
Speed Improvements for the RSA
Encryption Method

Hsiu-Chiung Wang

A thesis submitted in partial fulfilment of the
requirements of Napier University for the

degree of Master of Philosophy

November 2000

Abstract

Abstract

This thesis presents methods that can be used to improve the operation of the RSA

encryption method. It shows the principles of encryption, and then expands this to give

the operation of public-key methods, which includes the number value theorems applied

onto RSA system, Modular Multiplication and Modular Exponentiation, and the basic

theory and content of RSA system.

 The thesis then presents four methods which can be used to improve the

encryption/decryption process. In this, Single Precision Multiplication and Listing

Method are used to speed up the modular calculation in the modular multiplication, the

M-ary Sliding window is used to speed up exponentiation multiplication, and Chinese

Remainder Theory (CRT) is used to speed up decryption.

 Single Precision Multiplication is a method of multiplying and modulating to speed

up modular multiplication, which after evaluation can increase about operations by four

to five times in speed. The Listing Method pre-stores values from earlier calculations

which saves in the relocation of figures and calculation time.

 The M-ary method can be used to complete the exponentiation multiplication. Results

show that an exponent of 1024 bits can give the calculation efficiency up to 24%. The

Chinese Remainder Theorem is used to give an improvement of the decryption speed up

by up to four times.

i

Table of contents

1. Introduction 1
1.1 Research motives and purposes 1
1.2 Research method 2
1.3 Thesis structure 3
1.4 OSI model and encryption 3
1.5 Cryptography 4

2. Introduction to Cryptology 6
2.1 Introduction 6

2.1.1 The requirement for cryptology 7
2.2 Private-key and the public-key cryptosystems 11

2.2.1 Private-key cryptosystem 12
2.3 Public-key cryptosystem 26
2.4 One-way function and one-way trapdoor function [2.6] 30
2.5 Cryptographic protocol introduction and analysis 31
2.6 Reference 37

3. Number Theory and Module Exponentiation 38
3.1 Introduction 38
3.2 Prime Number and Relative Prime Number 38

3.2.1 Common Divisor [3.1] 39
3.2.2 Prime number 39
3.2.3 Relative prime number 41

3.3 Modulo Operation 42
3.3.1 Modular Arithmetic Operations 44
3.3.2 Inverse of a modulus 45
3.3.3 Attributes of Modular Operations 48

3.4 Fermat’s Theorem and Euler’s Theorem 50
3.5 Reference 61

4. Rapid Module Exponentiation and Modular Multiplication 63

4.1 Introduction 63
4.1.1 Binary method 63
4.1.2 M-ary method 65
4.1.3 Sliding window method 68

4.2 Modular multiplication 72
4.2.1 Calculating remainder 72
4.2.2 Non-restoring division algorithm 75

4.3 Reference 77

5. Novel Implementation of the RSA Algorithm 78
5.1 RSA Algorithm 78

5.1.1 Public Gold Key 78
5.1.2 Description of RSA algorithm 79

5.2 Choice of RSA parameter 81
5.2.1 Things to be noticed while choosing N 82
5.2.2 Things to be noticed while choosing e and d 85

5.3 Programming of RSA System (old program) 86
5.3.1 Integral Planning 86
5.3.2 Choice of Data Structure 87
5.3.3 Gold key 87
5.3.4 Encrypting & Decrypting 88

5.4 Practical implementation 89
5.4.1 Main system flow path 89

5.5 The comparison of two systems 91
5.5.1 Single precision multiplication, SPM: 91
5.5.2 Listing method to complete the modulus calculation in the modulus multiplication 94
5.5.3 M-ary sliding window to complete exponent calculation 94
5.5.4 Chinese Remainder Theorem(CRT)[5.8, 5.9]¡G 95

5.6 References 97

6. Conclusions 98

A. IMPLEMENTATION OF RSA NEW SYSTEM 100
A.1 Program implementing instruction 100
A.2 The functional instruction for RSA coding, decoding programs 102

 1

CHAPTER 1

Introduction

1.1 Research motives and purposes

With the rapid spread of digital communication networks, there is a great need for

privacy and security of transmitted data. Therefore, the methods of safeguarding in-

formation is becoming a major issue, for which the encryption and decryption systems

have been created. Many hardware and software protocols have been implemented to

improved the security of information, but the only true method of securing data is to

encrypt it.

 Encryption and decryption can be classified into the following two kinds:

• Secret key cryptosystem, such as the DES system. With a secret key, the key is

only known to the two communicating parties. This key can be fixed or can be

passed from the two parties over a secure communications link (perhaps over the

postal network or a leased line). The two most popular private key techniques are

DES (Data Encryption Standard) and IDEA (International Data Encryption Algo-

rithm).

• Public key cryptosystem, such as the RSA system. In public-key encryption,

each user has both a public and a private key. The two users can communicate be-

 2

cause they know each other’s public keys. Normally in a public-key system, each

user uses a public enciphering transformation which is widely known and a pri-

vate deciphering transform which is known only to that user. The private

transformation is described by a private key, and the public transformation by a

public key derived from the private key by a one-way transformation. The RSA

(after its inventors Rivest, Shamir and Adleman) technique is one of the most

popular public-key techniques and is based on the difficulty of factoring large

numbers.

On the other hand, the common RSA requires more time in encryption and decryption

calculation. Therefore, in this thesis, we adopt the Single Precision Multiplication and

the listing method to complete the modular calculation in the modular multiplication.

This uses the M-ary Sliding Window to complete exponentiation multiplication and

the Chinese Remainder Theorem to speed up the decryption. Meanwhile, we will

transform the above theorems into a software entity to do further experiment. The new

system has a multiple speed improvement in encryption and decryption.

1.2 Research method

RSA encryption and decryption system was first developed forth in 1977, and is cur-

rently the most widely used encryption and decryption system. Its main calculation is

based on multiple bit exponentiation multiplication and modular multiplication. For

simplification, this modular multiplication adopts single precision multiplication.

With adoption of 16 bits for a single block and the concept of modulating while mul-

tiplying simplifies the modular multiplication, there is a four to five times of

promotion in efficiency. Furthermore, it uses M-ary sliding widow to speed up expo-

nentiation multiplication operation up to 24%. The C programming language has been

used to design and embody for further experiment.

 3

1.3 Thesis structure

The structure of the thesis is as follows:

• Chapter 2 discusses the structure and theory of cryptography and encryption and

decryption system.

• Chapters 3 and 4 focus on applied number value theorems, Rapid Module Multi-

plication and Module Multiplication.

• Chapter 5 introduces the new implementation of the RSA system and contrasts it

with the existing system.

• Chapter 6 explains the methods of SPM, listing method, M-ary Sliding Window

and CRT and how they can be used to speed up encryption and decryption. It also

included the explanation and embodiment of the respective subsidiary program.

• Chapter 7 outlines the main conclusions of the thesis.

• Appendix 1 contains the initiative program of the new system, and Appendix 2 the

original program of the old system.

1.4 OSI model and encryption

It is possible to encrypt data at any level of the OSI model, but typically it is en-

crypted when it is passed from the application program. This must occur at the

presentation layer of the model, as illustrated in Figure 1.1. Thus, an external party

will be able to determine the data at the session, transport, network and data link

layer, but not the originally transmitted application data. Thus encryption is useful in

hiding data from external parties, but cannot be used (with standard protocols) to hide:

• The session between the two parties. This will give information on the type of ses-

sion used (such as FTP, TELNET or HTTP).

• The transport layer information. This will give information on the data packets,

such as, with TCP, port and socket numbers, and acknowledgements.

 4

• The network address of the source and the destination (all IP packets can be exam-

ined and the source and destination address can be viewed).

• The source and destination MAC address. The actually physical addresses of both

the source and the destination can be easily examined.

Most encryption techniques use a standard method to encrypt the message. This

method is normally well known and the software which can be used to encrypt or de-

crypt the data is widely available. The thing that makes the encryption process

different is an electronic key, which is added into the encryption process. This encryp-

tion key could be private so that both the sender and receiver could use the same key

to encrypt and decrypt the data. Unfortunately this would mean that each conversation

with a user would require a different key. Another disadvantage is that a user would

have to pass the private key through a secret channel. There is no guarantee that this

channel is actually secure, and there is no way of knowing that an external party has a

secret key. Typically public keys are changed at regular intervals, but if the external

party knows how these change, they can also change their own keys. These problems

are overcome with public-key encryption.

 Most encryption is now public-key encryption (as illustrated in Figure 1.1). This

involves each user having two encryption keys. One is a public-key which is given to

anyone that requires to send the user some encrypted data. This key is used to encrypt

any data that is sent to the user. The other key is a private-key which is used to de-

crypt the received encrypted data. No one knows the private-key (apart from the user

who is receiving data encrypted with their public-key).

1.5 Cryptography

The main object of cryptography is to provide a mechanism for two (or more) people

to communicate without anyone else being able to read the message. Along with this

it can provide other services, such as:

 5

TransportTransport

NetworkNetwork

Data linkData link

PhysicalPhysical

TransportTransport

NetworkNetwork

Data linkData link

PhysicalPhysical

Data segments

Data packets

Data frames

Data bits

Application
program

Application
program

Application
program

Application
program

Data stream

Network protocol
and network type
are independent
from data stream

SessionSession

PresentationPresentation

‘Hello’

@#^$£2

SessionSession

PresentationPresentation

‘Hello’

@#^$£2

Public-key passed Private-key
used to decrypt
data

Session commands (GET/PUT)

TransportTransport

NetworkNetwork

Data linkData link

PhysicalPhysical

TransportTransport

NetworkNetwork

Data linkData link

PhysicalPhysical

Data segments

Data packets

Data frames

Data bits

Application
program

Application
program

Application
program

Application
program

Data stream

Network protocol
and network type
are independent
from data stream

SessionSession

PresentationPresentation

‘Hello’

@#^$£2

SessionSession

PresentationPresentation

‘Hello’

@#^$£2

Public-key passed Private-key
used to decrypt
data

Session commands (GET/PUT)

Figure 1.1 Encryption and the OSI model

• Giving a reassuring integrity check – this makes sure the message has not been

tampered with by non-legitimate sources.

• Providing authentication – this verifies the sender identity.

Initially plaintext is encrypted into ciphertext, it is then decrypted back into plaintext,

as illustrated in Figure 1.2. Cryptographic systems tend to use both an algorithm and a

secret value, called the key. The requirement for the key is that it is difficult to keep

devising new algorithms and also to tell the receiving party that the data is being en-

crypted with the new algorithm. Thus, using keys, there are no problems with

everyone having the encryption/decryption system, because without the key it is very

difficult to decrypt the message.

Encryption Decryption
Plaintext PlaintextCiphertext

Figure 1.2 Encryption/decryption process

 6

CHAPTER 2

Introduction to Cryptology

2.1 Introduction

This chapter discusses some of the key concepts of crytology, including:

• Requirements of cryptology. This gives a basic introduction to some of the nota-

tion and terminology that is used in cryptology.

• Types of attack. An encryption technique must be tests against different methods

of attack. This section analyses the methods that an external party may use in or-

der to intercept an encrypted message.

• Public and private-key systems. This section analyses the main techniques used

to encrypt data. These is a briefly introduces different sorts of cyptosystems and

content, one-way trapdoor function and the protocol introduction and analysis of

cryptography.

The word cryptology is the formed with Greek root Kryptós (hidden) and Lógos

(word); now generally refer to as the studies for secret communication (including the

secrecy of communication and decoding). The main object of cryptography is to pro-

vide a mechanism for two (or more) people to communicate with no-one else being

able to read the message.

 Cryptology can be split into two areas [2.1]:

1. Cryptography. Generally is the science (or art) for achieving information secrecy

and authenticity.

 7

2. Cryptanalysis. Generally is the science (or art) for breaking cryptosystem or to

deceive the cryptosystem with forged information.

The International Association for Cryptologic Research (IACR) was founded in 1981

and is the first academy dedicated to the cryptologic research. The main research con-

ferences for this area of study are EUROCRYPT (in Europe), CRYPTO (in the USA)

and ASIACRYPT (in Asia).

2.1.1 The requirement for cryptology

Cryptography has been used for hundreds of years to safeguard military and national

defence communication. Most government today exercise some control of crypto-

graphic apparatus if not of cryptographic research. The US, for example, applies the

same export/import controls to cryptographic devices as it does to military weapons.

Other important information must be kept secret because of government laws on data

protection.

 There are three important roles in a cryptosystem: sender, receiver, and decoder, as

illustrated in Figure 2.1. The encryption/decryption plaintext sender will first use the

encryptor E and encryption key K1 to encrypt the plaintext m into ciphertext (C =

EK1(m)). C will then be sent to the receiver through the public channel, which then

decodes it back into plaintext m =DK2C = DK2(EK1(m)) with decryptor D and decryp-

tion key K2. We also assume that there exists a decoder inside the public channel, and

that the decoder will not have access to the decryption key K2, but will somehow util-

ize every possible means to obtain the plaintext m or deceive the receiver with forged

information assuming the identity of sender.

 Figure 2.1 illustrated a typical cryptosystem, which provides [2.2, 2.3]:

• Secrecy or privacy. Prevent an illegal receiver from uncovering the plaintext.

• Authenticity. Assures the legitimacy of the information source, as this confirms

that it has been sent by the sender, instead of being forged or some other previous

 8

information being send by the third party.

• Integrity. Assure the information is free of intentional/unintentional modification

or being partially replaced, add-in, or deleted and so on.

• Nonrepudiation. The sender is not to deny the deliver of information.

EncryptorEncryptor
DecryptorDecryptor

DecoderDecoder
Encryption key K1 Encryption key K2

Cipertext C=EK1(m)

Public channel

Sender Receiver

EncryptorEncryptor
DecryptorDecryptor

DecoderDecoder
Encryption key K1 Encryption key K2

Cipertext C=EK1(m)

Public channel

Sender Receiver

Figure 2.1: Typical Cryptosystem

The traditional Cryptology often put its emphasis on the secrecy or privacy of the in-

formation, but focus is increasing on authenticity, integrity, and nonrepudiation, espe-

cially related to electronic commerce, and for legal purposes. For maintaining the

highest security level of the cryptosystem, the assumption of a knowledgeable de-

coder is presumed (the decoder has in-depth understanding for the cryptosystem).

Kerckhoff (1835-1903) once made the following presumption for the Cryptosystem:

The security of a cryptosystem should only rely on its decryption key, all

other methods like the encryptor or decryptor should be presumed known

by the decoder.

2.1.1.1 Attack

Attack on the security of a computer system or network is best characterized by view-

ing the function of the computer system as providing information. In general, there is

a flow of information from a source to a destination. The main security threats are de-

picted in Figure 2.2 (and are categorization in Figure 2.3), and are:

 9

• Interruption. An asset of the system is destroyed or becomes unavailable, or even

unusable. This is an attack on availability.

• Interception. An unauthorized party gains access to an asset, which is an attack

on confidentiality. The unauthorized party could be a person, a program, or a com-

puter.

• Modification. An unauthorized party not only gains access to an asset, but also

tampers with it. This is an attack on integrity.

• Fabrication. An unauthorized party inserts counterfeit objects into the system.,

which is an attack on authenticity.

Information
source

Information
source Information

destination

Information
destination

(a) Normal flow

Information
source

Information
source Information

destination

Information
destination

(b) Interruption

Information
source

Information
source Information

destination

Information
destination

(c) Interception

External
party

External
party

Information
source

Information
source Information

destination

Information
destination

(d) Modification

External
party

External
party

Information
source

Information
source Information

destination

Information
destination

(e) Fabrication

External
party

External
party

Information
source

Information
source Information

destination

Information
destination

(a) Normal flow

Information
source

Information
source Information

destination

Information
destination

(b) Interruption

Information
source

Information
source Information

destination

Information
destination

(c) Interception

External
party

External
party

Information
source

Information
source Information

destination

Information
destination

(d) Modification

External
party

External
party

Information
source

Information
source Information

destination

Information
destination

(e) Fabrication

External
party

External
party

Figure 2.2: Security Threat [2.4]

 10

Fabrication
(authenticity)

Passive
threats

Interception
(secrecy)

Release of
message analysis

Traffic
contents

Active
threats

Interruption
(available)

Modification
(integrity)

Fabrication
(authenticity)

Passive
threats

Interception
(secrecy)

Release of
message analysis

Traffic
contents

Active
threats

Interruption
(available)

Modification
(integrity)

Passive
threats

Interception
(secrecy)

Release of
message analysis

Traffic
contents

Active
threats

Interruption
(available)

Modification
(integrity)

Figure 2.3: Active and Passive Network Security Threats [2.4]

Only if under the above presumption, the decoder still cannot break the cryptosystem,

then the system is defined to be currently secure. The level of information that de-

coder is able to extract from the cryptosystem can be divided into the following three

ways of decryption:

• Ciphertext-only attack. The decoder can only intercept the ciphertext C and use

it for direct decryption to plaintext.

• Known-plaintext attack. The decoder has some ciphertext-plaintext pairs as

{m1,C1},{m2,C2}, … , {mt,Ct} and with these, the decoder will try to solve for de-

cryption key K2, or finding the next ciphertext Ct+1. Under the plaintext attack, as-

suming that the decoder is incapable of choosing or controlling, the plaintext in

the obtained ciphertext-plaintext pairs. For example, the decoder has no way of

knowing the corresponding plaintext as m1, m2, … , mi to the extracted ciphertext

from the channel. Somehow, the decoder inposes on the ciphertext-plaintext pairs

as the ciphertext is decrypted and publicized for expiration of its kept-confidential

period. As of this moment, the decoder still incapable of choosing or controlling

the plaintext (ciphertext). The other more formidable way of attacking is the cho-

sen-text attack.

 11

• Chosen-text attack. Under this attack, the decoder has the ability to choose or

control the plaintext (or ciphertext). Therefore, the decoder can choose to attack

the cryptosystem from the ciphertext-plaintext pairs that the decoder thinks would

be the easiest to break. This kind of attack methodologie can be divided into two

main methods:

• Chosen-plaintext attack. The decoder can choose the plaintext m1, m2, … ,

mi, and encrypts them into ciphertext C1, C2, … , Ci and then sends this back

to the decoder.

• Chosen-ciphertext attack. The decoder chooses some ciphertext, decipher it

into plaintext (which may be meaningless) and then send it back to the de-

coder.

The majority of cryptosystems hope that the decoder can, at most, use the ciphertext-

only attack methodology to attack the cryptosystem. However, a secured cryptosys-

tem should be able to withstand an assault from the chosen-text attack, especially if it

is a public-key cryptosystem, as one of the encryption keys is publicized, thus any-

body will be able to encrypt the plaintext into ciphertext using the publicized key and

proceed with the chosen-plaintext attack. Table 2.1 summarizes the various types of

cryptanalytic attacks based on the amount of information known to the cryptanalyst.

2.2 Private-key and the public-key cryptosystems

Figure 2.1 illustrates a typical cryptosystem. If the encryption key were to be known

only by the rightful sender, then it is called as the private-key cryptosystem, as illus-

trated in Figure 2.2. Normally the encryption and decryption keys in the private

cryptosystem have the following characteristics: knowing K1 would mean knowing

K2, and vice-versa. Under most of the conditions, K1 would be the same as K2. There-

fore, the private-key cryptosystem is sometimes referred to as the symmetric key

cryptosystem or one-key cryptosystem. Also, because the conventional cryptosystem

utilize the private-key cryptosystem, it is often called the conventional cryptosystem.

 12

Table 2.1: Cryptanalytic attacks [2.5]

Type of Attack Known to Cryptanalyst

Ciphertext only • Encryption algorithm.
• Cipher-text to be decoded.

Known plaintext • Encryption algorithm.
• Cipher-text to be decoded.
• One or more plaintext-cipher text pairs formed with the secret-key.

Chosen plaintext • Encryption algorithm.
• Cipher-text to be decoded.
• Plaintext message chosen by crypanalyst, together with its corresponding ci-

phertext generated with the secret-key.

Chosen ciphertext • Encryption algorithm.
• Cipher-text to be decoded.
• Purported ciphertext chosen by cryptanalyst, together with its corresponding

ciphertext generated with the secret-key.

Chosen text • Encryption algorithm.
• Cipher-text to be decoded.
• Plaintext message chosen by crypanalyst, together with its corresponding ci-

phertext generated with the secret-key.
• Purported ciphertext chosen by cryptanalyst, together with its corresponding

ciphertext generated with the secret-key.

2.2.1 Private-key cryptosystem

Traditionally, the main methods of keep information secret is to use permutation and

substitution. This technique was fine while computer systems were slow in perform-

ing simple encryption operations (such as bit shifting and exclusive-OR operations),

and could not search through a great deal of permutations (as each search took a rela-

tively long time to complete its operation), but modern computers are excellent at per-

forming bit operations and for implementing search techniques. Nevertheless, permu-

tation and substitution have to be designed and exercised delicately in order to con-

fuse decoders to the most extent. On the other hand, fast decoding speed needs to be

added for some occasions which require rapid decoding instead of top confidentiality.

 Some of the models and techniques of permutation and substitution are introduced

in this section; and the functions of permutation and substitution will be mostly ex-

plained through examples.

 13

2.2.1.1 Permutation encryption approach

This is similar to reshuffle in card playing. This is the most direct approach of confus-

ing plaintext, where the position of each sequence of bits (typically a byte) is deter-

mined using some predefined rule. Some of commonly applied permutation models

are explained in the following section. Note that there are several common points

among these examples, which will be stated here first to save the space as well as

making the explanation clearer:

1. The gold key of the decoding function is for general share, marked as K and pre-

served confidentially.

2. The code of each gold key is self-established for the access of description, not the

standardized code for the cryptography.

There are four major categories of the permutation approach.

1. Basic Permutation. This includes basic methods, such as circular permutation (to

move the plaintext to a certain location in a circular manner) and reverse permutation

(to arrange the plaintext in a reverse way), and so on. Nevertheless, an original plain-

text is still very easy to recognize through these basic permutation methods from the

following examples; and these methods usually require other techniques for applica-

tions.
! Example 1

We presume the plaintext as ABCDEFGHIJKLMNOPQRSTUVWXYZ and permute it to

the third location in a right circular movement. The ciphertext will thus be XYZAB

CDEFGHIJKLMNOPQRSTUVW and k=s+3 can be demanded. (s+ means to move

right, s– means to move left and 3 refers to the required location).
! Example 2

We presume the plaintext as ABCDEFGHIJKLMNOPQRSTUVWXYZ and reverse it.

The ciphertext will be ZYXWVUTSRQPONMLKJIHGFEDCBA and k=inv can be de-

manded.

 14

! Example 3

We presume the plaintext as ABCDEFGHIJKLMNOPQRSTUVWXYZ and permute it in

a circular and reverse movement (k=inv, s–4). The ciphertext will thus be VUT

RQPONMLKJIHGFEDCBAZYXW, and if (k=s–4, inv) then the plaintext will become

DCBAZYXWVUTSRQPONMLKJIHGFE.

2. Geometric Permutation. This method programs the plaintext in a certain geomet-

ric figure and then encrypts it through a specified path. The most typical geometric

figure is rectangular and joint lines similar to rails.
! Example 4

We presume the plaintext as ABCDEFGHIJKLMNOPQRSTUVWXYZ. For example:

 AEIMQUY

 If we put it to BFJNRVZ and then encrypt it in the following order.

CGKOSW

DHLPTX

Then the ciphertext will be AEIMQUYBFJNRVZCGKOSWDHLPTX and k=rec4t1 can

be demanded. (rec4 refers to a rectangle with a height of 4 and t1 reveals the path as

model 1):

 AFKPUZ

 BGLQV

If we put it to CHMRW and encrypt it in the following order:
 DINSX

 EJOTY

Then the ciphertext will be AFKPUZYTOJEDCBGLQVWXSNIHMR and k=rec5t2 can

be demanded (rec5 refers to a rectangle with a height of 5 and t2 reveals the path as

model 2).

 15

! Example 5

We presume the plaintext as ABCDEFGHIJKLMNOPQRSTUVWXYZ.

 A G M S Y

 If we put it to B FH LN RT XZ

 and then encrypt it in the following order:

 C E I K O Q U W

 D J P V

Then the ciphertext will be AGMSYBFHLNRTXZCEIKOQUWDJPV and k=fen4 can be

demanded (fen4 refers to a joint line with a height of 4).

