block". Thus we have three different crossover operators:

1. gene-uniform crossover;

2. cell-uniform crossover;

3. geometry-uniform crossover.

The number of chromosomes selected for breeding is defined by the crossover rate,

which is carried out on a -cellular level. In order to pr€SefVe the interconnection

conditions, the repair algorithm checks the inputs of the logic gates for correctness.

When two chromosomes with different geometries undergo crossover it is very likely

that merely swapping genes to produce the offspring, will generate invalid genomes.

These would have to be repaired (randomly initialised), and this would introduce a

considerable amount of randomness into the recombination process. Therefore, the

selection of the correct crossover rate and its type is very important.

..

144

Figure 4.8: Parents for cell-uniform crossover

When we refer to the gene-uniform crossover, we mean that any gene of logic cell

as well as the circuit outputs can be exchanged. In the case of cell-uniform crossover,

the data describing the behaviour of a logic gate such as functional gene, inputs,

control input, are swapped. In geometry-uniform c'rossover, the columns or rows of

logic cells in addition to circuit outputs are involved in the crossover process. In this

case a whole column or row of logic gates is swapped and connections are restored if

necessary.

Let us consider the" restoring process" in the case when the cells to be swapped

belong to chromosomes with different circuit layouts. In this case the cell will refer to

different cells in the circuit because of the specific features of encoding. In order to

avoid it we correct the cell data in such a way that they refer to the cells positionally

located in the same place as with the parents' chromosome. In the case when the cell

contains a connection to a non-existent cell, a new connection is randomly generated

such that it is valid. Let us consider the case mentioned above with an example of

cell-uniform crossover with parent chromosomes with 3x2 and 3x3 circuit geometry

and assume the cell to be swapped is located in 2nd row and 3nd column (Fig. 4.8).

Let us also consider the case where the cell from parent 2 is exchanged with cell in

parent 1. This cell has connection to the 10th and 11th cells in the circuit. Positionally

it corresponds to the cells located in 2nd column and 1st and 2nd (10 and 11) rows.

145

'When we exchange this cell in the chromosome with 3x3 circuit geometry, this cell

now represents the connections with cells located in pt column and 3Td row and in

2nd column and 1st row. Thus the positional connection is broken. In order to restore

it we have to reassign the inputs for this cell according to the labeling process in

chromosome. Thus this cell now will be described to < -4 11 12 >. The same

process is applied to the cell in parent 1. But in this case the input refers to the

cell located in 2nd column and 3Td row. Because the chromosome where this cell is

going to be allocated has only 2 rows (parent 2 has only 2 rows), this input has

to be initialised. Thus the "restoring process" allows us to preserve the positional

connections of cells and provides a less destructive process.

4.5 Experimental results

In this section we will consider some experimental results obtained for the full adder,

the two-bit adder and the two-bit multiplier. The main idea of these experiments is to

find out which of the EA strategies allows us to determine whether circuit geometry

evolution brings some advantages or not.

4.5.1 Crossover and mutation strategies

In this series of experiments we have tried to define the best mutation and crossover

strategy as well as the best overall GA and ES strategies. vVe investigate the GA

and ES performances for three types of crossover (gene, cell and geometry-uniform

crossovers), two types of mutation (circuit and geometry mutations) and three types

of geometry mutation (global, boundary and local). vVe define two main strategies

fOr the evolution and initialisation processes. Each of these strategies is defined by

146

the homogeneous or heterogeneous circuit layout. The initial data are given in Table

4.3. The results obtained for both GA and ES are shown in Table 4.4 - Table 4.7.

The table~ are organised accorditlg to the EA strategies used. The value F;f (Nf)

defines the mean number of active gates in the fully functional circuits evolved.

The first results were obtained for the case when during initialisation and evolution

processes the heterogeneous circuit layout is produced (Table 4.4). The chromosomes

with different circuit layouts are produced at each stage of the EA. The circuit and

geometry mutations have been used together. Observing the experimental data we

found that for both cases ES performs much better then the elite GA. For example,

ES with local geometry mutation finds the most compact fully functional one-bit

full adders (F;f (Nf) = 5.04). In this case the largest number of fully functional

solutions has been obtained: 45. Similar conclusion can be made about evolving

the two-bit multiplier. In this case the ES with global geometry mutation produces

84 fully functional solutions. The ES with boundary geometry mutation evolves

the most compact two-bit multipliers (F;f (Nf) = 7.6842). It is difficult to define

which of geometry mutation strategies performs better since for each function different

behaviour has been noticed.

A similar conclusion can be made for the behaviour of the elite GA. For instance,

the elite GA with cell-uniform crossover produced higher number of fully functional

solutions for both functions. Thus, the elite GA with cell-uniform crossover and global

geometry mutation engenders 40 fully functional full adders and the same algorithm

but with boundary geometry mutation 28 fully functional two-bit multipliers. Note

that in this case the evolved logic functions are not the most efficient, that have been

evolved using elite GA. The elite GA produces a relatively compact two-bit multipliers

147

Table 4.3: Initial data: Circuit layout evolution using elite genetic algorithm. F1 +F2
is the dynamic fitness with estimation of the number of active gates in circuit; GGM, BGM
and LGM are the global, boundary, local geometry mutations.

I Circuit Iladdlc.plalmu1t2.plalladdlc.plalmult2.plal
EHW parameters

Maximum circuit layout,
Nmax ivmax

eols X rows 5x5 5x5 10x10
Connectivity parameter, 2
Neonneet 5 10
Fundionalset {-I -5 -9 -13} , , , {-I, -5, -9, -13}
Gate distribution Proportional Proportional
Type of layout Heterogeneous Heterogeneous

Homogeneous Homogeneous

EA parameters
Type of EA elite GA (1 +.\) EA
Population size 15 5
N umber of generations 1000 I 4000 100 I 5000
N umber of algorithm runs 100 100
Crossover type Gene-Uniform -

Cell-Uniform -

Geometry-Uniform -
Crossover rate 0.6 -
Selection type Tournament -

Selection pressure 1.0 -
Mutation .type Cell Cell

Geometry Geometry
Circuit mutation rate 0.012 0.05
Geometry mutation rate 0.05 0.1
Type of geometry GGM GGM
mutation strategy BGM BGM

LGM LGM
Fitness type F1 +F2 F1 +F2

148

Table 4.4: Experimental results: Using circuit mutation and geometry mutation.
Crossover Geometry Addlc.pla Mult2.pla

Type Mutation Fbf
1 F;f (Nf) R(Nf) F bf

1 F;f (Nf) R(Nf)

Initialisation Heterogeneous circuit layout
Evolution Heterogeneous circuit layout

Elite genetic algorithm
Gene Global 94.8750 7.737 38 91.9687 9 7

Uniform Boundary 90.8750 8.458 24 95.28125 8.5238 21
Local 93.6875 7.036 28 95.5 8.82 23

Cell Global 95.0625 8.05 40 91.9843 9.2857 7
Uniform Boundary 92.5625 7.5 28 95.8125 8.5 28

Local 93.6875 7.267 30 94.8906 9.0416 24

Geometry Global 94.8125 8.056 36 92.2968 9.09 11
Uniform Boundary 91.4375 7.5 20 96.0156 8.33 24

Local 94.9375 7.697 33 95.1852 9.1852 27 . (1 + >.) EvolutIOnary Strategy
- Global 94.4375 5.5625 32 99.6875 8.2261 84
- Boundary ·75.8750 5.875 8 93.4375 7.u-B42 19
- Local 96.0000 5.04 45 99.5469 7.8375 80

149

Table 4.5:· Experimental results: Using geometry mutation only, heterogeneous ge
ometry.

Crossover Geometry Addlc.pla Mult2.pla

Type Mutation Fbf
1 F;f (Nf) n(Nf) Fbf

1 F;f (Nf) n(Nf)
Initialisation Heterogeneous circuit layout

Evolution Heterogeneous circuit layout
Elite genetic algorithm

Gene Global 79.0000 0 0 82.0625 0 0
Uniform Boundary 76.1250 10.5 2 79.6406 0 0

Local 81.0000 6 2 81.4531 0 0

Cell Global 80.7500 0 0 82.6562 0 0
Uniform Boundary 73.3125 0 0 80.1406 0 0

Local 76.2500 0 0 82.0156 0 0

Geometry Global 83.0000 7 4 84.4688 0 0
Uniform Boundary 76.9375 10 1 81.8750 0 0

Local 81.7500 9 4 83.3594 0 0

(1 + A) Evolutionary Strategy
- Global 66.0625 0 0 78.375 0 0
- Boundary 64.1875 0 0 70.1562 0 0
- Local 69.125 0 0 79.1406 0 0

(F;f (Nf) = 8.33) with geometry crossover and boundary geometry mutation and a

relatively compact one-bit full adders (F;f (Nf) = 7.036) with gene crossover and

local geometry mutation. So, we can draw the same conclusion as it has been made

above: during evolution with heterogeneous circuit layout at both the initialisation

and evolution stages, it is difficult to decide with which of the genetic operators

EA produces the best results. In other words, each combination of EA, crossover

and geometry mutation behaves differently for both functions. Note that in the

experiment described above, both circuit and geometry mutations have been used in

evolutionary algorithms.

Now, let us consider the case when only geometry mutation and crossover are

150

Table 4.6: Experimental results: Using circuit mutation only, homogeneous geometry
4x4(add1c.pla) and 5x5(mult2.pla) .

. Crossover Addlc.pla Mult2.pla

Type Fbf
1 F;f (Nf) R(Nf) Fbf

1 F;f (Nf) R(Nf)
Initialisation Homogeneous circuit layout

Evolution Homogeneous circuit layout

Elite genetic algorithm
Gene-Uniform 95.3125 11.024 42 98.9219 7.88 51
Cell-Uniform 93.0625 9.364 22 99.0781 7.9824 57

Geometry-Uniform 94.8750 11 36 99.2187 7.79 58

(1 +,\) Evolutionary Strategy
- 97.875 5.9393 66 99.9062 8.84 94

allowed to be involved in the evolution process. In this case again the heterogeneous

circuit layout is produced during both initialisation and evolution stages of evolu-

tionary algorithm. The experimental data obtained for this experiment are given in

Table 4.5. The difference between this experiment and the previous one is that the

circuit mutation is not used in the evolution process. Firstly, it is interesting to note

that we obtain very poor results in terms of the number of 100% cases evolved and no

fully functional two-bit multiplier was obtained. Furthermore, we only evolved a few

adders. We see that in the case of evolving full adder the worst crossover operator

is the cell-uniform crossover. The highest value of Ftf was obtained for geometry-

uniform crossover. According to experimental results obtained for this experiment

we can conclude that the circuit mutation is the most productive operator that ef-

fects on evolutionary algorithm performance. Thus, excluding this operator from the

evolutionary process leads to the failure of this approach.

The homogeneous circuit layout is retained for both stages of initialisation and

evolution in the next experiment. In this case we are using an entirely homogeneous

151

geometry. T~e experimental data shown in Table 4.6 are obtained for different types

of crossover. Thus, they illustrate the EA performance with circuit mutation only.

vVe found that geometry uniform crossover works best for mult2.pla and gene-uniform

crossover for add1c.pla. The best performance, in terms of the minimal number of

active gates in the evolved circuit, is obtained with cell-uniform crossover for add1c.pla

and with geometry uniform crossover for mult2.pla. This could be explained because

of the different complexity associated with the landscapes of these two functions:

mult2.pla is considerably more difficult to evolve than add1c.pla. It is interesting to

note that using gene uniform crossover produces the better results in terms of the

circuit functionality criteria Fl and the number of 100% cases, R(.Nf . Comparing

the obtained results with the best results discussed above we can conclude that the

pure homogeneous geometry works perfectly well in comparison with heterogeneous

one when we need to obtain the maximum number of 100% functional circuits. But

in terms of the best average fitness F~f (.Nf) we found that we evolve poorer circuits.

Also, comparing the performances of the elite GA and the ES one can notice that ES

produces essentially better results in comparison with the elite GA. Thus we find one

of the disadvantages of using the homogeneous geometry: evolving a large number

of 100% cases does not provide us with the best solution in terms of the number of

active gates used in circuit.

In previous experiments we considered how the algorithm behaves when the same

type of circuit layout is applied for both the initialisation and the evolution processes.

In the following experiments we will discuss how the evolutionary algorithm behaves

if different types of circuit layout are applied during the initialisation and the evo

lution processes. Table 4.7 illustrates the evolutionary algorithm performance with

152

Table 4.7: Experimental results: Using circuit mutation only, heterogeneous geometry
at the initialisation stage.

Crossover Addlc.pla Mult2.pla

Type Fbf
1 F~f (Nf) R(Nf) Fbf

1 F~f (Jvj) R(Nf)

Initialisation Heterogeneous circuit layout
Evolution Homogeneous circuit layout

Elite genetic algorithm
Gene-Uniform 92.3125 8.292 24 95.5312 9.16 25
Cell-Uniform 94.3750 8.634 41 96.2812 8.4615 26

Geometry-Uniform 91.5625 8.214 28 95.6406 8.6666 27
(1 +,X) Evolutionary Strategy

- 82.1875 5.7142 14 98.03125 8.145 55

heterogeneous circuit layout at the initialisation stage and homogeneous circuit -layout

at the evolution stage. This means that in this experiment the geometry mutation

is not used in the evolutionary algorithm as a genetic operator. Also, the different

circuit layout can be defined only at the initialisation. It is interesting to note that

in this case, cell-uniform crossover delivers the best performance for the full adder

and the geometry uniform crossover dispenses the best performance for the two-bit

multiplier. This better performance is obtained in terms of the number of fully func-

tional solutions evolved. Note that the cell uniform crossover brings out the best

performance in terms of the average level of circuit functionality evolved for both

logic functions. The number of fully functional two-bit multipliers evolved using the

elite GA with cell-uniform crossover does not differ a lot from the parameter obtained

using the elite GA with geometry-uniform. Therefore we can conclude that in this

scheme the cell and the geometry-uniform crossovers behave similar to each other in

task of evolving the two-bit multiplier. It is interesting to note that in this case, the

elite GA produces a higher number of fully functional solutions evolved rather then

ES, as it has been stated in previous experiments. But in the case of evolving two-bit

153

Table 4.8: Experimental result~: Using circuit and geometry mutation, heterogeneous
geometry.

Crossover Geometry Addle.pla Mult2.pla

Type Mutation Fbi
1 F;i (JVi) R(JVi) Fbi

1 F;i (JVi) R(JVi)
Initialisation Homogeneous circuit layout

Evolution Heterogeneous circuit layout

Elite genetic algorithm
Gene Global 77.625 6.6667 3 96.0312 9.25 28

Uniform Boundary 97.5 5.9672 61 99.6406 10.0241 83
Local 96.8125 6.22 50 99.6875 9.8765 81

Cell Global 75.375 7 1 95.9062 10.5 38
Uniform Boundary 97.625 6.2096 62 99.6562 9.7073 82

Local 97.3125 6.0345 58 99.5312 10.4615 78

Geometry Global 96 5.5681 44 96.0487 10.00 22
Uniform Boundary 89.375 5.6285 35 99.5156 9.66 77

Local 97.375 5.8 61 99.5625 10.475 80

(1 + >.) Evolutionary Strategy
- Global 97.0625 5.81481 54 99.6562 8.7024 84
- Boundary 91.8125 5.67742 31 98.9687 8.6986 73
- Local 97.8125 5.73 65 99.6718 9.1765 85

multiplier, the highest number of fully functional solutions is produced using the ES.

The last experiment was performed using a homogeneous circuit layout at the in i-

tialisation stage and a heterogeneous circuit layout at the evolution stage. Note that

during the evolution process, only geometry circuit mutation can produce a hetero-

geneous circuit layout. The experimental results for this experiment are summarised

in Table 4.5. These results show that in this scheme the elite GA with the boundary

geometry mutation produces higher number of fully functional solutions than others.

But at the same time the elite GA with global geometry mutation generates more effi-

cient circuits in terms of the number of active logic gates used. These two statements

are valid for both tested logic functions. Similar regular results are obtained for ES

154

performance. Thus, ES with local geometry mutation evolves higher number of fully

functional solutions. At the same time ES with boundary geometry mutation induces

more efficient logic circuits in terms of the number of logic gates used in the circuit.

So, this analysis shows that depending on the type of evolutionary algorithm used,

different types of geometry mutation affect differently on algorithm performance. It

is also interesting to notice that in the scheme of evolutionary algorithms, clearly

some regularities can be noticed, that allows us to draw conclusions about which

geometry mutation operator behaves better and under which circumstances. These

results are extremely interesting, since they show that the algorithm with this set up

of circuit layout performs better than the evolutionary algorithm with a homogeneous

circuit layout at all stages. This means that using this scheme of EA construction

allows us to produce good results in terms of the number of fully functional solutions

obtained and the quality of evolved circuits as well as to evolve the suitable circuit

layout for the given problem. This example shows that it is possible to evolve EHW

parameters together with the circuit functionality. This is the first attempts to evolve

self-adaptive system in terms of adaptation to parameters of EHvV.

Analysing the whole experimental data discussed above we can conclude the fol

lowing .

• The most efficient circuits in terms of the number of primitive active logic

gates are generated when the scheme with heterogeneous circuit layout applied

to both initialisation and evolution stages of evolutionary algorithm. In this

case ES with local geometry mutation generates the most efficient full adder

and ES with boundary geometry mutation procreates the most efficient two-bit

multiplier.

• The highest number of fully functional solutions has been evolved with homoge-

neous circuit layouts at both initialisation and evolution stages of evolutionary

algorithm. Thus, 94 and 66 successful solutions for two-bit multiplier and one-

bit full adder, respectively, have been evolved with ES (see Table 4.6) .

• The combination of homogeneous circuit layout at the initialisation stage and

heterogeneous circuit layout at evolution stage produces satisfactory results in

terms of both criteria: the number of evolved fully functional solutions and

quality of evolved circuits.

4.5.2 Dynamic fitness strategy In heterogeneous circuit lay
out evolution

The following experiment shows us how using different fitness evaluation strategies af

fects the algorithm performance and the quality of evolved circuits. For this purpose,

the same experiments were performed for both homogeneous and heterogeneous cir

cuit layouts with and without the dynamic fitness function in the evaluation process.

The initial data for this experiment are given in Table 4.9.

The experimental results obtained are summarised in the Table 4.10. An analysis

of obtained data shows that the algorithm with the global geometry mutation pro

duces the best results for both functions in terms of the best average functionality

criteria Ftf (Nf) and the number of obtained fully functional solutions R(Nf). At

the same time the elite GA with boundary geometry mutation generates the most

efficient full adders and the elite and the elite GA with circuit mutation only produces

the most efficient two-bit multipliers. So, there is no specific combination of evolu-

tionary algorithm and genetic operator that produces the best behaviour in terms of

the number of primitive active logic gates. It is also interesting to note that when

156

Table 4.9: Initial data: Dynamic fitness function and heterogeneous circuit geometry;
Fl +F2 is the dynamic fitness with estimation of the number of active gates in circuit;
GGM, BGM and LGM are the global, boundary, local geometry mutations.

I Circuit II addlc.pla I mu1t2.pla I
EHW parameters

Maximum circuit layout,
Nmax x lvmax

eals rows 5x5 1x10
Connectivity parameter, 2 10
Neanneet

Functional set {-I, .. · ,-12}
Gate distribution Proportional
Type of layout Heterogeneous

Homogeneous
EA parameters

Type of algorithm GA ES
Population size 15 5
Number of generations,
lvmin Nmax

'qen' oen 500, 5000 4000, 25000
Number of GA runs 100
Crossover type Gene-Uniform -

Crossover rate 0.65 -
Selection type Tournament -

Selection pressure 1.0 -
Mutation type Cell

Layout
Circuit mutation rate 0.012 0.05
Layout mutation rate 0.05
Fitness type Fl + F2
Type of layout GGM
mutation strategy BGM

LGM

157

Table 4.10: Experimental results: Strategies of fitness function; Fi and Fl + F2
are the fitness without and with estimation of the number of active gates in circuit
respectively; G M is the geometrv mutation.

"
Mutation N gen Fitness Addlc.pla Mult2.pla

Type Type Fbi
1 F;I (NI) R(N/) Fbi

1 F;I (NI) R(NI)
Circuit layout: Homogeneous

Circuit Nmzn
'qen Fi 98.6875 10.304 79 95.734375 10.3636 11

Mutation JVmzn
qen Fi +F2 97.6875 10.288 66 95.875 7.8 20

Nmax
'g_en Fi +F2 99.8750 7.582 98 98.3594 7.102 97

Circuit layout: Heterogeneous
Global Jvmzn

'gen Fi 94.7500 7.794 34 95.6719 13.6 15
GM Nmzn

'qen Fl +F2 94.0625 7.517 29 95.0300 11 25
Nmax

'qen Fl +F2 99.4375 6.077 91 99.0781 9.885 82

Boundary Nmin
'qen Fi 92.1875 8.091 22 92.0312 10 1

GM Nmzn
'qen Fl +F2 91.0000 8.207 29 92.5000 10 2

Jvmax
' qen Fl +F2 96.9375 5.631 65 96.6562 9.727 42

Boundary JVmzn
'gen Fi 94.5625 7.184 38 93.4219 21 3

GM Nmzn
'qen Fi +F2 93.4375 7.655 29 90.5300 9 4

Nmax
, qen Fi +F2 98.8125 5.756 82 97.5312 9.773 43

158

we evolve functions during 1,000 (add1c.pla) or 3,000 (mult2.pla) generations, we do

not achieve significant improvements in terms of the number of active gates in circuit.

vVhen we increase the number of generations to 50, 000 it is clear that the average

best F2 criteria is improved. Thus, in the case of add1c.pla function we can notice

that the size of circuit is slightly reduced, but in case of mult2.pla it is improved

only slightly. One of the reasons why we can see only small improvements for the

mu1t2.pla function is that the first GA with F1 only achieves a sufficient number of

100% functional circuits when the number of generations is this large. Therefore the

optimising dynamic fitness function F1 + F2 does not have long enough to make a

significant difference. It is interesting to note that when we use a homogeneous cir

cuit layout, the average best circuit functionality, F:f is higher in comparison with

the same experiments for a heterogeneous circuit layout. However the average best

F2 criteria, F;f (Nf) for this case is the lowest one and this does not provide good

solutions in terms of the number of active gates. If we consider the algorithm perfor

mance in terms of the number of fully functional circuits evolved, it is best to use the

homogeneous circuit geometry, but if we use the heterogeneous one we should employ

global geometry mutation. Thus, we can conclude that homogeneous circuit layout

is useful only in terms of the number of fully functional circuits evolved. At the same

time the heterogeneous circuit layout provides better quality circuits in terms of the

number of primitive logic gates used. This experiment confirms that using dynamic

fitness strategy, (F1 + F2) allows us to improve the quality of circuits evolved as well.

4.5.3 Distributions of circuit layout and circuit functionality

There is one very important aspect that has to be investigated once the circuit layout

evolution is introduced. This is how the values of circuit layout change in the final

159

evolved fully functional circuit. Also, the following questions have to be answered,

"Has the algorithm a favourite circuit layout for each problem or not?" and "How

the circuit functionality parameter, Fl changes with varying the circuit layout?" In

order to reply to these questions the following experiment has been set up. The two

bit adder and the two-bit multiplier are chosen as tested logic functions. In order

to define the most accurate the distributions of the circuit layout and the circuit

functionality, the large number of circuits have to be analysed. For this reason, the

two-bit multiplier has been evolved 1000 times and the two-bit adder - 800 times.

The initial data are given in Table 4.11. The ES with homogeneous circuit layout

at the initialisation stage and heterogeneous circuit layout at the evolution stage

(performed using global geometry mutation) evolves successfully 797 fully functional

two-bit multipliers and 359 fully functional two-bit adders (see Table 4.12). Some of

them are duplicate. The evolved circuit structure of the two-bit multiplier and the

two-bit adder are similar to ones discussed in Chapter 3 and Appendix C. For this

reason, the evolved circuit structures are not discussed in this Chapter. As it can be

seen the average circuit functionality parameter achieved is relatively high.

The collected data have been summarised by defining the following behaviours:

1. The distribution of the circuit layout in fully functional evolved circuits;

2. The distribution of the number of primitive logic gates actually used in the fully

functional evolved circuits;

3. The distribution of the circuit functionality in all evolved circuits.

The distribution of the circuit layout in the fully functional evolved circuits is

defined as follows. Each tested logic function is evolved using 10x10 circuit layout.

Table 4.11: Initial data: Circuit layout distribution.
I Circuit Iladd2c.plalmult2.plal

EHW parameters
Maximum circuit layout,
N'max x lymax

" cols rows 15x15 I lOxIa
Connectivity parameter,
1Yconnect 15 I 10
Functional set {-I -5 -9 -13} , , ,
Gate distribution Proportional
Type of layout Heterogeneous

Homogeneous
EA parameters

Type of algorithm (1 +),) ES
Population size,), 5
Number of generations,
lvmin Nmax

'qen' qen 15000 5000
Number of algorithm runs 1000 800
Mutation type Cell

Layout
Circuit mutation rate 0.05
Layout mutation rate 0.1
Fitness type F1 + F2
Type of layout GGM
mutation strategy

160

Table 4.12: Experimental results: Algorithm performance during investigation of the
circuit layout and circuit functionalitv distributions.

"

Logic function Fbf
1

Fbf
2 F;f(Nf) R(Nf)

mult2.pla 99.5563 8.364 8.0276 797
add2c.pla 97.6663 15.3736 8.0276 359

161

Since the heterogeneous circuit layout has been used in this experiment, each evolved

fully functional circuit has its specific circuit layout that has been evolved during

evolution. In order to define how many fully functional solutions have been evolved

with each specific circuit layout, a 3-D graph has been chosen to represent the data.

The x and y axes correspond to the circuit layout and the z a.xis defines the number

of fully functional solutions evolved with given circuit layout. The distributions of

the circuit layout for both tested logic functions are depicted in Fig. 4.9. Analysing

this data one can easily notice that there is a specific area of circuit layout in which

the most of fully functional circuits are evolved. These areas differ for both functions.

In the case of evolving two-bit multiplier, no fully functional solutions are generated

when the number of columns in the rectangular array is less then 4. The algorithm

performance is improved with increasing the number of columns. It is interesting to

note that very few logic circuits have been evolved with number of columns equalled

10. Also, it can be noticed that the EA tends to increase the number of rows in the

rectangular array. The most fully functional two-bit multipliers are evolved when

the circuit layout changed from 7x2 to 9x7. Similar conclusion can be made about

the evolution of the two-bit adder. In this case the "productive" circuit layout area

changes from 9x4 to 9x13. Comparing this data with the algorithm performance, one

can notice the presence of a high level of redundancy in the evolved circuits. This

means that redundancy is very important in EH\N, since EA tends to use it in the

evolutionary process

Another aspect that has to be investigated is how the functionality criteria, Fl

of the final circuit at each run is distributed. These data are summarised in Table

4.13. The following conclusion can be made: the lower the circuit functionality the

162

Circuit layout distribution,

40

35

30
Ul

'" 25 Ul

'" u

<f.
a 20
a

'" 15

10 10

5

0

columns (a)

Circuit layout distribution, add2c.pla, 3~~5fs-------__ _

12

10

Ul 8 Q)
Ul

'" u
<f.
a 6
a
;;;

4

2

0

(b)

Figure 4.9: The circuit layout distribution The graphs illustrate how the evolutionary
algorithm defines the circuit layout automatically and evolves the fully functional solutions.
Graphs illustrate that there is a favourite area of circuit layout, where the evolutionary
algorithm produces some fully functional solutions. For example, no circuit layout with 3
columns has been chosen during evolution of two-bit multiplier. In the case of the two-bit
adder, no circuit layout with less than 6 columns has been chosen by evolutionary algorithm.

163

Table 4.13: Experimental results: The circuit functionality distribution. Results show
that the higher number of circuits has been evolved with higher circuit functionality.

Fitness R(Nf)

function, Fl mult2.pla add2c.pla
85.4167 0 2
86.4583 0 1
87.5000 0 18
88.5417 0 2
89.5833 0 6
90.6250 0 6
91.6667 0 16
92.7083 0 11
93.7500 7 57
94.7917 0 9
95.3125 18 0
95.8333 0 118
96.8750 26 51
97.9167 0 113
98.4375 153 0
98.9583 0 32
100.0000 797 359

lower the number of circuits that evolved with it. For example, 7 two-bit multipliers

have been evolved with a circuit functionality of 93.75. At the same time, 18 two

bit multipliers have 95.3125% of correct bits. Similar conclusion can be made about

the two-bit adder. But in this case, one can notice the presence of some "favourite"

circuit functionality values. Thus, 118 two-bit full adders have been evolved with

circuit functionality equal to 95.833 and 113 circuits with Fl = 97.9167. Note that the

number of fully functional circuits evolved increases with the compounding number

of generations in EA. Therefore, by slightly increasing the number of generations, the

circuit functionality in evolved circuit will be increased as well.

164

The final aspect that has to be studied, once the circuit layout evolution is intro

duced, is the distribution of the number of active logic gates in evolved circuit. Since

the maximum circuit layout used to evolve the two-bit multiplier circuit is 10x10, the

maximum number of logic gates that can be actually used in the circuit is 100. In the

case of evolving a two-bit adder, a maximum 225 logic gates can be involved in the

circuit. Therefore, theoretically the number of logic gates actually used in a circuit

can vary from 1 to 100 in case of evolution of the two-bit multiplier and from 1 to 225

in the case of evolution of the two-bit adder. The distribution of the number of active

gates in fully functional circuits is depicted in Fig. 4.10. This distribution shows

that the circuits are evolved with relatively small number of active logic gates in it.

The maximum number of fully functional circuits is obtained for the smallest possible

number of active logic gates. Thus, the most efficient two-bit multiplier contains at

least 7 primitive logic gates. The number of active logic gates in the two-bit multiplier

circuits varies from 7 to 14. No fully functional circuits are evolved with number of

active logic gates higher than 15. Similar conclusion can be made for two-bit adder.

This means that the proposed methodology of evolving circuit layout together with

circuit functionality tends to decrease the number of primitive active logic gates in the

circuit even if the average successful automatically generated circuit layout contains

relatively high number of logic gates (see Fig. 4.10).

4.6 Summary

In this chapter the self-adaptive extrinsic EHW approach is proposed. A number

of researches showed in previous work that the EHW performance strongly depends

on the initial EHW parameters, such as a functional set of logic gates and circuit

" "

70

60

50

H 40

S 30
o

" 20

10

(a)

f'2 distnbution, add2c.pla

m N ~ ro ~ v ~ 0 '" '" '" ~ N C\l N C") C'l C") .." " " " # ac1ive logic gates

165

350

300 i
F2 distnbution, mul12.pla

U) 250 ,
OJ
U)

'" 200 (J

~ 150 j
0

~ 100 j ..
50 ~

0
~ '" 01 ,- l{) OJ: c")

N C\I N C'1

active logic gates (b)

Figure 4.10: The distribution of the number of active logic gates used in circuits
evolved using circuit layout heterogeneous approach. The graphs show that there is
a specific range of the number of primitive active logic gates, that contain evolved
circuits.

layout. In order to overcome this problem, an extrinsic EHW approach that defines

the suitable circuit layout during evolution as well as solves the assigned task is

proposed. The circuit layout is chosen as one of EHW parameters that can be evolved

during the search. This is the first step to design a fully self-adaptive extrinsic EHW

that would define all EHW parameters during evolution as well as solve the specified

task. This hardware would be able to evolve circuits of any complexity without the

intervention of the designer. All initial essential EHW data would be defined during

evolution.

The performance of the evolved circuit layout together with circuit functionality

and the quality of evolved circuits has been analysed. The following main conclusions

can be made as a result of this analysis:

• The most efficient circuits in terms of the number of primitive active logic gates

are generated when the scheme with a heterogeneous circuit layout is applied

to both the initialisation and evolution stages of the evolutionary algorithm.

166

• The highest number of fully functional solutions has been evolved with homoge

neous circuit layouts at both initialisation and evolution stages of evolutionary

algorithm .

• The combination of homogeneous circuit layout at the initialisation stage and

heterogeneous circuit layout at the evolution stage produces satisfactory results

in terms of both criteria: the number of evolved fully functional solutions and

the quality of evolved circuits.

Also it has been empirically shown that applying dynamic fitness function strate

gies with a large number of generations allows us to obtain better results in terms of

the number of active gates used in circuit. This can be explained as follows. Dynamic

fitness function forces EA to perform two types of evolutionary processes. The first

search is invoked to find a fully functional solution. The second search is invoked to

minimise the size of evolved fully functional solutions. Therefore, in this experiment,

the number of generations that have been set up was only enough to perform the first

part of search. Using a large number of generations allows us to activate the second

part of the evolution process and finally minimise the size of evolved circuits. For this

reason, EA performed during larger number of generations produces more efficient

fully functional circuits in terms of the number of primitive logic gates used.

Another aspect that has to be studied once the circuit layout evolution is intro

duced is the distribution of the circuit layout in the fully functional circuits evolved.

Analysing this data one can easily notice the presence of a high percentage of gate

redundancy in the evolved circuits. Since the circuit layout is defined automatically,

we can conclude that gate redundancy is very important in the circuit evolution.

The distribution of the number of primitive active logic gates shows that although

167

the EA tends to choose automatically a relatively large circuit layout. There are not

a lot of changes in the number of active logic gates in the fully functional circuits

evolved. This proves that the EA tends to evolve the circuits with a relatively high

percentage of gate redundancy. Therefore, the circuit layouts that are automatically

chosen are relatively large in comparison with the number of active logic gates actually

used in the circuit.

In this chapter it has been empirically proved that the evolutionary algorithm can'

automatically generate the most suitable circuit layout for a given problem as well

as to solve this problem. This approach is the first attempt to evolve self-adaptive

systems in terms of adaptation to EHW parameters.

Chapter 5

Function level extrinsic EHW

5.1 Introduction

The gate-level EHW has been intensively studied in Chapters 3-4. In this chapter

complex functions are constructed using smaller complex building blocks, that have

been previously evolved.

From this point, of view, the function-level EHW approach can be introduced.

In this case, instead of decomposition methods, building blocks described by more

complex multi-input multi-output logic functions are involved in the evolution. In

function-level EHW, the functional set oflogic gates can contain both primitive logic

operators and complex logic functions, such as adders, multipliers, etc. These complex

logic functions are multi-input multi-output. The chromosome representation adapted

in gate-level extrinsic EHvV can use only multi-input one-output logic functions as

building blocks. This means, that a new chromosome representation, adapted to these

features, has to be developed. In this chapter we introduce the new chromosome

representation adapted to the function-level extrinsic EHW. The evaluation process

performs a similar task to the one represented and discussed in Chapter 3. The new

chromosome representation requires the use of the connection repair algorithm at

168

169

the recombination stage of the evolutionary process. This issue is also discussed in

this chapter. Finally, the features of circuit structures evolved at function-level are

discussed and as a result of this discussion, the issue of how to define the quality of

evolved circuits has emerged. Some suggestions are made in this area as well. Thus,

in this chapter a function-level extrinsic EHvV is proposed for the first time and some

issues associated with this method are discussed.

5.2 Chromosome representation

In order to synthesize logic circuits an elite evolutionary algorithm with tournament

selection has been implemented. In order to investigate the behaviour offunction-level

EHW in detail during evolution the circuit layout as well as the input functionality

gene are not allowed to changed. Thus, only logic gates with primary inputs were in

use. During initialisation, the genotype of chromosomes has been generated randomly.

5.2.1 Encoding

In order to define the chromosome representation, the following notations have been

adopted:

N:;l~X' N;;':;;~ the maximum number of columns and rows m the rectangular array

respectively;

N cols , Nrows the number of columns and rows in the rectangular array respectively,

Ncols E {I, ... ,N:;tsX} and Nrows E {I" .. ,N~':;;~};

Nconnect the connectivity parameter representing the number of columns on the

left to which a cell in a particular column Ccol or an output may be

connected and Nconnect E {I, ... ,1Vcols };

170

N[~ax, N:;:;'~x the maximum number of inputs and outputs in any building block re-

spectively;

Nin(B), Nout(B) the number of inputs and outputs in building block B respectively;

Table 0.1: Gate functionality according to the bo(z) gene in chromosome
IGene functionality, bo(z) I Gate function I

0 Logic constant
2 NOT: Xo

6 'Wire: Xo

7 AND: Xo • Xl

8 OR: Xo V Xl

9 EXOR: Xo EB Xl

15 Multiplexer
17 I-digit full adder
18 2-digit multiplier I
19 2-digit adder
20 3-digit multiplier I
21 3-digit adder
22 Half adder

Functional set.

The functional set of all possible logic functions that can be used in evolution is

shown in Table 5.1. Let Tr be the set of integers defining the codes of logic functions

reported in Table 5.1. ITJlll defines the maximum number of logic functions allowed

to be used in evolution. We can assign any logic function to describe the behaviour

of building block. In a given case we chose arithmetic functions such as half adders,

full adders or multipliers. Any of the logic functions mentioned in Table 5.1 can be

involved in the evolution. The set of logic functions actually used in evolution and

encoded as shown in Table 5.1 is defined as follows: Tf = {t f : t f E Tr, some t f }.

171

ITtldetermines. the number of primitive and standard logic functions involved in

evolution that are used to define the behaviour of a building block.

vVe specify subsets of logic functions that influence the number of inputs and

outputs in building blocks by different way as follows:

1. the subset of I-input, I-output functions (unary operators), T};

2. the subset of 2-input, I-output functions (primary operators), T];

3. the subset of multi-input multi-output standard functions, such as half adder,

full adders, multipliers, T].

Based on the notations given above, we can summarise:

Tj = T} U T] U Tj, T} n Tj n TJ = 0. (5.2.1)

The behaviour of a building block can be represented by any of the logic functions

mentioned above or by the set of 2-input I-output functions connected interactively

(Fig. 5.1 (b)). Let us consider a building block B that can implement any logic

function from subsets Tj, T] or TJ. Thus if B implements the logic function from

subset T), then Nin(B) = 1, Nout(B) = 1. In the case of using 2-input, I-output logic

functions (TJ), the number of inputs can be variable and can be defined as follows:

Nin(B) E Tin = {2, ... ,N[~ax}, Nout(B) E Tout = {I, ... ,Nin(B) -I}. For example, if

<> defines the 2-input I-output logic primitive function and Nin = 4, then {io, i l , i2, i3}

and {oo, 01, ad are the set of inputs and outputs in building block belonging to T]

respectively. The number of outputs in a building block is Nout = Nin - 1 = 3. The

building block has more than one output since each logic gate in the building block

can be connected to the output. These outputs can be analytically represented as

follows:

k-input p-output building block

<bo' b l, b 2, b 3, iOJ1,···,i k_1>
Z.O

z.l

z
z.(p-l)

(a)

Non-standard k-input (k-l)-output
building block Z

i ---.--------..,
~) IZ.O

~I .~) IZ.l
l? I

I I ...
... I I
. I ... L.)lz.k-2
l k-I I I

L __________J

(b)

Figure 5.1: Building block level representation

172

vVhen we use standard logic functions defined in TJ, the number of inputs and

outputs are fixed and can not be changed.

So, we can define the relation between type of logic function chosen to describe the

behaviour of building block b and the number of inputs and outputs in H as follows.

(t f E T) 1\ tin E {1} 1\ tout E {I}) V

(tf E TJ 1\ TJ -+ T.n 1\ TJ -+ T~ut)}. (5.2.2)

Building block level representation.

Let us consider a building block Hz labeled as z. Let Ti be the set of integers

{O, 1, ... ,2Nr;:ax}. Let Nout(Hz) be the number of outputs of building block and N:~x

173

is defined to be no more than 10. Define V(Ceol) as the set of real numbers v such

that

Ceol > lVeonneet : amin = n + (Ceol - Neonnect) * iVrows ;

a max = n + Ceol * iVrows - 1

Ceol :::; Nconneet: amin = 0; a max = n + Ceol * iVrows - 1;

Any building block Hz in Ceol column and Crow can be represented as follows:

where bo E T f is the building block functionality gene, which defines the type of

building block Hz; bl E Ii is the input functionality gene that determines the type

of inputs in building block Hz; b2 and b3 are the number of outputs and inputs

in building block; the set IT = {io, ii, ... ,i w"o.x -1} defines the connections between
m

building blocks, IT = {i E V (ceol) , some i}. The genes bo, b2 and b3 are calculated

according to Eq. 5.2.2. Thus relation (bo b3 b2) is determined in Eq. 5.2.2. The gene

bl , that is an integer, defines the type of inputs used in building block. The lowest

bit corresponds to the input io and highest bit corresponds to the input iNmo.x. If
m

corresponding bit is zero the input is primary, otherwise the input is inverted. For

example, if bl = 11, that corresponds to the binary sequence < 1011 >. This sequence

can be encoded as < i3 i2 i1 io >. Then the inputs io, i 1 and i3 will be considered

as primary and the input i2 will be inverted.

