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Abstract 

The low strain test method has become the prevalent method for integrity testing of 

cast in situ foundation piles. The automated interpretation of the sonic echo traces 

resulting from this test would prove beneficial to industry through the standardisation 

of the test method procedure and a reduction in the time spent analysing results. 

Therefore, in this research the generalisation and feature extraction strengths of 

artificial neural networks have been exploited to aid test trace interpretation. 

This study involved the identification of three multilayer networks considered most 

suitable for the heteroassociative function approximation task described above. 

Multilayer Perceptron (MLP) networks, Radial Basis Neural Networks (RBNN) and 

Wavelet Basis Neural Networks (WBNN) have all been trained using numerically 

generated data and their performances compared to identify the optimum network 

type. While each network presented similar strengths and weaknesses in fault 

diagnosis, statistical analysis suggested that the MLP network was marginally more 

successful in quantifying changes in cross-sections along the pile length. Field data 

from three test sites have confirmed that the network can identify, locate and 

quantify significant (±13%) changes in diameter along the pile length (within known 

test method limitations). The network has also diagnosed changes in diameter at the 

pile head. This task is notoriously difficult using conventional techniques and has 

been facilitated through the development of a novel pre-processing technique: the 

wavelet mobility scalogram. 
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1. Introduction 

1.1 RESEARCH OVERVIEW 

The low strain test method, as described below in Section 1.2, has become the 

prevalent method for integrity testing of cast in situ foundation piles. The automated 

interpretation of the sonic echo traces resulting from this test would prove beneficial 

to industry through: the standardisation ,of the test method procedure and a reduction 

in the time spent analysing results. The research presented here pertains to the use of 

artificial neural networks for the fulfilment of the primary r'equisites of this test ' 
;r. 

,;i!( 
method:; 

i) The identification of a test trace atypical of that which is expected. (Primary 

Goal) 

ii) To deduce from this trace a profile characteristic of the pile under investigation. 

This study, therefore, involved the identification of three multilayer networks 

considered most suitable for the heteroassociative function approximation task 

described above. Multilayer Perceptron (MLP) networks, Radial Basis Neural 

Networks (RBNN) and Wavelet Basis Neural Networks (WBNN) have all been 

trained using numerically generated data and their performances compared to 

identify the optimum network type. While each network presented similar strengths 

and weaknesses in fault diagnosis, statistical analysis suggested that the MLP 

network was marginally more successful in quantifying changes in cross-sections 

along the pile length. Field data from three test sites have confirmed that the network 

can identify, locate and quantify significant (±13%) changes in diameter along the 

pile length (within known test method limitations). The network has also diagnosed 
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changes in diameter at the pile head. This task is notoriously difficult using 

conventional techniques and has been facilitated through the development of a novel 

pre-processing technique: the wavelet mobility scalogram. 

1.2 PILED FOUNDATION TESTING 

The practice of filling a hollow shaft with stone to support a superstructure has been 

performed for centuries in the form of 'well foundations'. Today, using modern 

installation techniques, large diameter, bored, cast in situ piles can have diameters of 

up to five metres and reach depths of over sixty metres l.1. These non-displacement 

piles produce lower installation vibration and can be of larger diameters than other 

pile types. However, they are susceptible to potentially catastrophic changes in pile 

cross-section occurring during the installation process, namely necking and· 

bulbing12 . 

Load testing is the only way to ensure an installed pile is capable of fulfilling its 

design criteria, but this method is both time consuming and expensive. More recently 

the development of digital electronics has led to integrity test methods which, in 

conjunction with conventional load testing, have become a practical means for the 

rapid checking of pile groups. The most common of these integrity tests are the sonic 

echo and transient shock methods. Both these methods are examples of impact 

testing where the pile head response to an instrumented hammer blow is measured 

using a calibrated accelerometer. 

Although quick and inexpensive these sonic tests have their limitations. The low 

stress impact of a hand held hammer leads to problems with signal attenuation in 

long piles or those with high aspect ratios. Faults at the pile head and small 

discontinuities are also difficult to detect due to signal superposition and high pulse 

to fault length ratios. This was highlighted by the 1992 'Stresswave Conference' 

Competition and the subsequent correspondence concerning it in Ground 

EngineeringL3,L4,1.5. Here, commercially available test equipment achieved an 

average score of only 40% in the detection of faults in a set of specially constructed 

2 



piles. This having been said, discussions between the author and a number of 

representatives of the larger test houses confirms that, in general, their clients' 

requirement of an integrity test method is the ability to identify anomalous responses 

with an indication of the primary reason for the aberration. The results from a 

integrity test should never be considered definitive. Either the pile under 

investigation is further scrutinised using more sophisticated techniques or, if it is 

more cost effective, a new pile is constructed adjacent to it. 

There is, therefore, an advantage in automating the work carried out by the test 

analysts so standardising this highly subjective task. In a survey of companies that 

carry out these tests the author found that every respondent declared an interest in 

automating this procedure and stated they would employ a new method if it was 

shown to aid fault detection. The results of this industry survey can be found in 

Chapter 2. 

1.3 ARTIFICIAL NEURAL NETWORKS 

An artificial neural network (ANN) is a biologically inspired, adaptive data 

processing tool. It learns through training and is capable of generalisation which 

makes it ideal for finding practical solutions to problems in frustrated systems 

(problems with no unique, ideal solution). 

The analysis of a spectrum or time trace from a sonic test is essentially a pattern 

recognition task. A time space vector representing the pile head response must be 

mapped to a spatial domain describing the pile profile. It is, therefore, proposed to 

exploit the generalisation and feature extraction strengths of a neural network to aid 

test trace interpretation. 

As this project is particularly driven by industry requirements the overall project 

plan is based on the business plan development described by Hecht-NeilsonI.6. 

Aspects specific to the product marketing, however, are beyond the scope of this 

research project and, therefore, not addressed here. The technical feasibility and 
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system development plan for this research will broadly followed the 

recommendations of the UK's Department of Trade and Industry 1.7. This publication 

has been specifically produced as a guide for application development with respect 

to neural systems. 

1.4 KEY RESEARCH OBJECTIVES 

Below is a list of key objectives that were considered essential for the successful 

completion of this research project: 

i) To review the methods currently employed in the integrity testing of cast in 

situ foundation piles and to investigate neural network architecture and 

applications concerned with signal processing and fault detection. 

ii) To develop a numerical model for the simulation of a pile head's resp'onse to 

a hammer blow; This generated data will be used in the. supervised learning 

of neural systems and must be validated through field test data. 

iii) To conduct a feasibility study. By limiting the problem domain it must be 

shown that a neural system can be trained to acquire the necessary mapping 

such that the primary research objectives can be fulfilled (see Section 1.1). 

iv) To investigate the effect of pre-processing on system performance. This 

should include novel wavelet transforms as well as conventional Fourier 

techniques. 

v) To establish an optimum network architecture and training method for a more 

flexible, practical system from the limited problem domain of the feasibility 

study. 

vi) To evaluate the system in the field. This will necessitate the development of 

suitable data acquisition equipment. 
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1.5 THESIS STRUCTURE 

Chapter 2 : Piled Foundations: Associated Defects and Their Detection 

This chapter presents a review of current piling practice, the faults associated with 

cast in situ piles and the methods used for their detection. Also included are the results 

of an industry questionnaire identifying the most popular of the described techniques. 

Chapter 3 : Artificial Neural Networks for Signal Processing and Fault Detection 

The theory of neural methods and their alternatives are reviewed. Their strengths and 

applicability with particular reference to fault detection are described. The system 

development plan defining the structure of subsequently reported experimentation is 

also given. 

Chapter 4 : Feasibility Study 

In this chapter a full feasibility study into the accessibility of suitable training data . 

and the ability of a network to diagnose faults in a very restricted problem domain is . 

given. Finite element models developed by the author and employed for trace 

generation are also validated through comparison with I-D theory and published 

laboratory and field test results. 

Chapter 5 : Hardware and Software Development 

Here the hardware and software developed for data acquisition are described. The 

neural network simulators developed for this investigation are also described and their 

ability to learn specific functional mappings is measured to confirm their 

performance. 

Chapter 6 : Application Development 

A full parametric investigation of the Multilayer Perceptron, Radial Basis and 

Wavelet Basis neural networks is reported. This includes aspects of pre- and post­

processing, and the pattern dependency of the resultant networks. An error analysis of 

network performance is also given and used in the selection of the final network used 

for field test evaluation. 
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Chapter 7: Field Test Evaluation 

The selected network described in Chapter 6 is evaluated in field trials. Results from 

three test sites are presented, namely: Stent Piling Ltd's site near Kirkintilloch, and 

the EPSRC's test sites at Blyth and Bothkennar. 

Chapter 8 : Conclusions 

This Chapter draws together the conclusions of the preceding chapters and provides 

summary conclusions of the research as a whole. 

Chapter 9 : Recommendations for Future Research 

Here suggestions for the logical continuation and development of the work described 

in this thesis are given. 
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2. Piled Foundations: Associated 
Defects and Their Detection 

2.1 FOUNDATIONS 

The Code of Practice for Foundations21
, BS8004, defines a foundation as: 

, .. .that part of the structure designed and constructed to be in direct contact 
with, and trqnsmitting loads to, the ground.'. 

These can be divided into two classes: shallow foundations (strip, pad and raft) and 

deep foundations (cofferdams, caissons, piles and deep basements). The foundation 

choice is made with reference to the superstructure specification and the site 

investigation data, see BS5930:' Code of Practice for Site Investigations2
,2. 

Shallow foundations are generally considered to be those with a depth of less than 

3m below the finished ground level. They are especially suited for structures where 

hard rocks, e.g. limestone, sandstone, slates and shales, occur near ground level. 

They may also be used on soft shales, mudstone, sound chalk and compacted sands 

or gravel although in all these cases settlement must be considered. Generally 

shallow foundations are not suitable for soft clays, silts or organic soils. 

Where there are no shallow strata strong enough to support the building, using the 

methods described above, a deeper foundation must be used. Deep foundations are 

not often required when rock is found near ground level except when only very small 

deformations are permissible, or the rock is shattered or heavily weathered. In the 

case of soft clays, silts, organic soils, made ground and fill, deep foundations are 

nearly always employed to reach a stronger bearing strata beneath the comparatively 

weak top layer(s). In Britain these deep foundations more usually take the form of 

piled foundations2
.3. 
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2.2 PILED FOUNDATIONS 

Piles support a superstructure by transferring load to a lower stratum of rock or 

through the skin friction formed at the pile/soil interface. Using the symbols 

prescribed by Poulos and Davis24 the ultimate load capacity of a single pile, Pu can 

be described by Equation 2-1 below. Here Psu is the ultimate shaft resistance, Pbu is 

the ultimate base resistance and W is the weight of the pile as indicated in Figure 

2.1. 

(2.1) 

Piles that support predominantly through base resistance are known as end-bearing 

while those that support through shaft resistance are known as skin friction piles. 

2.2.1 Pile Types 

The basic pile types can be divided into two sections: displacement and non­

displacement. In displacement piling the surrounding soil moves as the pile is 

inserted. In non-displacement piling the soil is removed and the resultant void is 

filled to form the foundation. The displacement category can be subdivided into 

small and large displacement types as shown in Figure 2.2. 

This research is concerned with the integrity testing of cast in situ concrete piles. Its 

findings may, however, also be pertinent to some driven types. The review below 

therefore covers all pile types with special reference to the bored cast in situ class. 

Although the majority of faults associated with these piles are produced after 

installation2
.
s, these are predominantly at the pile head and can be detected by visual 

inspection. This project is mainly concerned with faults that.occur during installation 

and so, for cast in situ piles, the construction process is also described. 

2.2.1.1 Large Displacement Piles 

Displacement piles are usually driven by a hammer; of either diesel or drop type. 

The diesel hammer is more flexible as leaders, guides for the falling hammer, are not 

required, but in soft soil, with low driving resistance, cylinder compression may be 

reduced so lowering its effectiveness. Two methods less often employed are: 

hydraulic jacking, which is confined to use with smaller micropiles, and the 
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vibratory method, which is used in cohesionless soils where fluid like properties are 

induced, so reducing skin friction. 

Timber piles, although still extensively used in Scandinavia, are now uncommon in 

the U.K. as the limiting factor in their design is often the size and availability of the 

wood. More usually used are the Precast concrete piles that come in square or 

hexagonal sections of lS0-S00mm. They are constructed from rolled steel and fine 

grade concrete. Single piles are normally S-lSm long, but piles of over 100m have 

been installed through joining pile sections by bayonet or socket and locking pins. 

For prestressed concrete piles the increase in construction complexity is 

compensated for by a smaller cross section being needed for an equivalent bearing 

capacity. The growth in tensile strength means there is also less risk of cracks 

appearing during driving. Concrete displacement piles are usually used where their 

relative ease of installation is an advantage, such as wharves and jetties, and in soft 

soils where the intrinsic process of compaction is an advantage. 

Driven Cast in Place piles are constructed using forming tubes that are either made 

from steel or concrete and may' be removable or permanent Those piles with a 

removable steel forming tube are driven with a conical toe of precast concrete or a 

, steel plate for softer ground. They are typically of 200-600mm diameter and are 

driven by drop or '. diesel hammers. Once the founding level is reached a 

reinforcement cage is inserted and the concrete is added as the shell is removed. 

Problems associated with these piles include disruption of surrounding piles during 

driving and heave from soil consolidation. All driven cast in place piles have the 

advantages of being easily trimmed to the required length and the relatively 

straightforward way the base can be enlarged. However, they all suffer in that 

driving can damage adjacent piles and the limitation in depths that can be reached 

(20-30m). 

Due to the driven cast in place installation process being so similar to that of bored 

cast in place piles their faults are typically of the same type. These are described 

fully in Section 2.3, Faults Associated with Cast in situ Piles. This parity, therefore, 

suggests that any analysis method developed during this research will also be 

relevant to the testing of the driven types of pile. 
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2.2.1.2 Small Displacement Piles 

These piles are all similar in that they present a lower cross sectional area and so 

produce a smaller displacement and less soil compaction when driven. 

Screw Piles are used in soft clays and silts of considerable depth where penetration 

to a stiffer layer is impractical. They are made of cast iron, steel or reinforced 

concrete with a screw at the bottom providing a larger bearing area at depth. Steel 

'X', 'H' and 'I' Section Piles are used mainly in hard driving conditions. They can 

punch through thinner hard strata to thicker supporting strata up to 40m beneath. 

Open Ended Piles overcome some of the flexing encountered by the slender piles 

above through their increased section, however problems arise when plugs form 

inside the hollow pile. This increases displacement and lead to heave in dense pile 

groups. It is often necessary, therefore, to bore out the inside of the piles as they are 

. driven. Their relative ease of installation and the higher impact and lateral, bending 

loads means these piles are often used for marine applications. 

2.2.1.3 Non Displacement Piles 

In non-displacement piles a void is created through rotary or percussion boring and 

the hole is filled with concrete and reinforcement. Commonly piles with a diameter 

greater than 600mm are known as large diameter bored piles, otherwise the piles 

differ mainly through their method of construction. These types of pile have the 

advantages of being low in installation vibration and can be of relatively large 

dimensions. However, they are susceptible to necking and bulbing, and enlarged 

ends (underreams) cannot be formed in cohesionless soils. It is these types of pile 

that, because they are constructed underground, need the improved remote testing 

that this research aims to provide. 

Small diameter percussion bored piles have diameters between 300-600mm and 

can be bored in an environment with confined headroom using a tripod and winch, 

see Figure 2.3. The winch is driven by a diesel or compressed air engine which 

repeatedly drops a cutter into the borehole. In cohesive soils the cutter is an open 

cylinder which, after a number of cycles, is brought to the surface and emptied. 

Stiffer clays often require the cutter to be weighted and water added to aid progress. 

In granular soils a heavy shell with a one way valve at its bottom is used with a 

temporary steel casing. In all of the above scenarios boulders and cobbles are broken 
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using an 'I' section chisel. A reinforcement cage may then be placed before the 

concrete is added as the casing is withdrawn. Using this method depths of up to 30m 

are achievable with piles that can support loads approaching 1500kN. 

Rotary bored piles are used for the majority of large diameter cast in situ piles. In 

the UK this usually takes the form of a crane mounted auger, see Figure 2.4. A short 

flight auger is sufficient for clay soil, but for weak rock or cobbles a heavy duty 

auger or drilling bucket is necessary. 

Two methods are employed for supporting the boreholes of large diameter piles. In 

loose soil, normally found at the surface, a metal casing is inserted either by drop 

hammer or vibratory methods. The foot of the casing is keptjust·ahead of the cutting 

edge of the auger to prevent soil collapsing into the borehole. These casings are 

taken up to 25m down into a cohesive stratum beyond which the boring can continue 

without the risk of collapse. For deep boreholes the use of temporary casing is 

expensive and time consuming so a bentonite suspension is often used to support the 

walls. Here the level of bentonite is kept at least 1.5m above the water table to 

provide enough pressure to support the walls. 

The reinforcement caging, which usually takes the form of a rolled steel spiral with 

longitudinal support, is lifted, with spacers, into the borehole after which the 

concrete can be simply poured in using a hopper tube. As the concrete is poured the 

casing is slowly retrieved, its lower edge always remaining slightly below the 

concrete level. When concreting under water or through a bentonite suspension it 

must be added through a tremie pipe. 

These piles have diameters ranging from 400mm-5m and can reach depths of more 

than 60m. The larger piles take working loads of approaching 30,OOOkN; a load far 

in excess of any driven pile. 

One additional advantage of rotary bored piles is the ability to underream the pile 

when in dry, cohesive soil. Here a special tool is dropped down the borehole and 

enlarges the base to up to 8m diameter so improving its end-bearing capacity. The 

additional complexity of this task means it is only really practical when boring is 

difficult and the additional work is preferable to boring a larger diameter pile. 

Continuous flight auger (CFA) piles are produced with diameters ranging from 

300-1200mm. They cause minimum vibration and are quickly installed as no casing 
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is involved. They also negate the need for a tremie pipe when piling takes place 

beneath the water table. However, they can only be used in sands, gravels and clays 

since boring is continuous and consequently no drilling or chiselling can take place. 

The CF A is screwed into the ground to the depth required; up to 30m. Then, as the 

auger is removed, concrete is injected through its the hollow stem to the void formed 

beneath. After the auger is removed reinforcement caging can be added, see Figure 

2.5. Grout intruded piles are smaller diameter piles where the concrete has been 

replaced by grout. CF A piles support working loads of up to 5000kN and can be 

used to form contiguous, interlocking piled walls. 

2.2.1.4 Micro piles 

Micro piles are piles of a diameter less than 250mm. They are commonly used for 

underpinning or to support light superstructures on weak soil, but can also be used 

for anchoring buoyant structures or vibration sensitive machinery and for soil 

reinforcement. Their smaller size allows installation techpiques which facilitate 

piling and reinforcement in enclosed spaces. 

When driven the piles are usually steel tubes either pneumatically jacked or hammer 

driven into the soil. They are then filled with grout yielding a design load of up to 

350kN. Cast in situ piles are typically formed as the Pali Radice Piles of Fondedile 

Foundations Limited2.6. These use a rotary drill with cutting edges to form a hole 

through any existing foundation into the ground beneath. Grout is then pumped into 

it via a tremie pipe before a reinforcement cage is inserted. 

2.3 FAULTS ASSOCIATED WITH CAST IN SITU PILES 

Piled foundations are usually employed when ground conditions are too poor to 

allow the practical or economic use of shallow, spread foundations2
.
7

. As a natural 

consequence of this many of the faults associated with piling are concerned with the 

surrounding soil's lack of cohesion or saturation. A full review of these problems 

was published by the Construction Industry Research and Information Group 

(CIRIA) in 1977 and reprinted, with amendments, in 1985 (Report PG2, Thorburn 

and Thorburnf8. This report suggested that the direct causes of pile defects can be 

categorised under the seven headings below. 
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i) Overbreak. Almost exclusively found in water bearing strata overbreak was 

found to be 'responsible for a significant proportion of all the defects which have 

been observed and recorded. During the boring process soil cavities around the 

borehole may be formed, if a temporary steel casing is employed in the pile 

construction then they will remain there until it is removed. At this point the 

concrete may flow into the cavity causing an increase in pile cross section. This 

in itself is not a major problem, but this increase in cross section is often 

accompanied by a, potentially dangerous, loss in cross section further up the pile 

(necking), Figure 2.6. Even if the concrete is of a low workability and does not 

immediately flow into the cavity, by mixing with the groundwater eventually it is 

likely to slump resulting in a loss of cross section. Even in dry conditions if the 

concrete is of a high enough workability air in surrounding soil can be replaced 

leading to the formation of bulbs and necks. 

ii) Debris in the pile bore. In both large and small diameter cast in situ piles 

evidence was presented where natural debris or site rubbish in the borehole 

caused a loss of base resistance. 

iii) Extraction of temporary casing. As well as being an effect of overbreak (i) 

necking can also be a feature at the pile head. While the casing is being removed 

there is friction between its internal wall and the concrete shaft which results in 

uplift. This vertical force, when combined with the naturally occurring lateral 

forces exerted by the surrounding soil, means that towards the pile top (at 3.5m 

in the quoted case), where there is only a small head of concrete, necking may 

occur. See Figure 2.7 for an example of such a fault. 

iv) Soil displacement - driven cast in place piles. The temporary casing sometimes 

used in pile construction may, on occasions, be driven. Especially in cohesive 

strata, such as clay, this will lead to lateral and vertical displacement of 

surrounding soil which can have detrimental consequences for adjacent piles in a 

densely populated group. 

v) Unsuitable steel reinforcement. If the steel reinforcement is too closely 

separated and a low slump concrete is used then there is a risk that the concrete 

will not be able to penetrate the cage. This will result in a loss in pile cross 

section and leave the cage open to groundwater attack. 
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vi) Unsuitable mix design. These faults are usually associated with low slump 

concrete where lack of workability causes discontinuities in the pile shaft. 

However, it is also pointed out that high water content mixes can result in an 

unacceptable amount of bleeding from the exposed concrete surface at the head 

of the pile. 

vii) Incorrect concrete placing and compaction. When the temporary casing is 

lifted beyond the concrete level debris may fall into the shaft which, if concreting 

is then continued, can lead to discontinuities in the pile. Also collected 

groundwater in the borehole can cause leaching of the cement at the pile base 

leading to a drop in concrete integrity. This section of the report concludes with 

the statement that "the compaction of concrete in piling can cause difficulties in 

casing extraction and that no defects were reported when self compaction of 

concrete was relied upon. 

The report continues by commenting on, problems related to groundwater attack 

where it states that when fast flowing groundwater is encountered leaching of the 

cement may occur. However it should be noted that no evidence for the chemical 

attacking of cast in place concrete piles was revealed. 

The report also summarises the indirect causes of pile defects (e.g. inadequate site 

supervision) which is beyond the scope of this project. 

It should also be noted that faults linked with the extraction of temporary casing and 

poor concrete mix are common with driven cast in situ piles, as reported by Healy 

and Weltman in the elRIA publication Survey of problems associated with the 

installation of displacement piles (PG8)2. \0. Hence many of the integrity test 

procedures reported in Section 2.4, below, are relevant to both bored and driven cast 

in situ piles. 

Sliwinski and Fleming2
.
11 provide additional insight into the effects of water in the 

borehole. They describe how, as grout is washed from the mix, the poured cement 

separates until all the water is absorbed. The remaining cement above will then have 

a different consistency. This stratification, with bleed water beneath, can lead to 

discontinuities. If a contractor attempts to rectify this by adding low workability 

concrete to absorb the water then the problem can be worsened with the concrete 

'hanging up' so producing an occluded void. 
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Fleming also provides a summary of report PG4 along with the results of a four year 

survey into the causes and regularity of defects, Table 2.1 belo~·s. This survey 

revealed that 1.78% of all piles examined showed some kind of problem. 

Table 2.1 Defect causes and their occurrence (After Fleming2
.
s). 

Problem Cause t % 

Soil contamination in top 2m 9.3 

Contamination in range 2 to 7 m 5.0 

Poor or wrong quality concrete 2.6 

Voids adiacent to pile shaft causing loss of concrete 0.8 

Damage caused by trimming or excavation after pile installation 82.1 

Unknown 0.2 

t In addition 50 piles (of 28,204) were shown to have cracks which were clearly due 

to tensile stress in the section resulting from heave or movement of the ground 

following excavation. 

Ellwal· 12 reported 4% of 4,400 small diameter «600mm diameter) cast in situ piles 

had 'significant structural faults'. He attributed a third of these failures to post­

installation events. A further third to weak concrete at the head - top 2m - of the pile, 

and the final third to changes in section or concrete contamination below a 2m 

depth. 

The most striking of these results are the very high percentage of physical damage 

caused after installation. However, most of these faults occur at the pile head and 

can be identified through visual inspection which means they will not have a 

particularly large influence on this project. 

Both Ellway and Fleming's results were obtained through the sonic integrity test 

methods. These methods are notoriously difficult to interpret, with different 

subterranean events causing similar test results; a change in acoustic impedance can 

be caused by either a change in section or concrete density, and changes in soil 

properties can also produce misleading results (see Section 2.7, below). 

Assumptions must therefore be made e.g. homogeneity of concrete mix, accuracy of 

site investigation data etc. These assumptions along with subjective nature of the 

interpretation and the possibility of different installation methods and pile types 

within the tested populations can explain the differences in the details within the 
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surveys. Despite these differences the main conclusions to be drawn from these 

pieces of work are the same. 

i) The percentage of faulty piles produced during the installation process is very 

small - between 1.5 and 5 percent. 

ii) Debris, soil cavities and poor concrete mix are the three main causes of pile 

defect during construction. These produce a loss in pile stiffness often caused by 

a reduction in its cross section. 

iii) Any defects formed are more likely to be found towards the head of the pile. This 

is shown in both Ellway and Fleming's work where the results correlate 

extremely well. 

In Fleming's survey there is a higher degree of faults caused by soil contamination 

compared to those due to voids adjacent to the pile shaft. This contradicts the CIRlA 

report. However, this may be explained by the fact that Fleming based his work 

solely on the techniques and working practice of one firm, Cementation Piling and 

Foundations Ltd., while the CIRlA report related to nineteen different contractors 

and eight building consultants. It is therefore suggested that Fleming's results may be· 

contractor dependant and that the CIRlA report should be considered a truer 

reflection of the general case. 

Turner
2

.
13 has attempted to categorise these faults into four types: 

Type A) Changes to the intended shape of the pile body itself. 
Type B) Total rupture of the pile in the form of a transverse crack or break across 

the body of the pile. 
Type C) Changes in the internal properties of the pile. 
Type D) Features that affect the interaction of the pile with its environment and, 

consequently, its ability to transfer the design load into the surrounding 
soil or rock. 

He also presents a nomenclature for pile features and defects which the author will 

attempt to adhere to in an effort to support the standardisation and increase clarity. 

2.4 PILED FOUNDATION LOAD TESTING 

2.4.1. Static Load Testing 

According to BS8004, Code of Practice for Foundations, a load test is made ' .. for 

the purpose of finding the settlement to be expected at the estimated working load, 
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or some multiple thereof, determining the ultimate bearing capacity, or checking the 

structural soundness of a pile. ' 2.1. 

Two types of static load testing can be carried out on a foundation pile; constant rate 

of penetration (CRP) or maintained load (ML). 

In the CRP test the pile is jacked into the ground at a constant rate (-O.8mm1min), 

through continuously altering the applied load, until the point of failure. Failure is 

described as the point at which either the pile continues to be displaced without an 

increase in the applied load or when the pile displacement for a load increment is 

greater than one tenth of the diameter of the pile base. From the load versus 

settlement graph taken during this test the plastic working settlement of the pile as 

well as the ultimate bearing capacity can be 'calculated. However, the CRP test is not 

designed as a method for the derivation of pile settlement and it is suggested that a 

composite test of ML testing followed by a CRP test should be employed2,14. 

Tomlison states that the lack of informati<:>n on elastic settlement and the high loads 

used in this form of testing make it best suited . for research' purposes where 

fundamental pile behaviour, e.g. ultimate bearing capacity, is being studied2,15. 

For the ML test a proof load is applied to the pile at regulated increments whilst 

measuring its settlement. Ideally this proof load should be held for 24 hours before it 

is removed, again at intervals. From this test it can be inferred whether the pile will 

support its maximum working load without too high a degree of settlement. In most 

cases this knowledge is all that is required of any pile test and so it is this method 

that is more often employed. 

2.4.2. Dynamic Load Testing 

Here the pile head's velocity response to a measured high strain impact is recorded 

and analysed. Not to be confused with high strain integrity testing this method 

attempts to extrapolate the pile's static behaviour from its response to a dynamically 

applied load. More specifically the test can be used to evaluate pile capacity, soil 

resistance distribution, immediate settlement characteristics, hammer transfer energy 

(efficiency), and pile stresses during driving213. It is usually practised on driven piles 

as an impact hammer will already be available on site while for bored piles extra, 

heavy, equipment is needed to carry out the test (Rausche et al. 2,16). 
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Initial attempts to deduce static load capacity from soil conditions and pile head 

response were carried out by Case Western Reserve University in the mid 1970's. 

They assumed the total driving resistance has static and dynamic components. They 

further presumed: 

~nax = R.\·(max) + RD(max) (2.2) 

where Rmax is the maximum, measured driving resistance RS(max) is the maximum 

static component and RD(max) the maximum dynamic component. Gobel el at. 2.17 

then demonstrated that: 

R - 1) -' [l..E...d. - R ] 
S(max) - ""max } c c • Vh(max) max 

where E = concrete's Young's Modulus 

A = the pile cross sectional area 

c = the stress wave velocity within the concrete 

vh(max) = maximum pile head velocity at impact 

(2.3) 

and jc = a soil damping constant, known as the Case damping constant 

Static tests on a number of piles in a group can be used to calculate jc while E, A and 

c are known. If, then, vh(max) and Rmax are measured for further piles within the 

group their static load capacity can also be found. 

Corte and Bustamante2
.
18 have compared static loading and Case methods at various 

test sites and made a number of conclusions. The most relevant to this research is 

that protruding reinforcing bars in bored cast in situ piles make dynamic testing 

particularly difficult. It is also noted that these type of methods are based on the 

assumption that the resistance forces are constant during the test. In fact, upward 

travelling stress waves from the lower part of the pile can reduce soil resistance 

towards the head. Consequently this method cannot be used without static test 

calibration to as a means to finding the bearing capacity of piles. In reality, therefore, 

this method is not generally used as a predictive method, but is more usually 

employed to check and control the driving of piles. 

For predictive testing of a soil's resistive forces numerical methods are more usually 

employed. These involve modelling the pile system with a hybrid version of Smith's 

lumped mass-and-spring modef l9 and computing the expected response for various 

values of the pile/soil system. When the computed and experimental values for a 
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given pile match the soil parameters are presumed to have been found and the 

bearing capacity can be deduced without the need of an empirical damping factor. 

Research on this technique began in 1964 at Case Western Reserve University the 

result of which was the response simulator, CAPWAP (CAse Pile Wave Analysis 

Package). Today there are a number of other response simulators to choose from e.g. 

TNOW A VE from the Central National Council for Applied Scientific Research 

(TNO) in Holland2
.
13 and SIMINTEG from the Centre Experimental de Recherches 

et des Travaux Publics (CEBTP) in France2
.
13

. The speed and results, in general, 

from this test are favourably reported by Mure et al. 2.20, who also describes the test 

procedure in more detail. Dynamic testing is quicker than the static load test where 

each individual test may take over twenty four hours. Typically ten piles a day may 

be tested using the dynamic method. However, it has also been pointed out that 

damping forces used in the computer modelling do not account for all transient 

phenomena in the real case (e.g. curing, primary consolidation, concrete 

homogeneity, constant pile section etc.) and that consequently large discrepancies 

can exist in the bearing capacity predictions for static and dynamically tested 

piles218
. 

2.4.3 ST A TNAMIC® Testing 

Introduced in 1989 by Bermingharnmer Foundation Equipment and TNO Building 

and Construction Research this method, it is claimed, combines the static load 

displacement behaviour of static load testing with the speed of dynamic testing221
. 

A cylinder is bolted on to the pile head and a reaction mass is placed over it. Solid 

fuel propellant is then ignited inside the cylinder and high pressure gasses accelerate 

the reaction mass. Then opposing reaction to this gently forces down on the pile with 

the weight of the reaction mass equal to about 5% of the applied load. The pile top 

force and displacement is measured using load cells and a laser system. Data is 

recorded by TNO's Foundation Pile Diagnostic System (FPDS); a 486-PC based 

system with a 50kHz sampling rate. Mobilised capacity and static load displacement 

behaviour can then be presented immediately on site. 

It is suggested that the comparatively low release and application of forces leads to 

the elimination of tensile stresses so compressing the pile and soil as a single unit. 

This should lead to a truer reflection of the static, load displacement behaviour of the 

pile than that of dynamic tests where high accelerations leads to stress wave 
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propagation through the pile. Thus the Statnamic system provides a direct 

measurement of the pile-soil behaviour. 

This new method was first discussed in detail at the First International Statnamic 

Seminar in Vancouver, 1995. Here Inamura et al?.22 reported that, for large cast in 

situ piles, statnamic tests gave a reliable characterisation of static load settlement 

except for settlement in the elastic region. 

2.4.4. The Application of Neural Computing to Load Testing 

Static load testing is a direct measurement method used to ensure foundation piles 

fulfil their design criteria. It is unlikely that any contractor or engineer would deem it 

either necessary or judicious to employ a nondeterministic analysis method based on 

a neural system for the interpretation of load settlement curves. However, the 

. ,statistical probability of a faulty pile being present in the randomly selected sample 

of piles to be load tested is small2
.
5

. Current research is therefore centred on 

complementary test methods to identify potentially faulty piles for the static load test 

set, thus reducing the amount of built-in over design necessary in the pile group. 

This research should therefore aspire to use a neural system to improve the analysis 

of these complementary tests' results. 

Statnamic testing does not have the facility for the rapid testing of large pile groups. 

It is being marketed as a better quality assurance test than dynamic testing while 

being quicker than load testing. Being a new development; training data for this 

system would be limited, and with so few testhouses currently offering the service 

the need of a neural system for interpretation is questionable. This is especially true 

when one considers the results processing time to test time ratio. Typically only 

three 600 ton tests can be carried out per rig per day and so a need for the rapid, 

automated processing of large result sets is unlikely. 

The Case method is discounted as being a rarely used theory based test used in 

driven rather than the cast in situ piling. This leaves the CAPWAP-like methods 

most likely benefit from an automated interpretation method to render the iterative 

wave-matching procedure redundant. However, as previously mentioned, this 

method of testing is rarely used on cast in situ piles. This is because of the 

availability of alternative test methods which have been specifically developed to 

augment the static load test procedure rather than replace it. These integrity test 
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methods, as described below, typically allow the testing of tens of piles per day and 

would therefore more likely benefit from the development of a reliable, automated 

system for the interpretation of their results. 

2.5 INTEGRITY TESTING 

The term integrity testing is generally taken as to comprise of those test methods 

used to investigate the soundness of a foundation pile and more specifically to 

evaluate the 'integrity' of the material used in its construction2
.
23

• One of the first full 

reviews of pile integrity test techniques was the CIRIAIDoE report PG4 of 19772
.
24

. 

Here Weltman discusses the usefulness of integrity testing in the selection of piles to 

be load tested and proclaims the necessity of the tests to have ' ... reliable, readily 

interpreted results. '. 

As described above, the need for a rapid, reliable method of testing to complement 

the load test has lead to the rapid 'development and use of a number of these 

techniques. The remainder of this section will discuss the .evolution ~ of the integrity 

test methods, their relative merits and their, popularity within the Civil Engineering 

Community. 

The Integrity Test methods can be broadly divided into direct and indirect techniques 

as described in Table 2.2, below. Direct methods involve the visual or mechanical 

examination of a pile or the direct measurement of an engineering characteristic. 

Indirect techniques involve the measurement of a pile attribute, which may not be 

directly related to a structural performance, but from which its integrity can be 

inferred. 

Table 2.2 Pile Integrity Test Methods. 

REVIEW Direct Testing Indirect Testing 

1977 Excavation Acoustic (Sonic Coring) 
(Weltman) Drilling Radiometric 

Integral Compression Test Seismic (Pulse Echo) 
Dynamic (Vibration) 
CCTV 
Electrical (experimental) 
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1985 Excavation Acoustic (Sonic Coring) 
(Fleming et al.) Drilling Radiometric 

Stress (Dynamic load test) Seismic (Pulse Echo) 
Dynamic (Vibration) 
CCTV 
Electrical 

1988t Acoustic (Sonic Echo and 
(ICE Specification for Transient Dynamic -
Piling) Response) 

Vibration 
Sonic Coring 

1995 Excavation / Extraction Sonic Coring 
(Turner) Load Testing Radiometric 

Dynamic Load Testing CCTV 
Integral Compression Test Calliper Logging 
Drilling Water or Air Test 

Low Strain Impact Tests 
Horizontal Vibration 
High Strain Impact Test 
Electrical 
Ultrasonic 
Parallel Seismic 

Described as the most widely used integrity tests in the UK i.e. not a full review. 

2.5.1 Direct Integrity Test Methods 

The extraction and excavation techniques are essentially visual inspection methods 

where the pile is exposed, either fully or partially, to reveal the presence of any 

defects. Both these methods require heavy plant and are time consuming to execute. 

They are therefore exclusively used in the surveying of known defects near the pile 

head. These methods have the additional disadvantage of reducing the bearing 

capacity of friction piles and causing disruption to adjacent work. 

In the 1996 CIRIA report2
.
I3

, which supersedes the previously mentioned RG7, 

Turner also classifies load testing as a direct means of integrity assessment. These 

techniques all suffer from the problems outlined in Section 2.4 and will not be 

further discussed here. However the time and expense involved in these processes 

need to be reiterated and their failure to test large pile groups in their entirety 

restated. 
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Exploratory Drilling or Boring of a pile is primarily used to investigate the extent 

of a known defect. It is time consuming and expensive for deeper faults, but is the 

most frequent way of directly investigating internal features within a pile2.13 . 

All these direct methods, by their nature, require little in the way of post-processing. 

However, they are not suited for the rapid checking of a large group of piles because 

of the additional time and expense involved in their implementation. Rather, they are 

more usually used to investigate the integrity of piles with known or strongly 

suspected anomalies. 

2.5.2 Indirect Integrity Test Methods 

Indirect techniques provide information on a pile's integrity from tests not directly 

related to its structural performance. These methods have been subdivided by Turner 

into classes of internal, external, and remote techniques. The major test methods for 

each class are described below along with a number of experimental techniques. 

2.5.2.1 Internal Techniques 

These procedures are used to investigate a pile's internal construction and features 

through the examination of boreholes or pre-installed access ducts. The most 

common of these techniques is sonic logging; either cross-hole or single hole. 

Cross-hole sonic logging (also known as sonic coring) is a method for checking the 

homogeneity and integrity of mass concrete foundations such as cast in situ piles and 

diaphragm walls. Two probes, a transmitter and receiver, are lowered down a pair of 

water filled ducts, see Figure 2.8. They are then raised, in parallel, at around 20cm/s 

while the transmitter emits 10 sonic pulses per second2.25,2.13. The signal at the 

receiver is recorded and translated into a graphical profile, see below right. 

Anomalous regions become clearly visible and may then be further investigated at a 

higher resolution. 

This method suffers from the necessity that the piles to be tested must be pre­

selected. There is also the risk that the inclusion of the steel or plastic ducts may lead 

to the creation of additional defects and poor bonding between them and the concrete 

can yield an anomalous response. However, it has become popular for the checking 

of long, large-diameter, cast in situ piles because of the lack of depth limitations and 

the relative speed of the test. 
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For single-hole sonic logging a transceiver is used: a single vertical probe housing 

both the transmitter and receiver separated by an acoustic isolator. A longer transit 

time for emitted pulses over a region of the pile indicates the inhomogeneity of the 

immediately surrounding concrete. This will either be due to a drop in propagation 

velocity or a longer path length taken by the emitted pulse. The depth of penetration 

of this test is dependent upon the equipment employed, but Turner2.13 quotes 

published data that suggests the maximum depth is 100mm from the duct wall. This 

means that only a small volume of pile is sampled from a single hole, because of this 

the cross-hole method is almost exclusively employed. 

Radiometric methods of pile testing follow in the same vem as somc conng 

methods, except radiation energy is used instead of acoustic. Backscatter techniques 

like single-hole sonic logging uses a single duct or borehole. Two main methods are 
employed: 

i) Gamma ray techniques: where a count of backscattered radiation is an indication 
. , 

. of the density of the surrounding material. 

ii) Neutron scattering: where the count of 'slowed' neutrons indicates the degree of 

water content within the sunounding material. This in tum indicates changes in 
material properties. 

In cross-hole transmission techniques the number of gamma particles received at a 

detector, having travelled across a known distance of material, is indicative of the 

material density. Neither of these methods are in regular use in the UK due to the 

need for radioactive isotopes. Gamma radiography is, however, offered as a service 

by, amongst others, Testconsult Ltd, although prospective clients are warned it is 

'Very expensive, and requires massive shielding and safety precautions ... ,2.26. 

Other internal techniques include the use of fibre optic video endoscopes2.26 for the 

inspection of boreholes or ducts within the pile. This method, as reported by Turner, 

can make feature detection more difficult than one might expect and is not a 

practical method for the testing of large pile groups, but rather a means for 

investigating suspected defects. 
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2.5.2.2 External Techniques 

External techniques involve methods of evaluation that tests the pile's integrity 

without entering its interior. They include vibration testing, low and high strain 

integrity testing, and ultrasonic velocity tests. 

Vibration testing was introduced by the Centre Experimental de Recherches et 

d'Etudes du Batiment et des Travaux Publics (CEBTP) in the late 1960's. It was 

presented as a method for the testing of whole pile groups in conjunction with 

conventional load tests. The method is explained in great detail in the 1974 paper 

'From theory to field experience with the non-destructive vibration testing of piles' 

by Davis and Dunn2
.
27

. 

In this technique an electrodynamic vibrator is attached to the upper face of the pile 

head. This is driven by a sine wave generator to excite the pile at frequencies ranging 

from 1 to 1000 Hz. The amplitude of vibration is dynamically altered through a 

feedback system such that the force applied to the pile is consistent for all 

frequencies. A velocity transducer mounted on the pile head is used to monitor the 

vertical velocity response to this excitation. 