3. Column and Row Permutation: After arranging the plaintext into a rectangular

form, interchange the locations of each column and each row and then encrypt it in

order.

! Example 6

We presume the plaintext as ABCDEFGHIJKLMNOPQRSTUVWXYZ.

123456 425163

AFKPUZ PFUAZK

If we put it into BGLQV and change the col to QGVBL

 CHMRW RHWCM

 DINSX SIXDN

 EJOTY TJYEO

 16

Then the ciphertext will be PFUAZKQGVBLRHWCMSIXDNTJYEO and k=col5 (4, 2,

5, 1, 6, 3) can be demanded.

! Example 7

We presume the plaintext as ABCDEFGHIJKLMNOPQRSTUVWXYZ.

 1 AFKPUZ 4 DINSX

If we put it into 2 BGLQV and alter the row to 1 AFKPUZ

 3 CHMRW 5 EJOTY

 4 DINSX 3 CHMRW

 5 EJOTY 2 BGLQV

and then encrypt it.

Then the ciphertext will be DINSXAFKPUZEJOTYCHMRWBGLQV and k=row5(4, 1,

5, 3, 2) can be demanded.

4. Mixing Permutation. We can mix all permutation methods to increase confusion.
! Example 8

We presume the plaintext as ABCDEFGHIJKLMNOPQRSTUVWXYZ. If we permute

through the gold key k=inv, fen3, col6(4, 1, 5, 3, 2), then the ciphertext will become

CZHOBAVDMYXRKWTNIUPJGSLFEQ.
! Example 9

We presume the plaintext as ABCDEFGHIJKLMNOPQRSTUVWXYZ. If we permute

and encrypted it through the gold key k=rec5t2, row4(4, 1, 3, 2), then the ciphertext

will become PTDLXHAUOCQSMKYEGWIFZJBVNR.

 17

2.2.1.2 Substitution encryption approach

Another basic approach to replace a ciphertext, whose primary spirit is to save each

byte in the plaintext with another code. Since the applied code is not confined to the

assembly of original bytes or substituted by a code equal to the length of original

bytes, this approach can function better than permutation approach. Besides, a portion

of the substitution approach can take the effect of removing redundant data, which is

exactly contrary to some encryption systems. Though it does not represent any par-

ticular meanings to cryptography, these methods decrease the shortcoming of slow

speed caused by some of the coding systems with public gold keys. In the following

sections this will be discussed from two aspects, which are substitution method of

fixed length and that of variable length.

Substitution Method of Fixed Length

This method refers to substitution of the bytes of the original plaintext with a code of

equal length. It can be further explained with the following two perspectives.

1. Simple substitution. This allow the substitution a certain byte in the plaintext with

another byte through a transforming one-on-one function. However, the major weak-

ness of this method is that it is easy to deciphering because of the probability of the

cipertext.
! Example 10

We hypothesize that the only potential appeared bytes are 26 letters of AB

CDEFGHIJKLMNOPQRSTUVWXYZ (for convenience’s sake, the code of A is made 0,

that of B is 1… and that of Z is 25.) and transform all letter X’s into Y’s through the

function f(x) = (x×a+b) mod 26 under the conditions of a, b and n being constants and

a and 26 being prime numbers to satisfy y = f(x).

The Caesar Shift

Egypt was the first country to use the Caesar Shift, which is a very ancient cryptogra-

phy. There are two kinds of simple concepts in the Caesar Shift: the cyclic alphabet

 18

and the alphabet-number correspondence. In Figure 2.4, each alphabet can be repre-

sented with a number. For example, 0 stands for A, 1 stands for B and 25 represents

Z, in order. Such a design facilitates cryptography for arithmetic algorithm. Besides,

the letters A and Z are next to each other in Figure 2.4, which indicates that A is fol-

lowed by B, B followed by C … until Z and the same cycle repeats itself always. This

phenomenon accounts for the rule of the cyclic alphabet. The Caesar Shift can stated

as:

Encoded: Tk(p) = (p + k) mod 26 = C

Decoded: Tk
–1(p) mod 26 = p

The definitions are:

P is the number corresponded to one of the letters in the original text.

c is the number corresponded to one of the letters in the cryptographic text.

k (key value) is any integer between 0 to 25. As mod 26 is in the formula, the k

value has to be between 0 to 25 to be meaningful.

Note that when decoded, if (c–k)<0, then (c–k)+26 has to be calculated first.

Now, we cryptograph the word "SECURITY" by using the Caesar Shift (k=5). To en-

code:

Original text = ‘SECURITY’

Convert the letters into numbers in compliance with Figure 2.4 and the result is ‘18,

4, 2, 20, 17, 8, 19, 24’. Then, we calculate T5(p) = (p+5) mod 26, which leads to ‘23,

9, 7, 25, 22, 13, 24, 3.’ Finally, we convert the numbers into letters and the crypto-

graph becomes ‘XKHZWNYD’.

 19

Decode ‘XKHZWNYD’

We convert the letters in cryptograph into numbers and we get ‘23, 9, 7, 25, 22, 13,

24, 3’. Then we calculate T5
–1(c) = (c–5) mod 26, which leads to ‘18, 4, 2, 20, 17, 8,

19, 24’. Finally, we convert the numbers into alphabet and we get ‘SECURITY’ as the

original text.

Figure 2.4: The Cyclic Alphabet & Alphabet-Number Correspondence Plate

Modular cryptography

The modular cryptography is a common formula for the Caesar shift and its definition

is as follows:

Encoded: Tk(p) = (p×a+b) mod 26 = C

Decoded: C = (p×a+b) mod 26 → (c–b) = (p×a) mod 26

 Tk
–1(c) = (c–b) + 26n div a = p, n is an integer.

0 1
2

3

4

5

6

7

8

9
10

11
12 13

14
15

16

17

18

19

20

21

22

23
24

25

A
B

C

D

E

F

G

H
I

J

K
L M N

O
P

Q
R

S

T

U

V

W

X
Y

Z

 20

where:

P is the number corresponded to one of the letters in the original text.

C is the number corresponded to one of the letters in the cryptograph.

K includes two parameters a and b. If we presume a=1, then the modular cryptog-

raphy is the same as the Caesar shift. Consequently, the Caesar shift is a unique

example of the modular cryptography.

For decoding, if (c–b) is not a multiple of a, add 26 to (c–b) until (c–b) + 26n be-

comes a multiple of a. Also attention must be paid to the following two points while

choosing a and b in the modular cryptography:

• a has to be a positive integer, primed to 26. It is is not, different alphabets in the

original text will be encoded into the same letters in the cryptograph, which ren-

ders problems for decoding. For example, if a = 6 (as 6 and 26 share common fac-

tors 1 and 2, they are not primed against each other), ‘A’ and ‘N’, ‘B’ and ‘O’ and

‘C’ and ‘P’, which are all separated by 13 letters will correspond to the identical

alphabets in the cryptograph and it will cause difficulty in converting to the cor-

rect alphabets in the original text while decoding.

• b has to be a positive integer between 0 to 25 to be meaningful.

Now, we apply the modular cryptography to cryptograph the English word ‘SECU

RITY’ and presume a = 3 and b = 5. The encoding process is as follows:

Convert the letters in the original text (SECURITY) into numbers and result in ‘18, 4,

2, 20, 17, 8, 19, 24’. Calculate Tk(p) = (3p+5) mod 26 and we get ‘7, 17, 11, 13, 4, 3,

10, 25’. Then, we convert the numbers into alphabets, which leads to ‘HRLNEDKZ’,

the cryptograph text.

 The decoding process is as follows:

 21

Convert the letters in the cryptograph text (HRLNEDKZ) into numbers and we get ‘7,

17, 11, 13, 4, 3, 10, 25’. Calculate Tk
–1(c) = [(c – b) + 26n] div a and we get ‘18, 4, 2,

20, 17, 8, 19, 24’. Finally, we convert the numbers into alphabets and we get ‘S

ECURITY’.

 2. Substitution related to the environment: The primary feature of this substitution

method is that byte a is not necessarily substituted with byte b, and is only replaced

with byte c under certain situations. This increases the security of the encryption,

however, it increases the encoding/decoding time. Some of the examples of this tech-

nique are provided for reference.
! Example 11

We hypothesize that the only potential appeared bytes in the plaintext are BINOSTU

and the corresponding substitution relationship is shown as follows. (This table stands

if the byte in the plaintext is S and the corresponding gold key is O, then the corre-

sponding encrypted byte is B).

 BINOSTU (corresponding gold key)

C B N B U T S I O

O I B T I N U O S

N N O U N I B S T

T O I S T O N B U

E S U N S B O T I

X T S I O U T N B

T U T O B S I U N

If the gold key of ciphering and deciphering the sample is k=OUT, then the corre-

sponding encryption of plaintext SUBSTITUTION is BNIBBOUNNNUS. If the gold

key of ciphering and deciphering the sample is k=BOOST, then the corresponding

 22

encryption of plaintext SUBSTITUTION is USTONBUSTOII. Aiming at ciphering

above, we can realize the motion through the following correspondence.

plaintext SUB STI TUT ION plaintext SUBST ITUTI ON

gold key OUT OUT OUT OUT gold key BOOST BOOST BO

encryption BNI BBO UNN NUS encryption USTON BUSTO II

! Example 12

An encryption method called Playfair Cipher was once applied in England during

World War 1, whose gold key was a 5×5 matrix containing 25 letters (J is optional or

shares the same location with I among 26 letters.) as the following indicates:

H A R P S

I C O D B

E F G K L

M N Q T U

V W X Y Z

This method is to group two bytes in the plaintext as a unit and then comply with the

following procedures:

1. If these two bytes are in the same row, then each byte is substituted by the right

byte in the matrix and the first column is deemed on the right side of the last

column.

2. If these two bytes are in the same column, then each byte is substituted by the

next byte in the matrix and the first row is deemed beneath the last row.

3. If these two bytes are neither in the same column nor the same row, then they

will show up in a diagonal form and be substituted by the bytes in the same row

of the diagonal line.

 23

4. If these two bytes are the same, a certain byte can be added between them to

avoid redundancy. The added byte can be removed after ciphering.

5 If the total number of bytes in a plaintext is odd, then another additional byte

can be added to make it even prior to processing. The added byte can be re-

moved after ciphering.).

Accordingly, if there is a plaintext of ELECTRONICS, the corresponding encryption

will be FEFIQPCQCOR in compliance with the gold key and the rules of ciphering.

 There are still a number of ways for substitution encryption method of fixed

length. For example, the Hill Cipher uses the matrix and multiple substitution through

a ciphered disc.

Substitution method of variable length

This method has a substitution encryption that does not require the byte of the same

length in the original plaintext, that is, the length of the code for substitution can be

different. It should be noted that, although the length of every byte after being ci-

phered and coded is different, decoders still need to differentiate each byte without

any vague implications. As the length of coding is variable, another effect beyond the

field of cryptology can be attained as well, that is data compression.

 The code book for encryption substitutes every byte unit or the code in the code

book for phrases in the plaintext. As the length of each word or phrase varies, the

length of the ciphertext is usually different from that of the plaintext. This method

surely has fair confidentiality; however, one troubling defect has to be taken care of is

related to the size of the code book for the gold key. The following are a few exam-

ples.
! Example 13

A portion of the intent in the code book is as follows:

 application – 0348, ciphertext – 1106,

 computer – 1235, decrypt - 2457,

 encrypt – 3224, plaintext – 5112, …

 24

Then, the correspondence between the plaintext and the ciphertext is as the following.

decrypt computer ciphertext …

 ↓

 2457 1235 1106

Huffman Encoding substitutes the bytes in the plaintext by a set of codes with vari-

able lengths. The encoding procedures are described as follows:

1. Arrange all potential appeared bytes in the plaintext randomly and regard each

byte as a knot. To achieve the effect of data compression, arrange and prioritize

the bytes in compliance with their probability of appearance.

2. Continue to connect two irregular knots into a new one, which substitutes the

two original old knots and keep on combining until only one new knot is left

(called as the root of the tree). Finally, Huffman Tree structure results. To reach

the effect of compressing data, two knots with the lowest chance of appearance

have to be combined into a new knot in order. The chance of the new knot is the

total amount of adding the chances of the original two knots.

3. Every left branch is allocated as 0 and right branch as 1 for encoding in order.

The substitution code of that sign can be obtained by connecting 0 and 1 of

every byte from the root. The end of the branch is the leaves.
! Example 14

We encode each byte in the plaintext SUBSTITUTION in compliance with the fol-

lowing tree structure. Then, the code of the ciphertext will be 0010100000010111000

1101001110010111. But, if we encode it in compliance with the following tree struc-

ture. Then, the code of the ciphertext will be 1000110101001110111011111

01001000. Their gold keys are respectively corresponding Huffman tree. The access

of deciphering is based on the principle of three bytes. If the former two bytes are 1,

then these two bytes make a plain byte of N.

 25

3. Arithmetic Encoding: This approach is also a well-known basic method for data

compression. It mainly deems the plaintext as a division (0, 1) and T in the division

(0, 1) means 0 is included; however, Y represents 1 is not contained inside the divi-

sion. Procedures of encryption encoding are described as follows.

1. Calculate the probability of appearance of each byte in the plaintext and arrange

it between (0, 1) according to a certain order. This order and the width it occu-

pied can be served as the gold key of decoding.

2. Analyse each byte in order. The division of the plaintext will decrease gradually

into a certain sub-division after the first byte appears. As bytes encode succes-

sively, a sub-division where the plaintext is, will become increasingly smaller.

3. Lastly, we take the shortest decimal within this division to represent the plain-

text. ‘0’ of the beginning of the decimal can be optional since all ciphertexts

will use it as the starting point.
! Example 15

If the plaintext is TOO and the graphic for encoding is shown as Figure 2.1, then the

first byte of the plaintext is T. As a result, the sub-division is located at (2/3, 1). The

second byte of the plaintext is O; therefore, the sub-division is at (2/3, 8/9). The third

byte of the plaintext is O; consequently, the sub-division is situated at (2/3, 22/27) and

if it changes to the binary system (0.10101…, 0.11010…), the ciphertext should be

11.

 The total number of bytes of the ciphertext and the order of arranging the encoded

bytes are required for decipherment. Thus, if we know the total number of bytes in

this example is three and the arrangement of the encoded bytes is OT, then ciphertext

11 can be decoded in compliance with the following procedures:

1. 0.11 is inside (2/3, 1) and the first byte is T.

2. 0.11 is inside (2/3, 8/9) and the second byte is O.

3. 0.11 is inside (2/3, 22/27) and the third byte is O.

 26

4. There are three bytes in the plaintext; therefore, the plaintext is TOO.

From the substitution method of variable length, we introduce two substitution meth-

ods, which can serve as data compression as well. However, from the aspect of cryp-

tography, this approach of removing redundancy in fact imposes malign a deduced

effect upon confidentiality. But, if we disregard data compression, which is to say that

making a random movement and combination for the bytes of the plaintext or specify-

ing the size of the division of a certain byte at liberty might increase the ciphertext

sometimes, it is still an excellent substitution encryption method.

2.3 Public-key cryptosystem

Public-key cryptosystem was first presented by Whitfield Kiffie and Matin Hellman.

The main purpose of this cryptosystem is that the encryption and decryption use dif-

ferent keys. The idea of key pair-up is a great break-through for the traditional cryp-

tography. However, it is difficult to find a key pair. Public-key encryption solves the

shortcomings that exist in the previously mentioned symmetric cryptosystem, such as

the key distribution issue. However, in the public-key cryptosystem, even two strang-

ers encountering with each other for the first time can easily get the key pair for fur-

ther mutual communication through Internet. This is the famous Diffie-Hellman pub-

lic-key distribution cryptosystem. On the other hand, the public-key cryptosystem also

solves the key management issue of the secret-key cryptosystem because in the for-

mer every one only needs to have one public-key for others’ encryption and a private-

key for decryption instead of many keys on the Internet.

 Figure 2.4 outlines the operation of the public-key cryptosystem. When User A

wants to transmit information to User B, A has to find B’s public-key from the public-

key directory and then use the key to do encryption for the information before trans-

mitting it to B through a public channel. After B receives the information with en-

cryption, he can use his own private-key to do the decryption work. During the whole

 27

transmission process, except for information with encryption, no keys are transmitted.

Therefore, if no other users know B’s private-key, no one but B can decode it.

 After understanding the basic operation for public-key cryptosystem, we know that

secure public-key cryptosystem possesses the following utilities:

• Protect information safety. After encryption, only one who possesses the origi-

nal encryption key’s pair, the private-key, can do the decryption work.

• Simplify key management. Each user would only need one pair of keys, one of

which is public and the other is private and the private one will not appear on the

Internet in most applications.

• Can achieve undeniable effects. This is because everyone can have an exclu-

sively private-key, if he uses this key to do the encryption work, anyone can use

his public-key to examine the original encrypted information and meanwhile

complete digital signature action and ensure the authenticity of information.

• Solve for the ciphertext correspond to the random number r and the other

will not be able to obtain it without the encryption key. This application for

identifying the sender is now widely used in the area of banking industry.

• Ensure information integrity: under the circumstances that concealing the in-

formation content is not going to be necessary, instead the integrity of the infor-

mation is of much importance, the sender can then attach the ciphertext to the

plaintext for the receiver to cross check the integrity of the plaintext with the de-

crypted ciphertext (or encrypted plaintext) attachment. The plaintext is correct if

the above condition was met; or else the received information may have the risk of

being altered. The encryption code of banking would be a example of the above

said. There are also certain technique to shorten the length of the ciphertext in or-

der to cut the transmission time and the needed memory capacity.

 28

EncryptorEncryptor DecryptorDecryptor

Cipertext C=Ek1(m)Plaintext M

Encryption
key

KeyKey

Decryption
key

DecoderDecoder

Sender Receiver

Public channel

EncryptorEncryptor DecryptorDecryptor

Cipertext C=Ek1(m)Plaintext M

Encryption
key

KeyKey

Decryption
key

DecoderDecoder

Sender Receiver

Public channel

Figure 2.5: The private-key Cryptosystem

The private-key cryptosystem has the following defects:

• The system has a problem in the allotment of the private key that is how does the

sender and receiver obtains the respective encryption key and decryption key. The

said problem is quite serious when the sender and receiver don’t know each other.

Regardless of the allotment issue, we can assume that there is a secure channel for

both of them to transmit the needed key. The complete private-key cryptosystem

is as shown in Figure 2.5.

• The number of keys is substantial: if there are a total of n people included in the

Web, then for each of them should have n-1 keys. Hence there will be a total of

n(n-1)/2 different keys. Therefore, in the case of n=1000, everyone will then have

to control 999 keys and with a total of 499500 keys in the system. How to manage

all these keys will then exhibit a big problem by itself.

• Unable to achieve the service of nonrepudiation: Because sender and receiver

knows about keys that each other has, therefore the sender is in a position to deny

the sending of information afterward and the receiver is also able to forge or alter

the received information. The third party will not be able to tell whether it is the

information that the sender had denied sending or forged by the receiver. The pri-

vate-key cryptosystem is unable to achieve the service of nonrepudiation (unless a

 29

impartial third party intervene during the transmission and willing to testify after-

ward). Before the emerge of public-key cryptosystem, people reckon that it is im-

possible for the transmitted documents to have same effectiveness as the personal

singed documents because it has the characteristic of nonrepudiation afterward.

As for the private-key cryptosystem has the disadvantages concerning key allotment

and fail to comply with the nonrepudiation, in May, 1975, Diffie 4 started to think

about the following questions:

1. Are two people, who do not know each other, able to use the private-key

cryptosystem for engaging in secret communication? That is, can the above

people use the public channel to obtain the mutual keys (encryption/decryption

keys).

2. Can we prove a pure digital information is actually sent by someone; just like

someone authenticate a contract while receiver can hold on to it for proving its

effectiveness later on.

Owing to the above two questions, the public-key cryptosystem emerged in 1976.

Now, let us give it a little thought with accordance to our daily locking and unlocking

experiences. Do we really need a key for locking up something? The answer will be

no, because quite frequently we can operate on a lock without a key. We will now get

back to the typical cryptosystem model in Figure 2.1. Does the sender need the en-

cryption key to encrypt the plaintext into the ciphertext? (Be aware that in the private-

key cryptosystem, knowing the encryption key will means that knowing the decryp-

tion key) if the previous answer is no, then can we separate the link of encryption key

k1 and decryption key k2? If getting k1 doesn’t give you k2, then we can publicize k1

and only the receiver would know k2. Under the above circumstances, anybody can

use the k1 for encryption and only who knows k2 will be to decrypt the information.

Or only the receiver is to encrypt the information (encryption and decryption are basi-

 30

cally the same actions) and anyone will be able to decrypt it. The above said is the

essence of the public-key cryptosystem and the main difference from the private-key

cryptosystem. As that the encryption key k1 is differ from the decryption k2, it is also

called the two-key cryptosystem or asymmetric cryptosystem.

 When Diffie and Hellman [2.5] proposed the public-key cryptosystem, they were

just assuming its existence but unable to bring out a complete public-key cryptosys-

tem. However, they did able to solve the previously said first question: two unac-

quainted people can use the public channel to obtain the mutual key known only to

themselves.

2.4 One-way function and one-way trapdoor function [2.6]

In 1976, Diffie and Hellman introduced the idea of public-key cryptosystem. At the

time, they were unable to propose a functional public-key cryptosystem and were only

to guess that the system might exist. Now, for further illustrating the public-key

cryptosystem’s existence, Diffie and Hellman define both the One-way Function and

One-way Trapdoor Function. A one-way function is a function that is relatively easy

to compute but significantly harder to reverse. That is, given x it is easy to compute

f(x) but given f(x), it is difficult to compute x. Typically the difficulty is measured as a

time interval, such as millions of years to compute the function.

Definition 1: One-way function

Function f is a One-way Function if it satisfies the following two conditions:

• For all x within the domain of f, it is simple to solve for f(x) = y.

• For almost all y within the domain of f, it is computational infeasible to solve for x

enabling y = f(x).

Definition 2: One-way trapdoor function

Function F is a one-way trapdoor function if a reversible function F satisfies the fol-

lowing two conditions:

 31

• For all x within the domain of F, we can easily solve for f(x) = y.

• For almost all y within the domain of F, unless trapdoor is achieved, it is computa-

tional infeasible to solve for x enabling x = F–1(y); F–1 is the reverse function of F.

But if added with an additional information z (trapdoor), then it is easy to find x =

F–1(y).

A one-way trapdoor function is a special type of one-way function with a secret trap

door. It is easy to compute in one direction and difficult to compute in the other direc-

tion. If the secret-key is known, though, it is easy to compute the function in the other

direction.

 The difference in the one-way function and the one-way trapdoor function is

whether the function it is reversible or not. At the beginning, Diffie and Hellman

thought that if the one-way trapdoor function exists, then any one-way trapdoor func-

tion F can all be used to design the public-key cryptosystem. This is because anyone

will be able to encrypt the plaintext x into ciphertext y = F(x) with F (public-key) and

no one can solve for plaintext x from the ciphertext. But receiver with the decryption

key (trapdoor z) can easily solve for plaintext x from the ciphertext y. In 1985, Elga-

mal introduced a public-key cryptosystem base on the one-way function. If the one-

way function satisfies the commutative property, it can also be used in designing the

public-key cryptosystem.

2.5 Cryptographic protocol introduction and analysis

A protocol indicating a calculation methodology involves multiparty, which a series

of clearly defined movements, two or more people completing certain task under co-

operation. The cryptographic protocol means that in the major public network, multi-

party achieving exchange of secret information and assuring information integrity un-

der the agreement. Normally, the cryptosystem, key distribution system, digital signa-

ture, authentication system, and secret sharing system of cryptology can all be called

 32

the cryptographic protocol.

 A protocol is a series of steps, involving two or more parties that uses cryptogra-

phy designed to accomplish a task. A cryptographic protocol is a protocol that uses

cryptography. The protocols have following characteristics [2.7]:

• Everyone included in the protocol must know the protocol and all of the steps to

follow, in advance.

• Everyone involved in the protocol must agree to follow it.

• The protocol must be unambiguous.

• The protocol must be complete; and there must be a specified action for every

possible situation.