Circuit inputs:

0: Xv
1: Xl

2: xl

Circuit structure:

n fl + N rows (N cols - 1)

n+N YOlI"S-1 n+2N -1

Circuit outputs: 0 0 0 I ... 0 m-I

Figure 5.2: Circuit level representation

Circuit level representation.

174

Let us consider the rectangular array]ffi of the logic building blocks {Bceo/crow :

{Bceo/crow E]ffi, Ccol = {O,'" ,Nco1s - I}, Crow = {O,'" ,Nrows - I}}}. The building

block BCeo/crow, located in column Ceol and row Crow, is labeled by integer (n + N rows *
Ccols + Crows). For example, if a 4-input logic function is evolved using 3x4 circuit

layout, the building block Boo located in O-th column and O-th row is labeled as 4,

B(4). The building block B23 located in 2-nd column and 3-rd row is labeled as 15,

B(15).

Let us consider how the connectivity parameter influences the circuit structure.

For the first column of building blocks in the chosen geometry, the inputs to the actual

building blocks may only be connected to the actual circuit inputs, i.e. the inputs

of logic function implemented. However provided that the connectivity parameter

Neonnect is greater than 1 the building blocks from the second column can be connected

to the outputs of building block from the first column as well as to the circuit inputs.

If Nconnect had been chosen to be 1, the building blocks from the second column can

175

be only connected to the outputs of building blocks from the first column. In case

when Nconnect = Ncols the building blocks can be connected to any outputs of building

blocks located to the left or to the circuit inputs. Decreasing Nconnect has the effect

of reducing the number of possible circuit solutions that may be found.

Let 0 be the set of integers such that {a : a E V (Ncols)} , 101 = ffi. The set

o defines the circuit outputs. Therefore the circuit genotype can be represented as

follows:

C =< Ncols Nrows Nconnect JB 0 > . (5.2.3)

Genotype.

The value g(x) at position x (measured from the left and starting at 0) is chosen as

follows:

Circuit layout

x = 0 g(O) = Ncols E {1, .' . ,NJ;fsX}

x = 1 g(1) = Nrows E {1, ... ,N~:~}

x = 2 g(2) = Nconnect E {1, ... ,Ncols }

Building block

0:::; x < IJBI * (4+ lIT\) (g(x) g(x + 2) g(x + 3)), if (x - 3) mod (4 + IITI) = 0;

g(x) E Ti, if (x - 3) mod (4 + IITI) = 1;

g(x) E V(Ccol), if (x - 3) mod (4 + IITI) = 4,··· ,3 + IITI;

Circuit outputs

IJBI * (4+ IITI):::; x g(x) E V(Ncols)

g240

Logic function :add2c.pla

Circuit structure:

Circuit layout: 5 x. :2

Circuit in uts:
7

'----

9012(343) 9012(201)

v' 1----------'
.!:.L. ~- _~ 8 IS.0
~I 6)--- 5 i addl Is.IY,

'-- -~i I·
7012(343) 22022(151)

Circuit outputs: 13.0 11.0 S.1

Functionality: 100%
The number of active gates: 11

8 -;---
6 i 9

8012(8621

--~.,'--

Y ...5L -. --.
_I 12', i 13

_7_1 10

10 ~-
---1

-~ 12
'--~

9012(075) 7012(1071)

176

Figure 5.3: An example of the phenotype and corresponding genotype of a chromo
some with 5x2 circuit layout The number of building blocks employed is 9. The logic
gate labeled 8 implements a 1-digit full adder, that requires 3 primitive logic gates to be
implemented. Therefore, the number of primitive logic gates is 1 L

An example.

An example of chromosome representation with the actual circuit structure is given

in Fig. 5.3. This circuit represents a 2-bit adder evolved using AND, OR, EXOR and

half adder binary logic functions. This function has 5 inputs and 3 outputs and is

implemented here on a combinational network with 5x2 circuit layout (Neals x Nraws)·

The labels of circuit inputs 0, 1, 2, 3, 4 correspond to the input variables xo, Xl, X2,

X3 and X4 respectively. We use an encoding table to define the type of building block

(i.e. functional gene that is shown in bold) (see Table 5.1).

Each cell is assigned an individual address. Thus the building block located in

Oth column and Oth row is labeled as 5. The building block located in 4th column

1st row is labeled as 14. Each output of building block is labeled with a real number.

The integer part of this number defines the code of building block and the fractional

177

part determines the position of output in building block. For example, the 8th build

ing block B8 located in 1st row and 1st column has 2 outputs. The first output is

numbered as 8.0 and the second one as 8.1. The number of circuit outputs is defined

by the number of outputs in the logic function implemented. Let us examine the

encoding of the 14th building block represented as < 22 0 2 2 {4 8.1 5} >. vVe

refer to this representation of the building block as building block genotype. The func

tional gene defining the type of this gate is 22. This corresponds to the half adder in

encoding table (Table 5.1). The examined cell has two inputs and two outputs. The

first input is connected to the input X4 and second to the second output of building

block 8, labeled as 8.1. The inputs of building block 8 are connected to input variable

Xl and output of building block 5. The logic function of building block 5 depends on

the input variables X3 and X4. Therefore the logic function implemented in building

block 14 depends on three input variables: Xl, X3, and Xt\. The outputs of the circuit

are connected to the outputs of building blocks 13, 11 and 8.1.

5.2.2 Fitness Function

vVe use a dynamic fitness strategy. First we are trying to find the circuit with 100%

functionality (Fd and second we are trying to minimise the number of active gates

in a functionally complete circuit (F2)' Thus, Fl rewards the circuits which have the

correct digits in the correct positions for the circuit outputs. F2 adds a reward for

the 100% functional circuits that have a minimal number of building blocks.

To present these fitness functions more formally, we need some definitions. Let

function F(X) be represented as a Boolean matrix mapping denoted as X ---+ Y,

where X is a (2n x n) matrix of all the given n-variable inputs; 2n is the number

of input combinations, and Y is a (2n x m) matrL"X of the corresponding m outputs.

178

Then the synthesis of binary functions can be stated as follows. Design a sequence

of operations that accomplish the mapping X ----+ Y. This mapping is achieved by

applying a sequence of primitive operations. In our case the sequence of primitive

operations is defined in the rectangular array of building blocks. Let N (x) be the

output of a network N on the input combination x, where x is the n-digit binary

vector whose individual digits are the inputs to N. Suppose that C is a correct circuit,

so that C(x) = m * 2n. Since m * 2n is the number needed to have the digits in x

correctly sorted for output combination with m digits.

We use the dynamic fitness function strategy Fl + F2 in order to evaluate the

evolved circuits.

Our first component of dynamic fitness function Fl returns the number of cor-

rectly sorted digits over all inputs in X. Let .6.(xn' Yn) be the number of digits

in Xn and Yn which agree with each other (the opposite of Hamming distance be-

tween Xn and Y n), where Xn and Yn are binary vectors of n elements. For example,

.6.((110100), (101010)) = 2. Then we can formally define our first fitness function as

(5.2.4)

This definition implies that if Fl (N) = 100%, the circuit evolved is correct, i.e. it is

a fully functional circuit Nt.

The second component of dynamic fitness function F2 defines the number of prim

itive logic cells unused in the circuit. The cost or size of the fully functional circuit

N is defined as
j<Nc*Nr-l

cost(N) = L cost(Bj) (- ') -) ;).~.;)

j=O

and the cost of the building block Bj is calculated as

. cost(Bj) = {
Nf,
0,

Bj is a committed building block

Bj is an uncommitted building block.

179

(5.2.6)

where Nf is the minimum number of primitive logic cells required to implement the

logic function describing the behaviour of building block Bj .

The maximum cost of network can be calculated as follows:

j<Nc*N,.-l

cost(Nmax) = L Nj (Bcomplex)
j=O

(5.2.7)

where Nj(Bcomplex) is the minimum number of primitive logic cells required to imple

ment the most complex logic function from the functional set of logic gates used.

The number of primitive logic cells unused in circuit can be calculated as follows:

F2 = cost(Nmax) - cost(N). (5.2.8)

vVe consider the building block Bj as a sub-circuit with the structure that is not

allowed to be changed. So, the cost of building block does not take into account

whether all outputs of building block have been involved or not. For example, let

the two-bit multiplier be represented as building block Bj and the first digit of this

two-bit multiplier be only involved in the circuit N. The cost of the two-bit multiplier

is 7 [25]. Although the first digit of two-bit multiplier is implemented using only one

primitive logic gate, the cost of building block Bj is 7. Members of the population

with a changed genotype have their fitness calculated.

Note, that fitness F2 is activated, when F1 = 100%. The dynamic fitness function

is calculated as follows:

F={ F1, F1 < 100;

F1 + F2, F1 = 100.

180

For example, the_fitness function of the circuit shown in Fig. 5.3, can be defined as

follows. The circuit implements a full adder completely, thus FL = 100%. Therefore

we have to compute the number of primitive logic cell actually used in the circuit.

Analysing the connectivity of basic blocks, we define that building block 8 11 is not in

use. Thus, there are 9 building blocks actually involved in the circuit implementation.

Note that 8 8 describes the half adder, that can be implemented using 3 logic cells.

Therefore, the number of active primitive logic cells required to implement this circuit

is 11. The maximum number of logic cells required to implement the most complex

building block is 3, thus F2 = 3 * 5 * 2 - 11 = 19 and F = FL + F2 = 119.

5.3 Connection repair algorithm

A two-level representation for connection gene has been introduced in a previous sec

tion. As a result of the mutation operator, some repair algorithms have to be designed

in order to restore the connections. The genotype can be incorrect if the functionality

of any logic gate has been changed. This happens because the introduced functional

set of logic gates contains a different type of logic gates with different number of

outputs. Changing the number of outputs in the logic cell is essential, because the

connection genes associated with this particular cell depend on the number of outputs

in this cell. Therefore, once the number of outputs in the logic cell has been changed,

the gate input connections and circuit output connections have to be checked for cor

rectness. In the evolutionary algorithm applied to the function-level extrinsic EHvV

there is only one" destructive" operator - mutation. As it has been mentioned above,

changing only one type of gene - the functionality of the logic gate - has a destructive

effect on the correctness of the genotype. Therefore, because of the mutation of the

181

functionality _gene, it is necessary to introduce repair algorithms for:

1. circuit output connection;

2. gate input connection;

3. gate output connection.

It should be remembered that the primary gate connection refers to the label of

the logic gate and the secondary gate connection refers to the label of the output in

the logic gate under consideration. Only the value of the secondary gate connection

can cause the destruction of genotype correctness. Therefore, it is sensible to check

only the secondary connection of the gate in the genes mentioned above.

The connection repair algorithm is activated once the number of outputs in logic

cell has been changed. In the case when the functionality has been changed, but the

number of outputs in the cell remains the same, the connection repair algorithm is not

activated. Once the necessity of using the connection repair algorithm is validated,

the circuit output connection and the gate input connection are checked for correct

ness. There is no need to check all connection genes in the chromosome, since the

connection parameter Nconnect defines the range of logic gates to which the outputs of

the logic gate at hand can be connected. Therefore, it is sensible to check whether the

connection genes are correct or not only in the logic gates located in columns labeled

from Ncurrent + 1 to Ncurrent + Nconnect. If the number of columns located to the right

from the current column is less than Nconnect, the circuit output connections have to

be checked for correctness as well. If the connection gene is not correct, a new value

is assigned to it. In this case, the reference to the logic gate remains the same and a

new value of gate output is assigned.

182

:\Ilore formally, this procedure can be described as follows: Let z.j be the value of

connection gene, that has failed and Bz(Nout) be the number of outputs in the logic

gate z. If j 2:: BANout), a new value for this gene is randomly defined from the range

j E {O, ... , Bz(iVout) - I}.

For instance, let us consider the circuit depicted in Fig. 5.3. Assume that the

functionality of the 8-th logic cell has been changed from half adder to AND gate.

In this case, the number of outputs in the logic gates is changed from 2 to 1. Let us

remember, that Neonneet = N eols = 4 for this circuit. This means, that we have to

check all connection genes located in columns 3-5, i.e. all logic gates labelled from 9

to 14 and all circuit output genes. Let us consider the first connection gene in logic

cell 9 that is equal to 8.0. This means that this input is connected to the Oth output

of the 8th logic cell. Since 0 < 1, (1 is the new number of outputs in the 8th logic

cell), this value is correct and the connection repair algorithm is not activated. Now

let us consider the 2nd input of the logic cell labelled 14. This input is equal to 8.l.

Obviously, there is no output labelled 1 in the logic gate 8. So, this gene is incorrect

and has to be changed to value 8.0 since this gate has currently only one output. The

same changes have to be made to the 3rd circuit output gene which is equal 8.l.

In this section we discussed the necessity to introduce the connection repair algo

rithms and explained them in detail. The chromosome genotype introduced in this

chapter can be incorrect, if the connection repair algorithm is not activated.

5.4 Experimental results

The main point of these experimental results is to define how the gate-level extrinsic

EHvV differs from the function-level EHvV.

183

5.4.1 Algorithmperformance

The main idea of this experiment is to determine whether function-level chromosome

representation brings some advantages or not to circuit evolution. The initial data

for the experiments is given in Table 5.2.

Each experiment has been performed 100 times. The functional set of logic gates

contains both 2-input and complex logic functions. The choice of complex logic func

tions used in evolution is based on a priori knowledge of combinational circuit design

and on the knowledge about the functionality of building blocks (in the case of FPGA

based circuit design). For example, adders and multipliers can be used as basic blocks

in the FPGA design. In this series of experiments we attempt to evolve such arith

metic logic functions as a two-bit adder (add2c.pla), a two-bit multiplier (mult2.pla)

and a three-bit multiplier (mult3.pla). Based on a priori knowledge of circuit design

we can conclude that these arithmetic functions can be easily synthesised using such

basic building blocks as half and full adders. Consequently, the results obtained using

the half adder and full adder as a basic block are not so surprising. At the same time,

no knowledge about using a two-bit multiplier in the synthesis of a three-bit multiplier

has been found. Intuitively, one can assume that because multipliers are built using

the same construction rules, high-order multipliers can be synthesised using low-order

multipliers. Therefore, some of our functional sets of logic gates contain'the'two:..:bit

multiplier when the evolution of the three-bit multiplier is performed.

In this section we will discuss some experimental results obtained during evolution

of logic circuits at gate- and function-level. The EA performs a fixed number of

generations for both approaches. The functional set of logic gates for gate-level EHW

is a subset of {AND, OR, EXOR, NOT}. Note that functional set of NOT, AND, OR,

184

Table 5 ? Initial data .. ~.
Circuit ITlult2.pla ITlult3.pla add2c.pla

EHW parameters
Circuit layout 10x1 30x1 l5xl
Connectivity parameter 10 30 15

EA parameters
Type of algorithm (1 + A) ES
Population size j

Number of generations 5 000 100 000 15 000
Number of algorithm runs 100
Mutation type Circuit Mutation
Mutation rate 5%

EXOR(i.e. 2-7-8-9 according to encoding table (Table 5.1)) corresponds to execution

of gate-level EHvV. In this case the number of inputs in a building block can not be

more then 2. In the case of function-level EHW, a half bit adder, one-bit mUltiplier

and two-bit multiplier have been added to the main functional set. The experimental

results obtained are shown in Table 5.3. The functional set oflogic functions contained

the complex functional blocks are shown in bold.

Let us consider the experimental results obtained for the two-bit multiplier. Analysing

the obtained data we can conclude that in terms of the number of active primitive

logic gates used in circuit, the gate-level EHvV performs better. But in terms of

the number of fully functional circuits evolved during 100 EA runs, both methods

perform nearly the same. In case of evolving a three-bit multiplier and a two-bit

adder it is clear that the function-level EHW performs much better. Thus, no fully

functional three-bit multipliers have been evolved using gate-level EHvV. But using

function-level EHvV, we were able to produce some functional solutions. It has been

reported that the fully functional circuit of the three-bit multiplier can be evolved

at gate-level after only from 3,000,000 up to 10,000,000 generations with the initial

185

Table 5.3: Experimental Results. Functional sets shown in bold correspond to the
function-level EHW approach. otherwise - to gate-level EHW

Circuit nm Functional set Fbf
1

Fbf
2 Ftf (Nf) R(Nf)

mu1t2.pla 4 4 2-7-8-9 98.2968 7.22 7.14 36
2-7-8-9-22 98.2031 11.56 8 37
2-7-8-9-17 97.7344 15.51 8.75 16

·2-7-8-9-17-22 98.3438 15.83 10.9355 31
mult3.pla 6 6 2-7-8-9 95.5686 32.2667 0 0

2-7-8-9-18 97.1807 59.6087 33.3 3
2-7-8-9-18-22 98.0547 58.8 42 5

2-7-8-9-17-18-19-22 99.5734 95.1525 65.33 6
add2c.pla 5 3 2-7-8-9 93.75 10.25 11.1429 14

2-7-8-9-22 93.9167 12.62 12.5833 24
2-7-8-9-17-22 99.6042 10.69 10.4375 96

2-7-8-9-17-18-22 99.7708 11.74 11.2128 94

parameters used in this series of experiments [9], [116J. In our case the fully functional

solutions have been evolved after 100,000 generations. This means that the function-

level EHvV requires in 30-100 times less number of generations in order to obtain the

fully functional solution. The same effect was obtained for the two-bit adder. Using

a function-level EHW approach allows us to evolve fully functional solutions easier

than using gate-level EHvV approach.

Let us compare the average best functionality fitness functions (F~f) for the logic

functions under consideration. It is clear that the best functionality fitness function

is lower when a gate-level EHW has been applied. Analysing the average number

of active primitive logic gates in the best fully functional chromosome (F~f (Nf)),

we find that there is no significant difference between function- and gate-level EHvV.

Consequently, we can conclude that function-level EHvV performs better than gate

level EHW in terms of the number of fully functional binary circuits evolved.

186

X_I

FA
}'

x FA }' , Xn
x~ 1 }'

x ~, 2

Figure 5.4: Evolved two-bit adder design (A); # logic gates = 10; # building blocks
= 2; HA is half adder.

5.4.2 Evolved circuits

In this section we will discuss the specific features of circuit structures evolved using

function-level extrinsic EHW with initial data given in Table 5.2.

A two-bit adder

The conventional structure of the two-bit adder synthesised using one-bit full adders

is depicted in Fig. 5.4 (design A). This structure requires 10 primitive logic gates.

This is a well-known circuit that can be found in any handbook on circuit design

foundations [129]. In order to investigate whether EA will learn well-known human

design techniques or not, the two-bit full adder has been evolved using one-bit full

adder as one of the elements in the functional set of logic components. The analysis

of circuit structures evolved shows that 90% of fully functional two-bit adders had the

circuit structure shown in Fig. 5.4. This fact proves that the EA can find the optimal

circuit structure designed by a human. The circuit structures synthesised without

an one-bit full adder appeared in the remaining 10% of all fully functional circuits

evolved. This shows that the EA exploring the search space does not converge to the

only optimal solution. This experimental result illustrates that in order to evolve the

most optimal circuit design, EA can be be executed several times.

Another aspect of our curiosity in the circuit structures evolved lies in the area

of using non-standard logic functions as building blocks in order to evolve circuits.

I
I

I I

3 D I)" 5 I J

I 1-_____________________ 1

187

Figure 5.5: Evolved two-bit adder design (B); # logic gates = 18; # building blocks
= 7; FA is full adder; mult2 is a two-bit multiplier.

In this case, the two-bit multiplier has been added to the functional set of logic

components in order to evolve two-bit adder. One of the most common structures

that appeared in this series of experiments is illustrated in Fig. 5.5 (design B).

This circuit requires 18 primitive logic cells or 7 building blocks to be implemented.

Analysing the circuit structure we can notice that only the third output of the two

bit multiplier is used. This fact proves that EA considers each output of a complex

building block separately and in some case it does not employ all outputs. The circuit

implementing the third output of the two-bit multiplier requires at least 3 primitive

logic gates (see Appendix C). The optimal two--bit multiplier contains 7 logic gates.

This means that the circuit in question contains 14 non-redundant primitive logic

gates. Comparing the circuit in design B with the circuit in design A, we notice that

this structure is far from optimal (14 primitive logic gates compared to 10). This

example shows that using different set of building block, different circuit structures

can be evolved.

A two-bit multiplier

Evolution of two--bit multiplier at function-level is another problem that is interest

us. A two--bit multiplier design problem has been actively studied recently in the area

of extrinsic EHW. This circuit has been evolved by different researchers at gate-level.

188

XIl.X X~X.J""" mult2.pla -------------1
6 Y,

1--____ --111:

I
I

}----------iIY
,

--------------------~

Figure 5.6: Evolved two-bit multiplier design (A); # logic gates = 7; # non-redundant
primitive logic gates = 7; # building blocks = 6; HA is the half adder.

Our interest in this function lies in the possibility of evolving the two-bit multiplier

at function level. The two-bit multiplier has been evolved using half and full adders.

Interesting results occurred during the analysis of evolved circuit structures. First,

no circuit structure containing one-bit full adders have been evolved. Approximately

50% of circuit structures contain no multi-input multi-output building blocks. In

other words, basically these circuits are evolved at gate-level, even if some complex

functions have been defined in a functional set of logic gates. Approximately 20%

of two-bit multipliers evolved at function level have the structure shown in Fig. 5.6

(design A), 20% of two-bit multipliers encompass a circuit structure shown in Fig. 5.7

(design B). These two circuit designs are the most optimal two-bit multipliers evolved

at function-leveL Approximately 10% of fully functional circuits evolved consist of

more than 10 primitive logic gates. There is no interest in these circuits, since they are

not optimal in terms of the number of primitive non-redundant logic gates involved

in the circuit structure.

Let us consider in details the circuit designs A and B. These circuits are similar

to each other in terms of the type logic circuits employed. In both cases, 4 AND,

1 EXOR and 1 Half adder are used. The difference is in the connectivity of these

elements. Note that the implementation of outputs Y2 and Yo is identical for both

designs in question. The output 13 is implemented separately in both case, and it

\."0.--'-"' ~:::x_~ r-lTlult2.p la----------.

1 ~YI
I-++-I-'-f-~ ~!Yn

1 "-

Iy.]
1-------'1

'----' f-'
1

1 _______________ -1

189

Figure 5.7: Evolved two-bit multiplier design (B); # logic gates = 7; # non-redundant
primitive logic gates = 7; # building blocks = 6; HA is the half adder.

employed only one AND logic gate. But in design A, EA defines that output Y3

depends on the variables Xl, X3 and in the case of design B the same logic function

depends on variables Xo, X3. Another interesting aspect of these two structure is in

the implementation of output Y1. Again, in order to realize this circuit the same set

of functional logic gates has been used: 3 AND, 1 EXOR, 1 half adder. In this case

the order of AND and EXOR gates has been changed. This can be done by a human

designer as well.

So, these two examples demonstrate that the similar circuit structures with vari-

ations of connections can be evolved. In this case EA considers each of the evolved

solutions as a unique one and does not recognizes the similarities in evolved circuits.

The knowledge of well-known logic algebras has to be used at some stage of the eva-

lutionary process, if one desires to evolve different circuit structures in terms of logic

algebra equality.

3-bit multiplier

One of the most interesting problem currently investigated by researchers in the area

of EHW is evolving a three-bit multiplier. The functional set of logic functions used

in circuit evolution contains the logic functions from which it is easily to construct

a 3-bit multiplier circuit. Let us consider in details some of the circuit structures

190

Figure 5.8: Most efficient conventional gate-level three-bit multiplier (# logic gates
= 34; # non-redundant primitive logic gates = 34; # building blocks = 21).

evolved at function level.

The 3-bit multiplier can calculate the product of two integers a and b in the range

0-7. The conventional 3-bit multiplier depicted at Fig. 5.8 requires 34 primitive

logic gates (if NOT is considered as a separate logic gate), 26 logic gates (if MUX is

considered as a separate building block) [9]. Some of sub-circuits used in this design

represent half bit adder. Five half-adder structures has been found. Considering the

size of circuit in terms of building blocks, the design requires 21 building blocks, if half

adder and multiplexer are considered as separate building blocks. The most efficient

conventional 3-bit multiplier synthesised using an one-bit full adder and a half adder

contains 16 building blocks.

The most efficient 3-bit multiplier evolved at gate-level, requires only 23 gates

[135]. Note that this structure contains 3 AND gates with one inverted input. In our

approach we count only the number of NOT, AND, EXOR and OR gates. Therefore in

our calculations, AND with one inverted input requires 2 primitive logic gates: AND

and NOT. From this point of view the circuit structure reported in [135] contains 26

primitive logic gates.

------------------~
I
I
I
I
I

r++ ___ -II}·o

'--~-___l__,I~}-'
>--=i====fr=:::::::::q~}"1

I '>-___.-====------41}"".
I}"

3 }.~

I ______ -------------------~

191

Figure 5.9: Evolved 3-bit multiplier design (A): Functional set: {2, 7, 8, 9, 18}; #
logic gates = 32; # non-redundant primitive logic gates = 28; # building blocks =
13; multi! is the 2-bit multiplier.

One can argue that the primitive logic gate can not be considered as a measure

of quality of the evolved circuit since this is optimal only from an algebraic point

of view and define nothing from the empirical point of view, when the circuit has

to be actually implemented in hardware. Thus, for example one can consider the

AND logic gate with inverted input as a unique unit; another user will divide it

into 2 sub-units, since there is no manufactured logic gate that can implement this

functionality. This has been demonstrated by analysing the quality of a conventional

three-bit multiplier. In this work the quality of evolved circuit is estimated in terms

of the number of primitive logic gates used in the circuit, since different building

blocks with different characteristics can be involved in the circuit design performed

at function-level.

The most efficient evolved 3-bit multiplier at function level is depicted in Fig.

5.9 (design A). This circuit requires 32 active primitive logic gates. The cost of this

circuit has been calculated without taking into account the outputs used in two-bit

multiplier building blocks. Note that the second output of multipliers 1 and 2 is not

used. The implementation of the two-bit multiplier without this output requires at

192

least 5 primitive logic gates ([26]). This means that 2 logic gates are employed to

implement the second output and are not used in the implementation of other circuit

outputs. Therefore, the circuit shown in Fig. 5.9 requires 28 primitive logic gates

(32-2*2=28), such as AND, OR and NOT. Therefore, we can conclude that circuit

structures evolved at function- and gate-level are comparable. At the same time

the circuit structure in question is the most compact circuit implementation of a 3-

bit multiplier. The circuit structure is very compact in comparison with conventional

design. This design can be mapped onto an rectangular array of 4 columns and 4 rows,

which is impossible to carry out with conventional circuit design. Also, this circuit

requires only 13 building blocks in comparison with at least 16 building blocks in

conventional design. This shows that the circuit is optimal in terms of the number of

building blocks required to implement it. The circuit has been mapped directly from

the genotype to symbolic representation. This means that no reductions performed

by human has been executed. The chromosome representation introduced in this

work allows us to use multi-input one-output building blocks of fixed functionality.

One of these blocks is used in design A. Building block labeled 13 contains 3 inputs.

This cell contains two primitive logic cells but is considered as an unique unit in the

chromosome genotype. Using such type of building blocks in the circuit design allows

us to reduce the number of building blocks used.

It can be seen from the analysis of the circuit structure depicted in Fig. 5.9 that

the quality of evolved circuit in terms of the number of logic gates cost(N) (see Eq.

5.2.5) can be defined by 3 different metrics:

• NIl: the number of primitive logic gates;

• JVf2 : the number of non-redundant primitive logic gates;

193

• lv'13: the number of building blocks.

This means that the actual cost of building block cost(8j) (see Eq. 5.2.6) is calculated

differently for each of these three cases. If the building block is uncommitted, different

metrics to define the cost of the building block can be applied.

If the first metric lv'h is used as a measure of the quality of evolved circuit, NJ

defines the minimum number of primitive logic cells required to implement the logic

function that describes the behaviour of the building block 8j . For example, the 2-nd

building block of the circuit shown in Fig. 5.9 describes the two-bit multiplier. In the

interpretation mentioned above, the size of this building block is N~ = 7, since the

optimal implementation of two-bit multiplier requires 7 primitive logic gates. This

metric can be suitable when the designer wants to know how many primitive logic

gates are required to evolve more complex system.

In the case of using the second metric lv'I2 as a measure of the quality of evolved

circuits, NJ is interp~eted in the minimal number of primitive logic cells required to

implement the outputs of the building blocks that are actually used in the circuit

structure. For instance, the size of logic gate 8 2 in design A is 5, since the second

output of this building block is not used, N~ = 5. This metric is very useful, when

the goal of circuit design is to evolve the most efficient logic circuit in terms of the

number of primitive active logic gates.

The third metric M3 defines the number of building blocks actually used in the

circuit regardless of their size. In this case the building block 8 2 in design A is

considered as one unique unit and, therefore, N~ = 1. The designer would prefer to

use this metric if target implementation technology is FPG A. In this case the designer

is interested only in the number of logic cells occupied in the rectangular array.

194

>--I-H==::r~r~:I---j'r,
'------;==F~====F===!lr ...

:-----------------------------~~--.~

Figure 5.10: Evolved 3-bit multiplier design (B): Functional set: {2, 7, 8, 9, 18}; #
logic gates = 51; # non-redundant primitive logic gates = 33; # building blocks =
12; mult2 is the 2-bit multiplier.

As it can be seen from the statements given above, the quality of evolved circuit

can be measured differently, if the circuit is evolved at function-level. Using different

metrics as an optimisation criteria we can define the optimal circuit structures that

can be optimal from one point of view and completely unacceptable from another. The

analysis of the three-bit multiplier circuits given below illustrates this phenomena.

Next, we will consider the circuit shown in Fig. 5.10 (design B) that contains

51 active primitive logic cells. This is the optimal circuit in terms of the number

of primitive logic cells that has been evolved using the functional set of 2, 7, 8, 9

and 18 logic cells. Also, this is the most efficient circuit in terms of the number of

building blocks involved: the circuit requires 12 building blocks. Analysing the circuit

structure we can easily notice the presence of large cell redundancy. For example,

only two outputs are used in 4 two-bit multipliers. This caused the redundancy and

therefore, there is a big difference between the estimation of the quality of evolved

circuit using metric 1\11 and M 2 . Comparing this design with the circuit design A

we can notice that this is optimal in terms of the number of building bIocks used.

This circuit contains 12 building blocks in comparison with 13 that are required to

mul13.pla ---,
I
I
I

'O--_-l-_-l-____ ---:IY.

I
I
I
I
I

1--------------iE>iy]
-------------------------------~

195

Figure 5.11: Evolved 3-bit multiplier design (C): Functional set: {2, 7, 8, 9, 18}; #
logic gates = 50; # non-redundant primitive logic gates = 39; # building blocks =
20; mult2 is the two-bit multiplier.

implement design A. At the same time, this circuit is far from optimal and even is

not comparable with optimal conventional circuit if an estimation is made in terms of

the number of primitive logic gates used. The most compact circuit layout required

to implement this circuit on FPGA contains 3 rows and 6 columns. Obviously, this

circuit will have higher circuit delay then the circuit depicted in Fig. 5.9 (design A),

since it requires larger number of columns. It should be noted that less columns in

the compact circuit implementation means less delay.

The circuit design C shown in Fig. 5.11 contains 50 active primitive logic cells.

This design is far from optimal from all points of view: the number of primitive

active logic gates, the number of building blocks and circuit delay. But there is one

interesting eventuality that can be noticed during inspection of this circuit. Only

the third output is used in two two-bit multipliers. This aspect proves one more

time that EA does not consider the building block as a whole unit but examines

each output of the building block as a separate sub-function. At the same time, the

196

I __________________________________ J

Figure 5.12: Evolved 3-bit multiplier (D): Functional set - {2, 7, 8, 9, 18, 22}; #
logic gates = 40; # non-redundant primitive logic gates = 31; # building blocks =
16; HA is the half adder, mult2 is the 2-bit multiplier.

analysis of this structure shows that there is one redundant logic cell labelled 3. A

similar cell is implemented inside the structure of building block marked 2 (the 4th

output). This can reduce the size of the evolved design. This redundancy illustrates

that the evolution of this particular circuit requires more computation time, since

some obvious redundancy still can be found.

The three-bit multipliers discussed above have been evolved using two-bit mul

tiplier as building blocks. It has been shown that some of the evolved circuits are

optimal in terms of the number of primitive logic gates used or in terms of the num-

ber of building blocks utilised. In our further research we would like to answer the

question whatever it is possible to evolve more optimal designs using another complex

functions as a building blocks and how their efficiency will be compared with ones

previously reported. The next two circuit designs depicted in Fig. 5.12 and Fig. 5.13

and are evolved using the two-bit multiplier and the half-adder as building blocks.

Surprisingly, no efficient designs have been evolved when the two-bit multiplier

and the half adder were included in the functional set of logic gates. The most

efficient design evolved contains 31 non-redundant primitive logic gates, 16 building

197

." ',', ~-,"-" "1-- fTlUI1:3.pID ----------------~--=---~-~ly~

~
: ,
: ,Y,
,

f------t----+-----1>

!-W-R=a~..e~~=:::::::T~==F~~~Y'
:

I-------}E>---iy~ ,
H-+-t-t-7l ... ____ _ =_:j_i 1_--;;_--_>-_-__ -_-_-_-_-_-_-__ -_-_-_-_-_-__ -_-_-_---!_J y ~

Figure 5.13: Evolved 3-bit multiplier (E): Functional set - {2, 7, 8, 9, 18, 22}; # logic
gates = 42; # non-redundant primitive logic gates = 37; # building blocks = 18; HA
is the half adder, mult2 is the two-bit multiplier.

blocks and is shown in Fig. 5.12 (design D). It is clear, that these characteristics

of evolved three-bit multiplier are comparable with ones defined for the conventional

three-bit multiplier, but are far from optimal if we compare these with the most

efficient evolved designs. In this design we can notice the presence of redundancy and

very low percentage of outputs of building blocks used. For example, only the third

output of the two-bit multiplier labeled 5 is used. The circuit illustrated in Fig. 5.13

(design E) is distinctive since this illustrates how EA can use multi-input one-output

building blocks. This design contains 4 3-input l-output logic cells. This shows that

evolution defines some sub-functions that can be arranged in the special building

blocks even if the functionality of complex building blocks is not defined. Note that if

the multi-input one-output building block is used in evolution, the number of inputs

in this building block is considered as a separate gene that can be mutated. This

means that the functionality of the building block can be changed by varying the

number of inputs in it. This shows that the structure of the building block can be

defined during evolution and in this case the method starts to behave analogously to

the one proposed by J. Koza et al. [51] and named Automatically Defined Functions.

198

,
~--------------------------

Figure 5.14: Evolved 3-bit multiplier (design F): Functional set - {2, 7, 8, 9, 17, 18,
19, 22}; # logic gates = 62; # non-redundant primitive logic gates = 45; # building
blocks = 12; FA is the one-bit full adder, 2FA is the two-bit adder, mult2 is the
two-bit multiplier.

This is one of the issue that I will pay attention to my future research.

More interesting circuit design is depicted in Fig. 5.14 (design F). This is optimal

design in terms of the number of building blocks used: it contains 12 building blocks.

In this case EA discovers at least two optimal designs in terms of the number of

building blocks used: designs F and E. Both of these designs consist of 12 building

blocks, but the types of building blocks are different. This design contains high level

of diversity in terms of functional type of building blocks involved: two-bit multiplier,

one- and two-bit adders, AND and EXOR logic gates. Surprisingly we discover that

in this design only 4 primitive logic gates labeled 5, 6, 8 and 11 are used separately.

This circuit contains the lowest percentage of primitive logic gates ·used in the circuit

structure. This is the best example that illustrates the employment of high-level

functionality block efficiency.

5.5 Summary

This chapter introduces the function-level extrinsic EHW approach for the first time

and demonstrates its applicability to the digital design of arithmetic logic circuits.

199

The correctness ofthe genotype after the recombination operation was supported by

a connection repair algorithm. In the circuit structure both multi-input one-output

and multi-input multi-output logic functions can be used as building blocks. Both

the analysis of algorithm performance and the specific features of evolved structures

are discussed in detail. The advantage of the proposed chromosome representation

is that it allows the use of multi-input multi-output logic functions as a building

block. Analysis of circuit structures evolved shows that EA considers each output of

complex building block as a separate sub-function that can be potentially involved

in the actual circuit structure. Each complex building block encodes s9me regularity

without explicit knowledge of what makes a good sub-function. Another advantage

of the proposed method is that it reduces the chromosome length significantly by

using the more complex building blocks. For example, the three-bit multiplier can be

composed using only 12 building blocks in comparison with 26 primitive logic gates.

In this particular case the size of circuit layout required to evolve fully functional

three-bit multiplier can be significantly reduced.

A lot of work has to be done in the area of defining the structure of the most

reusable building blocks during automatic evolution. This can be done by intro

ducing the internal connectivity genes at the building block level of chromosome

representation. The research has to be focused on the identification of useful mod

ules without explicit knowledge of what makes a good module or how to extract

task-specific information being placed in the problem solver.

Chapter 6

Bidirectional incremental evolution

Although the algorithm performance has been drastically improved with the intro

duction of the function-level extrinsic EHW approach (see Chapter 5), the problem

of evolving the logic functions of large number of inputs and outputs remains. This

is because the fitness function in the methods discussed above is calculated using a

complete truth table. Clearly such a procedure can lead to very slow evolution if

the size of the truth table is large. Also, it has been shown previously that during

solving complex problems, a direct evolution makes slight progress during the first

several thousand of generations and stalls after that. In order to overcome these

two problems we propose a bidirectional incremental evolution (BIE) that allows us

to diminish gradually the complexity of evolved systems. This approach performs

incremental evolution in two directions: from complex system to sub-systems with

sufficient complexity and from sub-systems to complex system. In this approach, a

complex problem is gradually decomposed into some sub-tasks during evolution, and,

then, the problem is evolved incrementally, by starting with simpler behaviour and

gradually making the task more challenging and general. The system discovers the

evaluation tasks and their sequence automatically. Each sub-task is evolved using a

200

201

self-adaptive function-level extrinsic EHW. The self adaptation is performed in order

to evolve circuit layout automatically (see Chapter 4). The function-level EHvV is

applied to improve the algorithm performance (see Chapter 5). The evaluation of

each sub-task is performed using a dynamic fitness function introduced in Chapter 3.

The method is tested using standard benchmarks and compared with direct evolu

tion. The bidirectional incremental approach evolves more effective and more general

circuits and should also scale up to harder tasks.

6.1 Introduction

Evolvable Hardware (EHW) has been introduced as a target architecture for complex

system design based on evolution. However, the evolution of complex system turns

out to be very difficult task. There are several reasons for this.

One is the problem of evolving systems based on a long chromosome string. Pre

vious approaches of this problem include the use of variable length chromosome [114],

function-level evolution [17], (4], Chapter 5, automatically defined functions [51] and

the divide-and-conquer approach (so called increased complexity evolution) [54], [55].

The complexity of evolved system depends on the number of inputs and outputs in

the implemented logic function. The higher the number of outputs, the higher the

system complexity, if the number of inputs remains the same. Similar conclusions

can be made regarding to the number of inputs. The larger the number of inputs

in the implemented function, the higher the complexity of the evolved system, if the

number of outputs remains the same. All methods except the divide-and-conquer

approach become unapplicable once the complexity of the system in terms of either

the number of outputs or the number of inputs is increased. The divide-and-conquer

202

method deals very well with complex systems of large number of outputs and small

number of inputs. This is because the basic idea of this approach is to divide the

system by outputs and evolve each sub-system separately. Once each sub-system is

evolved, the complex system is assembled. The disadvantage of this approach is that

it is unable to deal with systems of large number of inputs, since the number of input

combinations in the truth table increases exponentially with increasing the number

of inputs in the logic function.

Another reason is that the evolutionary process stalls after several thousand of

generations. In this case the number of generations required to perform a task in

creases drastically with increasing the complexity of task. Thus, a two-bit multi

plier (4 inputs, 4 outputs) can be easily evolved after 5 000 generations [9]. At the

same time, the evolution of fully functional three-bit multiplier (6 inputs, 6 outputs)

at gate-level requires from 3 000 000 generations [9] up to 10 000 000 generations

[116]. According to this data we can predict that billions of generations are required

to evolve a fully functiona14-bit multiplier (8 inputs, 8 outputs). This example shows

the usefulness of an extrinsic EHW approach applied to evolve the higher complexity

functions, since the number of generations required to perform increases drastically.