From LJj in the response curve, see figure 2.9, one can either assume concrete 

integrity and so deduce the pile length or assume the pile is of design length and so 

infer concrete density. The apparent stiffness of the pile head can also be deduced 

from the gradient of the line between point M and the origin. Large pile features can 

be detected through changes in the response shape2.13,2.27. 

This method of testing requires a high degree of pile preparation: the head must be 

ground to a smooth horizontal finish, steel plates are attached and epoxy resins 

applied. This along with the test itself is comparatively time consuming and 

therefore expensive when compared to the sonic tests described below. However, 

there is no improvement on the results obtained by the Transient Dynamic Response 

method through this additional cost and so this method has become largely 

redundant in the UK, see Section 2.6: Industry Survey, below. 

Low strain methods are generally split into three distinct classes2.12,2.13,2.28: pulse 

echo, sonic echo (SE), and transient dynamic response (TDR). All involve the axial 

excitation of the pile through striking it with an instrumented hammer, and a 

measurement of the pile head response, usually by a calibrated accelerometer. 
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The stress wave front generated by the hammer impact travels down the pile's length 

undergoing partial reflections from features and changes in its surrounding soil. The 

pile's response to this excitation is, therefore, representative of its structural 

characteristics and environment. However, because of signal noise and attenuation, 

the subjective nature of interpretation and assumptions made during the test (e.g. 

one-dimensional wave propagation, concrete homogeneity etc.) no inferences on pile 

serviceability can be made. Rather the tests are used to detect piles with anomalous 

responses and give a suggestion as to the reason of these anomalies. These piles can 

then be further tested using direct measurement techniques if required. 

For the sonic echo time domain test the pile head's velocity response is usually 

investigated. This is because the act of integrating the longitudinal acceleration trace 

intrinsically smoothes some of the high frequency components generated through 

surface waves induced on the pile head's upper face. It also has the additional 

benefit of illustrating the phase of the reflected signal - information used to infer 

whether a signal reflection is from an increase or decrease in pile section. The TDR 

~ethod is the Fourier Transform of the 'v~locity response ~ usually divided by the 

spectrum of the input pulse to produce' the mobility curve. The sonic echo and 

transient dynamic response methods are described in more detail in Section 2.7. 

The pulse echo method investigates the 'ringdown' -the drum-like vibration of the 

pile head's top face- of the acceleration response of the hammer impact. For a 

straight, defect free pile producing no echoes apart from those from the pile base the 

response should be an exponentially decaying sinusoid. If unexpected features within 

the pile or changes in pile/soil interaction are pronounced enough to produce 

additional echoes then these will result in irregularities within the trace envelope. 

Because it is this trace envelope that is investigated in this technique the phase 

information is lost - the envelope amplitude is proportional to vibrational energy at 

the pile head which is not a vector quantity. For this reason and the fact that the SE 

test allows for greater signal processing (signal averaging, noise filtering, auto­

correlation etc.) the pulse echo test has been largely superseded by the SE and TDR 

tests and is no longer in commercial use. 

High strain integrity testing is based upon the same principle as low strain testing. 

That is: the axial response to a hammer blow is characteristic of the pile's shape and 

environment. However, in this case a heavier drop hammer falling onto the 
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cushioned pile head is used instead of a hand held hammer. Sensors at the pile head 

measure the impact force and velocity response. 

The development of this method was a natural evolution from the dynamic load 

testing techniques discussed in Section 2.4.2. However, these methods were 

employed primarily to investigate pile/soil interaction where the cushioned blow, 

with its low frequency components, was advantageous. For integrity testing the 

relatively long rise time of the input pulse means a loss in resolution in the processed 

results and therefore an inability to distinguish smaller defects. The obvious benefit 

of this method is the increased pile length that can be tested because of the 

additional energy transferred at impact. 

This method was originally developed for driven piles where the pile driving rig 

could be utilised. For cast in place piles the additional plant; pile preparation, time 

and money involved in this test means that it not used for the checking of pile 

groups. 

In ultrasonic velocity· tests the exposed part of a concrete pile can be 'tested for 

homogeneity and quality. The velocity of an ultrasonic pulse, measured between a 

transmitter and receiver positioned across the pile shaft, is dependent upon the 

density and elastic properties of the concrete. Variations in 'the concrete's 

homogeneity or features within the pile (e.g. voids, honeycombing) will result in 

changes in this velocity. Because this technique can only be used on exposed 

sections of the pile it is generally used in investigation work where a defect is 

suspected at the pile head. It is not used as a means of testing the integrity of 

installed piles. 

2.5.2.3 Remote Techniques 

Remote techniques are used when the pile itself cannot be accessed - usually because 

the superstructure has already been erected above the pile head. 

The only reported method of remote testing is parallel seismic testing as described 

by Williams and Stain2
.
29

, see Figure 2.10. Here, by measuring the transit times of a 

hammer induced stress wave at various pile depths it is possible to calculate the 

extent of continuous concrete. 
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This technique is only practised when access to the pile head is no longer possible, 

on piles less than 10m long, and in unchanging ground conditions. It is therefore 

rarely used and is unlikely to benefit from any neural post processing. 

2.5.2.4 Experimental Techniques 

During the 1970s a number of electrical techniques were introduced as methods to 

check the integrity of piles. All used the reinforcement bars as one electrode and 

measured the electromagnetic potential at a second. This measured potential is 

defined by the electronic resistance of the concrete and soil, and of the pile shape. 

There were four main methods presented: . 

i) resistance to earth 

ii) self potential 

iii) resistivity testing 

iv) induced polarisation 

Of these it is the resistance to earth method that has undergone most research. Here a 

potential is applied between the pile reinforcement and a return electrode installed in 

the ground some distance from the pile. The potentials at intermediate positions 

between the these two electrodes are then measured and the graph of potential with 

respect to electrode spacing is plotted. This method is a comparison technique which 

needs to check a number of piles in similar ground conditions from which an 

expected response can be derived. Faulty piles will cause the graph produced to be 

distorted from this anticipated result; the form of distortion indicating the type of 

defect detected. These methods can only be used to check lengths of pile that include 

reinforcement. The success of acoustic techniques led to the demise of research into 

electrical methods in the early 1980's and none have been implemented 

commercially. 

Both CIRIA reports2
.
13

,2.24 also describe the Integral Compression Test. In this 

technique steel tendons are cast into the toe of the pile. After the concrete has cured 

they are stressed and the head movement is used to infer the pile's structural 

integrity. The method was suggested by Moon in 19722
.30 for large bored piles, but 

because of the complexity of its execution and the fact it gives no information on 

pile-soil interaction it is not used commercially. 
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2.6 INDUSTRY SURVEY 

In his 1996 CIRIA publication2
.
13 Turner reported that by far the most widely used 

integrity test methods were the low strain methods - particularly on small diameter 

piles. While the sonic logging techniques are increasingly being used for large 

diameter piles where the lack of depth limitations becomes a necessity. This is 

corroborated by the Institution of Civil Engineers (ICE) publication Specification for 

Pilini· 14 where three methods of integrity testing are discussed: low strain, sonic 

logging, and vibrational. 

The author has made a survey of the availability and cost of these three integrity test 

methods. From the forty different companies that purport to perform pile integrity 

tests and were included in the New Civil Engineer Foundations Supplements 1993 

and 19952
.
31

,232, twenty replied to the questionnaire found in Appendix I. A list of 

the responding companies is also included in this appendix. 

A number of these replies (four) reported that although the service was offered by 

the company it was sub-contracted to a third party who had· already received a 

questionnaire. 

Low strain, acoustic techniques, i.e. sonic echo (SE) or transient dynamic response 

(TDR) , were carried out by all the respondents and on average it cost £8 per pile to 

carry out the test. The TDR method was, on average, about £2 per pile more 

expensive due to the extra post processing involved. 

The vibrational method cost about £ 17 per pile and only 7% of the compames 

practised it with no-one considering it more accurate than the TDR test. One 

respondent suggested it was 'no longer a practical test' while another reported that, 

to his knowledge, only two companies offered this service (including his) and that 

his testhouse had not used this method for a number of years. 

Sonic coring was available from 25% of the respondents. The cost of this test was 

difficult to gauge because it has to be structurally designed into the pile which adds 

expense. Costs increased as a function of pile length and the number of ducts per 

pile. Most firms quoted for the day rather than per pile (£400-£1 000). On further 

discussion with a number of the respondents it has become apparent that a line has 

been drawn between large and small diameter piles. The majority of pile contractors 

and test houses carry out the low strain tests due to the simplicity of the test, the 
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relative cheapness of the equipment involved and the fact there is a larger market for 

this service. Sonic logging is generally carried out by the larger specialist test houses 

and those companies that construct larger diameter, deeper cast in situ piles for 

which the test method is more usually used. Problems reported with this test include 

difficulties in detecting foreign bodies within the pile and drawing up the transmitter 

and receiver at a constant, parallel rate. 

In conclusion it can be seen that since the publishing of Thorburn and Thorburn's 

1977 CIRIA report2
.
8 the evolution of digital hardware and mathematical tools has 

led to the low strain integrity tests dominating the field. This is due to the test being 

relatively inexpensive and rapidly executable while producing a success rate 

comparable with the other test methods discussed. The sonic coring method is more 

sparingly used because of the relative size of the markets involved; more small 

diameter piles are produced than large. An analyst using the impact acoustic method 

is more likely to have a large number of results to interpret at the end of a days 

testing due to the relative speeds of the test and the increased likelihood of the piles 

being situated as part of a large group. It therefore follows that this method would 

most benefit from a reliable fO,rm of automated post processing. Also the high 

complexity of the problem domain leads to the subjective nature of its interpretation 

which appears to suggest it would profit from the use of a neural, post processing 

system. For these reasons the low strain integrity tests have been chosen as the 

methods employed in this project. In the next section these techniques are described 

in more detail and the current methods for their automated interpretation are 

discussed. 

2.7 LOW STRAIN INTEGRITY TESTING 

2.7.1 Pile Excitation and Response Detection 

For low strain integrity testing the pile is struck by a small 3lb (1.36 kg) hand-held 

instrumented hammer, see Figure 2.11 (a). The hammer has an integrated-circuit 

piezoelectric force sensor enclosed in the striking end of its head. This produces an 

electrical signal proportional to the shape distortion of the piezoelectric crystal 

which in turn is proportional to the impact force. The hammer can therefore be used 

to trigger the data capture equipment when a threshold voltage is exceeded. 

With a dual channel AD converter the input force and pile head response can then be 

measured with respect to time. A typical data capture system (INO's Foundation 
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Pile Diagnostic System) allows for 14 bit resolution at a sampling rate of 50kHz. It 

is not disclosed whether the dual channels are multiplexed to a single AD converter 

which would effectively half the sampling rate. However even if this is the case the 

sampling rate would be enough to allow for over ten fold oversampling for TDR 

tests (up to 2kHz) and is at least an order of magnitude less than the typical rise time 

of the input pulse (-O.5ms for a plastic tipped hammer). 

The rise time of the input pulse, and therefore its frequency components, can be 

altered through the choice of hammer tip. The striking end of the hammer can have 

tips of a differing hardness screwed on to it, typically: rubber, plastic, aluminium or 

steel. Harder materials will give a faster rise time and therefore a broader frequency 

range. 

Higher frequencies allow greater resolution in the recorded response, but these 

components' energy dissipate quicker so leading to a faster attenuation of the signal. 

A compromise is generally met through the use of a plastic tipped hammer which 

covers ranges approaching 2kHz. If 'a defect is suspected at the pile head then an 

aluminium tip is then used' as the greater resolution becomes a necessity while the 

increased attenuation is less of an influencing factor. 

Some test houses do specify the need for ground or bush hammered areas of the pile 

head to improve hammer/pile and sensor/pile contace.33,2,34, see figure 2.11 (b). 

Most guides, however, simply require that the pile be trimmed to sound concrete and 

reinforcement bars bent or cut so leaving a relatively flat, accessible 

surface2.13,2,35,2.36,237. The head must also be free from surface water and pile cap 

reinforcing steel. 

The pile head response to the hammer impact is more usually measured using a 

calibrated accelerometer,2.33,2.34,2.35,2.36, although geophones (velociometers) may be 

used2.38. 

The active component of an accelerometer is a piezoelectric element that links its 

base with a free seismic mass. This element acts as a spring in that the inertia of the 

mass causes a shape distortion as the base is accelerated. The change in shape 

causes a measurable charge to be produced across the element which, because the 

mass is constant, is proportional to the seismic mass' acceleration. Since the seismic 

mass accelerates with the same magnitude and phase as the base, the measured 

charge is proportional to the acceleration of the surface onto which the base is 
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mounted239
. This is true over the linear frequency range of the accelerometer which, 

for accelerometers chosen for pile testing, will typically have lower and upper 

frequency limits of O.IHz and 5kHz respectively ( Briiel & Kjrer Type 4370 Delta 

Shear® Accelerometer). 

A PCB® Impulse Force Hammer .will typically produce an output of the order 

0.2 m V /N2.40 while the above mentioned accelerometer produces 

10 (±2%) mV/ms-22
.
41

. Due to the small currents created by these transducers signal 

conditioning units must be employed. The purpose of these units is to convert the 

high impedance output of the piezoelectric device into a low impedance signal 

suitable for direct input to the analysing equipment. They may also amplify the 

signal to match the input sensitivity of the analysing equipment, integrate the signal, 

or filter the signal of unwanted components. 

Although there are a plethora of vibrational amplifiers on the market - Briiel & Kjrer 

offer' a range of more than five products239 
- most commercially available pile 

testing equipment is supplied with purpose built pre-amplifiers for the hammer and 

accelerometer. These allow the tester to move freely within the pile group carrying 

simply the pre-amplifiers, hammer and accelerometer connected to the stationary 

data capture and analytical instrumentation through a long roll of, low impedance, 

coaxial cable 

2.7.2 Pulse Propagation 

2.7.2.1 Pulse Generation 

The point excitation of a body can cause the generation of a number of structural 

distortions. Longitudinal and surface waves are produced along with flexural and 

torsional deformations. In the case of a cylindrical body, such as a pile, struck 

centrally at its head torsional and flexural motion can be largely ignored: torsional 

because the pile is struck perpendicular to the top surface and flexural because it is 

hit centrally so the loading is not eccentric. 

Surface, or Raleigh, waves are produced through Poisson's ratio effects. Oliver2
.42 

describes how when a rod like structure is struck, although most energy is 

transferred to a longitudinal wave packet, some is dissipated at the head through end 

resonance. As the pile is struck the centre is depressed causing the edge to move up 

and in. The centre then moves back through its start position and begins to bulge up 
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while the edge moves down and out. This resonance continues, to a decreasing 

degree, causing a ring-down effect as sympathetic longitudinal waves are produced. 

An approximate calculation of the frequency of oscillation of this resonance can be 

made if shear stresses are ignored. For a pile of diameter, d, and surface wave 

velocity, cs, the frequency produced can be estimated from: 

f=~ 
d 

(2.4) 

This estimation was found to correspond well with experimental results obtained by 

Steinbach and Vel.43. Chan2.44 has calculated a typical value for Cs for a concrete 

foundation pile assuming values of Young's modulus, E=38.4 kN/mm2, density, 

p=2400 kg/m3
, and Poisson's ratio v=0.24. This gives a value of cs=2331m1s. For 

piles of less than 1 m diameter the resonance frequency will be above 2kHz and 

"outside· the range of the examined bandwidth for plastic tipped hammer impacts. 

Their effects can therefore be eradicated to a greater extent through low pass 

filtering. For testing using aluminium tipped hammers or on piles of more than 1m 

diameter these effects, as well as other random noise effects, are reduced through 

time averaging multiple responses recorded with the accelerometer at different 

positions on the pile's top surface. 

The estimation of pile shape and density therefore revolves around the consideration 

of the longitudinal stress wave (p-wave) pulse with a displacement, U, described by 

Equation 2.5, below. In all cases below it is presumed the ratio between the pile 

diameter and principal wavelength component of the generated pulse is small i.e. it 

is presumed that the pulse is non-dispersive and propagates in a direction 

perpendicular to the pile's top surface. 

U = f{x-ct) (2.5) 

where f is a function describing the pulse shape, x is a position along the axis of 

pulse propagation, t is the time and c is the pulse velocity. 

2.7.2.2 Reflections from the Pile Toe 

Consider an incident wave with particle displacement described by Equation 2.6, 

below. 
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u = flx-ct) (2.6) 

Where u is displacement, x the position along the beam, c the stress wave velocity, t 

the time and fi describes the pulse shape. When this reaches the end of a rod like 

structure of length L a reflected wave is produced: 

f,.(x+ct) (2.7) 

The particle displacement and velocity, respectively, at the pile toe (x=L) is 

therefore: 

u = J;(L-c. t) + f,.(L +ct) (2.8) 

which is the general solution to the one dimensional wave equation for a uniform rod 

or beam. 

From-Hooke's Law we obtain the equation below: ' 

. 8u 
F = - EAE. = - EA-

. 8x (2.9) 

Where F is the force acting on a particle within the rod, E is the material's Young's 

modulus, A is the cross sectional area of the rod and E is longitudinal strain. So from 

2.8 and 2.9 we obtain 

F = -EA dJ; _ EA dJ,. 
d(x - ct) d(x + ct) 

(2.10) 

or 

(2.11 ) 

Where indices i and r represent incident and reflected portions of the pulse (from the 

pile toe). The particle velocity can then be written as 

v = Vi + Vr (2.12) 

where Vi and Vr are the particle velocities associated with the force waves Fi and Fr 

and are connected through the equalities: 

V=+~ 
I A.c.p 

(2.13) 
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F, v =---
r A.c.p 

(2.14) 

where, again, A is the cross sectional area of the pile, c is the wave propagation 

velocity and p the pile material density. 

For a beam with a fixed end the particles' velocity and displacement must disappear 

and so: 
(2.15) 

and from 2.13,2.14 and 2.15: 

F; (-F,) F, 
--=- . =--
A.c.p A.c.p A.c.p 

(2.16) 

so from 2.11: 

F= 2F; (2.17) 

Hence, the force at a fixed end will be twice that of the original excitation force and 

because Fi equals Fr (2.16) a compressive wave will be reflected as a compressive 

wave and tensile wave reflected as a tensile wave - though the particle velocity is 

opposite (2.15). For example, see Figure 2.12. 

For a reflection from a free end the stress at the toe must disappear. So from 2.11 : 

F; = -F, 

And so from 2-12,2-13 and 2-14: 

v = 2F; 
A.c.p 

(2-18) 

(2-19) 

So the reflected pulse at a free end of a beam has a particle velocity double that of 

the particle velocity of the wave propagating through that beam and that pulse will 

have the opposite phase as the incident wave (2.18). That is a compressive wave will 

be reflected as a tensile wave and vice versa. A diagrammatic representation of these 

formulae are shown in Figure 2.12. 
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The recorded pile head responses of these theoretical beams would appear as Figure 

2.13. Where L1t = 2L1c and L1f= lIL1t; L being the length of the beam in question. 

In practice an installed pile will have neither of these perfect responses, but will have 

a base support of intermediate stiffness, as reported in field tests carried out by Davis 

and Dunn
2

.
27

. The interpretation of these responses are discussed in Sections 2.7.3 

for Sonic Echo traces and 2.7.3 for frequency spectra. 

2.7.2.3 Partial Reflections from Changes in Pile Properties 

As well as reflections from the pile toe partial, and total, reflections can be produced 

from features within the pile profile. Namely changes in the pile cross sectional area 

and changes in its material characteristics. To understand this equation 2-6, 

describing the stress wave's propagation, must be reconsidered. 

By finding the derivatives of u,' particle displac~ment, with respect to x, beam 

position, and t, time, it can be shown·that .the stress .at a point, 0",' is described by . , ' ' ., .' , 

Equation 2.20. 

au 
cr=-pc-at (2.20) 

So the ratio between the stress and velocity at any point is pc. When multiplied by 

the sectional area of the object in question this ratio is known as the characteristic 

impedance of the material and can be used to calculate the proportion of a pulse 

reflected when a boundary between two different materials or changes III cross 

sectional area are encountered. At an interface two conditions must hold: 

1) The forces on each side of the interface are equal: (crj+crr).A,=crt.A2 

2) The particle velocities must be continuous: Vj-Vr=Vt 

Thus Equations 2.21 are derived. 

2z) 
t = ---'---

Z2 +Z) 
(2.21) a, b 

where r and t are coefficients of reflection and transmission respectively. The proof 

of this can be found in many undergraduate textbooks e.g. Burton2.45 . 
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As summarised in Figure 2.14, the characteristic impedance of the pile, Z, is directly 

related to its cross sectional area. However the density and wave velocity are linked 

to the concrete strength logarithmically which must, therefore, change considerably 

to produce a significant reflection2
. \3. This method is consequently more sensitive to 

changes in section and is less able to determine the material characteristics of the 

pile. 

Although it would appear, at first glance, that the pile profile can be inferred from 

any recorded trace this method has many practical limitations. The reflected pulse's 

amplitude is a function of the concrete impedance and soil or environmental 

changes. This means assumptions must be made, usually concerning the 

homogeneity of the concrete mix, and soil properties must be known. Also 

attenuation produced by the surrounding soil may restrict the returning pulses to an 

undetectable amplitude. These along with other restraints on this method's accuracy 

are discussed in more detail below, Sections 2.7.3 and 2.7.4. 

2.7.3 Limitations of Low Strain IntegrityTest Methods 

. Although there are many papers and documentation relating to the limitations of the 

low strain integrity test method there still appears to be some debate over the precise 

extent of these restraints. This is most clearly illustrated in the communications and 

papers published in the journal Ground Engineering over the period November 1992 

to November 1995. These were initiated by a competition run in conjunction with 

the 4th International Stresswave conference2
.46. Here ten piles were cast with 

predesigned faults before being lowered into driven steel casings which were then 

backfilled to recreate in situ soil conditions. The twelve participating companies 

were subsequently asked to match ten cross section profiles with the ten test traces 

obtained from the installed piles. 

The results were initially considered disappointing with the average score being only 

four out of ten and the winning score only seven2
.46. In a response Stain2.47 

highlighted some of the weaknesses of the competition design. Of most relevance to 

this research is the proposed heuristic that the normal useful depth of stress wave 

penetration is around thirty pile diameters; a heuristic corroborated by test results 

collated by Turner2
. \3 and Braque2

.
38

. This is however dependent upon soil 

conditions, see Section 2.7.4 below. Although van Weele2
.48 in a reply to Stain's 

criticisms points out that, because the toe reflection is clearly visible in the test 
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traces, this aspect ratio can be exceeded in soft soils he does concur that the position 

and extent of defects are of primary importance when considering the applicability 

of the test. 

Turner2.49 in his contribution to the debate pointed out the ambiguities of similar 

traces being produced by different pile profiles. In particular he points out the 

significance of the axial length of a fault when interpreting a test result. It has been 

shown in Sections 2.7.2.3 how a reflected wave's amplitude is dependant upon the 

change in the pile's material impedance. In practice, however, a fault such as a bulb, 

neck or crack involves a return to the pile's design section. This means a tensile 

reflection will be followed by a compressive one or vice versa. If these reflections' 

sources are close with respect to the rise time of the input pulse then the 

superposition of the two will lead to a small, sometimes negligible, response at the 

pile head. Furthermore, even if the two reduced reflections are detectable it is 

difficult to infer, with confidence, whether they have been caused by a fault of large 

changecin section, but small axial length, or a smaller reduction insection extending 

over a longer portion of the pile. However, in practice most faults occur within two 

metres of the pile head allowing the use of an input pulse with a faster rise time. This 

is particularly true of cracks which are more usually generated at the pile head, 

where lateral support is smaller, by plant machinery or during pile cropping. It is, 

nevertheless, generally agreed that faults of the order of lOmm or less which do not 

extend over the entire section of the pile are undetectable at any point along the pile 

length. While complete severance of the pile section will lead almost inevitably to 

total reflection so making investigation of the pile beneath that point untennable2.12. 

EllwaY·12 states that low strain testing cannot determine the axial extent of 

anomalies citing the example: a hairline crack across the entire extent of the pile 

section gives the same trace as a meter long void. This example, however, can be 

considered a special case as total reflection is involved. No anomalies below an 

event causing total reflection can be detected and so to use this as a corollary for a 

hypothesis specifically concerning the detection of axial information would seem 

unsound. 

Both van Weele2
.48 and Turner2.49 are less harsh in their views on the inference of 

fault length. A pulse generated by a hand held hammer with a plastic tip typically has 

a rise time of O.Sms and a velocity of 3000-4000ms-1. This leads to an effective pulse 

length of the order 3-4m. The superposition of the reflected waves from two 

boundaries therefore produces more ambiguous trace as the gap between these 
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boundaries becomes less. As a general guide van Weele suggests that defects with an 

axial length of less than 0.8-l.0m cannot be uniquely determined while smaller 

faults of the order of 10mm, even those producing a greater than 50% loss in section, 

will be undetectable. 

The smallest detectable ratio of impedance change at a reflecting boundary is about 

1 :0.8 for an decrease in pile properties or 1: 1.2 for an increase; this is the equivalent 

of a 10% change in pile diameter or a 15Nmm-2 change in concrete strength2.12 . The 

reflected pulses become increasingly pronounced as the ratios widen until, when the 

ratios exceed 1 :0.25 (or 1:4), total reflection occurs. 

It should be noted at this point that, because reflection is a function of change in 

impedance, pile properties that change gradually with depth may be undetectable. 

This is true if the magnitude of any individual reflection is be outside the sensitivity 

range of the equipment used and is a recognised limitation ofthis test method. 

The. position of a defect also has an effect on its detectability. Faults towards the 

head of the pile may be difficult to detect for two reasons: 

1) The impact is' a point load yet the theory used in trace interpretation requires a 

planar wave perpendicular to the pile head surface. Within two or three pile 

diameters of the pile head, therefore, the wavefront's curvature is of such an 

extent that it cannot be considered negligible. 

2) For a plastic tipped, handheld hammer the stress wave wavelength is of the order 

4m and so changes in impedance in the top 2m of the pile will produce an echo at 

the pile head while it is still under load. If of a sufficiently low magnitude this 

reflection will be hidden by the continued impact. The best one can hope for is a 

significant distortion of the early part of the recorded trace to indicate a possible 

defect. 

As previously stated (2.7.1) the use of an aluminium or steel tipped hammer will 

produce a pulse with higher frequency components allowing better resolution at the 

pile head. Also visual inspection of the area may be possible for the very top portion 

of the pile. Chan2
.44 reported that for the same extent of defect smaller values of 

dynamic stiffness are obtained if the fault is near the pile head. As a value for the 

dynamic stiffness can be deduced from the mobility curve of the pile (see Section 

2.7.6, below) this graph can be used to infer impedance changes at the pile head2.38 . 
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Although these actions may help in their discovery, defects at the pile head are still 

intensely difficult to detect. 

The pile's acoustic length - the calculated length of the pile - can only be found if a 

reflection from the toe is detected. For the calculation the stress wave's propagation 

velocity must be assumed (3000-4000ms- 1
) which means the length can only be 

found to ±10% accuracl· 13
. This means faults near, or at, the pile toe cannot be 

identified reliably. A reflection from the pile toe will only occur if there is a 

significant difference in impedance with that of the material beneath it. The toe may 

also be undetectable if a strong acoustic boundary above it prevents the propagation 

of the stress wave to lower portions of the pile or if the signal attenuation is such that 

the wave energy dissipates before returning to the pile head, see Section 2.7.6 below. 

The other limitations on this method are largely based on the hardware involved in 

data acquisition. These are summarised in Section 2.7.1 above. 

2.7.4 Effects of Soils on Installed Piles 

The installation of a pile into a soil medium bears two consequences: signal 

attenuation and possible partial reflection. 

Signal attenuation occurs through partial transmission of the signal beyond the pile 

base and soil resistance along the pile shaft. Laboratory studies showing the effects 

of damping from soils have been published by Ding et al. 2.50 and Armstrong2.51 • 

Both conclude that the environment of the installed pile must be considered for test 

results to be relevant. The other conclusions of Ding et al. should only be considered 

true for the reported experiments. Due to the limitations described above it cannot be 

true in the general case that: 

'By applying the theory of wave propagation and the pile top response curve, the 

type, degree, location of the damage of the fault pile can be obtained and its results 

are in accord with the preset situations. [sic.]' or that: 'The support soil of the pile 

can be judged. ' 

As previously stated, the signal reflection at the pile base is dependant upon the 

difference between the pile impedance and the impedance of the material impedance 

beneath its toe (see Section 2.7.3, above). As reported by Wong2
.
52

, if while an 

incident wave travels down a rod it meets an external soil resistance, scattering of 
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the wave occurs. This soil resistance will be a function of the shear stress on the pile 

wall due to adhesion and skin friction. In turn the magnitude of this shear stress is 

dependant upon the shear strain and strain rate of the soil. Poskitt2.s2 describes the 

shear stress in terms of a visco-elastic formula whereby the stress is defined as the 

sum of viscous and elastic components, equation 2.22 below. 

(2.22) 

where '"C = shear stress 'AI = load transfer parameter 

/-l = viscous parameter u = pile displacement 

The first term is the elastic term which, beGause of the low strains involved in this 

form of testing, is considered to be linear. The second term considers the viscous 

nature of soil with the forces produced dependant upon strain rate (in this case the 

pile wall velocity). 

Although sound in its derivation the above formula with, its esoteric soil parameters, 

does not lend itself readily to the application of trace analysis. Briard's2.38 fo~mula 
(2.23), on the other hand; produces an attenuation factor that has been successfully 

used for analysis in the frequency domain2.27 and by Paquet for the modelling of 

pile-soil interaction 2-38. 

1 p' /3' 
A8 =-.-.- in Neperm-I 

(2.23) 
r p c 

where As = attenuation parameter 

p'= soil density (kg.m-3) 

r = pile radius (m) 

/3'= shear stress wave velocity in soil (ms- I
) 

p = concrete density (kg.m-3) 

c = propagation velocity in concrete (ms- I
) 

The above formulae was validated by Paquet through data describing pile-soil 

interaction collated by CEBTP in conjunction with its European partners2.38. He also 

produced a diagram summarising the test's empirical depth of penetration from this 

database, see Figure 2.15. 

As well as attenuation when a boundary between soil strata is reached there is also 

the possibility of the partial reflection of the propagating wave. A change from stiff 

to a weak soil has the same effect as a decrease in section. While a change from a 

weak to a stiffer layer will act as an increase in section2.13 . Wong2.S2 states that if the 
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mobilised soil resistance is Rs, the magnitude of the reflected wave can be predicted 

from wave propagation theory as Equation 2.24 : 

R, v =--'-
r (22) 

(2,24) 

Where 2 is the acoustic impedance of the pile. 

It should be noted here that changes in soil stiffness are often the cause of changes in 

pile section. As the soil changes from a soft layer to a stiffer, deeper layer so the pile 

diameter may change from an oversized dimension to its designed section. Thus the 

reflected pulse's amplitude would be representative of the change in section and 

change in soil characteristics. Site investigation data, specifically cone penetration 

data and bored samples, must therefore be rigorously examined before an attempt is 

made to interpret test results. 

2.7.5 Sonic Echo Response Interpretation 

Most of the previous sections have described the factors influencing the velocity 

response, r.ecorded in the time domain, during low strain integrity testing. It has been 

shown how the integrated accelerometer trace is characteristic of the pile's shape, 

construction and environment, see Figure 2.6. This data can, however, be enhanced 

to facilitate its interpretation. 

The most basic of signal accentuation is its amplification with respect to time. This 

is usually increased exponentially to counteract the effects of soil attenuation and 

increase the magnitude of reflections from lower parts of the pile. 

The signal to noise ratio can then be reduced by irradiating some of the random 

noise through the use of multiple signal averaging and auto correlation 

techniques2
.
12

,2.43. Low pass filtering can also be used to reduce unwanted high 

frequency components, however it is suggested that this should not be carried out 

using hardware networks as these produce undesirable phase changes in the lower 

frequency range during impact testing2
.
39

. 

More recently testhouses have introduced the concept of the reflectogram2.35,238. 

Here the deconvolution of the signal with respect to the input pulse is carried out to 

find the impulse response function of the pile. This is the time based equivalent of 
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the pile mobility spectra - see Section 2.7.6, below. The trace is compared with the 

expected response of a nominal pile of infinite length with the same design section 

and construction in the same ground conditions. By amplifying the resultant trace as 

a function of the prevailing soil conditions a reflectogram is produced from which an 

impedance log can be deduced. 

The impedance log is essentially a graph of pile impedance against depth and its 

automated construction is discussed in Section 2.7.7 below. For best results it is 

suggested that the impedance profile, sonic echo response and frequency response 

(see Section 2.7.6) are all referenced when drawing conclusions on the integrity of a 
foundation pile2.13,2.3s,2.44. 

2.7.6 Transient Dynamic Response Interpretation 

An alternative way of presenting the information held in the time trace is to 

transform the data from the t~mporal to frequency. domain. This transformation is 

more usually effected through Cooley and Tukey's Fast Fourier Transform (FFT) 

Algorithm2
.
s4

. Although it has a faster execution time than other signal 

decomposition methods it suffers from the same limitations as all Discrete Fourier 

Transform (DFT) techniques, namely: leakage, aliasing and picket fence effects2
.ss . 

However, with ten fold oversampling and low pass filtering reducing the effects of 

aliasing, the inherent limitations of the physical test method restrict the influence of 

these processing errors to a negligible degree. 

The frequency spectrum of the recorded velocity trace is dependant upon the shape 

of the input pulse. When an instrumented hammer is used, however, the spectrum of 

the pulse can also be calculated. This can then be divided into the response spectrum 

to produce the mobility spectrum of the pile. The mobility curve is input pulse 

independent and characterises the pile shape, construction and environment. It is the 

equivalent of the pile's impulse response function in the time domain. 

The theory behind the interpretation of mobility spectra stem from work carried out 

by Davis and Dunn2
.
27 on the steady state response of a foundation pile to vibrational 

excitation. For an undamped undamaged pile of constant section and material 

content the theoretical mobility curves were shown in Figure 2.13. However, when 

the pile is embedded in soil its movements are damped and its base fixity is neither 

completely fixed nor free, giving a response as Figure 2.17. 
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For Figure 2.17 the frequencies at which resonance occurs are equally spaced at 

intervals: 

e 
11/=-

2L 
(2.25) 

where e is the wave propagation velocity and L is the length of the pile. The mean 

value of the mechanical admittance, NA , is the inverse of the mechanical impedance 

of the pile and is given as: 

1 
NA =-­

peA 
(2.26) 

Where p and A are the density and cross sectional area of the pile respectively. 

The values P and Q provide a measure of the damping effects of the soil such that: 

P = NA coth(ABL) 

.. Q= NA tanh(ABL) . 

(2.27) 

(2.28) 

when AB is Briard's damping factor, as introduced in Section' 2.7.4 Equation 2.25. So 

from equations 2.27 and 2.28 we have: 

and so 

NA = ~(PQ) 
coth(ABL) = ~(PQ) 

(2.29) 

(2.30) 

From 11f, assuming e, the acoustic length of the pile can be calculated from 2.25. The 

apparent mass of the pile can be determined from Equation 2.31, below: 

1 
M=LAp=--

211jN 
(2.31) 

For low frequency excitation the consequences of inertia become less significant and 

the pile-soil unit is assumed to act as a single, rigid body. This gives the linear 

region OM in Figure 2.17. The inverse of the slope of this straight line is a 

measurement of the apparent dynamic stiffness at the pile head. This is particularly 

useful for indicating abnormalities at the head of the pile; a difficult task when 

attempted using the time domain velocity response (see Section 2.7.5). 
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The position and degree of a simple defect can also be found from its spectrum. 

Consider the mobility curve of a pile with a neck as in Figure 2.19. 

Having assumed p=2400 kg.m-3
, and c=4000 ms-\ the two lengths associated with 

the two resonant frequency intervals within the spectrum can be calculated (2.32): 

L =_c_= 4000 =2m 
H 211/ 2 x 980 

L = 4000 = 10m 
2x200 

(2.32) 

And these are in turn associated with two areas of cross section, namely: 

1 2 
Amax = --= 0.65 m 

NAfX (2.33) 

Amin = 0.36 m 
2 

Thus the pile profile has been inferred from the mobility curve. In practice, the 

mobility curve is more usually further complicated by the exposure of the pile head, 

changes in soil conditions, and the heterogeneity of the pile's concrete. However, 

Davis and Dunn have presented four examples of the use of mobility spectra 

investigation for pile testing. Effectively they compare the measured pile stiffness 

and peak separation with the expected values to find those with atypical responses 

for further investigation. The pile admittance was used to infer concrete quality. 

This process of interpretation was developed for steady state vibration testing where 

there was no time trace to investigate. Today, with impact testing, the TDR method 

is a means of presenting the same data in a different format. Indeed, with the 

complex part of the spectra being disregarded, as appears invariably to happen, it is 

impossible to reconstruct the temporal trace from the mobility curve. It can therefore 

be reasonably argued that there is an inherent loss of information involved in the 

transfer of data from the time to the frequency domain. 

As a method of presenting data to the human analyst, however, this method has a 

number of advantages. The fact that the FFT gives a time averaged summary of the 

frequency components means that many of the characteristics of the chart are 

directly related to the pile characteristics. This is true for such things as material 

admittance, pile head stiffness and acoustic length. This and its useful in indicating 

defects in the upper portion of the pile has left the method in wide spread use today. 

More often in conjunction with its time based partner the sonic echo test. 
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2.7.7 Automated Interpretation of Low Strain Test Results 

BS8004 specifies that an integrity test ' ... should be undertaken by persons 

experienced in the methods and capable of interpreting the results,2.'. This means 

for each set of tests an expert analysis should be on site. Indeed some companies 

employ two people to carry out each test: a technician to acquire the data and an 

analyst to interpret it2
.35. 

Conventionally the interpretation of complex returning pulses from low strain 

integrity tests have used the same wave matching techniques as described in Section 

3.2.2: Dynamic Load Testing. Here the head velocity of a reference pile, known to 

be sound, is used to estimate soil and concrete parameters which can then be used to 

calculate the expected responses for different pile shapes using the lumped mass 

model. If a pile is then tested and produces an atypical trace a series of responses can 

be generated until the simulated results match the experimental one. At this point the 

user has found an estimate of the suspect pile's profile. "This process is explained in 

more detail by Middenthrop and Reiding256 with special reference to .the 

TNOWAVE signal simulator. CEBTP practise this technique in the frequency 

domain using their SIMINTEG software to model the piles' responses, see Figure 

2.19. 

The cost incurred through having an analyst on site, and the time taken when using 

an iterative process to analyse the test results, has encouraged a great deal of 

research into the simplification of trace explication. 

Although some attempts have been made to improve the method of information 

presentation to the human investigator, such as Chan's use of the cepstrum and 

liftering techniques2
.
28

,2.44, most research has been in the automatic interpretation of 

the time domain data. 

By considering the pile length as a number of discrete elastic columns of uniform 

length and interpreting the returned trace as a summation of reflections from these 

sections it should be possible to obtain an estimate of the pile profile if the 

concrete's physical properties are assumed constant. 

This method has been adopted, with some degree of success, by Kido et al. 2.57 at 

Tohoko University in Japan. However, their model was only tested on uninstalled 
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test piles containing a single defect which results in the system being impractical for 

field use. As stated earlier the environment into which the pile is cast will have a 

considerable effect on its impulse response and so ground conditions cannot be 

assumed to be negligible. 

More practical systems, which take into account ground conditions, have been 

developed by TN02
.
58 and CEBTp2

.
38

• 

The TNO method involves using data from a sound pile to form a 'shaft friction 

model' of the soil/pile interaction, much like the wave matching technique. The 

impulse response function of the pile, the inverse Fourier transform2
.
54

,2.55 ofthe pile 

mobility, is first calculated. As in the other cases the method continues with the 

assumption that pulse propagation acts as a one dimensional wave in an elastic 

. medium. Friction elements model the surrounding soil as viscous dampers, with 

parameters derived from a sound pile's trace. These elements are considered to be 

located around those of the discetised pile length. The pile profile can then be 

calculated through a step-by-step wave evaluation taking into account all the wave 

paths that· could contribu~e to a certain reflection, including the friction elements . 

. This method has proved effective in finding faults in computer modelled piles, but 

the tests effectiveness is very much dependant upon the' quality' of the signal trace 

to be interpreted. It is assumed that' quality' in this case equates to the complexity of 

the trace as caused by changing ground conditions or multiple reflections. A simpler 

trace with few salient peaks, each of a comparatively large amplitude, will be easier 

for the system to interpret. 

The CEBTP method considers the impulse response of the damaged pile with 

reference to that of the expected response for an infinitely long sound pile in the 

same soil conditions. Unlike the TNO method this 'expected response' is computer 

generated using the SIMINTEG software. Attenuation caused by prevailing soil 

conditions is then corrected for using Briard's formula. This produces the 

reflectogram described in Section 2.7.5 in which all soil influences have been 

eliminated. The impedance profile, P(x), can then be reconstructed from the 

corrected reflectogram, R(t), through the following summations: 

S(t) = fR(t) dt 

P(t) = P(x/c) = 1 - S(t) 
1 + S(t) 
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Where P(t) corresponds to the ratio of impedances between that at position t. c (time 

x velocity) and the expected impedance. Figure 2.20 shows the impedance log of a 

pile with a bulb as derived from the mobility curve to its left. The curved nature of 

the defect and toe is caused by the lack of high frequency components in the 

reflectogram. SIMINTEG generates the response in the frequency domain and the 

test results will range up to only about 2kHz. Thus the reflectogram, which is 

generated through the reverse FFT of these curves, will not contain any sharp 

discontinuities as these necessarily contain mainly high frequency components. 

The IMPRO tool is reportedly under-utilised by clients2
.
26 possibly showing a natural 

reservation on the part of the market to move to a deterministic method for the 

automated interpretation of test traces. The fact that the impedance profile can be 

reconstructed from the corrected reflectogram is indisputable although it would be 

advantageous if the minutes taken to generate it could be reduced to seconds. 

However, the correction for soil effects using SIMINTEG produces limitations on u 

the method. The software can cope with a maximum of nine soil strata, enough for 

most practical applications, but the matching of suitable parameters for the 

modelling of the nominal reference pile is not a negligible task. The worked example 

in the text of the paper is for the profile of computer generated pile and so the 

nominal reference pile can be modelled with identical, perfect, soil parameter values. 