Protocols split into three types:

• Arbitrated protocols. An arbitrated protocol requires a disinterested third party

to complete a protocol. Arbitrators can help complete between two or more dis-

trustful parties. For example, Linda could sell a house to James, and Spencer is an

Arbitrator and a lawyer. Enter a lawyer trusted by both, Linda and James agree on

the following protocol to ensure that neither cheats the other:

o Linda gives keys and the title to the

lawyer (Spencer).

o James makes the payment to Linda.

o Linda deposits the payment.

o Waiting a specified time period for the payment to be authorized, the

lawyer (Spencer) gives the title to James.

o If the payment is not authorized within the specified time period. Linda

shows proof of this to the lawyer (Spencer) and the lawyer returns the

keys and the title to the Linda.

Spencer

Linda James

Spencer

Linda James

 33

In this protocol, the lawyer is playing the part of an escrow agent. Escrow

agents often arbitrate financial transactions.

• Adjudicated protocols. An adjudicated protocols is an arbitrated subprotocol,

and is executed only in exceptional circumstances-when there is dispute. Spenser

is called adjudicator when special type of arbitrator. An adjudicator is also a disin-

terested and trusted third party. For example, Linda and James has contract-

signing protocol in this way:

o Non arbitrated sub-protocol (executed every time):

o Linda and James negotiate the terms of the contract.

o Linda signs the contract.

o James signs the contract.

 Adjudicated sub-protocol (executed only in case of a dispute):

o Linda and James appear before a judge

o Linda presents her evidence.

o James presents his evidence.

o The judge rules on the evidence.

o There are adjudicated computer protocols, which rely on the involved

parties to be honest.

• Self-enforcing protocols. A self-enforcing protocol is the best type of protocol, as

it guarantees fairness. No adjudicator is required to resolve disputes, or to com-

plete the protocol. The protocol is constructed so that there cannot be any dis-

putes. If one of the parties tries to cheat, the only party immediately detects the

cheating and the protocol stops.

 34

Man-in-the-Middle-Attack:

One man, Marcus can decrypt messages between Linda and James. Marcus not only

can listen to messages between Linda and James, he can also delete messages, modify

messages and generate new ones. Marcus also can imitate when talking to Linda and

imitate Linda when talking to James. It is describes that Marcus attack works as fol-

lowing:

1. Linda sends James her public-key. Marcus intercepts Linda’s public-key and

sends his own public-key to James.

2. James sends Linda his public-key. Marcus intercepts James’s public-key and

sends his own public-key to Linda.

3. When Linda sends a message to James with encrypts James’s public-key. And,

then Marcus decrypts it with his private-key. Marcus modified the message and

re-encrypts with James’s public-key, and sends it to James.

4. When James sends a message to Linda with encrypts Linda’s public. Marcus in-

tercepts it and encrypts it with his own private-key. He reads the messages and re-

encrypt the messages with Linda’s public-key. He sends it on to Linda.

5. Owing to Linda and James have no way to verify that they are talking to each

other. So Man-in-Middle attack can work. But the Interlock protocol can foil the

man-in-the-middle attack.

Interlock protocol

The Interlock protocol can foil the man-in-the-middle attack, as such:

1. Linda sends James her public-key.

2. James sends Linda his public-key.

3. Linda encrypts her messages using James public-key. She sends half of the mes-

sages to James.

4. James encrypts his messages using Linda public-key. He sends half of messages

to Linda.

 35

5. Linda sends the other of her encrypted messages to James.

6. James put the two half of Linda message together and decrypted with his private-

key

7. Linda put the two half of James’ messages together and decypted with her private-

key.

8. The important point of interlock protocol is that half of message is without the

other half. James can not read message until step(6). Linda also can not read mes-

sage until step (7).

Key distribution system or protocol, KDS

The purpose of the key distribution system is to let two unacquainted people share the

key. An average key distribution means that for two people sharing one public-key. If

a key distribution system can allow more than two people sharing the key then it is

referred as the conference key distribution system.

 There are two types of key distribution system: one that needs the assistance of the

third party and the other does not. The former one must have a reliable third party,

which is called a trusted key distribution centre. Under this distribution system, it is

assumed that TKDC and every other user had already shared a key Kc and further

assuming that there is a encryption function E and decryption function D (like DES).

The key distribution system utilizing TKDC

When user i wants to engage in secret communication with another network user j, the

user i can send the request to the TKDC, which can be in plaintext or using Kc en-

crypted ciphertext. The TKDC will then pick a random number Zij as the key between

user i and j, and place the identification code IDi and IDj of user i and j before Zij to

form Zi=IDiIIZij and Zj=IDjIIZij (time can also be included). TKDC then using Kic to

encrypt the Zi for user i and using Kjc to encrypt the Zj for user j. The user i and j will

decrypt the ciphertext from TKDC into plaintext Zi and Zj. Both use can later on using

the Zij for secret communication because Zij is part of the Zi and Zj.

 36

 In key distribution protocol, the security of the private-key cryptosystem dictates

the security of this protocol. If the cryptosystem is insecure, then the protocol will

also be insecure. But the answer may not be true for a secured cryptosystem. Now let

us assume that the cryptosystem can withhold the ciphertext-only attack, then the pro-

tocol will still be safe in the second step when TKDC encrypt Zij with Kic and send it

for the user i. However, if the decoder were to intercept both ciphertext when TKDC

encrypt the Zij with the Kjc and send it for user j, then the decoder may have a useful

information to attack because they know that both ciphertext were the same plaintext

encrypted with two different keys. In addition, owing to that user i and j all know

about Zij, they also may use the plaintext-only attack to strike on the cryptosystem. So

if the cryptosystem can only withhold the ciphertext-only attack, user i and j may in a

position to obtain the private-key of other party and TKDC.

Public-key distribution system, PKDS

Diffie and Hellman first proposed the theory of PKDS. Its purpose is to let two unac-

quainted people obtain the public-key or secret in the public network without the help

of the third party. The major different with the TKDC assisted key distribution system

is that the TKDC is free to choose user i and j’s key Zij. But user i and j will not be

able to select and control the shared key before hand.

 Assuming that there is a commutative one-way function F within the system of

PKDS and element g of one-way function value domain was accepted by everyone.

The PKDS is followed:

• When user i and j wish to engage in secret communication, user I can pick any

secret xi and solve for Exi(g) using the one-way function F. User i will then send

the Exi(g)to user j.

• User j can also pick any secret xj and solve for Exj(g) using F. User j will then

send the Exj(g) to user i through public network.

• After user i receive the Exj(g), he will then use his private secret xi to solve for

 37

Exj(Exj(g))

• After user j receive the Exj(g), he will then use his private secret xj to solve for

Exj(Exi(g)). Because the one-way function has the commutative property, there-

fore, Exj(Exj(g)) = Exj(Exi(g))= Zij. The Zij is the shared key for both user i and j.

The decoder can intercept Exj(g) and Exj(g) (g is known) in this protocol but because

the F is one-way function, hence he may be able to xi or xj. Can the decoder calculate

the shared Zij with Exj(g) and Exj(g)? What normally believe is unable to achieve just

like the one-way function; but currently it is still unable to prove.

 Because the Exponentiation Function is a one-way function with commutative

property (refer to the previous section), next, we will use the Exponentiation Function

to illustrate the actual PKDS.

2.6 Reference

[2.1] James L. Massey, 1992, Contemporary Cryptology An introduction, IEEE

Press.

[2.2] D.E. Denning, 1982,Cryptography and data security, Addison-Wesley.

[2.3] W.Diffie and M.E.Hellman, Mar1979, Privacy and Authentication: An intro-

duction to Cryptography, Proceeding of the IEEE, Vol.67, No. 3, pp397-427.

[2.4] William Stallings, 1999, Cryptography and Network Security, Principles and

Practice.

[2.5] William Stallings, 1999, Cryptography and Network security, pp24.

[2.6] W.Diffie, 1992, The first Ten Years of Public-Key Cryptography", in contempo-

rary Cryptology: The science of information Integrity, G.J.Simmons, ed., Pisca-

toway, N.J., IEEE Press, pp 65-134.

[2.7] Bruce Schneier,1994, Applied Cryptography, pp27-28.

[2.8] Bruce Schneier,1994, Applied Cryptography, pp19-25.

 38

CHAPTER 3

Number Theory and Module
Exponentiation

3.1 Introduction

In a RSA cryptosystem, whether one wants to use encryption, decryption, signature,

or authentication, one has to use modular exponentiation. (ME mod N). If we want to

calculate its value, however, the most simple and most direct way is to get ME first

and then calculate the modulus of N. This method may be useful when both M and E

are very small. On the other hand, though, in a 512-bit to 2048-bit cryptosystem, all

the parameters, M, E, and N are large integers with 512 bits to 2048 bits, under which

circumstances the above method cannot be applied. After all, to get a result of such a

large number like ME directly and store it is not very possible. Therefore, in this

chapter, we will introduce the number value theorems used in RSA system, such as

Fermat’s Theorem and Euler’s Theorem. Furthermore, we will discuss how to effec-

tively simplify and speed up the whole calculation of RSA.

3.2 Prime Number and Relative Prime Number

The prime number is a central consideration for the elementary number theory. We

are going to introduce all of the elements that are applied to cryptography one by one,

such as relative prime number, matrix/network and Euler’s formula, and so on.

 39

3.2.1 Common Divisor [3.1]

If a, b and m are integers, b≠0, a/b=m and no re-

mainder is produced, then, we can change it to b/a

and b is the divisor of a. Positive divisors have rela-

tive formulas as follows:

• If a/1, then a=±1. If a/b and b/a, then a=±b.

• If b≠0, then the divisor can be anything.

• For any integers m and n, if b/g, b/h, then b will be the divisor of mg+ng, which

can be shown as b/(mg+nh) and explanation is as follows.

• If b/g, then g=b×g. For some certain integers

g, if b/h, then h=b×h.

• For some certain integers h, the following

formula can be obtained:

 mg+nh=mbg1+nbh1=b(mg1+nh1)

Then, we might say that b is the divisor of mg+nh

and the example for explanation, see Example 3.2.

3.2.2 Prime number

If integer P has divisors ±1 and ±P, then this integer P is called a prime number. The

theory and approach of prime number are to be discussed as follows. If an integer can

only be divided by one and itself, which means there are only two factors (one and

itself), then this integer is called a prime number [3.2]. Integers with more than two

factors are called compound numbers3. Thus, apart from two, all of the prime numbers

! Example 3.1:

Positive divisors of 36

are 1, 2, 3, 4, 6, 9, 12, 18

and 36.

! Example 3.2: b=9,

g=27, h=81, m=5, n=3

 b/n = 9

 b/g = 3

mg+nh =5×27+3×81

 =9(5×3+3×9)

 =b(mg1+nh1)

 40

are odd numbers. Odd prime numbers play a very important role for modern cryptog-

raphy. For instance, the RSA encoding system (to be explained further in Chapter 4)

is based on two 256-bit prime numbers to design a golden key and a secret golden

key. We need to be sure whether prime numbers always exist as integers increase. The

following theory will provide the answer.

∇ Theory: There are indefinite prime numbers. In other words, following prime num-

ber examples are indefinite.

Proof: Supposing there are a limited amount of prime numbers. If the total number is

r, then these prime numbers can be listed as P1, P2, …Pr. Number n (n=1 + P1, P2, …,

Pr) cannot be divided by all of known prime numbers, that is, n can only be divided by

1 and itself. Thus, n is a prime number different from P1, P2, … Pr. As a result, the

supposition is wrong. In other words, the number of prime numbers is indefinite. This

approach is termed as testing for primality.

If a>1; P1> P2> …>Pt and P1, P2, …Pt are prime numbers; a>0. Then, we can obtain a

formula as follows:

 A = P1
a1 P2

a2 …Pt
ax (3.1)

! Example 3.3: 91=71×131 11011=71×112×131

7, 11, and 13 are prime numbers. The formula above can be indicated with another

equation as: P is the collection of all prime numbers and any positive integer a can be

shown as: ap>0; a=πpPap; π is the multiplied number of all potential prime numbers.

 41

! Example 3.4: a=1700=πpPap=21×52×171 P1=2, a1=1; P2=5, a2=2; P3=17, a3=1

If two numbers multiply, then their corresponding index adds as the following.
For all P’s, k=m×n, therefore, kp=mp+np

! Example 3.5: 12=1×22×3 18=1×21×32 12×18=1×22×31×1×21×32=12×23×33

k=m×n=12×18=216
k1=1+1=2, k2=2+1=3,
k3=1+2=3, 216=12×23×33=23×33

3.2.3 Relative prime number

The positive integer C is the greatest common divisor of a and b (C=gcd (a,b)) and

two characteristics are as follows:

1. C is the divisor of a and b.

2. Any divisor that can divide a and b is the divisor of C as well.

The greatest common divisor needs to be positive; thus:

 gcd (a, b)=gcd (a, –b)= gcd (–a, b) = gcd (–a, –b). (3.2)

Generally, we show gcd (a, b) as the follows:

 gcd (a, b)=gcd (/a/, /b/) (3.3)

! Example 3.6: gcd(60,24) = gcd(60, –24) = gcd(–60,24) = gcd(–60,-24) =

 gcd(/–60/,/-24/)=12

All of non-zero integers can divide zero; therefore, gcd (a,0)=/a/

 42

It is quite easy to decide what the GCD (greatest common divisor) is between two in-

tegers, which is usually shown as k=gcd (a,b). For all P’s, kp = min (ap, bp), which can

be explained as follows:

! Example 3.7: 360 = 23 × 32 × 5 42 = 2 × 3 × 7

So, GCD (360, 42) = 21 × 31 × 50 × 70 = 6

It is not an easy job to determine the prime number factor of a tremendously large

number, which will be discussed later. If there is not a relative prime number between

two integers a and b, then their GCD is one, which can be indicated as follows. If gcd

(a, b) = 1, then these two integers a and b are relative prime numbers.

! Example 3.8

Two integers 75 and 28 are relative prime numbers because divisors of 75 are 1, 3, 15,

25 and 75; whereas those of 28 are 1, 2, 4, 7, 14 and 28. Only one is their common

divisor; as a result, we call 75 and 28 are relative prime numbers.

3.3 Modulo Operation

Any integer a divides a positive integer n (a/n) and a quotient q and a remainder r

come into existence. Then the following formula is their relationship:

 



=<≤+=
n
aqnrrqnA 0 (3.4)

Where 




n
a is the greatest integer, which might be less or equal to

n
a .

 43

0 1 2 n 37 an a (q+1)n2n

r
Figure 3.1: Relationship among a, qn and r [Data resource: 1999, William Stallings. “Cryptography and

Network Security,” pp. 212]

Integers start from 0 and pass by n, 2n until qn, which results in:

 aqn ≤ and () anq >+1 (3.5)

Remainder r is usually termed as residue, which can be indicated in Example 3.9.

! Example 3.9: a = 37, n = 5 37 = 5 × 7 + 2 r = 2

 a = –37 n = 5 –37 = 5 x (–8) + 3 r = 3

Integers a and b can be called as congruent modulo if a mod n = b mod n, which can

be written as a ≡ b mod n. That is to say that a and b have the same remainder (resi-

due) in mod n.

! Example 3.10: 1234 ≡ 54 mod 59 1234 = 20 × 59 + 54

 23 ≡ 2 mod 7 23 = 3 × 7 + 2

If a ≡ 0 mod n, then
a
n equals to n = ± a

The modulo operation has the following characteristics [3.4] (a and b are integers and

n is a positive integer.):

 44

1. If a is an integer, then a = a mod n, which is reflexive.

2. If a and b are integers, a ≡ b mod n, then b ≡ a mod n, which is symmetric.

3. If a ≡ b mod n and b ≡ c mod n, that is, a ≡ c mod n, which is transitionary.

4. If a ≡ b (mod n) and c ≡ d mod n, then ac = bd mod n.

! Example 3.11:

8 ≡ 15 mod 7 15 ≡ 8 mod 7 15–8 ≡ 0 mod 7

23 mod 7 = 2 mod 7 → 23 ≡ 2 mod 7

8 ≡ 15 mod 7 and 15 ≡ 50 mod 7

8 ≡ 15 mod 7 and 11 ≡ 39 mod 7

As a result, 8 × 11 ≡ 15 × 39 mod 7

3.3.1 Modular Arithmetic Operations

Applications of modular arithmetic operations have the following characteristics [3.5]:

• [(a mod n) + (b mod n)] mod n = (a+b) mod n.

• [(a mod n) – (b mod n)] mod n = (a–b) mod n.

• [(a mod n) × (b mod n)] mod n = (a×b) mod n.

Supposing a mod n = ra, b mod n = rb, then a = jn + ra, b = kn + rb

The following formulas are explanations and proof process of these three features:

• (a+b) mod n = (jn + ra + kn + rb) mod n = ra + rb + n(j + k) mod n

 = (ra + rb) mod n = [(a mod n) + (b mod n)] mod n

 45

• (a–b) mod n = [(jn + ra) – (kn + rb)] mod n = [(ra – rb) + n (j–k)] mod n

 = (ra – rb) mod n = [(a mod n) – (b mod n)] mod n

• (a×b) mod n = [(jn + ra) × (kn + rb)] mod n

 = [rarb + n (rak + rbj + jkn)] mod n

 = rarb mod n = [(a mod n) × (b mod n)] mod n

! Example 3.12: 13 mod 5 = 3 17 mod 5 = 2

1. [(13 mod 5) + (17 mod 5)] mod 5 = 5 mod 5 = 0

 (13 + 17) mod 5 = 30 mod 5 = 0

2. [(13 mod 5) – (17 mod 5)] mod 5 = 1 mod 5 = 1

 [(13 – 17) mod 5] = –4 mod 5 = 1

3. [(13 mod 5) (17 mod 5)] mod 5 = 6 mod 5 = 1

 (13 × 17) mod 5 = 221 mod 5 = 1 mod 5 = 1

Thus, applications of modular arithmetic operations include addition, subtraction and

multiplication.

3.3.2 Inverse of a modulus

Arithmetic operations usually consist of a unit element and an inverse element. First

of all, these two terms will be defined [3.6]:

• Unit element. For any operation ‘<>’, if there is an element ‘u’ for the opera-

tion, then all elements ‘x’ = x <> u. The element ‘u’ is called a unit element

(see Example 3.13).

 46

• Inverse element. For any operation ‘<>’, if there is an element ‘i’ for the op-

eration, then all elements ‘x’ = x <> i = u (u is the unit element.). The element

‘i’ is called the inverse element of x (see Example 3.14).

• Inverse of a modulus. An integer a is a prime number against a modulus n. If

an integer x can satisfy a x ≡ 1 (mod n). Then n can be called as the inverse of

modulus n against a (see Example 3.15).

! Example 3.13

1. The unit element of addition is 0 because any number ‘x’ results in x + 0 = x.

2. The unit element of multiplication is 1 because any number ‘x’ results in x . 1 = x.

! Example 3.14

1. The inverse element of 5 for addition is –5 because 5 + (–5) = 0.

2. The inverse element of 5 for multiplication is 5
1 because 5 × (5

1) = 1.

! Example 3.15

1. 52 × 38 ≡ 1 mod 79 Thus, the inverse modulus of 52 against modulus 79 is 38.

2. 37 × 45 ≡ 1 mod 64 Thus, the inverse modulus of 37 against modulus 64 is 45.

We are going to describe the situation of inverse elements for addition and multiplica-

tion when modulo is 10 through Table 3.2 and Table 3.3.

 47

• Addition modulo 10. The arrangement is regular. When the result of (x + y) mod

10 is 0, then x and y are the inverse elements of addition modulo 10, which is to

say x = 9, y = 1; x = 5, y = 5; in other words, x + y = 10.

• Multiplication modulo 10. As (x, y) mod 10 = 1, x and y are inverse elements for

multiplication. x=1, y=1; x=3, y=7; x=7, y=3; x=9, y=9 → x and y are multiplica-

tion inverses.

Table 3.2: Results of Addition in Modulo 10

Y
+ 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 0
2 3 4 5 6 7 8 9 0 1
3 4 5 6 7 8 9 0 1 2
4 5 6 7 8 9 0 1 2 3
5 6 7 8 9 0 1 2 3 4
6 7 8 9 0 1 2 3 4 5
7 8 9 0 1 2 3 4 5 6
8 9 0 1 2 3 4 5 6 7

 0
 1
 2
 3
 4
X 5
 6
 7
 8
 9 9 0 1 2 3 4 5 6 7 8

Table 3.3: Results Multiplication in Modulo 10 [3.7]

Y
×××× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9
0 2 4 6 8 0 2 4 6 8
0 3 6 9 2 5 8 1 4 7
0 4 8 2 6 0 4 8 2 6
0 5 0 5 0 5 0 5 0 5
0 6 2 3 4 0 6 2 8 4
0 7 4 1 8 5 2 9 6 3
0 8 6 4 2 0 8 6 4 2

 0
 1
 2
 3
 4
X 5
 6
 7
 8
 9 0 9 8 7 6 5 4 3 2 1

From Table 3.2 and Table 3.3, we know that addition and multiplication inverses

modulo 10 are as follows:

 48

W –W W-1 W –W W-1

0 0 – 5 5 –
1 9 – 6 4 –
2 8 – 7 3 3
3 7 7 8 2 –
4 6 – 9 1 9

3.3.3 Attributes of Modular Operations

If we suppose that Zn is comprised of a group of non-negative integers, which are

smaller than n, then Zn = [0, 1, 2, …(n–1)]. Table 3.4 outlines the features of modular

operations of Zn.

Table 3.4: [William Stallings, “Cryptography and Network Security,” pp. 215, 1999.]

Feature Operations

Exchange (W + X) mod n = (X + W) mod n

(W × X) mod n = (X × W) mod n

Combination [(W + X) + Y] mod n = [W + (X + Y)] mod n

[(W × X) × Y] mod n = [W × (X × Y)] mod n

Distribution [W × (X × Y)] mod n = [(W × X) × (W × Y)] mod n

Identities (0 + W) mod n = W mod n

(1 × W) mod n = W mod n

Addition (W) Inverse For each, W є Zn; there exists a Z, such that W + Z ≡ 0 mod n

If (a + b) ≡ (a + c) mod n, then b ≡ c mod n.

! Example 3.16

If (6 + 21) ≡ (6 + 5) mod 8, then 21 ≡ 5 mod 8.

If (a × b) ≡ (a × c) mod n, then b ≡ c mod n under the condition of a being a relative

prime number for n.

 49

! Example 3.17

1. a and n are relative prime numbers.

If 3 × 5 = 15 ≡ 1 mod 7 and 3 × 12 = 36 ≡ 1 mod 7, then 5 ≡ 12 mod 7. GCD (3,

7) = 1, which means that 3 and 7 are relative prime numbers.

2. a and n are non-relative prime numbers.

 If 6 × 3 = 18 ≡ 8 mod 10 and 6 × 8 = 48 ≡ 8 mod 8, but 3 ≠ 8 mod 10 because

GCD (6, 10) ≠ 1, which means that 6 and 8 are non-relative prime numbers.

As there is not a collection of complete remainders/residues, there will be more than

one number that has the same remainder/residue when Z10 multiplies 6, as Table 3.3

indicates. For instance, 6 × 1 mod 10 = 6 × 6 mod 10 and 6 × 2 mod 10 = 6 × 7 mod

10 since Table 3.5 is a reflection of many against one.

 Remainders (residues) in Table 3.6 are arranged in a different linear order, a one-

on-one correspondence. Therefore, n and a have to be relative prime numbers.

Table 3.5:

Z10 0 1 2 3 4 5 6 7 8 9

× 6 0 6 12 18 24 30 36 42 48 54

Remainder/ Residue 0 6 2 8 4 0 6 2 8 4

 n = 10; a = 6

Table 3.6:

Z10 0 1 2 3 4 5 6 7 8 9

× 3 0 3 6 9 12 15 18 21 24 27

Remainder/ Residue 0 3 6 9 2 5 8 1 4 7

 n = 10; a = 3

 50

Last, we know that not all of integers have inverses for multiplication with modulus of

prime numbers. If GCD (a, n) = 1, then we can find a b within Zn that can cause an x b

≡ 1 mod 7 and b is an multiplication inverse of a because a and n are relative prime

numbers.

3.4 Fermat’s Theorem and Euler’s Theorem

Now, we are going to introduce two very important theorems for public-key cryptog-

raphy, which are Fermat’s theorem and Euler’s theorem.

∇ Fermat’s Theorem1: If p is a prime number and GCD (a, p) = 1, then ap-1 ≡ 1 mod

p. This theorem was published in 1960 [3.8].