A similar problem occurs in the evolutionary robotic area. In order to overcome

this problem, several researchers have demonstrated that incremental evolution can

be successfully applied to stochastic dynamic problems that are implemented using

neural networks [117], [59], [118]. In incremental evolution, the neural network learns

incrementally the complex general behaviour by starting with simpler behaviour and

gradually making the task more general.

Finally, a more complex problem requires more computational effort to be solved.

203

The computational effort mostly depends on the three following parameters: (1) the

dimension of the circuit layout; (2) the number of generations required to solve the

given problem, and (3) the size ofthe truth table. The dimension of the circuit layout

can be referred to the long chromosome string. The second parameter can be reduced

once the problem of stalling the evolution is solved, and, the size of final parameter can

be abated by solving the sub-tasks given by truth tables of smaller size. This problem

can be resolved by applying the schemes to speed up the EA computation time that

involves the fitness computation in parallel or a partitioned population evolved in

parallel [136], [115]. Also, it can be solved by using the incremental evolution.

Therefore, the direct application of an extrinsic EHW approach to design practical

digital circuits involves three major problems:

1. limitation in the chromosome length;

2. "stalling" effect in the evolutionary process;

3. restriction of the computation time.

All of the problems mentioned above can be solved using bidirectional incremental

evolution. The proposed approach significantly differs from the incremental evolution

approaches proposed in the past. It incorporates two main approaches: Divide-and

Conquer and Incremental evolution. The principle of our approach is to divide a

complex task into simpler sub-tasks, to evolve each of these sub-tasks and then merge

incrementally the evolved sub-systems, reassembling a new evolved complex system.

The evaluation tasks and their circuit layout dimensions can be identified using either

standard decomposition methods or an EHvV-oriented decomposition. In our method

first the evolution defines the partitioning vectors of any given complex system. These

204

vectors are used to decompose the system into a number of sub-systems. Each of sub

systems is then evolved separately. If a sub-systems is not sufficiently partitioned,

new partitioning vectors are defined and the subsystem is decomposed further. This

may continue until a final evolvable sub-system set is defined. Once all sub-systems

have been evolved, they are merged incrementally into one cost-optimised system. So,

the bidirectional incremental evolution contains two processes: (1) evolution towards

an modularised system; and (2) evolution towards an optimised system.

Stage 1: Evolution towards a modularised system. The decomposition of

complex systems into sub-systems can be performed using either the standard de

composition methods, or the EHW-oriented decomposition. Any standard functional

decomposition method can be used to divide a system into several sub-systems. In

this case the incremental evolution is performed in one direction: from sub-systems to

more complex system. The sequence of evolving the sub-tasks is defined by standard

functional decomposition methods. One disadvantage of this approach can be the

fact that the standard functional decomposition methods are designed in most cases

for some particular architectural structures, such as PLA, FPGA, etc. and in some

cases are not applicable to EHW approaches. Another problem is that the standard

decomposition methods are developed using a specific logic algebra. In some cases

EHW exploits the larger search space rather than one, limited by logic algebra rep

resentation. The standard decomposition methods discussed in the past take into

account no specific features of EHW approach. In order to overcome these problems

the EHW-oriented decomposition is proposed in this Chapter. The evolution from

a complex system into another one is carried out by means of the EHW-oriented

205

Bidirectional Incremental Evolution

Complex circuit,
S

I
~ ~

Standard
EHW-oriented

functional
decomposition

Assembling
decomposition

I I
.!.

I S1 I I S2 I -- - W
Simpler sub-circuits

Figure 6.1: The structure of bidirectional incremental evolution (BIE) Incremental
evolution performs in two directions: from complex system to sub-systems (complex sys
tem decomposition) and from sub-system back to the complex system (complex system
optimisation).)

decomposition. The sub-tasks and their sequence of evolution are defined automat-

ically. In this case the system is evolved using bidirectional incremental evolution.

The evolution is undertaken on a complex system, in order to define the partitioning

vectors. And then, the system is decomposed into a number of sub-systems. Each

sub-system is evolved separately. Once all sub-systems have been evolved, they can

easily be assembled to the fully functional system. After the first stage of bidirectional

incremental evolution, the fully functional complex system can be assembled.

Stage 2: Evolution towards an optimised system. During this stage of bidi-

rectional incremental evolution, the system is assembled from simpler sub-systems

into a more complex one and is evolved in order to reduce the size of the system.

The complexity of assembled sub-systems increases gradually. The bidirectional in-

cremental evolution stops once the given complex system has been assembled and

evolved to optimise its size. Thus, this method not only evolves the fully functional

206

systemgradually,- but also decreases this size incrementally.

The basic principles and main approaches to bidirectional incremental evolution

are summarised in Fig. 6.l.

All possible approaches to perform bidirectional incremental evolution will be

discussed in this chapter.

6.2 Basic idea of bidirectional incremental evolu
tion applied to digital logic design

The basic idea of incremental evolution is that the system learns the new behaviour

starting with an easy task and the task complexity is gradually increased. Most

of incremental evolution approaches reported in the past are used to evolve neural

network architecture. In this case the neural network learns first simple task and with

evolution the complexity of task incrementally increases.

Incremental evolution occurs under the following circumstances [117]:

1. Incremental evolution, when the problem itself changes over time; for instance

a sequence of related problems of increasing complexity may be tackled by a

continuing evolutionary algorithm.

2. Cases where the genotype length may change in the course of evolution, par

ticularly where increasingly complex solutions require increasing genotypes in

order to specify them.

3. When an initially random population becomes genetically converged after very

few generations.

207

Incremental evolution consists in gradually evolving a complex task on a series of

tasks of increasing complexity [57], [58].

Suppose that our goal is to generate a fully functional complex cost-optimised

system. The cost of system is defined by the number of active logic gates. In this

case the circuit synthesis has to contain two main evolutionary processes that (1)

find a fully functional solution, ,,((F1), and (2) optimise a number of active logic gates

in the circuit, "((F2). Therefore, the evaluation process can be performed using the

dynamic fitness function introduced in Chapter 3. It is extremely difficult to evolve a

logic function of large number of inputs and outputs using direct evolution. Therefore,

the incremental evolution is applied to solve this problem. In this case incremental

evolution operates in two directions specified by evolutionary processes mentioned

above. In order to avoid the" stalling" effect appearing in solving complex dynamic

problems, incremental evolution is used instead of direct evolution. Therefore, the

bidirectional incremental evolution takes place to evolve complex circuits.

The easiest and quickest way to obtain fully functional solution is to decompose

a complex logic function into several sub-functions and evolve each sub-function sep

arately. The fully functional complex circuit is assembled from the evolved fully

functional sub-circuits. This is the basic idea of Divide-and-Conquer method. Hence,

the evolution of fully functional solution, "((F 1) can be performed using" divide-and

conquer" approach.

The minimisation of evolved fully functional solution can be performed using

incremental evolution. Each sub-function is first evolved in order to minimise the

number of active logic gates in it. Then, several sub-functions are assembled and

the evolution is undertaken to evolve more complex task. The complexity of evolved

208

circuit is increase.d gradually. The process is repeated until the most complex system

has been assembled and has been evolved. This method can be defined as "conquer

and-evolve" approach.

Therefore, the circuit evolution is performed in two directions:

1. from complex system to sub-systems;

2. from simple sub-systems to complex system.

In both directions, incremental evolution can be applied in order to evolve a complex

system. Therefore, in the proposed method, namely bidirectional incremental evolu

tion (BIE), different fitness criteria are applied in each direction. At the same time

during evolution of one increment (one sub-task) the dynamic fitness function can

be applied as well. Also, during the first stage of BIE the complexity of the evolved

problem is incrementally decreased and during the second stage the complexity of

evolved problem is incrementally increased.

There are two basic approaches that can be applied to implement bidirectional

incremental evolution.

First approach uses a priori knowledge of the complex system and divides the

complex system into sub-systems using standard functional decomposition methods.

For example, in combinational circuit design the system can be decomposed according

to Shannon's theorem, Ashenhurst and Curtis decompositions, etc. In other applied

problems, any a priori-based decomposition methods can be applied in order to divide

the system. Since in the standard functional decomposition methods the decomposed

sub-functions have the similar number of inputs and outputs, the extrinsic EHW

approach with homogeneous circuit layout can be applied (see Chapter 4). In order

209

to speed up the evolutionary process, evolution can be performed at function level

(see Chapter 5).

Another approach defines the sub-functions automatically during evolution. The

sub-functions extracted from the complex funciton are easily evolvable. The EHW

parameters required to evolve a specified sub-function are defined during evolution as

well, since the complexities of extracted functions are different. In this case the sub

functions are evolved using the self-adaptive extrinsic EHW discussed in Chapter 4.

The evolutionary process can be speeded up if a function-level EHW approach is ap

plied at this stage (see Chapter 5). Thus, self-adaptive function-level extrinsic EHW

approach is used to evolve each sub-function. Hence, there are two automatic pro

cesses that can be executed during this stage: (1) automatically defined easily evolved

tasks, and (2) automatically defined EHW parameters (Circuit layout evolution has

been introduced in Chapter 4).

In the following sections the specific features of these two approaches applied to

bidirectional incremental evolution are discussed in detail.

6.3 BIE with standard functional decomposition

6.3.1 Statement of problem

The essential idea of bidirectional incremental evolution is to scale the evaluation

function (i.e., the" fitness function against which, say, a complex circuit is evolved)

over time, with the aim of minimizing the overall time spent evolving a circuit that

achieves the prescribed task. In the BIE with standard decomposition method, the

L _____ _

--------------- --- ---------------------- Evolved sub-systems

r-<'utput dec mposition

: I
I I,
I
I
I
I
I
I
I

Input deco

--I
I
I
I
I
I
I

• FI
I
I
I
I
I

_______ 1

210

Figure 6.2: The bidirectional incremental method applied for designing digital systems
of n inputs and m outputs.

evolution towards a modularised system is performed in two stages. First, the stan-

dard functional decomposition is undertaken to define the truth tables for each sub-

circuit_ Then, each sub-circuit is evolved. So, this stage of BIE is executed as in the

Divide-and-Conquer method. Once all sub-circuits have been evolved, the evolution

towards to an optimised circuit is undertaken.

Any of the methods from the decomposition theory can be applied in order to

divide a complex system into sub-systems_ Interactive decomposition, cascaded de-

composition, joint decomposition, etc. can be employed to decompose the complex

211

system. Then, each sub~circuit is evolved. Therefore, for the BIE with standard

decomposition the internal connectivity of sub-circuits is known in advance (see Fig.

6.2). For example, the sub-circuits are connected iteractively, if the iteractive disjoint

decomposition is applied to complex circuit (Fig. 6.2). The connectivity between

the sub-circuits can be changed when the evolution towards to optimised system is

applied.

Suppose the problem of interest is stated as follows: define the configuration of

circuit <C implementing the truth table T. In this case the complexity of evolution

task is defined by the complexity of truth table. Each chromosome representing a

circuit is evaluated according to the truth table T.

Once the standard decomposition is undertaken to divide complex truth table T,

a sequence of smaller truth tables are generated: T = (To, Tl , ... , Tk - l = T). Let

Gi be the number of generations required to evolve a fully functional sub-circuit.

Since in standard decomposition methods the sub-circuits are generated with similar

complexity, the number of generations required to evolve all sub-circuits generated

after the standard decomposition method is defined as G1 = kGi . Each sub-task Ti

is evolved separately. The initial population for each of the sub-tasks is generated

randomly. The evolution towards an optimised system is performed as follows. The

population of circuits is sequentially evolved by assembling h sub-circuits at once and

using evaluation function Tk-l+I:~ for time Gk_l+I:1k[, beginning with Ti- for time
h h

Gk in order to optimise the size of evolved fully functional circuit. The evolution of

each sub-task is stopped once the" stalling" effect has appeared. Each sub-function

is evolved using self-adaptive function-level extrinsic EHvV approach, since the com

plexity of the circuit is increased incrementally, the parameters for EHvV approach

212

are unique for each sub-function.

6.3.2 Standard functional decomposition methods

The evolution towards a modularised system is undertaken using standard functional

decomposition methods. Any of the well-known decomposition methods can be ap-

plied to divide complex system into sub-systems. Some of the most popular standard

functional decomposition methods applied to combinational logic design are listed

below.

Decomposition means breaking a large logic block into several relatively smaller

ones.

The junctional decomposition (also called input decomposition) is a technique to

break a logic function with many variables into several functions with fewer variables.

The functions with fewer variables can be designed independently, and are relatively

easier to design. Functional decomposition of a logic function is used for any algebraic

representation of given function. It allows us to choose any functionally complete

algebra for analysis. Therefore it is applicable for our approach.

Definition 6.3.1. An logic function j(X) is said to have a simple decomposition
with respect to set Xl if there exist logic functions hand 9 such that

(6.3.1)

where (X1,X2) is a partition of X, Xl and X 2 are the bound and free set respectively.

Definition 6.3.2. An logic function j (X) is said to have a simple generalized de
composition with respect to set Xl if there exist logic functions hl, h2 ,· •• ,hk and 9
such that

j(X) = g(hl (Xl), h2 (Xl), ... ,hk(Xl), X 2),

where (Xl, X 2) is a partition of X.

(6.3.2)

213

The number of elements in the bound and free set will be denoted by nl and n2

respectively. The decomposition is said to be trivial if nl is 1 or n. A function that

has a nontrivial generalized decomposition is said to be decomposable.

Definition 6.3.3. An logic function J(X) is said to have a multiple decomposition if
there exist logic functions h, t and g such that

(6.3.3)

and interactive decomposition if

(6.3.4)

where (Xl, X 2 , X 3) is a partition of X.

Disjoint decompositions are those that decompose function f (X) to two sub

functions g and h that have disjoint sets of input variables. Using non-joint sets

of input variables such that Xl U C and X 2 U C) leads to the non-disjoint decomposi

tion. Every variable in C is called a repeated variable (called also a shared variable).

In the case of non-disjoint decomposition, the repeated variable map (RVM) that is a

Karnaugh map in which variables from a non-empty set C are repeated are applied.

The functions with repeated variables can be represented in any known data structure

that allows for don't cares.

According to the Shannon's expansion theorem the logic function can be decom-

posed as follows. Let f(Xl' X2, ... , xn) be any Boolean expression of n variables. Then

Shannon's theorem in the SOP (sum-of-products) form says that

(6.3.5)

The circuit diagrams for different functional decompositions of logic functions and

their systems are shown in Fig. 6.3. The details of these methods can be found in

any book on logic design.

H

k

h

f
G

Simple generalized decomposition
f(X)=g(h I(X I), ...• hk(X I). X)

(a)

"1

XI
k[

H
h

hkl
n z k2

X 2
t1

T

G
f

Ik2

n3

X3

XI

Multiple generalized decomposition

f(X)=g(h(X IL .. h kl(X I)' t(X 2)····· I k2(X2),X3)
(c)

Il[

k1

T

t kl k z
n z H h

X 2 hk2 f

"3 G

X3

Iteractive generalized decomposition

f(X)=g(h /tl(XI).···.tkl(XI). X 2).

...• hk2(tl(XI)·····tkl(XI)· X 2)· X 3)
(b)

k[
XI hi

1I
h

Il z k2 f
G

X2
T

I k2

Cascade generalized decomposition

j(X)=g(h /X I).···.h k1 (X 1)' t I(X 2)····. t k2(X))
(d)

214

Figure 6.3: Circuit diagrams of functional decomposition. (a) Simple generalized
decomposition; (b) Iteractive generalized decomposition; (c) Multiple generalized de
composition; (d) Cascade generalized decomposition.

215

The decompo$ition by outputs is a technique to break a logic function with many

outputs into several functions with fewer outputs. The functions with fewer outputs

can be designed independently.

Table 6.1: Initial data: Evolving the sub-functions of sqn_d.pla synthesized using
Shannon's decomposition and function-level extrinsic EHW.

Circuit layout, Ncols X N rows 1x35
Connectivity parameter, Nconnect 35
Functional set {2,7,8,9}
Gate distribution Proportional
Type of layout Homogeneous
Type of logic cell Multi-Input One-Output
Maximum number of inputs in cell 4
Population size 5
Number of generations 10000
N umber of ES runs 100
Circuit mutation rate 0.03
Fitness type F1 + F2

6.3.3 Experiment A: BIE with Shannon's decomposition

In order to investigate how BIE behaves when different types of functional decom-

position are chosen, a number of experiments have been performed. Two main types

of standard decomposition have been chosen to decompose any logic function: (1)

decomposition by outputs; and (2) Shannon's decomposition. In this chapter we will

consider in details how BIE with Shannon's decomposition evolves combinational

logic functions.

The evolved function sqn_d.pla is taken from benchmark library. 7 inputs and 3

outputs function is given with 84 input combinations. No fully functional solutions

have been evolved using direct function-level EHW during 150 000 generations with

population of 5 individuals. The initial data is given in Table 6.1. The average

216

circuit functionality obtained is 94.0476 (see Table 6.4). This means that the number

of generations has to be increased in order to evolve any fully functional solution.

The task of interest to us was to evolve this function during 150 000 generations.

In this experiment the function is decomposed using Shannon's decomposition. Note

that the Shannon's decomposition has been performed without optimisation by any

criteria. vVe are foreseeing that, by applying the optimisation at this stage, it is

possible to achieve much better results than reported in this Chapter.

Stage 1: Evolution towards a modularised system The function has been

decomposed by two input variables: Xo and Xl' Applying Shannon's decomposition,

4 new sub-functions are generated. Thus, the complex truth table is decomposed into

four smaller truth tables with 5 inputs and 3 outputs each. Each of sub-systems has

been evolved 100 times. The initial data for this experiment are given in Table 6.1.

The experimental results are summarised in Table 6.2 and Fig. 6.4. Each of sub

circuits has been evolved separately. Since the complexity of evolved sub-functions

remains the same, the evolution has been carried out during 10000 generations for

each sub-function.

As a result of evolution, fully functional solutions have been evolved. F2 (N?t)

defines the number of active logic gates in the most optimal design evolved for given

sub-circuit. The total number of active logic gates in the evolved four sub-circuits

is 70. Since the Shannon's decomposition is applied, the evolved sub-circuits have

to be connected to each other using 9 multiplexers. Three logic gates are required

to implement each multiplexer. Therefore, the total number of logic gates in the

evolved fully functional circuit is 97. The circuit structure synthesised from the logic

sub-functions evolved using function-level EHvV is illustrated in Fig. 6.4. In order

217

Table 6.2: sqn_d.pla: Specification of sub-circuits evolved by BrE with standard
decomposition. OD and SD are the output and the Shannon's decompositions (by inputs)
respectively; FEHW is the function-level EHW; n, m and p are the number of inputs,
outputs and input combinations in the subsystem evolved; k is the number of additional
logic gates involved to connect sub-systems; F2 (N?t) is the number of active logic gates in
the most efficient evolved circuit

Method Sub-system ES performance

Sub-circuit n m p Fbf
1 F2(Nf) R(Nf) F2(N?t)

sqn_d.pla
FEHW sqn_d 7 3 84 94.0476 - 0 0
SD & sqn_d....s4_00 5 3 15 99.6375 17.5 75 16

FEHW sqn_d_Ol 5 3 23 97.84375 24.6 25 19
sqn_d_p_l0 5 3 23 97.9999 24.75 31 17
sqn_d_p_l1 5 3 23 96.98312 26.2 12 18

Assembled system: F2 = Fio + Fi 1 + F{< + Ff3 + k 97
Total Ngen = 40.000

Optimised system: F;pt 94
Total Ngen = 50.000

OD& sqn_d_o 1. pIa 7 1 84 94.6190 15.6 20 10
FEHW sqn_d_o2.pla 7 1 84 98.9796 19.75 66 16

sqn_d_o3.pla 7 1 84 99.1667 27.1429 7 23
Assembled system: F2 = F~u + F~l + F3'2 49

Total Ngen = 110.000
Optimised system. F;pJ; 32

Total Ngen = 160.000
m1_d.pla

FEHW mLd.pla 6 12 32
OD& mLd_ol.pla 6 6 32 99.4792 19.4667 85 19
FEHW mLd_o2.pla 6 3 32 99.8625 13.8 95 13

mLd_o3.pla 6 3 32 98.7254 34.6667 7 29
Assembled system: F2 = F20 + F21 + F~'2 61

------,
I

y"tI

Y I'll

I
I
I
I

Y I'll

I
H-+-+-..., 5 I , ________________________________ 1

218

Figure 6.4: sqn_d.pla: Designed circuit using Shannon's decomposition and function
level EHW (Stage 1. Evolution towards a modularised system). The number of
primitive logic gates: 97.

219

·l ___ c_o __ ~I~· ___ C_1 __ ~ ___ C_2 __ ~ __ C_3 __ ~ __ S_Ub_-_Ci_rC_ui_t~ _ . connections

Figure 6.5: Sub-circuits allocation in the complex circuit genotype (Sub-circu'it con
nections include the logic gates that link sub-circuits with each other.

to obtain the fully functional solution of desired circuit, the sub-circuits have to be

assembled according to restrictions defined by the applied standard decomposition.

For example, in the given case, the fully functional complex circuit is assembled using

27 additional primitive logic gates. This shows that it is very important to choose

the right type of decomposition, since in some cases additional logic gates may be

required to assemble the generated sub-functions together.

Stage 2: Evolution towards an optimised system During this stage of eva-

lution the evolved sub-systems are assembled in a more complex form and evolution

is performed towards optimised system. The new chromosome genotype for more

complex system is defined by assembling the chromosome genotypes of sub-circuits.

Merging the truth tables of sub-tasks generates the truth table for more complex task.

The new chromosome genotype is generated as follows. Let Co, «=1, ~ and «=3

be chromosome genotypes of the evolved 4 sub-circuits. Let F2(~) be the number

of active building blocks in the i-th circuit ~. Each sub-circuit contains 3 outputs

and the decomposition is carried out by 2 input variables, hence 32 multiplexers are

required to implement a fully functional circuit. A multiplexer can be implemented

in one building block. Hence, the number of active logic gates in the complex circuit

performs very well if there is a specific percentage of redundant gates in the chromo

some genotype (see Chapter 4). Thus, the circuit layout of a complex circuit can be

defined as follows: F2 (C) = 0.1 F2 (C') .

220

The logic. gates in the new chromosome genotype are located according to the

principle shown in Fig. 6.5. The outputs of logic gates in sub-circuits (\, ~ and

C3 are re-encoded as shown in Fig. 6.4. The logic gates are directly mapped to

the chromosome genotype. Let us remember that the logic gates located at the left

part of the chromosome are the most reusable logic gates in the genotype. There

fore, the logic gates of sub-circuit Co are the most reusable if the scheme shown in

Fig. 6.5 is applied to generate the new chromosome genotype. This means that the

logic gates in sub-circuits Co and C l have a higher possibility of being re-used if the

circuit structure is optimised. Note that in this circuit genotype, there is not much

redundancy between multiplexers. So, the generated new chromosome genotype can

be characterised by the following properties: (1) 5% of redundant logic gates; (2) the

sub-circuits are assembled according to the principle shown in 6.5; (3) the building

block can implement a multiplexer since the multiplexer logic function is included in

functional set of logic gates.

The assembled new chromosome specifies the initial population in evolution to

wards an optimised system. The evolution is executed during 10000 generations.

Consequently, the circuit illustrated in Fig. 6.6 is evolved. The size of the circuit is

reduced by 4 logic gates. Let us compare the circuit structures shown in Fig. 6.4

and Fig. 6.6. First it is necessary to notice that the connectivity of multiplexers,

implementation of sub-circuit Co remain the same. In sub-circuit C l the connections

of logic gate labeled 23 are changed. The second input of this logic gate employs the

sub-function generated in sub-circuit Co. More changes can be noticed in the sub

circuit C2 . Thus, the logic gate labelled 38 has become redundant. Massive changes

are made in terms of connections of logic gates inside this sub-circuit. Considering

221

------,
I

y,.11

Figure 6.6: sqn_d.pla: Designed circuit using Shannon's decomposition and function
level EHW (Stage 2. Evolution towards an optimised system). The number of prim
itive logic gates: 93.

'~n'\J '\:-\.':-\4"'.< .\",,-5ubsysteln 1: sqn_d_o1.pla ----------------------,
I
I
I
I
I
I
I

)-_________ --;~·o

---------------------1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- I
54 ~". 56 '

I I
--~

222

Figure 6.7: sqn_d.pla: Circuit design using BIE with output decomposition and
function-level EHW (Stage 1. Evolution toward a modularised system). The number
of primitive logic gates: 50.

the new structure of sub-circuit C3 , one can easily notice that the logic gates are re

arranged, and some of logic gates are connected to logic gates in sub-circuits Co, C1

and C3 . Thus, the circuit structure has been changed drastically in order to reduce

the size oflogic circuit by 4 logic gates.

6.3.4 Experiment B: BIE with output decomposition

In this experiment, we will consider how the logic circuits are evolved using BIE with

decomposition by outputs.

223

sqn_d.pla

The sqILd.pla circuit shown in Fig. 6.7 has been evolved using BIE with output

decomposition. In this case, each output has been evolved separately as it has been

suggested in [55], [54]. This is particular case of the increased complexity evolution,

that performs as a first stage of BlE. The experimental results of evolving each of

the sub-functions during 100 runs are summarised in Table 6.2. It is necessary to

note that the function-level EHW evolves the output Y2 with some difficulty (only 7

fully functional solutions have been achieved out of 100 runs). At the same time the

outputs Y1 and 1'2 have been evolved very easy.

Stage 1: Evolution towards a modularised system Let us consider the cir

cuit structure evolved during evolution towards a modularised system. The circuit

shown in Fig. 6.7 is assembled from the sub-circuits evolved separately according

to the principle discussed in the previous section. The difference is that the decom

position by output does not require additional logic gates to assemble the evolved

sub-circuits together. The logic gates in sub-circuits C1 and ~ are re-encoded ac

cording to their new location in chromosome genotype. 5% of logic gate redundancy

is used to generate the fully functional circuit.

Analysing this circuit we found that 3 logic gates can be removed from the final

circuit: (cells 2 and 3 (sub-system 2), cell 1 (sub-system 3). Therefore, the circuit

implementing the sqn_d.pla function and shown in Fig. 6.7 requires 46 primitive logic

gates instead of 49. Comparing the circuits evolved using BIE with Shannon's and

output decompositions, we notice that the most compact logic circuit is evolved when

the complex circuit is decomposed by outputs. Thus, the optimised circuit evolved

using BIE with Shannon's decomposition contains 93 logic gates. The modularised

r-Subsyste
I

----------------------,
I
I
I
I
I
I
I
I
I
I

I ____________ 1

------------,
I
I
I
I
I
I
I

rl--~===~uE>___i,
I
I
I
I
I -------------

---------------------------,
I
I
I
I
I
I
I
I
I

~jy,
~~,--~~

I I

~--~

224

Figure 6.8: sqn_d.pla: Circuit design using BIE with output decomposition and
function-level EHW (Stage 2. Evolution towards an optimised circuit). The number
of primitive active logic gates: 34.

logic circuit sqn_d.pla evolved using BIE with decomposition by outputs consists of 50

logic gates. So, clearly we can see that in this particular case the BIE with decompo

sition by outputs performs much better than the BIE with Shannon's decomposition.

Stage 2: Evolution towards an optimised system The initial population is

generated from the chromosome discussed in the previous sub-section. Approximately

5% of logic gate redundancy is used in the circuit structure. As a result of evolution

towards an optimised system, the logic circuit shown in Fig. 6.8 has been evolved.

This circuit contains 34 logic gates. So, the size of final logic circuit has been reduced

by 16 logic gates. Analysing the circuit structure evolved we can notice that the logic

gates, located in sub-circuit <Co are actively used in sub-circuits tel and~. Similar

-------------------,
1
1

~'"== __ -----------_1ly,

>--------i: y
,

1
1 >++----_____ --:I~~
Iy
1 '
1
1
I
I
1

_-----~IY.

