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Abstract— Industrial Control Systems (ICS) are hardware, 

network, and software, upon which a facility depends to allow 

daily operations to function. In most cases society takes the 

operation of such systems, for example public transport, tap 

water or electricity, for granted. However, the disruption of 

those systems might have serious consequences across 

different sectors. In this paper, we propose a supervised 

energy-based approach for anomaly detection in a clean water 

supply system using a new dataset which is physically 

modelled in the Festo MPA workstation rig. The novelty relies 

on the set of engineered features collected from the testbed, 

including voltage, current and power from the sensors that 

compose the ICS. These values are obtained from independent 

current sensors that we have physically wired to the testbed. 

Five machine learning algorithms; Support Vector Machine, 

k-Nearest Neighbours, Multilayer Perceptron, Decision Tree 

and Random Forest are employed to evaluate the effectiveness 

of our proposed features. The metrics used to present the 

performance of the selected machine learning algorithms are 

F1-Score, G-Mean, False Positive Rate (FPR) and False 

Negative Rate (FNR). The results show that machine learning 

algorithms can classify the variations of energy produced by 

the execution of cyber-attacks as anomalous by achieving 

95.5% F1-Score, and 6.8% FNR with the Multilayer 

Perceptron classifier. 

 
Index Terms— Industrial Control Systems, SCADA, Supervised 

Machine Learning, Anomaly Detection, Energy Monitoring, Novel 

Dataset 

I. INTRODUCTION 

ICS are broadly used in critical infrastructure and large-scale 

industrial processes such as transportation, power, water, 

waste-water treatment, oil, gas, and communication systems, air 
and sea industries, hospitals, health clinics, fire, police, finance, 

and public administration services as well as chemical, and 

pharmaceutical industries [1]. Given that nations are highly 

dependent on their continuity and operations, any disruptions of 

these systems could lead to a significant economic loss and can 

have a substantial impact on public lives, health and safety. The 

non-disruptive nature of an ICS with the requirement for 24/7 

availability and the fact that access to such a system is 

extremely difficult, hazardous, and sometimes impossible, 

validate the use of physical, virtual, and hybrid ICS testbeds 

rather than real systems by cybersecurity researchers.  

 

Historically, the hardware involved in the operation of ICS 

(such as Programmable Logic Controllers (PLC)s) ran on 

proprietary hardware and software in physically secure and 

isolated locations, although, more recently they have 

implemented Information Technology (IT) capabilities such as 

network capabilities [2]. Thus, ICS have inherited cyber-

vulnerabilities related to IT networks, such as Denial of Service 

(DoS), Man in the Middle (MITM) and Spoofing [3]. It should 

be noted that cyber-attacks that target critical industries such as 

oil, pharmaceutical, nuclear and water might have devastating 

impacts given that they may put thousands of human lives in 

danger. A considerable number of cyber-attacks against ICS 

have been reported in recent years [4]. For instance, Stuxnet [5] 

is a sophisticated malware that modified the operation of a PLC 

resulting in the explosion of various centrifuges belonging to an 

Iranian enriching facility. Another example is BlackEnergy [6], 

a malware that infected the ICS components of a power facility 

in Ukraine. The execution of this malicious software resulted in 

a power outage for a few hours during the coldest month in the 

region. Detecting cyber-attacks is an ongoing battle given that 

new attack vectors and malware appear every day. One of the 

approaches to address this issue is the implementation of 

traditional security devices such as firewalls and Intrusion 

Detection Systems (IDS) aimed at detecting anomaly activity 

[7]–[9]. However, IT and ICS networks have notable 

differences that have to be considered. The aim for security 

specialists in an IT network is to protect the information, while, 

in an ICS network the main objective is to protect the physical 

process under operation. Therefore, traditional security devices 

such as firewalls might not be a feasible strategy for ICS 

networks. For this reason, researchers have explored various 

alternatives to detect anomalies in ICS, the most popular being 

the adoption of supervised and unsupervised machine learning 

techniques. [7]–[9]. Current approaches employ a given 

machine learning algorithm with the information collected from 

network packets mostly obtained from virtual implementations 

rather than physical testbeds. One of the reasons why most of 

the research is based on virtual scenarios is the cost of 

implementing and maintaining physical testbeds. For that 

reason, it may be argued whether the machine learning models 

that had been trained with information obtained from virtual 

testbeds are applicable to real implementations. Another point 

to take into consideration is how trustworthy is the information 

obtained from the control network, as it has been demonstrated 

that hackers are capable of modifying network packets aiming 

to tamper with systems. For instance, in the Stuxnet attack 

explained above, the monitoring application of the enriching 
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process did not show any sign of malfunction until the 

centrifuges were damaged and stopped working. 

 

In this paper, our goal is to address cybersecurity in ICS by 

proposing an energy-based mechanism for anomalous detection 

in a clean water supply system. To demonstrate this concept, 

we implement a Supervisory Control and Data Acquisition 

(SCADA) testbed using the Festo MPA process control rig. 

This testbed allows to monitor the energy consumption of the 

sensors and actuators using the INA219 current sensor. A 

raspberry pi collects and stores this information in a text file, 

which, is later used to create the machine learning models used 

for attack detection. The novelty of the approach proposed in 

this paper relies on the use of features that are not obtained from 

a virtual testbed [7-8], nor network traffic [9], instead, it is built 

in newly engineered energy-based features obtained from the 

INA219 current sensor which is hard-wired to the 

actuators/sensors that compose the Festo rig. It should also be 

noted that in our scenario an intruder might not be able to 

tamper with the energy-based features that are used to create the 

machine learning models because they are not accessible from 

the control network as will be discussed in later sections.   

 

A. Research Objectives and Hypothesis 

 

The objective of this paper is to demonstrate the feasibility of 

detecting cyber-attacks against ICS with a particular focus on a 

clean water supply system and by using an energy-based 

machine learning approach. In addition, our aim is to 

demonstrate the importance of the feature selection process on 
the performance of the machine learning algorithms. To achieve 

these objectives, we outline the following hypothesis. 

 

Hypothesis. Newly engineered energy-based features collected 

from monitoring the energy consumption of the sensors and 

actuators that compose a model of a clean water supply system 

in conjunction with well-known supervised machine learning 

algorithms allow the detection of anomalies that may have a 

negative impact on the control system. 

 

B. Contribution 

In this paper, we proposed a set of energy-based features for 

machine learning classifications that were not obtained from the 

network traffic nor from a data logger. Given that the 

information related to an ICS obtained from a network traffic 

or from a data logger might already be compromised by an 

intruder. Therefore, our proposed features are immune from 

tampering as they are captured from the INA219 current 

sensors. In addition, having a physical implementation allows 

to face scenarios where noise is present in the data. These types 

of scenarios cannot be replicated, and they are not present in 

virtual implementations. Finally, we apply a set of well-known 
machine learning algorithms, which have been used in related 

research, to demonstrate the feasibility of our proposed energy-

based features in our novel dataset.  