Proof: p is a prime number and every integer x can satisfy ap-1 ≡ 1 mod p

 Leibnitz (1646-1716) proved that an integer x can result in the sum as a = 1 + 1 + …

+ 1. Thus, ap = (1+1+…+1)p = 1p + 1p + …1p +… = a mod p As ap = a mod p; there-

fore, ap-1 = 1 mod p.

Ref: Dr. Micheal Macan Airchinnigh, 1997,

http://www.cs.tcd.ie/Micheal.Maca…/Fermatproof.htm

 1 Pierre de Fermet (1601-1665) was born in Beaumont-de-Lomagne, France and died
in the castles of France. This theorem was first stated, without proof, by Fermet in
1640. Fermet was a French lawyer and judge, who did mathematics in his spare time
and for the fun of it.

 51

 ! Example 3.18: a=7 , p= 19

 72 = 49 ≡ 11 mod 19 74 = 121 ≡ 7 mod 19

 78 = 49 ≡ 11 mod 19 7 16 = 121 ≡ 7 mod 19

 a p-1 = 7 18 = 7 16 × 7 2 ≡ 7 × 11 ≡ 1 mod 19

∇ Euler’s quotient function - ф(n) [3.9]. ф(n) stands for Euler’s quotient, a prime

number smaller than n and the total number of positive integers. Suppose there is a

prime number p, then ф(n) = p – 1.

Example: For instance, p = 7 As a result, ф(7) are 1, 2, 3, 4, 5 and 6. These six num-

bers are prime numbers against 7. If we suppose there are two prime numbers p and q

and n = pq, then:

 ф(n) = ф(pq) = ф(p) × ф(q) = (p – 1) × (q – 1)

! Example 3.19:

If p = 3 and q = 7, then ф(n) = ф(3 × 7) = ф (3) × ф(7)=(3–1)(7–1)=2×6 =12. Among

ф(21), those that are smaller than 21 and are prime numbers against 21 are: 1, 2, 4, 5,

8, 10, 11, 13, 16, 17, 19 and 20 → 12 in total.

 ф(pr) = pr-1(p–1)

! Example 3.20:

If p = 2 and r = 3, then ф (23) = 23-1(3-1) = 4. Among ф(8), those that are smaller than

8 and are prime numbers against 8 are: 1, 3, 5 and 7 → 4 in total

ф (pr . qs) = pr-1 . qs-1 (p–1)(q–1)

 52

! Example 3.21:

If p=2, r=3, q=3 and s=2, then ф(pr × qs) = ф (23 × 32) = 23-1 × 33-1 (3–1)(3–1)=24

ф (23 × 32) = ф (23 × 32) = ф (72)

Among ф (72), those that are smaller than 72 and are prime numbers against 72 are: 1,

3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67 and 71

→ 24 in total

We can calculate Euler’s quotient function [ф(n)] by applying these three theorems

mentioned above and the result is as Table 3.7.

Table 3.7: Euler’s quotients from 1 to 40

N ф(n) N ф(n)
 1 1 21 12
 2 1 22 10
 3 2 23 22
 4 2 24 8
 5 4 25 20
 6 2 26 12
 7 6 27 18
 8 4 28 12
 9 6 29 28
10 4 30 8
11 10 31 30
12 4 32 16
13 12 33 20
14 6 34 16
15 8 35 24
16 8 36 12
17 16 37 36
18 6 38 18
19 6 39 24
20 8 40 16

 53

Euler’s Theorem [3.9, 3.10]: Euler’s2 theorem applies to each a and n that are relative

prime numbers, which can be shown as aф(n) ≡ 1 mod n.

! Example 3.22:

a = 3, n = 7, ф(n) = 7 – 1 = 6 → aф(n) = 36 = 729 ≡ 1 mod 7

a = 5, n = 3, ф(n) = ф(3) = 3 – 1 = 2 → aф(n) = 52 = 25 ≡ 1 mod 3

Detailed description of the proof of Euler’s theorem can be referred to Kenneth H.

Rosen, Elementary Number Theory and its Application, pp. 161–164, 1986.

Euclid’s Algorithm

One basic approach to the Elementary Number Theory is through Euclid’s algorithm,

which is an easy process of determining the greatest common divisor (GCD) between

two positive integers. Besides, this algorithm can be extended to that if a is a non-

negative integer, b a positive integer and GCD (a, b) = 1, then a group of (x, y) can be

located to make ax+by=1, that is,. ax+by=1 →ax≡1 mod b. Thus, once the group (x, y)

can be found to satisfy ax+by=1 through Euclid’s algorithm, then x, the inverse of

modulus b can be located as well, which we will deal with later.

 Euclid’s algorithm [3.11, 3.12]: Provided there are a non-positive integer a and a

positive integer b, the greatest common divisor (GCD) between a and b can be ob-

tained through the following process, which is shown as gcd(a, b)=ri. Besides, x and y

2 Leonhard Euler (1707-1783) was the son of a minister from the vicinity of Basel,
Switzerland, who besides theology has also studied mathematics. Euler obtained his
master’s degree in philosophy at the age of 16. He wrote over 700 books and papers.

 54

in the formula of ax+by=GCD (a, b) can be known as well through inducing r1, r2,…

rj-1.

 a=bq1+ r1, 0< r1<b (
b
a =q1…r1) (3.6)

 b=r1q2+ r2, 0< r2<r1 (
1r
b =q2…r2) (3.7)

 r1=r2q3+ r2, 0< r3<r2 (
2

1
r
r =q3…r3) (3.8)

 r2=r3q4+ r4, 0< r4<r3 (
3

2
r
r =q4…r4) (3.9)

 : :

 rj-2=rj-1qj+ rj, 0< rj<rj-1 (
1

2

−

−

j

j

r
r =qj…rj) (3.10)

 rj-1=rj qj+1 (
j

j

r
r 1− rj-1/rj=qj+1…0, division is terminated.) (3.11)

Greatest common divisor (GCD)

Based on the following theorem, Euclid’s algorithm can be applied to any non-

positive integer a and positive integer b, which is gcd (a, b)=gcd (b, a mod b).

! Example 3.23:

gcd (115, 25) = gcd (25, 15) = gcd (15, 10) = gcd (10, 5) = gcd (5, 0) = 5

Accordingly, the following Euclid’s Algorithm can be inferred.

Euclid (d, f)

1. X є f, Y є d 2. if Y = 0, return X = gcd (d, f)

3. R = X mod Y 4. X є Y

5. Y є R

6. Go to 2. (Explanation is as the following example.)

 55

! Example 3.24: What is GCD (2345, 2881)?

2881 = 1 × 2345 + 536 GCD (2345, 536)

2345 = 4 × 536 + 201 GCD (536, 201)

536 = 2 × 201 + 134 GCD (201, 134)

201 = 1 × 134 + 67 GCD (134, 67)

134 = 2 × 67 GCD (67, 0)

Thus, GCD (2345, 2881) = 67

Inverse for Multiplication [3.13]

We have already discussed previously how to obtain GCD through applying Euclid’s

Algorithm. We can also use this theorem to acquire the inverse of a modulus because

if GCD (a, b) = 1, then a group of (x, y) can be located to satisfy ax+by=1, which is to

say that ax+by=1 stands for ax ≡ 1 mod b.

 Thus, as long as we can find (x, y) to satisfy ax+by=1 through Euclid’s algorithm,

the inverse x of modulus b can be obtained. Following is the algorithm of acquiring

the inverse x.

Extended Euclid (a, b)

1. (X1, X2, X3) ← (1, 0, b); (Y1, Y2, Y3) ← (0, 1, a) (3.12)

2. if Y3 = 0, return X3 = gcd (a, b); No inverse (3.13)

3. if Y3 = 1, return Y3 = gcd (a, b); Y2 = a-1 mod b (3.14)

4. Q =
3
3

Y
X (3.15)

5. (T1, T2, T3) ← (X1 – QY1, X2 – QY2, X3 – QY3) (3.16)

6. (X1, X2, X3) ← (Y1, Y2, Y3) (3.17)

7. (Y1, Y2, Y3) ← (T1, T2, T3) (3.18)

 56

8. goto 2

 bT1 + aT2 = T3 (3.19)

 bX1 + aX2 = X3 (3.20)

 bY1 + aY2 = Y3 (3.21)

Table 3.8: Extended Euclid (550, 1769) [William Stallings, Cryptography and Network Security

pp. 224-225, 1999]

Q X1 X2 X3 Y1 Y2 Y3
- 1 0 1769 0 1 550
3 0 1 550 1 –3 119
4 1 –3 119 –4 13 74
1 –4 13 74 5 –16 45
1 5 –16 45 –9 29 29
1 –9 29 29 14 –45 16
1 14 –45 16 –23 74 13
1 –23 74 13 37 –119 3
4 37 –119 3 –171 550 1

From Table 3-5, we know that gcd (550, 1769) = 1 and the inverse for multiplication

is 550 itself. Consequently, 550 × 550 ≡ 1 mod 1769.

 For Euler’s algorithm, X equals to previous Y, Y equals to T, previous X mod Y and

X3 equals to Y3 and Y3 = X3 mod Y3. If GCD (a, b) = 1, then Y3 = D and X3 = 1 and

then stop without inverse. But if Y3 = 1, then:

bY1 + aY2 = Y3 (3.22)

 bY1 + aY2 = 1 (3.23)

 AY2 = 1 + (–Y1) × b (3.24)

 aY2 = 1 mod b (3.25)

Thus, Y2 is the inverse of a for multiplication. For more information in detail for the

proof of Extended Euclid Algorithm, please refer to Knutw, D, The Art of Computing

 57

Programming, Volume 1: Fundamental Algorithms, Reading, MA: Addison-Wesley,

1997.

 The inverse for multiplication can be located as well through Euler’s Theorem. We

know that if a and n are prime numbers to each other, then aф(n) ≡ 1 mod n. Thus, a ×

aф(n)-1 = aф(n) ≡ 1 mod n. aф(n)-1 is the inverse of a mod n for multiplication [3.14].

! Example 3.25:

2ф(9) ≡ 1 mod 9; ф(9) = ф(32) = 33-1 × (3–1) = 6; 26 = 64 ≡ 1 mod 9.

Thus, we know that a x aф(n)-1 = aф(n) ≡ 1 mod n. So, aф(n)-1 = a6-1 = 25 = 32 is the in-

verse of 2 mod 9.

Factor algorithm

Definition: To divide an elementary number into multiplied factors with prime num-

ber characteristics is called factor algorithm, which has been a very famous difficulty

for a long time.

! Example 3.26:

1. 13808461 = 43 × 53 × 73 × 83

2. 1828974020658311118701 = 203117 × 205081 × 205171 × 214003

3. 11102489 = 3253 × 3413

Some obvious and important characteristics of factor algorithm can be inferred from

Example 3.26. The most significant feature is that to divide a large integer is difficult;

however, it is not hard to prove if a certain integer is a factor of an integer or not. For

instance, to divide 13808461 takes tremendous effort; nevertheless, to prove if 83 is

its factor or not is quite easy. Another feature is that an integer composed by the mul-

 58

tiplication of two-equal-portion of prime numbers is the most difficult one to divide.

For example, three is bound to be divided with more difficulty than one. This feature

results in designing an integer to become a multiplied number by two big prime num-

bers for cryptographic system design. In other words, factor algorithm is characterized

with the feature of one-way valve functions, which can be shown as F(X) = Y. It’s

easy to know Y through X; however, it’s quite hard to calculate X = F-1(Y). This fea-

ture is applied to design the public-key cryptographic system.

! Example 3.27: If we know that 11102489 is a multiplied number of two prime

numbers and ф (11102489) = 11095824. Can you do factor algorithm quickly?

As 11102489 is the multiplication of two prime numbers, we can demand:

 n = 11102489 = p × q (3.26)

 ф(n)=(p–1)(q–1)=pq–p–q+1=(n+1)–(p×q) → (3.27)

In compliance with Euler’s Quotient Theorem:

 p+q=(n+1)–ф(n) = 11102489+1–11095824 = 6666 (3.28)

So far, this question has turned to pq and p+q and unknown p and q need to be calcu-

lated.

p + q = 6666 (3.29)

pq = 11102489 (3.30)

 59

! Example 3.27 (cont.):

From (3.29), we know that q = 6666–p, which can be replaced q in (3.30), then:

p (6666–p) = 11102489 → p2 – 6666p + 11102489 = 0 → p=3253 or p=3413

That is to say that q=3413 or q=3253

The Chinese Remainder Theorem (CRT)

[3.3, 3:15]: This is one of the jewels in

the history of mathematics. The song of

Master Sun above in English is given on

the right-hand side. This poem was pre-

sented by Sun-Tse in the 4th Century (Data resource: http://www.weizmann.

ac.il/~feshtrik/sunzig.html)

∇ Chinese Remainder Theorem: Suppose m1, m2, …mr are positive integers in pairs

of prime numbers, then:

 x ≡ a1 mod m1 (3.31)

 x ≡ a2 mod m2 (3.32)

 …

 x ≡ ar mod mr (3.33)

A modulo M is induced and M=m1×m2 × …× mr and Mk= km
M

=m1m2…mk-1mk+1…mr.

As we know that GCD (Mk, mk) = 1; thus, inverse yk shows up, which results in

Mkyk=1 mod mk. Therefore, X=a1M1y1+a2M2y2+…+arMryr. Proof for this can be re-

ferred to [3.17].

! Master Sun:

Three men walk together for 70 miles.
Five plum trees blossom 20 branches.
Seven persons reunion on June 15.
Circulating at a period of 105.

 60

When X is divided by 3, 5, and 7, remainders 1, 2 and 3 come into existence. Try to

find the smallest positive integer X.

X ≡ 1 mod 3, X≡ 2 mod 5, X ≡ 3 mod 7

Thus:

 a1 = 1, a2 = 2, a3 = 3; m1 = 3, m2 = 5, m3 = 7

It can be inferred that M = m1 × m2 × m3 = 3 × 5 × 7 = 105

 M1 = M/m1 = 105/3 =35 (3.34)

 M2 = M/m2 = 105/5 = 21 (3.35)

 M3 = M/m3 = 105/7 = 15 (3.36)

 M1y1 = 1 mod 3 → 35y1 ≡ 1 mod 3; y1 ≡1 mod 3 → y1 = 2, 4 ≡ 1 mod 3 (3.37)

 M2y2 = 1 mod 5 → 21y2 ≡ 1 mod 5; y2 ≡1 mod 5 → y2 = 1, 1 ≡ 1 mod 5 (3.38)

 M3y3 = 1 mod 7 → 15y3 ≡ 1 mod 7; y3 ≡ 1 mod 7 → y3 = 1, 1 ≡ 1 mod 7 (3.39)

Thus:

 a1 = 1, a2 = 2, a3 = 3; M1 = 35, M2 = 21, M3 = 15; y1 = 2, y2 = 1, y3 = 1 (3.40)

Therefore:

 X = a1M1y1 + a2M2y2 + a3M3y3 = 1 × 35 × 2 + 2 × 21 × 1 + 3 × 15 × 1 = 157 (3.41)

The CRT plays a significant role for the application of cryptography. For example, the

decoding rate of RSA can be accelerated four times if it is applied [3.16].

 61

3.5 Reference

[3.1] Kenneth H. Rosen, Elementary Number Theory and its Applications, 1993.

[3.2] An Introduction to Number Theory pp. 1-3, Harold M. Stark, 1981.

[3.3] Kenneth H. Rosen, Elementary Number Theory & its Applications, 1993.

[3.4] Kenneth H. Rosen, Elementary Number Theory and its Application”, 1993.

[3.5] William Stallings, Cryptography and Network Security, 1999, pp 213.

[3.6] Yang Wu Chong, Introduction of Modern Cryptography & Programming,

pp. 3–11, 1995.

[3.7] R. P. Burn, A Pathway into Number Theory, 1997.

[3.8] Underwood Dudley, Elementary Number Theory, pp. 43–44, 1978.

[3.9] Dudley," Elementary Number Theory and Its Application,” 1993.

[3.10] Kenneth H.Rosen, Elementary Number Theory and Its Application, 1993.

[3.11] Underwood Dudley, Elementary Number Theory, pp. 7–9, 1978.

[3.12] Kenneth H. Rosen, Elementary Number Theory and Its Applications, Read-

ing, MA, Addison-Wesley, 1993.

[3.13] Yang Wu Chong Introduction of Modern Cryptography & Programming, pp

3–13, 1995.

[3.14] Kenneth H. Rosen, Elementary Number Theory and Its Applications, Read-

ing, MA: Addison-Wesley, pp. 163–164, 1986.

[3.15] Rosen K. Elementary Number Theory and Its Application, pp. 126–131,

1993.

[3.16] RSA Laboratories, Nov. 1994, High-speed RSA Implementation RSA Data

Security Inc., Version 2.0, pp. 53–56.

[3.17] D.E. Knuth: The Art of Computer programming , Vol. II, Addison-Wesley,

1969.

 62

Table 3-1: Display of Prime Numbers less than 2000
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293

307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397

401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499

503 509 521 523 541 547 557 563 569 571 577 587 593 599

601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691

701 709 719 727 733 739 743 751 757 761 769 773 787 797

809 811 821 823 827 829 839 853 857 859 863 877 881 883 887

907 911 919 929 937 941 947 953 967 971 977 983 991 997

1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097

1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193

1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297

1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399

1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499

1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597

1601 1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699

1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789

1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889

1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 1999

Data source: Cryptography & Network Security, page 209, William Stallings, 1999.

 63

CHAPTER 4

Rapid Module Exponentiation and
Modular Multiplication

4.1 Introduction

Among numerous scientific researches and practical applications, the multiple expo-

nentiation algorithm is an extremely important but time consuming approach,

especially for those researches on modern crypotology [4.1]. In this thesis, we are

going to discuss the Binary Method, M-ary Method and Sliding Window M-any

Method one by one. Besides, the new programming system introduced in this thesis

adopts from the Sliding Window Method to reduce calculation time, which will be

described in details later.

4.1.1 Binary method

The most direct and simple way for exponentiation algorithm is to multiply M for E–

1 times (E refers to a positive integer), which results in the value of ME. For exam-

ple, the answer to M [4.3] can be obtained by multiplication for 58 times. However,

is there any other faster way instead? Knuth [4.2] indicated that the binary method as

early as 200 BC was the alternative as a matter of fact.

 According to the approach of scanning bits, the binary method can be divided into

two categories. One is to scan from left to right and the other is to scan from right to

left. I will explore the former category first. Please refer to [4.3] for more informa-

tion.

 64

For example, the way to show 506 in the binary method is as: e = 506 = 111111010.

k=9. As the initial value is 1, C = M, ek-1 = e8 = 1. The algorithm formula with the

binary method is shown as following.

! Input M, e, n, output: C = Me mod n

1. if ek-1 = 1, then C: = M, else C: = 1

2. for i = k–2 down to 0

 2a. C: = C××××C (mod n) [square]

 2b. if ei = 1, then C: = C×M (mod n) [multiply]

3. Return

 K1

Known e = ek-1 ek-2 … e1 e0 = Σ ei2i (2 as the base)

 i = 0

If e = 506 = 111111010, k = 9. As the initial value is 1, C = M, ek-1 = e9-1 = e8 = 1.

Table 4.1 indicates the algorithm process. Only 14 module multiplications are re-

quired by applying the left to right binary method. The initial (primary) value of

the left to right binary method is set M; nevertheless, that of the right to left binary

method is set 1. Consequently, the right to left binary method requires multiplica-

tion one more. Please refer to [4.3].

Table 4.1: Algorithm process

i ei Step2a Step2b
7 1 (M)2 = M2 (M)2 = M2

6 1 (M3)2 = M6 M6 × M = M7
5 1 (M7)2 = M14 M14 × M = M15
4 1 (M15)2 = M30 M30 × M = M31
3 1 (M31)2 = M62 M62 × M = M63
2 0 (M63)2 = M126 M126
1 1 (M126)2 = M252 M252 × M = M253
0 0 (M253)2 = M506 M506
 8 times of square multiplication 6 times of multiply multiplication

 65

4.1.2 M-ary method

The binary method takes two as its base and scans one bit at a time. If one time scans

two bits, it is called the quaternary method, three bits the octal method, m bits the m-

ary method. The algorithm of the m-ary method is as follows:

! M-ary method: input = M, e, n, output: C = Me mod n

1. Calculate and save Mw (mod n) for all; w = 2,3,4,…m-1

2. Dissolve e to a word of r bit

3. C = MFs-1 (mod n)

4. for i = s–2 down to 0

 4a. C = C2r (mod n)

 4b. if Fi≠0, then C = C × MFi (mod n)

5. Return

! Quaternary method:

While applying the quaternary method to scan two bits at a time, a unit of two bits

has to serve as the basis. The two bits table is given in Table 4.2.

E = 506 = 01 11 11 10 10 (4.1)

Two bits form a group; so, s = k (2-based bit) / r (2 bits scanned one time) = 10 / 2 =

5 (groups). Therefore, C = MF4 = M (mod n). The process is given in Table 4.3. Ac-

cordingly, only eight times of module square and six times of module multiplication,

which will be 14 times in total are required.

 66

Table 4.2: Algorithm process

Bits w Mw

00
01
10
11

0
1
2
3

1
M
M × M = M2
M2 × M = M3

Table 4.3: Algorithm process

I Fi Step 4a Step 4b

3

2

1

0

11

11

10

10

((M)2)2 = M4

(M7)2)2 = M28

(M31)2)2 = M124

(M126)2)2 = M504

M4 × M3 = M7

M28 × M3 = M31

M124 × M2 = M126

M504 × M2 = M506

! Octal method:

When the octal method is applied, two times can scan three bits from left to right.

Now, we take two as the base for 506 and three bits constitute one group, which

comes out as e = 506 = 0 111 111 010 = 111 111 010.

s (group number) = k (number of bits) / r (one group of r bits) = 9 / 3 = 3

Table 4.4 shows the process of three bits. Mw (mod n); w = 2, 3, 4, 5, 6, 7. Accord-

ingly, C = MF2 = M7 mod n (for scanning one group is 111, which results in M7).

Table 4.5 is then induced. Six times of module square and eight times of modular

multiplication, which is 14 times are required.

Table 4.4: Algorithm process

Bits w Mw
000 0 1
001 1 M
010 2 M × M = M2
011 3 M2 × M = M3
100 4 M3 × M = M4
101 5 M4 × M = M5
110 6 M5 × M = M6
111 7 M6 × M = M7

 67

Table 4.5: Algorithm process

I Fi Step 4a Step 4b

1

0

111

010

(M7)2)2)2 = M56

(M63)2)2)2 = M504
M56 × M7 = M63

M504 × M2 = M506

According to Cetin Kaya Koc (High-Speed RSA Implementation, November, 1994,

pp. 10–15) and C. K. Koc (High-radix and Bit Rewarding Techniques for Modular

Exponentiation, International Journal of Computer Mathematics, 40(3+4): pp. 139–

156, 1991), the Table 4.6 and Table 4.7 are concluded. Thus the m-ary method can

save 33% [4.4] of time than the binary method.

Table 4.6: Results

Bit numbers R Binary method M-ary method V Time saving (%)
 32
 128
 512
 1024
 2048

 47
 191
 767
 1535
 3071

 43 2,3
 167 3,4
 635 5
 1246 5
 2439 6

 8.5
12.6
17.2
18.8
20.6

Table 4.7: Results

Formula Binary Method M-ary Method
Preprocessing
multiplications

0 [Step 1] 2r –2

Squaring

[Step 2a] k–1 [Step 4a] k–r

Multiplications

[Step 2b] 0.5 (k–1) [Step 4b] (k/r – 1) (1 – 2-r)

Total
multiplications

(k–1) + 0.5 (k–1)
 = 1.5 (k–1)

2r–2 + (k–r) + (k/r–1) (1–2-r)

Time saving
(%)

∞→k
Lim

() ()()
()

()

3
2

3113
2

12
3

31122

≅










 −+=
−

−−+−+− −−

rk
r

krk rrr

 (4.2)

So, the time saving is approximately 33%.

 68

Data source: According to Cetin Kaya Koc (High-Speed RSA Implementation, No-

vember, 1994, pp. 10–15) and C. K. Koc (High-radix and Bit Rewarding Techniques

for Modular Exponentiation, International Journal of Computer Mathematics,

40(3+4): pp. 139-156, 1991)

4.1.3 Sliding window method

The m-ary method applies the approach of the constant length of m bit; nevertheless,

the sliding window method divides into two ways. One is constant length nonzero

window and the other is variable length nonzero window. Koc [4.5] presented this

concept in 1995. The sliding window method provides a compromising approach. Its

features include:

• As only odd numbers in the pre-calculation table are calculated, preprocessing of

multiplication reduces to half.