-------------------~

Iy,
1-----------'1

I

~~---------~~,
1
I
I

i'bo---------i
1y

,

-------------------,
rt=====~ : _------<Iy ,

1
I
1
I
1

\4,..::=--:_+-__J1YJJ

~~~§i§§E~~~~ym 
I 
1 

~++~:~-:------------------------------------j 

225 

Figure 6.9: mLd,pla: Circuit design using BIE with output decomposition and 
function-level EHW (Stage 1: Evolution towards a modularised system). The number 
of primitive logic gates is 61. 

conclusions can be made about the re-usable features of logic gates located in the sub

circuit ([:1' The structure of sub-circuit ~ is totally changed compared to the one 

shown in Fig. 6.7. Thus, the logic gates in sub-circuits Co and ([:1 are actively used in 

sub-circuits ~ and ([:3. Therefore, we can conclude that the final structure of evolved 

fully functional circuit depends on how the sub-circuits within the new chromosome 

genotype are assembled. Thus, if the sub-circuits are assembled according to the 

principle shown in Fig. 6.5, then the logic gates in sub-circuits located in the left 

part of the chromosome are more often used in the rest of the circuit. 



226 

In order to demonstrate more clearly how the BIE with decomposition by outputs 

works, the mLd.pla function has been evolved (see Fig. 6.9). In this case each 

synthesised sub-circuit contains more than one output. This function of 6 inputs and 

12 outputs has 32 input combinations. Three subsystems have been obtained after 

applying the output decomposition. The sub-system 1 has 6 outputs, the sub-system 

2 has 3 outputs and the sub-system 3 has also 3 outputs. Each sub-system has been 

evolved separately during 100 runs. The most efficient circuit structures evolved have 

been included in final circuit shown in Fig. 6.9. Four logic gates have been proved to 

be redundant: cell 3 (sub-system 1), cells 1 and 3 (sub-system 2), cell 5 (sub-system 

3). Hence, the circuit requires 57 primitive logic gates. 

This example shows that each sub-circuit decomposed by outputs can contain 

more than one output and can be successfully evolved. It is necessary to point out 

that no fully functional circuits have been evolved for the functions mentioned above 

using function-level EHW even after 150 000 generations (3 x 50000 generations for 

three sub-circuits generated using BIE). 

6.4 BIE with EHW-oriented decomposition 

The main advantage of the method is that evolution is not carried out in one operation 

on the complete evolvable hardware unit, but rather is a bottom-up and a top-down 

ways. The number of inputs and outputs, in an evolved sub-system can be limited to 

allow faster evolution. The two main stages of evolution are discussed in detailed in 

the following sub-sections. 



227 

6.4.1 Stage 1. Evolution towards a modularised system using 
EHW-oriented decomposition 

EHW-oriented decomposition discovers the evaluation tasks as well as their sequence 

automatically. The main idea of this approach is to define the easily evolved sub

functions and evolve them separately. Note that the fully functional or nearly fully 

functional design has to be obtained for each decomposed sub-function. 

The truth table of an n-input m-output logic function given for p input combi

nations contains an input matrix 1(n x p) and an output matrix O(m x p) and can 

be described by this pair of matrices as (I (n X p), 0 (m x p)). The logic function is 

completely specified if p = 2n , i.e. it is given on all input combinations. FOr instance, 

the completely specified 6-input 7-output logic function can be described by truth 

table (1(6,64),0(7,64)), where n = 6, m = 7 and p ~ 64. 

The following metrics can be used in order to define the quality of an evolved 

circuit. 

The percentage of correct output bits corresponding to the j-th output, Yj is 

calculated as follows: 

""P ly.-d'l fy. o = L.....i==l J J * 100; 
J P 

(6.4.1) 

where IYi - dil is the absolute difference between the actual output Yi and the desired 

output di ; Yj is the vector of the j-th circuit output. If fyjo = 100.0 the circuit 

implements the output Yj completely. 

The percentages of correct output bits in the j-th output for input combinations 



228 

with Xi = 0 and ~i = 1 are computed as follows: 

( 6.4.2) 

(6.4.3) 

where PXi=O is the number of input combinations in the truth table with Xi = O. If 

fyjo IXi=o = 100.0, the circuit completely implements the truth table generated from 

the output Yj with condition that Xi = o. 

The EHW-oriented decomposition is performed to evolve an n-input m-output 

logic function for a given P input combinations as follows: 

1. Define the termination condition of evolution, for example, the number of gen-

erations Ngen-

2. Evolve the initial complex system implementing the truth table To = (I(n x 

p), O(mxp)) during N gen (gate- or function-level EHW with randomly generated 

initial population and with circuit layout evolution). 

3. Keep the result of evolution: the genotype of the best chromosome. 

5. Choose the output partitioning vector vY defined by the circuit outputs with 

higher fO : 
Yj' 

6. IF P is large, THEN choose the input partitioning vector Vi defined by the 

higher value of fyjo IXi=o or fyjo IXi=l for the circuit outputs specified in step 5, 

generate the product partitioning vector vp d,etermined by input combinations 

with Xi = 0 or Xi = 1, ELSE Go to step 7. 



229 

7. Generate the 3 (if step 6 has been executed) or 2 (if step 6 has not been executed) 

truth tables of sub-functions: (1) The easily evolved function is defined by the 

truth table with Vo and vp partitioning vectors: Tl = (I(n x ivpi),O(ivoi x 

ivpi)); (2) The second sub-system contains the remaining output combinations 

for the best chosen product partitioning vector vp: T2 = (I(nxp-ivpi), O(ivoi x 

p-ivpi)); (3) The third sub-system contains the remaining data from the truth 

table To: T3 = (I(n X iVpl), O(m - ivoi x ivpi)). 

8. Evolve separately the sub-systems defined in the previous step. The initial pop

ulation of the sub-system described by the truth table Tl is the final population 

of EHW executed at step 2. The sub-system T2 is evolved using either the final 

population obtained at step 2 or a randomly generated population. The initial

isation process depends on the parameters J;j' fyjo iXi=O and fyjo k=l for this 

part of the truth table in To. The sub-system T3 is evolved using the randomly 

generated initial population during Ngen generations. 

9. IF the complexity levels for T2 and T3 are not sufficient, THEN Consider the 

sub-system as a complex system and proceed to steps 3-8 for each sub-system, 

ELSE Go to step 10. 

10. The evolvable sub-systems are generated. 

The sub-system 5 l (Ti) is generated with the best metrics. If these metrics are 

equal to 100, the fully functional circuit can be extracted from the system 50 (To). 

In other cases, the initial population is generated based on chromosome genotype 

specified by 50 (To). The fitness function of chromosomes in the initial population 

is relatively high, since it is defined by chosen metrics. Therefore, the sub-system 



230 

Sl (T1) is easily evolvable. In this case the genetic material obtained during the 

previous evolutionary process of complex task is used in the evolution ofless complex 

task. 

The diagram of EHW-oriented decomposition described above is given in Fig. 

6.10. The block "EVOLVE" contains two inputs: (1) The truth table, T specifying 

which function is evolved during the evolutionary process, and (2) Initialisation to 

define how the initial population is generated. The output of this block contains the 

genotype of the best evolved chromosome tCbc (T). This chromosome will be used to 

generate the initial population. This initial population further participates in the 

evolution of easily evolved sub-systems. The initial population of sub-system S3 is 

generated randomly, because the truth table Ti, contains the worst values of fyjo 

and either fyjo Ix;==o or fyjo IX;==lo is taken from truth table To. This also brings some 

diversity in evolution of the complex system and allows the evolution to find a better 

"start" point for the next decomposed functions. 

In the scheme of EHW-oriented decomposition the evolution is terminated after a 

fixed number of generations, Ngen . We chose this termination condition because 

the fitness function is usually improved significantly during the first generations. 

Alternatively, the evolution can be terminated once the fitness value (:Fstart + 6:F) 

is achieved, where Fstart is the best fitness generated at the initial population; 6F is 

the value on which the fitness function is expected to be improved. 

Another problem that can arise in EHW-oriented decomposition is the definition 

of circuit layout for each sub-task that can be solved. This can be avoided by using 

the circuit layout evolution together with circuit functionality proposed first in [1]. 



231 

/ 
Generate the 

/ truth table To 
of complex 
system. So 

To 

IP(R) EVOLVE: --- an extrinsic EHW 

Result: C,,,lT,) 

-~ 

Keep the genotype 
-( 

of the best I chromosome 

Cw(T ,) \ 

" Define an output 
partitioning vector. v 0 

and an product 
partitioning vector. v p 

" " " 
Generate the truth Generate the truth Generate the truth 

table. T, table. Tz table. T3 

!(n.IVpl). !(n. p-Ivpl). !(n.IVpl). 

O(lvol.IVpl) O(lv 01. p-I v pI) O(m-Ivol. IVpll 

IP(CbO(T ,) TI 
~ T, 

EVOLVE: 
EVOLVE: IP(f!L an extrinsic 

an extrinsic 
EHW Yes (v 0) and f .O(v,o EHW 

Result: Co; (T ) 
for Tz from To are Result: C

b3
(T,! 

... high? 

Fully functional No 
solution for T, is EVOLVE: Yes (v 0) and f "'(V,o No 
generated. ( S ,) IP~ an extrinsic for T3 from To are 

EHW high? 

IP( CbO (T 0)) EVOLVE: Result: C/>2(Tz) 
an extrinsic 

EHW EVOLVE: EVOLVE: 
Result: C",( Tz) an extrinsic I~ an extrinsic 

+ IP( Cbo(T 0)) EHW EHW 

Fully functional 
Result: Cb3 ( T3) Result: C

b3
(T,! 

solution for Tz is .... • 
generated ( SJ 

To=Tz 
Fully functional 

T =T 
solution for T3 is I o 3 

Cb{)(T ,)=C ",(T,) generated ( S,). C w (T ,)=C b3 IT 3) 

Figure 6.10: The diagram of EHW-oriented decomposition. IP is the initial population; 
IP(R) denotes the randomly generated initial population; Ii is the i-th truth table; Cbi(Td 
is the best chromosome genotype evolved using an extrinsic EHW for the function given by 
the truth table Ti; IP( Cbi (Ti)) is the initial population generated using the best chromosome 
genotype obtained after the evolutionary process for the i-th truth table. 



232 

6.4.2 Stage 2. Evolution towards an optimised system 

The assembling of the system is based on the specific features of the output and 

functional decompositions. For example, the output decomposition guarantees that 

each sub-system is synthesized separately and it is completely independent. In the case 

of functional decomposition, the corresponding outputs generated for different input 

combinations in different sub-systems have to be connected together using an one

control multiplexer. An analysis of experimental results shows that it is reasonable 

to assemble the sub-systems decomposed by functional decomposition first and then 

the sub-systems separatly using output decomposition. 

6.4.3 Experiment C: BIE with output decomposition 

In this section we will consider how the bidirectional incremental evolution performs. 

The 7-input 10-output logic function (z5xpLd.pla) has been evolved using both di

rect evolution and bidirectional incremental evolutions. Hence, n = 7, m = 10 and 

p = 128. This function is taken from standard benchmark library for combinational 

logic design. The search has been performed using a rudimentary (1 +).) evolution

ary strategy with dynamic fitness function, uniform mutation and population of 5 

individuals. 

In bidirectional incremental evolution, the system is first evolved towards its mod

ularisation. Once the system has been decomposed into sub-systems with sufficient 

complexity, the system is evolved towards its optimisation. These two processes are 

considered in detail in the following sub-sections for two types of experiments. 

In this experiment the complex system is divided into sub-systems by means of 

output decomposition only. 



233 

Stage 1. Evolution towards a modularised system The evolution of sub-

systems is performed during no more than 15000 generations. 

During this stage of bidirectional incremental evolution, the circuit structure re-

mains the same, but the evaluation parameters are changed. For instance, the chro-

mosome C is evaluated by truth table T1. Tl can be decomposed into smaller truth 

tables T2 and T3. In this case, the chromosome C can be estimated by truth tables T2 

and T3 . Obviously, in this case the evaluation by one of the tables will show better 

results. 

The bidirectional incremental evolution begins with attempts to evolve the com

plex system. The evolved circuits are evaluated by a given truth table of 7 inputs 

and 10 outputs. The evolution is terminated after 5000 generations and the best 

chromosome defines the first generated sub-system So that is evaluated according to 

the metrics given in Eq. 6.4.1- Eq. 6.4.2. The result of this evaluation is given in 

Table 6.5. 

Analysing these data we observe that fyo = fyo = fyo = 100.0. This means that 
.7 8 9 

the circuit So is fully functional if it is evaluated by the truth table Ti generated from 

all input combinations of outputs Y7, Ys and yg. Therefore, we can define the first 

sub-system that can be evaluated according to truth table T1 . From this two truth 

tables Tl and T2 can be generated. 

Because the circuit So evaluated by the truth table Tl is fully functional, the 

evolution of system S1 can start with an initial population generated from the circuit 

So. In this case, the evolutionary process will tend to reduce the number of active 

gates in the circuit. 

Since gj for the outputs Yo, Yl, Y2, Y3, Y4, Ys and Y6 are not equal to 100.0, the 



234 

circuitS1 evaluated by the truth table T2 is not fully functional. Therefore, the next 

sub-systems have to be defined. 

As a result of EHW-oriented decomposition the following sub-systems can be 

defined: 

1. So: To = (1(7,128),0(10,128)); Y = {Yo, Y1, Y2, Y3, Y1, Y5, Y6, Y7, Ys, yg}. Purpose 

of evolution: evolving a fully functional circuit; Initialisation: Random. Best 

chromosome - Co. Conclusion: Decomposition by outputs: Sl - easily evolved; 

S2. 

2. Sl: Tl = (1(7,128),0(3,128)); Y = {Y7, Ys, yg}. Purpose of evolution: reduce 

the number of active gates in circuit; Initialisation - Co (fully functional circuit). 

Best chromosome - ((\. Conclusion: a fully functional circuit with reduced 

number of active gates is evolved. 

3. S2: T2 = (1(7,128),0(7,128)); Y = {Yo, Y1, Y2, Y3, Y4, Y5, Y6}' Purpose of evo

lution: evolving fully functional circuit; Initialisation: Random. Best chro

mosome - ~. Conclusion: Decomposition by outputs: S3 - easily evolved; 

S4' 

4. S3: T3 = (1(7,128),0(3,128)); Y = {Yo, Y5, yd· Purpose of evolution: reduce 

the number of active gates in circuit; Initialisation - ~ (fully functional circuit). 

Best chromosome - C3 . Conclusion: a fully functional circuit is evolved. 

5. S4: T4 = (1(7,128),0(4,128)); Y = {Yl, Y2, Y3, Y4}. Purpose of evolution: evolv

ing a fully functional circuit; Initialisation: Random. Best chromosome - C1 · 

Conclusion: Decomposition by outputs: S5 - easily evolved; S6' 



235 

6. 55: T5 = (I(7, 128),0(1,128)); Y = {yd; Pur-pose of evolution: evolving a fully 

functional circuit; Initialisation: C1 . Best chromosome - C5 . Conclusion: A 

fully functional circuit with reduced number of active logic gates is evolved. 

7. 56: T6 = (I(7, 128), 0(3,128)); Y = {Y2, Y3, Y4}. Purpose of evolution: evolv-

ing a fully functional circuit; Initialisation: Random. Best chromosome - 4. 

Conclusion: Decomposition by outputs: 57 - easily evolved; 58. 

8. 57: T7 = (I(7, 128),0(1,128)); Y = {Y2}; Pur-pose of evolution: evolving a fully 

functional circuit; Initialisation: 4. Best chromosome - C7 . Conclusion: A 

fully functional circuit with reduced number of active logic gates is evolved. 

9. 58: T's = (I(7, 128), 0(1,128)); Y = {Y3}; Pur-pose of evolution: evolving a fully 

functional circuit; Initialisation: 4. Best chromosome - C8 . Conclusion: A 

fully functional circuit with reduced number of active logic gates is evolved. 

10. 59: T9 = (I(7, 128), 0(1,128)); Y = {Y4}; Pur-pose of evolution: evolving a fully 

functional circuit; Initialisation: 4. Best chromosome - 4. Conclusion: A 

fully functional circuit with reduced number of active logic gates is evolved. 

Table 6.3: z5xpLd.pla: Metrics of sub-systems obtained during evolution. The sys
tems are decomposed according to the metrics shown in bold. For example, after analysis 
of the system 82 , the easily evolved system 83 is composed from the outputs Yo, Y5 and Y6· 
The remaining outputs are evaluated in the following system 84. 

IS j II Yo I Yl I Y2 I :~ I Y' I Y5 I Y6 I 
52 99.22 89.06 88.28 70.31 59.37 84.37 93.75 
54 92.18 85.19 83.59 87.5 

56 88.28 95.31 90.62 



z5xp'1_d_pla: 
Result of the EHW-oriented output decomposition 

(Evolution tovvard to system decomposition) 
Xt>."/.""."f"~"~'" :---- s.,---------------------------: 

>------------------1: ,', 
I 
I 
I 
I 
I 
I 

>---------------....... r·' 
1-i~.4l;X>---------------------------<'l·. 

~R1*~~~~~~~~~~~~~~~=;;~S~~~==:::::.._1__---_!:'·. 

rr=rtS~~~~F~E>t·' 
I 
I 
I 
I 
I 
I 
I 

>------------;11-" 

236 

Figure 6.11: z5xpLd.pla: Bidirectional incremental evolution (Stage 1: Evolution 
towards to a modularised system). 



\ 
\ 

"-
"

Diagram of evolving logic 
function of 7-inputs and 10 

outputs (z5xp1_d.pla) using 
BIE vvith EHW-orionted output 

decornposi tion 

'----'-~~£::=~=:=:!.-;:::==:Jt::::::::::::...r__ Evolu lion tOVlfard an 
optimisod systom 

"
'-

Evolution to""'ard a 
rnodularisod systonl 

237 

Figure 6.12: z5xpLd.pla: Diagram of performing a bidirectional incremental evolu
tion (Experiment C). The i-th system Si is evaluated according to the truth table of n 
inputs, m outputs and p input-output combinations. This evaluation process can be defined 
as So (n, m, p). Dynamic fitness function [1] contains evaluation of: (1) circuit functionality, 
F 1; (2) the number of logic gates used in the circuit, F2 • Y(Fj) defines the evaluation 
process performed using criteria Fj . 

Once the EHW-oriented decomposition is complete, the fully functional circuit can 

be generated as shown in Fig. 6.11. This can be done if the synthesis of the optimised 

circuit is not required to be performed. Since, only output decomposition is allowed 

in this example, each of the sub-circuits is implemented independently and realizes 

the set of outputs from the complex system. Obviously, this circuit structure is not 

optimal, since the circuit optimisation has not been performed. 

So, the bidirectional incremental evolution schedule can be defined as a decision 

tree and can be summarised as shown in Fig. 6.12. This sequence of tasks forces the 

evolution first to develop its partitioning vectors and then to optimise the structures 

of assembled sub-tasks. The mapping of the performance of these tasks into the 

scale of evolutionary process is shown in Fig. 6.13. Note that once stage 1 of the 

bidirectional incremental evolution is completed, the fully functional circuit can be 

assembled without any optimisation process. Fig. 6.13 depicts the performance 

of direct and bidirectional incremental evolution. The comparison is made for the 



238 

evolutionary process when the circuit functionality has been evolved. Therefore, the 

evolution of sub-system S L is not taken into account, since it is fully functional after 

the evolution of system So. The fully functional circuit can be generated after 75 000 

generations. During these generations, the problems with less complexity have been 

evolved. The fully functional circuit implemented z5xpLd.pla has been evolved using 

direct evolution after 5 000 000 generations. The best functionality circuit evolved 

after 150 000 generations using direct evolution is 91.40625. That is relatively low. 

Also, during the first stage of bidirectional incremental evolution, the size of the fully 

functional circuit evolved has been reduced from 157 logic gates to 85 (see Table 6.4). 

This shows that even during the first stage of bidirectional incremental evolution the 

size of circuit can be reduced if a dynamic fitness function is used in the evaluation 

process. 

Stage 2. Evolution towards an optimised system The main purpose of this 

evolution stage is to optimise the size of the evolved circuit. During this stage of 

bidirectional incremental evolution, the sub-circuit of larger complexity is assembled 

from different sub-circuits of lower complexity, and the truth table of this circuit is 

also assembled from the two truth tables describing the behaviour of sub-systems. 

Evolution is performed under the new chromosome genotype with new evaluation 

criteria. 

For example, the sub-circuits C(T2) and C(T3) evaluated by truth tables T2 and 

Ts are evolved separately. More complex task can be defined by the truth table T 

that is assembled from the truth tables T2 and Ts: T E T2 UT3 . This task is described 

by chromosome C(T2, T3). The fully functional circuit implemented the truth table T 

is generated based on the sub-circuits C(T2) and C(T3). In this case, the chromosome 



239 

genotype C(T2' 73) is synthesized based on chromosome genotypes C(T2) and C(T:3)' 

The truth tables of these two sub-circuits are assembled into a larger one. The 

generated new genotype creates the initial population for the optimisation process. 

The evolutionary process is first undertaken on the new generated circuit. Then a 

circuit of larger complexity is generated and evolution repeats again. The process 

will continue until the complex circuit is assembled and optimised using evolutionary 

process. 

This process can also reduce the size of the evolved circuit drastically. For example, 

the size of circuit synthesised after the first stage of bidirectional incremental evolution 

has been reduced from 85 logic gates to 54. 

Thus, the actual size of fully functional z5xp1 circuit has been reduced from 157 

logic gates to 54 (see Table 6.4). In other words the optimisation process reduced the 

number of logic gates by a factor of about 3. 

6.4.4 Experiment D: BIE with Shannon's and output decom
positions 

In this experiment the complex system is divided into sub-systems by means of out-

put and Shannon's decompositions. In order to compare the differences between the 

evolutionary processes,the evolution of first system So is performed for both experi-

ments. 

Stage 1: Evolution towards modularised system The sub-system Sl is gen-

erated according to the same specification given in experiment A. Some of the metrics 

f~~ in system So are equal to 100.G.For example, f~~lxl=O = f~~lxl=O = 100.0, i.e. the 

circuit implements completely the truth table generated from the outputs Yo and Y1 



~ 
co 
c: 

.Q 
t5 
c: 
.2 

"3 
~ 
G 

100 

90 

Performance of direct and bidirectional incremental evolution 
Stage 1: Synthesis of the fully functional circuit 

S S S S S S S a 2 3 4 5 6 7 

l! ~ r ~ -:-

240 

-- Incremental 
----- Direct 

S S a 9 

( r --------. -,-J. --- -------- f----r-----:----- __ .sr 
or :..-r--

-rf r I 
I 
I 
J 
I 

- I 

80 

70 
I ... 

I 
I 
I 

-d 60 
I 

50 
a 10000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 

Generations 

Figure 6.13: z5xpLd.pla: Performance of direct and bidirectional incremental evo
lution in the circuit design problem. The maximum fitness per generation is plotted for 
each of the two approaches. The direct evolution (dotted line) makes slight progress at the 
first and stalls after about 10 000 generations. The plot is an average of 100 simulations. 
Incremental evolution, however, proceeds through several task transitions (seen as abrupt 
drop-offs in the plot), and eventually solves the goal-task. The incremental plot is a result 
of one simulation. 



241 

Table 6.4: z5xpLd.pla: History of the incremental evolution with the EHW-oriented 
output decomposition. 

Sub-system ES performance 
5i n m p Y N gen F2(Nf ) F2(N~jJf) 

Direct evolution 
5 7 10 128 Y 150 000 - -

Fff = 91.40625 

Stage 1: Evolution towards to a modularised system 
50 7 10 128 Y 5000 - -

51 7 3 128 {Y7,Y8,Y9} 5 000 20 9 
52 7 7 128 Y 5000 - -
53 7 3 128 {Yo, Y5, yd 15000 25 21 
54 7 4 128 Y 5000 - -

55 7 1 128 {Yl} 15000 23 17 
56 7 3 128 Y 15 000 - -

57 7 1 128 {Y2} 15 000 30 25 
58 7 1 128 {Y3} 15 000 26 24 
59 7 1 128 {Y4} 15 000 23 13 

Total: 2: F2 (N?t) 110 000 157 85 
Stage 2: Evolution towards to an optimised system 

Total: 2: F2 (N?t) 200 000 85 54 

and for Xl = O. This truth table contains 6 inputs, 2 outputs and 64 input combi

nations. Therefore, if the Shannon's decomposition is allowed to be performed, the 

next fully functional sub-circuit contains the structure defined by this truth table. 

The truth table generated, given that Xl = 1, has the same parameters. Obviously, 

it is easier to evolve a circuit with fewer input combinations. 

Note that this is not the only possible set of sub-circuits that can be generated by 

analysing the metric data of 50. One can decompose the system in terms of variable 

Xo, since t;~lxo=o = 100.0 or in terms of variable X3, since f;~lx3=1 = 100.0. We choose 

the partitioning vector mentioned above because in this case we divide the sub-system 

not only in terms of the variable Xl, but also here, the two outputs Yo and Y1 can be 



242 

Table 6.5: Parameters of So sub-system obtained during evolution of z5xpLd.pla. The 
metrics specified in Eq. 6.4.1 and Eq. 6.4.2 are calculated for sub-system So· N

j 
defines that 

the sub-function described by output Yj is fully functional. Metrics f~~lxi=O and f~~lxi=l 
correspond to the Shannon's decomposition by variable Xi. Hence, fyiolxi=o = fyiOlxi=l = 100 

J .J 

for all variables Xi. If fyo. < 100 and fyiOlx'=o = 100 then the sub-circuit described the sub-
J .] , 

fUIlction with Xi = a is fully functions. The same implied for metric f~~lxi=l' 

Yj f~j fiD 
y' 

Xo Xl X2 X3 X4 X5 X6 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Yo 92.9689 100 86 100 86 99 88 86 100 94 93 94 93 94 93 
Yl 89.0625 80 99 100 79 71 69 54 86 69 71 68 72 71 69 
Y2 69.5312 61 79 71 69 54 86 69 71 68 72 71 69 69 71 
Y3 82.8125 77 90 91 75 88 79 88 79 79 88 85 82 82 85 
Y4 60.9375 60 63 60 63 66 57 63 60 63 60 60 63 66 57 
Y5 81.25 82 82 82 82 82 82 75 88 88 75 88 75 75 88 
Y6 62.5 63 63 63 63 63 63 63 63 75 50 75 50 50 75 
Y7 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Y8 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Y9 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 



243 

involved in this partitioning process. 

Each sub-circuit that is relatively difficult to evolve using small number of gener

ations has been evaluated in terms of metrics given in Eq. 6.4.1 and Eq. 6.4.2. The 

result of this evaluation is given in Table 6.6. 

Table 6.6: Parameters of sub-systems obtained during evolution of z5xpLd.pla using 
the EHW-oriented output and input decompositions (Stage 1. Evolution towards a 
modularised system). 

5k Yj f~j flO 
Yj 

Xo Xl X2 X3 X4 Xs X6 

a 1 a 1 a 1 a 1 a 1 a 1 a 1 

54 Y2 89.9438 93 88 93 88 88 93 94 86 86 94 90 91 91 90 

Y3 79.6875 80 80 79 82 82 79 82 79 79 82 79 82 82 79 
Y4 78.125 79 79 79 79 75 82 75 82 82 75 82 75 75 82 

Ys 93.75 94 94 94 94 94 94 100 88 100 88 88 100 100 88 

Y6 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
58 Y2 95.3125 96 95 100 91 99 93 97 94 93 99 94 97 96 96 

Y3 96.875 97 97 100 94 97 97 94 100 97 97 100 94 97 97 

Y4 93.75 94 94 94 94 94 94 88 100 94 94 100 88 94 94 

Returning to the Table 6.6 it may be seen that the sub-circuit Y6 is fully functional, 

since f;6 = 100. Also, the system can be decomposed using Shannon's decomposition 

by any of the following variables: X3, X4, Xs or X6' In this case the partitioning vector 

can be randomly chosen among these variables, since the other metrics corresponding 

to these variables are 88 in all cases. For example, the system can be decomposed 

by variable X3. In this case the sub-system generated according metric f;~lx3=O is 

fully functional and another system is easily evolvable since the circuit 54 evaluated 

according to metric f;~lx3=1 has 88% correct bits already. A similar analysis is carried 

out for the sub-system 58' 

As a result of EHW-oriented decomposition, the following sub-systems can be 

defined: 



244 

1. 50: To = (1(7,128),0(10,128)); Y = {Yo, Yb Y2, Ya, Ytj, Y5, Y6, Y7, Y8, yg}. Pur-pose 

of evolution: evolving a fully functional circuit; Initialisation: Random. Best 

chromosome - Co. Conclusion: Decomposition by outputs: 51 - easily evolved; 

Decomposition by input Xl: 52, 53 - easily evolved; 5tj. 

2. 51: T1 = (1(7,128),0(3,128)); Y = {Y7, Y8, yg}. Pur-pose of evolution: reduce 

the number of active gates in circuit; Initialisation - Co (fully functional circuit). 

Best chromosome - C1 . Conclusion: a fully functional circuit with a reduced 

number of active gates is evolved. 

3.52: T2 = (1(7,64),0(2,64)); Y = {Yo,yd; X = {XO,0,X2,X3,X4,X5,X6}; Pur-

pose of evolution: reduce the number of active gates in circuit; Initialisation 

- Co (fully functional circuit). Best chromosome -~. Conclusion: a fully 

functional circuit with a reduced number of active gates is evolved. 

4. 53: T3 = (1(7,64),0(2,64)); Y = {Yo,yd; X = {xo,1,x2,x3,x4,x5,x6}. Pur-

pose of evolution: evolve a fully functional circuit and reduce the number of 

active gates in circuit; Initialisation - Co (fully functional circuit). Best chro

mosome - Ca. Conclusion: a fully functional circuit is evolved after 15 000 

genera tions. 

5. 54: T4 = (1(7,128),0(5,128)); Y = {Y2, Y3, Y4, Ys, Y6}' Pur-pose of evolution: 

evolving a fully functional circuit; Initialisation: Random. Best chromosome -

C4 • Conclusion: Decomposition by outputs: 55 - easily evolved; Decomposi

tion by input X3: 56, 57 - easily evolved; 58' 

6. 55: Ts = (1(7,128),0(1,128)); Y = {Y6}. Pur-pose of evolution: reduce the 

number of active gates in circuit; Initialisation - C4 (fully functional circuit). 



245 

Best chromosome ~ CC5 . Conclusion: a fully functional circuit with a reduced 

number of active gates is evolved. 

7. 56: T6 = (1(7,64),0(1,64); Y = {Y5}; X = {Xo, Xl, X2, X3, X4, X5, o}. Pur

pose of evolution: reduce the number of active gates in circuit; Initialisation 

- CC4 (fully functional circuit). Best chromosome - 4. Conclusion: a fully 

functional circuit with reduced number of active gates is evolved. 

8.57: T3 = (1(7,64),0(1,64»; Y = {Y5}; X = {XO,Xl,X2,X3,X4,X5,1};. Purpose 

of evolution: evolve a fully functional circuit and reduce the number of active 

gates in circuit; Initialisation - CC4 (fully functional circuit). Best chromosome 

- CC7 . Conclusion: a fully functional circuit is evolved. 

9. 58: T8 = (1(7,128),0(3,128»; Y = {Y2, Y3, Y4}; :F = 95.3125; f~2 = 95.3125; 

f;3 = 96.875; f;4 = 93.75. Purpose of evolution: evolving a fully functional 

circuit; Initialisation: Random. Best chromosome - CC8 . Conclusion: Decom

position by inputs and outputs. Easily evolved: 59, 511 ; 5 10 , 512 . 

10. 59: T9 = (1(7,64),0(2,64»; Y = {Y3, Y4}; X = {Xo, Xl, X2, X3, X4, 0, X6}· Pur

pose of evolution: evolving a fully functional circuit; Initialisation: C8 . Best 

chromosome - <Cg. Conclusion: a fully functional circuit with a reduced num

ber of active gates is evolved. 

11. 510: TlO = (1(7,64),0(2,64»; Y = {Y3, Y4}; X = {Xo, Xl, X2, X3, X4, 1, X6}· 

Purpose of evolution: evolving a fully functional circuit; Initialisation: Random. 

Best chromosome - CClO . Conclusion: a fully functional circuit with a reduced 

number of active gates is evolved. 



Evolution towards a 
modularised system 

Diagram of evolving logic 
function of 7-inputs and 10 
outputs (z5xp1_d.pla) using 
incremental evolution with 
EHW-oriented output and 

Shannon's decompositions 

Evolution towards an 

246 

Figure 6.14: z5xp1_d.pla: Diagram of performing bidirectional incremental evolution 
with output and Shannon's decompositions (Experiment D). 

of evolution: evolving a fully functional circuit; Initialisation: Cs. Best chrC}-

mosome - Cll . Conclusion: a fully functional circuit with a reduced number 

of active gates is evolved. 

pose of evolution: evolving a fully functional circuit; Initialisation: Random. 

Best chromosome - C12 . Conclusion: a fully functional circuit with a reduced 

number of active gates is evolved. 

Fig. 6.14 shows bi'directional incremental evolution allowing both output and 

Shannon's decompositions. This diagram is different from the one illustrated in Fig. 

6.12. 13 sub-systems have been generated in order to perform the first stage of 

bidirectional incremental evolution. The generated tasks are easier then the one 

discussed in Experiment A, since they evolve functions with fewer number of inputs 

and therefore a smaller number of input/output combinations. Another difference 



247 

is that this process can be performed in parallel since 3 or more sub-systems can 

be evolved at the same time. Therefore, the evolution with output and Shannon's 

decompositions can be implemented using a parallel system, which will decrease the 

computation time drastically. 

If the task is to generate fully functional circuit only. The complex system can 

be assembled after the first stage. Thus, the complex circuit structure defined after 

the first stage of evolution is given in Fig. 6.15. The circuit contains 139 primitive 

logic gates. Since the Shannon method of decomposition is employed, the size of final 

complex system before optimisation stage depends also on the number of multiplexers 

used. During first stage of our method the size of circuit has been reduced partially, 

since the sub-circuits are evolved using dynamic fitness functions. This means that if 

the number of generations is large enough to perform both synthesis and optimisation 

of circuit during evolutionary process, the size of sub-circuit can be reduced. For 

example, during evolution of sub-circuit Sl the size of circuit has been reduced from 

20 primitive logic gates to 9. This optimisation is performed by evolutionary process 

l' h. Similar reductions can be noticed in the evolution of other sub-circuits. The 

summary of this is given in Table 6.7. As can be seen, the size of sub-circuits has 

been reduced even during first stage of BIE. 

Thus, as a result of using dynamic fitness function during evolution of sub-circuits 

within the first stage of our method the size of circuit has been reduced from 245 logic 

gates to 139. This is still very large circuit in comparison with the one generated in 

experiment C (85 logic gates). 110 000 generations are required to complete the 

first stage. In order to compute the total number of generations required to 'evolve 

sub-circuits 5,1 and S8 are taken into account. 



_ :Z:SXP1_cl.pla: 
Result 01' the EHVV-orlented outpul: and Input decorTIposltlons 

Stage"': EVolution 'to~arcl to systerTI decomposition 
... 0 .... /;"';:, ...... ' .. -.. ,.-...... • ---- 5.,---------------------------1 
'~ , ~ ,,.--, , , , , 

_________________________ -i~·9 

13~>-----------------------------------------~'y· 

248 

Figure 6.15: z5xpLd.pla: The EHW-oriented output and Shannon's decompositions 
(Stage 1: Evolution towards a modularised system) (Experiment D). 



249 

Table 6.7: z5xp1:..d.pla: History of the bidirectional incremental evolution with the 
EHW-oriented output and input decomposition. 

Sub-system ES performance 

5i Sub-circuit n m p Y Ngen F2(Nf ) F2(N?t) 
Stage 1: Functionality evolution 

51 z5xpLd-.SLdo_3. pIa 7 3 128 {Y7,Y8,Y9} 5000 20 9 
52 z5xp1_d-.S2_do2_dpx1_0.pla 7 2 64 {Yo, yt} 1 000 13 2 
53 z5xp 1_d-.S3 _do2 _d px1_1. pIa 7 2 64 {Yo, yt} 15 000 26 14 
54 z5xpLd-.S4.pla 7 5 128 - 5000 - -

55 z5xpLd-.S5_do1_dp.pla 7 1 128 {Y6} 5000 9 7 
56 z5xpLd-.S6_doLdpx6_0.pla 7 1 128 {Y5} 5000 14 10 
57 z5xp Ld-.S7 _do Ldpx6_1. pIa 7 1 128 {Y5} 5000 10 7 
58 z5xpLd-.S8.pla 7 3 128 - 5000 - -
59 z5xp1_d-.S9_do2_dpx5_0.pla 7 2 64 {Y3, Y4} 5 000 22 16 
510 z5xp1_d-.S10_do2_dpx5_1.pla 7 2 64 {Y3,Y4} 20000 50 22 
511 z5xp1_d-.S1 Ldo2_dpxLO. pIa 7 1 64 {Y2} 20000 32 15 
512 z5xp1_d-.S12_do2_dpxL1.pla 7 1 64 {Y2} 20 000 23 13 

Total: L- F2(N;l) 245 139 
Total: L N,gen = 110000 

Stage 2: Circuit optimisation 
050 z5xp1_d-.S2s3_do2_dpx1.pla 7 2 128 {Yo, yd 15 000 25 18 
051 z5xp Ld-.S6s7 _do Ld px6. pIa 7 1 128 {Y5} 15 000 21 12 
052 z5xpLd-.S9s10_do2_dpx5. pIa 7 2 128 {Y3,Y4} 15 000 45 12 

Stage 2: Evolution towards an optimised system The circuit optimisation 

has been carried out during 100 000 generations. A circuit of 60 logic gates has been 

synthesised. This circuit is larger than the one evolved in experiment C by four logic 

gates. 

First, let us synthesise the connectivity diagram that refiects all connections be-

tween sub-circuits. This structure shown in Fig. 6.16 helps to define the assem-

bling points during second stage of incremental evolution. For example, from this 



SLlb-systerra cc>nnec1:ivity in 
zSxp1_cLpla aTter stage 1 

::::::f ,..- " 
r--- 8, " .. 

8 2 
IVIUX 

---:l r 1 

8" ----r IVIUX 

= :2 

r--- ==r 8 .. 
Y6 

8
5 rl M~X 

8 6 
~ 

8" 
IVIUX 

= --::l r 4-

8'0 -rw IVIUX 

= 5 

8" 
IVIUX 

r- 6 -
8'2 ~ r-- = 

250 

P 

p 

y. 

P 

p 

Y. 

Figure 6.16: Sub-system connectivity in z5xpLd.pla: The EHW-oriented output and 
Shannon's decompositions (Stage 1: Evolution towards system decomposition). 

connectivity diagram clear, that in order to assemble the complex system, the sub-

systems decomposed using Shannon's decomposition have to be merged. Thus, the 

sub-systems 52 and 54 can be assembled in more complex system. Similarly, the 

following three more complex sub-systems can be defined: {55,5d, {59,51O } and 

So, in order to evolve the more complex system, the sub-systems have to be as-

sembled in one chromosome. In this section the sub-systems are assembled according 

to the principles shown in Fig. 6.5. The multiplexers are represented as a collec-

tion of AND, OR, NOT logic gates instead of one building block. Once the more 

complex system is synthesised, the evolution is undertaken in order to optimise the 

system. For example, the size of sub-system assembled from the sub-circuits 52 and 

53 has been reduced from 25 primitive logic gates to 18. The circuit structure of the 



Z5xp1_d.pla: 
Optimised sub-system 05 1 assemled from 5 2 and 53 

5tage2: Evolution towards an optimised system 
x"x,x:x,"/'x, :----- OS. -----------------------------------------: 

1 
1 
1 
1 
1 
1 
1 
1 

E>{' 
1 
1 
1 
1 
1 
I}. 

35 )------------!I' l __________________________________________________ 1 

251 

Figure 6.17: z5xpLd.pla: Optimised sub-system 050 = {52, 53}. The number of 
primitive active logic gates is 18. 

more complex system synthesised is given in Fig. 6.17. It may be seen, that after 

optimisation process the structure of circuit has been changed significantly. Thus, in 

this design it is difficult to define the main multiplexers, that have been presented 

in the initial circuit structure. This example shows that the circuit structure can be 

significantly changed if the multiplexers connected the sub-circuits are represented as 

a collection of primitive logic gates. Let us evolve more complex system, assembled 

from sub-circuits 56 and 57' Let us represent the multiplexer in chromosome geno-

type as it has been discussed in previous example. The circuit structure optimised in 

this circuit is given in Fig. 6.18. In this case the size of logic circuit has been reduced 

from 21 primitive logic gates to 12. 

So, this example show that the complex circuit can be generated using BIE with 

output and Shannon's decompositions. The combination of these two decompositions 

allows us to deal with smaller circuits rather then in case of using output decomposi-

tion only. By this reason the evolutionary process performs quicker, since the smaller 

circuit layout is required to implement sub-circuits and smaller truth tables are used 

to evaluate circuits. 



Z5xp1_d.pla: 
Optimised sub-system OS 1 assemled from S 6 and S 7 

Stage2: Evolution towards an optimised system 
'0·',.',' "4"'''' I---OS ----------------------------

"I 1 : 

1 
I 
I 
I 
I 
1 
1 

~}" 
I 

20 I L _________________________________ : 

252 