 

C. Organization of the paper 

The paper is organized as follows. In section II we review the 

related work in the field. In section III we describe our research 

approach followed by the experimental design and setup in 

section IV. In section V we discuss the findings and results. In 

section VI we discuss the hypothesis stated in this paper. 

Finally, in section VII we present the conclusions followed by 

future work and acknowledgements. References are listed at the 

end of the paper. 

II. RELATED WORK 

A detailed review of current related work is discussed in two 

main categories of supervised and unsupervised machine 

learning techniques for anomaly detection in ICS. The 

relevance of the quality of the features chosen for training the 

machine learning algorithm is highlighted to compare with our 

proposed energy-based features. The related work includes the 

relevant papers from reliable resources such as IEEEXplore, 

Elsevier, ACM and Google Scholar.   

 

In [10], the authors proposed an attack detection model for a 
power system based on supervised machine learning. The 

features used to build the model are constructed by analysing 

the relationship between the features and raw data that is 

obtained from relevant log information and historical data. The 

original dataset used in their research contains 128 features 

collected from four Power Management Units (PMU), snort 

alarms and logs. Their data pre-processing phase involves 

discarding redundant features that might overfit the model. 

Afterwards, the dataset is divided into four subsets of data and 

part of the original features are sent to AdaBoost model for 

training along with the new features. During the 
experimentation phase the authors compare their approach with 

several traditional machine learning algorithms to demonstrate 

the effectiveness of their model. The metrics for evaluating the 

model include accuracy, precision, recall, F1 score, ROC curve 

and AUC. Addressing their results, their proposed model shows 

the benefits of feature engineering. Although their approach 

presents good results, it can be argued that historical data and 

logs might not be a reliable source of features given that they 

are susceptible to manipulation.  

 

In [11], the authors propose a Multi-Layer Data-Driven 

Cyber-Attack Detection System for Industrial Control Systems 
Based on Network, System, and Process Data. The proposed 

IDS combine signature-based and anomaly-based analysis of 

host, network and process data. Their mechanism of detection 

is placed as a second line of defence behind the firewall, and it 

is composed of data-driven models for cyber-attack detection 

based on network traffic and system data. The classification 

models are based on supervised machine learning algorithms 

such as KNN, Random Forest, Decision Tree and Bagging. 

Those algorithms can detect well-known attacks only, for that 

reason, the authors also include an unsupervised approach using 

the AAKR, which provides flexibility for intrusion detection. 
The dataset contains 142 features that are related to memory, a 

computer process, and network behaviour and it includes three 

cyber-attacks: MITM, DoS attack to the engineering 
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workstation, and DoS attack to the National Instruments cDAQ 

(the data acquisition and control hardware). Addressing their 

captured results, the KNN algorithm outperforms the rest of the 

algorithms by achieving a score of 98.84% for true positive 

alarms and 99.46% for true negative. The rate of False Negative 
alarms achieves 1.16% being the lowest among the rest of the 

algorithms. Decision tree algorithm has the lowest computing 

cost; however, the four algorithms remain below one second. 

 

In [12], the authors propose an Industrial Control System 

Network Intrusion Detection by Telemetry Analysis. They used 

the honeypot Conpot to simulate the network traffic generated 

by two Siemens SIMATIC S7-200 PLCs. They then use the 

python library (pymodbus) to generate the MODBUS protocol 

stack. Their IDS is implemented as a standalone device that 

monitors the traffic between the PLC and the rest of the 

network. They employed REPTtree as a base machine learning 
algorithm and a set of bagging-aided classifiers for training. 

They generated a list of features after analysing 838,818 

packets, including malicious and benign traces, generated by 

their virtual ICS. The traffic generated among the devices 

connected to the ICS network is identified as insider whereas 

the traffic between the control network and an external network 

is identified as an outsider. Addressing their results, they 

achieved a 92.2% accuracy rate for REPTree classifier at the 

insider classification. For the outsider classification, most of the 

classifiers achieved high accuracy when classifying packets 

from different machines, C4.5 and REPTree achieved 99.5% 
and 99.6% of accuracy respectively. Given that their work is 

based on a simulation, it is not clear whether the proposed 

research is applicable to real scenarios for example a power 

plant or a water treatment system. 

 

In [13], the authors introduce a Machine Learning-based 

Defence Against Process-Aware Attacks on Industrial Control 

Systems. They developed a supervised SVM model that can 

differentiate between disturbances during normal operation and 

malicious activity. They employ the Tennessee Eastman (TE) 

Chemical Process as a testbed to assess their approach. They 

build upon Matlab Simulink model of the TE process, and they 
incorporate a serial hardware interface between the simulation 

model and a PLC. The testbed includes 50 states, 41 measured 

variables with Gaussian noises, 12 manipulated variables and 

13 disturbance signals. Their dataset includes information 

obtained from 12 sensors under normal operation, under attack 

and various disturbance conditions under normal operation. For 

the training process, they selected the RBF kernel from the 

SVM algorithm with parameter N=1 and N=50 for attack 

detection and to identify the type of attack executed. They run 

a simulation for the lapse of 2 hours, where a set of attacks were 

executed during that lapse. Addressing their results, the 
proposed mechanism of defence model is able to differentiate 

between a system disturbance and an attack. However, it is not 

clear whether in their virtual environment they have considered 

conditions such as: environment, noise and network latency 

which are present in a real ICS.  

 

In [14], the authors propose a high-performance unsupervised 

anomaly detection for cyber-physical systems. They used the 

secure water treatment (SWaT) S3 dataset that contains 

network traffic with a rate of approximately 11M packets per 

hour, a public dataset from a power grid control system that 

consists of 11 network traces. They replace the usual step of 

feature extraction, usually used in machine learning, by a 

feature learning approach that is based on current deep learning 
schemes. They employed a neural network composed of three 

layers of input, output and hidden. Their proposed framework 

is implemented in python using the TensorFlow framework for 

processing and pcap library for packet acquisition. Addressing 

their results, they achieved 100% of precision and F1 score in 

the power grid dataset and 0% of false-positive detection. 

Evaluating the second dataset, it achieves 99% of precision and 

recall. 

 

Using a similar SWaT testbed, the authors in [15] proposed a 

mechanism for cyber-attack detection on industrial control 

systems using convolutional neural networks. They employed a 
selection of deep neural networks architecture including 

different variants of convolutional and recurrent networks. 

They implemented the unsupervised machine learning models 

using Google’s TensorFlow framework. Their dataset is 

normalized to 0-1 scale and includes 496,800 records in normal 

operation and 449,919 records under 36 different attacks. 

Addressing their results, the anomaly detection algorithm 

achieves the highest AUC by reaching 96.7% for eight layers of 

CNN. Regarding the training and testing time, the CNN was 

shorter by a factor 1 to 2 for testing and 1,5 to 4 for training 

when it is compared to a pure LTSM network. Their mechanism 
of detection failed in recognizing four types of attacks, however 

those attacks did not have a considerable impact on the system. 