Failure to get this high degree of accuracy in practice will produce additional 
" 

components in the reflectogram and so, therefore, in the impedance profile. There is 

also a divergence of the reconstructed trace from the required trace even in this 

idealised example due to multiple reflections between impedance, and soil, 

boundaries. Using a site mean trace as the reference trace, as the TNO method uses, 

could reduce these problems although this would result in the reflection from the toe 

being lost. Hence the use of an infinitely long nominal pile for reference. 

There is also a second technique discussed in the Paquet238 paper. This is an 

iterative method whereby the pile and its surrounding soil are discretised into 

individual strata. Consecutive impedance values are then calculated from preceding 

values starting with the boundary conditions at the head of the pile which are known. 

This method, however, suffers from two reported drawbacks: 

1) It is very time consuming, because of its iterative nature. 

2) Poorly chosen soil parameters may lead to negative values of impedance. 
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This method is not therefore generally used except in conjunction with the first 

method for validation. 

Finally a completely different approach was employed by Comerford et al. 2.59 where 

a knowledge based system is used to interpret the response signal. Here the signal is 

divided into a series of straight lines of differing length and slope. This descriptive 

series can then be considered as a sentence which can be parsed to reveal its 

meaning. The parsing method used was the definite clause grammar (DCG) system 

embedded in the PROLOG theorem prover, a description of which can be found in 

Bratk02
.
60

. The rules and heuristics are defined by the programmer and the trace is 

interpreted by fitting it to one of the series of templates described by them. This 

method is reported to have an 80% success rate in predicting the serviceability of 

150 test piles. However, no field tests are reported and the effects of the pile 

environment are not considered. It should also be noted that by representing the test 

data in such a way there is an inherent loss of resolution. Moreover the methods 

weaknesses are the same as any naturallanguag~ parser, namely that traces cannot be 

considered context free and, therefore, has a very large grammar. Other problems 

associated with this application and the methodology it employs are described in 

Section 3.2. 

The use of neural networks for the interpretation of pile test data is limited. One 

example of neural networks as an alternative for the pile driving formula has been 

found. For the interpretation of low strain integrity tests one neural based expert 

system has been found. All of these academic systems are limited in their problem 

domain and untested in the field. They are discussed more fully in the following 

chapter: Artificial Neural Networks for Signal Processing and Fault Detection. 

2.8 SUMMARY AND CONCLUSIONS 

The load bearing capacity and settlement characteristics of a cast in situ pile can only 

be satisfactorily deduced from static load tests. 

Load testing of entire pile groups is impractical. Integrity testing IS therefore 

employed to find piles with atypical acoustic characteristics which can then be load 

tested or investigated further. This enables all piles with suspected abnormalities to 

be included in the test set so limiting the over design necessary in the pile group. 
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The most widely used integrity test for small diameter cast in situ piles, in the UK, is 
the low strain integrity test. 

Conventional interpretation of these tests' results requires the iterative process of 

wave matching which can involve a great deal of time and, therefore, expense. 

Recently developed deterministic methods for the automated reconstruction of the 

pile profile from test results suffer from the high degree of processing necessary in 

the wave trace methods and the accuracy needed in soil modelling. 

This thesis will continue with an investigation into the use of Artificial Neural 

Networks for trace interpretation. Being an adaptive processing tool it is possible 

this method will learn, through example, the salient features necessary for the 
accurate interpretation of the sonic echo trace. 
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Figure 2.1 The forces acting on an axially loaded pile in equilibrium. 
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Figure 2.2 Summary of various piling techniques (After BS80042.1). 
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Figure 2.3 Stages of construction of a percussion bored pile, courtesy of 
Cementation, Piling and Foundations Ltd. 
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Figure 2.4 Stages of construction of a rotary bored pile, courtesy of 
Cementation, Piling and Foundations Ltd. 
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Figure 2.5 Stages of construction of a CF A bored pile, courtesy of 
Cementation, Piling and Foundations Ltd. 
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Figure 2.6 The formation and effect of cavities during casing extraction. 

Figure 2.7 Loss in section caused by groundwater (left) and uplift during casing 
extraction (right) (after Fleming et at. 2.9) 
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Figure 2.8 Cross-hole sonic coring: method (left) and results plot (right). 
(Courtesy of Testconsult Ltd). 
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Figure 2.9 A typical frequency response curve for a cylindrical pile. 
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Figure 2.10 Parallel Seismic Testing for the remote testing of foundation piles. 

Figure 2.11 The low strain integrity testing of a cast in situ pile (a) and an example 
of pile preparation (b) - Both courtesy of Testconsult Ltd. 
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Figure 2.12 Stress wave propagation through a free-free and fixed free beam. 
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Figure 2.14 Conditions under which reflections from within a foundation 
pile may occur. 
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Figure 2.19 The response curve of a damaged pile (After Davis and Dunn2.28). 
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3. Artificial Neural Networks for Signal 
Processing and Fault Detection 

3.1 APPLICATION IDENTIFICATION 

The problem domain with respect to this application has been described fully in the 

previous chapter. Essentially the system requirement is summarised as the automated 

interpretation of sonic test data to produce an output characterising a pile's integrity. 

The systems input parameters may therefore comprise: 

1. Sonic echo test trace. 

11. Site investigation data. 

111. Test data from other piles in the pile group under investigation. 

IV. A simulated, expected, response ofthe pile under investigation. 

The parameters that may be used by the devised system are limited to the above by 

the test method employed: the impact response test. They are the parameters 

currently used in the human, expert, interpretation of sonic echo tests. It is likely that 

any combination of these available inputs will be pre-processed to reduce the 

dimension of the input space of the system and highlight its salient components. 

The ideal output of any test system will be compromised by the limitations of its 

applied methodology. As described in Section 2.7.3, it is not possible to derive an 

arbitrarily precise topological profile of an installed pile using an indirect testing 

technique such as the sonic echo test. Instead, the goals of any neural system 

produced should be the same as those in the expert human interpretation and 

contemporary automated techniques. That is: 

i. The identification of a trace atypical of its expected result. (Primary Goal) 
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11. The production of an impedance profile characteristic of the pile/soil 

system. (Secondary Goal) 

Clearly the primary goal is a necessity for the system to be of any use at all. 

However, the realisation of the secondary goal will, as a natural consequence, result 

in the accomplishment of the primary. Given the existence of the deterministic wave 

tracing methods described in Chapter 2 it is likely that the usefulness of any system 

produced will be quantified by its effectiveness in fulfilling Goal ii. Further to 

discussions with industry representatives I it is recognised that the absolute 

completion of goal two is not a necessity for the development of a useful system. 

The test limitations are well know within industry and an automated system capable 

of identifying an atypical trace and 'suggesting' the primary fault associated with the 

trace features would be a significant advance on present test protocols. 

The application of Artificial Neural Networks (ANN's) to pile integrity testing in 

this project will take an empirical approach as recommended by the Department of 

Trade and Industry's (DTI) published guidelines3
.
1 and Hecht-Neilson's book 

Neurocomputing3
.
2

- Section 3.5. This will follow a discussion of neural system 

components, Section 3.3, and a review of artificial neural network solutions to signal 

processing and NDT problems, Section 3.4. 

3.2 ARTIFICIAL INTELLIGENCE (AI) STRATEGIES FOR SYSTEM 

MODELLING AND CLASSIFICATION 

Given the application description in Section 3.1, above, the problem becomes a task 

in pattern recognition and function approximation. A mapping must be made from 

the input pattern space representing the observables in the field tests to an output 

vector characterising the system goals. This mapping will involve stages of: 

1. Feature extraction: this stage involves the encoding of the raw data to a 

form suitable for processing. 

11. Feature selection: the reduction of the input space to those parameters 

salient to the problem solution. 

111. Classification: the heteroassociative mapping of these features to the 

required system output. 

I R. Stain & S. French (Testconsult Ltd), M. Kightly (TEST AL Ltd), and S. Kemp (Technotrade Ltd) 
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This breakdown, suggested by Schalkoff3.3, should be considered a guide for the 

sensible labelling of the various stages of pattern recognition tasks; it is not 

definitive. For methods based on Bayesian statistics stages (i) and (ii) may be carried 

out by the data acquisition mechanism3
.
4

. While for syntactic pattern recognition 

systems part (i) will be the preprocessing of the raw data into symbolic primitives 

and parts (ii) and (iii) will be defined by a rule base grammar, as described by 

Gonzalez and Thomason3
.
5

. For neural networks, preprocessing may include part(i), 

parts (i) and (ii), or neither ifthe raw data is presented directly. 

Rajagopalan and Kalyanasundaram3
.
6 identify non-destructive testing and evaluation 

as a prime candidate for AI applications due to the high degree of knowledge 

uncertainty associated with it. According to their definitions, the non-deterministic 

nature of sonic echo trace interrogation would make such an application a 'Level II' 

AI system. That is, a 'true' Artificial Intelligence system capable of interpretation 

through learning. Although they imply the generalisation and interpolation strengths 

of neural networks through the recognition of their ability to find acceptable 

solutions to frustrated classification problems (systems with no single ideal solution) 

no specific mention of networks as universal approximators is given. No 

comparison with other classification methods, other than fuzzy logic, is provided. 

The remainder of this section will review some of these techniques with emphasis on 

signal interpretation. 

The primary uncertainty intrinsic to this problem is caused by absent information. 

This leads to difficulty in modelling the system algebraically in a deterministic 

fashion. Whether a neural network, when used as a universal function approximator, 

is truly a system exhibiting artificial intelligence is a matter for philosophical debate. 

Certainly assumptions and generalisations are made during the computation process 

and it must induce an abstract rule base through training. The author does not intend 

to enter this debate, but states, while acknowledging other researchers' reservations, 

that for the purposes of this work a neural network is classed as an artificial 
intelligence system. 

3.2.1 Syntactic Processing and tree search algorithms 

In syntactic processing the data to be interpreted is encapsulated in symbolic form. 

This is particularly useful for systems where the interconnections of features 

describe important information i.e. the context in which a feature is found is 

important to its interpretation. In pattern recognition tasks the signal to be processed 
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is described by a series of simple shapes or 'primitives'. The primitive set can be 

considered a lexicon of the knowledge system and the rules that govern any 

subsequent processing, almost exclusively of the form 'if. .. then ... else', its grammar. 

This approach was applied to pile integrity testing by, Commerford et al. 2.59, as 

described in Section 2.7.7. Here the primitives are straight lines of measured incline 

and length that approximate the pulse echo trace from a pile head. The fact that 

straight lines are used means there is immediate loss in trace resolution and hence 

information content. Indeed the selection of primitive types is of primary 

importance. Rengaswamy and Vekatasubramanian3
.
11 note the necessity of a priori 

knowledge of the signal under investigation and propose a neural network system for 

the selection of an optimal primitive set. The context grammar is also defined 'by 

hand', that is it is programmed rather than generated through a process of automated 

induction This suggests either the system under investigation is deterministic or the 

defined grammar is unsound. It is known that this system is non-deterministic 

because of the uncertainty outlined in Chapter 2 and described by Rajagopalan and 

Kalyanasundaram3
.
6

. It must therefore be concluded that, as the piles' soil 

environment is not considered and no field tests applied, this system would not be 

effective in its primary purpose: to interpret sonic echo test data for in situ piled 
foundations. 

It is suggested that the above method could be improved upon through the more 

appropriate selection of primitives and the automated inference of the grammar rules 

- grammatical inference can be made through a variety of algorithms, as described by 

Schalkoff
312

. However, given that the intrinsic goal of the application, as already 

stated, is the mapping of one vector space to another, intuitively it would appear 

unlikely that any system produced would be comparable in its effectiveness with a 

methodology specifically developed for such a task. Syntactic processing is more 

usually employed in the type of knowledge based expert system (KBES) described 

by Yeh et al. 3.13 where it is used in the diagnosis of damage during the driving of 

pre-stressed concrete piles. 

Here 15 bounded symptom attributes are symbolically encoded for use by the KBES. 

For example the predicate 'hammer' may take the argument 1 if a smaller hammer is 

used, 2 for a medium weight or 3 for a heavy hammer. It is reported that these 15 

attributes and the rule base are defined in the PROLOG based system which suggests 

a 'closed world' first-order predicate calculus (based) unification strategy is then 

applied to instantiate the 12 unbound variables describing the causes of these 
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symptoms e.g. the 'hammer_heavy' predicate may become true so indicating the 

hammer energy is too high. 

The rule base, or grammar, in this example is inferred through the 'ID3 inductive 

learning algorithm' (Iterative Dichotomiser 33
.
14

). The method reports superior 

results to the 'expert interview' method of rule base inference - the 'hand made' 

method used by Commerford, but does not report its strength as compared to a 

human expert. A lack of flexibility in the knowledge representation is reported in 

that the careful selection of attributes and training data is of great importance, but no 

mention is made of the lack of flexibility in the system output. One might expect 

'concrete honeycombing' and 'poor strength concrete' to give similar symptoms, but 

the system as presented can only select one as its diagnosed cause. 

This lack of flexibility is due to ID3 classifying inputs in terms of discrete finite 

memberships. Thus there is no handling of uncertainty. ID3 first produces a 

postulated decision tree using a subset of th~ training examples and then refines it 

through exceptions in the remainder of this data set. This implied determinism 

means the system is highly dependant on the selection of training data and symptom 

attributes. It also means, as with most deterministic systems, it does not perform well 

with noisy data. 

The difficulty in deriving a suitable lexicon of primitives and the lack of uncertainty 

handling makes this methodology an unlikely choice for the interrogation of 

potentially highly complex temporal traces. All the remaining methodologies include 

intrinsic strategies for the management of uncertainty and nondeterminism. 

3.2.2 Probabilistic Classifiers 

One way of handling uncertainty is to consider the problem in terms of probability 

density functions (p.d.f.s). Probability based, decision rules for the classification of a 

d dimensioned pattern, J:, into a class, roi, are derived through the conversion of an a 

priori class probability, P(roD, into an a posteriori probability P(roi IJ:) using Bayes 

theorem, Equation 3.1. Where J: is the input vector to the system. 

(3.1) 

This leads to the partitioning of the measurement space, md
, through, so called, 

decision boundaries. 
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For parametric estimation the p.d.f. of the class-conditional distribution function, 

PC~ICOi)' is assumed (e.g. Gaussian or Uniform). The parameters describing this p.d.f. 

may be assumed as in the Maximum Likelihood3
.
7 case or derived as in Bayesian 

Estimators3
.
8

. The values assigned to these parameters are converged upon through 

training. Observed measurements belonging known classes are used with regression 

techniques to minimise a cost function associated with system performance. 

When the underlying class-conditional p.d.f. is unknown a nonparametric approach 

must be taken to describe its shape. Models for the p.d.f. are again estimated through 

learning and various approaches have been successfully applied e.g. histogram3
.
9 

(bin counting), Parzen3.8, 3.9 (kernel fitting) and k'h_NN3.8, 3.9 (nearest neighbour) 

methods. 

Bayesian probabilistic models have been used extensively for classification tasks, 

especially in the field of biological signal processing3
.
l o. However for 

heteroassociative, continuous, modelling, as described in Section 3.1, a number of 

problems arise. 

The dimensionality of the system is large. That is, dimensions of the input 

observations and required output (pile/soil descriptor), even with encoding, will be 

large. The number of observations (the size of the training set) with respect to the 

solution search space will, therefore, be a sparse representation of the system to be 

modelled. This means even if the training data represents a smaller localised area of 

the input space it can be reasonably expected that the p.d.f.s of the classification 

regions will be poorly defined. This problem is accentuated through the realisation 

that no a priori knowledge of the class-conditional p.d.f.s can be assumed and so a 

nonparametric approach would have to be taken. 

Secondly the system required is not essentially a classifier, but a black box model to 

map an observed temporal measure to a spatial description of the pile/soil system. 

That is, the interpretation of the signal must go further than the division of 9td into a 

number of decision regions. 9td must be continuously mapped to a second 

hyperspace the dimensions of which describe the pile/soil system. Also, the system 

to be modelled is neither a probabilistic nor stochastic process. It might be presented 

in a pseudo probabilistic form, e.g. class COi representing the probability of a fault at 

location i given a trace J:, but these classes would not be mutually exclusive and a 
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quantitative estimate of the degree of defect would involve secondary processing of 

a complexity comparable to the original problem. 

For heteroassociative vector mapping other methodologies, with ngorous 

mathematical proofs regarding their suitability to such universal function 

approximation tasks, are described below. 

3.2.3 Nonmonotonic and Fuzzy Logic 

Non monotonic reasoning is an extension of predicate calculus that can be 

summarised as a system of beliefs. Often referred to as possible world models, it 

allows rules of the form: 

IF there is a feature at time t THEN there is possibly a defect at location l. 

Essentially conventional propositional calculus is augmented, in the case of modal 

logic
3

.
15

, with two new operators. These describe a pro~osition as being 'possibly 

true' or 'necessarily true'. This feature allows a system's beliefs to change as 

evidence (knowledge) is acquired and discarded. However, for the problem 

described above the knowledge is static: it is the sonic echo trace and pile 

environment details. This method for handling uncertainty is more usually employed 

in knowledge representation systems involving autonomous agents where 

environmental variables change with time and so, therefore, must the agent's beliefs. 

Instead of introducing an operator allowing the predicate to take on a tentative truth 

assignment that can be retracted later, as in non-monotonic reasoning, another 

method allows the predicate to be assigned a numerical 'truth value'. That is a value, 

say, between 0 (false) and 1 (true) which is ascribed according to the evidence 

supporting the predicate. A predicate can thus be described by its corresponding 

degree of membership to a given set3
.16. The ability to map a predicate into many, 

sometimes contradictory, decision regions allows a blurring of the decision 

boundaries and leads to, so called, fuzzy sets. The logic that governs the inference 

from these sets is therefore known asfuzzy logic and made up offuzzy rules. 

Processing within a fuzzy system can be summarised as three stages: 

1. Fuzzification: the act of defining the degree membership of a input variable Xi 

to each available fuzzy set, A:fi, through a membership function JlAij(XJ. These 
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membership functions are often symmetric about a centre and monotonic on 

each side of this centre (e.g. Gaussian, triangular, or exponential). 

11. Fuzzy Inference: the fuzzy rule base can be written in linguistic form, 

Where X and Y are input and activation vectors respectively and Aj and Bj are 

fuzzy sets associated with rule j. These rules can then be combined through a 

variety of inference regimes3
.
17 to produce an activation value, Yj, which is also 

associated to a series of fuzzy sets with varying degrees of membership. 

111. Defuzzification: when all the rules in the fuzzy system ar_e evaluated the 

activation values, Y, are combined to assign a truth value to the output 

predicates. This usually involves the normalisation of the activation values, Y, 

which can then be used as evidence (weighted according to their individual 

membership values) for a gIven output, Zk, e.g. centre-of-gravity 

defuzzification3
.
17

. 

Clearly the assignment of degrees of truth to handle uncertainty adds a flexibility 

not found in predicate calculus or classical propositional logic. However, the 

addition of these terms requires the complexity of the inference method and rule 

base to increase to facilitate it. A great deal of recent research has therefore focused 

on the use of neural networks to offset some of this additional computation. 

Originally fuzzy concepts were incorporated into more conventional multilayer 

perceptron networks3
.
18 (MLP - see Section 3.4.3.1). More recently unification 

proofs have showrI the equivalence, given certain restrictions, of fuzzy systems and 

radial basis networks3
.
19

,3.20,3.21 (RBNN's). Given this functional equivalence and the 

need for more than the classification strengths offered by fuzzy systems the neural 

networks computational efficiency and function approximation through learning 

would seem more appropriate for the task described. 

3.2.4 Learning Networks 

3.2.4.1 The Biological Inspiration For Neurocomputing 

The human brain is a collection of about 1011 nerve cells (neurons) each connected 

to around 104 others. There are two main types of neuron: the interneuron, that is a 
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localised processing neuron with input and output connections of a limited range 

(~1 00 /lm), and the output cells that connect the regions of the brain. Although the 

physiology of the brain is complex and not fully understood superficially the 

workings appear relatively clear. Each neuron has a collection of nerve fibres, 

dendrites, and an axon which branches into strands and sub-strands. These strands 

are connected to the dendrites of other neurons, or direct to their cell body, through a 

chemical junction known as a synapse - Figure 3.1. 

At an instant in time the neuron accepts many inputs and combines them to attain a 

level of activation - being a chemical process the method of combination may be a 

complex, but is often modelled as a simple summation. If the level of activation 

reaches a threshold limit then the neuron 'fires' and transmits through its axon to 

other connected neurons. As each branch of the axon transmits across a synaptic 

junction it is this junction that determines the potential transfer to the receiving 

dendrite. Each dendrite can receive an input from many synapses and can be 

inhibited or excited by the connection. Hence the computational dynamics of the 

working brain is extremely complex. 

In practise, the massive parallelism of the brain's processing method is clearly more 

efficient for certain tasks than conventional, serial, techniques: a small child is better 

able to distinguish complex shapes or understand language than any computer yet 

produced. As the brain became better understood and modular electronic devices 

became more widely available so, therefore, attempts to mimic its processing 

method began. 

3.2.4.2 Artificial Neural Networks: A Definition 

As a formal answer to answer the question: 'what is a neural network?' the author 

quotes Hecht-Nielson from his celebrated book Neurocomputing3.22 . This definition 

gives greatest flexibility in the choice of activation function, pattern of connectivity 

and learning paradigm without compromising the basic premise of neural networks: 

their intrinsic parallelism through localised processing. 
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Definition (After Hecht-Nielson) - A Neural Network is a parallel, distributed 

processing structure conSisting of processing elements (which can possess a local 

memory and carry out localized information processing operations) interconnected 

via unidirectional signal channels called connections. Each processing element has 

a single output connection that branches (fans out') into as many collateral 

connections as desired; each carries the same signal - the processing element output 

signal. The processing element output signal can be of any type desired. The 

information processing that goes on within each processing element can be defined 

arbitrarily with the restriction that it must be completely local; that is, it must 

depend only on the current values of the input signals arriving at the processing 

element and via impinging connections and on values stored in the processing 

element's local memory. 

An Artificial Neural Network (ANN) is, therefore, a biologically inspired, adaptive 

data processing tool. It learns through training and may be capable of generalisation, 

interpolation and extrapolation. Like its biological inspiration its performance also 

degrades gracefully with respect to system damage. These ANN's are examples of 

Parallel Distributed Processing so called because the output of the system is 

dependent upon the 'state' and structure of the entire network, i.e. distributed, and 

any processing is therefore intrinsically parallel. The main components of an ANN 

are now described below. 

3.3 ARTIFICIAL NEURAL SYSTEM COMPONENTS 

3.3.1 Processing Units 

The basic building block of any ANN is the processing element. This is often 

referred to as a neuron through the analogy with biological systems, but to 

emphasise the large discrepancies between the biological neuron and its simpler, 

fabricated equivalent it is more usually labelled a unit. An artificial neural system is 

made up of a number of interconnected units each taking a series of inputs and 

combining them in a predefined manor to form an output. A unit may be described 
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as an input unit if it takes an input from the external environment, an output unit if it 

presents its output to the external environment or a hidden unit if it is limited to 

having connections only with other units. 

3.3.2 Activation State 

For a system ofN units the state of the network, at a time, t, is represented by an N 

dimensional vector, .a(t). Each element of the vector describes the activation value 

for a single unit. Hence the activation of a unit, Uj, can be written as aj(t) where 

iElnteger Numbers with 1 ~ i ~ N . It is the pattern of activation over all the units 

that describes what the system is representing at a moment in time. Activation values 

may be discrete or continuous: if continuous they may be bounded or unbounded, if 

discrete they may be binary or from a non-binary discrete set. 

3.3.3 Output Function 

Each unit, Uj, has an associated output which is transmitted to neighbouring units or 

the external environment. This output is a function of the current state of activation 

of that unit such that 

(3.2) 

where OJ is the output of unit i and.li is its output function. Often the output function 

is the identity function and so the unit output is equal to its activation. However it 

may equally be a threshold like function to more closely model the biological case or 

stochastic. Here the output is determined, non-deterministically, from a probability 

distribution function which, in turn, is dependent upon the unit's activation. 

3.3.4 Pattern of Connectivity 

Units are connected together through weighted channels. These weights are usually 

held in matrix form and describe the system's pattern of connectivity. Often it is 

assumed each connection to a unit simply provides an additive contribution to its net 
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input. The weight value between two units, from Ui to Uj, is labelled wji and is held in 

matrix W. The absolute value of Wji defines the strength of the connection while its 

sign signifies whether the connection is excitatory or inhibitory. In the general case, 

however, different types of channel may be treated separately and the pattern of 

connectivity becomes a collection of matrices. For example, the inhibitory and 

excitatory connections may be separated; each could then be processed 

independently by the receiving unit. The system would then need two weight 

matrices to describe its pattern of connectivity. It is, therefore, the pattern of 

connectivity that describe the networks topographical architecture, see Figure 3.2. 

3.3.5 Rule of Propagation 

The rule of propagation is the method by which the output vector, .2(t), describing 

the output of all the units is combined with the pattern of connectivity to produce a 

unit's net input. As mentioned above there may be a number of patterns of 

connectivity and therefore there will be the same number of net inputs to a given 

unit. For a unit Ui and pattern} the net input may be labelled netij, for a system with 

just one pattern of connectivity this is be reduced to neti. The more complex the 

patterns of connectivity, in general, the more complex the rule of propagation. All 

the systems considered in this research - and the vast majority in other research -

have just one pattern of connectivity and therefore one rule of propagation: the 

vector product of the output vector and the weight matrix, as given in Equation 3.3 

below. 

net (t) = W.2 (t) (3.3) 

3.3.6 Activation Rule 

The activation rule is the method by which a unit's activation is combined with its 

net inputs to produce a subsequent activation value. This takes the form of a 

function, F, such that for a system with m patterns of connectivity the new state of 

activation is given by: 
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(3.4) 

So for a system with a single pattern of connectivity the coupling between two units 

is described in Figure 3.3 (c.f. Figure 3.1). 

The most common types of activation function are those of the type: 

a; (t+ 1) = F (net; (t)) = F ( L mij OJ (t)) (3.5) 

and of those the most commonly employed are the Heaviside and linear threshold 

functions and continuously differentiable, monotonic, functions such as the sigmoid 

function, as illustrated in Figure 3.4. 

3.3.7 Learning Algorithm 

As shown above, unlike conventional techniques where complex instructions are 

executed in a serial fashion, in a neural network a number of simple processing units 

interact together in parallel to process data. It is the complexity of this interaction 

that enables convoluted problems to be solved. To hand pick the channel weights of 

these connections would necessitate the complete understanding of the problem to 

be solved which would imply a conventional, deterministic method would be better 

suited to the task. The strength of ANN's is that they do not require programming. 

The weight matrix evolves during a training period and learns how to perform the 

requisite task. 

It is often convenient to think of an ANN, therefore, as two coupled dynamic 

systems: one that given the problem alters the weights in an attempt achieve a 

suitable activation state and another that given the weights alters its activation state 

in an attempt to solve the problem. The various training paradigms and their 

associated network architectures will be discussed in detail in Section 3.4 along with 

their application to signal processing and structural testing. 
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3.3.8 External Environment 

Any neural system must exist within the context of an external environment. This 

environment is defined by Rumelhart et al.3
.
6o as the 'time-varying stochastic 

function over the space of input patterns '. In making this definition, therefore, the 

external environment is described from the ANN's perspective and includes 

everything outwith the neural network, as illustrated in Figure 3.5. Clearly, therefore, 

this external environment must accurately model the problem domain. That is, the 

pre-processed raw data, which will form this pattern space, must contain the 

necessary information for the network to fulfil its required task. The considered 

utilisation of preprocessing techniques can greatly improve network performance 

and so the selection of encoding strategies plays a significant part of the systems 

overall development, see Section 3.5, below. 

3.4 ANN's: THEIR APPLICATION TO SIGNAL PROCESSING AND 
STRUCTURAL TESTING 

Artificial Neural Network Systems can be broadly categorised into two classes: those 

trained using supervised and unsupervised learning. For supervised learning the 

training data is made up of input and output pairs. The availability of this target data, 

the required output for a given input, allows the network, potentially, to learn 

arbitrary vector mapping - assuming the training data is representative of the 

mapping required. For systems where the required output is unknown unsupervised 

training can be used to cluster the training data into statistically similar classes. 

Some of the more commonly used examples of these paradigms are now described 

with special emphasis on their application to structural testing. 

3.4.1 Unsupervised Learning 

Also known as self-organising networks, these ANN's have no defined output 

associated with their training. Instead the network must induce patterns and 
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categories within the input data for coding to output. Hertz et al. 3.40 have listed the 

generic applications of such a network as: 

i. Familiarity or Principle component analysis. Where the output of a network 

indicates the similarity between the currently presented input and those upon 

which it has been trained. 

ii. Clustering or Proto typing. Here the network may group the input patterns 

into statistically similar categories. In the latter case the output could be a 

standard archetype of the input's class. 

iii. Encoding. From consideration of the applications above it becomes apparent 

that if the output space is smaller than the input space a such a network could 

be utilised as a method for data encoding . 

iv. Feature mapping. Given a fixed, unary, output array an input pattern could be, 

effectively, 'demutiplexed' onto this array providing a topographical map of the 

input, i.e. statistically similar inputs would excite geometrically close outputs. 

As it appears the latter two applications are natural extensions of the first two the 

remainder of this section will review first the feature extraction and then the 

categorisation properties of the more popular self-organising networks. 

For feature extraction networks a Hebbian based learning paradigm3.3o is often 

employed. Here weights are altered during training as a function of the activation of 

the two units they connect. In plain Hebbian learning this means: 

(3.6) 

where a is a scaling constant known as the learning rate and is give a value between 

o and 1. As described in section 3.3.2, above, a is the activation for units i and}. In 

such a network the patterns presented most often during training will produce the 

largest output. However, without a constraint on I1w, it can be shown3.40 that.w: will 

increase continuously and will not converge on a stable state thus training never 

terminates. 
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By modifying the Hebbian rule for a single layer feedforward network with a single 

linear output unit Oja3
.
26 forced the weight matrix, Iwl, to approach 1 without the 

need of an explicit renormalisation step. Convergence is not guaranteed for this 

learning rule only the existence of a stable state solution where this solution is the 

first principle component of the input data. The first principle component is defined 

as the direction, in terms of input vector dimensions, of maximum variance within 

the input space with respect to the training set. That is, a principle component axis is 

derived that best 'spreads' the input data set. 

Oja3
.45 and Sanger346 both extended this paradigm for a feedforward single layer 

network with N output units to find the N principle components of a data set. The 

second principle component being the direction of maximum variance perpendicular 

to the first in the weight space. The third being the direction of maximum variance 

perpendicular to the first two - and so on. In fact, in general, the ICh principle 

component direction is the direction of the eigenvector associated wIth the ICh largest 

eigenvalue of the covariance matrix of the input data and if this data has zero mean it 

can be shown3
.40 that for Sanger's rule the weight vectors become exactly the first N 

principle component directions. 

The second generic application of self organising networks, categorisation, involves 

the clustering of inputs with statistically similar properties into classes. Often 

referred to as unsupervised competitive learning, the output units compete on a 

'winner takes all' basis such that only the most successful is active for a given input 

pattern. This method is often employed for data encoding. For example a large input 

pattern can be mapped to a unary output code to be used as a parameter in an 

artificial intelligence system or as a method for data compression. 

A simple single layer system used for such tasks is the Kohonen3
.
23 network. 

Statistically this network provides a method for vector quantisation. For a system 

where an N dimensional input is to be categorised into M classes the network 

architecture consists of N input units and M linear output units with a single weight 

channel going from each input to each output. The output units compete on a 
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'winner takes all' basis - the winner being the unit with the N-dimensional weight 

vector closest to the presented input pattern. During training3
.
12 the weights of the 

winning unit for a given pattern are increased to reinforce its association. However, 

the weights of units that are geometrically (topologically) close to the winning unit 

are also increased, but to a lesser degree, according to their distance away from it. 

Hence, geometrically close output units become descriptors of statistically similar 

classes. A number of refinements to this simplified version of the learning 

methodology are required to reduce convergence to local minima in the weight space 

and redundancy in the outpue.24, but categorisation using this scheme has proved 

successful in many areas3
.
25 such as motor controt3·26 and speech recognition3

.
27

. 

The problem domain for this application describes the mapping of an input space 

encapsulating the integrity test data to an output vector indicative of the pile's 

structure and environment. This continuous mapping cannot be applied directly 

using the above techniques. If the required application solution waS the classification 

of the input data into pass/fail groups then the clustering methods above could be 

utilised, however, this would still require expert interpretation of the failed traces to 

fulfil client requirements. Nevertheless the methods above could be employed for 

the automated parameterisation of the integrity test data for input to a further, 

interpretation, module. Their application to this task is discussed in relation to radial 

basis neural networks (RBNN) and counterpropagation networks in Sections 3.4.4.2 

and 3.4.2 respectively, below. 

3.4.2 Supervised Learning 

When the target output for a given input is known then the network is trained to 

model the association between the given input and output patterns. For this reason 

supervised training can be further subdivided into autoassociative and 

heteroassociative tasks. 

In autoassociative networks the system is required to reproduce its input pattern as 

its output. Although, this may at first appear a trivial task such networks are 

characterised by their complex activation dynamics. This is caused by their, often 
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near, fully connective topology. The philosophy behind these networks is that the 

dynamic system's structure can be altered through training such that its stable states 

correspond to the required patterns. As a consequence of this, subsequent to training, 

when an incomplete or noisy pattern is presented to the network the system's 

activation state will converge, in time (iterations in the discrete case), to the state of 

the training pattern that most closely resembles it. 

The patterns upon which the network has been trained effectively become 'stored' 

within its pattern of connectivity and the system's memory becomes content 

addressable. An example of a network capable of this nearest neighbour 

approximation is the Hopfield network3
.
39

. In its discrete form the Hopfield network 

is an autoassociative, nearest neighbour, pattern encoder that learns binary (or 

bipolar) spatial patterns using Hebbian learning. It is a fully connected system, that is 

all units are connected to all other units, with the exception of self connection. This 

system has been researched and applied in many fields including image processing, 

speech processing and pattern classification. The reader is referred to Simpson3
.41 for 

a list of over thirty references to such work. For fault diagnosis Barrios and 

Lemus328 have applied such autoassociative networks, including the Hopfield 

network, to the identification of faults in semiconductor manufacture. After 

production, a silicon wafer may contain a number of faulty chips. The geometric 

distribution of these faulty chips may contain a clue as to the manufacturing fault 

causing them. The neural systems are, therefore, trained using archetypal chip 

patterns of known classes of fault. When a wafer is then presented, post training, the 

network converges on this archetype allowing the identification of the fault process -

with a reported success rate of over seventy five percent in the prototype system. 

Autoassociative networks have been used extensively for the processing of noisy or 

incomplete data when a known number of limited states are required as described 

above. They would, however, be of little use for classifying a sonic echo trace 

where: 
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1. the size of the input space would necessitate a prohibitive number of network 

units. For a Hopfield network the maximum patterns that can be stored are of 

the order Nllog(N) where N is the number ofunits3
.
42

. 

H. the above system is discrete and linear - to employ the continuous, nonlinear 

(second order) version of the Hopfield network would produce a highly 

unstable system of extremely complex dynamics. 

HI. the concept of an archetypal training pattern from the sonic echo traces IS 

absurd as it is a continuous nonlinear system being analysed. 

Heteroassociative nearest neighbour classification can be achieved using layered 

networks such as the counter propagation network of Hecht-Nielsen3
.47. Here the 

input patterns are categorised by a Kohonen network of the type described above. 

The output from this network is then fed as an input to a layer of Grossberg 

instar/outstar3.48 units which decode it into the required output values. It effectively, 

therefore, acts as a look up table. However, it has the ability to handle uncertainty 

because the Kohonen layer forces the input of the outstar to be of a type it has been 

trained on. In fact, the resultant output of the network is the output of the training 

pattern that most resembles the presented pattern. A similar network has been 

applied by Travers3
.
49 in identifying, through nearest neighbour classification, the 

sound of a reinforcing wire snapping in a prestressed concrete pipe. 

The problem with nearest neighbour classification, as described above, is that 

because it acts as a content addressable memory no generalisation, interpolation or 

extrapolation occurs. The relationship between the input and output spaces are not 

learned - the patterns are. As a consequence of this, its successful application to the 

analysis of the continuous and large input space of this problem domain would 

appear unlikely. Research efforts are instead focussed on the heteroassociative 

function approximation networks described below. 

3.4.3 Heteroassociative Vector Mapping and Function Approximation 

Function approximation through neural computation is essentially an exercise in 

nonlinear black box modelling. With no assumptions being made about the physical 
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system being modelled the black box structure must be based on families of models 

that have proved successful for similar systems in the past3.50. 

For function approximation the networks most often employed can be subc1assed 

into feedforward (those without feedback) and recurrent networks (those containing 

feedback), see Figure 3.2. 

For feedforward networks the lack of feedback ensures the stability of the activation 

state for any presented input. For function approximation tasks by far the most 

researched type of network used is the multilayer family. The topology of such 

networks is summarised in Figure 3.2. Here each element of the input pattern vector 

is fed through weighted channels to each unit in the layer above until the final layer, 

the output layer, presents its output to the external environment; that is, there is 

maximal, feedforward, inter-layer connection, but zero intra-layer connection. There 

are existence proofs, for certain members of this family of networks, that 

demonstrate that any continuous function can be modelled given enough hidden 

units3.51 ,3.52. However, excitement about the consequences of these proofs must be 

tempered by the realisation that they do not consider the problem of deriving the 

pattern of connectivity through learning, i.e. the practicality of finding this system, 

and the ambiguity of the phrase 'given enough hidden units '. The application of such 

networks are described in more detail in Section 3.4.4, below. 

Recurrent networks are more usually used for continuous temporal pattern prediction 

tasks where the current state of the network is dependent upon the past states as well 

as the current input values i.e. non-Markovian systems. The network presented in 

Figure 3.2 is a partially recurrent network in that only its output is fed back to the 

system input to providing a contexl·38 for future outputs. By definition, however, 

recurrent networks allow for arbitrary unit connections3
.38. The complex dynamics of 

such networks have restricted its use to problems of signal prediction and control 

e.g. [3.53,3.54] where a continuous, unbounded temporal signal is to be analysed or 

predicted. Methods for minimising this complexity through the use of many smaller 

modular recurrent systems with time delay features such as the Pipeline Recurrent 

Neural Network (PRNN)3.55 have been introduced, but recent research by Mandie 
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and Chambers3
.56 suggests further insight into the system dynamics for this network 

type is still required. 

For the application under investigation the network input can be considered 

bounded. The length of the recorded trace and environmental parameters is finite and 

there is no need to process the data 'on the fly'. Even without parameterisation of the 

recorded trace the vector holding its time sampled values is limited in size by the 

physical range of pile lengths that can be tested. For this reason the research 

described herein concentrates on multilayer feedforward networks of the type 

described below. 

3.4.4 Multilayer Neural Networks 

For function approximation of static systems, i.e. those with no feedback, it IS 

assumed we have a relation described by Equation 3.7, below. 

(3.7) 

Where ~ can be considered the system output, J: the input and f is some a nonlinear 

function belonging to a given function space (e.g. continuous, integrable). 

Independent of J: the system is also assumed to contain a component of white noise, 

e. The problem then becomes: the estimation of a function, J, that is a 

nonparametric approximation off given the training data of input/output pairs. In 

other words 

(3.8) 

where 2 is an approximation for the output given J:. For the sake of practicality the 

function f is parameterised, hence it is an approximation, by a finite dimension 

parameter vector 1Jer following the nomenclature of Sjoberg et al. 3.50. This parameter 

vector then becomes a descriptor of the network topology, activation function, 

pattern of connectivity etc. and 3.8 can be rewritten 
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(3.9) 

For multilayer systems with a single hidden layer and a linear output layer we have 

j(!,T/d) = I wkgk (!) (3.10) 
k 

where gk are known as the basis functions3
.
5o and the parameterised function, j, 

becomes a function expansion. For nonlinear black box models a single, 

parameterised, 'mother basis' function is used and so 

(3.11 ) 

where, for example, a and b may be the centre and width parameters when F is a 

radial function. For functions of a ridge construction such as the sigmoid F takes a 

sin~;le parameter, b, often described as the function's temperature. This single layer 

model is illustrated in Figure 3.6(a). 

For multilayer systems, however, the output from the first layer can be fed into a 

second layer, whose output can, in tum be fed to a third, and so on - Figure 3.6(b). 

The question of how many layers to use in practical applications is more usually 

answered empirically through a comparison of system performance in a parametric 

study. Theoretical proofs exist, as mentioned above for sigmoid units, that a single 

layer of units can approximate a given, continuous function, arbitrarily well. 

However, Kurkova3
.
51 extends Kolmogorov's theorem to two hidden layers and 

provides an estimate for the number of hidden units necessary. One advantage in 

employing multiple layers of units is the potential reduction in the dimensions of the 

solution space of the network which, in turn, reduces the number of training patterns 

necessary to describe it. Morgan et al. 3.57 have shown how a linear superposition of 

sigmoid functions, a ridge function, can more accurately approximate 3-dimensional 

peak functions through use of a second hidden layer so indicating the potential 

usefulness of systems with multiple hidden layers. 
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The task of finding a suitable nonlinear black box model now reduces to the 

subtasks: 

1. Select the training set that accurately describes the function to be approximated 

in the areas of interest. 

11. Select the mother basis function - the activation function in neural network 

parlance. 

111. Determine the number of units to be used and their topology - the network 

architecture. 

iv. Determine the basis parameters of the activation function - a and b in the 

examples above. 

v. Determine the system weights to output - vector W of Equation 3.10. 

Task one is assumed and addressed, exhaustively, in Chapter 4 - Feasibility Study. 

For task two, historically, two functional basis have become prevalent for function 

approximation using neural networks: the sigmoid function and the radial basis 

function. Each will be described below with special reference to their respective uses 

in signal processing and non-destructive testing. A third, more recently developed 

network, the wavelet network is also described. As tasks three, four and five are 

dependent upon the chosen activation function, methodologies for their completion 

are also described, separately, in the sections below. 

3.4.4.1 Multilayer Perceptron (MLP) 

The term 'perceptron' was originally used to describe units with linear activation 

functions3
.3l. Indeed it is the title of Minsky and Papert' S3.37 book describing the 

limitations of systems made up of such units. However, it has since become 

recognised terminology for systems made up of units with continuously 

differentiable monotonic ridge activation functions (e.g. tanh, sigmoid) and so the 

author uses the phrase 'multilayer perceptron' in this context, with reservations. 
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During learning in these networks changes in the weight matrix, W, are made with 

respect to the effectiveness of the network performance. The most common forms of 

supervised learning are: error-correction learning, reinforcement learning and 

stochastic learning. 