Figure 0.18: z5xpLd.pla: Optimised sub-system OS1 = {S6, S7}. The number of 
primitive active logic gates is 12. 

The analysis of evolved structures shows that representing the multiplexer by 

collection of logic gates (AND, NOT, OR) allows us to change the circuit structure 

drastically during optimisation phase. 

6.5 Summary 

This chapter shows that even when a task is too difficult to evolve directly, evolu-

tion can be applied incrementally in two directions to achieve the desired complex 

behaviour. In this approach, evolution performs in two directions: from complex 

system to sub-systems and from sub-systems to complex system. The experimen-

tal results show that bidirectional incremental evolution performs significantly better 

then direct evolution. Also, it has been demonstrated how the evolutionary process 

can be different when the different types of decomposition are allowed. The approach 

should be applicable to many real EHvV applications, where often a natural hierarchy 

of behaviours from simple to complex exists. 

The empirical investigation of circuit evolved using both BIE with standard de

composition methods and BIE with EHW-oriented decomposition method. In both 

case, it is possible to achieve the fully functional solution of complex system within 



253 

a relatively small number of generations. In case of using EHW-oriented decomposi

tion, it has been shown that the partitioning vectors can be defined according to the 

result of the evolution carried out during previous step. 

It has been shown that more complex tasks can be evolved using bidirectional 

incremental evolution, since it is not restricted by the size of truth table or "stalling" 

effect of direct evolution. 

The experiments on evolving digital logic functions constitute a starting point 

for research on methods that evolve complex general behavior in two directions and 

on methods that investigate the functional interconnectivity inside a given complex 

problem. There are many tasks that have to be solved in this direction. A major 

direction of future work will be to apply bidirectional incremental evolution to real 

world application tasks solved intrinsically and extrinsically. 

It has been shown empirically that the proposed bidirectional incremental ap

proach evolves more effective and more general circuits and should also scale up to 

harder tasks. 



Chapter 7 

Multi-valued logic circuit design 

The basic idea of the work reported in this chapter is to show the universality of 

proposed method in terms of application tasks and their behaviour. The self-adaptive 

function-level EHW approach discussed in Chapter 4 and Chapter 5 is applied to the 

multiple-valued logic design. The behaviour of EHW approach for this application is 

discussed in detail. The empirical study proves the universality of developed methods. 

Evolvable hardware has been proposed as a new method for designing the systems 

in the complex applications. The basic idea of this approach is to evolve a fully 

functional circuit using an initially randomly generated one. In this chapter we report 

on the application of evolvable hardware techniques to multiple-valued circuit design. 

We choose a rectangular array structure to represent the internal connectivity of 

logic gates. Any set of multi-valued primitive operator or any multi-input multi

output logic function can be included in the functional set of logic gates. vVe consider 

both function- and gate-level extrinsic evolvable hardware methods that allow us to 

synthesise the n-input m-output r-valued logic functions. A number of experiments 

have been carried out in order to investigate the specific features of proposed method. 

It has been discovered that the algorithm performance depends on the circuit layout 

254 



255 

(the number of columns and rows in rectangular array together with connectivity 

restrictions) and the functional set of logic gates chosen to be used. The experimental 

results show that function-level evolvable hardware method performs better than 

the gate-level evolvable hardware in terms of the number of fully functional circuits 

evolved. 

7.1 Introduction 

Evolvable Hardware (ERW) refers to the generation of electronic circuits using evo

lutionary algorithms. A central idea of this is that each possible electronic circuit is 

represented as a chromosome in an evolutionary process in which the standard genetic 

operations over the circuits, such as initialisation, recombination, elitism, selection are 

carried out. The evolving circuits may be evaluated using software simulation models 

[108], [111), [97], [137)' [138], [25], [12] (so called extrinsic EHW) or, alternatively, 

evolved entirely in hardware [139], [36], [140] (so called intrinsic EHW). The evolu

tion of circuits using primitive logic gates performs at gate-level EHW. Function-level 

EHW employs multi-input multi-output logic functions to describe the behaviour of 

building blocks in the evolving circuit. 

There are two main approaches for the synthesis of combinational logic circuits 

using evolutionary algorithms. The first optimises the formal representation of func

tion and synthesises the circuit based on the optimal function representation. In this 

case a functionally complete basis is chosen and the genetic algorithm is applied to 

optimise the form of the function representation. Using the obtained optimised rep

resentation the circuit structure is synthesised. It is clear that the circuit design is 

obtained by the application of algebraic rules associated with the relevant algebra. 



256 

An overview of evolutionary methods using the design of quaternary digital circuits 

can be found in [141]. The design of multiple-valued logic (MVL) circuits based on 

cost-table techniques using evolutionary algorithms is discussed in [142], [143]. The 

second approach [108], [111], [1], [36] begins from randomly connected and randomly 

chosen gates and gradually evolves the target functionality. The particular set of 

gates used is fixed in advance, but whether or not any particular gate is used, or, how 

many times a gate is used, is entirely free. The advantage of this approach is that 

it allows us to synthesize the circuit using any set of logic gates. Consequently, it 

permits the synthesis of compact and unusual circuit structures. In this way we can 

abandon the restrictions associated with conventional design [9]. 

This chapter presents a method for the synthesis of combinational multiple-valued 

circuits. The approach is an extension of the evolvable hardware method for binary 

logic circuits proposed in [111], [25]. The first attempts to evolve multiple-valued 

arithmetical combinational circuits were discussed in [8]. A discussion concerning a 

suitable set of multiple-valued logic gates was given in [8] and some specific features 

of the circuit layout were reported in [7]. The dynamic fitness which allows us to 

improve the quality of evolved circuits in terms of the number of active gates used 

in evolution was proposed in [1] and Chapter 3. Efforts to evolve the circuit layout 

together with circuit functionality were discussed in [1]. Some circuit structures 

evolved for a 3-valued half-adder were examined in [9]. In this Chapter we consider 

notable features of gate- and function-levels extrinsic evolvable hardware approaches 

discussed in Chapter 3, Chapter 4 and Chapter 5. Thus, we examine the optimal 

rectangular dimensions, which allow the evolution of fully functional circuits for an 

n-input m-output r-valued logic function. We show experimentally that certain sets 



257 

of multiple-valued gates allow much easier evolution of fully functional circuits. A 

number of evolved circuit designs for some arithmetic functions such as a half adder, 

an one-digit full adder, an one-digit multiplier, etc. are discussed. These designs were 

evolved using both gate- and function-level EHW. Some of the logic designs evolved 

cannot be proved to be equal to similar designs implementing the same logic function. 

A notable feature of this work is that it shows how it is possible to produce circuits 

which combine different functionally complete sets of multiple-valued gates within a 

multiple-valued circuit design and proves the universality of approach discussed in 

this dissertation. 

7.2 Idea of EHW approach 

The basic idea of the proposed approach is as follows. A combinational logic circuit is 

represented as a rectangular array of building blocks. A building block can implement 

any primitive logic operator or multi-input multi-output logic function behaviours, 

which is specified in advance, or can be calculated based on the interactive connec

tivity principles of logic gates. A function-level extrinsic evolvable hardware approach 

uses building blocks of any complexity. For example, a multi-input multi-output logic 

function can describe the behaviour of a building block. Gate-level extrinsic evolvable 

hardware is employed, when the building blocks are defined by primitive logic opera

tors. In subsequent discussion we will refer to the function behaviour which is known 

of in advance as the standard logic function. A two-digit adder is an example of a 

standard logic function. In terms of building block implementation we assume that 

the optimal structure has been chosen. Therefore, the search space of the algorithm 



258 

is the combinat~onal functions computed by the building blocks and the intercon

nections among these building blocks. The circuit layout defined by the number of 

columns and rows in a rectangular array is fixed. The degree of connectivity in the 

circuit is called the connectivity parameter and is defined by the number of columns 

of building blocks to the left of the current column, which can have their outputs con

nected to the inputs of the current cell, and, by implying to the final circuit outputs. 

The experimental results show that it is easier to evolve a circuit using a suitable 

functional set of multi-input multi-output building blocks. 

7.3 Background and notations 

Let R = {a, 1, ... ,r - I} be the set of the r-valued logic values, and let X = 

{Xa, Xl,··· ,xn-d be an input vector of n variables, where Xk takes on values from 

R, k E {a, ... , n - I}. The cardinality of X defines the llumber of members of X 

and denoted as [Xl. Then, [Xl = n. An r-valued n-variable logic function f(X) is a 

mapping f : Rn ---t R. Then, an r-valued n-input m-output logic function F(X) is 

defined by the output vector of m logic functions {fa, h,· .. ,fm-d and is a mapping 

f : Rn ---t Rm. The primitive multi-valued two-variable operators are defined as 

follows: 

1. DisJ·unction operator, MIN [144]: Xl 1\ X2 = Xl . X2 = min(xl, X2); 

2. Conjunction operator, MAX [144]: Xl V X2 = max(xl, X2); 

3. Modular sum operator, MODSUM [145]: Xl EEl X2 = Xl + X2 (mod r); 

4. Modular product operator, MODPRODUCT [145]: Xl 09 X2 = Xl * X2 (mod r); 

5. Truncated sum operator, TSUM [146]: X l OX2 = min(Xl + X2, r - 1); 



259 

6. Truncated product operator, TPRODUCT [147], [148]: Xl * X2 = max(xl + X2 -

(r - 1),0); 

7. Operator of Sheffer [149]: 

(1 + Xl) (mod r), 

8. Sum operator over GF(r) [150]; 

9. Product operator over GF (r) [150]; 

10. Truncated difference operator [151]: 

Xl >= X2 

otherwise. 

where "+" is an ordinary addition. Note, that TPRODUCT operator has been intro-

duced as two-variable logic operator. The notation of this operator given above can 

be easily extended to the r-valued n-variable logic operator as follows: 

Xo * Xl * ... * Xn-l = max(xo + Xl + ... + Xn-l - (n - l)(r - 1),0). 

The most commonly encountered unary operators are considered below. 

1. Complement of a logic level l called also negation, NOT [152]: !Xl = Xl = 

(r - 1) - Xl; 

2. Clockwise cycle operator [153]: Xl'k = X + k (mod r). When k = I, this is a 

single-variable addition operator called also SUCCESSOR [154]: xl'l =?Xl = 

Xl + 1 (mod r); 



260 

3. Counter clockwise cycle operator [153]: xtk = x - k (mod r); 

4. Literal of ax variable [144]: 

Xs 
__ { (r - 1), x = s 

0, x =1= s; 
s E {0,1,'" ,r-1}. 

Some of functionally complete sets of MVL operators represented any given logic 

function are given below: 

{x---+l, MAX} 

{MODSUM, MODPRODUCT} 

{operator of Sheffer} 

{XO Xl ... XT- l MIN MAX} , , , , .. , 
{x---+k, MIN, MAX} 

{xl,NIIN, MAX} 

{+, x (over GF(r))} 

{XO,xl ,'" ,xT-l, MIN, MODSUM} 

1921 Post [154] 

1924 Bernstein [145] 

1935 ·Webb [149] 

1968 Allen and Givone [144] 

1970 Vranesic et al. [153] 

1970 Vranesic et al. [153] 

1984 Hurst [150] 

1986 Dueck and Miller [155] 

{XO, XL, ... ,xT-L, MIN, TSUM} 1988 Onneweer et al. [146] 

{XO, Xl", . ,xT- l , MIN, TSUM} 1991 Pelayo et al. [156] 
The multi-valued operators have been implemented using different technologies: 



NOT 

:v 

NIIN 

SUCCESSOR 

--:v 

NIAX 

~-'~-'-,~ 

~-; -----

261 

MODSUNI NIODPRODUCT 

~·-\-~\v 

~/ ,-.-

TPRODUCT 

X--. 

~)'I '~ - , 

Figure 7.1: Symbols of the two-input r-valued logic gates 

NOT(MIN(xl' X2)) 1977 CMOS Vranesic, Smith [157] 

+ GF(4) 1978 I2L Pugsley, Silio [158] 

+ GF(4) 1981 T2L Davio, Deschamps [151] 

TDifference 1981 I2L Davio, Deschamps [151 J 

(x + 1) mod 3,4 1984 LSI Hurst [150] 

TSUM, MIN, MAX 1986 CCD Abd-El-Barr, Vranesic [159] 

XS 1989 CMOS Sasao [160] 

x S
, TSUM 1991 CMOS Sasao [160] 

X-tk Xf-k MIN , , 1993 CMOS Jain, Bolton, Abd-El-Barr [161]' [162] 

MAX, TSUM, XS 1993 CMOS Jain, Bolton, Abd-El-Barr [161]' [162] 

+, x GF (4) 1993 CMOS Zilic, Vranesic [163] 

+, x GF (4) 1994 CMOS Pierzchala, Perkowski, Grydel [164] 

MIN, TSUM, XS 1994 RTT Deng et al. [165] 
x-tk Xf-k , 1996 Current Mode Abd-El-Barr, Hasan [166] 

TDifference CMOS 
In this chapter we do not restrict ourselves to a specific functionally complete set 

of multiple-valued operators. We can combine different functionally complete bases. 

The symbolic representation of MVL operators used in this paper is shown in Fig. 

7.1. 

The logic gates implementing the primitive logic functions mentioned above are 

used as a building blocks for the synthesis of complete MVL circuits at the gate-level 

EHW. 



262 

7.4 An extrinsic EHW 

In order to synthesize logic circuits a rudimentary (1 +),) evolutionary strategy (ES) 

with uniform mutation was implemented. During evolution, the circuit layout, as 

well as the input functionality gene, was not allowed to be changed. Thus, only logic 

gates with primary inputs were used. During initialisation, the initial genotypes of 

chromosomes were generated randomly. 

7.4.1 Encoding 

In order to define the chromosome representation the following notations have been 

adopted: 

N;::;l~x, N!/:;r:v~ the maximum number of columns and rows in rectangular array respec-

tively; 

N eols , N rows the number of columns and rows in rectangular array, respectively, 

Neonnect the connectivity parameter representing the number of columns on the 

left to which a cell in a particular column Ceol or an output may be 

connected and Neonnect E {I, ... ,Neols }; 

NTTLax Nmax the maximum number of inputs and outputs in any building block re-2n , out 

spectively; 

Nin(B), Nout(B) the number of inputs and outputs in the building block B respec

tively; 



263 

Table 7.1: Gate functionality according to the bo(z) gene in chromosome 
I Gene functionality, bo (z) I Gate function I 

0 Logic constant 
1 SUCCESSOR :?xo 
2 NOT :!xo 
3 Literal: L(xo, c) 
4 Clockwise Operator: c +-- Xo 
5 CounterClockwise Operator: c -+ Xo 
6 Wire: Xo 
7 MIN: Xo 'Xl 

8 MAX:xOVXl 
9 MODSUM: Xo EB Xl 

10 iliODP RODUCT : Xo ® Xl 

11 TSUlvI : XOOXl 

12 TPRODUCT: Xo * Xl 

13 Xo + Xl (over GF(r) 
14 Xo * Xl (over GF(r)) 
15 Multiplexer 
16 I-digit multiplier 
17 I-digit full adder 
18 2-digit multiplier 
19 2-digit full adder 
20 3-digit multiplier 
21 3-digit full adder 
22 Half adder 



264 

Functional set. 

The functional set of all possible logic functions that can be used in evolution is 

shown in Table 7.1. Let Till be the set of integers defining the codes oflogic functions 

reported in Table 7.1. I Till I defines the maximum number of logic functions allowed to 

be used in evolution. We can assign any n-input m-output logic function to describe 

the behaviour of a building block. In given case we choose arithmetic functions such 

as a half adder, a full adder and a multiplier. Any of logic functions mentioned in 

Table 7.1 can be involved in evolution. The set of logic functions actually used in 

evolution and encoded as shown in Table 7.1, is defined as follows: Tf = {tf : tf E 

Till, some tf}. ITfl determines the number of primitive and standard logic functions 

involved in evolution. 

We specify subsets of logic functions that influence differently the number of inputs 

and outputs in building blocks as: 

1. the subset of 1-input l-output functions (the unary operators), T}; 

2. the subset of 2-input l-output functions (the primary operators), TJ; 

3. the subset of multi-input multi-output standard functions, such as half adder, 

full adder, multiplier, T]. 

Based on the notation given above, we can summarise: 

T T l U T2 U T3 Tf
l n Tf

2 n Tf
3 = rh. f= f f f' III (7.4.1 ) 

The behaviour of a building block can be represented by any of the logic functions 

mentioned above or by the set of2-input l-output functions connected as shown in Fig. 

7.2 (b). In this case a building block has k-inputs and (k-1)-outputs. Let us consider 



265 

a building block B that can implement any logic function from subsets TJ, TJ and T]. 

Thus if B implements the logic function from subset TJ, then Nin(B) = 1, Nout(B) = 1. 

In the case of using a 2-input, I-output logic function (TJ), the number of inputs can 

be variable and can be defined as follows: Nin(B) E Tin = {2, ... , Ng~ax}, Nout(B) E 

Tout = {I"" , Nin(B) - I}. For example, if 0 defines the 2-input I-output logic 

primitive function and Nin = 4, then {io,i1,i2 ,i3 } and {OO,01,02} is the set of inputs 

and outputs in the building block from T], respectively. The number of outputs in 

the building block is Nout = Nin - 1 = 3. The primitive logic gates in the building 

block are connected as illustrated in Fig. 7.2 (b). These outputs can be analytically 

represented as follows: 

01 (ioOidOi2; 

02 ((ioOi1)Oi2)Oi3 . 

The number of inputs and outputs are fixed. No changes in the number of inputs 

and outputs are allowed, if the standard logic function defined in T] describes the 

building block behaviour. 

So, we can define the relation between the type of logic function chosen to describe 

the behaviour of building block B, the number of inputs and outputs in B as follows: 

( t f E TJ 1\ tin E {I} 1\ tout E {I}) V 

(tf E T] 1\ TJ -+ Tin 1\ TJ -+ T~ut)}. (7.4.2) 



k-input p-output building block 

<bo' b l' b 2 , b 3 , iO,iI' ... ,i k . 1 > 
Z.O 

z.1 

z 
z.(p-l ) 

(a) 

Non-standard k-input ( k- l)-output 

building block Z 

i -~---------, __ jILC )- I z. 0 
~ ~. 1-1 i., I ~ )___ I v 

I I . n 

i··· : .n C I z.k-2 
k.ZI )~ L __________ -' 

(b) 

Figure 7.2: Building block level representation 

Building block level representation. 

266 

Let us consider the building block Hz labeled as z. Let Ti be the set of integers 

{O, 1,·· . ,2Nr,:;aX}. Let Nout(Hz ) be the number of outputs in the building block and 

N:;:;~x is defined to be no more than 10. Denote V(Ceo/) as the set of real numbers v 

such that: 

Ceol > Neonneet : 

a max = n + Ceol * N rows - 1 

Ceol ~ Neonneet: amin = 0; a max = n + Ceol * N rows - 1; 

Any building block Hz located in the column Ceol and the row Crow can be repre-

sented as follows: 

where bo E T f is the building block functionality gene, which defines the type of 

building block Hz; b1 E Ii is the input functionality gene that determines the type 



Circuit inputs: 

0: Xo 

1: Xl 

2: x 2 

n-l: x
ll

_
1 

Circuit structure: 

Circuit layout: N eols x N rows ' Neol/lleel 

iJD D 
n n+N rO~I-s (N co/s -1) 

D1J D 
n+N rO~I's -1 n+2N -1 n+N rows Ncot<: -1 

Circuit outputs: 0 0 0 I ..• 0 m.1 

Figure 7.3: Circuit level representation 

267 

of inputs of building block Bz (primary or inverted); b2 and b3 are the number of 

outputs and inputs of the building block; the set J[ = {io, ii, ... ,iNmax_d defines the 
tn 

connections between building blocks, J[ = {i E V(Ceol), some i}. The genes bo, b2 and 

b3 are calculated according to (Eq. 7.4.2). Thus, relation (bo b3 b2 ) is determined in 

(Eq. 7.4.2). The gene bl , an integer, defines the type of inputs used in the building 

block. The lowest bit corresponds to the input io and the highest bit corresponds to 

the input imnax. If the corresponding bit is zero the input is primary, otherwise the 
tn 

input is inverted. For example, let b1 be 11. That corresponds to the binary sequence 

< 1011 >. This sequence can be encoded as < i3 i2 i l io >. The inputs io, i1 and i3 

are considered as pI-imary and the input i2 is inverted. 

Circuit level representation. 

Let us consider the rectangular array lB of the logic building blocks {B(CeoICrow) 

{B(CeoICrow) E lB, Ceol = {O,··· ,Neols-l}, Crow = {O,··· ,Nrows-I}}}. The building 

block B(CeoICrow) , located in the column Ceol and the row Crow, is labeled by an integer 

(n + N rows * Cedis + Crows). For example, if a 4-input logic function is evolved using 



268 

3x4 circuit layout, the building block 8(00) located in the O-th column and the O-th 

row is labeled as 4, 8 4 . The building block 8(23) located in the 2-nd column and the 

3-rd row is labeled 15, 8 15 . 

Let us consider how the connectivity parameter influences the circuit structure. 

For the first column of building blocks in the chosen geometry, the inputs may only 

be connected to the actual circuit inputs. However, provided that the connectivity 

parameter Nconnect is greater then 1, the building blocks from the second column can 

be connected to the outputs of building block from the first column as well as to the 

circuit inputs. If Nconnect is 1, then the building blocks from the second column can 

be only connected to the outputs of building blocks from the first column. In the 

case when Nconnect = N cols , the building blocks can be connected to any outputs of 

building blocks located to the left or to the circuit inputs. Decreasing Nconnect has 

the effect of reducing the number of possible circuit solutions that may be found. 

Let 0 be the set of integers such that {o : 0 E V (N cols)} , 101 = m. The set 

o defines the circuit outputs. Therefore, the circuit genotype can be represented as 

follows: 

C =< N cols N rows Nconnect JBS 0 > . (7.4.3) 



269 

Genotype. 

The value g(x) at position x (measured from the left and starting at 0) is chosen as 

follows: 

Circuit layout 

x=O 

x=I 

x=2 

Building block 

g(O) = Ncols E {I", . ,N~~X} 

g(I) = Nrows E {I"" ,N~~~} 

g(2) = Nconnect E {I, ... ,Ncols } 

o :::; x < IlBl * (4 + IJII) (g(x) g(x + 2) g(x + 3)), if (x - 3) mod (4 + IJII) = 0; 

g(x) E Ti , if (x - 3) mod (4 + IJII) = 1; 

g(x) E V(ccoz), if (x - 3) mod (4 + IJII) = 4",' ,3 + IJII; 

Circuit outputs 

IlBl * (4+ IJII):::; x g(x) E V(Ncols ) 

An example. 

An example of the chromosome representation with the actual circuit structure is 

given in Fig. 7.4. This circuit implements a 3-valued I-digit full adder. This function 

has 3 inputs and 2 outputs and is implemented here on a combinational network 

with a 4x2 circuit layout. The circuit inputs are labeled as follows: 0, 1, and 2 that 

correspond to the input variables xo, Xl and X2 respectively. Each output of the 

building block is labeled with an individual address. Thus, the output of an one

output building block located in the O-th column and the O-th row is labeled as 3.0. 

The first output of a 2-output building block located in the 3-rd column and the O-th 



Logic function : add3_3c.pla 

Circuit structure: 

Circuit inputs: 

0: ""0 

1: x
J 

2: x, 

Circuit layout: 4 x 2r--_~ 

x 
jJ) 3 '~ 

'./ 

3 5 5.0 . 5,O[.'.'~ .. ~~ x adell 5.1 Y
I 

X 7 />--
/ 

22022 (3 0 2) 11 0 (; (5.0 12) 90 1 2 (1 22) 

~--------~ 4'·-
-j~/' 

3 ,"-"--

~)6)--
8012{200} 9012{342} 

Circuit outputs: 9.0 5.1 
Functionality: 100% 
The number of active gates: 11 

-' -----~ 

8012{465} 

7 
4 

9 
addl 

22022{745} 

270 

Figure 7.4: An example of the phenotype and corresponding genotype of a chromo
some with 4x2 circuit layout 

row is labeled as 9.0 and the second output of this block is encoded as 9.1. Thus, the 

main part of individual address corresponds to the address of a building block and 

the fraction part defines which output of the building block is utilised. For instance, 

let us consider a building block labeled 9, 8 9 with genotype < 22 0 2 2 I 7 4 5 > .. 

The functionality gene of 8 9 is 22, that corresponds to the half adder according to 

Table 7.1. The second gene defines the input functionality and equals O. This means 

that all inputs in 8 9 are primary. The two following genes determine the number of 

outputs and inputs in the building block. Because the number of outputs is 2, the 

outputs of 8 9 are encoded as 9.0 and 9.1. The number of inputs is also 2, which 

means that are used only 2 first connectivity genes connected to the building block 

outputs 7 and 4. The third connection is defined because the maximum number of 

inputs in the building block has been set up to 3. The circuit outputs are connected 

to the connections 9.0 and 5.1. 



271 

7.4.2 Fitness Function 

The circuits are evaluated using a dynamic fitness function. In this case the evaluation 

is performed in two stages. First we are trying to find the fully functional circuit (Fd 

and, second, we are trying to minimise the number of active gates in the functionally 

complete circuit (F2). Thus, F1 rewards the circuits which have the correct digits in 

the correct positions for the circuit outputs. F2 adds a reward for the 100% functional 

circuits with the minimal number of active building blocks. 

To present these fitness functions more formally, we need some definitions. Let 

function F(X) be represented as a MVL matrix mapping denoted as X ----t Y, 

where X is a (Tn X n) matrix of all n-variable inputs, rn is the number of input 

combinations, and Y is a (rn x m) matrix of the corresponding m outputs. Then, the 

synthesis of MVL functions can be stated as follows. Design a sequence of operations 

that accomplishes the mapping X ----t Y. This mapping is achieved by applying a 

sequence of primitive operations. In our case the sequence of primitive operations is 

defined in the rectangular array of building blocks. Let N(x) be the output of an r

valued network N on the input combination x, where x is the n-digit r-valued vector 

whose individual digits are the inputs to N. Suppose that C is a correct circuit, so 

that C ( x) = m * rn, since m * rn is the number needed to have the digits in x correctly 

sorted for an output combination with m digits. 

Our first fitness, F1 returns the number of correctly sorted digits over all inputs 

in X. Let ~(x, y) be the number of digits in x and y which agree with each other 

(the" opposite" of Hamming distance between x and y), where x and yare r-valued 

vectors of n elements. For example, .6.((2300), (2010)) = 2 since the high order digits 

are both 2 and the low order digits are 0, but the other digits differ. Then, we can 



272 

formally define our first fitness function as 

(7.4.4) 

This definition implies that, if Fl (N) = 100%, the circuit evolved is correct, i.e. the 

evolved network N is fully functional. 

The second fitness, F2 defines the number of primitive logic cells unused in the 

circuit. Let cost (N(B) )max be the maximum number of primitive cells needed to im

plement the most complex multi-input multi-output building block. Let cost(N(Bz )) 

be the number of primitive logic operators needed to implement the building block Bz 

and u define the employment of Bz. If u = 1, Bz is actually used in the evolved circuit 

and if u = 0, the building block is uncommitted. The fitness F2 can be calculated as 

follows: 
Ncols *Nrows-l 

F2 = L cost(N(B))max - u * cost(N(Bt ))· (7.4.5) 
z==O 

Note, that fitness F2 is activated when Fl = 100%. The dynamic fitness function is 

calculated as follows: 

F = { F 1 , Fl < 100; 

Fl + F2, Fl = 100. 

For example, the fitness function of the circuit, shown in Fig. 7.4, can be defined as 

follows. This implements a full one-digit adder completely, thus Fl = 100% and we 

have to compute the number of primitive active logic cell. Analysing the connectivity 

of the basic blocks it can be found that building blocks B6 , B8 and BID are uncommit-

ted. Thus, there are 5 building blocks actually involved in the circuit implementation. 

Note, that B5 and B9 implement the half adder requiring at least 4 primitive logic 

cells to be implemented. Therefore the number of active primitive logic cells in the 

circuit is 11. The number of active building blocks is 5. The maximum number of 



273 

logic cells required to implement the most complex building block is 4, thus F2 = 21 

and F = F1 + F2 = 121. 

7.5 Evolved circuit designs for arithmetic circuits 

In this section we will consider some experimental results obtained for the half and 

the full adders and the one-digit multiplier. 

7.5.1 A half adder, add3_2.pla 

The circuit structures depicted in Fig. 7.5 and implemented the 3-valued half adder 

have been evolved using an extrinsic gate-level EHW. !Xi corresponds to inverted input 

Xi' In this series of experiments, inverted inputs are allowed to be considered as circuit 

inputs as well as primary ones. Analysis of these structures shows that the algorithm 

adapts to the specific features of logic operators. We chose these circuits to analyse 

because all of them have the same circuit structure. Four logic gates are involved to 

implement the 3-valued half adder. In all cases the sum digit is synthesized using the 

MODSUM logic operator. The implementation of the carry function contains 4 logic 

gates. The circuit connectivity is the same for all implementations. The difference 

between the circuits is defined by employing different logic operators to the logic 

gates 3 and 4 as well as using different input combinations to the logic gate 3. This 

example shows that, in some cases, algorithm can implement logic function with the 

same circuit connectivity, but using different logic operators. 

Comparing circuit structures, shown in Fig. 7.5 (c) and (d), we can see that 

they are identical except for the final, fourth gate. In the first case this is the MAX 

operator and in the second case this is the MIN operator. It is well known that the 



274 

TPRODUCT and MIN operators for the 3-valued logic are not identical. Therefore 

the circuits do not implement the same function from the logic algebra point of 

view. There are no proofs that the TPRODUGT operator can be used instead of 

MIN. However in this specific case the EA finds that these operators are "identical", 

i.e. they can replace each other. Careful investigation of the truth tables of these 

operators shows that the difference between them is in a single input combination: 

1/\ 1 = 1 (the MIN operator) and 1 * 1 = 0 (the TPRODUCT operator). Hence, we 

can conclude that the TPRODUCT and MIN operators are identical except for input 

combination Xo = I, Xl = 1. The EA generates input combinations of these gates 

such that the input combination Xo = I, Xl = 1 is not used. This type of exploitation 

of gate function is highly non-intuitive. 

The circuit structures shown in Fig. 7.5 (c) and (b) are identical except gate 3. 

Logic gate 3, given in Fig. 7.5 (b), can be simplifies to the TPRODUCT gate with 

primary inputs using de-Morgan's law. It is clear from logic algebra (the definitions 

of these operators) that the MIN and TPRODUCT operators are not identical. The 

difference in the truth tables of these operators is compensated in the 4-th gate. In 

other words, when the output combination for Xo = 1 and Xl = 1 do not depend on 

gate 3 we can ignore the difference in the logic operators. The output for the carry 

digit will always be 0, because the output of gate 2 is always 0 for Xo = 1 and Xl = 1 

and gate 4 represents the MIN operation and, in any case, will give priority for this 

value. 

Let us consider the case mentioned above from the algebraic point of view. Let A 

and B be the logic variables or functions. Symbols * and + define the logic operations, 

the truth tables of which are not identical. Then, we can conclude from the above 



Table 7.2: Truth tables for the circuits shown in Fig. 7.5 (c), (d) and (b) 
Xo Xl Xo Xl Fig. 7.5 (c) Fig. 7.5 (d) Fig. 7.5 (b) 

Logic gates Logic gates Logic gates 
1 2 3 4 1 2 3 4 1 2 3 4 

00 22 02 0 0 02 0 0 02 0 0 
01 21 1 1 0 0 1 1 0 0 1 1 0 0 
02 20 20 0 0 20 0 0 20 0 0 
10 12 1 1 0 0 1 1 0 0 1 1 0 0 
11 11 20 1 0 20 1 0 20 0 0 
12 10 02 1 1 02 1 1 02 1 1 
20 02 20 0 0 20 0 0 20 0 0 
21 01 02 1 1 02 1 1 02 1 1 
22 00 1 1 2 1 1 1 2 1 1 1 2 1 

discussion that the proposed methods allows us to synthesize circuit when 

7.5.2 An one-digit full adder, add3_3c.pla 

Gate-level EHW: 

275 

In this section we will consider some circuit designs evolved using the extrinsic gate-

level EHW. The circuit structure discussed below has been evolved using 1x10 circuit 

layout, with connectivity parameter equals 10. The evolution of a population of 

5 individuals has been carried out during 15,000 generations. The functional set 

of logic gates include NOT, MIN, MAX, MODSUM, MODPRODUCT, TSUM and 

TPRODUCT. The typical circuit structure evolved for an one-digit 3-valued full adder 

is shown in Fig. 7.6(a). This structure contains 6 logic gates and uses MODSUM, 

MODPRODUCT, TSUM and TPRODUCT. Note that the depth of the circuit is 

defined by the number of levels in the circuit. For example, there are 4 levels in 

the circuit shown in Fig. 7.6(a). The logic gates 1 and 2 belong to the first level. 



276 

(a) (b) 

:Z::() )-c-~\ s 
x- ~r~O x: I 3 _) .. fL 

Cd) 

Figure 7.5: The evolved for 3·,.valued half adder designs. 

Logic gates 3 and 4 are located in the second level. The logic gates 5 and 6 are 

positioned in the 3-rd and the 4-th levels respectively. It is interesting to note that 

in most circuits observed with 6 and 7 logic gates, the MODPRODUCT logic gate 

with identical inputs is used. The notable feature of the circuit shown in Fig. 7.6 

(b) is that the logic operators from different logic algebras are utilised. The circuit 

structures have different configurations. In the case when the functional set of logic 

gates has been changed to {MIN, MAX, MODSUM}, the circuit design requiring 9 

logic gates has been obtained (Fig. 7.6 (b)). In this case the depth of the circuit is 

6. The implementation of digit Sl is the same as in the previous case and it takes 

only two logic gates. So, this circuit structure requires more logic gates than the one 

shown in Fig. 7.6(a). This example illustrates how the functional set of logic gates 

used in evolution influences the circuit structures evolved. 

Function level EHW: 

Evolving a fully functional one-digit adder using a rectangular array with 10 columns 

and 1 row and with connectivity parameter equal to 10 proved to be relatively easy 



277 

=tal 
(a) 

, 

8 /~ =-~~ 9 --" 
) 

(b) 

Figure 7.6: The evolved 3-valued full adders. 

and the designs shown in Fig. 7.7 were obtained. The circuit shown in Fig. 7.7(a) 

contains only 3 building blocks and employs 9 primitive logic cells, because the optimal 

implementation of the half adder contains 4 primitive logic cells [7]. It is interesting 

to note that, in this structure, all outputs of the half adder have been used actively. 

When we choose the functional set such that the the MAX gate is not allowed to 

be used, the circuit structure shown in Fig. 7. 7(b) is evolved. This structure has 

4 building blocks and contains 10 primitive logic cells. Both structures mentioned 

above use half adders for all outputs. 

7.5.3 An one-digit multiplier, mult3_2.pla 

An one-digit multiplier multiplies the r-valued numbers Ao by Eo to produce the two

digit r-valued number (P1PO), where Ao, Eo and P1 are the most significant digits. 



(a) 

s 
-~ 

278 

(b) 

Figure 7.7: The 3-valued I-digit full adders evolved using the 3-valued half adder and 
the one-digit multiplier. 

Thus, this is a circuit with 2 inputs and 2 outputs and it requires 9 input and output 

conditions for full specification in the case of 3-valued logic and 16 in the case of 

4-valued logic. 

Some circuits implemented at gate-level are shown in Fig. 7.8. The smallest 

circuit contains only 3 logic gates and involves MODPRODUCT and TPRODUCT 

logic gates. Note that the outputs of this circuit are implemented separately. When 

the functional set of logic gates has been chosen by the way that contains no MOD-

PRODUCT logic gate, the solution with 7 logic gates is obtained. It is clear from this 

example that the functional set of logic gates can drastically influence the number of 

active gates in the circuit. 

7.5.4 A lo5-digit multiplier, mult3_3.pla 

Function level EHW: 

A 1.5-digit multiplier multiplies the r-valued numbers (AIAo) by Eo to produce the 

two-digit r-valued number (P1PO), where AI, Eo and PI are the most significant 

digits. This is a circuit with 3 inputs and 2 outputs and it requires 27 input and 

output conditions for full specification in the case of 3-valued logic. Modeling of the 



279 

(a) (b) 

(c) 

Figure 7.8: The evolved 3-valued one-digit multiplier. 

multiplication process on the familiar long-multiplication method is shown below. 

Ai Ao 

Bo 

An example of circuit structures evolved using the proposed method are depicted in 

Fig. 7.9. It is interesting tonote that in the case of circuit shown in Fig. 7.9(a) an EA 

uses the outputs of the half adder and the one-digit multiplier as the sub-functions 

and some of its outputs are uncommitted. Thus, the first output of the 3-valued 

I-digit multiplier labeled 6 is not employed. At the same time, all outputs of the half 

adder are used. The circuit contains 7 building blocks and involves 12 primitive logic 

cells, because the implementation of a one-digit multiplier requires least 3 primitive 

logic cells. Fig. 7.9(b) shows the circuit evolved using functional set containing only 

a half adder from the standard functions. This circuit requires 6 building blocks and 

12 primitive logic cells. Note, that the implementation of digit Pi is the same for 



(a) 

(b) 

~6.0 ~ f!Y-~ 
~ '--_.....l 

280 

Figure 7.9: The 3-valued 1.5-digit multipliers evolved using the 3-valued half adder 
and the one-digit multiplier. 

both cases. The circuits discussed above can not be obtained using the rules of the 

standard multiplication process. 

7.6 Gate-level EHW and algorithm performance 

In this section we will consider how the circuit layout and functional set of logic 

gates used influence the algorithm performance. For this purpose, the functional 

sets of logic gates containing primitive two-input logic operators have been chosen. 

Therefore, the gate-level EHW approach has been applied to synthesise multiple-

valued logic functions. 

7.6.1 Circuit layout and algorithm performance 

The main purpose of this series of experiments is to investigate how the connectivity 

parameter and circuit layout affect the performance of the algorithm. The behaviour 

of the following circuit layout parameters have been investigated: 



281 

1. the connectivity parameter; 

2. the number of rows in the rectangular array; 

3. the number of columns in the rectangular array. 

The following criteria are applied to estimate the algorithm performance: 

1. the mean functionality fitness of the best chromosome over 100 runs, av.Fl' 

F bf . 1 , 

2. the mean number of active gates in fully functional designs evolved over 100 

runs, av.100F2 , F;f (Nf ); 

3. the number of fully functional circuits evolved, #100% cases, R(Nf ). 

In order to get the first positive results in a reasonable period of time we arrive at the 

parameters shown in Table 7.3. We perform three different types of experiment. Each 

of the experiments has different circuit layout parameters. The circuit parameters are 

listed separately for each type of experiment performed (Table 7.3). 

Connectivity parameter. 

In this series of experiments we investigate how the connectivity parameter influences 

the algorithm performance. Fig. 7.10 summarises the experimental results. For each 