• Zero and nonzero variable lengths are allowed.

• It divides bits into zero and nonzero windows. The smallest bit of nonzero win-

dow has to be 1.

! Sliding window method: Input: X, E; output: Y = XE

The algorithm of the sliding window method is as follows.

1. Calculate and save Xw, which results in w = 3, 5, 7,…2d-1.

2. Divide E into zero and nonzero windows. The length of Fi is L(Fi) for i= 0, 1,

2,…k–1.

3. Y = XFk-1

4. for i = k–2 down to 0

 69

! Sliding window method: (cont.)

4a. y = y2L(Fi)

 4b. if FiFo, then y = y × xFi

5. Return y.

! Constant length nonzero window

Scan E from the smallest bit to the largest bit and divide E into zero and nonzero

windows:

• ZW. Examine the bit from the right to the left. When the entered single bit is

zero, remain at ZW; otherwise, go to NW.

• NW. When the entered bit is one, stay at the nonzero window until d bit is col-

lected. Resume checking. If the entered single bit is zero, go to ZW; otherwise,

stay at NW.

From the aforementioned rules, we know that constant length nonzero windows di-

vide the entered bits into d nonzero windows and any zero windows. If two zero

windows are next to each other, they have to be combined. We presume d = 3 for the

following example and E = 3828227 = 111 01 00 11 0101 000000 011. In compli-

ance with the division strategy of the constant variable nonzero windows, it comes

out like:

011 101 0 011 0 101 000000 011

7 6 5 4 3 2 1 0 = I

Therefore, y = xF7 = x3 and the algorithm of x3 828 227 is as in Table 4.8. The nonzero

window has a constant length every time when it is divided into windows with this

 70

method and d equals to three bits. Through the CVNW, Koc published the CLNW

[4.6] strategy in 1995, which can reduce 3–7% of multiplication for 128k×2048.

Table 4.8:

i Fi L(Fi) Step 4a Step 4b
6 101 3 (x3)8 = x24 x24 . x5 = x29
5 0 1 (x29)2 = x58 x58
4 011 3 (x58)8 = x464 x464 . x3 = x467
3 0 1 (x467)2 = x934 x934
2 101 3 (x934)8 = x7472 x7472 . x5 = x7477
1 00000 6 (x7477)64 = x478528 x478528
0 011 3 (x478528)8 = x3828224 x3828224 . x3 = x3828227

! Variable length nonzero window

The strategy of variable length nonzero window was proposed by Bos and Coster

[4.7]. This approach suggests that when all of entered bits are zero, then stay at ZW;

however, when they are not zeros, stay at NW. The nonzero window has to be started

at one and ended at one as well. My personal programming adopts VLNW to de-

crease the number of multiplication and to accelerate the operation pace.

 The VLNW has two integer parameters as follows:

• d: the maximum length of nonzero window.

• q: The minimum should be able to convert to the smallest number, 0, at ZW.

The algorithm process of VLNW is shown as the following:

• ZW. Check each single entered bit. If the bit is zero, then stay at ZW; otherwise,

skip to NW.

• NW. Check entered q bits. If q bits are all 0’s, then skip to ZW; otherwise, re-

main stay at NW.

 71

We can describe the VLNW method through the previous example, which is E =

3828227:

E = 3828227 = 111 01 00 11 01 01 0000000 11; d = e and q = 1.

Divided into:

111 0 1 00 11 0 101 0000000 11

8 7 6 5 4 3 2 1 0 = i

Therefore, y = xF8 = x7 and the algorithm process of x3 828 227 is in Table 4.9. Accord-

ing to the paper published by Koc in 1995 [4.8], when the minimum zero is 123 and

4×d<8, the number of bits, k, is 128k×2048, the VLNW reduces 5 – 8% of multipli-

cations than the m-ary method. Table 4.10 gives an extract.

Table 4.9:

i Fi L(Fi) Step 4a Step 4b
7 0 1 (x7)2 = x14 x14
6 1 1 (x14)2 = x28 x28 . x = x29
5 00 2 (x29)4 = x116 x116
4 11 2 (x116)4 = x464 x464 . x3 = x467
3 0 1 (x467)2 = x934 x934
2 101 3 (x934)8 = x7472 x7472 . x5 = x7477
1 0000000 7 (x74717)128 = x957056 x957056
0 11 2 (x957056)4 = x3828224

 72

Table 4.10:

 n

 m-ary

dn Tn

 VLNM
 T2/n’
dn q=1 q=2 q=3

(T2-T/T2) for
qn (%)

 128 4 1.305 4 1.204 1.203 1.228 7.82
 256 4 1.27 4 1.184 1.185 1.212 6.77
 384 5 1.256 5 1.172 1.183 1.17 6.85
 512 5 1.241 5 1.163 1.175 1.162 6.37
 640 5 1.231 5 1.158 1.17 1.157 6.01
 768 5 1.225 5 1.155 1.167 1.154 5.8
 896 5 1.221 5 1.152 1.15 1.161 5.81
1024 5 1.217 6 1.148 1.146 1.157 5.83
1152 6 1.212 6 1.145 1.143 1.154 5.69
1280 6 1.207 6 1.142 1.14 1.152 5.55
1408 6 1.203 6 1.14 1.138 1.15 5.4
1536 6 1.2 6 1.138 1.136 1.148 5.33
1664 6 1.197 6 1.137 1.135 1.147 5.18
1792 6 1.195 6 1.136 1.134 1.146 5.1
1920 6 1.193 6 1.135 1.133 1.145 5.03
2048 6 1.191 6 1.134 1.132 1.144 4.95

Data source: C. K. Koc: Analysis of Sliding Window Techniques for Exponentia-
tion, Computers and Mathematics with Applications, 301101: 23,
1995.

4.2 Modular multiplication

4.2.1 Calculating remainder

We know that multiply-and-reduce modular multiplication first calculates the prod-

uct of a and b. However, in module multiplication, what we care is how to get the

remainder, that is, t mod n = Q…R. This essay is to get R: remainder and it adopts a

method of long division. The following is an introduction of two types of long divi-

sion [4.9]: Restoring Division Algorithm and Non-restoring Division Algorithm. The

parameter used are:

 t mod n = Q….R (4.3)

 73

where:

 t – 2k bit Number (divided).

 n – k bit Number (divisor).

 Q – Quotient.

 R – Remainder.

Figure 4.1 shows the flow chart and the regulations are:

• t and n line up toward the left side to facilitate subtraction.

• t is 2k bit number.

• n is k-bit number

• When t minus n is less than zero, n shifts one bit to the right.

• When t minus n is less than zero, restoring the divided.

! Restoring division algorithm: Input : t, n; Output : R= a mode n

The algorithm is as follows:

1. R0 = t

2. n =2k n

3. For i = 1 to k

4. Ri = Ri-1 - n

5. If Ri < 0 then Ri = Ri-1

6. n = n / 2

7. Return Rk

[Data Source: Cetin Kaya Koc, 1994, High-Speed RSA Implementation, pp.42]

 74

StartStart

R0=t
n=2kn
R0=t

n=2kn

i = 1 to ki = 1 to k

Rk is the
remainder
Rk is the

remainder

Ri = Ri+1 -n
Do subtraction
Ri = Ri+1 -n

Do subtraction

Ri<0Ri<0

Ri = Ri-1
Restoring n=n/2

Shift n one position to
the right

Ri = Ri-1
Restoring n=n/2

Shift n one position to
the right

yes

no

false

true

StopStop

StartStart

R0=t
n=2kn
R0=t

n=2kn

i = 1 to ki = 1 to k

Rk is the
remainder
Rk is the

remainder

Ri = Ri+1 -n
Do subtraction
Ri = Ri+1 -n

Do subtraction

Ri<0Ri<0

Ri = Ri-1
Restoring n=n/2

Shift n one position to
the right

Ri = Ri-1
Restoring n=n/2

Shift n one position to
the right

yes

no

false

true

StopStop

Figure 4.1: Restoring division algorithm

! Restoring division algorithm example: 3019 mod 53

3019 = 101111 001011 53 = 110101

t= R0 =3019 =101111 001011

n=53=110101

R0
n

 1
1

0
1

1
0

1
1

1
0

1
1

 0 0 1 0 1 1
Subtract

R1
n/2

- 0
1

0
0
1

0
1
1

1
1
0

1
1
1

0
1
0

0
1

0

1

0

1

1

 Negative remainder
Restore R0
Shift and Subtract

R2
n/2

+ 0

1
1

0
0
1

1
1
1

0
0
0

0
0
1

 1
1
0

0

1

0

1

1

 Positive remainder

Shift and Subtract

R3
n/2

+

0
0

1
1
1

1
1
1

1
1
0

 0
0
1

1
1
0

1
1

 Positive remainder

Shift and Subtract

R4
n/2
n/2
n/2

+

1

1
1

1
1
0
1
1

1
1
1
0
1

0
0
0
1
0

0
0
1
0
1

1
1

1
0

1
1

1

 Positive remainder

Shift and Subtract
Shift and Subtract
Shift and Subtract

1

1

0

-
0

1
1

0
1

 Negative remainder
Restore R4

 1 1 0 0 1 1 Final remainder

 75

4.2.2 Non-restoring division algorithm

Figure 4.1 shows the flow chart and the regulations are:

• Allow the existence of a negative remainder.

• To correct the remainder, both addition and subtraction are used in this algo-

rithm.

• When the remainder is negative, the divided shifts one bit to the right and adds

the remainder.

• When the remainder is positive, the divided shifts one bit to the right and sub-

tracts the remainder.

• Use 2’s complement coding to represent a negative number.

! Non-restoring division algorithm: Input: t, n; Output: R= a mod n

1. R0 = t

2. N=2k n

3. For i = 1 to k

4. if Ri-1 > 0 then Ri := Ri-1 – n; else Ri = Ri-1 + n

5. n = n/2

6. if R < 0 then R = R + n

7. Return Rk

[Data Source: Cetin Kaya Koc, 1994, High-Speed RSA Implementation, pp.44]

! Non-restoring division algorithm example: 3019 mod 53

3019 = 101111 001011 53 = 110101

t=R0 =3019 =101111 001011

n=53=110101

 76

R0

N

 1

1

0

1

1

0

1

1

1

0

1

1

 0 0 1 0 1 1

Subtract

R1

n/2

1 1

0

1

1

1

1

0

0

1

1

0

0

1

 Negative remainder

Add (R1+n/2)

R2

n/2

 0

1

0

0

1

1

1

0

0

0

1

 1

0

1 Positive remainder

Subtract (R3-n/2)

R3

n/2

 0 0

0

1

1

1

1

1

0

 0

1

1

0

1

 Positive remainder

Subtract (R3-n/2)

R4

n/2

n/2

n/2

 0 0

0

0

1

0

0

1

1

0

 1

0

1

1

1

1

0

1

0

0

1

0

0

1

0

1

1

1

0

1

1

 Positive remainder

Subtract (R4-n/2)

R5

n

 1 1

1

1

1

1

0

1

1

1

0

0

1

 Negative remainder

Use 2's complement

Final restore→→→→Add (R5 + n)

R 0 1 1 0 0 1 1 Final remainder

StartStart

R0=t
n=2kn
R0=t

n=2kn

i = 1 to ki = 1 to k

Ri-1>0Ri-1>0

false

true

StopStop

R=R+nR=R+n

Rk is the
remainder
Rk is the
remainder

Rk<0Rk<0

Ri= Ri+nRi= Ri+nRi= Ri-nRi= Ri-n

no

yes

n=n/2n=n/2

Rk<0Rk<0

R=R+nR=R+n

no

yes

When Ri-1<0, it
means that the
number is not
enough for
subtraction and
has to add n.

Shift n one
place to the right to
facilitate the
subtraction.

StartStart

R0=t
n=2kn
R0=t

n=2kn

i = 1 to ki = 1 to k

Ri-1>0Ri-1>0

false

true

StopStop

R=R+nR=R+n

Rk is the
remainder
Rk is the
remainder

Rk<0Rk<0

Ri= Ri+nRi= Ri+nRi= Ri-nRi= Ri-n

no

yes

n=n/2n=n/2

Rk<0Rk<0

R=R+nR=R+n

no

yes

When Ri-1<0, it
means that the
number is not
enough for
subtraction and
has to add n.

Shift n one
place to the right to
facilitate the
subtraction.

Figure 4.2: Non-restoring division algorithm

 77

4.3 Reference

[4.1] D.E. Knuth, The Art of Computer programming Vol. II, Addison-Wesley,

1969.

[4.2] D.E. Knuth, The Art of Computer Programming Vol. II, Addison-Wesley,

1997, pp. 461–463.

[4.3] D.E. Knuth, The Art of Computer Programming Vol. II, Addison-Wesley,

1997, pp. 461–464.

[4.4] Cetin Kaya Koc, High-Speed RSA Implementation, RSA Laboratories 1994,

pp.15.

[4.5] C. K. Koc, Analysis of Sliding Window Techniques for Exponentiation,

1995, Oregon State, USA.

[4.6] Cetin Kaya Koc, High-Speed RSA Implementation, RSA Laboratories 1994,

pp. 17–18.

[4.7] J. Bos and M. Coster, Addition chain Heuristics, G. Brassard, editor, Ad-

vances in Cryptology-Crypto 89, Proceedings, Lecture Notes in Computer

Science; No. 435, pp. 400–407. New York, NY: Spinger-Verlay, 1989.

[4.8] C. K. Koc, Analysis of Sliding Window Techniques for Exponentiation,

Computers and Mathematics with Applications, 301101: 17–24, 1995.

[4.9] Cetin Kaya Koc, High-Speed RSA Implementation, RSA Laboratories,

1994, pp.42–44.

 78

CHAPTER 5

Novel Implementation of the RSA
Algorithm

5.1 RSA Algorithm

When Diffie and Hellman [5.1] presented the structure of public key cryptosystem

based on one-way block/secret function in 1976, they both had no idea whether one-

way block/secret function existed or not. Three professors of MIT, Rivest, Shamir and

Adleman [5.2], first published the theory of RSA Secret Exponents. The Rivest-

Shamir-Adleman (RSA) scheme can achieve the general purpose of public-key

cryptosystem. Followings are the descriptions of this system.

5.1.1 Public Key

The public key in RSA Cryptography for every user can be obtained from the follow-

ing procedures.

1. Locate two adequate prime numbers p and q at random. (for example 256-bit

prime numbers)

2. Multiply p and q, which comes up with n.

3. Locate one integer e, which can satisfy GCD[e,Φ(n)]=1. Φ(n) represents Euler’s

quotient (Chapters 2 and 3), which means this integer is smaller than n and a

prime number against n. When n=pq, Φ(n)=(p-1)(q-1).

4. Calculate d, which satisfies ed •1 mod Φ(n).

 79

5. (e, n) is the public public key and (d1 ,n) is the private key.

5.1.2 Description of RSA algorithm

RSA Algorithm is presented by three professors of Rivest, Shamir and Adleman. The

plain text is encoded with one block and every block has a binary value, which is

smaller than n. The value of this block is 2k bit and the range is 2k<n<2k+1. The for-

mula of encoding and decoding is as follows.

C=Me mod n

M=Cd mod n = (Me)d mod n = Med mod n

M: plain text block C: cryptographic block

In this formula, both transmitter and receiver have to know n, but only they both

know about e. Thus, we realize that the public public key is {e, n} and the secret pub-

lic key is {d, n}.

! RSA Algorithm cryptography:

A. Key generation:

1. Choose two prime numbers p and q.

2. Calculate n = p × q.

3. Calculate Φ(n) =Φ (p × q) = (p-1)(q-1).

4. Select one e, which satisfies gcd(Φ(n), e) = 1. 1 < e <Φ(n).

5. As ed = 1 mod Φ(n), utilize Euclid’s Algorithm to get d=e-1 mod Φ(n).

6. A pair of public keys is obtained, which is {e, n}.

7. A pair of secret keys is obtained, which is {d, n}.

 80

! RSA Algorithm cryptography (cont):

B. Encrypting:

1. Plain text M and M < n.

2. Encoded text C = Me (mod n)

C. Decrypting:

1. Cryptographic text is C.

2. Plain text can be obtained through decoding, which gets M=Cd (mod n).

! RSA Algorithm cryptography Ex. 1:

Public key

1. There are two prime numbers p and q and p=7, q=17. Then, n=p×q=7×17=119.

2. Φ(n) =Φ (pq) = (p-1)(q-1) = 96 according to Euler’s algorithm.

3. Locate one integer e, which is a prime number against Φ(n) and is smaller than

Φ(n). We choose e = 5 in this example.

4. As ed = 1 mod 96, we know that d = e-1 mod 96 = 77 in compliance with Euclid’s

algorithm (77 × 5 = 385 = 4 × 96 + 1).

5. In this formula, both transmitter and receiver have to know n, but only the former

knows about e and the latter knows about d. Thus, we realize that the public key is

{e, n} and the secret key is {d, n}.

 81

! RSA Algorithm cryptography Ex. 2:

Public key:

1. Presume two prime numbers p and q and p=7, q=17. Then, n = pq = 7 × 17 = 119.

2. Φ(n) =Φ(pq) = (p-1)(q-1) = 96 according to Euler’s algorithm (quotient) in the

previous chapter.

3. Locate one integer e, which is a prime number against Φ(n) and is smaller than

Φ(n). We choose e = 5 in this example.

4. As ed = 1 mod 96, we know that d = e-1 mod 96 = 77 in compliance with Euclid’s

algorithm in Chapter 2 (77 × 5 = 385 = 4 × 96 + 1).

5. Finally, we know that the public key = {e, n} = {5, 119} and the secret key = {d,

n} = {77, 119}.

Encrypting:

1. The public key is {e, n} = {5, 119}. We choose the plain text M = 20, then C = Me

(mod n) = 205 mod 119 = 3200000/119 = 26890…90 (reminder). Therefore, cryp-

tographic text is 90.

Decrypting:

2. The secret key is {d, n} = {77, 119}. Then M = Cd (mod n) = 9077 mod 119 =

(838×90) mod 119 = (836×8×8×90) mod 119 = (3612×48) mod 119 = (1066×48)

mod 119 = (503×48) mod 119 = 20 (reminder)

5.2 Choice of RSA parameter

The RSA system is the first system of placing security upon factor algorithm. We

know that if n can be broken down into factors with the public key {e, n}, then Φ(n) =

(p-1)(q-1) can not be hidden, which makes the decoding key d become a secret no

more and the whole RSA system becomes insecure. As a result, it is critical to choose

 82

the public key n while applying the RSA system. Once the public key n is chosen, no-

body is able to get p and q from n. We are going to discuss the choices of strong

prime numbers as well as things to be noticed while selecting parameters e and d.

5.2.1 Things to be noticed while choosing N

Among all cryptosystems that base their security on factor algorithm, prime factors of

N, p and q, have to be selected appropriately to prove that it is impossible to divide

factors.

A. p and q have to be strong prime numbers.

If prime number p can satisfy the following requirements, then this prime number is

called a strong prime number:

1. Two large prime numbers p1 and p2; p1/p-1 and p2/p+1

2. Four large prime numbers r1, s1, r2 and s2; r1/p1-1, r2/p2-1,

 s1/ p1+1, and s2/ p2+1.

Figure 5.1 shows strong primes. Prime numbers such as r1, s1, r2 and s2 are termed as

level-3 primes and p1 and p2 are called level-2 primes. As for p, it is named as level-1

prime. Obviously, general prime numbers belong to level-3 primes; whereas, strong

primes belong to level-1 category.

p
p+1p-1

p2p1

p2+1p2-1p1+1p1-1

r1 s1 r2 s2

Level-1 prime

Level-2 prime

Level-3 prime
(general primes)

Figure 5.1: Structure of Strong Prime p

 83

N comes from multiplication of strong primes p and q, whose factor algorithm be-

comes a more difficult math problem. We can generate random primes with fixed

length/capacity first, then locate a level-2 prime either +1 or -1 through Theorem 5.1.

Finally, a strong prime can be generated by means of level-2 prime.

! Theorem 5.1: If r and s are odd primes, then prime p can satisfy the formula of

p1≡1 (mod 2r) ≡ -1 (mod 2s) and p can be transformed into

p=2ss-1 + 2krs. ss-1 ≡ 1 mod r, 1 ≤ s-1 < r

B. The difference between p and q has to be great (more than several bits). When

the difference between p and q is small, we can predict the average value of p

and q, p+q/2 = (N)1/2, under the circumstance of N=pq.

The following formula results:

 (p+q/2)2 - N = (p-q/2)2 (5.1)

If N=164009, we predict p+q/2 =(164009) 1/2 = 405 (5.2)

Through Eq. (5.1):

 (405)2 – 164009 = (p-q/2)2 ,then p-q/2 = 4 (5.3)

We already know p+q/2 = 405 (5.4)

According to formulas (5.2) and (5.4), p-q=8 and p+q=810.

Then, p=409 and q=401.

 84

As a result, the difference between p and q has to be great (above several bits), which

makes it uneasy to decode.

C. p and q should be great enough that it becomes impossible to divide factor N.

It is evident that if factor N can be divided, then RSA can be decoded. Thus,

length/capacities of p and q should be large enough that dividing factor N becomes

impossible. As dividing factors is the basic problem in cryptography, algorithm of di-

viding factors has made a lot of progress for the past decade. We list the evolving re-

sults of factor algorithm in Table 5.1. Those so-called compounds difficult to divide

in Table 5.1 refer to the multiplication of two strong primes with about the same

length/capacities. From Table 5.1, we know that in early 1980 to divide decimal

length/capacities had 50 digits, which was already too difficult.

 However, it became possible to divide 106 digits after 10 years. At the end of April

in 1994, it was reported that a team of 600 members led by Lensbra of Bell Company

used 1,600 connected computers and strove for eight months to finally resolve a com-

pound, whose factors were difficult to divide and designed by Rivest, Shamir and

Adleman when they first presented the RSA system. That compound was termed as

RSA 129, whose length/capacity had 129 digits (about 42 bits) and was tremendously

hard to divide in 1977. Again, in 1996, another challenge was called RSA 130, whose

decimal length/capacity had 130 digits [5.4]. Nevertheless, Rivest predicted in Janu-

ary 1990 that it should be able to crack during 1990. Mathematicians also estimated

that the difficulty of dividing x + 10 digit was about 10 times of dividing x digit. For

instance, the difficulty of dividing 140 digits was 10 times more than that of dividing

130 digits. Thus, the length/capacity of N in RSA can be chosen in compliance with

respective requirement of security. However, current progress of algorithm has not

capable of cracking the RSA system yet. Present choice of N has 512 bits. For short

term, it is quite safe; nevertheless, the length/capacity of N requires 1024 or 2048 bits

in the long run.

 85

Table 5.1:

Year Decimal Length/
Capacity of Divided Factor

Machine Model Time

1983 47 HP Mini Computer 3 days
1983 69 Cray Super Computer 32 hours
1988 90 25 SUN Work Stations Few weeks
1989 95 1 MZP Processor 1 month
1989 106 Above 80 Work Stations Few weeks
1993 110 128x128 Processor 1 month
1994 129 1,600 Computers 8 months

[Data Resource: Chi Sung Laih et. al., Contemporary Cryptography and its Applica-

tion," 1997.]

5.2.2 Things to be noticed while choosing e and d

After the RSA Cryptosystem is proposed, it is associated that if d or e is small, then

algorithm of encoding or decoding can be highly accelerated. However, insecurity has

been found out after scholars conduct researches.

 Knuth [5.5], a famous scholar, suggested all users of RSA Cryptosystems should

use e=3 to serve as a public key. One reason is that it is faster and the other one is that

it can reduce the file length/capacity of public key. Whereas, in 1986 Hastad [5.6]

claimed that if e was too small, then the RSA system was defective and could be

cracked.

 As for the consideration of the secret key d, Wiener [5.7] proposed the RSA

cryptosystem with smaller d could be cracked with successive fraction algorithm. As

long as the secret key is within 1/4 length/capacity of n bit, Wiener could crack down

the complication of the RSA cryptosystem through multiple exponents. As a result,

the length/capacity of the secret key d has to be paid attention to while programming.

That is to say that it has to be within 1/4 length/capacity of modulus n to prevent from

cracking by Wiener’s method.