Reinforcement learning and stochastic learning are more usually employed when 

there is no exact target data available, but less detailed information on the system 

performance is, e.g. in the extreme case simply whether the output is correct or not. 

Because the system's feedback is limited to a scalar value rather than a target vector 

no error gradient information is available and so a degree of randomness is necessary 

to enable a search of the weight space until an acceptable solution is found. This is 

usually achieved through the use of stochastic units e.g. Williams3.43 or stochastic 

weight training e.g. simulated annealing described by Hinton and Sejnowske.34. For 

systems where the required output is known (e.g. the pile profile) error-correction 

learning is almost exclusively applied. 

In error-correction learning the weights between units are adjusted in proportion to 

the difference between required and computed values of each unit in the output 

layer. The general equation for such a learning rule is therefore given as: 

(3.12) 

Where ~(()jj is the change in weight value from unit Uj to unit Uj, aj is the activation 

of unit Uj and (YJ - y) is the difference between the target and measured output of 

unit Uj. a is a scaling constant known as the learning rate and is give a value between 

o and 1. 

Original work carried out by McCulloch and Pitts3.3), Widrow and Hoft32, and 

Rosenblatt3
.
3

) used linear activation units and were therefore limited to a single layer 

systems because of the so called credit assignment problem. Specifically this meant 

it was not possible to calculate the contribution to the system error of a unit in a 
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hidden layer. Hence its associated error could not be used in Equation 3.12. Minsky 

and Papert3
.37 proved how the limitation of the single layer systems, in turn, meant 

that the system suffered form the linear separability constraint. That is, the networks 

could only solve problems that were linearly separable in the solution space. 

Rumelhart, Hinton and Williams' back propagation algorithm3
.
35 (BP) extended 

Widrow's o-learning rule, Equation 3.12, to the general case. The BP algorithm 

works for layered networks with continuously differentiable, monotonic activation 

functions such as the sigmoid function of Figure 3.4. This allows, the error 

associated with a given output to be affiliated with weights at lower levels in the 

system so offering a solution to the credit assignment problem. It is this form of 

network that has been used in the majority of heteroassociative problems in the last 

ten years. 

In BP learning an attempt is made to minimise the error in the output of the system 

for the data in the training set. This is done by changing the weights in proportion to 

the effect this alteration will have on the pattern error, (3.13) 

b'E 
!::,.w. =-a--

IJ b' w ij 

(3.13) 

again a is the learning rate and takes a value between zero and one. Its optimum 

value is usually found through a parametric study - too low and the weights take a 

long time to converge and are more susceptible to lo~al minima convergence3.58 , too 

high and the system units may suffer from premature saturation3
.
59

. The pattern error, 

E, is usually taken as the Euclidean error, (3.14). 

E = -~ I(Yj - yJ2 
J 

(3.14) 

where Y j is the target output and y j is the observed output estimate for unit j. 
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Equation (3.13) can be rewritten using the chain rule as Equation (3.15), below. 

o E = 0 E 0 y; 0 net; 
o Wu 0 y; . 0 net; . 0 Wu 

(3.15) 

Using a summation definition of netb see Section 3.3.5: rule of propagation, from 

Equations (3.13), (3.14) and (3.15) the weight update rule for a pattern, p becomes 

(3.16) 

where OJ is the output from the unit feeding into the weight and () is the error 

associated with the unit in the layer above. For output units this error is the output 

error of the unit scaled by the differential of the activation function, F', the second 

component of (3 .15), as shown in equation (3.17) 

(3.17) 

However, for hidden units there is no target or required outputs so the errors from 

the layer above are fed back through the weights to give the unit an error value 

consistent with its contribution to the pattern error. This means a hidden unit's error 

is described by Equation (3.18), below. 

5/p) = F'(net/p)) I5k (p)Wkj (3.18) 
k 

Where the k units are those in the layer immediately above unit j. So a learning 

algorithm has now been described which, as the training set is repeatedly cycled 

through, changes the weights in such a way as to minimise the system error. 

However, it should be noted that there is no guarantee of convergence to an optimum 

weight matrix using this method. The weight space through which the network 

evolves to its final state is full of ravines and basins of stable states from which the 

network cannot descend to the optimum solution; these are the so called local 

minima, which are to be avoided so the network can evolve to its global minimum. 
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The problem of local minima can be reduced through the appropriate selection of 

starting values for W 3.58 or the introduction of a momentum term to Equation 3.13 

thus 

b'E 
L\W/t l = -a --+ A,L\w (t -1) yl'/ b' y 

wi/ 
(3.19) 

The weight update rule now becomes also a function of past updates and has the 

effect of accelerating long term trends in the training data. This makes the weight 

update less sensitive to noise in the test set and can help pull the weights out of local 

minima. Again, values range between zero and one and are usually found through 

parametric studies, but a value approaching 0.9 is often quoted3.42 . 

The function approximation abilities of the multilayer network have been used in a 

diversity of applications. In the field of signal processing much research has been 

done in the areas of sonar and radar decoding, a survey of which has been carried out 

by Roth3
.
61

, and in natural language processing such as the well documented 

NETtalk system of Sejnowski and Rosenberg362
. 

In the field of damage location Worden et al. 3.63 have used multilayer ANN'S to 

detect failures of members in large frame structures using strain gauge information. 

Wu et al. 3.64 have attempted to perform similar tasks by training an ANN to decode 

the spectral response of a structure to a geological tremor. In both these examples the 

networks have been trained to identify the failure of simple frame structures using 

experimental and finite element generated data. The extension of these laboratory 

models to the 'real world' would involve the accurate mathematical modelling of 

large scale heavily damped structures under dynamic, environmental loading. These 

issues are not addressed. However, as an academic exercise, Worden et al. draw 

some conclusions pertinent to this research. Specifically: (i) faults in an 

experimental model can be identified using a neural network trained on finite 

element generated data and (ii) the network must be trained to identify nOIse 

corrupted data i.e. networks trained using finite element results can become too 

sensitive and so lose effectiveness when presented with noisy data from the 'real 

world'. 
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In the area of sonic echo testing the work of Pratt and Sansalone3
.
65

, and Begum and 

Chamberlain3
.
66 have suggested that a void in a concrete slab can be located using a 

normalised spectrum of its impact response. Both methods use finite element 

modelling to provide the training data for a, back-propagation trained, multilayer 

neural network with one hidden layer of units with sigmoid activation functions. 

Begum and Chamberlain give a limited description of the topology of the network 

and system performance. Pratt and Sansalone give the network topology as 150 input 

units, 30 hidden units and 11 output units. In both cases the output units provide a 

single unit indicating the likelihood of a flaw, given the presented data, and the 

remaining units show the approximate depth of that flaw. For Pratt and Sansalone 

this is given as an array of probabilities of a flaw at 10% , 20%, 30%, etc. of the 

slab's design thickness. For Begum and Chamberlain the output is effectively the 

same, except they label the outputs as the probability of a flaw at normalised depth 

ranges. In both cases the propagation velocity of the stress wave is assumed so 

allowing the depth associated with a frequency to be calculated from Equation 3.20, 

below (c.f. Equation 2.25). 

C 
d(q) = p 

2· j(q) (3.20) 

Where cp is the stress wave propagation velocity and j(q) is the frequency in the 

response spectrum associated with the depth, clq). The spectral amplitudes are then 

presented to the network as a function of associated depth divided by the design 

depth, hence normalised spectra, rather than frequency. 

Of primary concern in evaluating both these papers is the size of the weight space, 

and so the systems solution space, with respect to the number of training patterns 

being used to describe it. While the exact topology of and Begum and Chamberlain's 

network is not provided, given its description, it can reasonably be assumed to be of 

the order of Pratt and Sansalone's. That is, 150 input units and 30 hidden units. 

Even if the input units' value was bound between zero and one with a zero point one 

resolution the bounded region 91 150
, the input space, would take 10150 observations, 
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or training patterns, to describe completely. Begum and Chamberlain describe their 

number of training patterns as 'limited' while Pratt and Sansalone report two 

hundred patterns being used - the description of the pattern space is, therefore, 

necessarily sparse. The networks described have an enormous capacity for pattern 

learning and great care must be taken to ensure they do not overtrain; that is, they 

learn the input-output relationship for each pattern 'parrot fashion' rather than 

learning the general rules governing the mapping from the input to the output space. 

Essentially the network then becomes a content addressable memory, as described 

above. Usually, the method used to ensure overtraining, or overfitting as it is 

sometimes referred to, has not taken place is to withhold a proportion of the training 

data and use it as a test set. The system performance can then be quantitatively 

evaluated through previously unseen data. 

U sing this method Begum and Chamberlain report the average success of the 

network at detecting flaws of a given depth. These results suggest the network has 

been successful in finding a fault's position through function approximation of the 

systems impulse response. However, no indication ofthe variance ofthese means are 

given and so the network's effectiveness for a given pattern cannot be fully 

evaluated. 

Pratt and Sansalone do not use this method as they report it as being unreliable. 

However, no alternative method has been suggested, instead the authors appear to 

allow the training patterns to be altered to ensure the networks effectiveness in fault­

finding. While this allows the extraction of patterns that cannot be defined due to 

test method limitations - the example of faults near the slabs' top surface when a 

hammer producing a pulse with too long a rise time is quoted - this is in no way a 

measure of the networks effectiveness. Instead it would appear to be an empirical 

method for evaluating the test method's effectiveness - the networks' effectiveness 

being assumed. It is also apparent from the quoted results that the probability of a 

fault being present is inferred by the network from the presence, or otherwise, of a 

reflection from the expected position of the slab base (c.f. Figure 9 in their paper3
.
65

). 

This network would clearly not be robust enough to detect faults in systems where 

the base reflection cannot be predicted with any degree of accuracy. For example the 
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reflection from a pile toe where accuracy of the order of 10% can be achieved at 

best. 

A reduction in the input space of such a neural network can be achieved through 

presenting the fundamental modes of vibration from an impact test rather than the 

entire spectrum. Kirkegaard and Rytter have successfully used this encoding method 

in an attempt to locate and quantify cracking3
.
67 in a small steel member. However, 

the extension of these laboratory systems to industrially useful applications involves 

the careful identification of the task expected of the neural network and collation of 

training data representative of the system to be modelled both in terms of quality and 

quantity. 

In the sphere of geotechnical engineering Goh has shown the applicability of neural 

systems in modelling nonlinear relationships3.68. Specifically two e~amples were 

provided: the prediction of ultimate bearing capacity of a square footing in sand and 

the ultimate shear strength of a deep reinforced concrete beam. Both were 

unremarkable in that the network was trained using data known to give good 

approximations to laboratory tests using derived mathematical formulae. However, 

as a feasibility study the work illustrates the ability of a feedforward multilayer 

network to model these known nonlinear relationships using function 

approximation. 

Chan et al. 3.69 have attempted to use a multilayer network with one hidden layer to 

predict the static bearing capacity of a driven pile from parameters measurable 

during pile driving. The required output of the system is the static bearing capacity 

derived using the CASE and CAPWAP methods described in Section 2.4.2, but 

using just three input parameters as used by the simplified Hiley formula, namely: 

the measured driving energy transferred to the pile, the pile set, and the elastic 

compression of the pile and soil. The hope was that using these three measurable 

parameters a neural network could infer an approximation of the ultimate bearing 

capacity as accurately as the CASE and CAPW AP method without the explicit use 

of their esoteric damping parameters. 
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Unfortunately these researchers only had sixty eight data sets with which to test and 

train the network. Inevitably overtraining of the system is reported and, as the data 

sets are taken from only two sites, conclusions on the method applicability in general 

are impossible. However, even when training is stopped as the test data error begins 

to increase, i.e. when overfitting starts, the test set give a lower mean pattern error 

than the training set. It would at first appear that the network 'knows' more than it 

has been taught. But from a comparison of the network results with the 

CAPW AP/CASE calculated results it becomes apparent that there are a number of 

results with very large (~20%) errors. While there are only two of these spurious 

results in the test set there are eight in the training set - hence the larger mean pattern 

error in the training set. In fact, the simplified Hiley formula produces an equally 

large error for many of these same input patterns and so it becomes apparent that this 

is an example of a network where there is inadequate information to allow it to learn 

the required mapping. The presented parameters fail to encapsulate the data 

necessary for the network to statistically model the physical system and so make an 

accurate function approximation. This research, therefore, illustrates the importance 

of the sensible selection of network input parameters. If the input space is too large 

with respect to the training set size overtraining occurs. However, if it is truncated to 

the extent that its information content is compromised the problem may become 

intractable and the network will not be able to learn the necessary mapping. 

Finally, in the only example found of the application of neural networks to integrity 

testing of foundation piles Yeh et al. 3.70 have augmented the system described in 

Section 3.2.1 to include neural processing. Again the KBES is to derive the reason 

for a faulty prestressed pile installation from a set of symptoms. This time, however, 

eighteen symptom predicates - for example 'cracking occurred one side of the pile' -

are given a value one (true), minus one (false) or zero (don't know) and are used as 

eighteen inputs in a multilayer feedforward network with a single hidden layer, also 

with eighteen units, but with a sigmoid activation function. There are twelve linear 

output units one for each of the previously described causal predicates - e.g. 'driving 

in very hard rock or soil'. The network is, therefore, taught to identify the reason for 

the failure of the pile driving attempt using 120 training and tested using 120 test 

patterns. Given the large number of units and therefore weight space it would appear 
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surpnsmg at first that the issue of overtraining is not addressed, however on 

inspection of the test and training data it becomes apparent that the decision 

boundaries being derived are remarkably consistent and so interpolation and 

generalisation is not required of the network. The network is not being asked to 

handle the uncertainty in the input data. Instead when a network has input values that 

are unknown (i.e. given the value zero) their effect on the output is exhaustively 

tested by iteratively testing all those inputs with values of minus one and one, so 

ensuring the derived cause does not change. This methodology does not, it appears, 

consider the combinative effect of the unknowns and it would seem to negate the 

whole point of using neural networks for handling uncertainty. Given the reasonable 

consistency of the problem space decision regions and the low number of input 

predicates and output classes it is reasonable to suggest that a fuzzy logic approach 

would be better at handling uncertainty in the input data rather than the repeated use 

of a multilayer network. If a neural network is to be used there are many 

architectures more suitable to such a task. For classification the Hopfield and 

Counterpropagation networks described in Section 3.4.2 have been applied 

successfully to a number of similar problems. They would negate the need for 

repetitive use of a network with static dynamics by converging on the best fit, 

nearest neighbour, solution. 

A number of practical issues pertaining to this paper also need to be address. 

1. It is not true in the general case that F '=0(1-0) where F' is the differential 

of the activation function and 0 is the output of a unit with activation 

function F, as suggested in equation (4). This is only true of the sigmoid 

activation function used in this case where 

00 = 0 = 1 (1 - 1 J = 0(1- 0) 
onet 8net 1 + exp -net 1 + exp -net 1 + exp -net 

(3.21) 

11. Strictly, it is not true that ' ... learning results are not affected by initial 

network weights ... '. The reason initial weights are given small values is to 
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prevent the net input to a hidden unit being high at the start of training so 

forcing an output from that unit's saturated region. This would result in a 

very small gain term (0(1-0) for sigmoid units) and greatly inhibit 

learning. Effectively, premature saturation would be induced at the start of 

training. The reason initial weights should be random is because the 

feedforward networks cannot break symmetry; that is, if all the weights are 

the same, the same error will be back propagated to each hidden unit and 

the weight update for each channel leading to a given unit in the layer 

above will change by the same amount - hence these weight values will 

always remain the same. Consequently the selection of suitable values for 

the initial weights is considered of great importance when designing a 

network - see Wessels and Barnard3
.
58

: 'Avoiding False Local Minima by 

Proper Initialization o/Connections '. 

Given the evidence of the MLP's track record in a multitude of problems involving 

to temporal signal processing and, indeed, structural analysis it reasonable to predict 

that its function approximation strengths may be utilised for the interpretation of 

sonic echo test traces. However, it is recognised that multilayer networks with 

alternative, radial, activation functions may be better suited to the task. Two such 

systems are described, below. 

3.4.4.2 Radial Basis Neural Networks (RBNN) 

Instead of a function asymptotic to its maximum and minimum values as its input 

tends to ±oo, such as the sigmoid and tanh functions used above, Moody and 

Darken3
.
71 suggested localised function as an activation function. Specifically they 

used a normalised Gaussian activation function of the form described by Equation 

3.22 for the hidden units. 

(3.22) 

Where J: is the input vector, and unit i gives a maximum response as the input vector 

approaches the centre of the activation function £. The variance of the Gaussian, 0", 
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describes the receptive field of the unit activation3
.42 and is often referred to as its 

width. 

These radial basis neural networks (RBNN) , as they are known, take less time to 

train than MLP networks and are better at modelling nonlinearities due to the 

compact nature of their activation function3
.
t
• Girosi and Poggi03.s2 have also 

provided a proof suggesting Gaussian functions of radial argument can be used to 

approximate, arbitrarily well, continuous functions. They further state that, because 

this proof is derived from regularisation theory, this approximation can be 

considered a best approximation and unique. As this is not something that can be 

claimed by MLP networks with sigmoid activation functions, they conclude, RBNNs 

should be more suited to function approximation tasks. Essentially this means that 

for a given RBNN there exists a unique set of parameters (centres, widths etc.) that 

best approximate the function being modelled - this cannot be said to be true of the 

MLP. 

Although empirical evidence3
.42,3S7 also suggests that an arbitrary function can be 

approximated using one hidden layer in RBNN s rather than the two required in 

MLPs there are a number of practical difficulties in implementing such a network. 

The first is a consequence of the localised nature of the activation function: the 

number of hidden units required for a given task expands exponentially with respect 

to the number of input units. This means such networks are not well suited to larger 
applications3

.
t
• 

There is also the difficulty of selecting the centres and widths of the basis functions. 

The centre values are more usually derived using conventional, unsupervised, 

learning methods such as Kohonen's vector quantisation method3.42. The widths can 

then be ascribed values proportional to the density of other centres in that region. As 

with all unsupervised learning there is the consequential problem of knowing when 

learning is complete and whether the weights accurately describe the p.d.f. of the 

input space. However, once these values have been ascribed the weights from the 

hidden layer to the output layer can be found reasonably easily: either through. a 

pseudo inverse method, if the output units are linear3
.
t
, or through conventional 

gradient descent methods3
.
42

, as described above. 

Given that it is transient features within the sonic echo trace that correspond to finite 

changes in acoustic impedance along the pile length it is possible that the localised 
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nature of the radial basis activation function will improve system performance when 

compared to MLP networks. However, such a network will require a high degree of 

encoding to reduce the dimensions of the input space. This will potentially lead to a 

reduction in the information content of the presented pattern. As the relative 

effectiveness ofRBNNs and MLP networks cannot be predicted through theory both 

must be compared empirically. This can be achieved through the direct contrasting 

of relative system performances - as reflected in the (UK's) Department of Trade 

and Industry's case study examples3.1 
• 

3.4.4.3 Wavelet Basis Neural Networks (WBNN) 

In the previous sections two multilayer networks and their associated activation 

functions have been introduced. The sigmoid unit, where the pattern space is 

regionalised by the superposition of series of hyperplanes, and the radial basis unit 

where the same pattern space can be divided using hyperellipsoids. It has been 

pointed out that, although empirically successful, the theory for MLP's does not 

suggest how many hidden units to use and the initialisation procedure of small, 

random weights leads to slow early learning and the possibility of converging on 

non-optimum local minima. This is overcome, to some extent, when radial basis 

units are used. Here, the centres of the Gaussian functions are determined through 

vector quantisation methods. Still though the functions' widths are determined on an 

ad hoc basis - usually through looking at the training points' density around these 

centres. A more effective solution may be to employ a functional basis that has been 

better described theoretically so providing a better understanding of the working of 

the neural network. Such a basis is found in wavelet theory and its application to 

neural networks was suggested, independently, by a number of researchers [e.g. 

3.72,3.73]. 

The wavelet transform, as it is presently known, was first introduced by Grossmann 

and Morlet in the early 1980's3.74,3.75. For an one dimensional signal, the continuous 

wavelet transform takes the form of the two dimensional unfolding of the signal into 

a time-scale half plane where the wavelet coefficient, Wa,b, represent the inner 

product of the signal with an analysing wavelet, \/" at location 'b' and dilation 'a'. 

This function is said to be a wavelet if it satisfies the admissibility condition: 
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r l~(lUldlU = f 1~(lU)12 dlU = C < +00 
lU la, IlUl '1/ 

(3.22) 

In practice this condition implies that the mean component of the wavelet is zero. A 

formalisation of conditions of wavelet legitimacy can be found in Grossmann et 

ap·76. The function is normalised so that the energies of wavelets of differing 

dilations are conserved. Hence the dilation of \!lex) by 'a' and translation of 'b' is 

defined as: 

1 (x - b) 
If/a,h(X) = Fa If/ -a- (3.23) 

And the wavelet transform coefficient Wa,b as: 

where - denotes complex conjugate 

(3.24) 

It can be shown3
.
77 that the signal can then be recovered from: 

1 f<Xl [<Xl ( \..] da f(x) = - wa blf/a b X pb-2 C <Xl" a 
If/ 

(3.25) 

From 3.25 it then becomes apparent that any continuous function can be recovered 

from the reconstruction of a series of wavelet functions, and in its discretised from 

Equation (3.25) and be rewritten in the form of an approximation network: 

N 

f(x) = LlV;v;(a;(x-bJ) (3.26) 
;=1 

where If/() is the mother wavelet function, ai are the dilation parameters, ti are the 

translation parameters and Wi are linear weights. The dual indices have been replaced 

100 



by a single one for simplification and N is the number of wavelets used for the 

approximation (c.f. Equation 3.11). The accuracy with which the function, f, can be 

approximated is, therefore, be dependent upon the number of wavelet units, N, and 

the ability to find the parameters Wi, ai and bi. 

Equation 3.26 is a one dimensional wavelet network. To generalise it to the 

multidimensional case, that is, to form a network capable of approximating functions 

in L2(mn) where n is the dimension of the input space, a direct product form of the 

network was introduced3.72
• However, because the nonlinear computation in each 

unit, for this network, is directly proportional to the dimension n the number of such 

operations are much larger than in the sigmoid equivalent. Zhang3.78 then suggested 

the extension of 3.26 using radial wavelets thus 

N 

f(x) = LW;If/{diag{aJx-bJ)+cTx-tB (3.27) 
;=1 

where () is a bias term and cT is parameter added to capture more easily the linear 

characteristics of the system being modelled. In practice, however, this 'cascade' 

term, known as the direct linear combination parameter, is often ignored3.79,3.80,3.81. 

As well as having the advantage of an activation function compact in both spatial 

and spectral domains using radial wavelet networks allows an estimate of vectors ai 

and bi to be made and the number of wavelet necessary for a given 

approximation3.79. Thus the network can be initialised in a non-random fashion. 

Essentially this initialisation takes the form of three steps3.78. 

1. Search the input training patterns to find the truncated subset of m applicable to 

the approximation i.e. the values of,K are, presumably, bound and so there is no 

need to search all ofm for values of a and b. 
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11. Reduce this subset by excluding wavelets with support not containing any data 

points in the training data - these will not contribute to the approximation of 

function,j 

iii. Obtain an near optimum subset of N wavelets from the remaining superset to 

approximate the function j 

The third of these initialisation processes is a constructive, iterative, method known 

as stepwise selection by orthoganalisation. Essentially, firstly, the wavelet best 

approximating the function f is selected. Next the wavelet best approximating it in 

conjunction with the first is selected. Then the one best approximating f with the 

first two, and so on until N wavelets have been selected. An orthoganalisation step 

between each choice ensures a wavelet is not picked when its ability to discriminate 

is already encapsulated by a previously selected wavelet. It is possible to stop this 

iterative process when an error threshold is reach so the number of hidden units N is 

found automatically. These parameters can then be fine tuned using conventional 

gradient descent methods - see Section 3.5, below. 

Although the study of wavelet networks is in its infancy they have been successfully 

applied to problems in nonlinear time series prediction3
.
81 and controe 80. The author 

has shown, in previously published work, how filtering sonic echo traces in the 

wavelet domain has improved signal clarity when compared to conventional Fourier 

techniques3
.
82

,3.83. It is reasonable, therefore, to suppose that using wavelet methods 

to identify regularity in the pattern space might improve network performance. 

3.5 Learning Systems' Functional Equivalence 

The uncertainty handling abilities of MLP networks have been used for the inference 

of fuzzy set membership values since the early 1990's [e.g. 3.20]. However, Jang 

and Sun384
,3.85 showed that, give certain strict conditions, there is an equivalence 

between Radial Basis Neural Networks and Fuzzy inference systems with Gaussian 

membership functions. Zhang3
.
79 has pointed out that radial wavelet networks can be 

considered a Radial Basis Neural Network and Morgan et al. 3.57 have shown 
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experimentally how an MPL network with two hidden layers of sigmoid functions 

can 'mimic' a Radial Basis Function Neural Network. 

Given this evidence of system equivalence Sjoberg et al. 3.50 produced a 

comprehensive overview of black box modelling describing the generic 

methodology of function approximation using multi-variable basis functions. The 

choice of basis function (e.g. sigmoid, radial, wavelet etc.) was considered and 

various regression techniques described. The functional equivalence insinuated by 

this paper is explicitly stated through the introduction of a unification algorithm by 

Reyneri
3

.
21 

who describes all networks in terms of weighted radial basis functions 

(WRBF's) as well as the usual network topology, see Equation 3.28 below. 

(3.28) 

Where £. is the system output vector and is a function of: 

X : the input vector 

C: a centre matrix e.g. centres for RBNNs, locations for WBNNs 

W: a weight matrix e.g. weights for sigmoid units, dilation for WBNN's 

fi: an optional bias vector (as used in MLP's) 

and 

F(z): the activation function of the units 

The value n is the units' metric and is used to describe the network's rule of 

propagation i.e. how the units' inputs are combined to produce an output - see 

Equation 3.29, below. 

for n = 0 

(3.29) 

for n ;j: 0 

where the distance function, Dn, is given by 
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(3.30) 

One can see immediately how a function described as Equation 3.31, below, is the 

equivalent of a MLP network with a single hidden layer. Here there are no centres to 

consider, i.e. (:=0, and the unit metric, n, is zero. Hence FI is the sigmoid function 

of the hidden layer and F is the linear output function with Wand () representing the 

weights and biases to the hidden and output layers. 

(3.31) 

Similarly, radial basis function networks and radial wavelet networks, called 

wavelons in this paper, can be described using this model. 

The advantage of considering the different networks in this generic way is the added 

functionality it allows. Unlike conventional MLP's this model allows each hidden 

unit to take a bias for each input (by allowing a centre matrix C) instead of single 

unit bias 9. This has the reported effect of accelerated learning and reducing the 

probability of getting stuck in local minima. When considering this claim it should 

be noted that, through simple linear algebra, any combination of these multiple 

biases can be shown to be the equivalent of a single bias. This is because, for the 

MLP, the activation function involves a simple summation of the weighted inputs. 

By assigning a weight matrix to radial basis functions a this paper also provides a 

method for automatically converging on near optimal values for the width of the 

Gaussian function. This learning paradigm takes the form of a gradient descent 

method and parameter changes are given as Equations 3.32-3.34, below. 

(3.32) 
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/>.0, = -a, ·OJ .F'(Zj) [ n(::Y ] (3.33) 

Mj' =-a<o ·OJ T(z) [ n(::Y lWl' .[n.D"jx, -cl').sgn(x, -cj,)] 

(3.34) 

where the parameters a are the appropriate learning coefficients and Zj is the 

argument of the activation function, F. As with the back propagation algorithm of 

MLP learning () is the unit error and is defined as: 

(3.35) 

for output units,}, c.f. BP learning, above. 

(3.36) 

for hidden units,}, where units i are in the layer above. 

For the special case n=O the terms inside the square brackets disappear and one can 

see how, for MLP learning, the above equations resolve to the standard back 

propagation (BP) algorithm of Equations 3.13-3.18. This training paradigm also 

gives a method for training radial wavelet networks following the initialisation 

described in Section 3.4.4.3. 

While it is recognised that this learning methodology may give superior results to 

conventional training methods for Radial Basis Neural Networks it is considered 

prudent to employ the methods described in Section 3.4.4.2 as well as this more 

novel approach in an attempt to find the optimal network for the given application. 

Due to the publication of the methodology being so recent, no empirical 

comparisons of the two approaches have yet been published. 
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3.6 APPLICATION DEVELOPMENT METHODOLOGY 

The methodology framework for the research carried out in this project is based on 

that recommended for commercial neurocomputing projects by Robert Hecht­

Nielsen in his book 'Neurocomputing,32. His project plan subdivisions are 

summarised in Table 3.1, below. Beside each task is an evaluation of its applicability 

to non-commercial research projects and, for those that are relevant, the section of 

this thesis where it is discussed. 

The project definitions and goals are determined at the start of this chapter. 

However, these have only been stated after a rigorous description of the problem 

domain: that is, sonic echo integrity testing of cast in situ foundation piles. This 

description has taken the form of a market analysis in that , as well as a review of 

current test methods, industry has been contacted directly in order to ascertain the 

most useful direction any research should take, see Chapter 2: Industry Survey. 

Table 3.1 The eleven aspects of a business plan pertineht to a commercial 

research venture (after Hecht-Nielsen3
.
2

) and their applicability to a non­

commercial research project. 

Business Plan Development Applicability to non 
Subsection (Hecht-Nielsen) commercial research 
Proiect Definition .t Section 3.1 
Goals .t Section 3.1 
Technical Feasibility .t Chapter 4 
Market Analysis .t Research to be industrially 

relevant (Chapter 2) 
Development Plan .t Chapter 3 (particularly 3.6) 
Marketing and Sales Plan X No Sales 

Production Plan X Prototype only 

Organisation and personnel X No other personnel 

Schedule .t Gantt chart of predicted 
time scales 

Budget X Grant funded 
Financing and Ownership X EPSRC Grant Funded 
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The technical feasibility and system development plan for this research has broadly 

followed the recommendations of the UK's Department of Trade and Industries 'best 

practice guidelines for developing neural computing applications ,3.1. 

Effectively the three subsections of application development that are described 

below, and summarised in Figure 3.7, are the next four chapters of this thesis: 

Feasibility study, Hardware and Software Development, Application Development, 

and Field Testing. 

3.6.1 Application Identification and Feasibility 

The factors indicating the potential advantage of a neural computing application over 

other, conventional, computing technologies are given as3
.
1

: 

1. the application deals with poor or incomplete data 

11. the application requires integration of different types of data - e.g. site 

investigation (environmental) data and sensor signals 

iii. it is difficult to specify a mathematical model that accurately describes the 

system 

IV. the application needs to be adaptive - i.e. the necessity of learning during 

operation 

Given that the project definition stated in Section 3.1 fulfils the first three of these 

'positive pointers' it is reasonable to suggest that a suitable system for neural 

computation has been identified. 

The feasibility of the application is proved in Chapter 4. Here the two primary 

necessities for feasibility confirmation are addressed: 

1. The technical feasibility of the application. This is suggested through the 

identification of faults in a simple, uninstalled, concrete pile. 

11. The availability, range, practicality and cost of data collection. It is shown 

that installed pile sonic echo traces can be accurately modelled using finite 

element analysis methods. 
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3.6.2 System Development 

The system development of the neural application takes a cyclic empirical approach, 

summarised in Figure 3.7. A number of pre-processing methods are evaluated and an 

optimal feedforward network found by direct comparison of those described above. 

Chief considerations during system development are3
.
1

: 

i. pre- and post-processing methodology (input/output encoding) 

ii. selection of neural network architecture 

iii. optimisation of neural network size and complexity 

iv. optimisation of training algorithm (cost function, momentum parameters etc) 

A number of system prototypes are, therefore, applied to the problem: MLP, RBNN, 

and WBNN. Each is optimised for system performance and compared to identify the 

superior system architecture. 

3.6.3 Deliverable System Validation 

System validation is achieved by three means: 

1. The ability of the network to successfully interpret mathematically generated 

data known to fall outwith the data upon which it has been trained. Thus the 

interpolation and extrapolation strengths of the network can be quantitatively 

evaluated. 

11. The ability of the network to successfully interpret 'real data' from field tests 

(the EPSRC test sites at Blyth and Bothkennar). Thus the generalisation and 

uncertainty handling strengths of the network can be quantitatively evaluated. 

3.7 SUMMARY AND CONCLUSIONS 

Sonic Echo Integrity Test data from cast in situ foundation piles are a suitable 

candidate for processing by neural networks because: they contains noisy and 

uncertain data, it is difficult to model the system mathematically, and the system is 

required to integrate different types of data i.e. temporal (the trace), spatial (the 

environment) and, possibly, linguistic (the pile type). 

Artificial neural networks can be broadly divided into two classes: those taught by 

supervised and unsupervised paradigms. For systems with a known or required 
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output supervised methods are more usually employed. In this problem, the 

generation of training data through numerical modelling will provide both the pile 

head responses and the required network outputs. 

Of the supervised methods by far the most widely researched network topology is 

the multilayer feedforward type. For static mapping of a continuous input space to 

output space, i.e. function approximation tasks, these networks have proved 

particularly successful. 

The activation functions employed in multilayer feedforward networks are often of a 

monotonic, continuous, ridge-like construction. However, theoretical evidence 

suggests that radial constructs such as the Gaussian or wavelet types give better 

function approximation results at a cost of network size. 

The optimum network type is usually found through empirical measures. 

Multilayer feedforward networks have been successfully applied to fault diagnosis 

tasks in the field of concrete testing and in geotechnical investigation. 

A number of networks applied to structural testing tasks have been trained using 

mathematically modelled data and give good results when tested on 'real', field data. 

This thesis will continue with an investigation into the technical feasibility of 

applying artificial neural networks to the automated interpretation of sonic echo test 

data using feedforward network architectures. 

REFERENCES 

(3.1) DTI, Neural Computing Learning Solutions: Best Practice Guidelines 

for Developing Neural Computing Applications, Department of Trade 

and Industry (UK) (1994). 

(3.2) Hecht-Nielsen R, Business Plan Development, in Neurocomputing, 

Addison-Wesley (1991), pp358-406. 

(3.3) Schalkoff R, Pattern Recognition Overview, in Pattern Recognition: 

Statistical, Structural and Neural Approaches, John Wiley & Sons 

(1992), pp2-15. 

(3.4) Devijver P A and Kittier J, Introduction, in Pattern Recognition: A 

109 



Statistical Approach, Prentice/Hall International (1982), pp 1-21. 

(3.5) Gonzalez R C and Thomason M G, Syntactic Pattern Recognition: An 

Introduction, Addison-Wesley (1982). 

(3.6) Rajagopalan C and Kalyanasundaram P, The role of artificial 

intelligence in non-destructive testing and evaluation, Insight, Vol. 38, 

No.2, ppI18-123. 

(3.7) Sivia D S, Parameter Estimation II, in Data Analysis a Bayesian 

Tutorial, Oxford Science Publications (1996), pp3 7 -80. 

(3.8) Schalkoff R, Supervised Learning (Training) Using Parametric and 

Nonparametric Approaches, in Pattern Recognition: Statistical, 

Structural and Neural Approaches, John Wiley & Sons (1992), pp58-83. 

(3.9) Devijver P A and Kittier J, Probability Density Function Estimation, in 

Pattern Recognition A Statistical Approach, Prentice/Hall 

International (1982), pp422-432. 

(3.10) Ciaccio E J, Dunn S M, and Akay M, Biosignal Pattern Recognition and 

Interpretation Systems, IEEE EMB Magazine, Vol. 13, No.1 (1994), 

ppI29-135. 

(3.11) Rengaswamy R and Vekatasubramanian, A syntactic pattern recognition 

approach for process monitoring and fault diagnosis, Engineering 

Applications of Artificial Intelligence, Vol. 8, No.2, pp35-51. 

(3.12) Gonzalez R C and Thomason M G, Grammatical Inference, in Syntactic 

Pattern Recognition: An Introduction, Addison-Wesley (1982), pp216-

270. 

(3.13) Yeh Y-C, Kuo Y-H and Hsu D S, Building KBES for diagnosing PC 

Pile with inductive learning, J. Compo In Civil Engng, Vol. 6, No.2 

(1992), pp200-219. 

(3.14) Quinlan J R, Learning efficient classification procedures and their 

application to chess games, in Machine Learning: an Artificial 

Intelligence Approach, Ed Quinlan J R, Addison-Wesely (1983), 

ppI57-173. 

(3.15) Hughes G E and Cresswell M J, An Introduction to Modal Logic, 

Universal Paperback (1968). 

(3.16) Zadeh L A, Fuzzy Sets, Information and Control, Vol. 8 (1965) pp338-

-353. 

(3.17) Wang L, Adaptive Fuzzy Systems and Control, Englewood Cliffs, 

NJ:Prentice-Hall (1994). 

(3.18) Pal S K and Mitra S, Multilayer Perceptron, Fuzzy Sets and 

Classification, IEEE Trans. on Neural Networks, Vol. 3, No.5 (1992) 

110 



pp 683-697. 

(3.19) J ang J -S and Sun C-T, Functional Equivalence Between Radial Basis 

Function Networks and Fuzzy Inference Systems, IEEE Trans. on 

Neural Networks, Vol. 4, No.1 (1993) pp 156-159. 

(3.20) Jang J-S and Sun C-T, Response to Discussion on : Functional 

Equivalence Between Radial Basis Function Networks and Fuzzy 

Inference Systems, IEEE Trans. on Neural Networks, Vol. 9, No.6 

(1998) pp 1531-1532. 

(3.21) Reyneri L M, Unification of Neural and Wavelet Networks and Fuzzy 

Systems, IEEE Trans. on Neural Networks, Vol. 10, No. 4 (1999) 

pp801-814. 

(3.22) Hecht-Nielsen R, Introduction: what is Neurocomputing?, in 

Neurocomputing, Addison-Wesley (1991), pp 1-20. 

(3.23) Kohonen T, Self-Organised Formation of Topologically Correct Feature 

Maps, Biological Cybernetics, 43 (1982) pp59-69. 

(3.24) Desieno D, Adding a Conscience to Competitive Learning, Proc. Int. 

Conf. On Neural Networks, I, IEEE Press (1988) pp117-124 . 

(3.25) Ritter H and Schulten K, Kohonen's Self-Organising Maps: Exploring 

their Computational Capabilities, , IEEE Int. Conf. on Neural Networks 

, Vol I (1988) pp109-116. 

(3.26) Graf D H and LaLonde R W, A Neural Controller for Collision-Free 

Movement of General Robotic Manipulators, IEEE Int. Conf. on Neural 

Networks, Vol I (1988) pp77-84. 

(3.27) Kohonen T, Makisara K and Saramaki, Phonetic Maps - Insightful 

Representation of Phonetic Features for Speech Recognition, Proc. i h 

Int. Conf. On Pattern Recognition, New York: IEEE (1984) pp182-185. 

(3.28) Barrios L J and Lemus L, Associative Neural Networks for Fault 

Diagnosis in Semiconductor Manufacture, Tasks and Methods in 

Applied Artificial Intelligence, Proc. 11 th Int. Conf. On Industrial and 

Engineering Applications of Artificial Intelligence and Expert Systems, 

Springer (1998) pp582-592. 

(3.29) McCulloch W S and Pitts W, A Logical Calculus for the Ideas 

Immanent in Nervous Activity, Bulletin of Mathematical Biophysics, 

No.5 (1943) ppl15-133. 

(3.30) Hebb DO, The Organisation of Behaviour New York: Wiley (1949). 

(3.31) Rosenblatt F, Principles ofNeurodynamics, New York: Spartan (1962). 

(3.32) Widrow B and Hoff M E, Adaptive Switching Circuits, WESCON 

Convention Record: Part 4 (1960) pp96-1 04. 

111 



(3.33) Rumelhart DE, McClelland J L and The PDP Research Group, Parallel 

Distributed Processing, Volume 1: Foundations, MIT Press, (1986) 

(3.34) Hinton G E and Sejnowski T J, Learning and Relearning in Boltzmann 

Machines, in Parallel Distributed Processing, Volume 1: Foundations, 

Eds Rumelhart D E, McClelland J L and The PDP Research Group, 

MIT Press, (1986) pp282-317. 

(3.35) Rumelhart D E, Hinton G E and Williams R J, Learning Internal 

Representations by Error Propogation, in Parallel Distributed 

Processing, Volume 1: Foundations, Eds Rumelhart D E, McClelland J 

L and The PDP Research Group, MIT Press, (1986) pp318-362. 

(3.36) Kurkova V, Kolmogorov's Theorem and Multilayer Networks, Neural 

Networks, Vol. 5, (1992) pp501-506. 

(3.37) Minskey M L and Papert S A, Perceptrons, Expanded Edition, MIT 

Press (1988) [First edition Cambridge: MIT Press (1970)]. 

(3.38) Hertz J, Krough A, andPalmer R G, Recurrent Networks, Introduction 

to the Theory of Neural Computing, Addison Wesley, (1991) 

ppI63-196. 

(3.39) Hopfield J J, Neural Networks and Physical Systems with Emergent 

Collective Computational Abilities, Proc. Of the National Academy of 

Sciences, USA 79 (1982) pp2554-2558. 

(3.40) Hertz J, Krough A, and Palmer R G, Optimisation Problems in Image 

Processing, Introduction to the Theory of Neural Computing, Addison 

Wesley, (1991) pp81-87. 

(3.41) Simpson P K, Artificial Neural Systems, Pergamon Press, (1990). 

(3.42) Hertz J, Krough A, and Hertz, Introduction to the Theory of Neural 

Computing, Addison Wesley, (1991). 

(3.43) Williams R, Reinforcement Learning Connectionist 

Northeastern University, College of Computer Science 

Report, NU-CCS-87-3, (1987). 

Systems, 

Technical 

(3.44) Oja E, A Simplified Model as a Principle Component Analyzer, J. 

Math. Biology, Vol. 15 (1982), pp267-273. 

(3.45) Oja E, Neural Networks, Principle Components and Subspaces, Int. J. 

of Neural Systems, Vol. 1 (1989) pp61-68. 

(3.46) Sanger T D, Optimised Unsupervised Learning in a Single-Layer Linear 

Feedforward Neural Network, Neural Networks, Vol. 2 (1989) 

pp423-428. 

(3.47) Hecht-Nielsen R, Counterpropagation Networks, Applied Optics, Vol. 

26 (1987) pp4979-4984. 