set of runs the number of columns and rows has been fixed and the connectivity 

parameter allowed to vary. The algorithm performance for 3-valued one-digit half 

and full adders (add3.-2.pla and add3_3c.pla), one-digit multiplier (mult3.-2.pla) has 

been investigated. Remember that the connectivity parameter defines the flexibility 

of the internal connections in a circuit. The higher the connectivity parameter: the 



282 

Table 7.3: Initial data: Circuit layout and algorithm performance. 
Circuit add3_2.pla add3_3c.pla mult3~.pla 
Radix of logic, r 3 3 3 
Functional set, If§ {1,7,8,9,10,11,12} 
Type of algorithm (1 +.\) ES (1 +.\) ES (1 +.\) ES 
Population size, .\ 5 5 5 
Number of generations, N(gen) 1000/100 15000 5000/500 
N umber of algorithm runs 100 100 100 
Mutation rate, Pm 5% 5% 5% 

Investigation of connectivity parameter 

Circuit layout, 
Nco1s X Nrows 25x1 25x1 25x1 
Connectivity parameter, (1, 25, 1) (1, 25, 1) (1, 25, 1) 

(N:::/~~eet' N:;~~eet' t..Neonneet) 
Investigation of the number of columns 

Circuit layout, 
(N:f~, N:l~x, t..Neo1s ) (2, 25, 1) (16, 25, 1) (2,25, 1) 
Nrows 1 1 1 
Connectivity parameter, 
Neonneet Neo1s Neols Neols . . InvestigatIOn of the number of rows 

Circuit layout, -

(N~::s, N~~~, t..Nrows ) (2, 25, 1) - (2, 25, 1) 
Neols 4 - 4 
Connectivity parameter, 
Neonneet 4 - 4 



283 

higher the flexibility of internal connections in the circuit. We examine how, with 

increasing the flexibility of the internal connections in the circuit, the mean fitness 

functions and the number of fully functional circuits evolved behave. 

Fig. 7.10(a), (b) show how ES performance depends on the connectivity parameter 

after 100 and 1000 generations for add3.2.pla. Analysing this data we can conclude 

that, by increasing the number of generations, the algorithm performance is improved 

in terms of the number of the fully functional circuit evolved. Thus, in the case where 

the connectivity parameter is 25, the number of fully functional circuits evolved af

ter 1,000 generations is 5 times higher than after 100 generations. Increasing the 

number of generations, we can obtain 100 fully functional solutions out of 100. An

other important issue of these results is that the number of fully functional circuits 

evolved depends on the connectivity parameter. Thus, in case of the one-digit half 

adder, the number of fully functional designs evolved is significantly increased, when 

the connectivity parameter is more than 12. It is necessary to note that very few 

fully functional designs have been evolved with a connectivity parameter less then 

5. A similar conclusion can be made analysing experimental data for other two logic 

functions (Fig. 7.10(c), (d), (e)). In all cases the algorithm performance has been 

improved in terms of the number of fully functional solutions evolved. 

Let us consider how the quality of fully functional circuits evolved depends on the 

connectivity parameter. The quality of evolved circuits can be defined by the number 

of active primitive logic gates used in circuit (F2 criteria). It is interesting to note 

that there is a domain where circuits with a relatively high number of active gates 

are evolved. This has been observed for all functions evolved. Thus, in the case of 

the one-digit half adder, circuits with more than 10 logic gates have been evolved 



284 

with 2 ~ Nconnect ~ 12. This is a very large number of logic gates in comparison with 

optimal design, which involves only 4 primitive logic gates. 

This can be explained as follows. A smaller connectivity parameter provides a 

higher level of constrains on the internal connectivity of the circuits and the circuit 

outputs. In this case a limit number of logic gates can be specified as circuit output: 

Nconnect * N rows . Let the" self-reproductive" logic circuit be the circuit that acts as 

a wire. For example, the 3-valued circuit" NOT(NOT(X1))" is "self-reproductive", 

because it implements itself and acts as a wire. The depth of logic circuit defines how 

many levels is required to be implemented. Thus, the depth of Sl is 1 and the depth 

of S2 is 3 in add3~.pla (see Fig. 7.5 (c)). Therefore, the minimal depth of a circuit 

is 1 and the maximal one is 3. The following statements can be made: 

Statement 1. If the minimal depth of fully functional design is Nl::~l~n and the 

functional set oflogic gates contains no "self-reproductive" logic operations, then the 

fully functional circuit can be evolved if and only if 

N > Ncols 
connect - Ndesign ' 

levels 

(7.6.1) 

Statement 2. If the minimal depth of a fully functional design is Nz:::~~n, the 

number of logic gates in the j-th level is N{g. and the functional set of logic gates 

contains "self-reproductive" logic circuits of N sr.g. logic gates the fully functional 

circuit can be evolved in any case. The minimum number of active logic gates in an 

evolved circuit design is defined as follows: 

N min 
gates -

Ndesign -1 
levels 

L 
j=O 

~-N . Ndesign connect 
NJ + max(] levels [N ). 

a.g. N
sr

.
g
.' sr.g. 

where ]x[ defines the higher integer value. 

(7.6.2) 



285 

Let us consider the one-digit half adder circuit evolved with the following pa-

t . N - - N - 2- Ndesign - 1 i\TO - 2 N 1 - 2 i\T2 - 1 Th rame ers. connect - t>, cols - 0, levels - ,i"a.g. - , a.g. - ,J"a.g. -. e 

functional set used contains a successor operator that can be "self-reproductive" , if the 

circuit SUCCESSOR(SUCCESSOR(SUCCESSOR(x»)) is implemented. There-

fore, N sr.g. = 3. The minimum number of logic gates in an evolved circuit is calculated 

as follows: N;'~~s = 2 + 2 + 1 + (25 - 5)/3 = 12. Experimental results show that 

the mean number of active logic gates in a fully functional circuit evolved is 17.6923. 

This means that, in most cases, the optimal possible design has not been obtained. A 

similar analysis of other evolved circuits shows that, in most cases, optimal possible 

designs have been evolved if the number of generations was large enough. 

The number of columns. 

In this series of experiments we investigate how the number of columns in a rect-

angular array influences the ES performance. The maximum possible connectivity 

parameter equal to the number of columns in rectangular array has been employed. 

Experimental data are shown in Fig. 7.11. Let us define the saturation point as the 

value after that there is no any improvements in the evolutionary process. Analysing 

the experimental data we can conclude that there is a saturation point where by in-

creasing the number of columns in the circuit, the number of fully functional designs 

evolved is not increased. Thus, after this point there is no need to increase the number 

of columns in the rectangular array. For example, the saturation point for one-digit 

half adders is 10. Note that the number of active gates in the fully functional evolved 

circuits is increased with the increase in the number of columns in the rectangular 

array. 



~-
u: 

g; 
;: 
" 

100 

80 . ~ -.' -.. ---' -~~~~~;~I~:~~~~:~i:~~-:;~~ -- ---1 :: 
60 .'Z I 20~ 

158 
40 

20 +--'~~~"-''-rT-r~-'''-''-rT-r+i~O~ 
to ~ ;::: ~ ~ ~ ?3 gj 

Connectivity parameter 

#100%cases ... ---- av.F1 ---av.100F2 

(a) 

1:: j .. ,.------------- ----~.;.-~I·----l~-~2"..·~---I~-": ~~g';"~n:':-:;";a-;i~-'''''~~;'::~",,:~-',-:,:--:.;.' 
35 

30 

25 

20~ 60 

40 

20 

40 

20 

Connec1ivily parameter 

N 
N 

#10Dcases ••• _ •• _ av. F1 --- aV.1 OOF2 

(C) 

15~ 
10 m 

ad~~~~~~~~,.~~~~r~~I~~~~~~ ••• __ . ____ .! 25 
- 20 

'5~ 

...=.---,..:;~.,...:::;><~tl 
Connec1ivity parameter 

# 100% cases - - - - - - - av.F1 ---av.100F2 

(e) 

100 

80 

~. 
60 

~ u: 
If-
0 

~ 40 
:;! 

'" 20 

N -t 

100 

80 
.,; . 60 ~ -u u.. 

~ ~ 40 
:;! 

'" 
2: 1 

Connectivity parameter 

# 1 000;.. cases ._._.-. aV.F1 ---av.100F2 

Connectivity parameter 

#100cases .. _._._ aV.F1 ---av.100F2-

Connectivity parameter 

# 1000/" cases .. _, .. 0 av,F1 --- aV.100F2 

(f) 

286 

25 

20 

1~ 
g 

10~ 

25 

20 

15N g 
1°i 

Figure 7.10: Dependence ofthe algorithm performance on the connectivity parameter. 
These graphs shows that the algorithm performance depends on the connectivity parameter. 
There is a range within which the algorithm performs very poorly. The curves are similar 
to ones, obtained for binary logic design problem (see Fig. 4.1). This confirms that the 
approach behaves similar to both application tasks. 



100 add3_2,pla, #generalions "" 100 

60 

40 

20 

N v W m 0 ~ ~ w m 0 N ~ 
- .... .... - .... N N N 

100 
: 

BO 

60 

40 

20 

The number 01 columns 

#10Q%cases ........ av.Fl --av,lDOF2 

(a) ____ o--- ___________________ . _______ _ 

mult3_2,pJa, #generations "" SOD 

(,0 (0 ~ ~ :! ~ ~ 

The number 01 columns 

o N 
N N 

# 100% cases _____ ._ aV.Fl --av.l00F2 

(C) 

100 I add3_3C.pla; #gen~~t~o_n.~_5~ ___ • ___ _ 

BO - - ••••••• -,.-
60 : 

40 

20 

The number 01 columns 
- '" '" N N N 

# 1 OC)O/o cases ------- av.Fl --av.l00F2 

(e) 

10 

4 

14 

12 

10 

B ~ 
6 i 
4 

100 

BO 

60 

40 

20 

100 

BO 

60 

40 

20 

100 

BO 

60 

40 

20 

~ . -. -. -. --------- . - ----------------- . 

add3_2.pla, #generations"" 1000 

The number oj columns 

# 1 00% cases -- ...... av.Fl --av,100F2 

(b) 

muIt3_2,pla, #generalions = 5000 

.... M ~ ~ ~ .... M ~ ~ m ..- M ~ 
- .... .- .... ..- N C\I N 

The number 01 columns 

#100%cases _______ av.Fl --av.l00F2 

(d) 

t :B 
B.6 

add3 _3c.pla; #generations=SOOO 

B.4~ 
8.28 

B i 
7.B 

7.6 

-I-~~~~~~_~~~_~~~-<-+ 7.4 
N 
N 

The number 01 columns 
" N '" N 

#100% cases - ••• ___ av.F1 --av.100F2 

(1) 

287 

Figure 7.11: Dependence of the algorithm performance on the number of columns. 
The experiments depicted in these graphs have been performed with connectivity parameter 
Neonneet = N eols , i.e_ there is no connectivity restrictions in the circuit. First, graphs show 
how with increasing the number of generations the behaviour of algorithm changes. Thus, 
with increasing the number of generations the algorithm performance has been significantly 
improved. Comparing the obtained data with ones illustrated in Fig. 4.3 for binary logic 
design problem, one can notice that the curves illustrate the same behaviour. This proves 
that the algorithm behaves similar for both problems. 



'~94~ .1------- ... · .. ··-·---···-.... ··- ...... -- ...... - ~~~ 

u: 8 g 
~ -
.. 92 1 : ~ :: j add3_2.pla. #9"nor31;On. = 1 000 2 

~ ~ ~ ~ ~ ~ N ~ 
The number of columns 

# 100% casos •. _____ aV.Fl __ 3v.l00F2 

(a) 

288 

100 1 ----------- T 4.5 

wj 1" 
I t 4.3 

60 1 t 4.2~ 
~ l~~ 
20 , muIt3_2.pla. #gen9ra1ions = 5000 T 3.9 

o I I ~:~ 
The number of columns 

# 100"/ .. caS9S -- •• _.- av.Fl --3V.l00F2 

(b) 

Figure 7.12: Dependence of the algorithm performance on the number of rows. Graphs 
illustrate that the algorithm performance does not depend on the number of rows in the 
rectangular array. Similar results have been obtained for binary combinational logic design 
problem (see Fig. 4.4). 

The number of rows. 

In this series of experiments we investigate how the number of rows in a rectan-

gular array influences the algorithm performance. For this purpose the number of 

columns and the connectivity parameter have been chosen to be constant (Table 7.3). 

Analysing the experimental data shown in Fig. 7.12 we can conclude that the ES 

performance does not depend on the number of rows in the rectangular array. Thus, 

there are no improvements, in the algorithm performance with increasing the number 

of rows in the rectangular array. 

So, finally, we can conclude that the algorithm performance depends on the con-

nectivity parameter and the number of columns in a rectangular array and does not 

depend on the number of rows. The number of active primitive logic gates in evolved 

structures strongly depends on the connectivity parameter. 



289 

7.6.2 Influence the functional set of logic gates used on the 
algorithm performance 

In this section we will discuss how algorithm performance depends on the set of MVL 

gates chosen for circuit design. This analysis shows us how effective algorithm can 

be. 

The initial data for experimental results, shown in Table 7.5, are reported in 

Table 7.4. ES performance can be evaluated by looking at the number of 100% 

functional solutions evolved during 100 runs. In order to make a fair comparison of 

the results obtained, the circuit layout and connectivity parameter have been fixed for 

all functional sets of logic gates used. In this case we do not only test the possibility of 

evolving the circuit, but also the possibility of evolving the circuit with the smallest 

number of active gates. Note, that if we were unable to evolve a 100% functional 

solution based on these parameters, it does not mean that it is impossible to evolve 

it using our method. Increasing the circuit layout usually allows us to evolve the 

circuit. The duration of evolution (the number of generations) was fixed for each of 

the tested functions. The functional set of logic gates used in evolution should contain 

the subset of logic operators which have been proved to be a functionally complete 

basis. Note, that the logic gates with inverted inputs or outputs have not been used. 

Let us consider the evolution of a half adder using a different set of logic gates. It 

is clear from experimental results that the functional sets {NOT, MIN, MAX, TSUM, 

TPRODUCT} and {NOT, MIN, MAX, TSUM, TPRODUCT} are not worth using, 

because, during 100 runs, the 100% functional solution has not been achieved. Note, 

that the solution has been evolved only when the circuit layout has been increased. 

But, in the case when the MODSUM and MODPRODUCT are in the functional set, 



290 

Table 7.4: Initial data: Functional set of logic gates and algorithm performance 
Circuit add3_2 add3_3c mu1t3_2 mu1t3_3 

EHW parameters 
Radix of logic,r 3 3 3 3 
Circuit layout, NcolsxNrows 10x1 10x1 10x1 10x1 
Connectivity parameter, Nconnect 10 10 10 

EA parameters 
Number of generations, N(gen) 1000 15000 25000 25000 
Type of algorithm (1 + A) ES (1 + A) ES (1 + A) ES (1 + A) ES 
Population size, A 5 5 5 5 
N umber of algorithm runs, R(N) 100 100 100 100 
Mutation type Circuit mutation 
Mutation rate 0.05 0.05 0.05 0.05 

100% functional solutions have been evolved. It seems that the algorithm actively 

uses these two operators during evolution of the half adder. An analysis of the circuit 

evolved proves this. Thus, in all cases the Sum digit has been implemented using 

the MODSUM operator. Analysis of the average number of active gates in the 100% 

functional circuits evolved shows us that the better solutions (F;f (Nf ) = 3.8) have 

been evolved using {NOT, TSUM, TPRODUCT, MODSUM, MODPRODUCT}. 

Similar results have been obtained for the 3-valued full adder. It has been easv ,v 

evolved using the {NOT, MIN, MAX, TSUM, TPRODUCT, MODSUM, MOD-

PRODUCT} functional set. Comparing the results obtained for this set of logic 

gates (72 functional solution out of 100), it is clear that there is a favourable set 

of logic gates which allows us relatively easily to evolve the target circuit. In terms 

of the number of active gates, the better solutions have appeared when the set of 

{NOT, MIN, MAX, MODSUM, MODPRODUCT} is utilized. Similar results have· 

been obtained for the one-digit adder, where the "favourite" functional set of logic 

gates appears to be {SUCCESSOR, MIN, MAX, TSUM, TPRODUCT, MODSUM, 



291 

Table 7.5: Experimental Results: Functional set of logic gates and algorithm per
formance. Experimental data shows that the algorithm performance strongly depends 
on the functional set of logic gates chosen. Similar conclusion has been made for binary 
combinational logic design problem (see Appendix B). 

Circuit n m Functional set Fbf 
1 

F,bf 
2 Ftf(Nf) R(Nf ) 

add3~ 2 2 2-7-8-9-10 91.5 5.02 4.75 29 
2-7-8-11-12 79.6666 4.48 0 0 
2-9-10-11-12 90.8889 4.1 3.8 20 
2-7-8-9-10-11-12 92.5555 4.21 3.59 32 
1-7-8-9-10 90.6667 4.94 4.57 26 
1-7-8-11-12 80.0555 4.45 0 0 
1-9-10-11-12 89.55 4.19 4.0 17 
1-7-8-9-10-11-12 90.94 4.24 4.26 23 

add3_3c 3 2 2-7-8-9-10 93.6667 7.28 9 1 
2-7-8-11-12 63.5185 8.44 0 0 
2-9-10-11-12 86.1852 5.31 8 1 
2-7-8-9-10-11-12 98.7593 6.97 7 72 
1-7-8-9-10 94.1667 5.63 6.07 14 

mult3~ 2 2 2-7-8-9-10-11-12 94.2222 7.35 6.07 14 
2-9-10-11-12 93.5555 5.69 6.0 5 
2-7-8-11-12 83.3333 3.99 0 0 
1-7-8-9-10 94.1667 5.63 6.07 14 
1-7-8-11-12 95.1667 5.57 6.07 13 
1-7-8-9-10-11-12 99.8889 3.11 3.09 98 

mult3_3 3 2 2-7-8-9-10-11-12 76.5556 7.67 0 0 
1-7-8-11-12 59.2592 4.59 0 0 
2-9-10-11-12 77.9444 8.35 0 0 

In this Table the functIOnal set of logic gates IS encoded m the fol
lowing way: 1-SUCCESSOR, 2-NOT, 7-MIN, 8-MAX, 9-MODSUM, 

10-MODPRODUCT, ll-TSUM, 12-TPRODUCT. Ftf and F;f are the 
mean fitnesses Fl and F2 of the best evolved chromosomes respectively; 
F2 (Nf ) is the mean fitness function F2 of fully functional designs evolved 
during 100 runs; R(Nf) is the number of evolved fully functional circuits, 
Nf 



292 

MODPRODUCT}. In this case 98 fully functional solutions out of 100 have been 

evolved. The attempts to evolve 1.5 digit multipliers using functional sets of logic 

gates listed in Table 7.5 do not succeed. There are three reasons for this. First, 

the number of generations defined is not enough to achieve 100% functional solution. 

Second, the circuit layout is not large enough to evolve the circuit. And finally, we 

didn't chose the right set of logic gates for evolution. 

Thus, we can conclude that the performance of the algorithm as well as the quality 

of circuit evolved in terms of the number of logic gates used in the circuit, strongly 

depends on the functional set of logic gates used in evolution. 

7.7 Comparison of function and gate level EHW 

The following experiment allows us to compare the algorithm performance of the 

function and gate level evolvable hardware approaches. In [7] a two-input one-output 

chromosome representation has been proposed to design multiple-valued combina

tional circuits. This representation allow us to employ any primitive MVL functions 

as well as a T-gate. A T-gate is a prototype multiplexer in MVL design. It uses r in

puts which are controlled by (r+1)-th input. Thus, the T-gate has (r+1) inputs and 

one output. Similar experiments were performed for the chromosome representations 

discussed above and reported in [7]. The initial data for the algorithm and circuit 

layout are given in Table 7.6. In order to make fair comparison of the algorithm 

performance we choose the same conditions for both chromosome representations. 

The difference is that for multi-input multi-output chromosome representation we 

add some standard logic functions into functional set, such as the half adder and the 

one-digit multiplier. We evolved logic circuits for the one full digit adder and the 1.5 



293 

digit multiplier. 

The experimental results obtained are summarised in Table 7.6. It is clear that, 

in terms of 100% functional solutions evolved, the proposed function-level EHW ap

proach works better. Thus, the number of functional solutions obtained using the 

proposed method (shown in bold in the last column) has been drastically improved. 

Adding only the half adder into the functional set allows us to radically improve the 

algorithm performance in terms of the number of 100% functional solutions obtained. 

For example, the algorithm with 2-7-8-11-12 logic gates found no positive solutions 

for a full adder. At the same time, adding a half adder into the functional set allows 

us to easily evolve the full adder, and we obtained 77 solutions out of 100 possible. 

Our attempts to evolve the 1.5 digit multiplier with the initial parameters mentioned 

in Table 7.6 produces no positive results. But when we allow the use of the half adder 

and an one-digit multiplier in the evolutionary process, some functional circuits have 

been evolved. 

It is interesting to note that, given the larger building blocks to evolve, we improve 

the ES performance in terms of the number of 100% functional solutions evolved. 

Based on the experimental results shown above it is clear that the proposed method 

allows us to extend the set of functional gates used in evolution to multi-input multi

output building blocks. This extension gives us more choice in terms of building 

blocks used in evolution. 

7.8 Summary 

In this chapter the evolvable hardware approach applied to the multi-valued logic 

design has been considered. The arithmetical logic functions have been chosen as the 



294 

Table 7.6: Initial data: Performance of gate and function level extrinsic evolvable 
hardware approaches. 

Circuit add3_3c mult3_3 
EHW parameters 

Radix of logic 3 3 
Circuit layout 10x1 10x1 
Connectivity parameter 10 10 

EA parameters 
Type of algorithm (1 + A) ES (1 + A) ES 
Population size, A 5 5 
Number of generations, Ngen 15000 25000 
N umber of algorithm runs, R(N) 100 100 
Mutation type Circuit mutation 
Mutation rate, Pm 0.05 0.05 

Table 7.7: Experimental Results: Performance of the gate and the function level 
extrinsic evolvable hardware. Experimental data obtained show that the function-level 
EHW approach performs better than the gate-level EHW. This confirms the universality of 
the EHW approach in question, since similar results have been obtained when the binary 

combinational logic design problem has been considered (see Chapter 5). Ftf and F;f are 
the mean fitnesses Fl and F2 of the best evolved chromosomes respectively; F2 (Nf ) is the 
mean fitness function F2 of fully functional designs evolved during 100 runs; R(Nf ) is the 
number of evolved fully functional circuits, Nf 

Circuit n m Functional set Fbf 
1 

Fbf 
2 F2 (Nf ) R(Nf ) 

add3_3c 3 2 2-7-8-11-12 63.5185 8.44 0 0 
2-7-8-11-12-22 98.7778 9.12 8.86 77 
2-7-8-9-10-11-12 98.7593 6.97 7 72 

2-7-8-9-10-11-12-22 99.7593 6.77 7 96 
2-9-10-11-12 86.1852 5.31 8 1 

2-9-10-11-12-16-22 99.2222 7.87 8.069 86 
mult3_3 3 2 2-7-8-9-10-11-12 76.5556 6.64 0 0 

2-7-8-9-1 0-11-12-22 98.3889 8.4 9.39 61 
2-7-8-9-10-11-12-16-22 97.5741 8.69 9.56 41 

1-7-8-11-12 59.2592 8.4 0 0 
1-7-8-11-12-16-22 92.1851 13.89 12.4 10 

2-9-10-11-12 77.9444 8.3 0 0 
2-9-10-11-12-22 93.9999 7.94 9.8 26 

2-9-10-11-12-16-22 96.5741 8.13 10.11 17 



295 

tested functions. The gate and function-level EHWs are applied to evolved multi

valued logic functions. The evaluation process is performed using dynamic fitness 

function. A number of experiments has been carried out in order to investigate the 

behaviour of EHW applied to the multi-valued logic design. The experimental results 

confirm that there are no differences in the behaviour of EHW applied to binary and 

multi-valued logic design. Thus, the algorithm performance depends strongly on the 

choice of the functional set of logic gates, the circuit layout, algorithm parameters. 

The multi-valued logic functions have been evolved using the gate and function level 

EHW. The experimental results verify that the function level EHW executed better 

if suitable multi-input multi-output logic functions are chosen. This applies to binary 

logic design as well [4]. Therefore, we can conclude that the extrinsic EHW applied 

to multi-valued logic design behaves similarly to the EHW applied to the binary logic 

design. 



Chapter 8 

Conclusions 

In this dissertation a self-adaptive function-level extrinsic EHW approach with bidi

rectional incremental evolution is presented. The approach is specifically designed 

to evolve large circuits implementing logic functions of large number of inputs and 

outputs. The evaluation and evolutionary processes have been studied in detail in 

order to define the specific features of the extrinsic EHW approach and applied to 

overcome a number of problems. From the experimental results presented in this 

dissertation, some features of extrinsic EHW approach can be identified. 

Firstly, the considered extrinsic EHW approach is universal in terms of circuit 

implementation technology used and ability to evolve various types of circuits. The 

adaptation of an extrinsic EHW approach to the FPGA and MOS technologies is 

discussed in Chapter 4. It is shown that varying the optimisation criteria, any target 

implementation technology can be used to evolve circuits. Further, the behavioural 

features of the extrinsic EHW approach have been investigated for: binary and multi

valued combinational logic design. The results of this empirical investigation shows 

that EHW behaves in a similar manner in both cases. Thus, in both cases, the algo

rithm performance strongly depends on the circuit layout chosen and the functional 

296 



297 

set of logic gates. Also, the function-level EHW approach produces better results in 

comparison with the gate-level EHW method for both tasks. 

Secondly, the approach discussed in this dissertation evolves fully functional cost

optimised logic circuits. The dynamic fitness function employed has the following 

features: 

• improves the quality of evolved circuits producing efficient logic circuits. 

• requires less computational efforts (in other words, the evaluation of the number 

of primitive active logic gates in the circuit is carried out only during the second 

stage of the evaluation process in contrast to multi-objective fitness functions, 

where the circuit has to be evaluated in terms of the number of primitive active 

logic gates and the circuit functionality during every evolutionary step.); 

• produces two different evolutionary processes: evolution towards a fully func

tional circuit and evolution towards an optimised system. 

Thirdly, the extrinsic EHW can be self-adaptive in terms of defining the EHW 

parameters during evolution. In Chapter 4 the possibility of evolving the circuit 

layout together with circuit functionality is discussed. Empirical study of this case 

shows that the evolutionary algorithm automatically defines the "favourite" range of 

circuit layout, where the best results can be produced. The advantage of the self

adaptive EHW approach is that it defines the circuit layout automatically. In other 

words it adapts to the complexity of the task given and finds the most suitable EHW 

parameters. One ofthe disadvantages is the difficulty to evolve logic functions oflarge 

numbers of inputs and outputs using the self-adaptive EHW approach. This is due 

to the fact that the circuit functionality is analysed by the truth table that describes 



298 

the complex task. Another aspect that has to be mentioned is that the computation 

time of the proposed method depends on the way the method is implemented. For 

example, if memory is allocated to each chromosome with a new circuit layout, the 

performance is significantly slowed down because the memory allocation requires a 

lot of computational resources. 

The idea of function-level extrinsic EHW approach introduced in this disserta

tion lies in using multi-output logic components as a building blocks. As a result, 

the logic circuits can be synthesised using higher complexity sub-functions. This ap

proach allows a reduction of the size of chromosome genotype; improve the algorithm 

performance and adapts to the FPGA-based circuit design. One disadvantage of ex

trinsic EHW approach remains the same: the approach is not suitable for evolving 

logic circuits of large number of inputs and outputs, since the evaluation is based on 

the analysis of the truth table of the complex system. 

Finally, the bidirectional incremental evolution is applied to the extrinsic EHW 

approach. The purpose of this extension is to overcome the" stalling" effect of direct 

evolution and facilitate to the evolution of complex systems. The bidirectional incre

mental evolution combines the priori knowledge and the specific features of evolution. 

The proposed approach has a number of advantages: 

1. there are no restrictions on the complexity of evolved circuits in terms of the 

number of inputs and outputs; 

2. there are no limitations on the application task; 

3. there is improvement in terms of computational effort, since the strength of this 

method is to evolve sub-circuits rather than the complex circuit directly; 



299 

4. it works mostly with small chromosomes. 

One of the difficulties in using this method in another application task can be the 

definition of metrics. Once the metrics are defined, the method can be easily adapted 

to the task. 

As a result of this research an EeAD software tool called Discovery v.13 to in

vestigate the extrinsic EHW approach has been developed. The created software is 

designed to support research at different level of extrinsic EHW. The designed soft

ware has high level of flexibility in terms of the parameter selection. Besides that, 

the tools to process the obtained results, are created as well. Thus the progress of 

evolutionary algorithm can be displayed graphically, evolved circuits can be drawn 

schematically and the analysis of evolved circuits can be performed. The software 

can be used for educational and research purposes. 

The main contributions of the thesis can be summarised as follows: 

• A self-adaptive function-level EHW approach that is capable of evolving fully 

functional cost-optimised circuits has been designed and investigated in detail. 

• An approach has been developed for evolving complex combinational logic circuits 

in a framework where the functional dependencies of input data are known. 

• The EGAD software (Discovery v.13), that is suitable to carry oul research of 

extrinsic EHW approach and to learn the basics of EHW approach, has been 

created. 



300 

8.1. Future work 

Some issues that become very important in the extrinsic EHW approach, such as 

evaluation process, self-adaptation features of extrinsic EHW, function-level EHW, 

etc. are discussed in detail in this dissertation. Further work can be summarised as 

follows: 

• It would be beneficial to extend the extrinsic EHW approach to design sequential 

circuits. This may be one of directions of future investigations. 

• The quality of evolved circuits is estimated in terms of the number of logic 

gates used in the circuit or the number of transistors. Obviously more precise 

evaluation of evolved circuits can give a more realistic picture about features of 

generated solutions, such as circuit delay, wire allocation, etc .. In this case the 

evaluation can be implemented using a VHDL simulator. 

• The self-adaptation of extrinsic EHW is defined by the circuit layout. The im

portance of a functional set of logic gates in the evolution process is discussed 

in Appendix B. It is shown that the EA performance significantly depends 

on the chosen functional set of logic gates. Since in bidirectional incremental 

evolution the structure and complexity of simpler tasks vary all the time, the 

choice of the functional logic set can significantly influence the algorithm per

formance. Therefore, it is very important to design an EHW approach that 

would be self..:adaptive in terms of the circuit layout and the functional set of 

logic gates. 

• The function-level EHW approach is based on the choice of higher complexity 

logic functions in the functional set of logic gates. This is very convenient when 



301 

the basic functional dependencies of considered task are well-known. In case 

of applying this method to bidirectional incremental evolution some problems 

can occur, since the specific features of synthesized smaller tasks are unknown. 

In this case using the chromosome representation introduced in Chapter 5, the 

structure of complex building blocks can be automatically changed . 

• It has been shown that the proposed bidirectional incremental evolution per

forms very well in comparison with direct evolution in the extrinsic EHW ap

proach. It has been shown that the extrinsic EHW approaches in terms of spe

cific features of evolutionary processes and choice of EHW parameters behave in 

a similarly way to intrinsic EHW. From another point of view, Xilinx introduced 

a new reconfigurable device namely Virtex FPGAs, designed to use facilities of 

the internet. Therefore, a useful future research is to implement EHW using Vir

tex FPGAs that would implement bidirectional incremental evolution. Future 

work will be focused on investigation of the behaviour of bidirectional incre

mental evolution applied to intrinsic EHW. In this case a number of problems 

have to be overcame. First, new metrics suitable to intrinsic EHW have to be 

introduced. Next, the problem of evolving complex tasks using several FPGAs 

has to be solved. A method to map heterogeneous circuit layouts into FPGA 

has to be developed. 

In the future the use of bidirectional incremental evolution applied to EHW is 

likely to grow, with some movement towards analogue circuit design. This should 

provide a firm basis for the construction of mixtrinsic EHW systems solving complex 

problems, which requires a generalization of the technique. 



Appendix A 

Appendix. Digital circuit design 

In this appendix we will consider the basics of digital circuit design, including imple

mentation technologies, description of the basic logic gates and combinational digital 

building blocks. 

A.I Implementation technologies 

In this dissertation we will apply EHW approach for FPGA devices and MOS technol

ogy. Each of these technologies has some distinctive features, that will be considered 

in this section. 

A.1.1 FPGA 

Field programmable gate array (FPGA) devices manufactured by Xilinx are primarily 

for digital design. In many instances, these devices can be erased and re-programmed. 

In general, FPGAs are comprised of logic blocks, I/O cells and interconnection 

lines. The logic blocks implement the actual logic of the FPGA using primitives such 

as NAND gates, multiplexers, lookup tables. The I/O cells allow the FPGA's logic 

blocks to connect to the FPGA's pins. The interconnection lines connect logic blocks 

302 



o 0 0 0 0 0 0 0 Configurable .--
Logic 

o o Block 

D 0 0 [5 o 
o 
o 
o 
o 
o 
o 

D D D 

D D D 

D 

D 

o 
0_110 Block 

o 
o 
o Horisontal 
-Routing 

o Channel 

D D D D o Vertical 
Routing o 0 0 0 0 0 0 0 +L.. __ C:...;hannel 

Figure A.1: Overall view of a XiI in x FPGA (courtesy [10]). 

303 

to each other and to the I/O cells. The routing done by these lines is implemented with 

wire segments and a system of programmable switches. The switching technology can 

be anyone of the pass-transistors controlled by static RAM cells, anti-fuses, EPROM 

transistors or EEPROM transistors. 

FPGAs were first created by Xilinx, Incorporated in 1984. Since that time, many 

other companies have marketed FPGAs, the major companies being Cilinx, Actel and 

Altera. 

A.1.2 Xilinx FPGA 

Xilinx FPGAs use static R.A.M technology to implement hardware designs. Because 

of this they are reprogrammable and frequently used in prototyping and other areas 

where reprogrammability is useful. 

A Xilinx FPGA consists of a two-dimensional array of configurable logic blocks 

(CLBs), a set of surrounding input/output blocks (lOBs) and programmable inter

connections between different CLBs and between CLBs and lOBs (Fig. A.1). Each 



Slice 

LUT 

LUT 

CLB columns 

DOD 
o 0 0 0 '--"l----J 

DDDD 
DODD 

All routing. local and 
global conflgurable 

through JBits 

Figure A.2: Virtex Architecture (courtesy [ll]). 

304 

CLB can implement two arbitrary, independent four-input Boolean functions, F and 

G. The outputs of F and G can be combined with another input in a third Boolean 

function H. Each CLB also has the capacity to implement fast-carry logic. Connec

tions between CLBs and the chip pads are provided by lOBs. The lOBs offer many 

user-programmable options in r/o control, including tri-state logic for bidirectional 

I/O, direct connection of lines or connection through, flip-flops, and programmable 

pull-up or pull-down resistors. The rOBs also provide logic for boundary-scan testing 

and output slew rate control. The interconnect between different CLBs and between 

CLBs and rOBs is also programmable. Xilinx FPGAs shown in Fig. A.2 can be 

applied to evolvable hardware systems and it is simulated in this thesis. 

The Virtex family uses a standard FPGA architecture as in Fig. A.2. The logic 

is divided into an NxM structure of Configurable Logic Blocks (CLB), each block 

contains a routing matrix and two slices. Each slice contains two Lookup Tables 



305 

(LUTs) and two registers (in addition to considerable amounts of logic not used in 

these examples). The inputs to the slice are controlled through the routing matrix 

which can connect the CLB to the neighboring CLBs through single lines which 

terminate six CLBs away. Each of the inputs to the CLB can be configured using 

the JBits API classes, as well as all the routing. This means that it is possible to 

route two outputs together creating a bitstream which will damage the device. If it 

was also possible to program the device from outside the computer, damage could be 

terminal, something that the Java security was developed to prevent. 

A.1.3 Unipolar logic families 

Unipolar logic families are based on the field effect transistor which requires a metal 

electrode separated from a semiconductor channel by an oxide insulating layer. This 

is the MOS fabrication technology, and the individual transistors are often referred 

to as MOSFETs [167]. In our work we will consider the implementation of logic gates 

using different MOS technologies, because MOS logic devices do not require internal 

resistors on the chips, and can hence be manufactured at a high packing density. The 

fabrication process is relatively simple, and power consumption is low. 

PMOS logic 

PMOS logic is a family of MOS integrated circuits. The semiconductor material in 

p-doped and the majority carries are therefore holes. PMOS is suited to large scale 

integration and has a greater packing density capability than bipolar transistor logic. 



NMOS logic 

Dynamic CMOS logic 

A 

Clock 

Precharge 
Transistor 

F 

NMOS 
logic block 

Evaluate 
Transistor 

Figure A.3: CMOS dynamic gate. 

306 

NMOS logic is basically the same structure as PMOS, except that it uses n-doped 

semiconductor material. The circuit carriers in NMOS are free electrons, which are 

more mobile that larger positive charges, and this results in faster switching times 

compared with PMOS devices. 

CMOS complementary logic 

Complementary metal oxide semiconductor (CMOS) logic uses both p- and n-type 

channels in the same circuit. It is faster than PMOS and NMOS and requires con

siderable less power that the low power TTL series. MOS circuits can operate off a 

wide range of supply voltages. All complementary gates may be designed as ratio less 

circuits. That is, if all transistors are the same size the circuit will function correctly. 

Dynamic CMOS logic 

CMOS dynamic gates are used when circuit delay is important. Dynamic gates require 

clocks, and involve circuit and timing design [168]. A basic dynamic CMOS gate is 



307 

shown in Fig. A.3. It consists of an n-transistor logic structure whose output node 

is precharged to VDD by a p-transistor (precharge) and conditionally discharged by 

an n-transistor (evaluate) connected to Vss [129]. Note that the dynamic gates are 

faster than the static gates under all conditions [127]. The dynamic gate is faster for 

pulldown than the static gate. This speed advantage is due to reduced capacitance at 

the output node and reduced overlap current. The description of how dynamic gate 

operates is given in details in [168]. 

A.2 Primitive logic gates and their implementa
tion 

The primitive logic gates are gates that implement primitive logic operations such as 

AND, OR, NOT, NOR, NAND, etc .. Primitive logic gates are the basic gates used 

in circuit design. Although a logic gates perform identical logic operations in the 

different CMOS, PMOS, NMOS versions, the logic levels and other characteristics 

(speed, power, input current, the number of transistors used, etc.) are quite difFerent. 

In this dissertation we will consider evolving the logic circuits using such optimisation 

criteria as the number of primitive logic gates and the number of transistors used in 

circuit. The explanation of logic circuits discussed below can be found in [128], 

[127], [169]. The implementations oflogic gates using different MOS technologies are 

illustrated in Fig. AA - Fig. A.9. 

The number of transistors in MOS circuits can be calculated as follows: 