 86

5.3 Programming of RSA System (old program)

5.3.1 Integral Planning

The sub-program, which is required for programming RSA cryptosystems is mainly

designed and divided into six parts (Appendix A):

1. Algorithm of elementary numbers. They consist of inverse modulus arithmetic

operations, modular arithmetic operations, Euclid's algorithm, multiplication of

inverse modulus (extended Euclid).

2. Strong primes. The length/capacities of strong primes have to be controlled.

3. Public key and secret key required for the system. They need to be saved to a

file.

4. Decout and hexout. In order to reveal the produced strong prime or the public

key, a sub-program has to be edited to make great integers with several hundred

bits be able to show up on the screen. The sub-program that I edit includes decout

and hexout.

5. Encrypting sub-program. Read the original data of a file, divide them into sec-

tions, obtain the public key of users, encrypt by sections and save into files. There

is a fixed file title of every saved file, which not only can help identify encrypted

files, but also save information related to original files, such as the length/capacity

of a file for easy access while decrypting.

6. Decrypting sub-program. It means to decrypt data files that are encrypted with

the sub-program and return to their originals. A password has to be input prior to

decrypting for easy access of the secret key. Operations of encrypting and

decrypting sub-programs will be further discussed.

 87

5.3.2 Choice of Data Structure

Encrypting or decrypting files can be deemed as combinations of ASCII code bytes. If

we collect 64 bytes, it comes up with a great integer with 512 bits. Therefore, I use 18

long integers with 32 bits to form a typed of unsigned long LINT [18] to indicate a

great integer. LINT [0] stands for the length/capacity of the integer and the

length/capacity can be calculated by the number of long integers. LINT [1] to LINT

[17] represents the actual integer from small to big. If a great number of the informa-

tion types of variables claim to be LINT, then that means the variable is a great inte-

ger. Followings are the descriptions of the sub-program with strong primes.

5.3.3 Key generation

In RSA cryptosystems, the public key of users is (e, n) and the secret key is d. Never-

theless, to reinforce the pace of decrypting, (p, q, dp, dq) serves to be the secret key in

my programming. Meanwhile, to process each section with 512 bits precisely, the

length/capacity of the modulus n for the public key has to be 513 bits. Besides, two

strong primes of 257 and 256 bits need to be located to serve p and q for the secret

key. Procedures of creating a public key are as follows.

1. Login the name of the user. It is composed with 1-8 non-blank bytes and the pass-

word of the user is any number from 00000000 to 99999999.

2. Locate two strong primes p and q of 257 and 256 bits.

3. Calculate n and ф(n). n = p × q and ф(n) = (p-1)(q-1).

4. Based on the login name of the user as the starting point, find the smallest integer,

which is a prime number against ф(n) to serve as the public key.

5. Calculate dp, dq, edp = 1 (mod p-1) and edq = 1 (mod q-1).

6. Save the public key (e, n) into the public key file. (The main filename is the login

name and the sub-filename is .pub.)

 88

7. Process the secret key (p, q, dp, dq) with personal password. (Here, we only add

and subtract user’s password and the secret key to confuse people. Then, save it

into the secret key file. The main filename is the login name and the sub-filename

is .sct.)

The receiving party has to login user’s name for the access of the public key and the

user's name has to be compared to see if it matches with the public key e through the

program. If it does, then everything meets for legal requirements and the user's public

key can be obtained. If it does not, then illegal users might be involved. Personal pass-

word has to be input for the access of personal secret key in addition to operating

personal password and file data of the secret key. It is understood that all processed

system files will be lost once the public key file is missed. As a result, the public key

file needs to be taken care of properly and the password has to bear in mind.

 Procedures of public key created sub-program are as follows.

5.3.4 Encrypting & Decrypting

Actual operations of encrypting are as the following steps.

1. First, obtain the required public key.

2. Read the file to be processed by sections. The length/capacity of each section is 64

bytes (that is, 512 bits).

3. Process every sector and calculate the encrypted text in compliance with C = Me

(mod n).

4. The length/capacity of the encrypted text after processing is usually 513 bits. Al-

ways save the encrypted data in each sector with 65 bytes for easy access of de-

crypting afterwards.

Actual operations of decrypting are as the following steps:

 89

1. Obtain the required secret key through inputting password.

2. Examine if the file to be decrypted matches with the encrypted file by the crypto-

system program. If it does, then read the file to be decrypted by sector. The

length/capacity of each sector is 65 bytes.

3. Process every sector in compliance with the descriptions in Chapter 8 and calcu-

late the plain text as the following formula:

Cp = C (mod p), Cq = C (mod q) (5.5)

dp = d (mod p-1), dq = d (mod q-1) (5.6)

Mp = Cpdp (mod p), Mq = Cqdq (mod q) (5.7)

M = [Mq + (q-Mp) A (mod q)]p + Mp (5.8)

Ap = 1 (mod q) and p<q (5.9)

4. The length/capacity of the plain text after decrypting is usually 64 bytes. Save it to

the original file. One thing should be noted while decrypting is that the last sector

cannot be saved completely. Thus, the length/capacity of retrieving the original

file needs to take into consideration. My method is to record the length/capacity of

the original file in the encrypted text and only save the designed length/capacity in

the last sector to prevent from saving extra data indicated as 00 through ASCII

code.

5.4 Practical implementation

5.4.1 Main system flow path

A Key generation (function keygen):

1. Input the bit-length of n:ml

2. e=216+1(0x10001)

3. Generate 2 strong prime p(bit-length of ml/2-1) and q(bit-length of ml/2+1)

 90

4. Evaluate phin=(p-1)×(q-1)

5. Evaluate gcdpq=gcd(p-1, q-1)

6. Evaluate lamdan=phin/gcdpq

7. Evaluate d=e-1 mod lamdan

8. Evaluate dp=d mod (p-1) dq=d mod q-1

9. Save ml, e, n in public key file

10. Save ml, p, q, dp, dq, d, n in secret key file

B Encryption(function encrypt):

1. Read public key data ml, e, n from public key file.

2. Open the source file for encryption.

3. Open the target file for storing the encrypted data.

4. Evaluate the source file length(flen) & the number of blocks(blen).

5. Build the table of n, 2n, 4n, 8n,…, 216n.

6. Read one block message(msg) from the source file.

7. Evaluate cpt=msge mod n.

8. Write cpt to the target file.

9. If it remained data for encryption goto step 6.

10. Close the source and target files.

C Decryption by CRT(function crt_decrypt):

1. Read secret key data ml, p, q, dp, dq, d, n from secret key file.

2. Open the source file for decryption.

3. Open the target file for storing the decrypted data.

4. Evaluate the source file length(flen) & the number of blocks(blen).

5. Build the table of p, 2p, 4p, 8p,…,216p and q, 2q, 4q, 8q,…, 216q.

6. Precompute r=p-1 mod q.

7. Read one block message(msg) from the source file.

 91

8. Evaluate msg=msg1.

9. Evaluate msg=(msg mod p)dp mod p.

10. Evaluate msg1=(msg1 mod q)dp mod q.

11. Evaluate msg=((msg1-msg)r mod q)p+msg.

12. Write msg to the target file.

13. If it remained data for decryption goto step 6.

14. Close the source and target files.

5.5 The comparison of two systems

With adoption of the following methods, this new program has made a great im-

provement in key generation, encryption and decryption speed. The methods include:

• Single Precision Multiplication, SPM.

• Listing method to complete the modulus calculation in the modulus multiplication

• M-ary sliding window to complete exponent calculation

• Chinese Remainder Theorem

5.5.1 Single precision multiplication, SPM:

Modulus exponent calculation is composed of modulus multiplication. In this pro-

gram, the modulus multiplication adopts modulating while multiplying; that is, modu-

late every time finishing pmy0×(pmx: pmxk-1 pmxk-2 pmxk-3 … pmx1 pmx0) to

complete the whole process. With regard to multiplication, the old program adopted

a relocation of figures and addition method to complete. Although it is very time con-

suming, most calculators in their design adopt the parallel structure to promote effi-

ciency in multiplication calculating circuits. Therefore, if we use the SPM offered by

calculators to complete RSA multiplication, we can become much more effective.

Compare numbers calculated with 16 bits and add together information in the tempo-

rary storing device and memory device, which requires approximately seven blocks

 92

(old program: one bit) while mutual multiplication about 25 clocks (new pro-

gram:16bits); but to finish 16-bit multiplication at least needs 7×16=112 clocks (old

program calculated bit-by-bit). The efficiency has enhanced about four to five times.

Therefore, these two programs’ main multiplication is enclosed as follows for further

reference. (The red part is the main calculation.)

 The program in the book (modmul segments):

 for (m2=32;m2>0;m2--)

 {

 shiftleft(pmz);

 a2=pmy[m1]&a1;

 if (a2!=0) add(pmz,pmx);

 while(compare(pmz,mp)>0) sub(pmz,mp);

 a1>>=1;

 }

New Version (modmul segments):

 for(i--; i ;i--)

 {

 carry=0;

 lshift16(pmz);

 if(mul=*ptr7--)

 {

 ptr1=result+1;

 for(j=*pmx<<1,ptr8=pmx+2; j ;j--,ptr8++,++(WORD *)ptr1)

 {

 tmp=*ptr1;

 if(*ptr8)

 {

 if((*ptr1+=(DWORD)mul * *ptr8+carry)<tmp) carry=65536;

 else carry=0;

 }

 else

 if(carry)

 { if((*ptr1+=65536)>tmp) carry=0; }

 }

 if(carry) {

 ptr9=(WORD *)ptr1+1;

 93

 do { ++*ptr9; } while(!*ptr9++);

 }

 ptr1=result+Length; /**/

 *pmz=Length; /**/

 while(!*ptr1--) --*pmz;}mod1(result,mp);

 }

The main purpose of this part is to replace addition and relocation of figures with

multiplication to multiply several times the efficiency of the original programs,

among which that underlined red is the comparative point. Please notice the times

(*ptr1+=(DWORD)mul * *ptr8+carry)<tmp carries out and the time spent on each

carry-out of addition and this is less than adding. As for the carry-out time of related

instructions (such as addition, subtraction and multiplication) please refer to the Data

book IBM PC 80386 of 80x86 [5.10].

 Drafting a 16-bit multiplication program is to disperse the large integer into 16 bits

and then multiply and add respectively. The carry-out steps are as follows: (Attention:

The result of a k-figured number timing another k-figured number will be a 2k or 2k-

1-figured number, and the symbol zi,j means (pmxi*pmyj*216*(i+j)). Because we adopt

a 16-bit multiplication and we use unsigned long to represent the large integer, the

index-in-usage of our program points out accurate locations of pmxI and pmyj:

pmx: pmxk-1 pmxk-2 pmxk-3 … pmx1 pmx0

pmy: pmyk-1 pmyk-2 pmyk-3 … pmy1 pmy0

 zk-1,0 zk-2,0 zk-3,0 … z1,0 z0,0

zk-1,1 zk-2,1 zk-3,1 … z1,1 z0,1

 :

+) zk-1,k-1 … z1,k-1 z0,k-1

pmz:pmz2k-1 pmz2k-2 pmz2k-3 … pmz1 pmz0

 94

5.5.2 Listing method to complete the modulus calculation in the
modulus multiplication

In modulus multiplication, each time one single accuracy integer (this programs

adopts 16 bits) times a large integer; that is, z=xi×y= xi×<yk-1,yk-2,…,y1,y0> . (mod n)

Because y<n, therefore, if we calculate n, 2n, 4n,…, 216n in advance and store it, we

can save the time spent on relocation in modulus calculation. However, this method

can only be used under the condition, z<216n and has to pre-store the forms. In the

program, mod is a general modulus calculation and mod1 is the calculation of the

forms mentioned above.lshiftN, lshiftN1 are the forms for storing the seventeen fig-

ures, n, 2n,...,216n, that are calculated in advance. (Because decryption adopts Chinese

Remainder Theorem, two forms are needed to store p, 2p, ... ,216p and q, 2q,..., 216q)

shift_tbl indicates the large integer on the form in usage.

 The main purpose here is to relocate figures each time doing subtraction in the

mod calculation. Every time we multiply, we accomplish pmx(<pmxk-1, pmxk-2, pmxk-

3, …, pmx1, pmx0>)×pmy calculation. Because pmx<modulus n and pmy<216, we only

have to pre-calculate and store n, 2n, 4n,…, 216n, to save a lot of time spent on reloca-

tion and calculation. Therefore, in this program, each time we finish pmy[j] (indi-

cated by index ptr7) timing the whole pmx, we do modulus multiplication. Because it

has already been calculated in advance and stored, the mod1 here needs not to do cal-

culation to relocate figures.

5.5.3 M-ary sliding window to complete exponent calculation

Since we have detailed the m-ary sliding window in the previous chapters, here we

will not do any further description. The old program adopts the binary scale to com-

plete the modulus exponent calculation, xv mod n, from left to right. For example, the

1024-bit calculation requires about 1534 times of multiplication. ((1024-

1)+(0.5×1024-1)�1534) But if we look at it from a perspective of five bits, pre-

calculate and store the result of x, x3, x5,…, x31(mod n), we need only 1237 times of

 95

multiplication. (16+(1024-1)+(1024/5×31/32-1)=1237). This process promotes the

calculation efficiency of 1024-bit exponent calculation up to about 24%. However,

this method has to be used on larger exponents. Therefore, upon RSA encryption, to

pre-calculate 16 times in advance will only lead to a decrease of efficiency due to the

fact that the exponents are too small. (Presently around 16-32 bits). Henceforth, upon

encryption for the new program, we still adopt the binary scale; that is, the modexp1

in the program is binary scale. Upon decryption, we adopt m=5 m-ary sliding win-

dow, in other words, modexp2. Exp_ptr is the index indicating each result that is cal-

culated previously.

5.5.4 Chinese Remainder Theorem(CRT)[5.8, 5.9]�

Because exponent calculation is to calculate O(n3) and factorize n=pq after decryp-

tion, we can calculate n in two different ways according to CRT to promote decryp-

tion calculating efficiency up to nearly 40%, which is detailed as follows:

Exponent calculation is based on modulus multiplication and modulus multiplication

has to do from addition so the calculation amount for modulus exponents is very

huge. With the increase in length for calculating integers, the calculation time will

also increase by their cube. Besides, because decryption people know the decomposi-

tion of n= p×q, they can do the following calculation in two different ways to promote

the decryption speed:

 Cp= C (mod p), Cq= C (mod q)

 dp= d (mod p-1), dq= d (mod q-1)

 Mp= Cp dp (mod p), Mq= Cq dq (mod q)

 M= [(Mq +q - Mp) A (mod q)] p + Mp

 Ap = a (mod q), and let p < q

 96

As for the accuracy and speed improvement, it is explained as follows:

1. From the following equation, we can see Mp= M (mod p), Mq = M (mod q). Then,

we can use Chinese Remainder Theorem to prove it.

M = [(Mq +q - Mp)A (mod q] p + Mp indeed equals the result of M = Cd (mod n)

in the original decryption calculation.

 Mp= Cp dp (mod p) Mq = Cq dq (mod q)

 = C dp (mod p) = C dq (mod q)

 = C d (mod p) = C d (mod q)

 = M (mod p) = M (mod q)

2. The length of Cp, Cq, dp, dq, p, q is only half to that of the calculating integers, C,

d, and n in decryption, so the speed of the equations we adopt, Mp= Cp
dp (mod p)

Mq= Cq
dq (mod q) is eight times of M = Cd(mod n). Therefore, the modified

method is four times faster than direct decryption.

Table 5.2 outlines the speed comparison of new system and old system.

Table 5.2: Comparison to the two methods

Items New system
(block: number of
bits)

Old system

Module exponentiation M-ary Sliding
window method

Right to left binary method

Number of bits 256-2048 bits 512 bits
Key generation
(estimated)

13.0 seconds 58.0 seconds

Encryption 5.5 ms /block 95 ms/seconds

Improvement
efficient

Decryption 241.4 ms/ block 420 ms/ block

 97

5.6 References

[5.1] Diffie and M.E. Hellman, New Directions in Cryptography: IEEE Transaction

on Information Theory, Vol. IT-22, No. 6, pp. 644–654, Nov. 1976.

[5.2] R. Rivest, A. Shamir and L. Adleman, A method for obtaining Digital Signa-

ture and Public-key Cryptosystems, Communication of the ACM, Vol. 21, No.

2, pp. 120–126, Feb. 1978.

[5.3] J. Gordon, Strong RSA Key, Electronics Letters, Vol. 20, pp. 514–516, 1984.

[5.4] Yang Wu Chuan Entrance of Modern Cryptography and Programming ,1995.

[5.5] D.E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algo-

rithms, Addison-Wesley, 1969, 2nd edition, 1982.

[5.6] J. Hastad, On Using RSA with Low Exponent in a Public Key Network, Proc.

Crypto 185, Springer-Verlag, Network, pp. 404–408, 1986.

[5.7] M.J. Wiener, Crypt Analysis of Short RSA Secret Exponents, IEEE Transac-

tions on Information Theory, Vol. IT-36, pp. 554–558, 1990.

[5.8] Yang Wu Chung, Entrance of Modern Cryptography, 1995, pp3-18.

[5.9] Cetin Kaya Koc , High-Speed RSA Implementation , 1994, pp53.

[5.10] Ed Hung, A Thorough Analysis on the Introduction and Application of Assem-

bly Language, Appx. D:80386 “Instruction Set and Clock Chart, pp.873-887.

 98

CHAPTER 6

Conclusions

In this thesis, I use C language to create a RSA public key encryption and decryption

device containing 256-2048 bits and flexible in length. Besides, I adopt Single Preci-

sion Multiplication and Listing Method to speed up the modular calculation in the

modular multiplication, using M-ary Sliding window to speed up exponentiation mul-

tiplication and CRT to speed up decryption.

 The best character of modern cryptography is its application of public key crypto-

system, which makes the code system security be able to afford the test from the rapid

calculating speed of the modern calculators. It is very positive for the security and ef-

fectiveness of digital information. Therefore, it is very crucial in nowadays

cryptography to understand and study the Public Key Cryptosystem.

 This thesis in introduction generally details the background information of cryp-

tography, the number value theorems applied onto RSA system, Modular

Multiplication and Modular Exponentiation, and the basic theory and content of RSA

system. After that is the most important chapter, detailing how to apply software skills

to speed up the encryption and decryption of the RSA system. Therefore, this thesis

adopts the following methods to speed up the encryption and decryption.

 99

1. Use Single Precision Multiplication and a method of multiplying and modulat-

ing to speed up modular multiplication, which after evaluation can increase

about four to five times in speed.

2. Use listing method to pre-store the n, 2n, 22n, 23n….216n used earlier, saving

the relocation of figures and calculation time.

3. Use M-ary method to complete the exponentiation multiplication. This

method to a exponent with 1024 bits can promote the calculation efficiency up

to 24%.

4. Use Chinese Remainder Theorem to promote the decryption speed up to about

four times.

This thesis adopts the above four methods to speed up the encryption and decryption

of RSA system and to apply in the real life.

 The best character of modern cryptography is the appearance of the Public Key

Cryptosystem but the latter has its biggest defect, low calculation speed, which creates

a main restriction for its application. However, with the fast development of calcula-

tors in recent years and the flourishing growth of soft and hardware related paper for

encryption and decryption, the effect of this defect has been lowered down. We be-

lieve that in the near future, when more labour and resources are invested, there will

be more well-developed technology coming up.

 This thesis adopts the above four software technologies to increase the encryption

and decryption speed of the program. Table 5.2 shows a comparison between the old

and the new systems.

 The RSA system can also use addition chain, Blakley’s method, Montgomery

method, Precision Multiplication to speed up RSA encryption and decryption. As for

its application, let’s leave it for other interested researchers to do the further research.

 100

APPENDIX A

IMPLEMENTATION OF RSA NEW
SYSTEM

A.1 Program implementing instruction

Program implementing file is “rsaw,” and if implemented directly, you will see the

following message from the screen

Please using rsaw -e for encryption by RSA.
Please using rsaw -d for decryption by RSA.
Please using rsaw -kg for RSA key generation.
 Or press 'e' for encryption.
 press 'd' for decryption.
 press 'k' for key generation.
 press other key for exit.

The former half means upon implementing, you can add parameters directly to carry

out related functions while the latter half means if you enter ‘e’, you can carry out en-

cryption function while ‘d’ for decryption function and ‘k’ for creating golden key

function.

! Screen for golden key function (Sample)

 Generate RSA cryptosystem keys
==
Login name(1-8 characters):aaa (Please input user name)
Input the bit-length of RSA modulus N(multiple of 32) : 512 (Please input key-length)

Now RSA system keys are being generated......

--
-------------�The number of “-“ represents the testing times of strong prime num-
bers. There are two prime numbers in total and shown in two lines.
Key generated, press any key to continue.

 101

 n = 9b730cb6 99565dcb ce3b736b fce9525d 2bab203e 13c57671 8ba5f74f ba2a5d92
 34ef5e98 9bbc1ecc 19e5ef71 7cac5a22 c63caffe 879d8200 c9e5be82 ed5c593d
 p = 61bc25a3 08af58ee 10ba94aa b8ce6d3e 8fd9f35c 71466aee 0d288487 3e662905
 q = 00000001 972c553a d52c40f5 681a94b7 2ee1bbf1 518d717b 91f7d96c 6ef55c85
 8bb984d9
 d = 0366c49b b2af776f 4ef93168 e6c1a787 302be4d1 65c6ff99 85ce35b5 556f7962
 23e58a8d c63237ac 0304ccfa 643c6dbf e927baef fd809702 25537cb9 09cc9029
 dp= 500b935b aaa24a18 7895076b a77e5194 baa64b9d bb9c6bb9 5a07843b 6c0ca9ad
 dq= 00000001 09fc5001 0ad8c9e6 868736b7 23cd1ab5 5e0d0421 310db3de fded12ef
 ba830aa1
Generating this key pair takes 6.76 seconds.
 (This example use Pentium-III 500 computer test)

 OK! RSA public key file: aaa.pk �Public key saved in aaa.pk file�
 secret key file: aaa.sk �Private key saved in aaa.sk file�

Press any key to exit !

! Screen for encryption (Sample)

Encrypt data by RSA cryptosystem
==
Login name:aaa

 RSA-512 :
 e = 00010001
 n = 9b730cb6 99565dcb ce3b736b fce9525d 2bab203e 13c57671 8ba5f74f ba2a5d92
 34ef5e98 9bbc1ecc 19e5ef71 7cac5a22 c63caffe 879d8200 c9e5be82 ed5c593d

Please input the file name of the source data : test.txt
Please input the file name of the target data : test.ept
--
File length = 11226 bytes(179 blocks).
Data is being processed. Now computing 179 / 179

Total time consumed = 0.0000 seconds.
Total performance= 0.00 ms/512-bit block.

Press any key to exit !

! Screen for decryption (Sample)

Decrypt data by RSA cryptosystem
==
Login name:aaa
 RSA-512 :
p = 61bc25a3 08af58ee 10ba94aa b8ce6d3e 8fd9f35c 71466aee 0d288487 3e662905
q = 00000001 972c553a d52c40f5 681a94b7 2ee1bbf1 518d717b 91f7d96c 6ef55c85
 8bb984d9
d = 0366c49b b2af776f 4ef93168 e6c1a787 302be4d1 65c6ff99 85ce35b5 556f7962
 23e58a8d c63237ac 0304ccfa 643c6dbf e927baef fd809702 25537cb9 09cc9029
n = 9b730cb6 99565dcb ce3b736b fce9525d 2bab203e 13c57671 8ba5f74f ba2a5d92
 34ef5e98 9bbc1ecc 19e5ef71 7cac5a22 c63caffe 879d8200 c9e5be82 ed5c593d

Please input the file name of the source data : test.ept
Please input the file name of the target data : test.dpt

Data is being processed. Now remainding 0 / 179
Total time consumed = 11.00 seconds.
Total performance= 61.45 ms/512-bit block.
Press any key to exit !

 102

A.2 The functional instruction for RSA coding, decoding programs

1 #define LENGTH 65: This parameter means that the maximum length of RSA system modulus
(N=p×q) is (LENGTH-1) ×32; that is, 2048 +32 bits.