The f1 score of the ensemble of four layers 1D CNN model 

achieved 92.06% with a precision of 1 and recall of 85.29%. 

 

In [16] the authors proposed a Real-Time Identification of 

Cyber-Physical Attacks on Water Distribution Systems via 

Machine Learning–based Anomaly Detection Techniques. 

Their proposed approach involves a four-layer method, where 

the first layer checks whether the given SCADA observations 

follow the actuator rules specified for the system, while the 

second layer finds statistical outliers. The third layer is a neural 
network that can detect contextual inconsistencies with normal 

operation and the four-layer uses Principal Component 

Analysis (PCA) on the entire set of sensors that compose the 

ICS to classify the samples as normal or abnormal. They used 

three independent datasets that were obtained from the C-Town 

WDS, which is a medium-size water distribution network. The 

dataset contains seven different attacks that were simulated in 

MATLAB. The performance of their proposed approach is 

evaluated by adopting the metrics specified in BATDAL. 

Addressing their captured results, their algorithm can detect the 

entire set of simulated attacks and only one false alarm was 
triggered. For the validation dataset, the CSM score achieved 

95.3%, while its true negative rate (TNR) reached 94.6%. The 

overall score of the algorithm is 96.8%, which indicated a 

satisfactory performance.  

 

In [17], the author proposed an efficient data-driven clustering 

technique to detect attacks in SCADA systems. Their approach 

is based on the assumption that normal states can be clustered 

into finite groups of dense clusters. In addition, critical states in 
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the n-dimensional space will take the form of noise data. They 

describe the requirements for developing a SCADA-based IDS: 

a model able to identify normal/critical states and a proximity-

based extraction technique to derive rules. They employed the 

clustering algorithm: DBSCAN for identifying normal and 
critical states. To validate their approach, the authors  

implemented a virtual ICS that involves five virtual machines, 

four of them are used as PLC’s and they run the 

MODBUS/TCP-Salve simulator. The fifth virtual machine is 

used as Master Unit Terminal (MUT), historian server and 

Human Machine Interface (HMI) client. They used three 

datasets obtained from their virtual implementation, as well as 

five datasets publicly available. Addressing their results, the 

proposed approach achieved an average accuracy of 98% and 

0.02% in the detection rate and false positive. The authors 

proposed the re-labelling technique aiming to reduce the 

number of false/positive alarms. Addressing the captured 
results, the number of alarms is reduced by 16%. In this paper, 

we implemented and fully discuss a Supervised energy-based 

approach for anomaly detection on a real PLC of a Festo MPS 

PA Compact Workstation Rig, which is a working model of a 

clean water 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

supply system, which differs from virtual implementations 

described in existing work e.g. [12], [16] and [17]. 

 

Our proposed technique differs from [10], [11] and [12] 

because the machine learning algorithms are feed with features 

that are collected from the INA219 sensor, which is hard-wired 

to the sensors and actuators. We do not rely on packets obtained 

from the control network dislike work in [11], [12] and [14] 

because it might have been compromised by intruders before 

reaching the machine learning process. Furthermore, the work 

presented in this paper is different from the existing work, 

described in Section II, given that our datasets contain 

malicious and benign traces obtained from a physical testbed in 

which, unlike [16], a set of real attacks were executed to the 

testbed when the datasets were collected. Table I provides a 

summary of the testbeds explained in Section II. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

TABLE I TESTBED SUMMARY 
 

Testbed Type Components Attack Vector ML Approach ML Algorithms Reference 

CWSS: Clean Water 
Supply System 

Physical 
PLC, SCADA, 
HMI 

Packet Crafting, 
PLC memory 
corruption 

Supervised 
Machine Learning 

 
This 

research 

Power System Virtual 

Power 
Management 
Units, Snort and 
logs. 

Man-In-The-
Middle, ARP 
Spoofing 

Supervised 
Machine Learning 

KNN, SVM, GBDT, 
XGBoost, CNN and 

Random Forest 
[10] 

ICS Network traffic Virtual 

Computer 
process, 
memory, and 
network 
behavior 

DoS, Man-In-
The-Middle 

Supervised 
Machine Learning 

KNN, Random 
Forest, Decision Tree 

and Bagging 
[11] 

ICS Network traffic Physical 
2 SIMATIC S7-
1200 

Packet delay 
variation, 
variable packet 
loss 

Supervised 
Machine Learning 

C4, REPTree [12] 

HITL Testbed: Tennessee 
Eastman (TE) chemical 
process 

Hybrid 
PLC, Virtual 
process 

ARP Spoofing, 
Man-In-The-
Middle 

Supervised 
Machine Learning 

SVM [13] 

SWaT Physical 
PLC, MTU, HMI, 
SCADA 

DoS Attack, 
ARP Spoofing 

Unsupervised 
Machine Learning 

Neural Networks [14] 

SWaT Physical 
PLC, MTU, HMI, 
SCADA 

DoS Attack, 
ARP Spoofing 

Unsupervised 
Machine Learning 

TensorFlow 
framework 

[15] 

Water Distribution 
System 

Physical MATLAB 
ARP Spoofing, 
False Data 
Injection, DoS 

Unsupervised 
Machine Learning 

Neural Networks [16] 

Water Distribution 
System 

Virtual PLC, MUT, HMI 
DoS Attack, 
ARP Spoofing, 
MITM 

Unsupervised 
Machine Learning 

Clustering 
Algorithms 

[17] 

 



 5 

III. RESEARCH APPROACH 

In this section the research objectives, hypothesis and 

methodology are described.  

 

A. The experimental Setup 

To evaluate the machine learning algorithms proposed in this 

paper, the computer simulations were performed using the 
method: stratified 5-fold cross-validation with a suitable data 

split for training and testing. This method is widely used 

because the results are less biased and more realistic than other 

methods such as a simple train/test split. We adopted the 

following phases to clarify and answer the above hypothesis. 

 

 

1. Pre-processing Phase. 

a. Smoothing the voltage signal collected from the 

ultrasonic sensor by applying a digital filter. 

b. Applying three different feature selection techniques 

for discarding redundant or low informative features. 
c. Balancing the dataset by applying oversampling 

techniques such as SMOTE. 

d. Splitting the data into training and testing datasets by 

using 5-fold cross-validation. 

e. Normalizing or Standardizing the dataset depending 

on the selected Machine Learning algorithm. 

 

2. Training & Testing Phase. 

 

a. Training the selected machine learning algorithm 

with the training dataset.  
b. Obtaining the prediction results using the testing 

dataset.   

c. Performance evaluation of the selected machine 

learning algorithms 

 

B. ICS Datasets 

 

SWaT [18] and WADI [19] are the most common physical 

testbeds employed for the cybersecurity analysis of water 

treatment/clean water supply systems. Most of the research in 

the field are based on these two physical systems, either by 

having a direct access to them or by having access to the 

associated datasets generated under malicious and benign 

scenarios. The two testbeds are also the closest existing work to 

our research in this paper. Given that we have also generated 

our very own dataset, named Clean Water Supply System 

(CWSS), to advance the research in the field, the review 
comparison of the three datasets (SWaT, WADI and CWSS) is 

as follows.  