N AND NNAND NNOT. 
PET = FET + FET, N OR NNOR NNOT. 

FET= FET+ FET, NEXOR NAND NOR NNAND 
- FET = FET + FET+ FET . 

(A.2.1) 

For example, the CMOS EXOR circuit require 16 transistors, because six transistors 



308 

NOT logic gate 

m At>--o 1 
1 0 CMOS 

dynamic: 
(a) (b) 

Al A1 
F 

F 

AJ 
F F 

Clock 

(c) (d) (e) (f) 

Figure A.4: NOT logic gate, F = A: (a) Truth table, (b) Distinctive-shape symbol, 
(c) NMOS circuit, (d) PMOS circuit, (e) CMOS circuit, (f) CMOS dynamic circuit. 

NOR logic gate 

A B F 
0 0 1 

~=L>-F F 
0 1 0 

0 0 AJ 1 0 

(a) (b) 

(c) 

CMOS 
dynamic: 

Al 
Bl AJ 

F 

F F 

A 
Clock 

(d) (e) (f) 

Figure A.5: NOR logic gate, F = A V B = A + B: (a) Truth table, (b) Distinctive
shape symbol, (c) NMOS circuit, (d) PMOS circuit, (e) CMOS circuit, (f) CMOS 
dynamic circuit. 



NAND logic gate 

A B F 

o 0 1 
011 
1 0 1 
1 1 0 

(a) 

(b) 

CMOS: 

A -----J----' 

B -----4---' 

(e) 

(c) 

309 

(d) 

CMOS 

F 

A ---t--' 

B _+--.J 

Clock 

(f) 

Figure A.6: NAND logic gate, F = A J\ B = A· B: (a) Truth table, (b) Distinctive
shape symbol, (c) NMOS circuit, (d) PMOS circuit, (e) CMOS circuit, (f) CMOS 
dynamic circuit. 

AND logic gate 

A B F CMOS: 

0 0 0 
NAND NOT 

0 1 0 
1 0 0 
1 1 1 

F 
(a) 

A 

~=C>-F 
(b) 

B 

(c) 

Figure A.7: AND logic gate, F = AJ\B = A·B: (a) Truth table, (b) Distinctive-shape 
symbol, (c) CMOS circuit. 



310 

OR logic gate 
CMOS: 

A B F NOR 

0 0 0 
+Voo 

NOT 

0 1 1 
1 0 1 
1 1 1 

(a) 

F 

~=r=>-F A 

(b) 

(c) 

Figure A.8: OR logic gate, F = Av B = A+B: (a) Truth table, (b) Distinctive-shape 
symbol, (c) CMOS circuit. 

EXOR logic gate 

A B F 

000 
011 
1 0 1 
1 1 0 

(a) (b) 

Figure A.9: EXOR logic gate, F = A EEl B: (a) Truth table, (b) Distinctive-shape 
symbol. 



311 

Table A.l: The number of transistors used in primitive logic circuits. 
Logic gate Technology 

NMOS PMOS CMOS CMOS dynamic logic 

NOT 2 2 2 3 
OR 5 5 6 7 

NOR 3 3 4 4 
AND 5 5 6 7 

NAND 3 3 4 4 
EXOR 13 13 16 18 

are required to implement any of AND and OR CMOS circuits and four transistors 

are used to realize CMOS NAND function. 

A.2.1 Comparison of logic gate implementations 

There are a lot of criteria by which the performance of circuit can be evaluated. In 

our work we will estimate the logic gate implementation in terms of the number of 

transistors used. The number of transistors required to implement primitive logic 

functions discussed above are given in Table A.I. Note, that the NMOS and PMOS 

circuits of considered primitive logic functions require the same number of transistors. 

A.3 Combinational building blocks 

Combinational building blocks are assemblies of gates that implement complex logical 

operators such as adders, multipliers, encoders, etc.. Complex operators are needed 

often enough to justify their inclusion in a standard logic family of parts. In this 

dissertation we will consider the circuit implementation such building blocks as adders 

and multipliers. Some of adders and multipliers used in this dissertation are shown 

in Fig. A.I0 - Fig. A.12. 

A three-bit multiplier (mult3.pla) multiplies the binary numbers (A2, Ai, Ao) by 



A B 
o 0 
o 1 
1 0 
1 1 

(a) 

Half adder 

S C ut 
o 0 
1 0 
1 0 
o 1 

(b) 

Figure A.I0: Half-adder: (a) Truth table; (b) Circuit. 

Full adder 
C A B S C 

0 0 0 0 0 
0 0 1 1 0 A1 

0 1 0 1 0 B1 

0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 Cout 
1 1 0 0 1 
1 1 1 1 1 

(a) 
(c) 

~ 
C. 

n S2 
HaIl- S 

A1 S adder 
Half- 2 

C +- 1BFA C. adder 
out In B 1 C Out1 Cout 

(b) (d) 

312 

Figure A.ll: One-bit full adder (lBFA): (a) Truth table; (b) Distinctive-shape sym
bol; (c) Circuit; (d) Circuit with half-adders. 



313 

Two-bit multiplier 

A1 P
3 A1 Ao 8 1 8 0 

P
3 

P 2 P 1 Po 8 0 

Ao 
D-P1 

0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 8 1 
0 0 0 0 0 ·0 0 A02 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 1 0 0 0 1 ::tc>D=:: 
0 0 0 0 0 8 1 
0 1 1 0 0 1 1 (b) 
1 0 0 0 0 0 0 0 A 6, 

0 0 1 0 0 0 
a 1 a a 1 0 a 
a 1 a a 
1 0 a 0 0 a 0 

a 1 0 a 1 1 
1 a a 1 a 

0 a 

(a) 
P

3 

(c) 

Figure A.12: Two-bit multiplier: (a) Truth table; (b) Conventional circuit; (c) Circuit 
with the one-bit full-adders (1BFA). In this work the two-bit multiplier is described, by 
input vector X = {xol Xl , X2, X3} and the output vector Y = {Yo, Yl, Y2, Y3}, where Xo = All 

Xl = AOl X2 = Ell X3 = EOl Yo = P3l Yl = P2l Y2 = Pl and Y3 = Po· 



314 

(E2' E l , Eo) to produce the six bit binary number (Yo, Yl, Y2, Y3, Y4, Y5), where A2, 

E2 and Yo are the most significant bits. In this work the input vector of three-bit 

multiplier is X = {Xo, Xl, X2, X3, X4, X5}, where Xo = A2, Xl = Al , X2 = Ao, X3 = E2, 

X4 = El and X5 = Eo· 



Appendix B 

Appendix. The functional set of 
logic gates and EHW performance 

There are a number of EHW parameters that can influence the algorithm perfor

mance. One of them is the functional set of logic gates involved in evolution. In this 

section we will consider how the choice of the functional set of logic gates has an 

effect on EHW performance. The easiest way to define this dependence is to evolve 

the logic circuits using the gate-level extrinsic EHW with permanent EHW param

eters and variable functional set of logic gates. The two-bit adder and the two-bit 

multiplier are chosen as the tested logic functions. These functions are arithmetic, 

but the generation principles of functions in question are different. Therefore, the 

obtained results are valid at least for these two classes of logic functions. A gate

level extrinsic EHW with rudimentary (1 + A) evolutionary strategy and the initial 

parameters given in Table B.1 is designated to evolve the logic circuits. The circuit 

layout and connectivity parameters are heterogeneous for both tested functions. The 

evolutionary algorithm has been executed 100 times for each explored functional set 

of logic gates. The investigated functional sets of logic gates contain NOT, AND, 

OR, EXOR logic gates with varieties of inverted and primary inputs and outputs. 

315 



316 

Table B.1: Initial data: Investigation the influence the functional set of logic gates 
used on algorithm performance. 

I~C~ir-c-u~it--------------I~la~d~d2~c-.p~la~lm-u~1-t2~.p~la~1 

EHW parameters 
Circuit layout, 
N eals x N rows lx20 1x10 
Connectivity parameter, 
Neonnect 20 10 
Gate distribution Proportional 
Type of layout Heterogeneous 

EA parameters 
Type of algorithm (1 + A) ES 
Population size 5 
N umber of generations 15000 I 5000 
N umber of algorithm runs 100 
Mutation type Uniform 
Circuit mutation rate 0.05 
Fitness strategy :F1 +:F2 

The encoding of logic gates is given in Table 4.2. 

All possible logic gates that can be involved in evolution and their encoding are 

shown in Table B.2. The functional sets of logic gates are generated as a variation of 

the one-input logic functions NOT and wire and the two-input logic functions AND, 

OR, EXOR with primary and inverted inputs. Wire passes the logic value from input 

to output without changes·. This function is labeled as -14. Note that the logic 

functions encoded -10 and -11 are equal. The same conclusion can be made about 

the logic functions marked -9 and -12. Nevertheless this fact, these logic functions are 

encoded separately, since they define the EXOR logic gate with different variations of 

input variables (primary and inverted). This encoding provides equal opportunities 

for EXOR logic operator with different types of inputs. 

The chosen functional sets of logic gates implicated in the circuit evolution are 



317 

Table B.2: The functional characteristics of functional sets. JF§i is the i-th functional 
set of logic gates; lJF§i I is cardinality of set JF§i. 

IF§i Functional llF§i\ Pt Pi 
set { or} {and} {exor} {not} {not} 

JF'§1 {-I -5 -9 -13} , , , 4 0.25 0.25 0.25 0.25 0 
JF'§2 {-1,-5,-13 } 3 0.33 0.33 0 0.33 0 
JF'§3 {-1,-9,-13} 3 0 0.33 0.33 0.33 0 
JF'§4 { -5,-9,-13} 3 0.33 0 0.33 0.33 0 

JF'§5 {-1-2 -5 -9} , , , 4 0.25 0.5 0.25 0 0.125 
JF'§6 { -1,-2,-3,-4,-5,-6,-7,-8} 8 0.5 0.5 0 0 0.5 

JF'§7 {-1-9 -10 -11 -12} " , , 5 0 0.2 0.8 0 0.4 
JF'§8 {-1-9 -10 -11} , , , 4 0 0.25 0.75 0 0.25 
JF'§g {-1,-9,-10} 3 0 0.33 0.66 0 0.167 
IF§lO {-1-2 -3 -9 -10 -11 -12} , , " , , 7 0 0.42 0.56 0 0.428 
IF§11 { -1,-2,-9,-10} 4 0 0.5 0.5 0 0.5 
IF§12 {-I -3 -9 -10} , , , 4 0 0.5 0.5 0 0.5 
IF§13 {-1-2 -3 -9 -10 -11} , , " , 6 0 0.5 0.5 0 0.33 
JF§14 {-1,-2,-3,-4,-9,-10 } 6 0 0.66 0.33 0 0.417 
IF§15 { -1,-2,-9} 3 0 0.66 0.33 0 0.167 
JF§16 {-1-2-3-9} , , , 4 0 0.75 0.25 0 0.25 
JF'§17 { -1,-2,-3,-4,-9} 5 0 0.8 0.2 0 0.4 

shown in Table B.2. The functional sets of logic gates have been chosen according to 

the following characteristics: the percentages of the primitive logic gates AND, OR, 

EXOR, NOT in the functional set JF§, pt({and}), pt({or}), pt({exor}), pt({not}) 

and the percentage of the inverted inputs in the functional set JF§, Pi ({ not} ). Let 

us consider a computational process of the percentages mentioned above using the 

following example. Let the functional set of logic gates be JF§6 = {Xl /\ X2, Xl /\ 

X2, Xl V X2, Xl EB X2} = {-I, -2, -5, -9}. There are 3 types of primitive logic gates 

and 4 unique logic gates in considered functional set. -1 and -2 encode the AND logic 

gate with primary and inverted second input. -5 and -9 interpret OR and EXOR 

logic gates with primitive logic gates respectively. Therefore, Pt( {and}) = 2/4 = 0.5, 



318 

pt({or}) = 1/4 = 0.25 and pt({exor}) = 1/4 = 0.25. There is no logic gate NOT 

in the functional set JF§6. Hence, Pt( {not}) = o. All logic functions in JF§6 have 2 

inputs. There is only one logic function labeled -2 that contains an inverted input. 

Therefore, Pi ({ not}) = 1/8 = 0.125. Pt and Pi describe the functional characteristics 

of the functional set JF§. These characteristics are calculated for each examined 

functional set of logic gates JF§i and are summarised in Table B.2. 

The functional sets are generated according to their functional characteristics. 

Thus, all primitive two-input logic gates with primitive inputs generate JF§1. There

fore, pt({and}) = pt({or}) = pt({exor}) = pt({not}) = 0.25. and Pi({not}) = o. 

The functional sets JF§2-JF§4 contain no logic functions with inverted inputs. The 

functional sets JF§6-JF§ 17 include no logic gates OR and NOT. The percentage of in

verted inputs in the functional sets in question is variable. Also, the percentages of 

AND and EXOR logic gates in JF§6-JF§ 17 are chameleonic. The process generated the 

functional sets of logic gates and described above allow us to define the optimal pro

portion of primitive logic gates in inverted inputs for given tested logic function. In 

other words the usefulness of using different sub-functions can be derived by analysing 

the performances of algorithms with different functional sets. At the same time the 

importance of using the inverted inputs in the functional set of logic gates can be 

expounded. 

The experimental data for experiments described above are summarised in Table 

B.3. Let us consider how the functional sets of primitive logic gates with equal Pt 

infiuence the algorithm performance. It is interesting to note that the fully functional 

two-bit multipliers have been evolved using the functional sets containing at least 

AND and EXOR logic gates. This shows that for the specific circuit layout chosen 



319 

Table B.3: Experimental results: Investigation the influence of the functional set of 
logic gates used on (1 +,X) ES performance. IF§i is the i-th functional set of logic gates; 

Fff, F~f and Ff! are the mean fitnesses F l , F2 and F3 of the best evolved chromosomes 
respectively; F2 (Nf ) is the mean fitness function F2 of fully functional designs evolved 
during 100 runs; R(Nf ) is the number of evolved fully functional circuits, N f 

F§i add2c.pla mult2.pla 

-
Fbf 1 F,bf 

2 F;f(Nf) R(Nf ) F bf 
1 

F,bf 
2 F;f(NJ) R(NJ) 

IF§1 96.177 11.39 11.125 32 98.9531 7.3 7.1224 49 
IF§2 84.4375 13.29 0 0 96.75 7.66 0 0 
IF§3 90.2291 10.41 11.57 7 99.0937 7.38 7.0667 60 
IF§4 88.6458 10.15 0 3 83.95 6.61 0 0 

IF§5 97.6667 11.92 11.21 55 99.0468 7.44 7.1818 66 
IF§6 86.2187 26.25 0 0 96.5312 7.68 9.0 2 

IF§7 89.3541 20.18 17 2 97.968 7.36 7.34 38 
IF§8 90.7282 13.98 14.4 5 98.0156 7.2 7.107 28 
IF§9 93.9479 20.01 15.25 20 98.5625 7.22 7.1961 51 
F§1O 94.9687 20.73 16.9333 30 97.6094 7.86 7.75 36 
F§ll 95.1771 14.79 13.8485 33 98.65 7.33 7.25 58 

F§12 95.2291 15.52 13.73 30 98.46875 7.4 7.19 52 

IF§13 96.236 15.7 14.02 37 98.14 7.74 7.39 43 
IF§14 96.024 14.93 13.9 36 98.15 7.72 7.38 44 
IF§15 97.32 13.74 13.6 45 99.1875 7.3 7.1867 75 

IF§16 98.43 14.05 13.97 33 98.89 7.36 7.29 68 
IF§17 97.034 15.78 13.67 39 98.73 7.53 7.23 59 



320 

the functional set of logic gates has to contain these two primitive logic gates. At 

the same time the performance of algorithm with functional set of AND, EXOR and 

NOT logic gates is better then with additional OR logic gate. These experimental 

results clearly show that the functional set containing all primitive logic gates does not 

provide the better algorithm performance. Note that the mean number of active logic 

gates in evolved fully functional two-bit multipliers F;f (Nf ) is less when JF§3 has been 

applied and higher for JF§1 Analysing the quality of evolved fully functional circuits 

we can conclude that the smaller circuits have been evolved when the algorithm with 

JF§3 has been executed. 

Note that the fully functional two-bit multiplier can be evolved using AND and OR 

logic gates only. In this case the functional set has to contain the primitive logic gates 

with inverted inputs. This can be demonstrated by experimental results obtained for 

JF§6. The proportions of AND and OR gates in this functional set are equal. The 

functional set contains the logic gates with primary and inverted inputs. In this case 2 

two-bit multipliers have been evolved. Each of them contains 9 primitive logic gates. 

Functional sets JF§6 and F§2 are similar since both of them contain AND and OR 

logic gates and EXOR logic gate. It can be seen that the mean functionality criteria 

F~f obtained after evolution with IF§6 is lower then after evolution with F§2. The 

same behaviour implies to the F;f criteria. This shows that the final circuits evolved 

using F§6 contain less correct output bits then the similar circuits evolved using F§2. 

This means that the higher correctness of circuits does not always quarantee that the 

fully functional circuit will be evolved. 

Next, let us consider the performance of algorithms executed with 1F§7-F§17 func

tional sets. The ideas of this experiment is to define how using different proportions 



321 

of AND and EXOR logic gates influence on algorithm performance. Also, analysis of 

this experimental data shows the importance of inverted inputs in the functional set 

of logic gates. 

Let us take up how the number of fully functional designs evolved changes with 

varying Pt( {and}), Pt( {exor}) and Pi( {not}). The functional sets 1B'§7-1B'§17 are allo

cated by ascending order of Pt( {and}). Analysing the obtained experimental data we 

can conclude that the algorithm performs better if the number of logic gates domi

nates in the functional set. The number of fully functional two-bit multipliers evolved 

magnifies with increasing Pt ( { and} ) . 

In this section we considered how using different structures of the functional set 

of logic gates influence the algorithm performance The choice of the functional set of 

logic gates is a very complicated task and is ultimately linked with the complexity 

of the logic functions involved in the functional set. Each functional set has been 

considered in terms of the number of primitive logic gates involved and the number of 

inverted inputs used with the primitive logic gates. The experimental results shows 

that there is an optimal functional set of logic gates that provides the better algorithm 

performance then others. Also, it has been shown that the choice of the functional 

set of logic gates drastically influence the algorithm performance. The wrong choice 

of the functional set of logic gates can lead to the situation where the fully functional 

designs would not be evolved even if the others EHW parameters are chosen correctly. 



Appendix C 

Appendix. Evolved optimal two-bit 
multiplier designs 

In this section we will consider a number of evolved optimal two-bit multiplier designs. 

All these designs require 7 primitive logic gates and have been evolved using different 

functional set of logic gates. In order to define the optimal design of logic circuits 

evolved using a function-level EHW, the optimal design of building blocks has to 

be considered. The two-bit multiplier has been used as a building block to evolve 

a three-bit multiplier. The Table C.l shows the number of logic gates required to 

implement only several outputs of the two-bit multiplier. These data has been used 

to define the optimal size of evolved three-bit multiplier at function level. 

These circuits have been evolved using a gate-level EHW proposed by Miller [25]. 

X XI""·,X3 i-mult2_pla 

1 .------'. D------{' 
L-.._~ 1yo 

I 
IY, 

r---------------------~I 3 l _____________________ J 

N gates = 7; 
NVTCMO

S = 62; N VT
OMOS = 71; N VT

NMOS = 51 

Figure Cl: Evolved two-bit multiplier design (A) 

322 



8--t' l-<Io....:....::==----1 0 

~~==~~-----~ly3 
I 
I 

~y2 
I 
I 

L _________________ l 

N =7-
N CMOS - 62- N ~,(,1'8s - ~1 - N NMOS - 51 

VT - 'VT - 'VT -

Figure C.2: Evolved two-bit multiplier design (B) 

L _________________ J 

N =7· 
~ates J 

NVT CMOS = 62; N VT MOS = 71 ; N VT NMOS = 51 

Figure C.3: Evolved two-bit multiplier design (C) 

323 



324 

Table C.l: The number of primitive logic gates required to implement different com
binations of the two-bit multiplier outputs. 

Output mult2.pla 
combinations A B C 

Yo 3 3 3 

Yi 5 4 4 

1'2 3 3 3 

1'3 1 1 1 
Yo, Y1 5 4 5 
Yo,Y2 4 6 4 

Yo, Y3 4 3 4 
Y1 ,Y2 6 7 6 

Yi,1'3 6 4 6 

1'2,1'3 4 4 4 

Yo, Y1 , 1'2 6 7 6 
Yo, Y1 , Y3 6 4 6 

Yo,Y2,1'3 5 6 
,... 
;) 

Yi, 1'2, Y3 7 7 7 

Three of the evolved circuits with 7 2-input logic gates are shown in Fig. C.l- C.3. 

It is necessary to note that the best designed two-bit multiplier requires at least 8 

2-input logic gates. Hence, the designs shown in Fig. C.l- C.3 are optimal in terms 

of the number of 2-input logic gates used. Examining these circuits instantly reveals 

their strangeness. Note that in conventional model of multiplication only output 13 is 

re-used (Fig. A.12). In all evolved designs the outputs Yo and Yi are used to produce 

Y1. The circuit for Y3 in all four evolved circuits is effectively the same. In circuits 

A and C the output Y3 is not re-used and in circuit B the output 1'2 is implemented 

independently. In conventional circuits the output 1'2 has never been implemented 

separately. The most evolved two-bit mUltipliers with 7 2-input logic gates have one 

of the circuit structures discussed above. 



Appendix D 

Computational effort of EHW 
approach 

The experimental results reported in this dissertation have been performed using 

Pentium Pro II with 400 MHz frequency. The computational effort required to evolve 

a circuit depends on the circuit layout used, type of fitness function implemented 

(parallel or consistent), the memory allocation (if the circuit layout evolution is used), 

the size of truth table analysed. So, the empirical study has been carried out to define 

the computational cost required to evolve logic function by various implementations 

of EHW. Table D.1 summarises these results. 

Parallel fitness function is calculated according to specific features of C++ pro

gramming language. The details of this can be found in [115], [170]. 

Analysing experimental results one can notice that the evolutionary algorithm 

with parallel fitness function performs faster than with consistent fitness function. 

Larger function requires more computational time to be evolved. For example, 

in order to evolve a three-bit multiplier using 1x50 circuit layout, parallel dynamic 

fitness function and evolutionary strategy that performs during 200 000 generations 

requires a 1 hour, 20 min, 03 sec, 420 msec. 

325 



326 

Table D.l: Computational effort of EHW approach during one run to evolve the 
two-bit multiplier. GGM, BGM and LGM are the global, boundary and local geometry 
mutations respectively. 

EHW parameters 

Circuit layout, 
Ncols X N rows 1x10 1x10 1x10 
Connectivi ty parameter, 
1Vconned 10 10 10 
Gate distribution Proportional Proportional Proportional 
Type of layout Homogeneous Homogeneous Heterogeneous 

EA parameters 

Type of algorithm (1 + >.) ES (1 + >.) ES GA 
Population size 4 5 5 
N umber of generations 5000 5000 5000 
Crossover type - - Cell Uniform 
Mutation type Uniform Uniform Uniform 
Geometry Mutation type - - GGM BGM LGM 
Circuit mutation rate 0.05 0.05 0.05 
Fitness strategy :F1 +:F2 :F :F1 +:F2 :F1 +:F2 
Fitness implementation Consistent Parallel Parallel 

Computational effort 
min : sec : msec 2:20:720 26:150 34:660 10:660 23:900 22:360 



Appendix E 

Appendix. Distinctive features of 
the TPRODUCT operator 

Let a, band c be the r-valued logic variables. Let "x", "<)", "v" and"·" be the 

TPRODUCT, TSUM, MAX and MIN r-valued logic operations respectively. The 

following operations hold for multi-valued algebra: 

Proposition E.O.1. Associative law: 

Proof. 

(a x b) x c = a x (b x c) 

(a X b) x c = MAX(a + b - (r - 1),0) x c = 

MAX( a + b + c - 2 (r - 1), 0 + c - (r - 1), 0) = 
MAX (a + b + c - 2 (r - 1), 0), 

because c - (r - 1) :::; 0 for all values of c. 

a x (b x c) = a x MAX(b + c - (r - 1),0) = 

MAX(a + b + c - 2(r - 1),0 + a - (r - 1),0)) = 
MAX (a + b + c - 2 (r - 1), 0), 

because a - (r - 1) :::; 0 for all values of a. 

(E.0.1) 

(E.0.2) 

(E.0.3) 

Since expressions Eq. E.0.2 and Eq. E.0.3 are equal, then the TPRODUCT 
operator is associative. 0 

327 



328 

Proposition E.O.2. Commutative law: 

axb=bxa (E.O.4) 

Pr-oof. This statement is proved using the definition of TPRODUCT operator. 0 

Proposition E.O.3. Identity: 

(r - 1) x a = a 

Proof. 

(r - 1) x a = MAX(r - 1 + a - (r- - 1),0) = MAX(a, 0) = a, 

because a E {0,1,··· ,r-1}. 

Proposition E.O.4. 4. Identity: 

Proof. 

Oxa=O 

o x a = MAX (0 + a - (r - 1), 0) = 0, 

because a E {O, 1" .. ,r - 1}, we have a - (r - 1) ::; 0 

Proposition E.O.5. 5. Identity: 

ao x al x ... x ar-l = 0 

(E.0.5) 

(E.0.6) 

o 

(E.0.7) 

o 

(E.0.8) 

Proof. This expression describes all input combinations of a, therefore by definition 
of literal function Eq. 4 takes value (r - 1). By definition of TPRODUCT operator 
we have: 

ao x al x ... x ar-l = MAX(r - 1 - (r - 1),0) = O. 

o 
Proposition E.O.6. 6. Identity: 

1 x al V 2 x a2 V ... V (r - 1) x ar-l = a (E.0.9) 

Proof. If a = 1, then 1 x Xl V 2 X X2 V··· V (r -1) x x(r -1) = (MAX)(l + r -1-
(r - 1),0) V 0 V " . V 0 = 1; 

If a = 2, then 1 x Xl V 2 X x2 V··· V (r -1) x x(r -1) = (AIAX) (2 +r -1- (r-
1),0)VOV"'VO=2; 

If a = r -1, then 1 x Xl V 2 X x2 V··· V (r -1) x x(r - 1) = (MAX)(r - 1 + r-
1 - (r - 1),0) V 0 V··· V 0 = r - 1; 

According to Eq. E.0.4: a x Xo = O. 0 



329 

Proposition E.O.7. 7. Identity: 

(E.O.10) 

Proof. If a = 1, then (1 x ai)0(2 x a2)0··· O((r -1) x aT-l) = (1\IJAX) (1 +r -1-
(r - 1),·0)000···00 = MIN(l, r - 1) = 1; 

If a = 2, then (1 x ai)0(2 x a2)0··· O((r -1) x aT-i) = (MAX)(2 +r -1- (r-
1),0)000·· ·00 = MIN(2, r - 1) = 2; 

If a = r - 1, then (1 x ai)0(2 x a2)0··· O((r -1) x aT-i) = (MAX)(r -1 + r-
1 - (r - 1),0)000···00 = MIN(r - 1, r - 1) = r - 1; 

According to Eq. E.0.4: a x XO = O. 0 

Proposition E.O.B. 8. Distributive law: 

Proof. 

(a x b) V c =# (a V c) x (b V c) 

(a x b) V c = MAX (a + b - (r - 1), 0) V c 

= MAX(MAX(a + b - (r - 1),0), c) 
= MAX (a + b - (r - 1), c, 0) = MAX (a + b - (r - 1) , c), 

because c E {O 1 ... r - I}· '" , 

(a V c) x (b V c) = MAX(a, c) x MAX(b, c) 

= MAX(MAX(a, z) + MAX(b, c) - (r -1),0) 

(E.O.ll) 

(E.0.12) 

= MAX(a + b - (r - 1), a + c - (r - 1), b + c - (r - 1), 2c - (r - 1),0) (E.0.13) 

Since expressions Eq. E.0.12 and Eq. E.0.13 are not equal, then the TPRODUCT 
operator does not obey the distributive law. 0 

Proposition E.O.9. Distributive law: 

Proof. 

(a x b)Oc # (aOc) x (bOc) 

(a x b)Oc = MAX(a + b - (r - 1), O)Oc 
= MIN (MAX(a + b - (r - 1),0) + c, r - 1); 

(E.0.14) 

(E.0.15) 

(E.0.16) 



if a + c 2 r - 1, then (a x b)Oc = MIN(a + b + c - (r - 1), r - 1); 
if a + c < r - 1, then (a x b)Oc = MIN(z, r - 1); 

(aOc) x (bOc) = MAX(a + c, r - 1) x MAX(b + c, r - 1) = 
MIN(MAX(a + c, r - 1) + MAX(b + c, r - 1), r - 1); 

330 

(E.0.17) 

ifa+c2 r -1;b+c 2 r-l, then ((aOc) x (bOc) = MIN(a+c+ b+c,r-l) = 
MIN(a + 2c + b, r - 1); 

if a+c 2 r-l; b+c < r-l, then ((aOc) x (bOc) = MIN(a+c+r-l, r-l) = r-l; 
if a+c < r-l; b+c 2 r-l, then ((aOc) x (bOc) = MIN(r-l+b+c, r-l) = r-l; 
if a+c < r-l; b+c < r-l, then ((aOc) x (bOc) = MIN(r-l +r-l, r-l) = r-l; 
Because the expressions Eq. E.0.15 and Eq. E.0.17 are not equal, TPRODUCT 

operator does not obey the distributive law. 0 

Proposition E.O.IO. Distributive law: 

where ci E {O, r - I}. 

Proof. 

(a x b) V ci = MAX(a + b - (r - 1),0) V ci 

= MAX(MAX(a + b - (r - 1),0), ci
) 

=MAX(a+b- (r-l),c i ,O) 

(a V ci
) x (b V ci

) = MAX(a, d) x MAX(b, ci
) 

= MAX(MAX(a, ci
) + MAX(b, ci

) - (r - 1),0) 

= MAX (a + ci 
- (r - 1), a + b - (r - 1), 

ci + b - (r - I), 2ci 
- (r - 1),0). 

(E.O.IS) 

(E.0.19) 

(E.0.20) 

Let us consider the following conditions, taking into account that d E {O, r - I}. 
If ci = 0, then a + d - (r - 1) = a - (r -1). 
If d = r - I, then a + d - (r - 1) = a. 
Note that if ci = r -I, then a - (r -1) :::; o. Hence, in any case Eq. E.0.20 is equal 

(r-l), because 2d - (r -1) = 2(r -1) - (r -1) - r -1. Therefore, term a+d - (r -1) 
is not essential. 

The expression b+d - (r-l) is analysed by analogy with the previous expression. 
Hence, we have: 

MAX (a + ci 
- (r - 1), a + b - (r - 1), ci + b - (r - 1), 0) 

= MAX(a + b - (r - I), 2ci 
- (r - 1),0). (E.0.21) 



331 

The TPRODUCT operator obeys the distributive law, since the expressions Eq. 
E.0.19 and Eq. E.0.21 are equal. 0 

Proposition E.O.II. Distributive law 

Proof. 

(a V b) x c = (a x c) V (b x c). 

(a V b) x c = MAX(a, b) x c = MAX(a, b) + c - (r - 1),0)) 

= MAX (a + c - (r - 1), b + c - (r - 1), 0). 

(a X c) V (b x c) = MAX(a + c(r - 1),0) V MAX(b + c - (r - 1),0) = 

MAX(MAX(a + c - (r - 1),0), MAX(b + c - (r - 1),0)) 

(E.0.22) 

(E.0.23) 

= MAX(a + c - (r - 1), b + c - (r - 1),0). (E.0.24) 

The TPRODUCT operator obeys distributive law, since expressions Eq. E.0.23 and 
Eq. E.0.24defining the right and left parts of identity are equal. 0 

Proposition E.O.12. Distributive law 

Proof· 

(a<>b) x c =1= (a x c)<>(b x c). 

(a<>b) xc = MIN(a + b,r -1) xc 

= MAX(MIN((a + b, r -l+c - (r - 1),0); 

if a + b ~ r - 1, then (a<>b) x c = MAX (a + b + c - (r - 1), 0); 
if a + b > r - 1, then (a<>b) x c = MAX(r - 1 + c - (r - 1),0) = c; 

(a x c)<>(b x c) = MAX(a + c - (r - 1), O)<>MAX(b + c - (r - 1),0) 

(E.0.25) 

(E.0.26) 

(E.0.27) 

= MIN(MAX(a + c - (r - 1),0) + MAX(b + c - (r - 1),0), r - 1). (E.0.28) 

Because expressions Eq. E.0.26 and Eq. E.0.28 defining the right and left parts of 
the identity are not equal, the TPRODUCT operator does not obey distributive law. 

o 



Proposition E.O.13. Distributive law: 

Proof. 

(a Vb) X ci = (a x ci
) V (b X ci

). 

(a V b) x ci = MAX(a, b) x ci = 

MAX(MAX(a, b) + ci 
- (r - 1),0) = 

MAX ( a + ci 
- (r - 1), b + ci 

- (r - 1), 0). 

(a x ci
) V (b XCi) 

= MAX(a + ci 
- (r - 1),0) V MAX((b + ci 

- (r - 1),0) 

= MAX(MAX(a + ci 
- (r - 1),0), MAX((b + ci 

- (r - 1),0)) 

= MAX (a + ci 
- (r - 1), b + ci 

- (r - 1), 0). 

332 

(E.0.29) 

(E.0.30) 

(E.0.31) 

The TPRODUCT operator obeys the distributive law, since the expressions Eq. 
E.0.30 and E.0.31 are equivalent. 0 

Proposition E.O.14. Distributive law: 

Proof. 

(a<>b) x ci = MIN(a + b, r - 1) X ci 

= MAX(MIN(a + b, r - 1) + ci 
- (r - 1),0); 

(E.0.32) 

(E.0.33) 

if a + b > r -1, then (a<>b) x ci = MAX(MIN(a + b, r - 1) + r - 1 - (r -1), 0) = 
MAX(MIN(a + b, r - 1),0) = MIN(a + b, r - 1); 

if ci = 0, and a+ b :::; r-1, then (a<>b) xci = MAX(MIN(a+b, r -1) - (r-1), 0) = 

MAX(MIN(a + b - (r - 1),0) = 0; 
if ci = 0, and a+b > r-1, then (a<>b) xci = MAX(MIN(a+b, r-1) - (r -1),0) = 

MAX( r - 1 - (r - 1), 0) = 0; 

(a x ci)<>(b xci) = MAX(a + ci 
- (r - 1), O)<>MAX(b + ci - (r - 1),0) 

= MIN(MAX(a + ci 
- (r - 1),0) + MAX(b + ci 

- (r - 1),0), r - 1); (E.0.34) 

if d = r - 1, then (a x ci)<>(b XCi) = MIN(a + b, r - 1); 
if ci = 0, then (a x d)<>(b x d) = MIN(O, r - 1) = 0; 
Note that expression MAX(a + d - (r - 1),0) is equal to am if d = r - 1 and is 

equal to 0, if d = o .. 
The TPRODUCT operator obeys the de Morgan law, since the expressions Eq. 

E.0.33 and Eq. E.0.34 are equal. 0 



333 

Proposition E.O.15. De Mor:qan law: 

aOb = a x b. (E.0.35) 

Proof. 
aOb = MIN(2r - 2a - b, r - 1); (E.0.36) 

a x b = MIN (a + y - (r - 1), 0) 

= MIN(r - 1 - a - b + r - 1, r - 1 - 0) = MIN(2r - 1 - a - b, r - 1). (E.0.37) 

Because the equations Eq. E.0.36 and Eq. E.0.37 defining the left and right side of 
expression Eq. E.0.35 are equal, the statement is correct. 0 

Proposition E.O.16. 16. De Moryan law: 

(E.0.38) 

Proof. 

a xb = MAX(r - 1 - a + r - 1 - b - r + 1,0) = MAX(r - 1 - a - b, 0). (E.0.39) 

aOb = MIN(a + b, 0) = MAX(r -l-a+r -1- b-r + 1, 0) = MIN(r-1- a- b, 0). 
(E.OAO) 

The statement is correct, because the expressions Eq. E.0.39 and Eq. E.OAO defining 
the right and left side of statement are equal. 0 



Appendix F 

Appendix. Distinctive features of 
the TSUM operator 

Let a, band c be the r-valued logic variables. Let" 0" and"·" be the TSUM and MIN 

r-valued logic operations respectively. The following operations hold for multi-valued 

algebra: 

1. Associative law: (aOb)Oc = aO(bOc) 

2. Commutative law: aOb = bOa 

3. Identities: 

3A. (r - 1)Oa = r - 1 

3B. OOa = a 

3C. xOOx10 .. ·Oxr - 1 = r - 1 

3D. 1· a102 . a20··· O(r -1) . ar
-

1 = a 

4. Distributive laws: 

4A. (a· b)Oc = (aOc) . (bOc) 

334 



4B. (aOb) . c =1= (a· c)O(b . c) 

4C. (aOb) . d = (a· d)O(b . d) 

335 



Bibliography 

[1] Kalganova T. and Miller J. Evolving more efficient digital circuits by allowing 

circuit layout evolution and multi-objective fitness. In Stoica A., Keymeulen 

D., and Lohn J., editors, Proc. of the First NASA/DoD Workshop on Evolvable 

Hardware, pages 54-63. IEEE Computer Society, July 1999. 

[2] Kalganova T. and Miller J. Circuit layout evolution: An evolvable hardware 

approach. In Coloquium on Evolutionary hardware systems. lEE Colloquium 

Digest., London, UK, 1999. 

[3] Kalganova T., Miller J., and Fogarty T.C. Evolution of the digital circuits with 

variable layouts. In Pmc. of the Genetic and Evolutionary Computation Con

ference (GECCO'99j, volume 2 of ISBN 1-55860-611-4, page 1235, Orlando, 

USA, July 1999. Morgan Kaufmann, San Francisco, CA. 

[4] Kalganova T. An extrinsic function-level evolvable hardware approach. In 

Poli R., Banzhaf W., Langdon W.B., Miller J., Nordin P., and Fogarty T.e., 

editors, Pmc. of the Third European Conference on Genetic Programming, Eu

roGP2000, volume 1802 of Lecture Notes in Computer Science, pages 60-75, 

Edinburgh, UK, 2000. Springer-Verlag. 

[5] Kalganova T. A new evolutionary hardware approach for logic design. In 

Annie S. Wu, editor, Proc. of the Genetic and Evolutionary Computation Con

ference (GECCO'99j Student Workshop, pages 360-361, Orlando, USA, 1999. 

336 



337 

[6] Kalganova T. Bidirectional incremental evolution in ehw. In Proc. of the Second 

NASA/DoD Workshop on Evolvable Hardware, July 2000. 

[7] Kalganova T., Miller J., and Fogarty T. Some aspects of an evolvable hardware 

approach for multiple-valued combinational circuit design. In Sipper M., Mange 

D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conf. on Evolvable Sys

tems: Fmm Biology to Hardware (ICES'98) , volume 1478 of Lecture Notes in 

Computer Science, pages 78-89, Lausanne, Switzerland, 1998. Springer-Verlag, 

Heidelberg. 

[8] Kalganova T., Miller J., and Lipnitskaya N. Multiple-valued combinational 

circuits synthesized using evolvable hardware approach. In Proc. of the 7th 

Workshop on Post-Binary Ultra Large Scale Integration Systems (ULSI'98) in 

association with ISMVL '98, Fukuoka, Japan, May 1998. IEEE Press. 

[9] Miller J.F., Kalganova T., Lipnitskaya N., and Job D. The genetic algorithm as 

a discovery engine: Strange circuits and new principles. In Proc. of the AISB'99 

Symposium on Creative Evolutionary Systems, CES'99, ISBN 1-902956-03-6, 

pages 65-74. Edinburgh, UK, The Society for the Study of Arificial Intelligence 

and Simulation of Behaviour, April 1999. 

[10] Xilinx Inc. The Programmable Logic Data Book. San Jose, California, USA, 

1994. 

[11] Hollingworth G., Smith A., and Tyrrell A. The intrinsic evolution of virtex de

vices through internet reconfigurable logic. In Miller J., Thompson A., Thomson 

P., and Fogarty T.C., editors, Proc. Of the 3rd Int. Conf. on Evolvable Systems: 

From Biology to Hardware (ICES 2000), volume 1801 of Lecture Notes in Com

puter Science, pages 72-79, Edinburgh, UK, 2000. Springer. 

[12] Zebulum R., Vellasco M., and Pacheco M. Evolvable hardware systems: Tax

onomy, survey and applications. In Pmc. Of the 1st Int. Conf. on Evolvable 



338 

Systems: From Biology to Hardware (ICES'96) , volume 1259 of Lecture Notes 

in Computer Science, pages 344-358, Tsukuba, Japan, 1996. Springer-Verlag, 

Heidelberg. 

[13] Almaini A.E.A. and Zhuang N. Variable ordering of bdds for multioutput 

boolean functions using evolutionary techniques. In Proc. of the 4th IEEE Int. 

Conference on Electronics, Circuits and Systems, ICECS'97, pages 1239-1244, 

1997. 

[14] Almaini A.E.A., Zhuang N., and Bourset F. Minimisation of multioutput bi

nary decision diagrams using hybrid generic algorithm. lEE Electronic Letters, 

31(20):1722-1723,1995. 

[15] Almaini A.E.A. and Zhuang N. Using genetic algorithms for the variable order

ing of reed-muller binary decision diagrams. Microelectronic Journal, 26(4):471-

480, 1995. 

[16] Bystrov A. and Almaini A.E.A. Testability and test compaction for decision di

agram circuits. lEE Proceedings on Circuits, Devices and Systems., 146(4):153-

158, 1999. 

[17] Murakawa M., Yoshizawa S., Kajitani L, Furuya T., Iwata M., and Higuchi 

T. Hardware evolution at function level. In Proc. of the Fifth International 

Conference on Parallel Problem Solving from Nature (PPSNIV) , Lecture Notes 

in Computer Science. Springer-Verlag, Heidelberg, 1996. 

[18] Higuchi T., Murakawa M., Iwata M., Kajitani L, Liu W., and Salami M. Evolv

able hardware at function level. In Proc. of IEEE 4th Int. Conference on Evo

lutionary Computation, CEC'97. IEEE Press, NJ, 1997. 

[19] Sanchez E., Mange D., Sipper M., Tomassini M., Perez-Uribe A., and Stauffer 

A. Phylogeny, ontogeny and epigenesis: Three sourses of biological inspiration 



339 

for softening hardware. In Proc. Of the 1st Int. Conf. on Evolvable Systems: 

From Biology to Hardware (ICES'96), volume 1259 of Lecture Notes in Com

puter Science, pages 35-54, Tsukuba, Japan, 1996. Springer-Verlag, Heidelberg. 

[20] Kitano H. Morphogenesis for evolvable systems. In Sanchez E. and Tomassini 

M., editors, Towards Evolvable Hardware. The Evolutionary Engineering Ap

proach., volume 1062 of Lecture Notes in Computer Science, pages 99-117. 

Springer-Verlag, 1996. 

[21] Zebulum R.S., Pacheco M.A., and Vellasco M. Analog circuits evolution in 

extrinsic and intrinsic modes. In Sipper M., Mange D., and Perez-Uribe A., 

editors, Proc. Of the 2nd Int. Conf. on Evolvable Systems: From Biology to 

Hardware (ICES'98), volume 1478 of Lecture Notes in Computer Science, pages 

154-165, Lausanne, Switzerland, 1998. Springer-Verlag, Heidelberg. 

[22] Thompson A. Silicon evolution. In Koza .1., editor, Proc. of the Conference 

on Genetic Programming, GP'96, Lecture Notes in Computer Science, pages 

444-452, Edinburgh, UK, 1996. MIT Press. 

[23] Higuchi T., Iwata M., Kajitani .1., Iba N., Hirao .1., Furuya T., and Manderick 

B. Evolvable hardware and its applications to pattern recognition and fault 

toulerant systems. In Sanchez E. and Tomassini M., editors, Towards Evolvable 

Hardwar'e. The Evolutionary Engineering Approach., volume 1062 of Lecture 

Notes in Computer Science, pages 118-135. Springer-Verlag, 1996. 

[24] Stoica A., Zebulum R., and Keymeulen D. Mixtrinsic evolution. In Miller .1., 

Thompson A., Thomson P., and Fogarty T.C., editors, Proc. Of the 3rd Int. 

Conf. on Evolvable Systems: From Biology to Hardware (ICES 2000), volume 

1801 of Lecture Notes in Computer Science, pages 208-217, Edinburgh, UK, 

2000. Springer. 



340 

[25] Miller J. F., Thomson P., and Fogarty T. C. Genetic algorithms and evolution 

strategies. In Quagliarella D., Periaux J., Poloni C., and Winter G., editors, 

EngineeTing and ComputeT Science: Recent Advancements and IndustTial Ap

plications. Wiley, 1997. 

[26] Coello C. A., Christiansen A. D., and Hernndez A. A. Use of evolutionary tech

niques to automate the design of combinational circuits. Intemationalloumal 

of SmaTt EngineeTing System Design, 2(4), 2000. 

[27] Coello C. A., Christiansen A. D., and Hernndez A. A. Towards automated 

evolutionary design of combinational circuits. ComputeTs and ElectTical Engi

neeTing, 2000. 

[28] Miller J. Evolution of digital filters using a gate array model. In Poli R., Voigt 

H-M., Cagnoni S., Corne D., Smith G.D., and Fogarty T.C., editors, Pmc. of the 

FiTst EvoIASP'99 WOTkshop on Image Analysis and Signal PTocessing, volume 

1596 of LectuTe Notes in ComputeT Science, pages 17-30, Goteborg, Sweden, 

1999. Springer-Verlag. 

[29] Miller J. Digital filter design at gate-level using evolutionary algorithms. In 

PTOC. of the Genetic and EvolutionaTY Computation ConfeTence (GECCO'99), 

volume 1 of ISBN 1-55860-611-4, pages 1127-1143, Orlando, USA, July 1999. 

Morgan Kaufmann, San Francisco, CA. 

[30] Hamilton A., Thomson P., and Tamplin M. Experiments in evolvable filter 

design using pulse based programmable analogue vlsi models. In Miller J., 

Thompson A., Thomson P., and Fogarty T.C., editors, Pmc. Of the 3Td Int. 

Conf. on Evolvable Systems: Fmm Biology to HaTdwaTe (ICES 2000), volume 

1801 of LectuTe Notes in ComputeT Science, pages 61-71, Edinburgh, UK, 2000. 

Springer. 



341 

[31] Koza J.R, Benett III F.H., Andre D., and Keane M.A. Four problems for 

which a computer program evolved by genetic programming is competitive with 

human performance. In Proc. of 1996 IEEE Int. Conference on Evolutionary 

Computation., pages 1-10. IEEE Press, 1996. 

[32] Koza J.R, Andre D., Benett III F.H., and Keane M.A. Design of a high

gain operational amplifier and other circuits by means of genetic programming. 

In Angelint P.J., Reynolds RG., McDonnell J.R, and Eberhart R, editors, 

Proc. of the 5th International Conference on Evolutionary Programming VI, 

EP97., volume 1213 of Lecture Notes in Computer Science, pages 125-136, 

Indianapolis, Indiana, USA, 1997. Berlin: Springer-Verlag. 

[33] Bennett III F.H., Koza J.R, Yu J., and Mydlowec W. Automatic synthesis, 

placement and routing of an amplifier circuit by means of genetic programming. 

In Miller J., Thompson A., Thomson P., and Fogarty T.e., editors, Proc. Of the 

3rd Int. Conf. on Evolvable Systems: From Biology to Hardware (ICES 2000), 

volume 1801 of Lecture Notes in Computer Science, pages 1-10, Edinburgh, 

UK, 2000. Springer. 

[34] Bennett III F.H., Koza J.R, Andre D., and Keane M.A. Evolution of a 60 

decibel op amp using genetic programming. In Proc. Of the 1st Int. Conf. 

on Evolvable Systems: From Biology to Hardware (ICES'96), volume 1259 of 

Lecture Notes in Computer Science, pages 455-469, Tsukuba, Japan, 1996. 

Springer-Verlag, Heidelberg. 

[35] Thompson A., Harvey J., and Hasbands P. Unconstraned evolution and hard 

consequences. In Sanchez E. and Tomassini M., editors, Towards Evolvable 

Hardware. The Evolutionary Engineering Approach., volume 1062 of Lecture 

Notes in Computer Science, pages 136-165. Springer-Verlag, 1996. 



342 

[36] Thompson A. An evolved circuit, intrisic in silicon, entwined with physics. In 

Higuchi T., Iwata M., and Liu W, editors, Proc. Of the 1st Int. Conf. on Evolv

able Systems: From Biology to Hardware (ICES'96), volume 1259 of Lecture 

Notes in Computer Science, pages 390-405, Tsukuba, Japan, 1996. Springer

Verlag, Heidelberg. 