112 



(3.48) Grossberg S, Embedding Fields: A Theory of Learning with 

Physiological Implications, J. Math. Psychology, Vol. 6 (1969) 

pp209-239. 

(3.49) Travers F A, Acoustic Monitoring of Prestressed Concrete Pipe, Proc. 

6
th 

Int. Conf. Structural Faults and Repair, Vol. 3 (1995) pplll-I23. 

(3.50) Sjoberg J, Zhang Q, Ljung L, Beneviste A, Deylon b, Glorennec P-Y, 

Hjalmarasson H and Juditsky A, Nonlinear Black-Box Modelling in 

System Identification: a Unified Overview, Automatica, Vol. 31 (1995). 

(3.51) Kurkova V, Kolmogorov's Theorem and Multilayer Neural Networks, 

Neural Networks, Vol.5 (1992) pp501-506. 

(3.52) Girosi F and Poggio T, Networks and the Best Approximation Property, 

MIT AI Memo No. 1164 (1989). 

(3.53) Aussem A and Murtagh F, Combining Neural Network Forcasts on 

Wavelet-transformed Time Series, Connection Science, Vol. 9, No.1 

(1997) pp113-121. 

(3.54) Kirkegaard P H, Modelling of Non-linear Struct.ures using Recurrent 

Neural Networks, Developments in Neural Networks and Evolutionary 

Computing for Civil and Structural Engineering, Civil-Comp Press 

(1995) pp51-58. 

(3.55) Haykin S and Li L, Non-linea;- Adaptive Prediction of Nonstationary 

Signals, IEEE Trans. on Signal Processing, Vol. 43 (1995) pp526-535. 

(3.56) Mandie D P and Chambers J A, Towards an Optimal PRNN-Based 

Non-linear Predictor, IEEE Trans. on Neural Networks, Vol. 10, No.6 

(1999). 

(3.57) Morgan P, Curry B and Beynon M, Comparing Neural Network 

Approximations for Different Functional Forms, Expert Systems, Vol. 

16, No.2 (1999) pp60-71. 

(3.58) Wessels L F A and Barnard E, Avoiding False Local Minima by Proper 

Initialization of Connections, IEEE Trans. on Neural Networks, Vol.3, 

No.6 (1992) pp899-905. 

(3.59) Lee Y, Oh S-H and Kim M W, An Analysis of Premature Saturation in 

Back Propagation Learning, Neural Networks, Vol. 6 (1993) 

pp719-728. 

(3.60) Rumelhart D E, Hinton G E and McClelland J L, A General Framework 

for Parallel Distributed Processing, in Parallel Distributed Processing, 

Volume 1: Foundations, Eds Rumelhart D E, McClelland J L and The 

PDP Research Group, MIT Press, (1986) pp45-76. 
(3.61) Roth M W, Survey of Neural Network Technology for Automated 

113 



Target Recognition, IEEE Transactions on Neural Networks, Vol. 1, 

No. 1 (1990). 

(3.62) Sejnowski T J and Rosenberg C R, Parallel Networks that Learn to 

Pronounce English Text, Complex Systems, No.1 (1987) ppI45-168. 

(3.63) Worden K, Ball A D and Tomlinson G R, Fault Location in a 

Framework Structure using Neural Networks, Smart Materials & 

Structures, No.2, (1993) ppI89-200. 

(3.64) Wu X, Ghaboussi J and Garrett Jr J H, Use of neural networks in 

detection of structural damage, Computers and Structures, Vol. 42, No. 

4 (1992) pp649-659. 

(3.65) Pratt D and Sansalone M, The use of a Neural Network for Automating 

Impact Signal Interpretation, Proc. of the Rev. Progress Quantitative 

Nondestructive Evaluation, Vol. 10 (1991) Plenum Publishing Corp. 

(3:66) Begum R and Chamberlain D, Integrity Testing of Concrete Surfaces 

using Neural Networks, Proc. Int. Symposium Non-Destructive Testing 

in Civil Engng (NDT-CE) (1995) pp1339-1346. 

(3.67) Kirkegaard P H and Rytter A, The use of Neural Networks for Damage 

Detection and Location in a Steel Member, Neural Networks and 

Combinational Optimisation in Civil and Structural Engineering, Civil­

Comp Press (1993) ppl-l0. 

(3.68) Goh A T, Some Civil Engineering Applications of Neural Networks, 

Proc. Instn Civ. Engrs Structs and Bldgs, Vol. 104 (1994) pp463-469. 

(3.69) Chan W T, Chow Y K and Liu L F, Neural Network: An Alternative to 

Pile Driving Formulas, Computers and Geotechnics, Vol. 17 (1995) 

pp135-156. 

(3.70) Yeh Y-C, Kuo Y-H and Hsu D-S, Building KBES for Diagnosing PC 

Pile with Artificial Neural Network, J. of Computing in Civil 

Engineering, Vol. 7, No.1 (1993) pp71-93. 
(3.71) Moody J and Darken C, Fast Learning Networks for Locally-Tuned 

Processing Units, Neural Computation, Vol. 1, No. 2 (1989) 
pp281-284. 

(3.72) Zhang Q and Beneviste A, Wavelet Networks, IEEE Trans. on Neural 
Networks, Vol. 3, No.1 (1992) pp889-898. 

(3.73) Boubez T I, Receptive Field Partitioning for Wavelet Networks, in 
Artificial Neural Networks for Speech and Vision, Ed. Mammone R J, 
Chapman and Hall (1994) pp79-96. 

(3.74) Goupillaud P, Grossmann A, and Morlet J, Cycle-Octave and Related 
Transforms in Seismic Signal Analysis, Geoexploration, Vol. 23 
(1984) pp85-102. 

114 



axonl--------____ __ 

/ 

dendrite 

Figure 3.1 Simplified representation of two connected neurons. 

Figure 3.2 Examples of some of the more popular network architectures. 
From left to right: a fully connected network, a feed-forward network, a 
feedforward multilayer network and a multilayer network with 
feedback (Recurrent network). 
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Figure 3.3 The basic components of a PDP system (after Rumelhart et aZ333). 
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Figure 3.4 The Heaviside, Linear Threshold and Sigmoid activation functions. 
Where 8 is a pre-defined threshold value. 
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Figure 3.5 The external environment and its relationship with the 
neural network. 
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Figure 3.6 showing the generic model for (a, top) a single and (b, bottom) 
two layer network. The bias term, as in Figure 3.4, provides a threshold 
value for the activation function, F. 
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Figure 3.7 Stages of neural network application development (After DTI [UK]3-I). 
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4. Feasibility Study 

As discussed in the previous chapter, of paramount importance when deciding 

whether a problem is suitable for the application of neural networks is: (1) the 

availability of representative data for network training and (2) the technical 

. feasibility of finding an acceptable solution using a network approach. This chapter 

is, therefore, broadly divided into two parts. 

The direct use of field test data for network training is impossible. Even if enough 

data could be obtained from industrial collaborators the lack of a generic test 

protocol leads some test houses not to record the impact force traces and often no 

documentation of soil conditions are kept. This coupled with the fact that the true 

impedance profile of the pile-soil system can only be estimated through expert 

interpretation means neither the input nor output vectors for network training can be 

known with any degree of confidence. The first half of this chapter, therefore, 

describes alternative means of pile test modelling and presents a method for the 

generation of test traces through finite element analysis. The method is validated 

through comparison with contemporary theory, published laboratory tests, and 

industry supplied field test data. 

The appropriateness of neural network utilisation for the interpretation of pile 

integrity test data has already been discussed in Chapter 3. The second part of this 

chapter provides empirical evidence for the applicability of such an approach. That 

is, it provides a technical feasibility study by considering uninstalled concrete beams 

and a simple, multi-layered network's ability to identify, quantify and locate faults 

within them. Specifically this section considers the ability of a network to identify 

the type (neck or bulb) of defect in a beam of fixed length and change in radius. It is 

also required to detect the axial length of this fault and its position. 
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The chapter concludes with a summary of the findings of the study and presents the 

case for development of the system for the interpretation of installed foundation 

piles. 

4.1 ONE DIMENSIONAL MODELLING 

4.1.1 Wave Tracing 

The pile head response to an impact force may be estimated through the convolution 

of the system's impulse response and the shape of the impact force. Effectively this 

is the opposite process of that described in Section 2.7.7 where a pile's impedance 

profile is generated by stratifying the pile along its axial length and calculating the 

necessary changes in impedance to create the received pile head response. In this 

case, however, the impedance profile is known and its impulse response is calculated 

through consideration of a singularity (Dirac function) as it propagates through the 

strata. As the pulse reaches a change in mechanical impedance it splits into two: one 

transmitted component and one reflected; the coefficients of reflection and 

transmission being described by Equations (2.21 a and b). A recursive processes of 

pulse splitting and following may then be used to estimate the pile head response to 

the given input. Attenuation of particle velocities due to prevailing soil conditions 

may be included by utilising Briard's formula (2.23). 

Chan4
.
1 reports good correlation between experimental results and those calculated 

through such a method, 'Simulation By The Method of Convolution', for an 

urIinstalled circular beam. However, he reports that the computational power 

necessary to follow multiple wave fronts in piles containing many changes in 

mechanical impedance becomes prohibitively large. While computing power has 

improved considerably in the last ten years it is also noted that such a method cannot 

estimate the observed reflections caused by changes in the surrounding soil stiffness 

without modifying the effective mechanical impedance of the pile. Such a 

modification would involve the estimation of the soil mobilised by the propagating 
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pulse which in tum requires a knowledge of stress dissipation with respect to radial 

distance from the pile-soil interface. 

The lack of theory for the necessary alterations in effective mechanical impedance 

and the inefficient nature of its computation, therefore, prohibits this method from 

being suitable for the task of generating the many and varied traces necessary for 

neural network training. 

4.1.2 Composite Systems 

A more computationally efficient method for the generation of a pile head's response 

can be derived by the decimation of the system under investigation into component 

parts. The pile may be modelled using an electrical analogy, such as that described 

by Davis and Dunn4
.
2 and illustrated in Figure 4.1. By representing the force at the 

pile head, F, as the total circuit current, It, and the velocity of the pile head, v, as the 

applied circuit voltage, Et, then the mechanical impedance of the system, IFlvl, can be 

found from the electrical admittance of the circuit model, IIt/Etl. Referring to Figure 

4.1, capacitance represents the pile mass per unit length, while pile and soil stiffness 

are represented by coil inductance. The signal attenuation, i.e. soil damping, is 

modelled using resistors. 

The circuit parameters are presented in terms of the pile's cross sectional area, the 

concrete stiffness, Poisson's ratio, density, and the soil's shear modulus and the shear 

wave velocity. These are derived from the previously discussed theories proposed by 

Paquet4
.
3 and Briard4

.
4

. The methodology was developed in the 1970s to simulate the 

frequency response of a pile during vibration testing. Consequently its usefulness in 

generating the temporal response of the pile head to an impact excitation is limited. 

With the widespread availability of increasingly powerful computers, today, installed 

piles are more commonly modelled as mechanical, Winkler type, systems4.1,4.S,4.6,4.7 

such as that illustrated in Figure 4.2. These models consider the pile as a number of 

rigid masses connected together by a series of springs and dashpots and interfacing 

with the soil through further springs and dashpots. In practice the dashpots between 
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the pile's lumped masses, cp in Figure 4.2, are often ignored as the soil damping term 

dominates the overall system damping. These models are more conducive to the 

stepwise time iterations necessary for the temporal modelling of impact testing. Such 

modelling has its origins in the need to predict a pile's response to large dynamic 

strains; typically during pile driving4
.
s or when designed to carry a dynamic 

load4
.
s
,4.7. They have, nevertheless, also been used for the modelling of small strain 

integrity test data4
.
1
,4.6 with some degree of success. 

However, these models produce an idealised one dimensional approximation of the 

required pile head response. For the higher strain problems for which the model is 

designed trace features such as pile head ringdown, lateral reflections and refraction, 

can be considered negligible, but in low strain testing the lack of these features make 

it unrepresentative of the system being modelled. Also implicit to such models is the 

assumption that the shear waves emanating from the pile-soil interface propagate 

only horizontally and so radial soil displacements are ignored. Often the spring and 

dashpot parameters are derived assuming elastic layer of infinite extent, -the soil -

containing a rigid inclusion of unit thickness: a unit length of pile4
.
s
,4.6. Hence, the 

front of the propagating stress wave is restricted to being purely planar in nature. The 

model can be further compromised by assumptions necessary for the derivation of 

the spring and damping parameters at the pile base where the toe is often be 

modelled as a circular footing on an elastic half space4
.
6

. 

Intuitively, a more suitable model would also appear to involve lateral decimation of 

the pile-soil system as well as the longitudinal decimation described above. This 

would allow the soil to be modelled, like the pile, in terms of lumped masses. Thus, 

the necessary degrees of freedom would be introduced to provide for radial 

propagation of stresses within the pile and in the surrounding soil. This negates the 

need to derive abstract spring and dashpot parameters. Such a method is the finite 

element method. Liao and Rosset4
.
6 have conducted a comparison between a one 

dimensional lumped mass spring and dashpot model, of the type described above, 

and an axisymmetric, 2-D continuum, finite element model (see Section 4.2, below) 

for low strain integrity testing. They confirm that the finite element results more 

closely resemble those found in practice. Indeed of the other two examples of spring 
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and dashpot models referenced above, Markis and Gazetas4
.
7 use finite element 

analysis to derive their values for stiffness and damping parameters, while 

Michaelides et al. 4.5 use finite element results as one of the methods for validating 

their method of parameter derivation. 

The improved results attainable through the finite element method come at the cost 

of computational time and complexity. However, for neural network training, the 

need for training set data to represent accurately that of the problem domain is of 

primary importance and so, given that this increased computer time is not 

prohibitively large, such a compromise is considered justified. 

4.2 FINITE ELEMENT ANAL VIS (FEAl 

This form of analysis originated from advances in aeronautical structural analysis in 

the early 1960's. The basic hypothesis upon which the method is based is that a large 

continuum can be modelled analytically by subdivision into smaller 'finite elements'. 

These finite elements are connected such that each element boundary is topologically 

compatible with its neighbours while also satisfying the complete structure's defined 

boundary conditions. A complex structural response to loading may then be 

estimated through the combination of responses from its much simpler component 

parts. A more detailed description of the finer points of the finite element method 

may be found elsewhere4
.
9

,4.10,4.11, but for the sake of completeness a brief precis of 

the subject fundamentals is now presented. 

The Slze and shape of the, previously mentioned, constituent elements of the 

structural model are described in terms of nodal co-ordinates. For the finite element 

displacement method, the structural displacements, Ds, are assumed to have unknown 

values only at these nodal points. The variation within the nodes being described 

through interpolation functions, thus: 

8. = N 8[e) 
.Ii =.\,-

(4.1) 
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Here de} is the vector of nodal displacements and lis is a matrix of the set of 

interpolation functions, also known as the 'shape function matrix'. The strains within 

an element may hence be related to displacements by Equation 4.2, below. 

Y.I' = lis ~Ie] (4.2) 

Where lls is the strain-displacement matrix, more usually composed of derivatives of 

the shape functions. From 4.2, for linear elasticity, the stresses within an element can 

the be derived through use of a matrix of elastic constants, /2s, as Equation 4.3, 

below. 

(J"s = DsYs (4.3) 

Where (J"s is the stress and Ys the, previously derived, strain. 

The governing equations for static equilibrium are derived from the principle of 

virtual work4
.
12

• Here, the potential energy of the system is minimised and it is 

assumed that for any small displacement imposed on the body the total internal work 

must equal the total external work for equilibrium to be maintained. Which leads to 

the virtual work equation for an element of 

(4.4) 

where 

(4.5) 

is known as the stiffness matrix and 

FIe] = FIe] + F[e] + FIe] 
- -b -.' -c (4.6) 
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is known as the element force vector containing components 

(4.7) 

where Eb is the force vector due to element body 10ads,1, with units force per unit 

volume and 

(4.8) 

is the force vector due to element surface tractions, t, with units force per unit area 

and 

(4.9) 

is the total applied concentrated loads to the element where subscript i denotes the 

point of contact. 

Rearranging equation 4.4, the displacement de} can be derived, with respect to given 

structural boundary conditions, thus 

(4.10) 

where {.} denotes a vector over all nodes and K-1 is the inverse stiffness matrix. 

Hence, nodal stresses and strains can be derived as 

and 

{y} = [B]{8} 

{a} = [D]{Y} 

(4.11) 

(4.12) 

Although the equations above (4.2-4.12) may be applied to structures with static or 

slowly changing load levels, for systems with more rapidly changing load conditions, 

such as the impact testing of piled foundations, inertial and damping forces must be 

integrated into the equilibrium equations. In such cases it is assumed that 
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accelerations and velocities can be approximated by the same interpolation functions 

as displacement and so velocity, vs, can be described by 

· . [el 
v.=o=No 

.~ =s- (4.13) 

and acceleration, as, by 

.. ..[el 
a.=o=No 

.It =s- (4.14) 

The body force described by equation 4.7 then becomes 

F[e l = r N T [leI _ [el N 8[el _ e[el N 6'[el ]8V 
-b te=S _ f!.. =- - =- (4.15) 

where p is the material density and e is the material damping constant which is 

reflective ofthe well known, Newtonian, dynamic equilibrium equation 

(4.16) 

where M is the mass matrix and CJ the damping matrix. 

Clearly the solutions to the equations of equilibrium for a system are unlikely to be 

solvable analytically and so iterative procedures are utilised that converge upon 

acceptable approximations of these solutions e.g. the Newton-Raphson iteration4
.12 . 

The selection of the solution search procedure, its parameter values and the 

convergence criteria applied will, therefore, have an effect on the final solution. 

This section will continue with an explanation of the modelling procedure for 

installed foundation piles as used in this project. Parametric studies for the selection 

of mesh (nodal/element) density are presented and the selection of material 

parameters justified. The section concludes with a validation of the model through 
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comparison with previously published experimental work and industry supplied data 

from sonic echo tests of installed foundation piles. 

4.2.1 Model Element Type 

Historically when modelling an installed pile foundation two dimensional methods 

are applied. Here, the symmetry of the pile soil system is exploited to reduce the 

computational complexity of the solution space. Clearly, for such an assumption to 

be made the loading conditions must also be presumed to be symmetric, a 

presumption which is justified in the ca:se of small strain integrity testing. In three 

dimensions, when soil is modelled as an annulus of elastic material surrounding the 

pile, the size of the system becomes prohibitively large for modelling the many 

variations of pile shape and soil type necessary in this application. Typically, 

although the system size increases with r2, where r is (approximately) the radius of 

the soil annulus, the computational time increases by a far greater margin as the 

model size necessitates more 'page swapping' with the computer work station's hard 

disk drive: That is, the required system memory for the FEA model becomes far 

larger than the physical memory of the computer and so 'virtual memory' from 

slower, peripheral, devices needs to be employed. 

For two dimensional modelling two types of elements have been employed in 

published research. The previously mentioned work by Liao and Rosset employed 

quadrilateral axisymmetric elements4
.
6

,4.13 while Wong and Topping used plane 

strain quadrilateral elements4
.
14

• When using plain strain elements of constant 

geometry to model the pile soil system, unlike the axisymmetric case, there is no 

intrinsic geometric damping associated with an increased lateral distance from the 

pile centre. In applying this method the author has also found the signal attenuation 

to be lower than that predicted by Briard's formula. It is suggested that this is due to 

the effective increase of the pile's cross-sectional area to perimeter ratio and so, in 

this study, axisymmetric elements have been used. These produce a logarithmic 

decrement of decay of the signal very much of the order predicted by theory. For an 

empirical validation of this statement, see Section 2.6.2. 
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As in previous work, the pile-soil system has been modelled as a 2-D continuum 

with material properties assumed to be linear elastic with elements of the 

isoparametric type. Such assumptions have been shown to be justified for the case of 

small strain testing - see Section 4.2.4. However, results obtained using quadrilateral 

elements produce a ringdown effect in the reflected pulse echo. This ringdown is not, 

as might be expected, resonance at the pile head from the initial hammer impact, but 

from resonance at the pile toe. An example is given in Figure 4.3(a). Here the pile 

modelled is of 11.4m length with a O.4m diameter installed in stiff over stiff/very 

stiff clay. The reader is referred to Section 4.2.6.3 for a full discussion of the material 

parameters used in this model and Figure 4.28 for the expected result from field 

testing. Although this effect is in keeping with the published results of Liao and 

Rosset4
.
6 it is unrepresentative of all the experimental and field results collated by the 

author. It is noted here that Liao and Rosset make no comparisons of their work with 

either experimental or field test results4
.
6

,4.I3. Indeed, it is hard to imagine how the 

pulse echo technique could have ever been successfully applied if such results were 

representative of field test data. The ringing is caused by the material stiffness 

differential between pile toe and the soil base. Effectively, when no structural 

damping is included in the model, as in previous work4
.
14

, an end resonance is 

produced with an amplitude proportional to the materials' respective stiffuess. In the 

example given the pile's Young's modulus is about two orders of magnitude larger 

than that of the surrounding soil (3xlO lo Nm-2 and 5xl08 Nm-2 respectively). It has 

been found that this effect can be diminished by two means: the use of triangular 

elements and the inclusion of material damping. 

Figure 4.3 (b) shows the trace obtained using identical material properties and node 

positions, but with triangular rather than quadrilateral elements. As can be seen the 

high amplitude resonance has been replaced by a lower amplitude, lower frequency 

resonance. Figure 4.4 (a) shows the resultant stress distribution within part of the 

pile-soil system as the stress wave reaches the pile toe while 4.4 (b) shows the 

distribution just after reflection for the triangular element case (again, the reader is 

referred to a later diagram, Figure 4.27, to see the dimensions of the entire mesh 

shown to scale). On both illustrations the deformed mesh is superimposed with a 

magnification factor of fifteen thousand to aid clarity. 
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As expected, in both cases the majority of the system's constituent stresses are 

constrained within the pile member as it, effectively, acts as a wave guide. However, 

noticeable in the quadrilateral case is the stress build up immediately beneath the pile 

toe. Here, the planar nature of the stress wave in conjunction with the regular 

quadrilateral shape of the elements appears to produce a punching stress beneath the 

pile toe. It is also noticeable in the highlighted regions A, B, A' and B', that the mesh 

deformation is smoother across the triangular elements when compared the 

quadrilateral ones 

Figure 4.5 shows the principal stresses about the pile toe for the constituent 

elements' Gauss points - the grey area is the pile toe. Outwardly pointing arrows 

indicate compressive forces, inwardly pointing tensile; the length of the arrow tail 

indicates the stress magnitude. Both mesh types illustrated show the system state at 

3.5 milliseconds when the stress at the pile toe.is at a maximum - as indicated by the 

high compression values perpendicular to the direction of propagation of the 

wavefront. It is clear from the quadrilateral mesh that the elements directly under the 

pile toe resonate with successive compressive then tensile layers. The fact that the 

stresses remain localised beneath the pile toe is further illustrated in the legend 

associated with Figure 4.4 (a). Here the minimum stress is found at node 1275 - the 

node at the bottom right comer of the mesh. The stress magnitude of 10-21 Nm-2 

indicates negligible effects at this point. For the triangular elements, however, 

although the soil elements directly under the pile toe are, as expected, in 

compression, no such localised resonance has occurred. Instead, the minimum stress 

at node 1275 is very much larger (0.4 Nm-2
) - although still negligible with respect to 

the stresses inside the pile body. This indicates that the localised resonance has been 

replaced by a lower amplitude, lower frequency system resonance which, although 

still undesirable, is preferable as it can be effectively negated through including soil 

damping in the model. 

The values and method of modelling soil damping is discussed below in Section 

4.2.4 - 'Material Assignments'. For the purposes of this section, however, it is 

sufficient to remark that the values used are completely consistent with given 
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empirical results and very small: typically the damping ratio is less than 5%. The 

reader is directed to Figures 4.28 and 4.29, part of the system validation section, for 

an illustration of how the inclusion of damping eliminates the resonance found in 

Figure 4.3 (b) and gives a good approximation of field test results. 

4.2.2 Element Aspect Ratio 

Ill-conditioned elements can have a detrimental effect on a finite element model's 

effectiveness. The primary cause of ill-conditioning in continuum modelling is the 

inclusion of elements with large aspect ratios (the ratio of longest to shortest element 

side length) and so for triangular elements a well conditioned shape will be close to 

an equilateral triangle. For the pile-soil complex under investigation, however, the 

aspect ratio of the system itself is large. In modelling it, therefore, the processing 

time can be greatly reduced by 'stretching' the elements along its longest dimension 

so enlarging their aspect ratio. Hence, it is necessary to undertake a parametric study 

to identify the optimum aspect ratio of the constituent elements. 

For the purposes of this parametric study an infinitely long, uninstalled, circular 

member is considered. The member has in increase in section at a point along its 

axial length. From Equations 2.21 (a) and (b) it is possible to predict the amplitude 

of the reflected stress wave from this change in section using one dimensional wave 

theory. Although, it should be noted here that the planar nature of the propagating 

wavefront is assumed. It is, however, also known from theory that for such a one 

dimensional model, particle velocity is linked to stress through Equation 4.17. 

du 
a=-pc-

dt 
(4.17) 

Where a is the stress, p is the material density, c the group velocity and the 

differential represents particle velocity. With the material properties being constant 

before and after the change in section, therefore, the ratios of reflected and 

transmitted stresses at this boundary also hold for the particle velocities. Hence, with 

no damping in the system, by considering the axial (y-component) velocity trace of 
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an element node above the section change with respect to time, the peak and trough 

in the trace can be used to compare the actual coefficient of reflection with theory. 

Such a trace is illustrated in figure 4.6 by way of example. The coefficient of 

reflection for this case is calculated as 0.91 for a theroetical value of 0.92. The node 

selected for investigation, as in all the experiments, was that which was half way 

between the pile head and the change in section. 

The finite element system being used is the LUSAS finite element system4
.
12 for 

which the maximum recommended element aspect ratio is 7: 1. Radial dimensions of 

the pile were selected, as Table 4.1, to produce theoretical coefficients of reflection 

varying between about 0.2 and 0.9. The longitudinal dimensions of the elements 

were altered for each experiment set to produce a further set of results for elements 

with aspect ratios varying between two and six. 

Table 4.1 A Comparison FEA and Theoretical Coefficients of Reflection 

Initial Pile Initial Increased Pile Increased Theoretical 

Radius Sectional. Area Radius Sectional Area Coefficient of 

ro (m) Ao (m2
) rl (m) Al (m2

) Reflection (R) 

0.05 0.008 0.25 0.196 0.92 

0.05 0.008 0.15 0.071 0.80 

0.10 0.031 0.15 0.071 0.61 

0.10 0.031 0.2 0.126 0.39 

0.20 0.126 0.25 0.196 0.22 

The results from all these experiments are plotted on the graph in Figure 4.7. The 

graph plots the ratio of the modelled reflection coefficient to the expected value 

against the aspect ratio of the elements used. The plot clearly indicates a 

deterioration of the models' effectiveness as the aspect ratio increases, with all 

results starting within 5% of the expected values. The degradation accelerates as the 

aspect ratio increases beyond four with the larger coefficients of reflection being 

modelled generally better than the smaller ones. It should be noted that the number 

oflateral divisions of the pile remained constant for each experiment, five as in [4.6], 
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and so this effect may be caused by the coarser lateral decimation of piles with larger 

radii. However, its inconsistency suggests that it is more likely to be due to 

numerical round-off errors becoming more significant for the cases where smaller 

reflections occur. 

For this study, therefore, the aspect ratio of the models' constituent elements is 

limited to values of less than four. In fact, to add a margin of safety and to allow for 

better longitudinal resolution when modelling axial faults the longest dimensions of 

the elements used are always reduced such that an aspect ratio of three is never 

exceeded. For further validation of this working heuristic the model of the 

structurally sound sprung supported pile used in Section 4.2.3 is repeated with a 

double density mesh. As shown in Figure 4.12, there is no discernible change in the 

generated pile head response when using twice as many elements to model the pile. 

4.2.3 Loading and Boundary Conditions 

4.2.3.1 Impact Pulse Shape 

Convention dictates that the impulse excitation produced by a hammer blow be 

modelled as a half-sine shape4
.
1
,4.6,4.15. However, on inspection of impact traces, such 

as those presented by Sibbald4
.
16

, it is evident that this approximation does not 

strictly confer with experimental traces - see Figure 4.8 (a) and (b). As can be seen in 

this example, there is a leading and trailing tail-off associated with the impact. This 

feature is consistent and observable in other published examples4
.
1
,4.17. 

For an impulse with a O.5ms rise time, as is typical for impact testing using a short 

sledge hammer with a medium softness plastic tip, the pulse may be modelled as a 

Gaussian, as shown in Figure 4.9. Here the equation of impact, g(t), is described by 

g(t) = exp(- (t - tJ2 J 
r/ /2 
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where to is the time of maximum force and rt is the given rise time of the pulse. 

Comparing this to the standard equation for a Gaussian, as in Equation 3.22, the 

standard deviation can be described as the rise time of the pulse divided by two. 

Hence, in excess of 95% of the work done by the impact occurs within the ascribed 

rise and fall time of the pulse with the remainder providing the tails more in keeping 

with experimental results. 

While this alteration does not produce any marked change in the velocity response of 

the pile head in time it does alter the frequency based mobility curve. The flatter 

power spectrum associated with the half sine impact shown in Figure 4.10 (a) shows 

an accelerated decay as its first turning point is reached at around 1500Hz. The size 

of the lobes following this minimum are of a far higher order than that of the 

experimental results for pulses of a similar rise time: namely those of the medium 

and soft hardness, plastic tipped, hammer. The number of these lobes is also very 

much less than that of the experimental results and more in keeping with the harder 

tipped, shorter duration, impacts. For the Gaussian shaped pulse, however, the 

number and magnitude of the lobes above the first minimum are more like 

experimental results while the position of this minimum is still around the required 

value (~1750Hz). Further to this, the rate of decay of the power spectrum's 

magnitude better reflects that of the experimental data. 

Although it is known4
.
1 that the coherence of impulse functions of this duration 

reduces for frequencies above 1250Hz, this suggested limit is often exceeded. The 

author has found examples, from industry, of mobility curves extending beyond 

2000Hz - although no values above 1700Hz where considered in any integrity 

calculations4
.
18

, see, for example, Figure 4.46. The unnaturally large nature of these 

lobes when modelling using the half-sine input distorts the mobility curve to a degree 

that it becomes unrepresenative of such in situ measurements. The accelerated decay 

of the half-sine spectrum around its first mimumum also produces a more rapid rise 

in the mobility spectra about this point, as reflected in the published work of Liao 

and Rosset4
.
6

. For this study, therefore, the shape of the impact pulse is modelled as a 

Gaussian, as described above. For an example of a mathemetically generated 
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mobility curve using such an impulse function and its associated field test curve the 

reader is refered to Figures 4.30 and 4.31. 

4.2.3.2 Combined Nodal Loading 

As discussed in Chapter 2, in practice, noise produced through pile head oscillations 

is more usually reduced through ensemble averaging of a number of velocity 

responses measured at different positions on the pile head. For axisymmetric 

modelling, however, this method becomes impossible as the loading is assumed to be 

symmetric about the system's centreline. If an off centre point load is applied to the 

pile head it is swept through 21t radians to produce an annular force in three 

dimensions thus the impact must be limited to a position at centre of the pile head's 

top surface. Nevertheless, here, as this model is of a linear elastic type, the effect is 

mimicked by applying a patch load across the entire pile head so reducing the effect 

of pile head oscillation. The measured response at a given position on the pile head 

can then be considered the superposition of the responses, at that position, for all 

'possible impact points - the recorded pile head response being the superposition of 

all these impacts. 

Again, since the model is linear elastic and isotropic, the absolute magnitude of the 

applied pulse is of little significance for the temporal response at the pile head. A 

higher maximum force simply results in a higher magnitude of response - the 

normalised shape of responses are identical. However, for mobility curve analysis the 

impact force magnitude becomes important for the calculation of dynamic stiffness -

the gradient reciprocal of the linear region of the graph as the frequency tends to 

zero. If the central load values applied on the pile's top surface are the same for each 

node the total applied load can be calculated from 

F;Ola' = 2;r.n.Fnodal (4.19) 
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where n is the number of nodes to which the force is applied, Fnodal is the force 

applied to each node and the 27t factor reflects the sweeping of the one radian 

segment described in the two dimensional model about its centre line. 

For the sake of completeness the value of maximum force applied in this study is 

given as 5000 newtons per node, this value is of the order of that used in the other 

quoted studies. This loading methodology provides favourable results when 

compared to in situ traces in both time and frequency domains and gives good 

correlation for calculated values of dynamic stiffness - see Section 4.2.6, 'Model 

Validation Using Field Test Data'. 

4.2.3.3 Boundary Condjtions 

For axisymmetric analysis using the LUSAS finite element software no rigid body 

translation of the model is recorded as node positions are described in terms of a 

local co-ordinate system rather than globally. However, the axisymmetric method 

allows the nodes along the centreline of the model lateral movement, i.e. movement 

in the x direction perpendicular to the stress wave's direction of propagation. Rigid 

restraints in this dimension have, therefore, been added to prevent this. 

The size of the soil annulus surrounding the pile body is calculated with respect to 

the theoretical stress and shear wave velocities of that soil. The equations governing 

these velocities are given as 

c= 
E(1-v) 

p(l + v X1- 2v) 

13- r-c 
-V~ 

(4.20) 

(4.21) 

where c and 13 are longitudonal stress and shear wave velocities respectively. E is the 

soil's Young's modulus, p its density and v its Poisson's ratio. 
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By way of example, the systems modelled for the validation of this methodology 

have a top soil with values of: E=2.6xl08 Nm-2
, ,0=2125 kgm-3 and u=0.4. The piles 

under consideration are all under 12m in length and so, assuming the stress wave 

propagation velocity in concrete is more than 3000ms-1
, the time traces considered 

are no longer than 10 ms duration. For this case, therefore, the pile annulus must be 

greater than 1.05m (= j3x0.01/2) to ensure any shear waves reflected from the soil 

boundary do not interfere with those reflected from the pile toe. In fact, to add a 

margin of safety, the soil annulus in this case is set as 2m. It should also be noted 

here that any reflected waves have little or no effect on the response at the pile head 

as they are strongly attenuated by the soil damping. Thus, as can be seen in Section 

4.2.6, no observable aberrations are found when comparing mathematically 

generated time traces with field test data. Nodes along the soil boundary are given 

rigid supports in both x and y dimensions, as illustrated in Figure 4.27. 

4.2.4 Material Assignments 

The materials used in this study are assumed to have linear elastic, isotropic 

characteristics. The model is described in terms of a two dimensional continuum. 

The material properties are, therefore, described in terms of their Young's modulus, 

density and Poisson's ratio. A small degree of material damping is also included in 

the model. In the following sub-sections these assumptions are justified and methods 

for the derivation of their values are discussed. 

4.2.4.1 Concrete Properties 

The stress-strain relationship of concrete is non-linear. However, this non-linearity is 

caused by micro cracking at its constituent cement paste-aggregate interfaces4
.
19

. For 

smaller strains, therefore, this dependence converges to a linear relationship as little 

or no cracking occurs. It is also noted that for rapidly applied loads «0.01 s) the 

recorded strains become smaller and the curvature of the stress-strain graph becomes 

greatly reduced4
.
2o

• Thus, this dynamic modulus approximates to the concrete's, low 
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strain, initial tangent modulus; although, in practice, the dynamic modulus is usually 

marginally greater than that of the static case. For very low strain, dynamic loading, 

therefore, the elasticity of concrete can be assumed to linear. The value of the 

concrete's elastic modulus may be derived from stress wave propagation velocities 

using Equation 4.20 or through 4.22 where Poisson's ratio effects have been ignored. 

(4.22) 

Clearly, the concrete density can be inferred from the design mix or measured from 

concrete samples. However, the Poisson's ratio is more difficult to establish. It may 

be derived from the resonant frequency of a concrete sample of length, L, from 

Equation 4.23, below. 

( )

2 
C I-v 

2nL· = (l+vXI-2v) 
(4.23) 

Where, as before, c and v are pulse velocity and Poisson's ratio respectively and n is 

the resonant frequency under inversigation in hertz4
.
2o

. Typical values of Poisson's 

ratio for concrete are given as 0.15-0.25 for low strain measurements4
.
21

, but for 

dynamic measurements this range narrows to 0.20_0.244
.
2°. For pile testing empirical 

evidence shows the value of Poisson's ratio has negligible effect on the pile head 

response4.22 . In this study, therefore, as in others4.1,4.6,4.14,4.22 a value has been 

assumed at 0.22, the middle of the aforementioned range. 

These methods for the derivation of concrete material properties have been used to 

model experimental results for uninstalled concrete beams published by Chan41
. 

Figure 4.11 shows the design of the three beams under investigation and the finite 

element meshes used to model them. Beam 1 was defect free, beam 2 had a neck at 

three metres and beam 3 had a bulb at the pile toe. The concrete density is given as 

2360kgm-3 and its cube strength,/cu, as 25Nmm-2
. 
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Equation 4.20 is derived using the theoretical propagation of stress waves in an 

unbounded elastic medium. For pulse propagation in a rod like structure, when 

lateral strains are considered, theory suggests that Poisson's ratio effects diminish as 

the pulse wavelength increases with respect to the rod diameter4
.
23

. This is true to a 

limiting case where the ratios of these measures is infinite when the propagation 

velocity tends to Equation 4.22. For this study, a pulse with a measured duration of 

1ms and a measured propagation velocity of around 3500ms-1 will have a pulse 

width at least an order of magnitude larger than the pile diameter. When estimating 

material parameters from experimental velocity measurements, therefore, Equation 

4.22 is used. 

The concrete's Young's modulus is, therefore, estimated from the measured pulse 

propagation velocity (3450ms- l
) as 28.1 GPa. As discussed earlier, the Poisson's 

ratio is assumed as 0.22. 

The experimental velocity trace for the defect free beam is shown in Figure 4.12 with 

the finite elements results in Figure 4.13, beneath. During the experimental 

prodedure the beam was suspended by ties from a crane. This has resulted in internal 

reflections at the support positions and a secondary peaking during the trace that 

gradually becomes more pronounced with time. By mimicking these ties through the 

inclusion of sprung supports at 1m and 4.5m in the finite element model similar 

results can be obtained. The trace is not identical with the experimental case because 

the exact positions of the ties were not given and the axisymmetric nature of the 

finite element model necessitates the supports circumnavigating the entire pile 

circumference. However, the introduction of the second peak and its gradual increase 

in magnitude with respect to the reflections from the pile toe is evident. 

A second plot is presented of the results when double the number of elements are 

used to ensure the effect is independent of mesh density. The third plot on this graph 

shows the resultant trace when no spring supports are used. 

Theoretical velocity values are compared to experimental and finite element 

generated values in Table 4.2. The results correlate well with experimental and finite 
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element values falling within 0.4% of one another. It is also noticable that the finite 

element result is within 0.4% of the theoretical value where Poisson's ratio effects 

are ignored. This supports Wong's c1aim4
.
22 that Poisson's ratio values have 

negligible effect on the pile head response when generated through the finite element 

method. 

Table 4.2 A Comparison of Theoretical, FEA and Experimental 

Stress Wave Velocities 

Propagation Velocity (ms- I
) 

Theoretical (without Poisson's ratio) 3450 

Theoretical (with Poisson's ratio) 3686 

Experimental (after Chan 4.1) 3450 

Finite Element 3437 

The finite element generated traces for the beams containing a neck and bulb are 

shown in Figures 4.13 and 4.14 respectively along with the experimental pile head 

response. 

In both cases direct, numerical comparisons of the reflected peak magnitudes with 

the input pulse magnitude are inappropriate as the magnitude of the input pulse is 

dependent upon the position of measurement. However, the ratio of peak magnitudes 

for the first two refections can give an indication of modelling effectiveness as here 

the propagating wavefront can be considered planar. These can be compared to 

theory by considering the path of a impulse through the beams. In the case of the 

beam with necking the first returning echo would have undergone one reflection 

while the second, from the increase in section at the bottom of the neck, one 

transmission followed by a reflection and a further transmission. For the beam with 

bulbing, the first echo has undergone one boundary reflection while the second has 

undergone a transmission, a total reflection at a free end and a further transmission. 
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The ratios of absolute magnitude for the first two reflections for each of these beams 

along with the measured pulse velocities are summarised in Table 4.3. Also 

presented are the calculated values from one dimensional wave theory. 

For the beam with necking the finite element trace has an error of 13% when 

compared to theory. The measured experimental value has a larger error of 20%. 

This is because of the sightly longer rise time of the input pulse for the experimental 

case where superpositioning of the two reflections has a more pronounced effect on 

the results. This effect is even more noticable in the case of the beam with bulbing 

where closer proximity of the origins of the returned echos has resulted in 

differences of 50% with theory. This superpositioning is also reflected in the 

apparent increase in pulse group velocity. If, however, the shape of the impulses are 

assumed to be Gaussian with a rise time of 0.5ms and a temporal separation 

calculated from the theoretical pulse propagation velocity (3450 ms- I
) the 

superpositioning can be accounted for and the new expected ratios given as: 1.7 and 

0.3 for the beams with necking and bulbing respectively. Both finite element and 

experimental measures are equal to the calculated values for the pile with bulbing 

and the experimental ratio is within 6% of that calculated for the pile with necking. 

Table 4.3 Quantified Partial Reflections from Discontinities: 

Experimental, FEA and Theoretical 

Experimental 
Theory Theory 

FEA 
(Dirac) (Gaussian) 

Pile with Magnitude ratio of 
1.8 1.7 1.5 1.7 

Neck first two reflections 

(Figure 4.14) Calculated pulse 

velocity (ms- I
) 

3628 3529 3450 3450 

Pile with Magnitude ratio of 
0.3 0.3 0.6 0.3 

Bulb first two reflections 

(Figure 4.15) Calculated pulse 

velocity (ms- I
) 

3550 3623 3450 3450 
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These results illustrate the problems associated with small scale testing where 

multiple internal reflections occur due to support conditions. Nevertheless, the finite 

element model has been shown to produce results that are consistent with both 

published experimental work and one dimensional wave theory. 