 

The SWaT testbed was developed by the iTrust Center for 

Research in Cyber Security at the Singapore University of 

Technology and Design (SUDU) [20]. SWaT represents a 

scaled-down version of a water treatment plant that produces 5 

gallons of water per minute. The SWaT dataset is composed of 

the network traffic of 51 sensors and actuators during seven 

days of normal operation. The normal operation corresponds to 

the starting and stabilization of the plant. A total of 41 attacks 

were executed during four days of operation.  

 

The WADI is a testbed that simulates a scaled-down water 

distribution system. It was developed and implemented by the 
same creators of SWaT. The WADI testbed includes a large 

number of tanks that supply water to customer tanks. The 

dataset contains values obtained from 123 sensors and actuators 

during fourteen days of normal operation over which a total of 

15 attack scenarios were executed. 

 

Our CWSS testbed simulates a model of a clean water supply 

system in the Festo MPA Compact Workstation rig. The CWSS 

testbed includes 7 sensors and actuators that operate for one 

day. Further, 7 attacks were executed against the testbed during 

11 hours of operation. Our dataset contains energy features 

obtained from the INA219 current sensor and hard-wired 
between the PLC and sensors/actuators composing the physical 

system. 

 

In terms of network protocol, CWSS testbed implements 

Profinet [21], which is an industrial standard for data 

communication over TCP/IP, while SWaT employs Modbus 

TCP [22] and WADI devices CIP over Ethernet/IP. Modbus 

TCP is a protocol with vulnerabilities [23] e.g. it lacks adequate 

security checks in communication between two endpoints 

which could allow an unauthenticated remote attacker to send 

random commands against any slave device using the 
MODBUS master. However, Profinet protocol provides more 

secure communication and is the most widely used standard in 

ICS. Therefore, from an attacker’s point of view, it is more 

difficult to issue cyber-attacks against a system which 

implements Profinet (i.e., CWSS) rather than Modbus TCP 

(i.e., SWaT). 

    

Furthermore, SWaT and WADI datasets are based on basic 

and traditional network-based attacks such as ARP spoofing 

and Man-In-The-Middle attacks for which we already have 

many protections [24]. For example, static ARP entries, 

encryption, VPN, packet filters, HTTPS, public key pair 
authentication and many Instruction Detection Systems (IDS) 

can easily stop these attacks. However, in CWSS testbed, we 

implemented a novel set of attacks against the input/output and 

working memory of Siemens S7-1500 [25]. Siemens S7-1500 

is one of the popular PLCs available on the market and used in 

industry at the moment. The features in the CWSS dataset are 

energy-based collected from the INA219 current sensor hard-

wired between the PLC and sensors/actuators on a model of a 

clean water supply systems. Additionally, WADI does not 

provide details regarding network implementation over which 

malicious and benign scenarios have been issued and dataset 
has been generated while in CWSS we fully explained this 

specification. The implementation of cyber-attacks against both 

WADI and SWaT is also unclear while this is fully detailed in 

CWSS. These makes the CWSS dataset more understandable 

and more realistic in terms of collected features and events in 

comparison with SWaT and WADI datasets. 

 

In general, although the SWaT and WADI are bigger datasets 

captured over longer periods in comparison with CWSS, CWSS  
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dataset has been collected under novel attacks against the 
input/output and working memory of a PLC currently used in 

industry, having more severe consequences on ICS, is more 

realistic in terms of attack novelty, consisting more difficult 

attacks from an attacker’s point of view, and does not need an 

attacker to have a full knowledge of the system.   

 

C. CWSS Dataset Description 

This section provides an overview of the CWSS datasets used 

for the experiments implemented in this paper.  A testbed 

simulating an uninterrupted clean water supply system was 

modelled using the Festo MPS PA Compact Workstation Rig 

[26]. The control process implementation is depicted in Figure 

1 where the tank B101 contains the water that supplies the 

reservoir tank B102 through the variable speed PUMP 101. The 

water demand from customers was modelled and implemented 

using the proportional valve V106 of the Festo Rig. In normal 

operation, the water level in the reservoir tank B102 is 
maintained at a setpoint defined by an operator. The full 

description of the control implementation can be found in our 

previous work [27]. For the attack scenario, we implemented a 

set of attacks to the memory of the PLC aiming at overwriting 

the input memory of the PLC; hence the normal operation of 

the control system is affected. For instance, the attacker might 

modify the input memory of the ultrasonic sensor pretending 

that the current water level is lower than it is. Consequently, the 

control system will increase the speed of the pump, resulting in 

an increase of the water level above the setpoint for the tank 

B102. This might result in a tank overflow. The set of the 
executed attacks to the ICS are listed in Table III. The full 

implementation of the attacks and threat model can be found in 

our previous work in [27] and our own implemented source 

code for this can be found in [28]. The dataset for this paper that 

contains the energy traces of the sensors involved in the testbed 

are shown in Table II. To achieve this, we extended our 

previous work [29] by wiring the current sensor INA 219 [30]  

to each one of the sensors and then collecting the data using a 

Raspberry PI 3 [31]. Figure 2 shows the architecture of the 

testbed employed in this research according to the ICS 

reference model suggested by NIST Special Publication 800-82 

[32] which defines four levels. Level 0: Input/Output refers to 

the physical process. It includes hardware, such as sensors and 

actuators that are directly connected to the control process 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 Level 1: Control Network involves the equipment used to 
monitor and control the physical process. At this level, the 

information from the sensors is obtained and processed to then 

generate the outputs that will be sent to the actuators. 

Equipment at level 1 comprises PLCs and RTUs. Level 2: 

Supervisory Control, includes the systems used to monitor and 

control the physical process. This level includes devices such 

as HMI, workstations, and servers. Lastly, Level 3: Corporate 

Network denotes the equipment involved in the business-

related activities.  
 

The dataset was collected when the ICS was in operation for 
over 8 hours. Figure 3 shows the number of collected malicious 

and benign instances during the operation. The number of 

instances that corresponds to the malicious class is 35.72% of 

the entire data set, while 64.28% corresponds to the benign 

class, therefore we can say that the dataset is unbalanced. One 

of the major problems of using machine learning on imbalanced 

datasets is obtaining a biased and inaccurate model [33]. To 

overcome the imbalance problem, we use Synthetic Minority 

Over-Sampling Technique (SMOTE) on the original dataset, a 

method that uses the k-nearest neighbour to produce new 

synthetic instances of the minority class [34]. As it can be seen 

in Figure 3, Dataset I has an equal number of Malicious and 
Benign instances, after employing SMOTE on our original 

dataset,. Furthermore, SMOTE is used to create two more 

datasets labelled as Dataset II and Dataset III which are also 

depicted in Figure 3. These datasets will aid us to evaluate the 

performance of the machine learning algorithms in the 

following sections. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 1. Testbed 

 

 
Figure 2. Dataset Collection. 