[37] Thomspon A. On the automatic design of robust electronics through artificial 

evolution. In Sipper M., Mange D., and Perez-Uribe A., editors, Proc. Of the 

2nd Int. Conf. on Evolvable Systems: From Biology to Hardware (ICES'98) , 

volume 1478 of Lecture Notes in Computer Science, pages 13-24, Lausanne, 

Switzerland, 1998. Springer-Verlag, Heidelberg. 

[38] Huelsbergen L., Rietman E., and Slous R Evolution of astable multivibrators 

in silico. In Sipper M., Mange D., and Perez-Uribe A., editors, Proc. Of the 

2nd Int. Conf. on Evolvable Systems: From Biology to Hardware (ICES'98) , 

volume 1478 of Lecture Notes in Computer Science, pages 66-77, Lausanne, 

Switzerland, 1998. Springer-Verlag, Heidelberg. 

[39] Lohn J.D. and Colombano S.P. Automated analog circuit synthesis using a 

linear representation. In Sipper M., Mange D., and Perez-Uribe A., editors, 

Proc. Of the 2nd Int. Conf. on Evolvable Systems: From Biology to Hardware 

(ICES'98), volume 1478 of Lecture Notes in Computer Science, pages 125-134, 

Lausanne, Switzerland, 1998. Springer-Verlag, Heidelberg. 

[40] Zebulum RC., Pacheco M.A., and Vellasco M. Comparison of different evolu

tionary methodologies applied to electronic filter design. In Proc. of 1998 IEEE 

Int. Confer·ence on Evolutionary Computation., Anchorage, Alaska, USA, 1998. 

IEEE Press. 

[41] Zebulum RS., Pacheco M.A., and Vellsco M. Artificial evolution of active 

filters: A case study. In Stoica A., Keymeulen D., and Lohn J., editors, Proc. 



343 

of the First NASA/DoD Workshop on Evolvable Hardware, pages 66-75. IEEE 

Computer Society, July 1999. 

[42] Murakawa M., Yoshizawa S., Adachi T., Suzuki S., Takasuka K., Iwata M., and 

Higuchi T. Analogue ehw chip for intermediate frequency filters. In Sipper M., 

Mange D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conf. on Evolvable 

Systems: From Biology to Hardware (ICES'98), volume 1478 of Lecture Notes 

in Computer Science, pages 134-143, Lausanne, Switzerland, 1998. Springer

Verlag, Heidelberg. 

[43] Perkins S., Porte R., and Harvey N. Everything on the chip: a hardware

based self-cintained spatially-strctured genetic algorithm for signal processing. 

In Miller J., Thompson A., Thomson P., and Fogarty T.C., editors, Proc. Of the 

3rd Int. Conf. on Evolvable Systems: Fr-om Biology to Hardware (ICES 2000), 

volume 1801 of Lecture Notes in Computer Science, pages 165-174, Edinburgh, 

UK, 2000. Springer. 

[44] Zebulum R.S., Stoica A., and Keymeulen D. A flexible model of a cmos field 

programmable transistor array targeted for hardware evolution. In Miller J., 

Thompson A., Thomson P., and Fogarty T.C., editors, Proc. Of the 3rd Int. 

Conf. on Evolvable Systems: From Biology to Hardware (ICES 2000), volume 

1801 of Lecture Notes in Computer Science, pages 274-283, Edinburgh, UK, 

2000. Springer. 

[45] Tufte G. and Haddow P.C. Prototyping a ga pipeline for complete hardware 

evolution. In Stoica A., Keymeulen D., and Lohn J., editors, Proc. of the First 

NASA/DoD Workshop on Evolvable Hardware, pages 18-25. IEEE Computer 

Society, July 1999. 

[46] Kajitani 1., Hoshino T., Nishikawa D., Yokoi H., Nakaya S., Yamauchi T. oand 

Inuo T., Kajihara N., Iwata M., Keymeulen D., and Higuchi T. A gate-level ehw 



344 

chip: Implementing ga operations and reconfigurable hardware on a single lsi. In 

Sipper M., Mange D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conf. 

on Evolvable Systems: Fr-om Biology to Hardware (ICES'98), volume 1478 of 

Lecture Notes in Computer Science, pages 1-12, Lausanne, Switzerland, 1998. 

Springer-Verlag, Heidelberg. 

[47] Keymeulen D., Durantez M., Konaka K., Kuniyoshi J., and Higuchi T. An 

evolutionary robot navigation system using a gate-level evolvable hardware. In 

Proc. Of the 1st Int. Conf. on Evolvable Systems: From Biology to Hardware 

(ICES'96), volume 1259 of Lecture Notes in Computer Science, pages 195-209, 

Tsukuba, Japan, 1996. Springer-Verlag, Heidelberg. 

[48] Higuchi T., Iwata M., Kajitani I., Murakawa M., Yoshizawa S., and Furuya T. 

Hardware evolution at gate and function level. In Proc. of the Int. Conf. on Bi

ologically Inspired Autonomous Systems: Computation, Cognition and Action. 

Durham, NC, USA, 1996. 

[49] Murakawa M., Yoshizawa S., and Higuchi T. Adaptive equalization of digital 

communication channels using evolvable hardware. In Proc. Of the 1st Int. 

Conf. on Evolvable Systems: From Biology to Hardware (ICES'96), volume 

1259 of Lecture Notes in Computer Science, pages 379-389, Tsukuba, Japan, 

1996. Springer-Verlag, Heidelberg. 

[50] Liu W., Murakawa M., and Higuchi T. Atm cell scheduling by function level 

evolvable hardware. In Proc. Of the 1st Int. Conf. on Evolvable Systems: Fr-om 

Biology to Hardware (ICES'96), volume 1259 of Lecture Notes in Computer 

Science, pages 180-192, Tsukuba, Japan, 1996. Springer-Verlag, Heidelberg. 

[51] Koza J. R. Genetic Pr-ogramming II: Automatic Discovery of Reusable Pr-o

grams. MIT Press, 1994. 



345 

[52] Salami M., Iwata M., and Higuchi T. Lossless image compression by evolvable 

hardware. In Husbands P. and Harvey 1., editors, Pmc. of the Fourth European 

Conference on Artificial Life (ECAL97), pages 407-416. A Bradford book, MIT 

Press, 1997. 

[53] Miller J. An empirical study of the efficiency of learning boolean functions using 

a cartesian genetic programming approach. In Proc. of the Genetic and Evo

lutionary Computation Conference (GECCO'99), volume 1 of ISBN 1-55860-

611-4, pages 1135-1142, Orlando, USA, July 1999. Morgan Kaufmann, San 

Francisco, CA. 

[54] Torresen J. A divide-and-conquer approach to evolvable hardware. In Sipper M., 

Mange D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conlon Evolvable 

Systems: From Biology to Hardware (ICES'98), volume 1478 of Lecture Notes in 

Computer Science, pages 57-65, Lausanne, Switzerland, 1998. Springer-Verlag, 

Heidelberg. 

[55] Torresen J. Increased complexity evolution applied to evovable hardware. In 

Smart Engineering System Design, ANNIE'99. St. Louis, USA, 1999. 

[56] Harvey 1. Artificial evolution for real problems. In Gomi T., editor, Pmc. of the 

5th Intl. Symposium on Evolutionary Robotics, Evolutionary Robotics: From 

Intelligent Robots to Artificial Life (ER '97), Tokyo, Japan, 1997. AAI Books. 

[57] Floreano D. and Mondada F. Hardware solutions for evolutionary robotics. In 

Husbands P. and Meyer J-A., editors, Proc. of the First European Workshop on 

Evolutionary Robotics. Berlin: Springer-Verlag, 1998. 

[58] Fukunaga A.S. and Kahng A.B. Improving the performance of evolutionary 

optimization by dynamically scaling the evolution function. In Proc. of the 

1995 IEEE Conference on Evolutionary Computation, volume 1, pages 182-

187, Perth, Australia, 29-1 1995. IEEE Press. 



346 

[59] Gomez F. and Miikkulainen R. Solving non-markovian control tasks with 

neurevolution. In Proc. of the International Joint Conference on Artificial In

telligence (IJCA1'99), Stockholm, Sweden, 1999. Denver: Morgan Kaufmann. 

[60] Dorigo M. and Gambardella L. M. Ant colony system: A cooperative learning 

approach to the traveling salesman problem. IEEE Transactions on Evolution

ary Computation, 1(1):53-66, 1997. 

[61] Dorigo M., Maniezzo V., and Colorni A. The ant system: Optimization by 

a colony of cooperating agents. IEEE Transactions on Systems, Man, and 

Cybernetics-Part B, 26(1):29-41, 1996. 

[62] Dorigo M. and Di Garo G. The ant colony optimisation meta-heuristic. In Corne 

D., Dorigo M., and Glover F., editors, New Ideas in Optimisation. McGraw-Hill, 

1999. 

[63] Lohn J.D., Haith G.L., Colombano S.P., and Stassinopoulos D. A comparison 

of dynamic fitness schedules for evolutionary design of amplifiers. In Stoica A., 

Keymeulen D., and Lohn J., editors, Proc. of the First NASA/DoD Workshop 

on Evolvable Hardware, pages 87-92. IEEE Computer Society, July 1999. 

[64] Kasai Y, Sakanashi H., Murakawa M., Kiryu S., Marston N., and Higuchi T. 

Initial evaluation of an evolvable microwave circuit. In Miller J., Thompson A., 

Thomson P., and Fogarty T.C., editors, Proc. Of the 3rd Int. Conf. on Evolvable 

Systems: From Biology to Hardware (ICES 2000), volume 1801 of Lecture Notes 

in Computer Science, pages 103-112, Edinburgh, UK, 2000. Springer. 

[65] Layzell P. A new research tool for intrinsic hardware evolution. In Sipper M., 

Mange D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conf. on Evolvable 

Systems: Fmm Biology to Hardware (ICES'98), volume 1478 of Lecture Notes in 

Computer Science, pages 47-56, Lausanne, Switzerland, 1998. Springer-Verlag, 

Heidelberg. 



347 

[66] Manovit C., Aporntewan C., and Chongstivatana P. Synthesis of synchronous 

sequencial logic circuits from partial input/output sequences. In Sipper M., 

Mange D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conf. on Evolvable 

Systems: From Biology to Hardwar'e (ICES'98), volume 1478 of Lecture Notes 

in Computer Science, pages 98-105, Lausanne, Switzerland, 1998. Springer

Verlag, Heidelberg, 

[67] Levi D. and Guccione S.A. Genetic fpga: Evolving stable circuits on mainstream 

fpgadevices. In StoicaA., Keymeulen D., and Lohn J., editors, Proc. of the First 

NASA/DoD Workshop on Evolvable Hardware, pages 12-17. IEEE Computer 

Society, July 1999. 

[68] Damiani E., Tettamanzi A.G.B., and Liberali V. On-line evolution of fpga

based circuits: A case study on hash functions. In Stoica A., Keymeulen D., 

and Lohn J., editors, Proc. of the First NASA/DoD Workshop on Evolvable 

Hardware, pages 26-33. IEEE Computer Society, July 1999. 

[69] Pollack J.B., Lipson H., Ficici S., Funes P., Hornby G., and Watson R. Evolu

tionary techniques in physical robotics. In Miller J., Thompson A., Thomson 

P., and Fogarty T.C., editors, Proc. Of the 3rd Int. Conf. on Evolvable Sys

tems: From Biology to Hardware (ICES 2000), volume 1801 of Lecture Notes 

in Computer Science, pages 175-186, Edinburgh, UK, 2000. Springer. 

[70] Mondada F. and Floreano D. Evolution and mobile autonomus robotics. In 

Sanchez E. and Tomassini M., editors, Towar'ds Evolvable Hardware. The Evo

lutionary Engineering Approach., volume 1062 of Lecture Notes in Computer 

Science, pages 221-249. Springer-Verlag, 1996. 

[71] Naito T., Odagiri R., Matsunaga J., Tanifuji M., and Murase K. Genetic 

evolution of a logic circuit which controls an autonomous mobile robot. In 

Proc. Of the 1st Int. Conf. on Evolvable Systems: From Biology to Hardware 



348 

(ICES'96), volume 1259 of Lecture Notes in Computer Science, pages 210-219, 

Tsukuba, Japan, 1996. Springer-Verlag, Heidelberg. 

[72J Silva A., Neves A., and Costa E. Evolving controllers for autonomous agents 

using genetically programmed networks. In Poli R., Nordin P., Langdon VV.B., 

and Fogarty T.C., editors, Proc. of the 2nd European Workshop on Genetic 

Programming, EuroGP'99, volume 1598 of Lecture Notes in Computer Science, 

pages 255-269, Goteburgh, Sweden, 1999. Springer-Verlag. 

[73J Yamamoto J. and Anzai J. Autonomous robot with evolving algorithm based on 

biological systems. In Proc. Of the 1st Int. Conf. on Evolvable Systems: From 

Biology to Hardware (ICES'96), volume 1259 of Lecture Notes in Computer 

Science, pages 220-233, Tsukuba, Japan, 1996. Springer-Verlag, Heidelberg. 

[74J Ito H. and Furuya T. Memory-based neural network and its application to a 

mobile robot with evolutionary adn experience learning. In Higuchi T., Iwata 

M., and Liu W., editors, Proc. Of the 1st Int. Conference on evolvable Sys

tems: From Biology to Hardware (ICES'96) , volume 1259 of Lecture Notes in 

Computer Science, pages 234-246, Tsukuba, Japan, 1996. Springer-Verlag, Hei

delberg. 

[75J Thompson A. Evolving electronic robot controllers that exploit hardware re

sources. In Proc. of the Third European Conference on Artificial Life (ECAL95), 

pages 640-656. Springer-Verlag, 1995. 

[76] Ebner M. Evolution of a control architecture for a mobile robot. In Sipper M., 

Mange D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conf. on Evolvable 

Systems: From Biology to Hardware (ICES'98) , volume 1478 of Lecture Notes 

in Computer Science, pages 303-310, Lausanne, Switzerland, 1998. Springer

Verlag, Heidelberg. 



349 

[77] Koza J.R., Yu J., Keane M.A., and Mydlowex W. Evolution of a controller with 

a free variable using genetic programming. In Poli R., Banzhaf VV., Langdon 

W.B., Miller J., Nordin P., and Fogarty T.C., editors, Proc. of the Third Euro

pean Conference on Genetic Programming, Euro G P2000, volume 1802 of Lec

ture Notes in Computer Science, pages 91-106, Edinburgh, UK, 2000. Springer

Verlag. 

[78] Andersson B., Svensson P., Nordahl M., and Nordin P. On-line evolution of 

control for a four-legend robot using genetic programming. In Cagnoni S. 

et aI, editor, Proc. of Evo Workshops 2000: EvoIASP, EvoSCONDI, EvoTel, 

SvoSTim, EvoRob and EvoFlight, volume 1803 of Lecture Notes in Computer 

Science, pages 319-326, Edinburgh, UK, 2000. Springer-Verlag. 

[79] Hornby G.S., Takamura S., Hanagata 0., Fujita M., and Pollack J. Evolution 

of controllers from a high-level simulator to a high dof robot. In Miller J., 

Thompson A., Thomson P., and Fogarty T.C., editors, Proc. Of the 3rd Int. 

Conf. on Evolvable Systems: From Biology to Hardware (ICES 2000), volume 

1801 of Lecture Notes in Computer Science, pages 80-89, Edinburgh, UK, 2000. 

Springer. 

[80] Hollingworth G., Tyrrel A., and S. Smith. Simulation of evolvable hardware 

to solve low level image processing tasks. In Poli R., Voigt H-M., Cagnoni S., 

Corne D., Smith G.D., and Fogarty T.C., editors, Pmc. of the First EvoIASP'99 

Workshop on Image Analysis and Signal Processing, volume 1596 of Lecture 

Notes in Computer Science, pages 46-58, Goteborg, Sweden, 1999. Springer

Verlag. 

[81] Dumoulin J., Foster J.A., Frenzel J.F., and McGrew S. Special purpose image 

convolution with evolvable hardware. In Cagnoni S. et aI, editor, Proc. of 

Evo Workshops 2000: EvoIASP, EvoSCONDI, EvoTel, SvoSTim, EvoRob and 



350 

EvoFlight, volume 1803 of Lecture Notes m Computer Science, pages 1-11, 

Edinburgh, UK, 2000. Springer-Verlag. 

[82] Yasunaga M., Nakamura T., Yoshihara L, and Kim J.H. Genetic algorithm

based design methodology for pattern recoginition hardware. In Miller .1., 

Thompson A., Thomson P., and Fogarty T.C., editors, Proc. Of the 3rd Int. 

Conf. on Evolvable Systems: From Biology to Hardwar'e (ICES 2000), volume 

1801 of Lecture Notes in Computer Science, pages 264-273, Edinburgh, UK, 

2000. Springer. 

[83] Takanaka M., Sakahashi H., Salami H., Iwata M., Kurita T., and Higuchi T. 

Data compression for digital color electrophotographic printer with evolvable 

hardware. In Sipper M., Mange D., and Perez-Uribe A., editors, Proc. Of the 

2nd Int. Conf. on Evolvable Systems: From Biology to Hardware (ICES'98), 

volume 1478 of Lecture Notes in Computer Science, pages 106-114, Lausanne, 

Switzerland, 1998. Springer-Verlag, Heidelberg. 

[84] Stoica A., Fukunaga A., Hayworth L., and Salazar-Lazaro C. Evolvable hard

ware for space applications. In Sipper M., Mange D., and Perez-Uribe A., 

editors, Proc. Of the 2nd Int. Conf. on Evolvable Systems: From Biology to 

Hardware (ICES'98), volume 1478 of Lecture Notes in Computer Science, pages 

166-173, Lausanne, Switzerland, 1998. Springer-Verlag, Heidelberg. 

[85] Manderick B. and Higuchi T. Evolvable hardware: An outlook. In Proc. Of 

the 1st Int. Conf. on Evolvable Systems: From Biology to Hardware (ICES'96) , 

volume 1259 of Lecture Notes in Computer Science, pages 305-311, Tsukuba, 

Japan, 1996. Springer-Verlag, Heidelberg. 

[86] Salami M., Murakawa M., and Higuchi T. Data compression based on evolvable 

hardware. In Proc. Of the 1st Int. Conf. on Evolvable Systems: From Biology 



351 

to Hardware (ICES'96) , volume 1259 of Lecture Notes in Computer Science, 

pages 169-179, Tsukuba, Japan, 1996. Springer-Verlag, Heidelberg. 

[87] Hamilton A., Papathanasiou K., Tamplin M., and Brandtner T. Palmo: Field 

programmable analogue and mixed-signal vlsi for evolvable hardware. In Sip

per M., Mange D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conf. on 

Evolvable Systems: From Biology to Hardware (ICES'98), volume 1478 of Lec

ture Notes in Computer Science, pages 335-344, Lausanne, Switzerland, 1998. 

Springer-Verlag, Heidelberg. 

[88] Langeheine J., FoIling S., Meier K., and Schemmel J. Initial evaluation of 

an evolvable microwave circuit. In Miller J., Thompson A., Thomson P., and 

Fogarty T.C., editors, Proc. Of the 3rd Int. Conf. on Evolvable Systems: From 

Biology to Hardware (ICES 2000), volume 1801 of Lecture Notes in Computer 

Science, pages 123-132, Edinburgh, UK, 2000. Springer. 

[89] Stoica A., Keymeulen D., Tawel R., Salazar-Lazaro C., and Li W. Evolution

ary experiments with a fine-grained reconfigurable architecture for analog and 

digital cmos circuits. In Stoica A., Keymeulen D., and Lohn J., editors, Proc. 

of the First NASA/DoD Workshop on Evolvable Hardware, pages 76-84. IEEE 

Computer Society, July 1999. 

[90] Thompson A. and Layzell P. Evolution of robustness in an electronics design. 

In Miller J., Thompson A., Thomson P., and Fogarty T.C., editors, Proc. Of the 

3r·d Int. Conf. on Evolvable Systems: From Biology to Hardware (ICES 2000), 

volume 1801 of Lecture Notes in Computer Science, pages 218-228, Edinburgh, 

UK, 2000. Springer. 

[91] Layzell P. and Thompson A. Understanding inherent qualities of evolved cir

cuits: Evolutionary history as a predictor of fault tolerance. In Miller J., 

Thompson A., Thomson P., and Fogarty T.C., editors, Proc. Of the 3rd Int. 



352 

Conf. on Evolvable Systems: From Biology to Hardware (ICES 2000), volume 

1801 of Lecture Notes in Computer Science, pages 133-144, Edinburgh, UK, 

2000: Springer. 

[92] Millet P. and Heudin J .-C. Fault tolerance of a large-scale mimd architecture 

using a genetic algorithm. In Sipper M., Mange D., and Perez-Uribe A., editors, 

Proc. Of the 2nd Int. Conf. on Evolvable Systems: Fmm Biology to Hardware 

(ICES'98), volume 1478 of Lecture Notes in Computer Science, pages 356-363, 

Lausanne, Switzerland, 1998. Springer-Verlag, Heidelberg. 

[93] Layzell P. Inherent qualities of circuits. designed by artificial evolution: A 

preliminary study of populational fault tolerance. In Stoica A., Keymeulen D., 

and Lohn J., editors, Proc. of the First NASA/DoD Workshop on Evolvable 

Hardware, pages 85-86. IEEE Computer Society, July 1999. 

[94] Bradley D.W. and Tyrrell A.M. Automatic synthesis, placement and routing of 

an amplifier circuit by means of genetic programming. In Miller J., Thompson 

A., Thomson P., and Fogarty T.C., editors, Proc. Of the 3rd Int. Conf. on Evolv

able Systems: From Biology to Hardware (ICES 2000), volume 1801 of Lecture 

Notes in Computer Science, pages 11-20, Edinburgh, UK, 2000. Springer. 

[95] Moreno J.M., Madrenas J., Faura J., Canto E., Cabestany J., and Insenser J.M. 

Feasible evolutionary and self-repairing hardware by means of the dynamic re

configuration capabilities of the fipsoc devices. In Sipper M., Mange D., and 

Perez-Uribe A., editors, Pmc. Of the 2nd Int. Conf. on Evolvable Systems: 

From Biology to Hardware (ICES'98), volume 1478 of Lecture Notes in Com

puter Science, pages 345-355, Lausanne, Switzerland, 1998. Springer-Verlag, 

Heidelberg. 

[96] Moreno J., Madrenas J., CAbestany J., Canto E., Kiebik R., Faura J., and 

Insenser J. Realization of self-repairing and evolvable hardware structures by 



353 

means of implicit self-configuration. In Stoica A., Keymeulen D., and Lohn J., 

editors, Proc. of the First NASA/DoD Workshop on Evolvable Hardware, pages 

182-187. IEEE Computer Society, ,July 1999. 

[97] Iba I., Iwata M., and Higuchi T. Machine learning approach to gate-level 

evolvable hardware. In Higuchi T., Iwata M., and Liu W., editors, Proc. Of the 

1st Int. Conference on evolvable Systems: From Biology to Hardware (ICES'96) , 

volume 1259 of Lecture Notes in Computer Science, pages 327-344, Tsukuba, 

Japan, 1996. Springer-Verlag, Heidelberg. 

[98] Masher J., Cavalieri J., Frenzel J., and Foster J.A. Representation and robust

ness for evolved sorting networks. In Stoica A., Keymeulen D., and Lohn J., 

editors, Proc. of the First NASA/DoD Workshop on Evolvable Hardware, pages 

255-261. IEEE Computer Society, July 1999. 

[99] Xilinx Inc. XC6200 field programmable gate arrays data book. 

http://www.xilinx.com/partinfo/6200.pdf, 1995. 

[100] Xilinx Inc. Virtex field prograsmmable gate arrays databook. 

http:/ /www.xilinx.com/partinfo/ds003.pdf, 1999. 

[101] Xilinx Inc. JBits documentation. JBits 2.0.1 documentation., 1999. 

[102] Miller J. and Thomson P. Evolving digital electronic circuits for real-valued 

function generation using a genetic algorithm. In Koza J .R., Banzhaf W., Chel

lapilla K., Deb K., Dorigo M., Fogel D.B., Garzon M.H., Goldberg D.E., Iba H., 

and Riolo R.L., editors, Genetic Programming 1998: Proc. of the Third Annual 

Conference (GP'98), pages 863-868, Madison, Wisconsin. San Francisco, July 

1998. CA: Morgan Kaufmann. 

[103] Hernandez-Aguirre A.H., Coello Coello C.A., and Buckles B.P. A genetic pro

gramming approach to logic function synthesis by means of multiplexer. In 



354 

Stoica A., .l(eymeulen D., and Lohn .1., editors, Pr·oc. of the First NASA/DoD 

Workshop on Evolvable Hardware, pages 46-53. IEEE Computer Society, July 

1999. 

[104] Miller.J. On the filtering properties of evolved gate arrays. In Stoica A., 

Keymeulen D., and Lohn .1., editors, Proc. of the First NASA/DoD Workshop 

on Evolvable Hardware, pages 2-11. IEEE Computer Society, July 1999. 

[105] Coello Coell C.A., Zavala R.L., Garcia B.M., and Aguirre A.H. Ant colony 

system for the design of combinational logic circuits. In Miller .T., Thompson A., 

Thomson P., and Fogarty T.C., editors, Proc. Of the 3rd Int. Conf. on Evolvable 

Systems: From Biology to Hardware (ICES 2000), volume 1801 of Lecture Notes 

in Computer Science, pages 21-30, Edinburgh, UK, 2000. Springer. 

[106] Louis S.J. Genetic Algorithms as a Computational Took for Design. Phd thesis, 

Department of Computer Science, Indiana University, August 1993. 

[107] Coello C.M. A comprehensive survey of evolutionary-based multiobjective opti

mization techniques. Knowledge and Information systems, 1(3):269-308, 1999. 

[108] Coello C. A., Christiansen A. D., and Aguirre A.H. Automated design of com

binational logic circuits using genetic algorithms. In Smith D.G., Steele N.C., 

and Albrecht R.F., editors, Pmc. Of the Int. Conference on Artificial Neural 

Nets and Genetic Algorithms, ICANNGA '97, pages 335-338. University of East 

Anglia, Norwich, England, Springer-Verlag, 1997. 

[109] Hernandez A.A., Buckles B.P., and Coello C.C.A. Gate-level synthesis of 

boolean functions using binary multiplexers and genetic programming. In Proc. 

of the Congress on Evolutionary Computation, CEC'OO. San-Diego, California, 

July 2000. 



355 

[110] Miller J: and Thomson P. Aspects of digital evolution: Geometry and learning. 

In Sipper M., Mange D., and Perez-Uribe A., editors, Proc. Of the 2nd Int. Conf. 

on Evolvable Systems: From Biology to Hardware (ICES '98), volume 1478 of 

Lecture Notes in Computer Science, pages 25-35, Lausanne, Switzerland, 1998. 

Springer-Verlag, Heidelberg. 

[111] Fogarty T. C., Miller J.F., and Thomson P. Evolving digital logic circuits on xil

inx 6000 family fpgas. In P. K. Chawdhry, R Roy, and RK. Pant, editors, The 

2nd Online Conf. on Soft Computing in Engineering Design and Manufacturing 

(1997), pages 299-305. Springer-Verlag, London, 1998. 

[112} Miller J, and Thomson P. Aspects of digital evolution: Evolvability and archi

tecture. In Eiben A. et al., editor, Proc. of the Fifth International Conference on 

Parallel Problem Solving from Nature (PPSNV) , volume 1498 of Lecture Notes 

in Computer Science, pages 927-936. Springer-Verlag, Heidelberg, September 

1999. 

[113] Miller J. and Thomson P. Cartesian genetic programming. In Poli R, Banzhaf 

W., Langdon W.B., Miller J., Nordin P., and Fogarty T.C., editors, Proc. of 

the Third European Conference on Genetic Programming, EuroGP2000, volume 

1802 of Lecture Notes in Computer Science, pages 121-133, Edinburgh, UK, 

2000. Springer-Verlag. 

[114] Iwata M., Kajitani 1., Yamada H.; Iba H., and Higuchi T. A pattern recognition 

system using evolvable hardware. In Proc. of the Fifth International Conference 

on Parallel Problem Solving from Nature (PPSNIV) , volume LNCS 1141 of 

Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1996. 

[115] Poli R Sub-machine-code gp: New resultss and extensions. Technical Report 

Technical report CSRT-98-19, University of Birmingham, School of Computer 

Sciencem, Birmingham, UK, 1998. 



356 

[116] Vassilev V, and Miller.1. The advantages of landscape neutrality in digital 

circuit evolution. In Miller .1., Thompson A., Thomson P., and Fogarty T.C., 

editors, Proc. Of the 3rd Int. Conf. on Evolvable Systems: From Biology to 

Hardware (ICES 2000), volume 1801 of Lecture Notes in Computer Science, 

pages 252-263, Edinburgh, UK, 2000. Springer. 

[117] Gomez F. and Miikkulainen R Incremental evolution of complex general be-

haviour. Adaptive Behaviour., 5:317-342, 1997. 

[118] Filliat D., Kodjabachian .1., and Meyer J.A. Incremental evolution of neural 

controllers for navigation in a 6-legged robot. In Sugisaka and Tanaka, editors, 

Proc. of the Fourth International Symposium on Art~ficial Life and Robotics. 

Oita Univ. Press, 1999. 

[119] Harvey J., Husbands P., and Cliff D. Seeing the light: Artificial evolution, 

real vision. In From Animals to Animats 3: Proc. of the 3rd Int. Conf. on 

Simulation of Adaptive Behaviour, pages 392-401, 1994. 

[120] Harvey J., Husbands P., and Cliff D. Issues in evolutionary robotics. In From 

Animals to Animats 2: Proc. of the 2nd Int. Conf. on Simulation of Adaptive 

Behaviour, pages 364-374, 1992. 

[121] Nolfi S., Floreano D., Miglino 0., and Mondada F. How to evolve autonomous 

robots: Different approaches in evolutionary robots. In Pmc. of the Artificial 

Life IV, pages 190-197, 1994. 

[122] Winkeler J.F. and Manjunath B.S. Incremental evolution of neural controllers 

for navigation in a 6-legged robot. In Koza J.R, Banzhaf VV., Chellapilla K., 

Deb K., Dorigo M., Fogel D.B., Garzon M.H., Goldberg D.E., Iba H., and 

Riolo RL., editors, Genetic Programming 1998: Proc. of the Third Annual 

Conference (GP'98), pages 403-411, Madison, vVisconsin. San Francisco, July 

1998. CA: Morgan Kaufmann. 



357 

[123] Chavas J.,Corne C., Horvai P., Kodjabachian J., and J.A. ~eyer. Incremental 

evolution of neural controllers for robust obstacle-avoidance in khepera. In 

Husbands P. and Meyer J-A., editors, Proc. of the First European Workshop on 

Evolutionary Robotics. Berlin: Springer-Verlag, 1998. 

[124] King Rand Noval M. Sybil: A system for the incremental evolution of dis

tributed, heterogeneous database layers. In Proc. of the 2nd Annual Americas 

Conference on Information Systems Minitrack on Heterogeneous Interoperabil

ity, Phoenix, Arizona, USA, 1996. 

[125] Ramakrishnan S. An object-oriented design for modelling. business rules in 

resource allocation jobs. In Proc. of the Object-Oriented Information Systems 

(OOIS 94), pages 105-113, London, UK, 1994. 

[126] Kitano H. Building complex systems using developmental process: An engineer

ing approach. In Sipper M., Mange D., and Perez-Uribe A., editors, Proc. Of 

the 2nd Int. Conf. on Evolvable Systems: From Biology to Hardware (ICES'98) , 

volume 1478 of Lecture Notes in Computer Science, pages 218-229, Lausanne, 

Switzerland, 1998. Springer-Verlag, Heidelberg. 

[127] Geiger RL., Allen P.E., and Strader N.R VLSI Design Techniwues for Analog 

and Digital Circuits. McGraw-Hill Publishing Company, 1990. 

[128] Horowitz P. and Hill VV. The Art of Electronics. Cambridge University Press, 

second edition edition, 1990. 

[129] vVeste N. and Eshraghian K. Principles of CMOS VLSI Design. A Systems 

Perspective. Addison-Wesley, 1985. 

[130] Brzozowski J .A. and Seger C.-J. Asynhronous Circuits. SpringIer Verlag, New 

York, NY, 1995. 



358 

[131] SrinivasN .. and DebK. Multiobjective optimization using nondominated sorting 

in genetic algorithms. Evolutionary Computation, 2(3):221-248, 1994. 

[132] Coello C.A. An updated survey of evolutionary multiobjective optimization 

techniques: State of the art and future trends. In Proc. of the Congress on 

Evolutionary Computation, CEC'99, volume 2 of ISBN 0-7803-5536-9, pages 

3-13. Washington DC, USA, IEEE Press, Piscataway, NJ, July 1999. 

[133] Fonseca C.M. and Fleming P.J. An overview of evolutionary algorithms in 

multiobjective optimization. IEEE Transactions on Evolutionary Computation, 

3(1):1-16,1995. 

[134] Hans A.E. Multicriteria optimization for highly accurate systems. Multicriteria 

Optimization in Engineering and Sciences, Mathematical concepts and methods 

in science and engineering, 19:309-352, 1988. 

[135] Miller J., Job D., and Vassilev V. Principles in the evolutionary design of digital 

circuits - part 1. Genetic Programming and Evolvable Machines, 1(1/2):7-37, 

2000. 

[136] Cantu-Paz E. A survey of parallel genetic algorithms. Calculateurs Parallels, 

10(2), 1998. 

[137] Koza J. R. Genetic Programming. MIT Press, Cambridge, Massachusetts, 1992. 

[138] Koza J. R., Andre D., Bennet III F.H., and Keane M.A. Design of a high-gain 

operational amplifier and others circuits by means of genetic programming. In 

Proc. of the 6th Int. Conference on Evolutionary Programming., volume 1213 

of Lecture Notes in Computer Science, pages 125-135. Springer-Verlag, 1997. 

[139] Goeke M., Sipper M., Mange D., Stauffer S., Sanchez E., and Tomassini M. 

Online autonomous evolware. In Pmc. Of the 1st Int. Con/. on Evolvable Sys

tems: From Biology to Hardware (ICES'96), volume 1259 of Lecture Notes in 



359 

Computer Science, pages 96-106, Tsukuba, Japan, 1996. Springer-Verlag, Hei

delberg. 

[140] Clark G.R. A novel function-level ehw architecture within modern fpgas. In 

Pmc. of the Congress on Evolutionary Computation, CEC'99, volume 2 of ISBN 

0- 7B03-5536-9, pages 830-833. ·Washington DC, USA, IEEE Press, Piscataway, 

NJ, July 1999. 

[141] Moraga C. and W. Wang. Evolutionary methods in the design of quaternary 

digital circuits. In Proc. of the 2Bth Int. Symposium on Multiple- Valued Logic 

(ISMVL '9B), Fujioka, Japan, 1998. IEEE Press. 

[142] 'Nang W. and C. Moraga. Design of multiple-valued circuits using genetic 

algorithms. In Pmc. of the 26th Int. Symposium on Multiple- Valued Logic 

(ISMVL '96), pages 216-221, Santiago de Compostela, Spain, 1996. IEEE-CS

Press. 

[143] ·Wang W. and C. Moraga. Evolutionary synthesis of current-mode cmos 4-

valued circuits. In Proc. Of the 3rd Int. Conf. on Signal Processing, Beeijing, 

P.R. China, 1996. IEEE-CS-Press. 

[144] Allen C.M. and Givone D.D. A minimization technique for multiple-valued logic 

systems. IEEE Transactions on Computers, 17:182-184, 1968. 

[145] Bernstein B.A. Modular representation of finite algebras. In Pmc. of 7th Int. 

Congress of Mathematics, volume 2, pages 207-216, 1924. 

[146] Onneweer S., Kerfhoff H., and Butler J. Structured computer-aided design of 

current mode circuits. In Proc. of the 1Bth Int. Symposium on Multiple- Valued 

Logic (ISMVL'BB), pages 21-30. IEEE Press, 1988. 



360 

[147] Utsumi T., Kamiura N., Nata Y., and Yamato K. Ylultiple-valued pro

grammable logic arrays with universal literals. In Pr-oc. of the 27th Int. Sym

posium on Multiple- Valued Logic (ISMVL'97), pages 169-174, Nova Scotia, 

Canada, May 1997. IEEE-CS-Press. 

[148] Hata Y. and K. Yamato. Multiple-valued logic functions represented by tsum, 

tproduct, not and variables. In Proc. of the 23th Int. Symposium on Multiple

Valued Logic (ISMVL '93), pages 222-227. IEEE-CS-Press, May 1993. 

[149] Webb D.L. Generation of any n-valued logic by one binary operator. Pr-oc. 

National Academy of Science, 21:252-254, 1935. 

[150] Hurst S.L. Multiple-valued logic: Its status and its future. IEEE Tmnsactions 

on Computer-s, C-33: 1160-1179, 1984. 

[151] Davio M. and Deschamps J.P. Synthesis of discete functions using i21 technology. 

IEEE Tmnsactions on Computer-s, C-30:653-661, 1981. 

[152] Jain A.K., Abd-El-Barr M.H., and Bolton R.J. A new structure of cmos real

ization of mvl functions. Int. J. Electronics, 74:251-163, 1993. 

[153] Vranesic Z., Lee S., and Smith 1. A many-valued algebra for switching systems. 

IEEE Tmnsactions on Computer-s, C-19(10):964-971, 1970. 

[154] Post E.I. Introduction to a general theory of elementary propositions. Amer-. 

J. Math., 43:163-185, 1921. 

[155] Dueck G.W. and Miller D.M. A 4-valued pIa using the modsum. In Proc. of 

the 16th Int. Symposium on Multiple- Valued Logic (ISMVL'86), pages 232-240. 

IEEE Press, 1986. 

[156] Pelayo F.J., Prieto A., Lloris A., and Ortega J. Cmos current - mode multiple

valued pIa's. IEEE Tmnsactions on Circuits and Systems., 38:434-441, 1991. 



361 

[157] Vranesic Z. and Smith K.C. Electronic circuits for multiple-valued digital sys

tems. ComputeT Science and Multiple- Valued Logic: TheoTY and Applications, 

1977. 

[158] Pugsley J.H. and Silio C.B. Some i2 l circuits for multiple-valued logic. In Pmc. 

of the 8th Int. Symposium on Multiple- Valued Logic (ISMVL''l8), pages 23~31. 

IEEE Press, 1978. 

[159] Abd-EI-Barr M.H. and Vranesic Z. Charge-coupled devices implementation of 

multiple-valued logic systems. IEEE Tmnsactions on ComputeTs, 136:306~314, 

1986. 

[160] Sasao T. On the optimal design of multiple-valued pIa's. IEEE Tmnsactions 

on ComputeTs, C-38(5):582~592, 1989. 

[161] Jain A.K., Bolton R.J., and Abd-ElBarr M.H. Cmos multiple-valued logic 

design - partI: Circuit implementation. IEEE Tmnsactions on CiTcuits and 

Systems - 1. Fundamental theory and applications., 40(8):503~514, 1993. 

[162] Jain A.K., Bolton R.J., and Abd-EIBarr M.H. Cmos multiple-valued logic de

sign - part2: Function realization. IEEE Tmnsactions on Circuits and Systems 

- 1. Fundamental theory and applications., 40(8):515~522, 1993. 

[163] Zilic Z. and Vranesic Z. Current-mode cmos galois field circuits. In Proc. of 

the 23th Int. Symposium on Multiple- Valued Logic (ISMVL'93), pages 245~250. 

IEEE-CS-Press, May 1993. 

[164] Piezchala E., Perkowski M., and Grydel S. A field programming analog array 

for continuous, fuzzy and multi-valued logic applications. In Proc. of the 24th 

Int. Symposium on Multiple- Valued Logic (ISMVL'94), pages 148~155, Santiago 

de Compostela, Spain, 1994. IEEE-CS-Press. 



[165] Deng X., Hanyu T., and Kameyama M. Design and evaluation of a current

mode multiple-valued pIa based on a resonant tunneling transistor model. IEEE 

Proc. - Cir-cuits Devices System, 141 (6) :445-450, 1994. 

[166] Abd-EI-Barr M.H. and Hasan lVLN. New mvl-pla structures based on current

mode cmos technology. In Pr-oc. of the 26th Int. Symposium on Multiple- Valued 

Logic (ISMVL'96), pages 98-103, Santiago de Compostela, Spain, 1996. IEEE

CS-Press. 

[167] Stonham T.J. Digital Logic Techniques. Pr-inciples and Pmctice. Chapman

Hall, third edition edition, 1996. 

[168] Masakazu Shoji. CMOS Digital Circuit Technology. Prentice-Hall International, 

Inc., 1988. 

[169] Almaini A.E.A. Electronic Logic Systems, 3rd ed. Prentice Hall, 1994. 

[170] Poli R. Evolution of graph-like programs with parallel distributed genetic pro

gramming. In Back T., editor, Genetic Algorithms: Proc. of the Seventh Inter

national Conference., pages 346-353. Morgan Kaufmann, San Francisco, CA, 

1997. 


	314110_0001
	314110_0002
	314110_0003
	314110_0004
	314110_0005
	314110_0006
	314110_0007
	314110_0008
	314110_0009
	314110_0010
	314110_0011
	314110_0012
	314110_0013
	314110_0014
	314110_0015
	314110_0016
	314110_0017
	314110_0018
	314110_0019
	314110_0020
	314110_0021
	314110_0022
	314110_0023
	314110_0024
	314110_0025
	314110_0026
	314110_0027
	314110_0028
	314110_0029
	314110_0030
	314110_0031
	314110_0032
	314110_0033
	314110_0034
	314110_0035
	314110_0036
	314110_0037
	314110_0038
	314110_0039
	314110_0040
	314110_0041
	314110_0042
	314110_0043
	314110_0044
	314110_0045
	314110_0046
	314110_0047
	314110_0048
	314110_0049
	314110_0050
	314110_0051
	314110_0052
	314110_0053
	314110_0054
	314110_0055
	314110_0056
	314110_0057
	314110_0058
	314110_0059
	314110_0060
	314110_0061
	314110_0062
	314110_0063
	314110_0064
	314110_0065
	314110_0066
	314110_0067
	314110_0068
	314110_0069
	314110_0070
	314110_0071
	314110_0072
	314110_0073
	314110_0074
	314110_0075
	314110_0076
	314110_0077
	314110_0078
	314110_0079
	314110_0080
	314110_0081
	314110_0082
	314110_0083
	314110_0084
	314110_0085
	314110_0086
	314110_0087
	314110_0088
	314110_0089
	314110_0090
	314110_0091
	314110_0092
	314110_0093
	314110_0094
	314110_0095
	314110_0096
	314110_0097
	314110_0098
	314110_0099
	314110_0100
	314110_0101
	314110_0102
	314110_0103
	314110_0104
	314110_0105
	314110_0106
	314110_0107
	314110_0108
	314110_0109
	314110_0110
	314110_0111
	314110_0112
	314110_0113
	314110_0114
	314110_0115
	314110_0116
	314110_0117
	314110_0118
	314110_0119
	314110_0120
	314110_0121
	314110_0122
	314110_0123
	314110_0124
	314110_0125
	314110_0126
	314110_0127
	314110_0128
	314110_0129
	314110_0130
	314110_0131
	314110_0132
	314110_0133
	314110_0134
	314110_0135
	314110_0136
	314110_0137
	314110_0138
	314110_0139
	314110_0140
	314110_0141
	314110_0142
	314110_0143
	314110_0144
	314110_0145
	314110_0146
	314110_0147
	314110_0148
	314110_0149
	314110_0150
	314110_0151
	314110_0152
	314110_0153
	314110_0154
	314110_0155
	314110_0156
	314110_0157
	314110_0158
	314110_0159
	314110_0160
	314110_0161
	314110_0162
	314110_0163
	314110_0164
	314110_0165
	314110_0166
	314110_0167
	314110_0168
	314110_0169
	314110_0170
	314110_0171
	314110_0172
	314110_0173
	314110_0174
	314110_0175
	314110_0176
	314110_0177
	314110_0178
	314110_0179
	314110_0180
	314110_0181
	314110_0182
	314110_0183
	314110_0184
	314110_0185
	314110_0186
	314110_0187
	314110_0188
	314110_0189
	314110_0190
	314110_0191
	314110_0192
	314110_0193
	314110_0194
	314110_0195
	314110_0196
	314110_0197
	314110_0198
	314110_0199
	314110_0200
	314110_0201
	314110_0202
	314110_0203
	314110_0204
	314110_0205
	314110_0206
	314110_0207
	314110_0208
	314110_0209
	314110_0210
	314110_0211
	314110_0212
	314110_0213
	314110_0214
	314110_0215
	314110_0216
	314110_0217
	314110_0218
	314110_0219
	314110_0220
	314110_0221
	314110_0222
	314110_0223
	314110_0224
	314110_0225
	314110_0226
	314110_0227
	314110_0228
	314110_0229
	314110_0230
	314110_0231
	314110_0232
	314110_0233
	314110_0234
	314110_0235
	314110_0236
	314110_0237
	314110_0238
	314110_0239
	314110_0240
	314110_0241
	314110_0242
	314110_0243
	314110_0244
	314110_0245
	314110_0246
	314110_0247
	314110_0248
	314110_0249
	314110_0250
	314110_0251
	314110_0252
	314110_0253
	314110_0254
	314110_0255
	314110_0256
	314110_0257
	314110_0258
	314110_0259
	314110_0260
	314110_0261
	314110_0262
	314110_0263
	314110_0264
	314110_0265
	314110_0266
	314110_0267
	314110_0268
	314110_0269
	314110_0270
	314110_0271
	314110_0272
	314110_0273
	314110_0274
	314110_0275
	314110_0276
	314110_0277
	314110_0278
	314110_0279
	314110_0280
	314110_0281
	314110_0282
	314110_0283
	314110_0284
	314110_0285
	314110_0286
	314110_0287
	314110_0288
	314110_0289
	314110_0290
	314110_0291
	314110_0292
	314110_0293
	314110_0294
	314110_0295
	314110_0296
	314110_0297
	314110_0298
	314110_0299
	314110_0300
	314110_0301
	314110_0302
	314110_0303
	314110_0304
	314110_0305
	314110_0306
	314110_0307
	314110_0308
	314110_0309
	314110_0310
	314110_0311
	314110_0312
	314110_0313
	314110_0314
	314110_0315
	314110_0316
	314110_0317
	314110_0318
	314110_0319
	314110_0320
	314110_0321
	314110_0322
	314110_0323
	314110_0324
	314110_0325
	314110_0326
	314110_0327
	314110_0328
	314110_0329
	314110_0330
	314110_0331
	314110_0332
	314110_0333
	314110_0334
	314110_0335
	314110_0336
	314110_0337
	314110_0338
	314110_0339
	314110_0340
	314110_0341
	314110_0342
	314110_0343
	314110_0344
	314110_0345
	314110_0346
	314110_0347
	314110_0348
	314110_0349
	314110_0350
	314110_0351
	314110_0352
	314110_0353
	314110_0354
	314110_0355
	314110_0356
	314110_0357
	314110_0358
	314110_0359
	314110_0360
	314110_0361
	314110_0362
	314110_0363
	314110_0364
	314110_0365
	314110_0366
	314110_0367
	314110_0368
	314110_0369
	314110_0370
	314110_0371
	314110_0372
	314110_0373
	314110_0374
	314110_0375
	314110_0376
	314110_0377
	314110_0378
	314110_0379
	314110_0380
	314110_0381
	314110_0382
	314110_0383
	314110_0384
	314110_0385
	314110_0386
	314110_0387
	314110_0388
	314110_0389
	314110_0390
	314110_0391
	314110_0392
	314110_0393
	314110_0394