4.2.4.2 Soil Properties 

As in the case of concrete the stress-strain relationship in soils is a non-linear 

relationship with soil stiffness increasing with increasing deviator stresses in typical 

laboratory (triaxial) testing4
.
24

. Stress history, saturation, particle size and shape, 

strain rate, time (consolidation effects), and voids ratio can all contribute to this non­

linearity. However, at very small strains the shear modulus reaches a nearly constant 

limiting value, Go. Viggiani and Atkinson4
.
25 quote this elastic region as being for 

strains of less than 0.01 % for low plasticity soils and 0.001 % for plastic clays - well 

above the strains associated with low strain integrity testing. Importantly, it is also 

noted that at these strains volumetric and shear deformations are almost fully 

recoverable so justifying the continuum modelling of the pile soil interface. 

De Magistris et al. 4.26 have investigated the very low strain quasi-elastic properties of 

dynamically loaded geomaterials through triaxial testing using a highly controllable 

servo motor. Their experiments for undrained cyclic testing of silty sand illustrate the 

effective stiffening of soils at high strain rates (7 seconds/cycle [:::::0. 14Hz] at 

0.00075% strain) with the stress-strain response becoming more linear accompanied 

by a decrease in energy dissipation and, therefore, damping. This is reflected by an 

apparent increase in the initial Young's modulus for higher strain rates and lower 

damping ratios. 

The elastic properties of in situ soils may be estimated from site investigation data: 

typically cone penetration measurements and seismic shear wave velocities. Then the 

Young's modulus, E, can be derived from the measured shear modulus, G, by 

Equation 4.24 and soil densities can be estimated from 4.25 or measured from core 

samples. 
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G= E 
2(I+v) 

(4.24) 

(4.25) 

However, for the data used in this study no values of Poisson's ratio, v, are given. 

These must therefore be assumed as empirical measures taken from literature, see 

Table 4.4 below. 

The range of some of these values can produce values of E that may vary by up to 

7% from the actual value. Nevertheless, the large errors associated with the methods 

of in situ measurement and the small effect the Poisson's ratio has on overall system 

response supports this approximation as acceptable. 

Table 4.4 Given values of Poisson's Ratio 

Source Soil Type Poisson's Ratio Range 

Clay, Saturated 0.50 

Clay, with sand and silt 0.30-0.42 

After Winterkom and Clay, unsaturated 0.35-0.40 

Fang4.27 Loess 0.44 

Sandy soil 0.15-0.25 

Sand 0.30-0.35 

Loose Sand 0.20-0.40 

Medium Dense Sand 0.25-0.40 

After Das4
.
28 Dense Sand 0.30-0.45 

Silty Sand 0.20-0.40 

Sand and Gravel 0.15-0.35 

While it is appreciated that the above estimates and assumptions will lead to 

inaccuracies in the model it should also be recognised that there are intrinsic errors 

associated with sampling and testing techniques, and variations in soil properties 

through site variability, inhomogeneity, and anisotropy. 
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4.2.4.3 Material Damping 

Signal attenuation in the propagating stress wave during low strain pile integrity 

testing is predominantly caused by the transmission of energy across the pile 

periphery into the surrounding soil. As such, it is primarily a function of the pile and 

soil's relative stiffness and density, and the pile's circumference. However, an 

intrinsic material property of the soil and concrete is damping. For small strains and 

high strain rates the effect of this damping is sma1l4
.
26 and is invariably 

ignored4.1,4.2,4.4,4.5,4.7,4.13,4.15. However, its inclusion can, numerically, compensate for 

the resonance caused by the perfectly elastic system modelled in finite element 

analysis. The collated, empirical, values of the damping ratios for dynamically tested 

soils are given in Table 4.5. 

Table 4.5 Internal Damping in Soils (After Whitman and Richart4
.
29

) 

Soil Type Damping Ratio (%) 

Dry Sand and Gravel 3-7 

Dry and Saturated Sand 1-3 

Dry Sand 3 

Dry and Saturated Sands and Gravel 5-6 

Clay 2-5 

Silty Sand 3-10 

Dry Sand 1-3 

Factors influencing the values shown in Table 4.5 include shear strain amplitude, 

shear strain rate, axial strain rate and confining pressures. However, more recent 

measures by Abbiss 4.30 indicate that for low strain field measures (0" < 10-3 %) the 

damping is asymptotic to values of this order «10%) and consistent for the test 

method used to obtain them (hysteretic, impulse or resonance). This characteristic is, 

further, found4
.5 to be independent of soil plasticity (plastic index) for very low 

strains (0" <10-3 %). These findings correlate well with the laboratory tests of De 

Magistris et al. 4.26 who indicated that, for increasing strain rates the values for the 
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initial damping ratios of Metramo silty sand are asymptotic to a value of around 1 % 

for the range of tested confinement pressures. With the damping values being so 

small the signal attenuation in a pile test is dominated by material differences 

between the pile and soil, hence ignoring internal damping is justified. However, 

including it in this study provides a degree of numerical damping thus improving 

system results while remaining consistent with theory. 

The damping in soils is generally considered hysteretic in nature due to the energy 

dissipated within the system through inter-particle friction. In such cases the 

damping is considered a retarding force proportional to particle displacement and in 

phase with particle velocity. However, soil is more usually modelled as a, simpler, 

visco-elastic medium where the degree of damping is proportional to the particle 

ve1ocity4.27. These systems are generally rationalised through considering a single· 

degree of freedom sprung, rigid mass with dashpot damping as more complex 

multiple degree of freedom systems can be described in terms of the linear 

superposition of such systems. After an impulse excitation the system is left in free 

vibration. Subsequent changes in the amplitude of vibration are then described by the 

system's decrement of decay, be, where 

(4.26) 

n is the number of cycles of vibration that have occurred between measurements Zx 

and Zx+n' This decay constant is linked to the damping ratio, ~, through Equation 

4.27, below. 

(4.27) 

Structural damping is, however, usually found to be frequency dependent in that the 

damping effects for a given frequency of excitation will be lessened as that frequency 

approaches the resonant frequency of the undamped structure. In the finite element 

system used in this study this dependency is modelled through proportional (or 
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Rayleigh) damping. Here, the arbitrary assumption is made that the system damping 

is a linear combination of the mass and stiffness matrices. As the damping 

distribution for a given structure is rarely known in great detail this assumption is 

considered a reasonable approximation as long as: (1) the system damping is not 

greater than an order of 10% above critical damping and (2) damping is not 

constrained to a small region of the structure4.12
. As neither of these limitations are 

surpassed by the system under investigation (the damping is small and contained 

within a large continuous region of the model) it is considered a justifiable 

approximation to the true case. 

For Rayleigh damping, therefore, the damping matrix of Equation 4.16 becomes: 

(4.28) 

Where aD and al are known as Rayleigh damping coefficients. It can be shown that 

from Equation 4.28 the following relationship holds4.31 

(4.29) 

For two known damping ratios for two, usually modal, frequencies the Rayleigh 

damping coefficients can be evaluated from the resulting simultaneous equations. 

An investigation on the effect of soil damping on stress wave amplitude in a pile soil 

system has been carried out by Armstrong at Napier University4.17. Here a 4m pile 

was tested undamped and damped by sand and then gravel. For the undamped case, 

as with Chan4.1, the pile was slung under a crane by flexible ties. As illustrated in 

Figure 4.15, this, again, resulted secondary reflections caused by the support 

conditions. The material properties for the experimental and finite element piles are 

given in Table 4.6. The damping ratio for reinforced concrete is given4.32 as 0.15-

1.0%. If it is assumed that the frequency dependence of this damping rises from 0% 
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at zero hertz to 1 % at around 800Hz, where the input component frequencies reduce 

rapidly, values of ao (0.0) and a} (4.24xlO-6
) can be derived from Equation 4.29. 

Table 4.6 Pile Concrete Material Properties 

Property Experimental (after Armstrong4
.
17

) Finite Element 

Young's Modulus (Nm-2
) 1.297x101O 1.297xl01O 

Density (kgm-3
) 2360 2360 

Poisson's Ratio - 0.22 

The results of the finite element experiment are shown graphically in Figure 4.15. 

The propagation velocity from the finite element trace of 2330ms-1 is within 1.5% of 

the measured experimental value (2300ms-1
) and within 0.7% of the theoretical value 

using Equation 4.22 (2344ms-1
). 

For the sand and gravel damped cases the pile was housed in a wooden box, filled 

with uncompacted soil and held in place by three support ties, as illustrated in Figure 

4.16. Also in this figure is the finite element model. Unfortunately, modelling the 

square box using an axisymmetric model is impossible and so, to reduce the 

prominent boundary reflections that result from this imposed symmetry, but are 110t 

present in the small scale tests, the size of the soil annulus is increased to 1250mm 

from the design size of 350mm. 

The experimental results for the gravel and sand damped pile are shown in Figures 

4.17 and 4.20 respectively. Only the material density for the damped experiments has 

been given and so other physical properties are estimated from literature4
.
27 as 

summarised Table 4.7. Again, the frequency dependence of the damping coefficient 

is assumed to rise from zero to the stated value at around 800Hz, beyond which it 

rises rapidly. This provides a value consistent with theory for the frequencies of 

interest and a higher value for the much larger frequencies generated by the 

modelling process - so called 'numerical damping'. 
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Table 4.7 Material Properties for modelled soils 

Gravel Sand 

Density (kgm-3
) 1600 1470 

Young's modulus (Nm-3)4.28 7.0x 107 1.7x 107 

Damping Ratio, S (%) 10% 4% 

Damping Coefficients (ao, al) 0,4.0 xl0-5 0, 1.6x 10-5 

Poisson's rati04
.
28 0.3 0.25 

It is noticeable that both traces have a large trough following the initial impact, and 

subsequent reflections. This trough, it has been found, is apparent when the support 

ties are included in the model, as illustrated in Figures 4.18 and 4.21. Again, because 

of the imposed symmetry of the system and the difficulty in finding an exact spring 

constant for these ties, as the traces continue the modelled results diverge from the 

experimental case. However, from the initial impact to the first toe reflection, before 

multiple internal reflections have occurred, this trough is evident and is consistent 

with the experimental results in that it is more pronounced in the case of the gravel 

damped pile where the stiffness at the pile head is effectively increased by the denser 

stiffer material. 

Figures 4.19 and 4.22 illustrate the finite element generated traces for the gravel and 

sand damped piles where the support ties have been excluded. Direct numerical 

comparison with the experimental results is inappropriate because of the different 

support conditions and errors inherent in the estimation of soil properties. However, 

the drop in propagation velocity reported by Armstrong4
.
17 in the damped 

experimental case is also found in the finite element trace, as summarised in Table 

4.8. 

Table 4.8 Pulse Propagation Velocities 

Experimental group velocity Finite Element group 

(after Armstrong4
.
17

) (ms-I) velocity (ms-I) 

Undamped Pile 2300 2330 

Sand Damped 2050 2202 

Gravel Damped 1950 2162 
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The attenuation of the propagating stress wave can, however, be compared with 

theory. Reaffirming Briard's formula as Equation 4.30, below, the attenuated 

velocity magnitude, having travelled a distance, L, is given by Equation 4.31. 

A =! Psoil fJ 
r Ppile C 

(4.30) 

(4.31) 

where Vo is the initial velocity and, as before, r is the pile radius, P the density, fJ the 

soil's shear wave velocity and c the pulse propagation velocity within the pile. 

Clearly then, these equations can be rewritten in terms of time to give: 

-t&il..1!.. 

v(t) = voe Ppile r (4.32) 

Hence, if it is assumed that the maximum nodal velocity within the pile model at any 

one time is representative of that at the stress wave peak the attenuation of this value 

with time can be compared with theory. This assumption is considered sound for the 

defect free piles under investigation here as there are no partial reflections apart from 

at the pile toe. 

Such traces are shown for the gravel and soil models described above in Figures 4.23 

(a) and (b). For these experiments the gravel stiffness was increased to 14.7xl07 

Nm-
2 

in order to provide a better differential between the soils for comparison. A 

number of conclusions can be drawn directly from these graphs. First the addition of 

concrete damping has increased signal attenuation. This added damping has a less 

pronounced effect in the case of the gravel damped pile where attenuation due to the 

soil stiffness is larger and, therefore, dominates. It can also be noted that the addition 

of soil material damping does not discernibly change the degree of attenuation for the 

values used. Figure 4.23 (a) shows that the attenuation in the case of the gravel 

damped pile, when concrete damping is ignored, correlates well with that of the I-D 
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theoretical values. This is to be expected as the theory does not consider material 

damping effects. The fact that the soil damping has reduced spurious reflections from 

the 'box' boundary is also evident from the later section of the traces. These 

reflections have been caused by the increase in stiffness of the gravel modelled. Thus 

a larger proportion of stresses are transferred across the pile periphery into the soil 

and the soil's shear wave propagation velocity is increased such that reflections from 

the system boundary become apparent in the recorded trace. 

However, for the sand damped pile of Figure 4.23 (b) the attenuation is appreciably 

less than that of theory. The fact that theory correlates well with traces where 

concrete damping has been included is serendipitous and not expected (concrete 

damping is not included in the quoted 1-D theory). The cause of this aberration is 

identified in the parametric studies shown in Figure 4.24. 

The model used for the results in Figure 4.24 is a 0.8m diameter, 11.7m pile in a 

lower stiffness soil (E = 5x107 Nm-2
) with density 1800 kgm-3

• Th~ pile's material 

properties are given as E = 3.5x10IoNm-2 and density 2400 kgm-3
. The increased 

dimensions of this model indicate that the effects are independent of pile geometry 

and give a longer trace for analysis, uninterrupted by reflections at the pile's head 

and toe. Figure 4.24 (a) verifies that the effect is independent of the time step used in 

the analysis. It is evident that for all the step sizes analysed the difference in particle 

velocities is less than 10% and any difference does not increase with time. 

However, when the lateral resolution, i.e. the mesh density across the piles-soil 

section, is changed the resultant traces' correlation with theory also changes. As the 

mesh becomes more dense and the lateral distance between nodes becomes less - the 

value dx in Figure 4.24 (b) - so the model fits better with theory. It is, therefore, 

hypothesised that for lower stiffness soils the nodal displacements, and therefore 

strains, at the pile periphery are larger and so require a denser mesh to model them 

accurately. The surrounding soil's deformation is effectively 'undersampled' by the 

nodes in coarse meshes. While the stiffness and mass matrices are linearly 

proportional for all mesh densities the deformation geometry results in higher 

proportional strains being found nearer the pile soil-interface. Thus this geometric 
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non-linearity can only be modelled if the node density is sufficient to model the 

curvature of the soil displacement. If the mesh is too coarse the strain is effectively 

calculated over a larger distance and reduced such that its effects are diminished. 

This would account for higher stiffness soils, such as the gravel damped pile 

modelled above and the in situ piles described below, fitting well with theory as here 

the lower soil displacements result in lower strains. Thus there will be less curvature 

in the soil with respect to distance from the pile periphery and so a coarser mesh than 

that used in lower stiffness soils will suffice. It would also explain the change in 

propagation velocity observed for coarser meshes in Figure 4.24 (b). As the nodal 

distances increase so the recorded strains within the soil decreases and any retarding 

force will be lessened. 

For the in situ piles in this study the recorded shear modulus of the surrounding soils 

are all larger than the uncompacted gravel of the above experiments. Hence, the 

model mesh density used above is justified. However, if modelling, for example, 

micro-piles in a loose granular soil this effect should be considered when choosing a 

suitable mesh topology. 

4.2.5 Dynamic Control and Convergence Criteria 

The equations of dynamic equilibrium summarised in Equation 4.16 may be used to 

reproduce the time history response of a structure to a forcing function through step 

by step integration. This direct integration method utilises two basic concepts4
.
12

: 

1. The dynamic equilibrium equations are satisfied at discrete time points, ~t 

apart, within the solution interval. 

11. The change in displacement, velocity and acceleration during these time 

intervals are postulated. These postulates being definitive of the direct 

integration scheme applied. 

The set of direct integration schema may be subclassed into explicit and implicit 

methods. Both estimate the unknown displacement, velocity and acceleration at a 
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time t+~t from the known conditions at t. For explicit dynamics the subsequent 

system state is resolved from consideration of the equilibrium conditions in its 

current state. For the implicit case the sate at t+~t is obtained by considering the 

equilibrium at time t+~t. 

The finite element software used in this study is the Lusas™ finite element 

system4
.
12

. For this case the explicit method offered is the central difference 

integration scheme while the implicit method is the Hilber-Hughes-Taylor 

scheme4
.
12

. 

For the explicit method displacements for the subsequent time step are estimated 

from current nodal velocities. ThIS being the case the method is only conditionally 

stable, that is small time steps must be used to ensure system stability. The critical 

time step value, which must not be surpassed to ensure stability is given as: 

(4.33) 

where (i)max is the maximum modal resonance of the system under investigation. 

For implicit dynamics the equilibrium at time t+~t is calculated from the solution of 

the equilibrium equation at time step t+~t. Thus the solution is necessarily stable and 

larger time steps can be implemented. However, this comes at the computational cost 

of inverting the stiffness matrix for each time step. Hence a compromise must be met 

between speed of solution and stability of results. 

For the explicit case the system is limited to being modelled by equally sided 

elements. As such, for the sake of comparison, Figure 4.25 shows the results from an 

uninstalled beam made up of square elements. The maximum frequency of 

oscillation is assumed to be that of the pile head resonance. This can be estimated 

from the calculated Rayleigh wave velocity and pile diameter from Equation 2.4. If it 

is assumed that the Rayleigh surface wave is only slightly less than the calculated 
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shear wave velocity then (1)max ~ 48kHz and so ~tcr ~ 4.2x 1 0-5. However, for 

propagating stress waves the critical time step may also be estimated from 

(4.34) 

where s is the shortest internodal length and c is the pulse propagation velocity. From 

this the critical time step is estimated as 7.5xl0-6 seconds. It is this value, the smaller 

of the two estimates, that is, therefore, chosen as the critical time step length. 

For the implicit dynamic method it is suggested4
.
12 that the employed time step 

should be smaller than that associated with the highest frequency of the system's 

dynamic load, 'tmax • That is 

(4.35) 

For the applied Gaussian pulse, in this case, it can be seen that the power spectrum 

has low values above 750Hz and so the maximum recommended ~t is calculated as 

2.6x 10-5 seconds. 

Referring to Figure 4.25, therefore, it is apparent that the implicit case gives expected 

results for ~t values even above this recommended value. For the explicit case, 

however, a resonance has occurred for time steps nearly an order of magnitude lower 

than the calculated critical time step value. The frequency of oscillation is larger for 

the shorter time step which supports the view that this is a numerical aberration and 

is probably caused by internodal resonance rather than structural resonance. 

i 

When applied to a larger model of a soil damped pile the results shown in Figure 

4.26 are obtained. These results also show a high degree of oscillation, however, the 

geometric damping provided by the increased system size and inclusion of the soil 

along with the larger nodal distances has resulted in these oscillations reducing with 
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time. At 2413Hz, they are also of the order of the expected pile head oscillations 

calculated by Equation 2.4 as about 3kHz. The response is in marked contrast with 

the required response shown in Figure 4.28 and that produced by the implicit method 

shown in Figure 4.29. Here, the pile head ringdown is far less pronounced and the 

size of the reflection from the pile toe far smaller. It is, however, typical of the 

published results of Liao and Roesset4
.
6

,4.13 who have used the explicit method to 

generate their results. It is, therefore, suggested that the larger oscillations and 

increased magnitude of reflection is a result of the stiffness matrix not being inverted 

and 'overshoot' of the estimated nodal displacements. To improve results the time 

step would have to be further reduced from those shown in Figures 4.25 and 4.26. 

The necessity of a far smaller time step and a finer mesh obligated by the use of 

square elements means the time saved through using the explicit method is minimal 

when compared to the necessarily stable implicit integration method. For this study, 

therefore, the implicit, Hilber-Hughes-Taylor, method has been employed with a 

time step of 5 xl 0-5 seconds. 

The results shown hav~ all been obtained through keeping the system default 

convergence criteria. All these time steps converged on a stable solution within three 

iterations and no improvement in performance was found by tightening the criterion. 

Convergence is, therefore, defined by that recommended by Lusas Ltd4
.
12

. 

Specifically, the Euclidean incremental displacement norm must drop to less than 

1 %. That is the norm ofthe iterative nodal displacements as a percentage of the norm 

of the displacements for that time step must fall to less than 1 %. Effectively, this is a 

measure of how much the structure has moved during the current iteration. Thus, as a 

solution is converged upon, the value reduces with each iteration until the 

convergence criterion has been met. 

4.2.6 Model Validation Using Field Test Data 

This field data was collected as part of the EPSRC (then SERC) investigation into 

pile testing at the Blyth test site. It has been kindly supplied by Testconsult Ltd, 

UK
4

.
33 along with all the laboratory material test results. It is almost uniquely suited 
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to the validation of the FEA model described above as a number of designed faults 

have been deliberately included in the installed piles for research purposes. The data 

has been collected using the CEBTP dual channel TD-I data acquisition equipment 

and a small sledge, instrumented, hammer, as described in Chapter 2. All field test 

results are presented as an ensemble average of those collected for the named pile to 

reduce ringdown effects. 

The 40m x 35m site contains twenty five installed concrete piles of various lengths 

and 0.75m diameter. The piles are uncapped and are 5m apart enabling pile grouping 

effects to be ignored. Five piles have been chosen for verification purposes. Each has 

a design length of around II.5m and design faults given as: 

1. Sound Pile 

11. Single 0.6m length neck at 3.45m 

111. Two necks, each of 0.6m length at positions: 2.4m and 6.9m 

IV. Single bulb of2.5m length at 4m 

v. Two bulbs, each of2.4m length at positions: 1.55m and 5.6m 

All design dimensions are included in Figures 4.28,4.32,4.36,4.40, and 4.44 next to 

the recorded field trace for that pile. 

4.2.6.1 Site Investigation Data 

The dynamic modulus for the pile concrete was derived from ultrasonic pulse 

velocity measurements on cube samples using Poisson's ratio values obtained from 

cylinder resonant frequencies. For the four samples tested the measured dynamic 

modulus is given as 3.25xlO10 ± 8%. Poisson's ratio and density values are not 

given. The soil environment is described as stiff over very stiff clay with a thin peat 

layer at the surface. The water table is measured at 10m depth and shear modulus and 

shear wave velocities given in Table 4.9. 
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Table 4.9 Measured Soil Properties with Depth 

Depth Description Shear Modulus Shear Wave Velocity 

(m) (MNm-2) (ms-2) 

0.0-0.2 Peat - 145 

0.2-1.5 Stiff Clay 67 175 

1.5-3.0 Stiff Clay 89 200 

3.0-4.0 Stiff Clay 119 230 

4.0- Stiff / Very Stiff Clay 235 320 

4.2.6.2 FEA Model 

One example of the various meshes used fot this model is shown in Figure 4.27. This 

is for the defect free pile with axisymmetric triangular elements as before. The lateral 

dimension of these elements (dx) is O.lm with an aspect ratio of 1:3 which, as 

discussed above, is a suitable mesh density for the soil stiffness of Table 4.9. 

The node and element positions remain the same for all models with only the 

elements' material assignments changing for the different piles. The system model is, 

therefore, limited to a resolution of 0.3m in the axial dimension and O.lm in the 

lateral one. Thus these models are not exact reflections of the in situ case, but rather 

close representations. These inaccuracies, however, only represent about 3% of the 

pile length and 6% of the pile radius. 

The soil is modelled as two strata with a Poisson's ratio assumed as that of 

unsaturated clay given in Table 4.4, that is 0.4. Thus, the Young's modulus and 

density of the soil can be derived from Equations 4.24 and 4.25 respectively. The 

density of the concrete is calculated from the measured pulse velocity in the field test 

results and the given dynamic Young's modulus. The Poisson's ratio of the concrete 

is assumed as 0.22. The damping ratio of the soil is taken as 5%, see Table 4.6. As 

the soil damping dominates to such an extent in these tests concrete material 

damping is ignored. The numerical assignments for the materials in these models are 

summarised in Table 4.10, below. 
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Table 4.10 Material Assignments for FEA model 

Concrete Soib (depth: 0-4m) Soib (depth: 4-15m) 

Young's Modulus (MNm-2
) 3.25 250 650 

Poisson's Ratio 0.22 0.4 0.4 

Density (kgm-3
) 2420 2250 2295 

Damping Ratio (%) 0 5 5 

4.2.6.3 Results Comparison 

The traces for the field test data and finite element generated data can be found in 

Figures 4.28-4.47. A summary of these results is presented in Table 4.11, below. 

Table 4.11 FEA and Field Test Trace Comparison 

Feature Depth (m) for c = 3500-4000ms-1 

Feature Design Field Test FEAmodel. 

Sound Pile Toe 11.3 10.9-12.5 10.8-12.3 

Neck Onset 3.45 3.4-3.9 3.2-3.6 

Pile with neck Neck End 4.06 Not observed 3.9-4.4 

Toe 11.8 Not observed Not observed 

1 st Neck Onset 2.39 2.4-2.8 2.3-2.6 

1st Neck End 3.00 3.3-3.7 3.0-3.4 
Pile with two 

2nd Neck Onset 6.87 Not observed Not observed 
necks 

2nd Neck End 7.48 Not observed Not observed 

Toe 11.3 Not observed Not observed 

Bulb Onset 4.00 4.6-5.3 4.0-4.6 

Pile with bulb Bulb End 6.50 6.4-7.3 5.6-6.4 

Toe 11.0 Not observed Not observed 

1 st Bulb Onset 1.55 3.1-3.5 1.9-2.2 

1st Bulb End 3.85 4.9-5.6 3.3-3.8 
Pile with two 

2nd Bulb Onset 5.65 Not observed Not observed 
bulbs 

2nd Bulb End 8.05 Not observed Not observed 

Toe 11.3 Not observed Not observed 
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Immediately noticeable is the fact that the large defects have shielded any features 

below them from being detected. This is consistent for both finite element and field 

test data. It is also to be expected given that the change in radius for bulbing 

(doubling r) and changes in radius for necking (halving r) result in coefficients of 

reflection of 0.6 and 0.4 respectively. Thus after any given fault - of two changes in 

section - only about a third at most of the propagating stress wave will be transmitted 

beneath it. This coupled with the highel' degree of attenuation at greater soil depths 

prevent any indication of pile structure beneath the first fault. 

Variability in concrete material properties means the propagation velocity can only 

be estimated as being between 3500-4000ms-1
• For the defect free pile the design 

length of the pile falls within the acoustic lengths estimated for from these velocities. 

For piles with necking (Figures 4.32, 4.33, 4.36, 4.37) both the decrease and increase 

in radial section have been detected although the position of this increase appears to 

be estimated deeper than its design depth. This is due to the superpositioning of the 

two reflected pulses as discussed in Section 4.2.4.1. 

This is also true for the piles with bulbs where it is noticeable that the gradual 

increase in section does not appreciably change the pulse shape in the finite element 

trace. However, in the field test traces the ramped increase in section over a 1.3m 

length has caused a smaller reflection than might be expected from a stepped 

increase. Note that the reflected pulse from the decrease in section in Figure 4.40 is 

larger than the earlier echo even though it has a smaller incident amplitude due to 

previous reflections and attenuation. The necessarily discrete nature of the finite 

element method, therefore, appears to model discrete changes more accurately than 

smoother more gradual changes. 

The mobility curves for field test and finite element data are presented in Figures 

4.30, 4.34, 4.38 and 4.42, and 4.31, 4.35, 4.39 and 4.43 respectively. The dynamic 

stiffness estimates from these graphs are presented in Table 4.12, below. 
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The absolute values are all slightly higher in the finite element cases than those of 

the in-situ tests. This may be due to the simplification of the soil stratification for 

modelling purposes or, more likely, the fact that the radius of the piles in the field, 

0.375m, was rounded to O.4m for the purposes of the FEA model. 

Table 4.12 Dynamic Pile Head Stiffness 

Pile In-Situ Testing (MNmm- l
) FEA Model (MNmm- l

) 

1 1.7 2.4 

2 2.1 2.7 

3 1.8 2.1 

4 2.3 2.5 

5 2.6 2.8 

In both cases the pile stiffness of those with necks are less than those with bulbs. As 

expected the lowest value for the faulty piles is for that with two necks and the 

highest for that with two bulbs. It is noticeable, however, that the pile head stiffness 

is higher, in both finite element and field test data, for the pile with one neck (pile 2) 

than for the defect free pile. 

4.3 REMARKS CONCERNING FEA MODELLING 

The finite element model described above has been shown to produce reflection 

coefficients and attenuation consistent with 1-D theory. This being the case it may be 

argued that the simpler 1-D methods may be employed to generate the necessary time 

traces for neural network training. However, as is apparent from the field test data 

ringdown is still prevalent after filtering through ensemble averaging This feature is 

also observable in the finite element data, but not for 1-D simulation. It would not, 

therefore, be sensible to train a neural network without this correlated noise included 

as spurious results would likely be produced. Given the necessity for neural network 

training data to be representative of that which it will be expected to interpret in the 

field the FEA method is consequently the method of choice for training data 

simulation. 
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4.4 TECHNICAL FEASIBILTY 

The appropriateness of neural network utilisation for the interpretation of pile 

integrity test data has been discussed in Chapter 3. The ability of a multilayered 

feedforward network to 'peak pick' in NDT spectra is known and well documented -

Sections 3.4.4.1-3.4.4.3. The second part of this chapter provides empirical evidence 

for the ability of such networks to cope with the superpositioning of reflections in the 

time domain in order that the length of any fault can be established. That is, it 

provides a technical feasibility study by considering uninstalled concrete piles and a 

multi-layered network's ability to identify, quantify and locate faults within them. 

The successful completion of this task was considered adequate evidence that the 

problem domain could be extended to include installed foundation piles of an 

arbitrary profile. 

4.5 FAULT IDENTIFICATION IN AN UNINSTALLED PILE 

4.5.1 Problem Domain Definition 

The problem domain was limited to uninstalled piles of 5.5m length and O.75m 

radius. Specifically this section considers the ability of a network to identify the type 

(neck or bulb) of defect in a pile of fixed length and change in radius. It was also 

required to detect the axial length of this fault and its position. 

4.5.2 Data Presentation 

By visual inspection of the generated time traces it was apparent that a defect's 

position and type was most recognisable from the start of the trace, before the signal 

becomes too complex through the superposition of reflected waves - see for example 

Figures 4.12 and 4.13. It was the first 7.5ms of the generated traces that were, 

therefore, discretised and presented to the network as its input data. This allowed two 

reflections from the pile base to be included in each input pattern. Experiments using 
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25, 50 and 100 linear input units where tried with 50 units giving best results. It is 

this configuration that was, therefore, adopted. 

4.5.3 Network Output 

The network's output was designed to be representative of the pile radius at various 

points along its axial length. As the problem domain was limited to a 5.5m pile with 

only one degree of defect the output was chosen to be 22 units with outputs ranging 

from 1 to -1. Each unit represented a 0.25m length of the pile and its outputs 

corresponded to the likelihood of that length being a neck (-1), a bulb (l) or being 

sound (0). A sensible choice for the output units' activation function is, therefore, the 

hyperbolic tangent function with its output range of -1 to + 1. 

4.5.4 Learning and Test Sets 

By choosing to consider the pile in 0.25m sections there were 552 (276x2) 

combinations of defect length and position within the pile (although some of these 

give identical results - a defect length of zero gives the same trace wherever it is 

positioned). Two traces were removed from this set leaving 550 patterns (the cases 

where the defect ran the entire length of the pile, i.e. a sound pile of a different 

diameter). From this set 100 randomly chosen patterns were withdrawn. This test set 

was later used to evaluate the network, while the remaining 450 patterns, the training 

set were used to teach it. 

4.5.5 Learning Parameters 

As described in Chapter 3, the learning rate defines the size of step the network 

takes as it converges on its final solution. If the step is too large the network may not 

have the resolution to evolve to a suitable state whereas if it is too small the 

convergence may become unacceptably slow. While Rumelhart, McClelland et al. 4.34 

suggest a learning rate of 0.25 or less, Neural Ware Inc.4.35 the manufacturers of the 

software simulator used in this preliminary research suggest a value of around 0.9. 

However, these values appear to have been chosen with the sigmoid activation 
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function in mind rather than the tanh function employed in this study. Preliminary 

testing indicated that initial weight changes using such values were too large. This 

resulted in the units being forced to give outputs from their saturated region so 

leading to a very poor system performance. 

Two methods may be employed to counteract this problem. First the learning rate 

can be lowered to reduce the magnitude of the weight changes. Second the net input 

to the unit can be scaled, using the temperature parameter described in Chapter 3, 

so flattening the activation function. This will enlarge its linear region and reduce a 

unit's output for a given input. 

A full parametric study of these changes effect on network learning is shown in 

. Figures 4.48 and 4.49. Here the network effectiveness was measured by averaging 

the mean squared output error over all the patterns in the test set. The mean squared 

output error being described by Equation 4.36, below. 

(4.36) 

where N is the number of output units, Yj the target output for the unit j and Yj the 

observed output. 

This study shows the 'ravine' of suitable values that may be chosen and how they 

strongly correlate with the initial weight changes of a typical hidden unit. If the 

values are both large the weight change is too large and the network learns badly. If 

both values are too small then the weight change is very small and the network 

doesn't learn at all (for the smallest values the weight update is zero to 5 decimal 

places). 

This experiment was repeated with networks of one, two and three hidden layers and 

it was found that the more hidden layers there are the more the network was affected 

by the choice of learning parameter. This is due to early learning in multilayer 
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networks being slowed by the gain term in the weight update rule (tanh'[netil ). This, 

in turn, reduces the weight changes for the lower layers of the system which are 

reduced even further when the net input is scaled. Values were chosen that produced 

good results for up to three hidden layers and encouraged a reasonable rate of 

convergence to the system's state of optimum performance. The scale selected for 

this study was, therefore, 0.1 and the learning rate 0.25, as illustrated in Figure 4.50. 

As can be seen these are classic plots of network learning. The systems containing 

more layers took longer to train, but converged to a slightly better solution. One 

epoch is one cycle through the training set and the three layer system converged to its 

optimum value after around 400 epochs. 

4.5.6 Network Structure 

In selecting the network architecture the developer is forced to compromise between 

system performance and speed of training. As seen above, the more layers present in 

a system, the more epochs the network takes to train. Also because of the increase in 

the number of weights each epoch takes up more CPU time. Training then becomes a 

time consuming process. It is also true that simply making the network bigger does 

not necessarily increase its performance. As described in Chapter 3 overtraining 

occurs when the network capacity is too large for the task it has been set to learn. 

The network overfits the training data and learns it 'parrot fashion' rather than 

learning the general rules needed to effect the mapping. This leads to poor results 

when the network is assessed using the test data. Conversely bottlenecking occurs 

when there are not enough units in a hidden layer for the network to make an 

adequate internal representation of the presented data resulting in a loss of 

performance. 

A full study of the relative performances of different system architectures are shown 

in Figures 4.51 and 4.52. These graphs show the optimum results obtained by the 

network. However, it should be noted that some of the larger systems did go on to 

overtrain. 
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This parametric study of the network architecture revealed that the most suitable 

networks were either a one layer network with twenty units or a two layer one with 

ten units in each layer. In the networks with more units the increase in system 

performance was small compared with the increase in training time. One point of 

note is that the network's performance did not appreciably improve when more than 

two layers are used. This concurs with Kolmogorov's theorem which states that any 

continuous function can be approximated using one hidden layer and any non­

continuous function can be approximated with tw04
.
36

. 

The final network selected for analysis was, therefore, a three layer network with an 

input layer of fifty linear units, one hidden layer of 20 non-linear, tanh, units and an 

output layer of 22 non-linear, tanh, units. This was trained using the back 

propagation algorithm with a learning rate of 0.25 and a temperature factor of 0.1 

scaling the units' net input. 

4.5.7 System Repeatability 

The system's consistency was ensured by repeating the experiment a further four 

times. Each network had a different training set and different starting weights (small 

and random as suggested by Rumelhart, et at. 4.34 ). The results presented in Figure 

4.53 verify that this network's performance was independent of training set and 

starting weights. 

4.5.8 Network Results 

One of the benefits of repeating the experiment four times was that a map of the 

network's fault finding abilities could be made in the knowledge that the results are 

not training set dependent. Figure 4.55 is such a map with the lighter areas indicating 

larger errors. This clearly illustrates how the network found difficulties in detecting 

smaller defects (areas to the left side of the graph), defects at the pile head (areas 

towards the bottom of the graph) and defects at the pile toe (the diagonal line where 

defect position and defect length equal five and a half). This is what one might 

expect from visual inspection of the time traces and is strong evidence that the 
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network learned the rules governing the interpretation of these traces. 

Figures 4.56 and 4.57 show, graphically, examples of the system's output for some 

of the test set. In Figure 4.56 the output for the sound pile can be seen. The top trace 

shows the required output for the time trace presented while beneath this is the actual 

response of the network. For the sound pile, therefore, a constant value of zero is 

wanted as neither necking (-1) nor bulbing (+ 1) is present. This format is followed 

for Figure 4.57, although the labelling has been removed for the sake of clarity. 

In Figure 4.57 a set of outputs representative of test set are shown. These support the 

earlier assertions made about the network's strengths and weaknesses. Small necks 

are hardly detectable and necking at the pile head leads to spurious outputs for the 

length below the defect. 

The apparent ability of the network to detect bulbing more efficiently than necking 

may, in fact, be due to the change in cross sectional area being greater for the bulbing 

examples than for the necking ones. Hence no conclusions can be drawn from this 

observation. 

The problem of detecting the smallest defects (0.25m) may be explained by the 

sampling rate of the trace presented to the network. In the time between samples 

(O.I5ms) a stress wave travelling at 3500ms-I will cover about half a meter. The 

temporal resolution of the pile response may, therefore, be too coarse to be 

transformed to such a high spatial resolution. Increasing the sampling rate of the time 

trace, however, will necessitate an increase in the number of input units. This leads 

to an increase in size of the weight space and so to the problem of overtraining. 

Suitable pre-processing offers a potential solution to this dilemma and is discussed, 

with reference to system development, in Chapter 6. 

4.5.9 Noise Utilisation 

One of the advantages of using artificial neural networks is their ability to overcome 

the problem of noise in the test set. This is shown in Figure 4.54 where one can see 
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that the networks performance gradually decreases as the maximum amplitude of the 

noise is increased. 

This noise was uniformly distributed over a defined bandwidth and was injected into 

the net inputs of all the network's units. The average absolute value for the net input 

to a hidden unit was about five, therefore a noise value of one corresponds to around 

20% noise in the unit's input. The networks effectiveness diminished slowly, with no 

catastrophic failure. This characteristic of ANNs is known as graceful degradation 

and is considered a major advantage in the use of this processing method. 

The injection of noise, however, can also have a positive effect. When used sparingly 

it can force the network to generalise on only the most salient points in the training 

set. Twenty percent noise Was added to our system at the start of training dropping 

exponentially to zero as the end of training approached (1500 epochs). This led to a 

trained system which gave reasonable values for experimental traces published by 

Chan 4.1, even though the' error for the finite. element training data was higher (Figure 

4.58}. 

The poor response for the necking trace is probably due to the low frequency term 

present in the experimental data, but missing in the finite element data. However, the 

system has undeniably differentiated between the faulty piles and the sound one and 

has made a reasonable attempt to identify the defects present. 

4.6 SUMMARY AND CONLUSIONS 

Representative training data is recognised as a prerequisite for successful neural 

network learning. 

Network training using collated field test data is impossible due to uncertainty 

inherent in both input and output data sets. 
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The finite element method is a method of generating time traces which include 

features associated with pile head ringdown and radial shear wave propagation 

within the soil. 

The presented model has measured particle velocity attenuation consistent with that 

of one dimensional wave theory. The mesh density required for this correlation to 

hold is dependent on the stiffness of the soil being modelled. Lateral nodal distances 

ofO.lm were found to be acceptable for soil stiffness greater than 2xl08 Nm-2 while 

for soils of2xl07 Nm-2 this distance needed to be halved. 

The proportion of the incident pulse that is reflected and transmitted across a change 

in pile section is consistent with one dimensional wave theory. For FEA elements 

with an aspect ratio of less than 4 the numerically modelled results are consistently 

within 5% of those calculated through I-D theory. 

Results for the finite element model are consistently larger (around 10%) than in situ 

field test results due to the difference in design radius. Calculated fault depths are 

consistent with theory and correspond well with field test data. For all 5 piles 

considered the design pile length is within the range calculated from the resultant 

trace and the limiting propagation velocities: 3500ms-1 and 4000ms-l • 

Finite element generated traces for uninstalled concrete beams have been used to 

train a multi-layered network with hyperbolic tangent activation units using the back 

propagation algorithm. 

The network has successfully identified the position and axial length of faults with 

these piles with a degree of effectiveness consistent with the known limitations of 

the test method. That is, smaller faults and faults at the pile head and toe are more 

difficult to detect. 

This network has identified faults in experimental data when the finite element 

training data has had white noise (20% of the average input unit value) added to it. 
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These results support the hypothesis that a neural network trained using finite 

element trained data may provide a tool for the automated interpretation of sonic 

echo, integrity test traces. 

This thesis will continue with a summary of the hardware and software necessary for 

the development and utilisation of such a system. 
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Figure 4.20 Experimental pile head velocity response for a sand damped pile 
(after Armstrong4.17) 
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5. Hardware and Software 
Development 

5.1 SYSTEM FLEXIBILITY 

In deciding the best route to take during the research and development of a system 

such as this a compromise must be made between simplicity and flexibility. There 

. are a multitude of neural network simulators for the PC which are simple to use and 

have been optimised for maximum speed of computation. One such system, 

NeuralWorks Professional lIs'!, has been used for the feasibility study in the previous 

chapter. However, in using such software the developer is restricted to the networks 

and training algorithms it supports. For systems utilising the novel gradient descent 

algorithms described in Chapter 3, or those based on wavelet networks no such third 

party software, as yet, exists. 

The temptation of the developer may then be to program the system from scratch. 

The author has experience of programming low level neural network simulators in 

Pascals.2• The time consuming process of altering and recompiling low level code is 

not conducive to the overall speed of system development. It is also extremely 

difficult for other people to interpret and often necessitates the porting of data to 

other third party software, e.g. spreadsheets, for data presentation and analysis. 

Matlab® is a technical computing environment that provides the user with a graphical 

interface, memory management, and a high level programming language not unlike 

Fortran or BASICS
.3. It has been developed specifically for mathematical 

programming and is optimised for matrix manipulation and linear algebra of the type 

used in Neural Network simulation. It also has a number of useful predefined 
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functions for data manipulation, such as fast Fourier transforms and matrix pseudo 

inverse generators. It also provides data presentation procedures including both 2-D 

and 3-D graph plotting. 