 

 
Figure 3. Dataset Details. 
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D. Pre-processing 

Data pre-processing is a data mining technique which is used to 

improve the quality of the raw data [35]. This stage has a 

significant impact on the performance of supervised learning 

models because unreliable input could lead to obtaining 

incorrect results. For instance, in our scenario, the data 

collected from the ultrasonic sensor contains undesirable noise 

that might be misclassified in cases where it is not removed. In 

the following section, we describe the pre-processing stage 
which includes the de-noising phase and the feature selection 

process followed by an overview of the selected machine 

learning algorithms employed in this paper. 

 

E. Dataset Filtering Process 

In our scenario, the capacity of the water tank is 10 litres, and 
the water is poured from the top of the tank. When the control 

system starts and the tank is empty, the water bounces at the 

bottom of the tank. This process generates noise in the readings 

obtained from the ultrasonic sensor. The noise decreases as 

soon as the water in the reservoir tank starts to increase. 

However, it should be noted that the noise is always present in 

the signal obtained from the ultrasonic sensor, in smaller or 

bigger quantities Therefore, in this section, we explain the noise 

removal of the ultrasonic sensor involved in our implemented 

testbed. Further, external factors such as noise and temperature 

could lead a sensor to fail to recognize the correct water level 
which adds noise to the dataset. The analogue sensor, which is 

labelled as B101 in Figure 1, is fitted on the top of the reservoir 

tank. It uses sound waves above 20000 Hz, which is beyond 

human hearing, to measure the distance between the sensor and 

the water. The analogue signal is converted by means of a 

transducer into a standard (0-10v) electrical signal 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

The machine learning algorithms may miss out patterns and 

provide wrong results when noise is present in a given dataset. 

One common technique in signal pre-processing is the design 

and the use of filters to remove unwanted frequencies from 

electrical signals. There are a considerable number of filters for 
signal processing such as Low Pass Filter (LPF), High Pass 

Filter (HPF) and Band Pass Filter (BPF). Although these filters 

are electrical circuits composed by resistors, amplifiers, and 

capacitors, they can be digitally implemented by mathematical 

equations. In this paper, we apply a LPF on the data collected 

from the ultrasonic sensor as its success has been proven in 

similar research such as [36], [37]. Low-pass filters allow the 

low-frequency components of an input signal to pass through 

while reducing the high-frequency components. Measurement 

noise falls into the high-frequency range of the signal spectrum, 

while the underlying process signal is generally toward the low-

frequency end [55]. 
 

The blue line in Figure 4 shows the signal obtained from the 

ultrasonic sensor without filtering. The signal contains a 

considerable amount of noise that might affect the performance 

of our selected machine learning algorithms. In Figure 4, the 

yellow line shows the Ultrasonic sensor signal that we filtered 

with a normalised passband frequency of 0.001𝜋 𝑟
𝑠⁄  and a 

stopband attenuation of 60dB.  

As it is shown, this signal contains less noise than the original 

one, however, there are still remanences of noise. Please refer 

to [29] for comprehensive explanations on normalised passband 

frequency and stopband attenuation. To remove as much noise 

as possible, we apply Butterworth LPF [36][38] which is a 

digital filter that has a flat response in the passband [38] and 
sucessfully applied in similar researches [27][45]. Butterworth 

LPF smooths the electrical signals with a frequency higher than 

the cutoff frequency. The cutoff frequency is the boundary 

between the desired and undesired frequencies.  It should be 

noted that the cut-off frequency does not define good or bad 

frequencies. The orange line in Figure 4 shows the ultrasonic  

TABLE III SET OF ATTACKS EXECUTED TO THE CONTROL SYSTEM 
 

Attack Effect 

Changing Setpoint 

in the Working 

Memory 

Water Level Increases/Decreases 2-2.5 

litres. It depends on the value sent from 

attacker to the Input Memory of the 

PLC. 

Attack on Ultrasonic 

Sensor 

Water Level Increases/Decreases. It 

depends on the value sent from attacker 

to the Input Memory of the PLC. 

Attack on Flow In 
Affects Pump Operation, consequently 

the water level in the reservoir tank. 

Attack on Pump Water level decreases 0.5-1 Litres. 

Attack on Flow Out 
Affects the Control Operation when 

using feedforward Controller. 

Attack on Pressure 

In 

Slightly affects the normal operation of 

the control system. The water level 

increases/decreases 0.1 - 0.2 litres. 

Attack on Pressure 

Out 

Affects the control operation when 

using a PI controller that takes the 

Pressure Out as Input for calculating the 

water level, otherwise this does not 

affect the control operation. 

 

TABLE II FEATURES 

Feature Sensor Feature Sensor 

1. sh_ultra 

Ultrasonic 

Sensor 

13. sh_fo 

Flowmeter 

Out 

2. v_ultra 14. v_fo 

3. c_ultra 15. c_fo 

4. p_ultra 16. p_fo 

5. 

sh_pump 

Pump 

17. sh_pi 

Pressure 

In 

6. v_pump 18. v_pi 

7. c_pump 19. c_pi 

8. p_pump 20. p_pi 

9. sh_fi 

Flowmeter 

In 

21. sh_po 

Pressure 

Out 

10. v_fi 22. v_po 

11. c_fi 23. c_po 

12. p_fi 24. p_po 
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sensor signal when the Butterworth LPF is applied which 

shows Butterworth filter removes more noise than the simple 

LPF. 

 

F. Feature Selection 

In machine learning techniques, feature selection is a process 

of choosing the most relevant features that are useful in 

predicting the desired response [39]. In this paper, we obtained 

twenty-four features from six sensors located on our testbed, as 

it is shown in Table II. The main aim of using feature selection 

techniques is to reduce the number of features to the most 

relevant ones for later use in building models based on machine 

learning algorithms. It should be noted that feature selection 

and feature extraction are two different concepts. Both 

techniques have the same aim of reducing the dimensionality of 

the dataset, however, the main difference is that feature 

selection keeps a subset of original features, while feature 

extraction creates new sets of features from the available ones 

[40].The benefit of using feature selection before training a 

machine learning algorithm is the reduction of the dataset 

dimensionality, as a result, the time taken to build a machine  

 

learning model will be reduced. It has been widely studied 

before by the following authors[41], [42]. Further, another 

benefit worth pointing out is that feature selection will improve 

the machine learning metrics such as accuracy and precision 

[35]. There is a considerable number of feature selection 

techniques to perform feature selection such as lasso regression, 

step wise forward and backward selection [43] [44] [9] [45], 

however, in this paper, we chose the most suitable ones for our 

dataset and based on their popularity in the similar researches. 