2 typedef unsigned char BYTE: BYTE represents the unsigned integer of 8 bits.
3 typedef unsigned short WORD WORD represents the unsigned integer of 16-bits.
4 typedef unsigned short DWORD DWORD represents the unsigned integer of 32-bits.
5 typedef DWORD LINT[LENGTH+1] LINT is used to represent the long integer of (LENGTH-

1)*32, among which LINT0 represents the length of this integer (adopting DWORD as measure
unit) while others (from LINT to LINT LENGTH+1 respectively represents the segment value
of integers, ranging from low to high.

6 WORD Length: represents the length of the large integer that is in actual usage.
7 int compare(DWORD *p1,DWORD *p2) compare the value of the indicated large integers of

p1 and p2 indexes. If p1 > p2, then return +1. If p1=p2, then return +0. If p1<p2, then return –
1. (Afterwards, if it mentions that the type of data is DWORD* parameter, then represent di-
rectly its indicated large integer).

int compare(DWORD *p1,DWORD *p2)
{
 register unsigned j;

 if(SIZE(*p1)>SIZE(*p2)) return(1);
 else
 if(SIZE(*p1)<SIZE(*p2)) return(-1);
 else
 {
if(*p1>*p2)
 return(1);
 else if(*p1<*p2)
 return(-1);
 }
 return(0);
 }
}

8 void shiftleft(DWORD *sl) Move sl leftward for one step.
void shiftleft(DWORD *sl)
{
 DWORD b1,b2,*psl;
 register unsigned cnt;
 if(!(cnt=SIZE(*sl))) return;
 b1=0;
 for(psl=sl+1; cnt ;cnt--,psl++)
 {
 b2=((long)*psl<0);
 *psl=(*psl<<1)|b1;
 if(!b2) b1=0;
 else b1=LSBMASK;
 }
 if(b1) { *psl=1; ++*sl; }
}

9 void shiftright(DWORD *rl) Move sl rightward for one step.
void shiftright(DWORD *rl)
{

 103

 DWORD b1,b2,*prl;
 register unsigned cnt;
 if(!(cnt=SIZE(*rl))) return;
 b1=0;
 for(prl=rl+cnt; cnt ;cnt--,prl--)
 {
 b2=*prl&LSBMASK;
 *prl=(*prl>>1)|b1;
 if(!b2) b1=0;
 else b1=MSBMASK;
 }
 prl=rl+ *rl;
 if(!*prl) --*rl;
}

10 void add(DWORD *p1,DWORD *p2) p1<---p1+p2
void add(DWORD *p1,DWORD *p2)
{
 DWORD *pp1,*pp2;
 register unsigned carry=0,lp1;
 register unsigned lp2;

 if(!(lp2=SIZE(*p2))) return;
 if((lp1=SIZE(*p1))<=lp2)
{
 for(pp1=p1+1,pp2=p2+1; lp1 ;lp1--,pp1++,pp2++)
 {
 if((*pp1+=*pp2+carry)<*pp2) carry=1;
 else
 if(*pp2==MAXIMUM&&carry) continue;
 else carry=0;
 }
 if(carry)
 {
 for(lp2=lp1-SIZE(*p2); lp2 ;lp2--,pp1++)
 {
 if(++*pp1) { carry=0; break; }
 }
 if(carry) { *pp1=1; ++*p1; }
 }
 } //else
}

11 void sub(DWORD *p1,DWORD *p2) p1<----p1-p2 p1 has to be bigger than p2.
void sub(DWORD *p1,DWORD *p2)
{
 DWORD borrow=0,tmp,*pp1,*pp2;
 register unsigned len;
 if(!(len=SIZE(*p2))) return;
 for(pp1=p1+1,pp2=p2+1; len ;len--,pp1++,pp2++)

 {
 tmp=*pp1;
 *pp1-=*pp2+borrow;
 if(tmp<*pp2) borrow=1;
 else
 if(tmp==*pp2&&borrow) continue;
 else borrow=0;
 }
 if(borrow)
 for(;;pp1++) if((*pp1)--) break;
 for(pp1=p1+SIZE(*p1);!*pp1&&pp1!=p1;pp1--) --*p1;
}

 104

12 void mod(DWORD *ma,DWORD *mb) ma<-----ma (mod mb)
void mod(DWORD *ma,DWORD *mb)
{
 LINT pmb;
 DWORD *ptr1,*ptr2;
 unsigned int i;
 register int cmp;
 if(compare(ma,mb)>=0)
 { /* Get the largest multiple of mb no more than ma. */
 if((cmp=SIZE(*mb))!=Length)
 {
 for(i=Length-SIZE(*ma),ptr1=pmb+Length; i ;i--) *ptr1--=0;
 for(ptr2=mb+cmp; cmp ;cmp--) *ptr1--=*ptr2--;
 while(ptr1>pmb) *ptr1--=0;
 *ptr1=*ma;
 }
 else
 for(cmp=Length+1,ptr1=pmb,ptr2=mb; cmp ;cmp--) *ptr1++=*ptr2++;
 i=(SIZE(*ma)-SIZE(*mb))<<5;
 while((cmp=compare(ma,pmb))>0) { shiftleft(pmb); i++; }
 if(!cmp)
 {
 for(cmp=Length+1; cmp ;cmp--) *ma++=0;
 return;
 }
 do
 {
 do
 {
 if(!i--) return;
 shiftright(pmb);
 } while(compare(ma,pmb)<0);
 sub(ma,pmb);
 } while(i);
 } //if(compare(ma,mb)>=0)

13 DWORD lshiftN[17][66], (*shift_tbl)[66] and DWORD lshiftN1[17][66]: lshiftN, lshiftN1 are
forms for storing the seventeen number, n,2n,...,216n, calculated previously, (Because decryption
adopts Chinese remainder theorem, it requires two forms to store p, 2p,...,216p and
q,2q,...,216q)shift _tbl indicating the large integer of the forms in usage.

DWORD lshiftN[17][66],(*shift_tbl)[66];
DWORD lshiftN1[17][66];
void mod1(DWORD *ma,DWORD *mb)
{
 register int count;
 DWORD (*mod_ptr)[66];
 if(compare(ma,mb)>=0) {
 mod_ptr=shift_tbl;
 count=16;
 do
 {
 while(compare(ma,*mod_ptr)<0)
 {
 if(!count--) return;
 mod_ptr--;
 }
 sub(ma,*mod_ptr);
 } while(count);
 }
}

 105

13 void mod1(DWORD *ma,DWORD *mb): Use the format of the forms to calculate mod operation

14 void lshift16(WORD *data): Move the data leftward for 16 bits

void lshift16(WORD *data)
{
 register unsigned i;
 register WORD *ptr;

 i=*data<<1;
 if(*(ptr=data+i+1)) ++*data;
 else { ptr--; i--; }
 for(; i ;i--) *(ptr+1)=*ptr--;
 *(ptr+1)=0;
}

15 void modmul(DWORD *mx,DWORD *my,DWORD *mp,DWORD *mz)

void modmul(DWORD *mx,DWORD *my,DWORD *mp,DWORD *mz)
{
 WORD *pmx,*pmy,*pmz;
 LINT result;
 DWORD tmp,carry;
 WORD *ptr7,*ptr9;
 unsigned i,j,mul;
 register DWORD *ptr1;
 register WORD *ptr8;

 if(SIZE(*mx) && SIZE(*my))
 {
 pmx=(WORD *)mx; pmy=(WORD *)my; pmz=(WORD *)result;
 ptr1=result;
 for(i=Length+1; i ;i--) *ptr1++=0;
 i=*pmy<<1; ptr7=pmy+i+1;
 if(!*ptr7) { i--; ptr7--; }
 mul=*ptr7--;
 result[1]=(DWORD)mul * pmx[2];
 ptr1=(DWORD *)(pmz+3);
 for(j=(*pmx<<1)-1,ptr8=pmx+3; j ;j--,ptr8++,++(WORD *)ptr1)
 if(*ptr8) *ptr1+=(DWORD)mul * (*ptr8);
 if(*pmx!=Length&&SIZE(*ptr1)) *pmz=*pmx+1;
 else *pmz=*pmx;
 mod1(result,mp);
 for(i--; i ;i--)
 {
 carry=0;
 lshift16(pmz);
 if(mul=*ptr7--)
 {
 ptr1=result+1;
 for(j=*pmx<<1,ptr8=pmx+2; j ;j--,ptr8++,++(WORD *)ptr1)
 {
 tmp=*ptr1;
 if(*ptr8)
 {
 if((*ptr1+=(DWORD)mul * *ptr8+carry)<tmp) carry=65536;
 else carry=0;
 }
 else
 if(carry)
 { if((*ptr1+=65536)>tmp) carry=0; }
 }
 if(carry)

 106

 {
 ptr9=(WORD *)ptr1+1;
 do { ++*ptr9; }
 while(!*ptr9++);
 }
 ptr1=result+Length; /**/
 *pmz=Length; /**/
 while(!*ptr1--) --*pmz;
 }
 mod1(result,mp);
 }
 for(i=Length+1,ptr1=(DWORD *)pmz; i ; i--) *mz++=*ptr1++;
 } //if(SIZE(*mx) && SIZE(*my))
 else
 for(i=Length+1; i ;i--) *mz++=0;
}

16 void modexp1(DWORD *ex,DWORD *ev,DWORD *ep,DWORD *ew) Adopt the binary system
to calculate ew"- ex ev mod n(n is the indicated large integer of parameter mod).

void modexp1(DWORD *ex,DWORD *ev,DWORD *ep,DWORD *ew)
{
 LINT pew;
 DWORD *ptr1,temp;
 register unsigned i,j;

 for(i=0,ptr1=ex;i<=Length;) pew[i++]=*ptr1++;
 temp=*(ev+SIZE(*ev));
 i=31;
 while((long)temp>=0)
 {
 temp<<=1;
 i--;
 }
 for(temp<<=1; i ;i--,temp<<=1)
 {
 modmul(pew,pew,ep,pew);
 if((long)temp<0) modmul(pew,ex,ep,pew);
 }
 for(j=SIZE(*ev)-1; j ;)
 {
 temp=*(ev+j--);
 for(i=32; i ;i--,temp<<=1)
 {
 modmul(pew,pew,ep,pew);
 if((long)temp<0) modmul(pew,ex,ep,pew);
 }
 }
 for(i=Length+1,ptr1=pew; i ;i--) *ew++=*ptr1++;
}
unsigned bitptr;
DWORD *eptr;

17 void modexp2(DWORD *base, DWORD *exponent, DWORD *modulus, DWORD *result) Adopt
a method of sliding-window, whose width is 5, to calculate result" base exponent mod n (n is the
indicated larger of parameter modulus).

void modexp2(DWORD *base,DWORD *exponent,DWORD *modulus,DWORD *result)
{
 LINT ar;
 DWORD *ptr1,ul;

 107

 unsigned i,j;

 void precompute(DWORD *,DWORD *);
 void slidingwnd(DWORD *,DWORD *,DWORD *);

 if(*(eptr=exponent+SIZE(*exponent))==1) bitptr=1;
 else for(ul=*eptr,bitptr=32;(long)ul>=0;ul<<=1,bitptr--) ;
 for(i=Length+1,ptr1=ar; i ;i--) *ptr1++=0;
 precompute(base,modulus);
 slidingwnd(exponent,modulus,ar);
 for(j=0;j<=Length;) *result++=ar[j++];
}

18 DWORD *exp_ptr[16] Prepare for indicating each index with previously calculated result. (use in
accordance with the two functions, precompute and slidingwnd)

DWORD *exp_ptr[16];
void precompute(DWORD *b,DWORD *m)
{
 int i;
 LINT square;
 static DWORD exp_tbl[15][66];

 *exp_ptr=b;
 for(i=1;i<16;i++) exp_ptr[i]=exp_tbl[i-1];
 modmul(b,b,m,square);
 modmul(b,square,m,exp_ptr[1]);
 for(i=2;i<16;i++)
 modmul(exp_ptr[i-1],square,m,exp_ptr[i]);
}

19 void precompute(DWORD *b,DWORD *m) Calculate in Advance the results for b3, b5, ...b31(mod
m) and store them into indicated locations for exp_ptr

void precompute(DWORD *b,DWORD *m)
{
 int i;
 LINT square;
 static DWORD exp_tbl[15][66];

 *exp_ptr=b;
 for(i=1;i<16;i++) exp_ptr[i]=exp_tbl[i-1];
 modmul(b,b,m,square);
 modmul(b,square,m,exp_ptr[1]);
 for(i=2;i<16;i++)
 modmul(exp_ptr[i-1],square,m,exp_ptr[i]);
}

20 void slidingwnd(DWORD *e,DWORD *m,DWORD *r) According to the result of exp_ptr to asso-
ciate with sliding window and adopt multiplication to calculate r<----be mod m.(among which the
value of b is implied ine xp_ptr).

void slidingwnd(DWORD *e,DWORD *m,DWORD *r)
/* flag=1 means that the remaining exponent bits < 5, otherwise flag=0 */
{
 DWORD ul,*ptr;
 unsigned count,flag,temp,wndsize,square=0,i;

 108

 count=SIZE(*e)-1;
 flag=(bitptr<5 && !count)?1:0;
 ul=*ep
 do
 {
 if(bitptr>=5)
 {
 temp=ul<<32-bitptr>>27;
 if(bitptr==5)
 {
 if(count--) { ul=*--eptr; bitptr=32; }
 else { bitptr=0; flag=1; }
 }
 else if((bitptr-=5)<5 && !count) flag=1;
 wndsize=5;
 }
 else
 {
 if(flag)
 {
 temp=ul<<32-bitptr>>32-bitptr;
 wndsize=bitptr;
 bitptr=0;
 }
 else
 {
 temp=ul<<32-bitptr>>27;
 ul=*--eptr;
 count--;
 temp|=(unsigned)(ul>>27+bitptr);
 bitptr+=27;
 wndsize=5;
 }
 }
 while(!(temp&1)) { temp>>=1; square++; }
 if(SIZE(*r))
 {
 for(wndsize-=square; wndsize ;wndsize--) modmul(r,r,m,r);
 modmul(r,exp_ptr[temp>>1],m,r);
 }
 else
 for(ptr=exp_ptr[temp>>1],i=0;i<=Length;) r[i++]=*ptr++;
 for(; square ; square--) modmul(r,r,m,r);
 if(!flag)
 {
 while(!(1L<<--bitptr & ul))
 {
 modmul(r,r,m,r);
 if(!bitptr)
 {
 if(!count) return;
 bitptr=32;
 ul=*--eptr;
 count--;
 }
 }
 if(++bitptr<5 && !count) flag=1;
 }
 else
 while(bitptr && !(1L<<bitptr-1&ul)) { modmul(r,r,m,r); bitptr--; }
 } while(bitptr);
}

 109

21 void multiply(DWORD *mx,DWORD *my,DWORD *mz):mz<--- mx*my.

void multiply(DWORD *mx,DWORD *my,DWORD *mz)
{
 WORD *pmx,*pmy,*pmz;
 LINT result;
 DWORD *ptr3,tmp,carry;
 WORD *ptr7,*ptr9;
 unsigned i,j,mul;
 register DWORD *ptr1;
 register WORD *ptr8;

 if(SIZE(*mx) && SIZE(*my))
 {
 ptr3=result;
 for(i=Length+1; i ;i--) *ptr3++=0;
 pmx=(WORD *)mx;
 pmy=(WORD *)my;
 pmz=(WORD *)result;
 for(ptr7=pmy+2,ptr9=pmz+2,i=*pmy<<1; !*ptr7 ; ptr7++,ptr9++,i--);
 ptr1=(DWORD *)ptr9;
 mul=*ptr7++;
 *ptr1=(DWORD)mul * pmx[2];
 for(j=(*pmx<<1)-1,ptr8=pmx+3,++(WORD *)ptr1; j ;j--,ptr8++,++(WORD *)ptr1)
 if(*ptr8) *ptr1+=(DWORD)mul * *ptr8;
 for(i--; i ;i--)
 {
 carry=0;
 ptr9++;
 if(mul=*ptr7++)
 {
 ptr1=(DWORD *)ptr9;
 for(j=*pmx<<1,ptr8=pmx+2; j ;j--,ptr8++,++(WORD *)ptr1)
 {
 tmp=*ptr1;
 if(*ptr8)
 {
 if((*ptr1+=(DWORD)mul * *ptr8+carry)<tmp) carry=65536;
 else carry=0;
 }
 else if(carry)
 { if((*ptr1+=65536)>tmp) carry=0; }
 }
 }
 }
 ptr1=(DWORD *)(pmz+(Length<<1));
 *pmz=Length;
 while(!*ptr1--) --*pmz;
 for(i=Length+1,ptr1=result; i ; i--) *mz++=*ptr1++;
 }
 else
 for(i=Length+1; i ;i--) *mz++=0;
}

22 void division(DWORD *da,DWORD *db,DWORD *dq,DWORD *dr): Calculate dq and dr to

make dq is the quotient of da/db and dr is the remainder of da/db

/* Function "division" will get dq & dr such that da/db=dq ... dr. */
void division(DWORD *da,DWORD *db,DWORD *dq,DWORD *dr)
{
 LINT pdb;
 DWORD *dp1,*dp2,*dp3;
 unsigned d1,d2,*ptr;

 110

 if(compare(da,db)>=0)
 {
 dp1=da; dp2=dq; dp3=dr;
 for(d1=0;d1<=Length;)
 {
 pdb[d1++]=0;
 *dp2++=0;
 *dp3++=*dp1++;
 }
 /* Get a number pdb that is the largest multiple of db less than ma. */
 d2=SIZE(*da);
 *(unsigned *)pdb=SIZE(*da);
 dp1=db+ SIZE(*db);
 for(d1=SIZE(*db); d1 ;d1--,d2--,dp1--) pdb[d2]=(*dp1);
 while(compare(dr,pdb)>0) shiftleft(pdb);
 while(compare(dr,pdb)<0) shiftright(pdb);
 ptr=(unsigned *)(dq+1);
 *dq=1;
 do
 {
 if(compare(dr,pdb)>=0)
 {
 sub(dr,pdb);
 shiftright(pdb);
 shiftleft(dq);
 ++*ptr;
 }
 else
 {
 shiftright(pdb);
 shiftleft(dq);
 }
 } while(compare(db,dr)<=0);
 while(compare(db,pdb)<=0)
 {
 shiftright(pdb);
 shiftleft(dq);
 }
 }//if(compare(da,db)>=0)
 else
 {
 dp1=da; dp2=dq; dp3=dr;
 for(d1=Length+1; d1 ;d1--)
 {
 *dp2++=0;
 *dp3++=*dp1++;
 }
 }
}

23 void gcd(DWORD *ga,DWORD *gb,DWORD *gc) gc<-----gcd(ga,gb)�

/* Function "gcd" will get gc such that gc=gcd(ga,gb). */
void gcd(DWORD *ga,DWORD *gb,DWORD *gc)
{
 LINT g1;
 unsigned i;
 DWORD *ptr1,*ptr2,*ptmp;

 ptr1=ga; ptr2=gb; ptmp=gc;
 for (i=0;i<=Length;)
 { *ptmp++=*ptr1++; g1[i++]=*ptr2++; }
 ptr1=gc; ptr2=g1;

 111

 while(SIZE(*ptr2))
 {
 mod(ptr1,ptr2);
 ptmp=ptr1; ptr1=ptr2; ptr2=ptmp;
 }
 if(ptr1!=gc)
 for(i=*ptr1+1; i ;i--) *gc++=*ptr1++;
 }

24 void inverse(DWORD *a,DWORD *n,DWORD *inva) Calculate inva, to let inva fulfill the equa-
tion, a*inva= 1 (mod n)

/* Function "inverse" will find inva such that a * inva = 1 mod n. */
void inverse(DWORD *a,DWORD *n,DWORD *inva)
{
 LINT r0,r1,r2,t0,t1,qt1,q;
 DWORD *pr0,*pr1,*pr2,*pt0,*pt1,*ptmp;
 int i;

 pr0=r0; pr1=r1; pr2=n; ptmp=a; pt0=t0; pt1=t1;
 for(i=Length+1; i ;i--)
 {
 *pr0++=*pr2++;
 *pr1++=*ptmp++;
 *pt0++=0;
 *pt1++=0;
 }
 *t1=1; t1[1]=1;
 pr0=r0; pr1=r1; pr2=r2;
 pt0=t0; pt1=t1;
 for(;;)
 {
 division(pr0,pr1,q,pr2);
 multiply(q,pt1,qt1);
 while(compare(pt0,qt1)<0) add(pt0,n);
 sub(pt0,qt1);
 if(SIZE(*pr2)==1 && pr2[1]==1L) break;
 ptmp=pr0; pr0=pr1; pr1=pr2; pr2=ptmp;
 ptmp=pt0; pt0=pt1; pt1=ptmp;
 }
 for(i=Length+1; i ;i--) *inva++=*pt0++;
}

25 void hexout(DWORD *num): Represent number on the screen in forms of hexadecimal digits.

void hexout(DWORD *num)
{
 DWORD *nptr;
 unsigned c1,c2;

 if(!*num) printf(" 0 \n");
 else
 if(*num>Length) printf(" overflow \n");
 else
 {
 nptr=num+(*num);

 c1=*num;
 c2=0;

 112

 while(!*nptr) { nptr--; c1--; }
 for(; c1 ;c1--)
 {
 printf(" %08lx",*nptr--);
 if((c2++&7)==7) printf("\n ");
 }
 if(c2&7) printf("\n\n");
 else printf("\n");
 }
}

26 int RandInitFlag: Symbols indicating if the random numbers are primitive. 0 means the random

number are not primitive while 1 indicates primitive.

// Initial the state of bigrand
int RandInitFlag=0;
void prebigrand(void)
{
 srand((unsigned)time(NULL));
 RandInitFlag=1;
}

27 void prebigrand(void): The primitive movement for creating random numbers

28 void randl(int k,DWORD *rnum): Use the C-standard functions bank, creating a random number of
one k digit.

// Get a k-bit random number,
// Use standard library.
void randl(int k,DWORD *rnum)
{
 DWORD *prnum,mask1,mask2;
 int i,k1,k2;

 if(RandInitFlag==0) prebigrand();
 k1=k>>5; k2=k%32;
 mask1=0xffffffff;
 mask2=0x80000000;
 if(k2)
 {
 mask1>>= (32-k2);
 mask2>>= (32-k2);
 }
 else k1--;

 prnum=rnum+1;
 for(*rnum=i=k1+1; i; i--,prnum++)
 *prnum=((((DWORD) rand()&0xff)<<24)|
 (((DWORD) rand()&0xff)<<16)|
 (((DWORD) rand()&0xff)<<8) |
 (((DWORD) rand()&0xff)));
 prnum--;
 (*prnum)&= mask1; (*prnum)|= mask2;
}

 113

29 WORD bitlength(DWORD *xx): The bit length for returing back to the large integer xx.

WORD bitlength(DWORD *xx)
{
 WORD bitlen;
 DWORD msd;

 bitlen=(WORD)*xx << 5;
 msd=*(xx + *xx);
 while((long)msd>0) { bitlen--; msd<<=1; }
 return bitlen;
}

30 WORD primetest(DWORD *pa): Prime number test. If the return value is 0, it means that the indi-
cated large integer of pa is a compound number, otherwise is a prime number (with an error rate
lower than 10-15)

//***
/* Function "primetest" will test whether an integer pa is a prime or not */
/* or not with an error probability lower than 10^(-15). */
/* If flag=0 then pa is a composite integer, otherwise pa is a prime. */
WORD primetest(DWORD *pa)
{
 LINT px,py,pz,pr;
 WORD i,j,ptest;
 DWORD *ppa,*ptr;
 BYTE mptr=0,mark[]={'-','\\','|','/'};

 for(i=0,ptr=*lshiftN,ppa=pa;i<=Length;) pr[i]=pz[i++]=*ptr++=*ppa++;
 pz[1]--;
 for(i=1;i<=16;i++)
 {
 shiftleft(pr);
 for(j=0,ptr=lshiftN[i];j<=Length;) *ptr++=pr[j++];
 }
 shift_tbl=lshiftN+16;
 ptest=0;
 putchar(' ');
 do
 {
 i=bitlength(pa)-1;
 randl(i,px); // Generate a random number px such that
 px[1]|=LSBMASK; // 1<px<pa & px is odd.
 ppa=pa;
 for(i=0;i<=Length;) py[i++]=*ppa++;
 j=0;
 do
 {
 shiftright(py);
 j++;
 } while(!(py[1]&LSBMASK));
 modexp2(px,py,pa,pr);
 if((*pr!=1 || pr[1]!=1) && compare(pr,pz))
 {
 i=0;
 do
 {
 modmul(pr,pr,pa,pr);
 if(!compare(pr,pz)) { j=0; break; }
 else if(*pr==1 && pr[1]==1) break;
 } while(++i<j);
 if(j) { putchar('\b'); return(0); }

 114

 }
 putchar('\b');
 putchar(mark[mptr]);
 mptr=(mptr+1)&3;
 } while(++ptest<25);
 return(1);
}

31 void getprime(WORD plen,DWORD *pn) : Creating prime numbers whose length is plen.