Importantly for this application, it also provides a facility for linking with C++ 

programs through an Application Program Interface (API). In particular, it allows 

such low level programs to be linked with the API to provide a Dynamic Linked 

Library which can then be called as though it were a Matlab command. Hence, it 

facilitates the combining of low level hardware programs, such as those necessary to 

access data acquisition equipment, with a system entirely developed and run within 

the Matlab environment. 

This environment is, therefore, seen as a compromise between speed of software 

execution and speed of system development. With the speed of execution not being 

of primary importance during the development stages the added flexibility provided 

when compared with specialist neural network simulators makes it ideal for a study 

such as this. The software described in Sections 5.2.3 and 5.3 has; therefore, been 

developed within the Matlab environment. 

5.2 DATA ACOUISITION EOUIPMENT 

During the last fifteen years a great deal of research has been carried out at Napier 

University and the University of Edinburgh in the field of impact testing of large 

engineering structures. These projects include the testing of piled foundations5
.\ 

masonry sewers5
.
5

, and masonry arch bridges5
.
6

,5.7. Common to all this research is the 

equipment used for data acquisition. 

The mam components of this testing equipment are illustrated in Figure 5.l. 

Essentially the sensing devices and signal conditioning units are the same as those 

used for commercial testing, as described in chapter two. Specifically, a Brilel & 

Kjrer accelerometer and Piezotronics 3 kg small sledge instrumented hammer are 

used with signal conditioning applied through their specified charge amplifiers. 
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However, unlike in the commercial case, the readings from these units are fed to a 

dual channel spectrum analyser, a Briiel & Kjrer model 2034. Here, the test data can 

be sampled at up to 64kHz per channel and have various windows - exponential, flat­

topped, Hanning, Kaiser-Bessel etc. - applied before being analysed, e.g.: auto- or 

cross-correlation, auto- or cross-spectra, cepstrum, coherence, or impulse response 

functions. The results from this analysis are then either printed on a HP7475 plotter 

or transferred to a portable 'lunchbox' computer through an IEEE 488 interface. 

All the processing carried out in hardware using the dual channel analyser can now 

be carried out using functions contained in the Matlab signal processing 'toolbox' 

and, with the increase in computer power over the last decade, can be calculated with 

no discernible slowing of the speed of computation. As shown in Figures 5.2 and 5.3 

the equipment is bulky and so not very mobile. The requirement of a power generator 

and the size of the dual channel analyser along with its stand necessitates a transit 

type van for transportation and slows the rate at which piles may be tested on site 

considerably. It is also noted that, with analysis now being carried out on a portable 

computer, the dual channel analyser's role is reduced to that of an analogue to digital 

converter (ADC). More compact, specialist, devices exist for this task which can 

greatly improve the portability of the equipment and negate the need for a power 

generator. A new, more compact, data acquisition system has, therefore, been 

developed for this study. 

5.2.1 New Equipment Overview 

The impact testing equipment, that is the sensors and hammers, used in this study are 

the same as those used in the old system and described in Section 5.2.2. However, as 

shown in Figure 5.3, the output of the sensor signal conditioning units are now fed 

into a junction box which is connected to a ADC card in a laptop computer. These 

connections and hardware specifications are discussed in Section 5.2.3. As can be 

seen from the photographs in Figure 5.4, the equipment's overall size is reduced so 

improving portability and facilitating hardware protection during inclement weather 

conditions. The use of this new equipment, has however, necessitated the 

205 



development of new software to control it. This software is described in Section 

5.2.4. 

5.2.2 Impact Testing Equipment 

The sensors used in this study are the same as those used in the previously mentioned 

research and by industry. Specifically, the hammers used are the Piezotronics (PCB) 

'hand sledge' (3 lb - 1.36 Kg head) and 'sledge' (12 lb - 5.44 Kg head) instrumented 

hammer types: 086B20 and 086B50. These hammers are shown in the photograph of 

Figure 5.6 and are supplied with interchangeable tips of: rubber, soft plastic, hard 

plastic and aluminium. 

The hammers and accelerometers used are 'modally tuned', i.e. the accelerometer 

has a spectral sensitivity range that includes the frequency components of the impact 

excitation produced by the hammer. The accelerometer uSed in this study is the 

Piezotronics type 353B33 which has a spectral sensitivity of I-4000Hz and is, 

therefore, suitable for use with both these hammers as well as the lib, 0.45 Kg, 

'heavyweight' hammer (type 086C05) which is also shown in Figure 5.6. 

Both hammers and accelerometer are supplied with the same signal conditioning 

unit: the PCB 480E09. This is a battery powered charge amplifier that provides a 

linear gain of 1, 10 or 100 to a maximum value of ±4.5volts. The 480E09 unit 

supersedes the 480D06 that has been used successfully as part of the preceding test 

equipment for a number of years. It is shown in Figure 5.6. 

5.2.3 AD Converter and Junction Box 

The choice of analogue to digital converter is primarily dependent upon the required 

signal sampling rate and voltage step resolution (i.e. 8, 12 or 16 bit). Most 

commercial testing companies employ purpose built hardware for pile testing. 

Technotrade, however, use hardware developed 'in-house' with a system similar to 

that used for this study. Following consultations with a company representative a 

suitable converter was selected as the PCM-DASI6D/16. This PCMCIA type II card 
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fits directly into the expansion slot of a laptop computer. It allows two channels to be 

sampled simultaneously at 50kHz and is a 16 bit converter giving a voltage step 

resolution of 0.000305 Volts at ±10 volts full scale deflection. This is the best 

resolution currently available for converters of this type and the sampling rate allows 

ten fold over-sampling of the frequencies of interest. 

This card has a number of other important features that should be noted at this point: 

a 256 sample First In First Out (FIFO) buffer is comparatively large for ADCs of this 

type and ensures no data is lost when transfer requests are made to the computer's 

CPU. The card's software driver supports the fast direct memory access (DMA) 

transfer of data and background collection of data into a circular buffer. This means a 

trigger mechanism can be programmed in software as previously acquired data can 

be checked while subsequent data is being collected. This card also contains an on 

board amplifier, that can be programmed through software. This avoids the need for 

additional external devices and allows data ranges of ±10v, ±5v, ±2.5v, and ±1.25v 

to be collected without the having to manually alter hardware settings. 

The signal conditioning units and computer are both battery operated and, as such, 

have electrically isolated earths. This means no isolation barrier is necessary and so 

the screened output of the signal conditioning unit can be connected directly to the 

differential input of the AD converter. However, the system's noise immunity can be 

reduced by earthing the low input of the channel through a 10kQ resistor5
.
8

, as shown 

in the circuit diagram of Figure 5.7. 

The card is supplied with a screw-in terminal board and connecting cable. The board 

has been housed in a junction box along with the 'pull-down' resistors and BNC 

sockets for connecting the coaxial cables from the signal conditioning units. This 

junction box along with the ADC card is shown in Figure 5.8 - the box lid has been 

removed to reveal the screw-in terminal board. 
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5.2.4 Acquisition Software 

To improve its ease of use the software for data collection has been designed so that 

all relevant parameter control and data views are available from a single user 

window. It has been developed using Matlab's Graphical User Interface (GUI) layout 

tool which facilitates the inclusion of pull-down menus and push button controls so 

reducing the user input errors associated with scripted commands. 

The results set from a tested pile, which may be made up of a number of traces, is 

saved in a single file. Individual traces are of a Matlab structure data type and the 

collection of traces saved as a cell array. The advantage of using cell arrays rather 

than matrices for storing multiple results is the flexibility it allows. The size of the 

array need not be pre-defined and length of the components within the array need not 

be the same. Hence, one pile record may hold three sets of traces while another five 

and likewise, within a pile record, one trace vector might hold 1024 values while 

another, sampled at a different rate, 2048. Matlab's structure type is essentially the 

equivalent of a record in lower level programming with a hierarchical format 

allowing a number of fields to be associated with a single variable. 

An example of a cell from an pile record array, 'piledat', is shown in Table 5.1. In 

this case the cell is the first in the array; as signified by the one inside the braces. The 

mnemonic following the period defines the structure's field name. 

Table 5.1 The cell structure for a pile record 

Field Contents 

piledat { 1 } . for Vector of force trace 

piledat { 1 }. vel Vector of velocity trace 

piledat { 1 } . rate Scalar of sample rate 

piledat {I} .gain Scalar of ADC gain 

piledat { 1 }.H _gain Scalar of hammer pre-amplifier gain 

piledat { 1 }.A _gain Scalar of accelerometer pre-amplifier gain 

piledat { 1 } . comments User's text comments 
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There are only two scripted inputs the user can enter and these are optional. Edit 

boxes allow comments to be associated with a collected trace and the name of the 

data file to be altered. A default file name is, however, assigned as each pile is tested 

to free the user from having to continually enter new names and ensure old data is 

not overwritten. The name is generated from the current date - the number of days 

after 1 sl January 2000 - and the number of files already saved on that day. 

As can be seen in Figure 5.9 the resultant application displays the input force and 

velocity traces of the data measured immediately previously and the ensemble 

average of the velocity data collected for the pile under test. All the graphs are scaled 

automatically using Matlab's 2-D plot function. Apart from having the facility for 

changing the programmable AD converter values and pre-amplifier settings, through 

the pull-down menus at ~he bottom right of the window, the user basically has three 

control options, each being initiated by a button push and described, in turn, below. 

5.2.4.1 Main Program Loop 

The program is initiated through a call from Matlab's command window. The main 

program loop is described by the flow diagram of Figure 5.1 O. The variables, 

including the pile's file name, are initialised with their default values and an empty 

figure is presented. The system then waits for a user input. The default values are 

given as: sample rate of 50kHz per channel, sample size of 1024, ADC gain range of 

±10 v, hammer gain of xl, and accelerometer gain ofxlO. These default values may 

be changed before testing commences by editing the program text file. If the value 

selected in one of the pull down menus is changed then the associated variable for 

the subsequent data collection is also, automatically, changed. If the exit button is 

pressed the program terminates and control returns to the Matlab command window. 

If any of the other buttons are pressed control passes to the code associated with that 

button, as described below, before returning to the main program loop. Control 

returns to a point labelled by the off-screen link '1' in Figure 5.10. 
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5.2.4.2 Data Collection 

The AD converter is controlled through software drivers containing a low level 

command set that can be accessed from a number of programming languages 

including Visual Basic and Visual C/C++. Following consultation with the board 

suppliers (Talisman Electronics, UK) it has been confirmed that no direct support for 

Matlab exists and consequently this, so called, 'Universal Library,s.9 has to be ported 

to Matlab through a lower level interface. As mentioned above Matlab supports the 

integration of Visual C++ programs when linked with its Application Program 

Interfaces.lo. Hence, for this application much of the data collection module has been 

written in Microsoft Visual C++ before being compiled into a Matlab linked 

Dynamic Link Library which can then be called from within Matlab as if it were a 

normal, scripted, command file. 

Most of the relevant technical information necessary for programming this 

application can be found in the documentation supplied with Matlabs.lo and the 

ADCs.9. However, one important piece of information discovered by the author, but 

not explicitly documented in the literature, should be noted. The Universal Library 

function that reserves the memory into which the collected data is passed, 

cbWinBufAlloc, appears to execute GlobalAlloc with the MEM_FIXED flag set. 

This means the returned memory handle is, in fact, a physical memory location. 

Although this somewhat esoteric piece of information will be superfluous for most 

readers it provides a route out of a potential compatibility hazard in that both Matlab 

and the Universal Library routines like to have control over the allocation of 

memory. Any reader tempted to reproduce this work will, therefore, be pleased to 

realise that because cb WinBufAlloc returns a physical memory address the 

information from the AD converter can a accessed as if Matlab had allocated the 

memory for it without the need to rectify conflicting memory handles. This having 

been said the author does not intend to go into the peculiarities and technicalities of 

low level programming, but rather directs the reader to Figure 5.11 where an 

overview diagram of the work can be found. 
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Referring to Figure 5.11, all the components inside the dotted rectangle are written 

in the C++ module. As can be seen, when called the parameters passed define the 

required sample rate, gain and number of samples. The board is then initialised using 

the Universal Libraries' 'cbDeclareRevision' command and dynamic memory 

assigned, as described above. The AD converter is then prompted to start data 

collection. 

The options chosen for collection require the converter to continuously place its data 

into the memory reserved for it looping back to the start of this buffer when it 

reaches the end. This is done in background mode so that the computers central 

processing unit (CPU) can continue executing code while it is being carried out. The 

transfer is carried out using the direct memory access (DMA) block mode. This 

moves the data in blocks of 256 samples and is the quickest transfer method. 

By continuously collecting data and checking its maximum level a software trigger is 

has been produced. Using a circular buffer ensures the length of the time spent 

waiting for an event is not restricted to system memory. In fact, the only restriction is 

the type of the sample counter with respect to the required sample rate. The sample 

counter is of type long, a 32 bit integer, which means at 100kHz sampling rate the 

maximum effective time the trigger can wait for an event before looping back on 

itself is six hours. It is felt unlikely that for this application a user would take this 

long to strike a pile head. The trigger time-out value has, therefore, been set at ten 

seconds after which if no event is detected an error message appears in the Matlab 

command window and control returns to the main program loop. 

An event is defined here as the detection of a 10% change in the average reading 

over 64 samples in the hammer input channel. If an event is recorded a number of 

further samples are collected. This number is dependent upon the number of samples 

requested and the number of pre-trigger samples required. For this application 1024 

samples per channel are more usually taken 128 of which contain the pre-trigger 

data. 
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Background data collection is then stopped. The data collected in memory has 

samples from the two channels interleaved. They are, therefore, sorted before being 

passed back to the Matlab calling program as return parameters. These returned 

vectors are raw sixteen bit integers which are translated to engineering units through 

a second Matlab program. This program has, however, been written in the 'normal' 

scripted format as this makes it easier to alter should alternative hardware be 

employed. At this stage the integers are translated to volts from the AD converter 

and pre-amplifier gains stored with the traces. These are then changed to force in 

newtons or acceleration in ms-2 according to the calibration certificates of the 

instrumented hammer and accelerometer used. The acceleration curve is then 

integrated numerically to produce a velocity trace. These velocity and force traces are 

then presented in the appropriate charts in the user window, as shown in Figure 5.9. 

5.2.4.3 Appending Data to Pile Records 

Having· viewed the new data collected in the force and velocity plots the user can 

then decide to append it to the record of the pile under test. In this case the 'Add 

trace' button is pressed. This adds a new cell containing the data into the current 

results array and updates the ensemble average plot in the top right comer of the 

window. If the traces in the record are of different lengths or sample rates they are 

linearly interpolated before the averaging takes place. Note, this interpolation is 

purely for viewing purposes; the raw data remains unchanged in its collected form. 

Results can only be added to a pile record once after a collection is made to avoid 

problems associated with the accidental 'double clicking' of this button. This process 

is summarised in the flow diagram of Figure 5.12. 

5.2.4.4 Saving Current Pile Record 

By pressing the 'Next Pile »' button the data held in the current pile record is 

stored under the defined file name. The plots within the window are then cleared, a 

new file name generated, and the current pile record is emptied ready for new traces 

to be collected. The other user options, including the text comments, remain the 

same as it is assumed the next pile tested will require similar values. Control is then 
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returned to the main program loop. As this is a relatively short, simple process it is 

also described in the flow diagram of figure 5.10. If there is no data yet collected this 

button is disabled to guard against accidental 'double clicking' leading to empty files 

being stored. 

5.3 NEURAL NETWORK SOFTWARE DEVELOPMENT 

The new hardware having been described, this chapter continues by focussing on the 

Matlab routines written for the neural network simulators. 

As stated in Chapter 3, three layered network types are investigated with respect to 

this. application: the multi-layered perceptron (MLP), the radial basis neural network 

(RBNN) and the wavelet basis neural network (WBNN). Each network's software is 

described below along with a simple validation experiment to confirm it performs as 

expected. 

In all these cases the testing and training data sets are held in structured variables 

containing two fields: input and output. Each field contains a single matrix. The 

number of rows in these matrices, which is the same in both cases, correspond to the 

number of patterns in the set. The number columns in the input and output matrices 

respectively describes the number of input and output units in the network. These 

values, therefore, need not be defined explicitly. 

5.3.1 Multi-Layered Perceptron 

The procedures for training a multi-layer perceptron network are based on the 

algorithms described in Chapter 3, specifically Equations 3.13-3.19. The network 

may have an unlimited number of layers and an unlimited number of units in each 

layer. Each layer may be made up of either sigmoid, hyperbolic tangent, or linear 

activation functions. Different layers are permitted to have different activation 

functions and the hidden and input layers have a bias unit appended to them 

automatically. 
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5.3.1.1 Network Structure 

To accommodate the variability in the number and size of hidden layers permitted 

for each network Matlab's cell array is, again, employed. As in the data acquisition 

case a structured type is used to hold all the network information; thus each network 

can be accessed, passed as a parameter, saved etc. as a single variable. 

An example of such a variable, net, with all its associated fields can be found in 

Table 5.2, below. The learning, momentum and scaling parameters are as described 

in Chapter 3. In this case the network has an input layer of 15 units (16 with bias), a 

single hidden layer containing 10 units (II with bias) and 5 output units. The weight 

matrices cell array, therefore, holds two matrices: one IOxl6 describing the weights 

from the input to hidden layer, and one 5xll describing those fromthe hidden to the 

output layer. The activation function for each layer is described by a text string in a 

cell array. No~e that although there are three layers only two activation functions are 

given. This is because the input layer is assumed to be linear. The network in Table 

5.2, therefore, has a hidden layer with sigmoid activation functions and a linear 

output layer. The epoch field simply records the number of epochs on which the 

network has been trained. 

Table 5.2 An example of the data structure of an MLP network 

Field Contents Example value 

net. alpha Learning rate 0.25 

net. lambda Momentum term 0.9 

net.T Scaling Parameter (Temperature) 1.0 

net. epochs Epoch count 0 

net.w Cell array of weight matrices {[IOxI6 double] [5xll double]} 

(one per layer) 

net. act Cell array of Unit activation type {'sig' 'lin'} 
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5.3.1.2 Network Initialisation 

The number and size of the fields associated with each network makes initialisation 

in Matlab's command window time consuming and complex. A command file, 

M/p _in it, has therefore been developed to automate this procedure. This text file, 

containing all the instructions necessary to produce a network structure, is edited and 

run. Its return value is a initialised network that can then be trained as required. The 

network's initial weights are small and random5
.
1 

I and, for any weight, OOji, its value 

is given as 100ji 1<1. These values can, however, easily be scaled as required for a 

given application. 

5.3.1.3 Algorithm Implementation 

The task of network training has been modularised through the production of a suite 

of smaller simpler routines. These are given as: 

1. train network: the routine called from the Matlab command window that takes 

as its parameters the network to be trained, the training and test set, the method 

of training (epoch or pattern), and the interval length between network 'saves'. 

This is the only routine called directly by the user. It randomises the 

presentation order of the patterns in the training set and may be edited to add 

noise to the input patterns using Matlab's built-in rand command. 

11. trainyattern: is called by train_network. It takes as its arguments a single 

input-output training pattern pair and the network being trained. It returns a cell 

array of the same dimensions of the weight matrices holding the weight changes 

associated with that pattern. 

iii. getoutputs: is called by train yattern. It returns a cell array of unit outputs for 

each layer, including bias units, but not including the input layer which is the 

same as the input pattern. These are calculated from the network parameters 

and input pattern under investigation. 

IV. dout: is also called by trainyattern and it returns the differential gain term, t5 

in Equations 3.13-3.19, used in the weight update calculations. It takes as its 
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arguments the output values calculated by get_outputs and the cell array 

defining the activation function of the hidden and output layers, net. act. 

v. act: is the final program of the suit. From the net input of a unit calculated in 

get_outputs and that unit's scaling parameter, net.T, it returns the units output 

with respect to its defined activation function. 

By modularising network training in such a way subroutines such as getoutputs 

become available to other routines written to evaluate the effectiveness of the trained 

network. 

During network learning the training and test set mean pattern error is evaluated as 

described by Equation 4.36.· This is convergence curve is presented as a graph, as 

illustrated in Figure 5.15, so allowing the effects of the weight changes to be 

observed as training progresses. 

5.3.1.4 Software Validation 

The software was tested by reproducing some of the published work of the Parallel 

Distributed Processing Research Group at MIT5.l1. Specifically, the work involves a 

network with a single hidden layer being used to solve the classic exclusive OR 

(XOR) problem. The input-output mapping to be produced is summarised in the 

truth table of Table 5.3. This problem cannot be solved using a layered network 

without at least one hidden layer containing at least two units. For an adequate 

solution to be derived, therefore, the back propagation learning algorithm must be 

successfully applied. Like the original work all hidden and output units have a 

sigmoid activation function. Since a specific non-linear mapping is required and the 

training set is so small there is no test set associated with this problem. Instead, as in 

the original work, the system is said to have converged on an adequate solution when 

the mean pattern error has dropped below a value of 0.01. 
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5.3 The truth table for the XOR gate 

Input 
Output 

1 2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

As in the published case results have been obtained for changes in the number of 

hidden units (Figure 5.13) and learning rate (Figure 5.14). The momentum term is set 

at 0.9. The experimental results from this study are summarised along with the 

published results in Table 5.4, below. The associated errors for the experimental 

results have been calculated using the median quartile method of those experiments 

that converge. 

Table 5.4 Comparison of experimental and published results for the XOR problem 

Learning Rate Number of Epoch of convergence Epoch of convergence 

Hidden Units (experimental) (published511
) 

0.25 2 260±37 245 

0.25 32 125±6 120 

0.1 2 600±42 450 

0.75 2 100±17 68 

As can be seen from the results of Table 5.4 the convergence epoch for the 

experimental results are all of the order of those from previously published work. 

The experimental results took slightly longer to converge, but this is explained by the 

doctoring of the training set by the MIT group. In their experiments they recognised 

that a output values of one and zero can never be obtained by a sigmoid unit as this 

activation function is asymptotic to these values. The required outputs for their 

experiments are, therefore, 0.1 and 0.9 rather than 0 and 1. Consequently their 

networks take marginally less time to converge. 
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Interestingly some of the experimental networks get caught in the local minima 

described by previous researchers. When the network outputs are investigated they 

give exactly the results expected with the outputs for inputs {1 I} and {I O} being 

0.5. These are shown in Table 5.5 where the solved problem is that of Figure 5. 13 (a) 

'run l' and the local minimum case is that network with the convergence curve of 

'run 3'. In fact, in the published case, these input patterns are {II} and {O I}, but 

given the intrinsic system symmetry caused by the arbitrary labelling of hidden units 

this local minimum is essentially the same. 

Table 5.5 Outputs for: 

(a) a solved problem (b) one caught in a local minimum 

Inputs Output Inputs Output 
o 0 0.0441 o 0 0.0377 
o 1 0.9605 o 1 0.9554 
1 0 0.9605 1 0 0.4993 
1 1 0.0418 1 1 0.5047 

As expected any failure to converge is most prevalent in systems with less hidden 

units - those with less escape routes in the system weight space. Network learning is 

inhibited when the learning rate is high because the weight matrix cannot resolve to 

the optimum solution. It is also inhibited when the learning rate is low because 

weight updates are small. The optimum rate is, as expected, an interim value; in this 

case 0.25. The software has, therefore, successfully resolved a non-linear mapping to 

a degree consistent with previously published results and can be used in this study 

with confidence. 

5.3.2 Radial Basis Networks 

The radial basis networks investigated in this study are limited to those with a single 

hidden layer. As reported in Chapter 3, current research suggests that a single layer is 

all that is required to approximate an arbitrary function. Unlike the multi-layered 

perceptron case there is no standard test to confirm the software's capability. 

However, Morgan5
,I2 et al. have successfully used graphical means to show an 

activation function's ability to approximate a given mapping. In this study, therefore, 
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the network's effectiveness will be illustrated by training it to approximate a two 

dimensional function the output of which can then be presented in graphical form. 

5.3.2.1 Network Structure 

The network structure for the Radial Basis Neural Network (RBNN) case is identical 

to that described for the Multi-Layered Perceptron case with a few exceptions. 

Firstly, there is no need for the cell array describing the input and output units 

activation function as these are now limited to being a Gaussian for the hidden layer 

and a linear summation for the output. Next, as well as the weight matrices cell array 

there is a centres cell array. This holds the required centre values for each hidden 

unit; the eji values of Equations 3.29 to 3.34. Finally, as also shown in these 

equations, more than one learning rate is required. Consequently , for this study, 

there are three learning rates: one for the centre value updates, and two for each 

weight matrix updates. 

5.3.2.2 Network Initialisation 

As described in Section 3.4.4.2, an RBNN may be created through use of a Kohonen 

network to find appropriate Gaussian centres. The receptive fields of the unit's 

activation can then be estimated from the density of other centres in that region and 

the output weights from pseudo inverse methods. In this study, however, this method 

is used to initialise the network. The network parameters are then fine tuned using 

the gradient descent algorithm described in Equations 3.29 to 3.34. It is shown later, 

in Section 5.3.2.4, that combining these methodologies gave improved network 

performance when compared to using either one individually. 

The centres of the hidden units are, therefore, found using a Kohonen network 

similar to that described by Hertz et al. 5.13. The neighbourhood function is defined by 

a Gaussian and the learning rate is dynamic. As the vector quantisation proceeds the 

user is presented with a window of the type shown in Figure 5.16. This provides 

information on the current learning rate value, the width of the neighbourhood 

function and the distribution of winning patterns associated with a given hidden unit. 

219 



The latter of these plots gives a good indication of the progress of the quantisation of 

the pattern space. As learning nears completion the distribution amongst all the units 

should be approximately even. 

The Kohonen network architecture is simply a two layer system with an input and 

output layer. The number of units in the output layer is defined by the number of 

hidden units required by the RBNN network. The interconnecting weights between 

these layers will later describe the Gaussian centres of the RBNN. They are initially 

given small random values and then updated during training according to the weight 

update rule of Equation 5.1. 

(5.1) 

As before, ex is the learning rate, but here it is reduced as training progresses and the 
\ 

network converges on a solution. The parameter / indicates the winning output unit, 

that is the unit that has associated weights closest to the input pattern presented. The 

measurement of closeness is the Euclidean distance between the input pattern and the 

units' weights. The subtraction term drags the weight vector belonging to the 

winning unit, OJ}, towards that of the input pattern. The previously mentioned 

neighbourhood function, A, has the value 1 for the weights fanning into the winning 

unit and then drops for the other units as their topographical distance increases with 

respect to the winning one. The width of this neighbourhood function decreases 

during training. In early training it is large to prevent anyone unit dominating, i.e. 

always being the winner, while in later training it is smaller to give better network 

resolving power. Hence, over time, the network divides the input pattern space 

equally with respect to the geometry of the hidden units. 

This process is illustrated by the plots of Figure 5.17. Here, fifty units are used to 

describe an 'L' shaped pattern space made up of Cartesian co-ordinate pairs. As 

training progresses gradually the pattern space is covered by the line describing the 

weights of the fifty output units. This illustration is similar to that given by Hertz et 

al. 5.12 and is presented as evidence of the effectiveness of the network software. 
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For the RBNN network, therefore, the hidden unit centres are simply the weights 

converged upon by the Kohonen network. However, there is no hard and fast rule in 

defining the initial values for the widths of these functions (the (J" of Equation 3.22). 

In this study a method based on the f(h nearest neighbour non-parametric paradigm is 

used. As indicated later in the software validation section (Section 5.3.2.4) this 

approach gives acceptable results as an initial estimate. Intuitively it also appears 

sensible given that the number of salient neighbouring patterns can be estimated as 

the number of patterns in the training set divided by the number of hidden units in 

the RBNN. Thus, the standard deviation of the Gaussian functions is set as that of 

the Euclidean distance to the f(h nearest neighbour where k is the number of patterns 

divided by the number of hidden units. 

Finally the weights for the multi-layered network must be calculated. The weights to 

the hidden units are derived from the widths of the Gaussian function. As described 

above the activation function for the units in the hidden layer are as described in 

Equation 3.22, however, to be used in conjunction with the gradient descent 

algorithm described in Equations 3.29-3.34 the (J"ofEquation 3.22 must be translated 

into equivalent weights for the initialised network. 

Consequently the activation of Equation 3.22, loses its normalising denominator and 

becomes 

(5.2) 

By simple comparison with Equation 3.22, remembering the denominator has been 

dropped, it becomes apparent that: 
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(5.3) 

where 0) is the standard deviation associated with hidden unit j and OJji is the weight 

from input unit i to hidden unitj. 

The output values from each hidden unit, for each input pattern, can now be 

calculated and the weights matrix, W, to the linear output units derived as: 

(5.4) 

Where H' signifies the pseudo inverse of the matrix holding the hidden units' output 

for each input pattern and Y is the matrix of required,or target, outputs. The 

superscript 'T' signifies the matrix transpose. This process is greatly simplified by 

the Matlab command pinv which returns the pseudo inverse matrix of that which is 

passed to it. 

Hence, a network of a form compatible with the novel gradient descent algorithm 

described by Equations 3.29-3.34 has been derived using conventional vector 

quantisation techniques. 

5.3.2.3 Algorithm Implementation 

The network is initialised usmg the technique described above by a function, 

rbnn _in it, which, in turn, calls the function kohonen to derive the Gaussian centres 

and widths. The back propagation procedure is described by Equations 3.29-3.34. It 

is noted at this point that the metric for radial basis activation functions 2 and the 

function itself, F(z) in the aforementioned equations, described by Equation 5.5, 

below. 

(5.5) 
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As in the MLP case, the problem has been modularised into a series of smaller 

functions. These are given as: 

i. rbnn_bp: as in the MLP case this routine is called from the Matlab command 

window and takes as its parameters the network to be trained, the training and 

test set, the method of training (epoch or pattern), and the interval length 

between network 'saves'. This is the only routine called directly by the user. It 

randomises the presentation order of the patterns in the training set and may be 

edited to add noise to the input patterns using Matlab's built-in rand command. 

ii. rbnn _train pat: is called by rbnn _ bp. It takes as its arguments a single input­

output training pattern pair and the network being trained. It returns a cell array 

of the same dimensions of the weight matrices holding the weight changes 

associated with that pattern and a second cell array holding the changes to the 

activation function centres. 

iii. rbnn ...J5etoutputs: is called by rbnn _train pat. It takes as its parameters the 

network being trained and the current input pattern. It returns two cell arrays 

holding the units' outputs and their output function differentials: F'(z), of 

Equations 3.32-3.34. 

These routines can be seen to be similar to those for MLP training except that: (1) 

because the activation types are set, there is no need for the act function and (2) the 

hidden unit output and output differential is calculated by, and returned from, a 

single function. This is because the differential is no longer a simple function of the 

unit output, as is the case for linear, sigmoid and hyperbolic tangent activation 

functions. It is, therefore, quicker and more convenient to calculate its value along 

with that of the units' output as intermediate terms are shared by both calculations. 

5.3.2.4 Software Validation 

As previously stated the software's effectiveness has been validated by training it to 

approximate an arbitrary function with two inputs and a single output. This can then 

be presented graphically to confirm that the software works as required. The 2-D 

function used is shown in Figure 5.18. It consists of a Gaussian, a spike and a plateau 
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on a 51x51 grid so providing 2601 training patterns. Also shown in Figure 5.18 are 

the results from three initialised networks containing 10, 100 and 400 units 

respectively. As expected, as the number of hidden units increase so did the 

network's resolution of the pattern space. Hence, its ability to model the function 

was also improved. 

The graph of Figure 5.19 illustrates the reduction in the recorded mean pattern error 

when the back propagation procedure is applied. Here, the network containing 100 

hidden units has been trained for a total of 100 epochs. The mean pattern error 

decreases from 15 to around 4; a reduction of over 70%. The procedure's 

effectiveness is even more apparent when·the network's function approximation after 

back propagation training, as shown in Figure 5.20, is compared to that of the pre­

trained network in Figure 5.18. The network has modelled the discontinuities 

associated with the spike and plateau more ably than the initialised network with four 

times the number of units. The error associated with the regions containing the 

Gaussian, spike and plateau reduce by 85%, 27% and 25% respectively. Not 

surprisingly, given the shape of the activation function, it is the Gaussian that has 

benefited most from the BP training. However, it is clear that the approximation of 

all the features within the function have been significantly improved through the 

application of BP training. 

Also shown in Figure 5.20 is a network that has been trained purely using the back 

propagation approach i.e. its initial weights and centres were given small random 

values as in the MLP case. For this network, also containing 100 hidden units, the 

mean pattern error never drops below 25 during 100 training epochs. These results 

suggest that the network has become stuck in a local minimum. Although the central 

Gaussian is very well modelled the centres cannot 'break away' to model the other 

features of the function. Thus the importance of suitable network initialisation is 

illustrated and the effectiveness of back propagation training subsequent to this 

initialisation shown. 
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5.3.3 Wavelet Basis Neural Networks (WBNNs) 

The wavelet networks described by Zhang5
.
14 and introduced in chapter 3 are similar 

in construction to the RBNNs described in the previous section. The network 

topology is identical with a single hidden layer and a summation output layer made 

up of linear units. The difference between the two is in the activation function 

employed in this hidden layer. 

The Wavelet Transform (WT) was introduced in the early 1980S5.1 5,5.16 as a signal 

processing technique that overcomes one of the inherent problems of conventional 

Fourier techniques, namely the retention of temporal information. It provides a 

method for the decomposition of non-stationary signals such that scale characteristics 

and feature location can· be highlighted simultaneously through the unfolding of a 

one dimensional signal into two dimensions. A consequential property of the wavelet 

transform, therefore, is its ability to characterise localised regularity within the 

function under investigation5
.
I7

. As described in Section 3.4.4.3, it is these properties 

the author is attempting to utilise in producing a wavelet network. 

The activation function is described as a wavelet if it adheres to three primary 

conditions: 

1. It must have finite energy. 

11. If g(co) is the Fourier Transform of the wavelet, g(t), then the admissibility 

condition must hold i.e. the functions mean should be zero. Hence: 

c = oof'g(co r dm < 00 when the dilation parameter, aE +3?- (5.6) 
g co 

o 

111. For complex wavelet functions the Fourier transform should be real and vanish 

for 0):::;;0. 
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In this study the wavelet employed is the Mexican Hat wavelet. Of the real wavelet 

types used in signal processing this Gaussian derivative is the most often employed 

because it has good support in both time and frequency domains. The wavelet with 

optimal time-frequency support is the MorIet wavelet. This, however, is a complex 

wavelet and, as such, introduces inherent difficulties in calculating error 

contributions and activation derivatives for wavelet networks. The Mexican Hat 

wavelet is, also, the wavelet type used by Zhang in his example of a wavelet network 

application and is, therefore, the only wavelet for which there is a precedent for use 

in this type of wavelet network. The Mexican Hat wavelet has been shown by the 

author to have favourable properties for use in the de-noising of sonic echo traces 

from pile integrity testings.18
• The definition for the Mexican Hat wavelet, as used in 

this study, is given in equation 5.7, below. 

(5.7) 

where 

(5.8) 

and 

where x,b E 9{d (5.9) 

Equation 5.9 ecapsulates the wavelet function that has undergone translation band 

dilation a. An example ofthe Mexican Hat wavelet for d=2, with b={O, OJ and a=7 is 

shown in Figure 5.21. 

5.3.3.1 Network Structure 

The network data structure for the wavelet networks is identical to that described for 

the RBNNs in Section 5.3.2.1. In this case, however, the centres and widths of the 
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radial basis units become the translation and dilation parameters of the wavelet 

functions respectively. 

5.3.3.2 Network Initialisation 

With reference to the initialisation procedure described in Chapter 3: Zhang5.
14 states 

that the calculation of the total wavelet basis set, that is the intersect of the entire 

wavelet bases and those whose support covers at least one data point in the training 

set, is 'not very sensitive' to the input pattern dimension. While it is true that 

interrogating the training data to find the basis (i.e. dilation and translation 

parameters) of interest will reduce the search space considerably the size of the input 

dimension will clearly have an effect on the size of the resultant basis set. Due to the 

input to the radial wavelet being a scaled Euclidean distance measure, as the 

dimensionality of the input vector increases so will the number of permutations of 

'b', the translation vector, which fall within the support of a given dilation value. 

Even for the compact example used to illustrate the radial basis network where the 

data has no inherent sparsity the number of frames in the final set from which an 

initial network is to be drawn, L, is in excess of 300,000 bases. In this case five 

translation positions for each input dimension at each dilation level are considered. 

Although a value of 300,000 does not seem large in itself the modified Gram­

Schmidt algorithm described by Zhang5
.
14 for the selection of the network's chosen 

wavelet regressors involves the use of three LxN matrices, where N is the number of 

patterns in the training set. These matrices are accumulator matrices and so must be 

held in memory rather than calculated at each iteration within the algorithm. Further 

to this each basis in the set must be considered at each iteration. The modified Gram­

Schmidt algorithm as described here is also only pertinent to problems where the 

network output,y, is a scalar. That is, while the input vector, XE9td, the output, 

Y E9t. For the method to be extended to vector outputs the network must be 

modularised and the initialisation process repeated for each output unit. 
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These factors combined suggest that even for the simple example used in the radial 

basis case this method for network initialisation is prohibitively complex (in the 

computational sense) for the applications under investigation. This is particUlarly 

true when one considers that this is an initialisation procedure and further 

computation is necessary subsequent to its completion. 

For this application, therefore, an initialisation process is presented that is similar to 

that used in the Radial Basis case. That is, a Kohonen network is used to described 

the input space in terms of wavelet translation parameters - the centres in the RBNN 

case. Noting that the radial Mexican Hat wavelet has a Gaussian envelope, the 

distribution of the Euclidean distance measures from these centres for each training 

pattern is then used to estimate a suitable dilation parameter - much in the same way 

the standard deviation values are estimated for the RBNNs. 

For the Mexican hat wavelet described· above the standard deviation of the main 

lobe, as visible in Figure 5.21, is approximately --./2 times smaller than that of the 

equivalent radial basis function. That is, for the activation function values around the 

k nearest neighbours of the wavelet translation parameters to be similar to those 

around the centres of the equivalent radial basis function the dilation parameter must 

be --./2 times larger than the standard deviations calculated for the radial basis case. 

Once this scaling has been applied the weights of the network can be derived in 

exactly the same way as for the RBNN case. The weights to the hidden units being 

calculated from the wavelet dilation parameters as, c.f. Equation 5.3, 

(5.1 0) 

With the hidden unit parameters having been defined the weights to the output units 

are then derived using the pseudo inverse method described in Section 5.3.2.2. 

Hence, a network of a form compatible with the gradient descent algorithm described 

by Equations 3.29-3.34 has been derived using vector quantisation techniques rather 

than the prohibitively complex Gram-Schmidt algorithm described by Zhang. 
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5.3.3.3 Algorithm Implementation 

The initialisation and back propagation training of wavelet networks is essentially 

identical to that of radial basis networks. The network is initialised using a function 

wbnn _in it, as described above. The network is then trained using a suite of functions: 

wbnn_bp, wbnn_trainpat, and wbnnJJetoutpus. The arguments passed and structure 

of these routines are identical to their radial basis equivalents described in Section 

5.3.2.3. The coding of the functions are, however, obviously different in that the 

activation function and its derivative now takes the form of a Mexican Hat wavelet 

rather than the Radial Basis function. With reference to Equations 3.19-3.34, the 

metric of the radial wavelet, like the radial basis function, 2. 

5.3.3.4 Software Validation 

As in theRBNN case the software's effectiveness has been validated by training it to 

approximate the function of Figure 5.18. After initialisation the resultantWBNN 

function approximation for a 100 unit network is presented in Figure 2.23. As can be 

seen from the start of the convergence curve of Figure 5.22 this initial approximation 

has a mean pattern error of the order of that of the equivalent RBNN network (~15), 

shown in Figure 5.19. Subsequent to back propagation training the error drops from 

13 to 5; a reduction in excess of 60%. The resultant, trained network, is also 

presented in Figure 5.23. As in the RBNN case the function approximation of all 

features within the trace has improved. For the regions containing the Gaussian, 

spike and plateau the approximation error has reduced by 43%, 24% and 16% 

respectively. 

Of note in the convergence curve of Figure 5.22 is the large spike at around 55 

epochs. This type of feature has been noted in a number of back propagation curves 

for both radial basis and wavelet networks. It is suggested that this is a consequence 

of altering two function parameters during each network update. Although 

individually the effects of changing the weights and centres may reduce the pattern 

error as required there is no guarantee that altering both simultaneously will produce 
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such a reduction. In every case in which this feature is observed, however, the error 

is reduced to its previous, lower, level within a few subsequent epochs. 

From the initialised network output of Figure 5.23 one can see that the flat regions of 

the surface do contain more ripples than in the radial basis case. This is due to the 

undulations in the activation function. Each negative lobe in the Mexican hat 

function must be cancelled by adjacent units. In the RBNN case this is not the case 

as the activation function is always positive. The consequence of the negative side 

lobes is also observable in the back propagation trained network of Figure 5.23 

where a small trough of negative values can be seen around the spike and plateau 

features. This effect should not be taken as an indication that the RBNN is more 

effective for function approximation tasks in the general case, but rather that for this 

simple function, which is made up of only positive features and with no inherent 

. regularity, the RBNN is better suited. For the general case it is easy to imagine a 

function that would be more readily modelled using the wavelet network - at a trivial 

level, for example, that of Figure 5.21. 

Finally, shown in Figure 5.24, is a series of histograms indicating the distribution of 

input and output weights, and hidden unit translations (wavelet centres). Immediately 

obvious from the third column is the fact that the centres have remained within the 

limits of the training pattern space (-25 to +25) and no spurious values have resulted 

from back propagation training. It is also apparent that the input layer weights now 

contain a number of larger weights and so some hidden unit wavelet functions 

contain lower dilation parameters (Equation 5.10). Thus, it is apparent that the 

wavelet network has correctly modelled the surface features, specifically the spike, 

through the migration of the function centres and contraction of the wavelet dilation 

parameters during learning. This is presented as further evidence that the network 

training has progressed as required and that the software can be used with 

confidence. 
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5.4 SUMMARY AND CONCLUSIONS 

Commercially available data acquisition equipment is light and robust, but inflexible 

in its usage and prohibitively expensive for research purposes. 

Equipment previously employed by the University for data acquisition is bulky and 

complex in its usage. It is neither conducive to the rapid checking of pile groups nor 

the 'on-line' analysis of collected data of the type required in this study. 

A new data collection system has been developed for this study. For each component 

there exists a precedent of its use for data collection within the pile testing industry. 

Purpose written software has been developed to control this hardware through a 

graphical user interface and port the collected data directly to Matlab™ for 

subsequent analysis. 