These techniques are Information Gain, Chi-Square and 

Correlation Based.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Information Gain (IG) measures the amount of information 

that a feature gives about a class [45]. It measures the reduction 

in entropy, which can be defined as the information and the 

degree of uncertainty of random variables. IG tells how 

important an attribute is and it will be used for discriminating 

between the classes to be learned [39]. Chi-Square is another 
popular method of feature selection technique. It applies the 

statistical 𝑋2 to measure the independence of two events. In 

feature selection, these two events are an occurrence of the 

feature and occurrence of the class[46]. The value of 𝑋2 is high 

when the two events are dependent. It means that the feature is 

correlated with the class and it should not be discarded. The 

higher the value of 𝑋2, the more relation that the feature has 

with the class [39]. Correlation-Based is a feature selection 

technique for classification tasks in Machine Learning. It 

examines each feature individually in order to determine the 

relationship of the feature with the corresponding class [46]. 

Each feature is ranked according to the achieved correlation 

score. 

G. Selected Features 

Each feature selection method measures the relevance of the 

features depending on its correlation with the dependent 

variable. Figure 5 shows the features that obtained the highest 

scores in each one of the feature selection techniques described 

above. This representation shows the features that each 

algorithm has in common. For instance, the features 14. v_fo, 

4. p_ultras, 3. c_ultras, 22. v_po, 8. p_pump, 2. v_ultras, 10. 

v_fi, 5. sh_pump are among those that obtained higher scores 

in the three feature selection techniques. Furthermore, the 
features that IG and Correlation Base have in common are 18. 

v_pi, 6. v_pump and 1. sh_ultrasonic. The Chi-Square is the 

only one among the other two feature selection techniques that 

chose the feature 12. p_fi. A condition for evaluating the 

relation of features with the dependent variable is analysing 

density curves for the malicious and benign traces [47].  

  

Figure 4. Raw Ultrasonic Sensor Signal 
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Figure 6 and Figure 7 shows the density of malicious and 

benign events in the features: voltage in the ultrasonic sensor 

(2. v_ultras) and power in the pump (8. p_pump). These 

features are ranked with high scores according to our three 
feature selection techniques (IG, X2, and Correlation-Based). 

Both features are suitable for feature classification because the 

peak of the curve for malicious and benign traffic are opposite 

of each other. Fig 8 and Fig 9 show features with a low score 

such as Voltage in the shunt resistor that monitors the Pressure 

Out and Pressures In sensor (21. sh_po, 17. sh_pi). The 

malicious and benign distributions are completely overlapped; 

hence, these features are not suitable to be considered for 

classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H. Overview Machine Learning Algorithms 

For the experimental process conducted in this paper, we 

employ five machine learning algorithms that are widely used. 

They were addressed and analysed in the related work. These 
algorithms are Decision Tree, Gaussian Naïve Bayes, 

Multilayer Perceptron, KNN and SVM. They are briefly 

explained as follows. 

 

Decision Tree 

Decision Tree (DT) is a type of supervised Machine Learning 

algorithm in which the entire dataset is divided into smaller 

datasets by taking into account the descriptive features until the 

set is small enough to contain the points that fall under one label 

[48]. Instances from the dataset are sorted down the tree from 

the root to a designated leaf node. DT provides a classification 

for each instance in a given dataset [49].  

 

Gaussian Naïve Bayes 

Naïve Bayes (NB) is one of the most used classifiers given 

that it provides a simple approach with clear semantics to 

represent. It uses learning probabilistic knowledge and is an 

algorithm for binary and multi-class classification problems. 

NB can be extended to real-value attributes by assuming a 
Gaussian Distribution [50] which is then called Gaussian Naïve 

Bayes (GNB). GNB takes each data point and assigns it to the 

nearest class. The assumption of this classifier is that the data 

from each labelled class (e.g., Malicious or Benign) is 

represented by a simple Gaussian Distribution. 

 

Multilayer Perceptron 

Multilayer Perceptron (MLP) is a type of Artificial Neural 

Network, that is inspired by how the biological neural networks 

are capable of processing information in the human brain [51]. 

Figure 10 shows the representation of an MLP that is composed 

of one hidden layer, one input layer, and output layer, the input 

layer (𝑖) feeds the layer (𝑗), which is a multidimensional 

perceptron with a weight matrix 𝑊.  
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

K-Nearest Neighbour 

K-Nearest Neighbour (KNN) is one of the most straight 

forward algorithms which is frequently used for classification 

tasks.  It can also be used for estimation and prediction [48]. 

KNN is an example of instance-based learning given that it 

stores the training dataset in the memory. The classification for 

an unclassified record is based on comparing it with similar 

records in the training dataset. The distance between the new 

record and the closest class is measured by a distance function 

such as Euclidean, Manhattan or Minkowski for continuous 

variables and Hamming distance for categorical variables [52].  

 

Support Vector Machines 
Support Vector Machine (SVM) is a supervised machine 

learning algorithm based on the concept of decision planes that 

define decision boundaries for different classes [52]. The task 

of SVM is to find out the hyperplane that maximises the 

distance margin between the malicious and benign classes. The 

support vectors are the extreme points that outline the 

hyperplane.  

 
Figure 5. Features Selected. 

 

 
Figure 6. Density plot for Voltage in 

the Ultrasonic Sensor. 

 

 
Figure 7. Density plot for Power in the 

Pump. 

 

 
Figure 8. Density plot for Voltage in 

Shunt in the Pressure Out Sensor. 

 

 
Figure 9. Density plot for Voltage in 
the Shunt in the Pressure In Sensor. 

 

 
Figure 10. Multilayer Perceptron. 
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IV. Experimental Setup 

The experiments proposed in this paper are benchmarked 

against five popular classifiers used in similar research: 

Decision Tree, Naïve Bayes, MLP, KNN and SVM. The results 

obtained from the classifiers are evaluated in order to verify 

Hypothesis 1 discussed in Section III. The dataset used in this 

paper is collected from a real testbed which includes equipment 

such as: Siemens S7-1500 PLC, sensors, and actuators, all 

currently used in industry. Further, two more datasets are 

created to evaluate the results obtained from the selected 

machine learning algorithms when the dataset size grows. The 

datasets are described in section 3.3. Moreover, we assess three 

well-known feature selection techniques in order to validate 
Hypothesis 2 discussed in Section III. In this paper, the 

experiments were executed in a Laptop MacBook Pro with 2.9 

GHz Intel Core i7 and 16 GB 1600 MHz DDR3 of RAM 

memory. The five selected machine learning algorithms were 

implemented in the python-based web application called 

Jupyter [53]. To estimate the performance of the ML algorithms 

we used the statistical method called k-fold cross-validation 

procedure (i.e. 5-fold cross validation for our experiments) 

where the given dataset is to be split into k smaller dataset and 

then average value is computed. The experimental design 

considered the features from our very own CWSS dataset that 
obtained the highest scores in each of the feature selection 

methods described in the previous sections. The metrics used to 

evaluate the performance of the machine learning algorithms 

are F1-Score, Geometric Mean (G-Mean), False-Positive Rate 

(FPR), False-Negative Rate (FNR), Time Taken to Build the 

Model, and Time Taken to Test the Model.  