/* Function "getprime" will get a prime number pn with bit length plen. */
void getprime(WORD plen,DWORD *pn)
{
 LINT n210,nl;
 DWORD *ppn,gptmp;
 WORD i,plen1,plen2;
 WORD p210[48]={1,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,
 83,89,97,101,103,107,109,113,121,127,131,137,139,143,149,151,157,
 163,167,169,173,179,181,187,191,193,197,199,209};

 randl(plen,pn);
 plen1=plen>>5; plen2=plen&31;
 if(plen2) { plen1++; plen2=32-plen2; }
 ppn=pn+plen1;
 *ppn>>=plen2;
 pn[1]|=1;
 ppn=pn;
 for(i=0;i<=Length;) { n210[i]=0; nl[i++]=*ppn++; }
 *n210=1; n210[1]=210;
 mod(nl,n210);
 plen1=SIZE(nl[1]);
 i=0;
 while(plen1>p210[i]) i++;
 if(plen1<p210[i])
 { n210[1]=p210[i]-nl[1]; add(pn,n210); }
 while(!primetest(pn))
 {
 gptmp=p210[i++];
 if(i!=48)
 nl[1]=p210[i]-gptmp;
 else
 { nl[1]=2; i=0; }
 add(pn,nl);
 }
}

32 void level2_prime(l2plen,l2p): Creating prime number whose length is the level2 of 12plen

/* Function "level2_prime" will get a level-2 prime l2p. */
void level2_prime(l2plen,l2p)
WORD l2plen;
DWORD *l2p;
{
 LINT pt,ps,pr,prs,n_tmp;
 DWORD *ptr,preg;
 WORD i,j;

 *n_tmp=1; n_tmp[1]=1;
 j=(WORD)(log((double)l2plen)*1.443);
 i=(l2plen-j)>>1;
 getprime(i-1,ps);
 getprime(l2plen-i-j-1,pr);

 115

 inverse(ps,pr,pt); /* pt x ps= 1 (mod pr) */
 shiftleft(pt);
 multiply(ps,pt,pt);
 sub(pt,n_tmp); /* pt=(2ps x ps^-1)-1 */
 multiply(pr,ps,prs);
 shiftleft(prs);
 for(i=1;i<=Length;) n_tmp[i]=pr[i++]=0;
 j=l2plen&31;
 if(!j)
 {
 i=(WORD)(*n_tmp=*pr=l2plen>>5);
 preg=MSBMASK;
 }
 else
 {
 i=(WORD)(*n_tmp=*pr=(l2plen>>5)+1);
 preg=LSBMASK<<j-1;
 }
 n_tmp[i]=pr[i]=preg;
 mod(n_tmp,prs);
 sub(pr,n_tmp);
 if(compare(pt,n_tmp)<0) add(pt,prs);
 add(pt,pr);
 while(!primetest(pt)) { putchar('^'); add(pt,prs); }
 ptr=l2p;
 for(i=0;i<=Length;) *ptr++=pt[i++];
}

33 void strongprime(splen,sp): Creating prime numbers whose length is splen

/* Function "strongsprime" will get a strong sprime sp. */
void strongprime(splen,sp)
WORD splen;
DWORD *sp;
{
 LINT spr,sps,spt,sprs,n_tmp;
 DWORD *ptr;
 WORD i,j;

 *n_tmp=1; n_tmp[1]=1;
 j=(WORD)(log((double)splen)*1.443);
 i=(splen-j)>>1;
 level2_prime(i-1,sps);
 level2_prime(splen-i-j-1,spr);
 inverse(sps,spr,spt); /* spt x sps= 1 (mod spr) */
 shiftleft(spt);
 multiply(sps,spt,spt);
 sub(spt,n_tmp); /* spt=(2sps x sps^-1)-1 */
 multiply(spr,sps,sprs);
 shiftleft(sprs);
 for(i=1;i<=Length;) n_tmp[i]=spr[i++]=0;
 j=splen+1&31;
 if(!j)
 {
 i=(WORD)(*n_tmp=*spr=splen+1>>5);
 n_tmp[i]=spr[i]=0x60000000;
 }
 else
 {
 i=(WORD)(*n_tmp=*spr=(splen>>5)+1);
 n_tmp[i]=spr[i]=LSBMASK;
 n_tmp[i-1]=spr[i-1]=MSBMASK;
 }
 mod(n_tmp,sprs);

 116

 sub(spr,n_tmp);
 add(spt,spr);
 while(!primetest(spt)) { putchar('*'); add(spt,sprs);}
 ptr=sp;
 for(i=0;i<=Length;) *ptr++=spt[i++];
}

34 void keygen(void): Creating and storing the function of golden key

void keygen(void)
{
 WORD i,ml,j;
 float itime;
 LINT up,uq,un,ue,ud,phin,gcdpq,lamdan,udp,udq;
 clock_t btime;
 char username[9],filename[30];
 FILE *fp;
 printf("\n Generate RSA cryptosystem keys");
 printf("\n==");
 printf("\n\nLogin name(1-8 characters):"); scanf("%s",username);
 do
 {
 printf("\n Input the bit-length (256 bits ~ 1024 bits) ");
 printf("\n of RSA modulus N (multiple of 32) : ");
 scanf("%u",&ml);
 } while(ml%32);
 *ue=1; ue[1]=0x10001; Length=65;
 for(i=2;i<=Length;) ue[i++]=0;

 Length=(ml>>5)+1;
 printf("\n\nNow RSA system keys are being generated......\n");
 btime=clock();
 strongprime((ml>>1)-1,up);
 strongprime((ml>>1)+1,uq);
 multiply(up,uq,un);
 while(un[Length])
 {
 printf("\n n = ");
 hexout(un);
 printf("\nOh no!! Bit Length of N overflows!!"
 "\nNow regenerate another one......\n");
 strongprime((ml>>1)-1,up);
 strongprime((ml>>1)+1,uq);
 multiply(up,uq,un);
 }
 up[1]--; uq[1]--;
 multiply(up,uq,phin);
 gcd(up,uq,gcdpq);
 division(phin,gcdpq,lamdan,ud);
 inverse(ue,lamdan,ud);
 for(j=0;j<=Length;j++) udp[j]=udq[j]=ud[j];
 mod(udp,up);
 mod(udq,uq);
 up[1]++; uq[1]++;
 itime=(float)(clock()-btime)/(float)(CLK_TCK);

 printf("\n Key generated, press any key to continue.");
 getch();
 printf("\n e = "); hexout(ue);
 printf(" n = "); hexout(un);
 printf(" p = "); hexout(up);
 printf(" q = "); hexout(uq);
 printf(" d = "); hexout(ud);

 117

 printf(" dp= "); hexout(udp);
 printf(" dq= "); hexout(udq);
 printf("\nGenerating this key pair takes %.2f seconds.\n",itime);

 strcpy(filename,username); strcat(filename,".pk");
 fp=fopen(filename,"wb");
 fprintf(fp,"WCRSA(PureC)-v1\n");
 fprintf(fp,"%d\n",ml);
 for(j=0;j<=Length;j++) fprintf(fp,"%lx ",ue[j]);
 fprintf(fp,"\n");
 for(j=0;j<=Length;j++) fprintf(fp,"%lx ",un[j]);
 fprintf(fp,"\n");
 fprintf(fp,"\n%.4f seconds",itime);
 fclose(fp);
strcpy(filename,username); strcat(filename,".sk");
 fp=fopen(filename,"wb");
 fprintf(fp,"WCRSA(PureC)-v1\n");
 fprintf(fp,"%d\n",ml);
 for(j=0;j<=Length;j++) fprintf(fp,"%lx ",up[j]);
 fprintf(fp,"\n");
 for(j=0;j<=Length;j++) fprintf(fp,"%lx ",uq[j]);
 fprintf(fp,"\n");
 for(j=0;j<=Length;j++) fprintf(fp,"%lx ",udp[j]);
 fprintf(fp,"\n");
 for(j=0;j<=Length;j++) fprintf(fp,"%lx ",udq[j]);
 fprintf(fp,"\n");
 for(j=0;j<=Length;j++) fprintf(fp,"%lx ",ud[j]);
 fprintf(fp,"\n");
 for(j=0;j<=Length;j++) fprintf(fp,"%lx ",un[j]);
 fprintf(fp,"\n");
 fprintf(fp,"\n%.4f seconds",itime);
 fclose(fp);

 printf("\n\n OK! RSA public key file: %s.pk\n"
 " secret key file: %s.sk\n",username,username);
 printf("\nPress any key to exit !");
 getch();
}

35 int e_read(FILE *fp,DWORD *msg) Upon encryption , it is used to read a block data from file "fp"
and put into msg.

int e_read(FILE *fp,DWORD *msg)
{
 int flag,tch;
 unsigned char buf[LENGTH-1<<2];
 DWORD tmp;

 register DWORD *tmsg,*ptr;

 flag=1;
 tmsg=msg;
 for(tmp=Length+1; tmp; tmp--) *tmsg++=0;
 tmp=0;
 while(tmp<(Length-1<<2)-1 && (tch=getc(fp))!=EOF)
 buf[tmp++]=(unsigned char)tch;
 if(tch==EOF) flag=0;
 if(tmp)
 {
 while(tmp&3) buf[tmp++]=0;
 ptr=(DWORD *)buf;
 tmsg=msg+1;
 *msg=tmp>>=2;

 118

 for(; tmp ; tmp--) *tmsg++=*ptr++;
 tmsg=msg+SIZE(*msg);
 while(!*tmsg-- && --*(unsigned *)msg) ;
 return(flag);
 }
 else return(0);
}

36 void e_write(FILE *fp1,DWORD *cpt) Upon encryption, it is used to enter a block "cpt" into file

"fp"

void e_write(FILE *fp1,DWORD *cpt)
{
 unsigned tmp;
 register unsigned char *ptr;

 ptr=(unsigned char *)(cpt+1);
 for(tmp=Length-1<<2; tmp ;tmp--) putc(*ptr++,fp1);
}

37 void d_read(FILE *fp,DWORD *msg) Upon decryption, it is used to read a block from file "fp"
and put into msg.

void d_read(FILE *fp,DWORD *msg)
{
 unsigned char buf[LENGTH-1<<2];
 DWORD tmp;
 register DWORD *tmsg,*ptr;

 tmsg=msg;
 for(tmp=Length+1; tmp ;tmp--) *tmsg++=0;
 for(tmp=0;tmp<Length-1<<2;) buf[tmp++]=(unsigned char)getc(fp);
 tmsg=msg+1;
 ptr=(DWORD *)buf;
 for(tmp=LENGTH-1; tmp ;tmp--) *tmsg++=*ptr++;
 *tmsg=0L;
 *msg=Length-1;
 tmsg=msg+Length-1;
 while(!*tmsg-- && --*(unsigned *)msg) ;
}

38 void d_write(FILE *fp1,DWORD *flen,DWORD *cpt) *flen. Upon decryption, it is used to enter a
block data " cpt" into the file "fp", whose remain length is *flen.

void d_write(FILE *fp1,DWORD *flen,DWORD *cpt)
{
 unsigned tmp;
 register unsigned char *ptr;

39 void encrypt(void) The function for the file encryption in the future.

void encrypt(void)

{
 int j,bitlen;
 float stime,per;
 register unsigned i;

 119

 DWORD *ptr1,*ptr2,blen,flen;
 LINT msg,cpt,un,ue,pr;
 FILE *fp,*fp1;
 char fn1[30],fn2[30],username[9];
 clock_t time1,time2;

 printf("\n Encrypt data by RSA cryptosystem");
 printf("\n==");
 printf("\n\nLogin name:"); scanf("%s",username);
 strcpy(fn1,username); strcat(fn1,".pk");
 fp=fopen(fn1,"rb");
 if(!fp) { printf("\nMissing public key file %s!!\n\a",fn1); exit(0); }
 fscanf(fp,"%s",fn1);
 if(strcmp(fn1,"WCRSA(PureC)-v1"))
 {
 printf("\n\nKey file format Error !!\a");
 exit(0);
 }
 fscanf(fp,"%d",&bitlen);
 if((bitlen%32)!=0)
 {
 printf("\n\nKey length Error !!\a");
 exit(0);
 }
 else
 {
 Length=(bitlen>>5)+1;
 printf("\n RSA-%d :",bitlen);
 }
 for(j=0; j<=Length; j++) fscanf(fp,"%lx ",ue+j);
 for(j=0; j<=Length; j++) fscanf(fp,"%lx ",un+j);
 fclose(fp);

 printf("\n e = "); hexout(ue);
 printf(" n = "); hexout(un);

 printf("\nPlease input the file name of the source data : ");
 scanf("%s",fn1);
 fp=fopen(fn1,"rb");
 printf("\nPlease input the file name of the target data : ");
 scanf("%s",fn2);
 fp1=fopen(fn2,"wb");
 if ((fp==NULL)||(fp1==NULL))
 {
 printf("\n\nFile '%s' not found!!"
 "\n\nPress any key to continue......\n",fn1);
 fclose(fp); fclose(fp1);
 remove(fn2);
 getch();
 return;
 }

 fseek(fp,0L,SEEK_END); flen=ftell(fp);
 fseek(fp,0L,SEEK_SET); flen-=ftell(fp);
 fprintf(fp1,"WCRSA(PureC)-v1 %lx %s >\r\n",flen,fn1);

 i=(bitlen/8)-1;
 blen=flen/i;
 if(flen!=(blen*i)) blen++;
 printf("\n--");
 printf("\n\nFile length = %ld bytes(%ld blocks).",flen,blen);
 printf("\nData is being processed. Now computing "
 " 0 /%6ld\b\b\b\b\b\b\b\b\b\b\b\b\b\b",blen);

 blen=1;

 120

 time1=clock();

 for(i=0,ptr1=*lshiftN,ptr2=lshiftN[16]; i<=Length; i++,ptr1++)
 *ptr1=pr[i]=un[i];
 for(i=1; i<=16; i++)
 {
 shiftleft(pr);
 for(j=0,ptr1=lshiftN[i]; j<=Length; j++,ptr1++) *ptr1=pr[j];
 }
 shift_tbl=lshiftN+16;

 do
 {
 printf("%6ld\b\b\b\b\b\b",blen++);
 j=e_read(fp,msg);
 modexp1(msg,ue,un,cpt);
 e_write(fp1,cpt);
 } while(j);

 time2=clock();
 fclose(fp); fclose(fp1);
 stime=(time2-time1)/CLK_TCK;
 per=1000.0*stime/blen;
 printf("\n\nTotal time consumed = %.4f seconds.\n",stime);
 printf("\nTotal performance= %.2f ms/%d-bit block.\n",per,bitlen);
 printf("\nPress any key to exit !");
 getch();
}

40 void decrypt(void) The function for the file decryption in the future

void decrypt(void)
{
 register int i,j;
 register DWORD blen;
 DWORD *ptr1,*ptr2,len,flen;
 int cc,bitlen;
 LINT msg,msg1,up,uq,udp,udq,ud,un,pr;
 char str[30],fn[30],fn1[30],username[9],ch;
 float stime,per;
 FILE *fp,*fp1;
 clock_t time1,time2;

 printf("\n Decrypt data by RSA cryptosystem");
 printf("\n==");
 printf("\n\nLogin name:"); scanf("%s",username);
 strcpy(str,username); strcat(str,".sk");
 fp=fopen(str,"rb");
 if(!fp)
 {
 printf("\nMissing secret key file %s!!\n\a",str);
 exit(0);
 }

 fscanf(fp,"%s",str);
 if(strcmp(str,"WCRSA(PureC)-v1"))
 {
 printf("\n\nIncorrect key file format!!\a");
 fclose(fp);
 exit(0);
 }
 fscanf(fp,"%d",&bitlen);
 if((bitlen%32)!=0)
 {

 121

 printf("\n\nKey length Error !!\a");
 exit(0);
 }
 else
 {
 Length=(bitlen>>5)+1;
 printf("\n RSA-%d :",bitlen);
 }

 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",up+cc);
 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",uq+cc);
 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",udp+cc);
 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",udq+cc);
 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",ud+cc);
 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",un+cc);
 fclose(fp);

 printf("\n p = ");hexout(up);
 printf(" q = "); hexout(uq);
 printf(" d = "); hexout(ud);
 printf(" n = "); hexout(un);

 printf("\nPlease input the file name of the source data : ");
 scanf("%s",fn); fp=fopen(fn,"rb");
 printf("\nPlease input the file name of the target data : ");
 scanf("%s",fn1); fp1=fopen(fn1,"wb");
 if(!fp || !fp1)
 {
 printf("\n\nWrong file name!! Press any key to continue......");
 fclose(fp); fclose(fp1);
 getch(); return;
 }

 fscanf(fp,"%s %lx %s %c",str,&flen,fn1,&ch);
 fseek(fp,2L,SEEK_CUR);
 i=strcmp(str,"WCRSA(PureC)-v1");
 if(i)
 {
 printf("\n\n The file isn't an encrypted format, press any key to exit.");
 getch();
 }
 else
 {
 i=(bitlen/8)-1;
 blen=flen/i;
 if(flen!=(blen*i)) blen++;
 len=blen;

 printf("\n---");
 printf("\n\nData is being processed. Now remainding "
 "%6ld /%6ld\b\b\b\b\b\b\b\b\b\b\b\b\b\b",blen,blen);

 time1=clock();

 for(i=0,ptr1=*lshiftN,ptr2=lshiftN[16]; i<=Length; i++,ptr1++)
 *ptr1=pr[i]=un[i];
 for(i=1; i<=16; i++)
 {
 shiftleft(pr);
 for(j=0,ptr1=lshiftN[i]; j<=Length; j++,ptr1++) *ptr1=pr[j];
 }
 shift_tbl=lshiftN+16;

 for(; blen ; blen--)

 122

 {
 d_read(fp,msg);
 modexp2(msg,ud,un,msg1);
 d_write(fp1,&flen,msg1);
 printf("%6ld\b\b\b\b\b\b",blen-1);
 }
 time2=clock();

 fclose(fp);
 fclose(fp1);
 stime=(time2-time1)/CLK_TCK;
 per=1000.0*stime/len;
 printf("\n\nTotal time consumed = %.2f seconds.\n",stime);
 printf("\nTotal performance= %.2f ms/%d-bit block.\n",per,bitlen);
 printf("\nPress any key to exit !");
 getch();
 }
}

void crt_decrypt(void)
{
 register int i,j;
 register DWORD blen;
 DWORD *ptr1,*ptr2,len,flen;
 int cc,bitlen;
 LINT msg,msg1,up,uq,udp,udq,ud,un,pr;
 char str[30],fn[30],fn1[30],username[9],ch;
 float stime,per;
 FILE *fp,*fp1;
 clock_t time1,time2;

 printf("\n Decrypt data by RSA cryptosystem");
 printf("\n==");
 printf("\n\nLogin name:"); scanf("%s",username);
 strcpy(str,username); strcat(str,".sk");
 fp=fopen(str,"rb");
 if(!fp)
 {
 printf("\nMissing secret key file %s!!\n\a",str);
 exit(0);
 }

 fscanf(fp,"%s",str);
 if(strcmp(str,"WCRSA(PureC)-v1"))
 {
 printf("\n\nIncorrect key file format!!\a");
 fclose(fp);
 exit(0);
 }
 fscanf(fp,"%d",&bitlen);
 if((bitlen%32)!=0)
 {
 printf("\n\nKey length Error !!\a");
 exit(0);
 }
 else
 {
 Length=(bitlen>>5)+1;
 printf("\n RSA-%d :",bitlen);
 }

 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",up+cc);
 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",uq+cc);
 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",udp+cc);

 123

 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",udq+cc);
 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",ud+cc);
 for(cc=0;cc<=Length;cc++) fscanf(fp,"%lx ",un+cc);
 fclose(fp);

 printf("\n p = ");hexout(up);
 printf(" q = "); hexout(uq);
 printf(" d = "); hexout(ud);
 printf(" n = "); hexout(un);

 printf("\nPlease input the file name of the source data : ");
 scanf("%s",fn); fp=fopen(fn,"rb");
 printf("\nPlease input the file name of the target data : ");
 scanf("%s",fn1); fp1=fopen(fn1,"wb");
 if(!fp || !fp1)
 {
 printf("\n\nWrong file name!! Press any key to continue......");
 fclose(fp); fclose(fp1);
 getch(); return;
 }

 fscanf(fp,"%s %lx %s %c",str,&flen,fn1,&ch);
 fseek(fp,2L,SEEK_CUR);
 i=strcmp(str,"WCRSA(PureC)-v1");
 if(i)
 {
 printf("\n\n The file isn't an encrypted format, press any key to exit.");
 getch();
 }
 else
 {
 i=(bitlen/8)-1;
 blen=flen/i;
 if(flen!=(blen*i)) blen++;
 len=blen;

 printf("\n---");
 printf("\n\nData is being processed. Now remainding "
 "%6ld /%6ld\b\b\b\b\b\b\b\b\b\b\b\b\b\b",blen,blen);

 time1=clock();

 for(i=0,ptr1=*lshiftN,ptr2=lshiftN[16]; i<=Length; i++,ptr1++)
 *ptr1=pr[i]=up[i];
 for(i=1; i<=16; i++)
 {
 shiftleft(pr);
 for(j=0,ptr1=lshiftN[i]; j<=Length; j++,ptr1++) *ptr1=pr[j];
 }

 for(i=0,ptr1=*lshiftN1,ptr2=lshiftN1[16]; i<=Length; i++,ptr1++)
 *ptr1=pr[i]=uq[i];
 for(i=1; i<=16; i++)
 {
 shiftleft(pr);
 for(j=0,ptr1=lshiftN1[i]; j<=Length; j++,ptr1++) *ptr1=pr[j];
 }
 inverse(up,uq,pr);

 for(; blen ; blen--)
 {
 d_read(fp,msg);
 for(i=0; i<=Length; i++) msg1[i]=msg[i];

 shift_tbl=lshiftN+16;

 124

 mod(msg,up);
 modexp2(msg,udp,up,msg);

 shift_tbl=lshiftN1+16;
 mod(msg1,uq);
 modexp2(msg1,udq,uq,msg1);
 if(compare(msg,msg1)>0) add(msg1,uq);
 sub(msg1,msg);
 modmul(msg1,pr,uq,msg1);
 multiply(msg1,up,msg1);
 add(msg1,msg);

 d_write(fp1,&flen,msg1);
 printf("%6ld\b\b\b\b\b\b",blen-1);
 }
 time2=clock();

 fclose(fp);
 fclose(fp1);
 stime=(time2-time1)/CLK_TCK;
 per=1000.0*stime/len;
 printf("\n\nTotal time consumed = %.2f seconds.\n",stime);
 printf("\nTotal performance= %.2f ms/%d-bit block.\n",per,bitlen);
 printf("\nPress any key to exit !"); getch();
 }
}

void main(int argc,char *argv[])
{
 char selection;
/* clrscr(); */
 if(argc==1)
 {
 while(selection!='q' && selection!='Q')
 {
 printf("\n\n\n\n\nPlease using rsaw -e for encryption by RSA.");
 printf("\nPlease using rsaw -d for decryption by RSA.");
 printf("\nPlease using rsaw -kg for RSA key generation.\n\n");
 printf("\n Or press 'e' for encryption.");
 printf("\n press 'd' for decryption.");
 printf("\n press 'k' for key generation.");
 printf("\n press 'q' for exit.");
 printf("\n press other key for exit.\n ");
 scanf("%c",&selection);
 switch(selection) {
 case 'e':
 case 'E': encrypt(); break;
 case 'd':
 case 'D': crt_decrypt(); break;
 case 'k':
 case 'K': keygen(); break;
 }
 }
 }
 else if(strcmp(argv[1],"-e")==0) encrypt();
 else if(strcmp(argv[1],"-d")==0) decrypt();
 else if(strcmp(argv[1],"-kg")==0) keygen();
}

	r_pre.pdf
	Abstract