F1-Score is a harmonic balance of the precision and recall 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

We chose F1-Score metric over Accuracy given that unlike 

Accuracy, F1-Score is not contributed by the large number of 

true negatives that our model might provide. G-Mean is a 

performance metric that combines the True Negative Rate 

(TNR) and True Positive Rate (TPR). A low G-Mean score 
indicates that the performance of the machine learning 

algorithm is poor. Additionally, given that triggering a false 

positive alarm or a false negative alert in critical infrastructure 

might have a more significant impact in comparison with 

traditional computer networks, we consider False Positive Rate 

(FPR) and False-Negative Rate (FNR) as important metrics to 

evaluate the performance of our machine learning models.  

Moreover, it is also important to evaluate two important 

metrics of: Time Taken to Build the Model and the Time Taken 

to Test the Model. They have been chosen as it is vital to predict 

an attack on ICS as fast as possible in order to avoid irreversible 

damage. For instance, attacking a water treatment system may 
involve the manipulation of the water chlorination. Modifying 

the dosage of chlorine in the water would put lives in great 

danger. On the other hand, the time taken to build the model 

may not be required to be quick, except in circumstances where 

it is required to update the model on the fly. 

V. Result Analysis  

This section presents the analysis and discussion of the results 

obtained from the five selected machine learning algorithms 

and three feature selection methods given six performance 

metrics as discussed before. Table IV shows the results 

obtained from the machine learning algorithms after employing 

all the features and also once hiring the ones chosen by each 

feature selection technique.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE V RESULTS OBTAINED FROM DATASET II 
 

Feature 

Selection 

Technique 

Algorithm 
F1 

Score 
G-Mean FPR FNR 

Time to 

Build the 

Model (s) 

Time 

Taken to 

Test the 

Model (s) 

Information 

Gain 

Decision Tree 0.939 0.94 0.018 0.099 2.952 0.006 

Naïve Bayes 0.908 0.912 0.019 0.152 0.257 0.045 

Multilayer Perceptron 0.955 0.956 0.025 0.063 20.794 0.013 

KNN 0.945 0.946 0.038 0.071 6.376 8.683 

SVM 0.954 0.955 0.015 0.075 3499.471 421.428 

Chi Square 

Decision Tree 0.939 0.94 0.018 0.099 2.512 0.006 

Naïve Bayes 0.885 0.891 0.016 0.194 0.272 0.044 

Multilayer Perceptron 0.958 0.959 0.017 0.065 20.639 0.013 

KNN 0.945 0.946 0.038 0.071 6.119 8.519 

SVM 0.953 0.954 0.014 0.077 3313.695 428.312 

Correlation 

Based 

Decision Tree 0.939 0.94 0.018 0.099 3.072 0.007 

Naïve Bayes 0.908 0.912 0.019 0.153 0.282 0.049 

Multilayer Perceptron 0.958 0.959 0.017 0.065 21.405 0.014 

KNN 0.945 0.946 0.038 0.071 6.997 9.241 

SVM 0.954 0.955 0.014 0.076 3482.824 443.72 

No Feature 

Selection 

Method 

Decision Tree 0.939 0.94 0.018 0.099 4.323 0.009 

Naïve Bayes 0.894 0.899 0.017 0.178 0.393 0.079 

Multilayer Perceptron 0.952 0.953 0.015 0.078 24.045 0.017 

KNN 0.946 0.947 0.037 0.069 9.467 10.298 

SVM 0.95 0.951 0.013 0.084 6100.745 733.347 
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Table V and Table VI show the same results as described 

above but obtaining from Dataset II and Dataset III, both 

respectively. According to the results shown in Table IV, the 

Correlation-Based and IG, as two feature selection techniques, 

slightly improve the performance of the Naïve Bayes algorithm 

in terms of F1-Score from 89.4%, when the entire dataset is 

used, to 90.8%, with only chosen features. However, the Time 

Taken to Build the Model and the Time Taken to Test the 

Model, do not show a significant difference for Naïve Bays 

algorithm in all the scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Moreover, the F1-Score for the MLP algorithm is improved 

from 95%, when the entire dataset is used, to 95.4%, when only 

selected features by the chi-square are employed. The Time 

Taken to Build the Model for this algorithm is reduced by 2 

seconds and the Time Taken to Test the Model remains below 

1 second. It should be noted that the SVM does not improve in 

terms of F1-Score or G-mean metrics, however reducing the 

number of features aids to reduce the computational time to 6 

minutes for the Time Taken to Build the Model and 1 minute 

for the Time Taken to Test the Model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE VI  RESULTS OBTAINED FROM DATASET III 
 

Feature 

Selection 

Technique 

Algorithm 
F1 

Score 
G-Mean FPR FNR 

Time to 

Build the 

Model (s) 

Time 

Taken to 

Test the 

Model (s) 

Information 

Gain 

Decision Tree 0.94 0.942 0.018 0.097 4.81 0.008 

Naïve Bayes 0.908 0.912 0.019 0.153 0.352 0.066 

Multilayer Perceptron 0.955 0.956 0.029 0.059 30.295 0.02 

KNN 0.959 0.959 0.029 0.053 12.181 13.126 

SVM 0.954 0.955 0.013 0.075 7117.861 865.213 

Chi Square 

Decision Tree 0.94 0.942 0.018 0.097 4.071 0.009 

Naïve Bayes 0.885 0.891 0.016 0.193 0.367 0.061 

Multilayer Perceptron 0.96 0.96 0.017 0.062 30.509 0.02 

KNN 0.959 0.96 0.029 0.052 11.639 12.777 

SVM 0.953 0.954 0.013 0.077 7391.045 866.156 

Correlation 

Based 

Decision Tree 0.94 0.942 0.018 0.097 5.019 0.009 

Naïve Bayes 0.908 0.912 0.019 0.153 0.385 0.071 

Multilayer Perceptron 0.958 0.958 0.018 0.064 30.701 0.021 

KNN 0.959 0.96 0.029 0.052 13.485 14.051 

SVM 0.954 0.955 0.013 0.076 140920.919 909.082 

No Feature 

Selection 

Method 

Decision Tree 0.94 0.942 0.018 0.097 7.228 0.014 

Naïve Bayes 0.894 0.899 0.017 0.179 0.598 0.114 

Multilayer Perceptron 0.953 0.954 0.015 0.076 35.172 0.025 

KNN 0.961 0.961 0.028 0.05 17.67 15.826 

SVM 0.95 0.951 0.012 0.085 12946.696 1476.491 

 

TABLE IV RESULTS OBTAINED FROM DATASET I 
 

Feature 

Selection 

Technique 

Algorithm 
F1 

Score 
G-Mean FPR FNR 

Time 

Taken to 

Build the 

Model (s) 

Time 

Taken to 

Test the 

Model (s) 

Information 

Gain 

Decision Tree 0.935 0.936 0.019 0.106 1.106 0.003 

Naïve Bayes 0.908 0.912 0.019 0.152 0.134 0.021 

Multilayer Perceptron 0.95 0.951 0.029 0.068 10.144 0.006 

KNN 0.916 0.918 0.051 0.113 2.103 4.112 

SVM 0.95 0.951 0.015 0.082 819.341 105.368 

Chi Square 

Decision Tree 0.935 0.936 0.019 0.106 0.914 0.003 

Naïve Bayes 0.886 0.891 0.016 0.193 0.135 0.019 

Multilayer Perceptron 0.954 0.955 0.017 0.072 9.776 0.005 

KNN 0.916 0.918 0.051 0.113 2.01 4.058 

SVM 0.956 0.957 0.014 0.072 720.915 96.698 

Correlation 

Based 

Decision Tree 0.935 0.936 0.019 0.106 1.139 0.003 

Naïve Bayes 0.908 0.912 0.019 0.152 0.141 0.021 

Multilayer Perceptron 0.953 0.954 0.019 0.072 10.336 0.006 

KNN 0.916 0.918 0.051 0.113 2.356 4.285 

SVM 0.957 0.957 0.014 0.07 743.715 101.966 

No Feature 

Selection 

Method 

Decision Tree 0.935 0.936 0.019 0.106 1.435 0.005 

Naïve Bayes 0.894 0.899 0.017 0.178 0.181 0.038 

Multilayer Perceptron 0.95 0.954 0.015 0.076 11.901 0.008 

KNN 0.916 0.918 0.051 0.112 3.299 4.847 

SVM 0.961 0.962 0.013 0.063 1181.682 162.983 
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The results obtained from the machine learning algorithms on 

dataset II are shown in Table V. The KNN algorithm shows 

considerable improvement on dataset II.  F1-Score and G-mean  

metrics on dataset I, achieved 91.6% and 91.8% both 

respectively while on dataset II it achieves 94.5% and 94.6%. It 

can be seen in Table V that the Time to Build the Model and the 

Time to Test the Model are increased by a factor of 2 or even 

sometimes more for the five algorithms. Table VI shows the 

results obtained from dataset III. Both F1-Score and G-mean 

metrics obtained by the MLP algorithm on dataset III with the 

features provided by the Chi-Square achieved 96%. This 

outperforms the scores of 95.3% and 95.4% achieved by the 

MPL algorithm when the entire dataset is used. The Time to 

Build the Model and the Time to Test the Model are increased 

by the factor of 2 and 4, both respectively, compared to dataset 

II and dataset I. For instance, it can be seen in Table I that the 

F1-Score and G-mean metrics from the Naïve Bayes and MLP 

algorithm both show an improvement compared to the results 

obtained when the algorithms are trained with the entire dataset. 

 

As Table VI shows, the results obtained from the rest of the 

algorithms do not show an improvement, however, the F1-

Score and G-mean metrics obtained from the algorithm trained 

with the feature selection techniques are equal to the results 

obtained from the entire dataset.  

VI. DISCUSSION 

In this section, the scientific hypothesis described at the 

beginning of this paper are discussed and the challenges in 

implementing the mechanism of attack detection in real 

operational plants. 

 

Hypothesis 1. Newly engineered energy-based features 

collected from monitoring the energy consumption of the 

sensors and actuators that compose a model of a clean water 

supply system in conjunction with well-known supervised 

machine learning algorithms allow the detection of anomalies 

that may have a negative impact on the control system. 

 

The evaluation of the machine learning algorithms described 

in the previous section demonstrates the feasibility of 

classifying anomalous activity on a model of a clean water 

system by monitoring the energy of the actuator/sensors that 

compose the control system. The algorithms that show the best 

performance regarding F1-Score are MLP and SVM for three 

datasets. Although, SVM requires significantly more time than 

MLP in building the machine learning model.   

 

 

The concept of energy monitoring explained in this 

manuscript shows the feasibility of using a set of energy-based 

features for the detection of anomalies in a model of a clean 

water supply system. It should be considered that the proposed 
attack detection mechanism operates at layer 0 of the ICS 

architecture and it is independent of the equipment that 

compose the control system. For this reason, our detection 

mechanism cannot be fairly compared to the detection 

mechanisms explained in related work. We use energy readings 

at level 0, while the related work uses information obtained 

from the control network at level 2 of the ICS architecture 

shown in Figure 2. 

 
Although this implementation is feasible in the testbed 

explained in this paper, the unknowns of the feasibility of 

implementing this concept on a large scale arise. The authors in  

[54] describe the challenges of implementing proofs of concept, 

such as the one explained in this manuscript, in real operational 

plants. Our anomaly detection system can be implemented in 

any type of ICS because it only requires information from 

sensors or actuators, regardless of the type of process. We 

encourage research to analyse the feasibility of employing the 

attack detection mechanism suggested in this paper in other ICS 

implementations such as power plants, transportation and so on. 

 

VII. CONCLUSIONS 

 

This paper proposed an approach for anomaly detection in an 

ICS based on monitoring the energy of the sensors and 

actuators. Most of the research is focused on applying 

supervised and unsupervised machine learning techniques 

using features extracted from the traffic collected from an ICS 

network. Unlike this, we propose monitoring the energy 

consumption of actuators and sensors using a hard-wired 

INA219 current sensor. Another point to highlight in this paper 

is that the datasets, that contain benign and malicious traffic, are 

obtained from a physical testbed which was exclusively 
implemented for this research.  

 

The results obtained from the experimentation show the 

feasibility of using this approach for anomaly detection using a 

wide range of machine learning algorithms. Further, the feature 

selection techniques applied to the dataset did successfully 

remove features that did not contribute to the machine learning 

model. One of the visible advantages of feature selection is the 

reduction of computational time for heavy algorithms such as 

SVM and KNN. For instance, on SVM the Time Taken to Build 

the Model is reduced by 37% when the correlation-based 
technique is applied to the dataset. The performance of the 

machine learning algorithms achieved an F1 Score of 90% 

overall.  

 

In our scenario, we focus on obtaining a high detection rate 

along with the lowest FPR and FNR. Bearing that in mind, the 

algorithm that meets those requirements is Multilayer 

Perceptron (MLP) which achieves an F1 score of 95%, 2.9% 

FPR and 6.8% FNR, when Information Gain is applied on the 

dataset. 

 

 

A. Future Work 

 

In future work, we plan to implement an online detection 

system considering the results presented in this paper. 

Moreover, we will analyse adversarial scenarios that could 

affect our implementation.  
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