A suite of programs have been written for the initialisation and training of Multi­

layered Perceptron (MLP) networks, Radial Basis Neural Networks (RBNN) and 

Wavelet Basis Neural Networks (WBNN). 

For RBNN's, training through vector quantisation initialisation followed by back 

propagation learning has indicated improved results over those using either one of 

these methods independently. 

A new method for initialising WBNN s has been presented based on the vector 

quantisation method used for RBNNs. This is computationally quicker and less 

memory intensive than the suggested modified Gram-Schmidt algorithm. No claims 

are made about relative performances of the two methods. 

Validation of the network simulator software has been presented. For the MLP case 

previously published results have been satisfactorily reproduced. For the RBNN and 

WBNN networks an arbitrary function containing a spike, a Gaussian and a plateau 

has been approximated with results consistent with those that are expected. That is, 
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network performance improved as the number of hidden units was increased and 

improved further subsequent to back propagation training. 
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386 DX Portable Computer 

PCB Piezotronics 3 lb small 
sledge instrumented hammer 

Honda 750W 
Petrol Generator 

Brtiel & Kjrer Type 2034 
Dual Channel Analyser 

Charge amplifier 
Signal Conditioning Units 

Brtiel & Kjrer accelerometer 

Figure 5.1 A schematic of the impact testing equipment previously used for NDT 
research by Edinburgh and Napier Universities. 
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Figure 5.2 The Honda generator (left) and testing equipment (right) described in 
the schematic of Figure 5.1 

'Lunchbox' Computer 

Dual Channel Analyser 

Signal Conditioning Units 

Instrumented Hammer 

Figure 5.3 An edge diagram of the testing equipment of Figure 5.2 with labelled 
components. 
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Elonex'Solitron' 
Notebook computer 

Screw-in terminal board with BNC 
connectors and 'pull-down' resistors 

\) _____ ...:., <=:J ... ~------

PCMCIA AD Converter 
(rCM -DAS 16D116) 

PCB Piezotronics 3 lb 
instrumented hammer 

Pile 

PCB Charge amplifier 
Signal Conditioning Units 

PCB accelerometer 

Soil 

Figure 5.4 A schematic of the equipment developed for the collection of data 
presented in this study 
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Figure 5.5 The equipment used for data collection in this study, as described in the 
schematic of Figure 5.4 

Figure 5.6 The PCB signal conditioning unit type 480E09 (left) and, from top to 
bottom, 12lb ' sledge', 3 lb ' hand sledge', and llb ' heavyweight' hammers (right) 
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BNC Socket to co­
axial cable from signal 
conditioning unit 

Screw-in 
terminal 
board 

10 kQ 'pull-down' 

I 
I 
I 

PCMCIA AID Card 
with programmable gain 
on-board amplifier 

:ChLow 
I 
I 
I 

:LLGND 

resistor for high frequency . . 
nOlse suppressIOn 

ToAD 
Unit 

Figure 5.7 A circuit diagram for a single channel in the junction box of Figure 5.4. The 
co-axial cable from the signal conditioning units is mapped to the differential inputs of the 
ADC through a screw-in terminal board 

Figure 5.8 The junction box with lid removed showing the screw in terminal board (centre) 
and the PCMCIA AD converter card which fits directly into the laptop PC (left) 
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last me:aStlfelment 

Average of velocity traces Exit button 
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assigned unique 
file name 

trace to pile 
....... ~',......~~/--'-~""""""'---........ '!!!!!!'!!!!!!!'!!!!!!!!!!!!'!!!!!!!!!!!!'!!!!!!!!!!""""" ..... fi----"""'--=-......... '--\~-----.:I record 

Comments ' edit box' Pre-amplifier gain options PCMCIA card 
programmable options 

Figure 5.9 A window capture from the data acquisition software with component labelling. 
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1 

yes 

Matlab 
Routine 

Set Variable 
Values 

Refresh 
Display 

Wait for 
user input 

; load variable defaults 
from memory 

; set up variables with 
acquired values 

Clear current 
data 

Save current 
data to disk 

Figure 5.10 A flow diagram of the main program loop for the data collection software. 
Off-screen links '2' and '3' are described in subsequent Figures 5.11 and 5.12 
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Collect data, parameters passed include: 
sample rate, number of samples and gain 

[--------~l1l<,,<I~fil,,~911lPi[<:<I~~12!,!,I, 

Universal Library: Set-up AD Board 

Dynamic allocation of memory 
for acquired data 

Start background data collection: DMA, block 
mode transfer into circular RAM buffer 

Set trigger time-out value 

yes 

no 

Send 'timed out' Clear dynamic 
error message memory 

Collect required 
number of samples 

Sort Force 
and Velocity traces 

Clear dynamic 
memory 

: ........................................................................................................................................................................................................................................................................................... ; 

1 

Update data properties 
for current velocity 
and force graphs 

Change data to 
engineering units 

Figure 5.11 A flow diagram of the data acquisition module of the data collection software. 
Off-screen links' 1 ' and '2' are links to the main program loop of Figure 5.1 0 
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Append data 
to pile array record 

3 

Any 
new data to 

add? 

yes 

" 
Append current data 
to structured cell 
array of pile under 
test 

no 

Create vector of average 
velocity responses. 
Interpolate (linear) where 
sample rates differ. 

" 
Update data properties 
for average velocity 
graph 

" 
1 

Ir 

1 

Figure 5.12 A flow diagram for the data appending module in the data acquisition 
software. Here, the previously collected data is appended to the current pile record. 
Off-screen links' 1 ' and '3' are links to the main program loop of Figure 5.10 
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Figure 5.13 Graphs illustrating the convergence curves for the classic XOR problem. The 
feedforward networks with sigmoid activation functions have 2 (left) and 32 (right) hidden 
units. Each has a learning rate, a, of 0.25 and a momentum value, /..., of 0.9 
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Figure 5.14 Further graphs illustrating the convergence curves for the XOR problem. As in 
figure 5.13, these results are for feedforward networks with sigmoid activation functions, 
however here both have 2 hidden units and learning rates of 0.1 (left) and 0.75 (right). 
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Training Set Error I 

Figure 5.15 A window capture illustrating the convergence curve presented to 
the user during network training. In this case no test set is defined and so only 
the training error curve is shown. The same window is presented during MLP, 
RBNN, and WBNN back propagation training 

Figure 5.16 A window capture illustrating the data presented to the user during 
Kohonen network training. Here, the left hand graph indicates the extent of the 
neighbourhood function while the right hand graph shows the number of patterns 
associated with each winning unit. The learning rate for the current iteration and 
the epoch number are also presented at the top of the window 
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Epochs = a 

Epochs = 5 

Epochs = 100 

Epochs = 1 

Epochs = 20 

For this experiment: 

50 units (describing pattern space) 

1000 training patterns (defming pattern space) 

Learning rate, a ex:( I - t / tmaJ 

Standard deviation of Gaussian 
neighbourhood function, 
cr ex: exp( -t / tmaJ 

Figure 5.17 The utility of the Kohonen network developed for use in this study. A 
set of 1000 Cartesian co-ordinate pairs make up an 'L' shaped pattern space of constant 
density. As training progresses the weights of the fifty unit Kohonen network, shown 
here as a line, converge on a solution such that each unit's weights has an equal number 
of nearest neighbours in the pattern space. (c.f. Hertz et al. 5.12) 
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Figure 5.18 The results of the initialisation procedure of a number of Radial Basis 
Neural Networks. Top is the training set describing an arbitrary 2-D function made 
up of a Gaussian, a spike and a plateau. Beneath is the networks' approximation of 
this function following initialisation. From the second plot down the networks contain 
10, 100 and 400 hidden units respectively 
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Figure 5.19 The convergence curve of the Radial Basis Network with 100 hidden units 
of Figure 5.18 using back propagation learning post initialisation. The learning rates for 
hidden weight changes, output weight changes and Gaussian centre changes, are given 
as u w(hidden)=O.OOOOI , u w(output)=0.05, and u c= 0.0005 respectively 
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Figure 5.20 The network approximation of the function shown in Figure 5.18 after 
back propagation training. Top, after initialisation and, bottom, without initialisation 
(i.e. the network starts with small random weights and centres). Note, for the network 
that is not initialised the mean pattern error never drops below 25 and the network 
appears to be caught in a local minimum about the central Gaussian. 
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Figure 5.21 The 2-D Mexican hat wavelet centred on (x=O, y=O) with a dilation 
parameter value, a = 7 
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Figure 5.22 The convergence curve of the Wavelet Basis Neural Network with 100 
hidden units using back propagation learning post initialisation. The learning rates 
for hidden weight changes, output weight changes and wavelet centre changes, are 
given as u w(hidden)=O.OOOOOl, u w(output)=O.l, and u c= 0.0005 respectively 
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Figure 5.23 A 100 unit wavelet network's approximation of the function presented 
in figure 5.18 post initialisation (top) and after subsequent back propagation learning 
(bottom). Learning parameters and the convergence curve are given in figure 5.22 
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Figure 5.24 Some thumbnail histograms indicating changes in the network' s weight 
and centre values pre (top) and post (bottom) back propagation training. Of note is the 
continued restriction of centre values to the pattern space limits of -25 to +25 while 
the distribution within these limits has changed 
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6. Application Development 

6.1 INTRODUCTION 

In this Chapter the findings of the preliminary investigations of Chapter 4 are 

extended and applied to installed foundation piles of varying lengths and with 

varying degrees of defect. An optimum architecture and learning paradigm is found 

for each of the networks chosen in Chapter 3 as suitable candidates for this task, i.e.: 

multilayer perceptron (MLP), radial basis (RBNN) and wavelet basis neural 

networks (WBNN). The relative performance of each network type is then 

considered before the most successful is chosen for use on field test data. Various 

pre- and post-processing methodologies are considered and compared with respect 

to resultant network performance. The final system chosen incorporates novel 

wavelet transform de-noising techniques, dynamic signal enhancement and Fourier 

encoding of the sonic echo time trace which is then interpreted by a MLP neural 

network - as described by Figure 6.1. The results of the field test validation of the 

selected network are presented in Chapter 7. 

The site data selected for this investigation comes from the Blyth test site and the 

problem domain, therefore, is restricted to piles of the type found there. Specifically 

this means the training data is restricted to piles of length 9m to 13m with a diameter 

of 0.8m. The Blyth site data and finite element methodology for trace generation is 

described fully in Chapter 4. 

Clearly the ultimate goal of presenting an accurate pile profile for any arbitrarily 

shaped pile is unachievable. As discussed in Chapter 2 larger faults at the head of 
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the pile will mask faults towards the pile toe. Also, a change in radius of 100% will 

give close to 100% reflection thus any further increase in section will have no effect 

on the resultant sonic echo trace. A pragmatic approach must, therefore, be taken in 

selecting the data included in the training and test sets. Training the networks on 

truly random pile profiles will not only lead to greater uncertainty in the problem 

domain, but render the problem intractable. Hence, a pseudo-random data set has 

been used in the training of the networks. The maximum changes in section along 

the pile length are restricted to 75% increase or decrease in radius. The position of 

the first change in section is also restricted such that the training set pattern 

distribution is not biased towards diagnosing faults at the pile head. Further to this, 

pre-processing of the network target data occurs before training to minimise the 

degree to which the network is required to make impossible diagnoses. This process 

is described fully in Section 6.3. 

This chapter continues with a discussion of the data pre-processing methods and 

network output before continuing with an investigation into the training set 

dependency of system performance. A full parametric investigation into the three 

network types is then reported followed by a discussion of their relative strengths. 

6.2 NETWORK PRE-PROCESSING 

The importance of pre-processing in relation to a neural network's final performance 

is well documented. Menendez et al. 61 have shown that the pre-processing of sonar 

signals has a direct relation to not only on a network's rate of learning, but also its 

resultant competence. A number of pre-processing methodologies have therefore 

been considered for both the de-noising and encoding of the pile traces for use in 

this study. 

The traces used in this investigation are shown in Figures 6.2-6.5. Figure 6.2 is a 

typical input force excitation as described in Chapter 4. Figure 6.3 shows the 

velocity response obtained from two of the piles at the Blyth test site under 

investigation and will subsequently be referred to as Pile 1 and Pile 2. Pile 1 is a 

defect free pile while Pile 2 is a pile with a 50% loss in radius at 3.6 metres. Figures 
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6.4 and 6.5 are velociometer traces kindly provided by Technotrade Ltd. They are 

uncalibrated and have no associated force trace provided. However, they are 

included in this study as they represent the worst case of ringdown (pile head 

resonance) the author has yet found. Essentially it is suggested that if the selected 

methodology can successfully de-noise these traces, it will be able to de-noise the 

vast majority of presented field results. These piles have quoted diameters of 250mm 

and 300mm, and design lengths of 5m and between 5 and 9m respectively. They will 

subsequently be referred to as Piles 3 and 4. 

6.2.1 Time Based Methods 

6.2.1.1. Cross and Auto Correlation 

When attempting to analyse time series histories of the type found in impact testing 

the conventional methodology for estimating time delays to reflection echoes 

involves the cross correlation of the input pulse with the recorded velocity response 

or the auto correlation of the velocity response6
.
2

,6.3. The auto-correlation function 

gives a measure ofthe degree to which a signal, aCt), is similar to a displaced version 

of itself, a(t+ r), as a function of the time displacement. Mathematically this function 

is written as: 

T 

Raa (r ) = l:im fa{t ).a{t + r )dt 
7-+", (6.1) 

o 

While the cross correlation of two signals gives of the degree to which a signal, a(t), 
is similar to a second signal, bet), as a function of the time displacement between 

them. Mathematically this function is written as: 

T 

Rab (r) = f~~ fa{t ).b{t + r )dt (6.2) 
o 

The most common application of these methodologies are the determination of time 

delays, the identification of transmission paths and the detection of signals buried in 
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extraneous noise. The main weakness of these methods is their inability to cope with 

non-stationary time series as, by definition, they are measuring the correlation of 

signals with a temporal displacement. The signals under analysis in this study were 

non-stationary. Traces typically contain base-line drift (Figure 6.3), exponentially 

decaying ringdown (Figures 6.4 and 6.5), and frequency dependant signal 

attenuation (hence the use of hammer tips of different hardness). These methods of 

analysis when applied to pile integrity testing have therefore been restricted to 

academic exercises and are not generally used by industry as a practical method for 

de-noising traces. A more suitable method for temporal de-noising and feature 

extraction, the wavelet transform, has been identified and developed by the author in 

Section 6.2.3. 

6.2.1.2 Enhanced Time History 

As applied by industry, there are three standard steps applied to minimise the signal 

to noise ratio for time series analysis of sonic echo test traces. All have been 

discussed in Chapter 2. The first is the reduction of white noise in the trace through 

ensemble averaging of a number of recorded tests. The second reduces correlated 

noise, specifically ringdown, through the low pass filtering of the trace (typically at 

1500-2000 Hz). Finally a dynamic gain may be applied, more usually an 

exponentially increasing gain, to compensate for the attenuation of features found 

later in the trace. 

Typically, however, Fourier filtered traces will still contain some elements of 

ringdown which when accentuated through a dynamic gain can dominate the 

resultant trace. A field engineer can easily alter the gain parameters to optimise the 

trace for visual inspection using standard analysis software; Pile Dynamics' PIT 

software, for example, allows this to be done in just three keystrokes. However, a 

more robust methodology is required for the automated de-noising of the trace. 

While uncorrelated noise is often used to improve network learning correlated noise 

is highly detrimental to a neural network's ability to generalise during training and 

hence to its eventual quality of performance. 
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6.2.2 Frequency Based Methods 

6.2.2.1 Spectral Analysis 

A frequency spectrum is derived from a time signal through the application of a 

Fourier transform, more usually using software and the Fast Fourier Transform 

algorithm. The Fourier transform of an ensemble averaged set of traces is known as 

the auto-spectrum while the transform of a single trace the instantaneous spectrum. 

The spectrum of a cross-correlation function is described as the cross-spectrum. All 

these methods are used in the field of modal analysis, a technique widely employed 

in non-destructive testing, where frequency response to an input excitation is used to 

determine a structure's integrity. 

Neural network analysis has been used extensively in peak picking and spectral 

analysis as described in Chapter 3. The encoding of a long temporal trace into a few 

pertinent frequency coefficients is a favoured way of reducing the size of the input 

space of the neural network. Kirkegaard and Rytter6
.4 have encoded modal data from 

the impact testing of a steel bar to teach a neural network to diagnose the position 

and extent of cracking within it. Specifically they present their network with the 

scaled change in frequency in the first five fundamental modes of vibration from that 

of a sound bar. 

The author has reproduced6
.
5 these results for uninstalled concrete piles (see 

Appendix 2). The input to the network consisted of 17 linear units. These are 

presented with data showing the change in frequency response between the pile 

being tested and the expected response for that pile if it were sound. More 

specifically, it has as its inputs, for each of the lowest five modes: 

i) The change in mode frequency between equivalent modes from the sound 

and suspect pile. 

ii) The change in magnitude for equivalent modes III the normalised 

instantaneous spectrum. 
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iii) The difference in phase between equivalent modes for the sound and suspect 

pile. 

Two further units present the network with the design length and cross-section of the 

tested pile. This is because a single network is required to test piles of different 

dimensions and so the faults are found with respect to the tested piles' dimensions. 

The output of the network consisted of 50 linear units each representing 0.2m 

sections. This covers up to a maximum pile length of 10m. This output array has 

been called the difference profile as it is trained to report the change in the tested 

pile's profile from the expected profile. For example a sound pile has all zero 

outputs as its profile does not deviate from the expected, while a pile with necking 

will have zeros everywhere apart from those units corresponding to the position of 

the neck. The activation of these outputs will be representative of the change from 

the expected pile radius at this point. 

A system was developed, through parametric analysis, containing 30 hidden units 

with sigmoid activation functions. It is able to detect bulbing and necking in finite 

element generated velocity response spectra. The network performance is consistent 

with known test method limitations and is pile length independent. While providing 

further empirical evidence that neural systems are robust enough to handle piles of 

varying length and with varying degrees of defect its limitations make it inapplicable 

to installed foundation piles. The training data is restricted to piles with a single fault 

and because all the data is finite element generated the input excitation is completely 

consistent across all patterns. For real heavily damped systems such as installed piles 

automated peak picking becomes a problem in itself and the measured response is 

highly input dependent. 

6.2.2.2 The Mobility Spectrum 

Of more relevance to pile testing is the mobility, or mechanical admittance, spectra 

described in Chapter 2. Specifically this can be described as the Frequency Response 

Function (FRF) ofthe system with respect to velocity, that is: 

255 



H( )_ V(co) 
co - F(co) (6.3) 

Often in modal analysis the direct calculation of Equation 6.3 is inappropriate due to 

the presence of noise. However, in pile analysis the spectrum above 1500 Hz is 

rarely considered and the coherence of the spectrum below this value is high enough 

for the direct calculation of H(OJ) from Equation 6.3. 

Its time domain equivalent, the impulse response function, is often referred to as the 

reflectogram in literature. It is the basis for the wave tracing techniques described in 

Chapter 2 because, like its frequency domain equivalent, its shape is approximately 

input magnitude independent. Considering the spectral make-up of the input pulse 

(Figures 4.8 and 4.10) it is apparent that the limiting frequency of the resultant 

reflectogram is defined by the point at which this spectrum reaches its first 

minimum. Otherwise, with its value being so relatively small, this frequency will 

dominate the resultant reflectogram. For the example reflectograms shown III 

Figures 6.6 and 6.7, therefore, the Fourier cut-of I frequency is given as 1000 Hz. 

6.2.3 Wavelet Methods 

As described in Section 3.4.4.3: the Wavelet Transform (WT) was introduced in the 

early 1980' S6.6,6.7 as a new signal processing technique that overcomes one of the 

inherent problems of conventional Fourier techniques, namely the retention of 

temporal information. It provides a method for the decomposition of non-stationary 

signals such that scale characteristics and feature location can be highlighted 

simultaneously through the unfolding of a one dimensional signal into two 

dimensions. 

6.2.3.1 The Continuous Wavelet Transform 

The continuous wavelet transform was introduced in Section 3.4.4.3 and described 

by Equations 3.22-3.25. Essentially, instead of decomposing the signal under 
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investigation into a series of continuous sinusoids, as in the case of Fourier analysis, 

the trace is described by a basis set of discrete functions of finite temporal and 

frequency support. This unfolding of the signal into two dimensions, dilation and 

translation, provides a decoupling of frequency components within the trace whilst 

retaining a degree of temporal information. 

Mallat and Hwang6
.
S and, Grossmann and Morlet6

.
7

, four of the pioneers of modem 

wavelet analysis, have co-authored papers reporting the WT's usefulness in 

detecting singularities and discontinuities in traces when compared to Fourier based 

methods. Related research in vibration analysis has recently been published by 

Staszewski6.9,6.lo,6.11 and Newland6.12. 

A multitude of wavelets, which satisfy the constraints described in Chapter 3, are 

available to the researcher. Each has different mathematical properties which render 

it more suitable for given applications. Staszewski employs the Morlet wavelet for 

detection of system non-linearity through the identification of damping and stiffness 

parameters for multi-degree-of-freedom systems6
:
9

,6.11 during transient testing. The 

Morlet wavelet has good support in both frequency and time domains which allows 

the decoupling of the system's various modes of vibration with respect to time. This 

makes it very effective for this application. 

Newland6
.
12 applies his own wavelet, the harmonic wavelet, to the analysis of 

bending wave propagation within a struck mild steel beam. This wavelet is similar in 

shape, and therefore properties, to the Morlet wavelet except that, being defined in 

the Fourier domain, it can be forced to be orthogonal for each dilation scale. Again 

this demonstrates the wavelet's ability to separate the spectral components of the 

propagating pulse. This is important in an application such as this as the group 

velocity of bending waves within a beam is frequency dependent and so, with 

multiple reflections also occurring, the time domain response record becomes too 

complex for direct interpretation. 

For a problems involving large scale heavily damped systems such as sonic pile 

testing, in practice, there are rarely multiple longitudinal reflections and the 
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frequency dependence of group velocities is negligible. Thus, as long as feature 

types can be differentiated through scale, the temporal isolation of these trace 

features is of a greater importance than the decoupling of their frequency 

components. For the investigation detailed herein, therefore, the Mexican hat 

wavelet, has been used. The author, along with his colleagues, has published a 

number of papers describing the merits6
.
13

,6.14,6.15 and practicalities6.
15 of wavelet 

analysis of foundation piles using this wavelet. When compared to those wavelets 

mentioned above, although compactness in the frequency domain is compromised, 

this wavelet has far better temporal support. This leads to improved signal 

reconstruction properties after filtering. For this research the complex version of this 

wavelet is employed. This has a Gaussian envelope and so the modulus plot does not 

include the side lobes associated with the real version - the real part of the complex 

wavelet shown in Figure 6.8. 

Figure 6.9 shows the application of the continuous wavelet transform to the velocity 

response trace of Pile 1. The wavelet domain data is presented in the form of a 

scalogram (the lower plot of Figure 6.9). This filled contour plot has the translation, 

b, value along the horizontal axis and the dilation, a, value along the vertical axis. 

By convention the vertical axis is a minus log scale so that smaller a values, i.e. 

smaller wavelet widths, are at the top of the graph. This leads to discontinuities in 

the one-dimensional trace effectively being pointed to by the two dimensional 

scalogram. Also apparent in this plot is the decomposition abilities of the wavelet 

transform. The higher frequency ringdown is found towards the top of the scalogram 

while the echo from the pile toe, with its lower frequency components can be seen 

throughout all scales (dilations). 

6.2.3.2 The Mobility Scalogram and 'ModMax' Temporal Filtering 

In this section a new concept In wavelet analysis is presented. As previously 

described the notion of wavelet analysis can be summarised as the convolution of an 

analytical function of multiple dilations with the signal under investigation. As such 

the calculation of the wavelet coefficients for a given scale can be more efficiently 

calculated in the frequency domain where the wavelet function becomes, effectively, 
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a band pass filter. Hence, for a given scale, or wavelet dilation, the coefficients can 

be obtained from the inverse Fourier Transform of the product of the signal 

spectrum with the wavelet spectrum at that dilation, thus: 

W(a, b) = .[;] V(w ).If/. (aw ).e iCUb dw 
2" -co 

(6.4) 

where a is the wavelet dilation value, If/ the wavelet function spectrum and the 

superscript '*' represents the complex conjugate. As in Equation 6.3, V(w) is the 

Fourier Transform of the velocity response. However, noting the equality of 

Equation 6.3 it becomes apparent that the spectrum of the velocity signal In 

Equation 6.4 can be replaced with that of the mobility curve, H( w) in Equation 6.3. 

The scalogram then becomes, effectively, the wavelet transform of the reflectogram 

and so becomes input magnitude, and shape, independent. This scalogram has, 

therefore, been labelled the mobility scalogram. 

Further to this, temporal de-noising can be applied through the implementation of 

the, so called, 'modmax' or modulus maxima technique6.I7 . Here, the energy in the 

scalogram is redistributed to its maximal modulus turning points with respect to 

each scale. A plot of the type shown in Figure 6.10 is then produced. By following 

these contours from lower dilation (frequency) scales up to the high frequency scales 

a method is produced for differentiating the high frequency components caused by 

ringdown and those of the reflected echoes and input pulse, i.e. those components 

with associated lower frequency terms. The use of this technique also drastically 

reduces the number of non-zero terms in the presented scalogram. Consequently this 

method is considered useful for the encoding of trace information. The reconstructed 

traces of the wavelet filtered signals for Piles 1 to 4 are shown in Figures 6.10 and 

6.11. These reconstructions have been generated using only the ten largest 

coefficients from the filtered modulus maxima scalogram. As can be seen while the 

amplitude of the trace features are of the order of those of the reflectograms of 

Figures 6.6 and 6.7 their shapes better represent those of the original traces. This is 

due to the retention of salient high frequency components while the high frequency 

noise has been eradicated. The suggestion that wavelet filtering is more efficient 
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than Fourier filtering has been shown theoretically by Donohoe6
.
18

. The author and 

his colleagues have shown further examples of the applicability and usefulness of 

modulus maxima filtering in pile integrity testing in their publications6
.
19 reproduced 

in Appendix 2. 

6.2.3.3 The Discrete Wavelet Transform 

The implementation of the wavelet transform for discrete signals can be performed 

by the discrete wavelet transform (DWT). The DWT allows for the decomposition 

of the signal into a basis set described by a dyadic decimated frame. The first 

wavelet dilation has the wavelet centred and covering the entire signal. At each 

subsequent level the dilation is halved (hence dyadic) so smaller features within the 

signal are resolved. As the dilation is halved so the translation step is halved (hence 

decimated) so avoiding overlap in the locations analysed thus avoiding redundancy 

in the transform set, as illustrated in Figure 6.13. The number of required operations 

for the DWT are, therefore, less than those needed for the continuous case so 

reducing computation time and the number of resultant coefficients. 

In this investigation the Daubechies wavelets of orders 4, 6, 8, 12, 16 and 20 were 

considered6.
ls

,62o. Examples of some of these wavelets' shapes and frequency make­

up are shown in Figure 6.12. This wavelet system has been chosen because it is 

orthonormal and complete. This allows for the regeneration of the original signal 

from the decomposed data and, due to its orthonormality, it lends itself to the 

discrete wavelet transform. The resultant scalogram from the decomposition of Pile 

3' s test trace using the Discrete Wavelet transform and the D(8) wavelet is shown in 

Figure 6.14. The lack of redundancy in the wavelet space results in a good quality 

reconstruction of the original signal using only 64 of the original 1024 coefficients. 

For this reason the DWT is being used for an increasing number of data compression 

applications. However, the loose frequency support as indicated in the plots of 

Figure 6.12 and the lack of shift invariance in the decimated frame means there is a 

frequency leakage across scales. This means spurious high frequency terms are 

found even in reconstructed traces that have been truncated at lower dilation levels. 

For example, Figure 6.15 shows how, when truncated at level 5, the reconstructed 
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traces of Pile 3 contain aspects of ringdown rendering it inappropriate for the de­

noising of the trace. 

6.2.4 Relative Performances of Pre-processing Methodologies 

Initially a comparison between mobility curve and wavelet mobility scalogram 

encoding of the sonic echo test data is considered. To establish the ability of a 

network to decode the presented data, i.e. the ability of a network to produce an 

internal representation of the pattern space, the network is required to reproduce the 

reconstructed reflectogram. By training this mapping rather than that of pile profile 

all uncertainty in the required task is eliminated. The network is learning a 

deterministic inverse transform and results of the learning process are purely a 

function of the input encoding. 

The mobility curve data is presented to 64 input units: 32 for the real parts of the 

pattern and 32 for the imaginary parts. For a signal sampling rate of 50 kHz with 

1024 samples in the acquired trace, this corresponds to the spectral components up 

to 1500Hz. For the encoded wavelet scalogram data the largest 16 components of 

the filtered modulus maxima plot are presented. Each component being described by 

four integers, one each for: scale (a parameter), translation (b parameter), real 

component and imaginary component. Hence, both networks have identical input 

dimensions. The required output trace is subsampled to 64 points to reduce the 

dimensions of the weight space and so the likelihood of overtraining. 

In both cases the networks employed were simple multi-layer perceptron networks 

with linear output units and sigmoid hidden units. The optimum network 

performance for the mobility curve inputs are presented for network architectures of 

60 hidden units within one and two hidden layers in Figure 6.16. The mean pattern 

error, as described in Chapter 4, descends below a value of 0.02 for both networks. 

This is a performance reflected by the sample outputs presented in Figure 6.17. 

For the encoded wavelet data, however, as shown in Figure 6.18, the mean pattern 

error never reaches a value less than 0.05, even when 3 layer systems are employed. 
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By looking at the Hinton-like diagrams of Figure 6.19 it becomes apparent that, for 

the wavelet encoded network, the weights from one of the hidden units, unit 42 

dominates. This was particularly true for those weights leading to the start of the 

trace where the dominant input pulse occurs. This was not the case for the mobility 

curve network where, although the weights to the output units representing the start 

of the trace were also higher, they were well distributed across all the hidden units in 

the network. 

These results would suggest that learning has been inhibited by the additional data 

encoding in the wavelet case. Further to this the introduction of a temporal 

component to the presented data lead to a biasing of the network performance. 

Specifically, with higher wavelet coefficient inputs being directly associated with 

higher output values the network has minimised the pattern errors in the training set 

by modelling the input pulse very well, as indicated by the sample traces of Figure 

6.20. Consequently features later in the trace have been neglected to the detriment of 

network performance. This was not true in the mobility curve case where, because 

data describing the reflectogram trace was distributed across all the input units, no 

hidden units dominated during training. 

These results would clearly indicate that, in preference, the network input should be 

a continuous description of a vector space so reducing the decoding required of the 

network. However, the de-noising abilities of the wavelet transform may be used in 

conjunction with the signal enhancement techniques of Section 6.2.1.2 to improve 

network performance. A series of further experiments have, therefore, been 

performed. 

By producing a reflectogram through use of the mobility scalogram, as described 

above, dynamic gain can be applied to the de-noised trace without amplifying the 

frequencies associated with low pass Fourier filtering. In this study the signal 

lengths are all 1024 samples long with the expected reflection from the pile toe 

found approximately half way along the trace. The dynamic gain therefore takes the 

form of a Hanning-like function where the start and end of the trace have a gain of 

one while the maximum gain of ten is found at the centre of the trace. The Hanning 
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function is often used in signal processing as a windowing function6.3. Specifically it 

is used to minimise the effects of any discontinuity between the start and ends of a 

trace as the Fast Fourier Transform assumes a periodic signal. It is, therefore, a 

function naturally suited for this role although, in this case, it has been altered by 

scaling it by 4.5 and then adding 1 to fulfil the function description above. Thus it is 

described by Equation 6.5, below. 

k = I, ... ,n (6.5) 

where gk is the gain value and n the total number of samples in the trace. The 

enhanced reflectogram is then encoded to the Fourier domain in order to reduce the 

dimension of the input space and so the chance of overtraining. This enhanced 

mobility curve is compared directly with the original mobility curve patterns in 

Figure 6.21. The third trace in these graphs is for an input of a logarithmic version of 

this enhanced curve. It is proposed that by taking the logarithm of the enhanced 

mobility curve, as in the decibel scale, smaller changes in the curve will become 

resolvable allowing a more accurate diagnosis of the pile integrity to be made. Given 

the success of the mobility curve at reproducing the reflectogram, the output for this 

network is required to produce the radial axial profile (cross-section) along the pile 

length in an array of 50 units, each corresponding to a 0.3m length. 

As indicated by the graphs in Figure 6.21 the enhanced mobility data improved 

network performance. This improvement was reflected both in the training and test 

set convergence curves. The logarithmically scaled data had a smoother curve that 

converged quicker, although the eventual test set error was similar to that of the 

enhanced mobility data. It is suggested that this faster, smoother convergence is due 

to the smoothing of the pattern space resulting from the logarithmic scaling. That is, 

the closer proximity of the input patterns means less of the weight space is searched 

for a suitable solution. 

In subsequent experiments, therefore, the pre-processing and input encoding of the 

sonic echo data starts with the production of a de-noised reflectogram using wavelet 
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techniques. This signal then has a dynamic gain applied to it to before being 

transfonned to the Fourier domain. The 32 resultant coefficients spanning up to 

1500 Hz are then separated into their real and imaginary parts. The logarithm of the 

magnitude of these components (plus one to avoid polarity changes) is taken and the 

subsequent 64 component array used as the input pattern. 

6.3 POST-PROCESSING 

As mentioned in the introduction to this chapter, the uncertainty associated with this 

problem, if unrestricted, leads to an intractable problem description. If the 

propagating stress wave is attenuated to an excessive degree, either through damping 

or reflections, no further diagnosis of the pile's integrity can be made. However, this 

does not mean a useful tool cannot be produced using this technique. Indeed the 

limitations of low strain test methods are well known by industry and documented in 

Chapter 2. The difference between an 85% and a 100% loss in section may not be 

resolvable, but the fact either is detected with respect to the design section will 

provide a useful quality assurance tool. In reality, low strain test methods are never 

used in isolation. Rather they are used to identify anomalous results in large pile 

groups which may then be investigated further using more sophisticated, and 

therefore expensive, techniques. 

The use of Finite Element Analysis to generate the training data has the additional 

advantage that an estimate of those features that might be diagnosed can be made. In 

the same way that the propagating stress wave can be followed to validate the FEA 

model with respect to theory, as in Chapter 4, so its attenuation at a position along 

the pile can be quantified. Any feature found after the pulse has attenuated below a 

pre-set level can be ignored in training and the network thus absolved from the 

requirement of making impossible diagnoses. For all experiments, therefore, when 

the amplitude of the propagating stress wave drops below 10% of its original 

magnitude during its initial propagation down the pile no further diagnosis of 

changes in section are required of the network. In selecting 10% it is recognised that 

any returning pulse will undergo further attenuation on its path back to the pile head 

and, therefore the network is expected to be able to resolve a return pulse 2% 
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(remembering the doubling of velocity at a free end of a bar) of its original 

amplitude. These values have been calibrated by observations of field test results _ 

specifically the knowledge that a returned pulse from an 11 .7m defect free pile (Pile 

1) can be seen. 

For the experimentation described the change in radial section at anyone point is 

also restricted to 100% of the design radius. That is, a total loss in section is allowed 

and a doubling of the pile radius is allowed. For the piles considered in this study 

any more than a 100% increase in radius would result in less than 20% transmission 

of particle energy through the change in section and as such very little information 

from below the fault would be resolved. 

The design radius of the piles under investigation is O.4m and so the output of the 

network never exceeds 0.8. The output units used in subsequent experimentation 

involving multi-layered perceptron networks are therefore hyperbolic tangent or 

sigmoid units depending on whether the required output varies between 0 and 1 or-l 

and 1. 

The possible network architectures for this problem may be categorised into two 

sub-groups. The network may be modularised such that a collection of networks are 

developed each producing an output for an individual section of pile length. 

However, III this study a single network presents the user with an array 

representative of the pile profile. This is because for the WBNN and RBNN 

networks the initialisation process will provide identical networks whether the 

output units are considered individually or collectively. Subsequent training would, 

therefore, be unlikely to produce significantly different network performances. 

With regard to output resolution: each output unit represents the pile profile for a 

O.3m length, this being the resolution of the finite element model. An array of 50 

units, therefore, provides a profile estimate up to a maximum of 15m i.e. the toe 

should be observable for all piles within the problem specification. 
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Four different methods of output array values, from which the pile's radial profile 

can be calculated, have been considered: 

i) The pile radius at the output units' specified position. 

ii) The pile radius squared (ae area) at the output units' specified position. 

iii) Changes in radius squared. As reflection amplitudes are primarily caused by 

changes in area it is sensible to hypothesise that a relationship would be more 

easily found by requiring the network to output an array of these changes in 

cross-sectional area. 

iv) A difference array. An array of differences in radius from that expected for an 

infinitely long pile of the same design radius in the same soil conditions. 

The results of these experiments are shown in Figure 6.22. The network used in 

these experiments is a MLP network with two hidden units each containing 50 units. 

Although these results confirm that monotonic learning is achieved in all cases, the 

mean pattern error cannot be compared directly as an indication of relative network 

performance. Clearly, for example, the output array for the change in area case will 

be mostly zeros and so the network output may be completely wrong in producing 

all zeros for all patterns and yet still give a small mean pattern error. In order that 

like be compared with like, therefore, the errors for the calculated radius profile in 

each case, for all patterns, are given in Table 6.1. The variance in the pattern errors 

are also provided in this table. Although it is recognised that the mean pattern error 

distribution is not a normal distribution this measure does give an indication of the 

relative network selectivity. 

Table 6.1 Pattern Errors in Calculated Profile Radii 

Array Type Minimum Mean Variance of n error measures: Xl..n 

Pattern Error defined by : n~>2 -(LX) 
n{n-l) 

Profile Radius 0.67 0.20 

Profile Area 0.80 0.19 

Area Change 0.93 0.25 

Difference Array 0.64 0.17 
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The first observation to be made from these results is the relatively large error 

associated with the network that has attempted to diagnose changes in cross­

sectional area along the pile length - literally changes in radius squared. This is due 

to the errors in the subsequently calculated radius profile being cumulative. For 

example if an erroneous change in section were diagnosed at the pile head that error 

will be carried through the calculated pile radius for the remainder of the profile. 

The results for the networks presenting the pile radius and difference array profiles 

had almost identical results. However, the difference array provides results that are 

both superior in the mean pattern error and the consistency of these calculations. It is 

hypothesised that this is due to the network's output being naturally centred on the 

most sensitive region of the hyperbolic tangent activation function. That is, in 

general the output for a sound pile will be zero up to the pile toe. This·is also the part 

of the activation function with the greatest gradient and furthest away from its 

saturated regions. The network is, therefore, intrinsically more able to resolve 

deviations from this norm. It is the difference array that is, therefore, adopted as the 

network output for subsequent experimentation. 

6.4 Trainine Set Dependency 

For the study completed herein a total of 500 test traces have been generated by 

Finite Element Analysis. This corresponds to about five weeks of solid computer 

time on a Pentium™, 166MHz machine. Although increasing the number of patterns 

generated may improve subsequent performance the additional time necessary to 

produce such an increased set was deemed inappropriate for a proof of principle 

study such as this. As shown in diagrams 6.23 and 6.24 for a MLP network 

containing two hidden layers each of fifty units overtraining is prevented when the 

training set used contains in excess of four hundred traces. At this point the test set 

error reduces significantly: by over 15%. Subsequent increases in the size of the 

training set result in a far smaller decrease in error. Consequently in the 

experimentation presented in this thesis the five hundred patterns have been split 

such that a training set of 450 patterns is used with a test set of 50 patterns. 
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The implications of having a relatively small test set are illustrated in Figures 6.25 

and 6.26. Statistical aberrations can result from the test set sample not being 

representative ofthe overall pattern set. For this reason all comparative studies have 

been made using the same training and test set. Additionally all error analysis has 

been made from concatenated results from a series of experiments. Each network is 

trained ten times; each time with a different set of fifty test patterns. Significantly, 

, the overall network strengths and weaknesses observed for each test set are the 

same. This would appear to confirm that these differences are representative of the 

distribution of the test set rather than diverging network performances. 

6.5 MULTILAYER PERCEPTRON NETWORKS 

In all the experiments described in Section 6.5 the units' activation function used is 

the hyperbolic tangent function. Following the experimentation outlined in Section 

4.5.6, the temperature parameter (the scaling value of the net unit input) has a set 

value of 10. This is consistent with a network initialisation where initial weights are 

set to random values between -1 and 1 such that premature saturation of the network 

is inhibited. 

6.5.1 Parametric Investigation 

The learning parameters for which optimum values must be derived are the learning 

rate and momentum term, as described in Chapter 3. These values are derived from a 

parametric study, but cannot be considered independent variables. This is because 

the application of a momentum term increases the effective learning rate for constant 

trends in the training data such that: 

a 
a =--

~fr (1- A) (6.6) 
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This being the case the graph of Figure 6.27 contains four plots. One each for 

momentum, A, values of 0,0.3,0.6 and 0.9. The plots illustrate how, in all cases, an 

optimum value for the learning rate, a, is reached. As shown in Figure 6.28 for rates 

below this learning is prohibitively slow while for higher values the convergence 

curves are less smooth. This is a result of the larger size of the weight updates 

leading to the network being unable to converge on a suitable solution in the weight 

space. For this reason the parameter values selected are those that produce the 

lowest error, with the lowest learning rate. Hence, they are selected as a learning rate 

of 0.1 and a momentum of 0.9. Interestingly the relationship of Equation 6.6 does 

appear to hold for this training set, as illustrated in Table 6.2. This would confirm 

the presence of statistically consistent trends within the data from which the network 

is able to form a function approximation. If this were not the case, and the network 

learned as a content addressable memory, the momentum term would have little 

effect and the system with the lower learning rate would learn too slowly to 

converge on an optimal solution within the epochs completed. 

Table 6.2 Learning Rate Equivalence 

aejJ Learning Momentum Training Learning Momentum Training 

rate (a) (A) Set Error Rate (a) (A) Set Error 

0.25 0.25 0 0.16 0.025 0.9 0.15 

0.1 0.1 0 0.25 0.01 0.9 0.25 

0.025 0.025 0 0.45 0.0025 0.9 0.45 

0.01 0.01 0 0.54 0.001 0.9 0.54 

With respect to the number of units and layers employed i.e. the topology of the 

network: the results from a parametric study carried out using the learning 

parameters chosen above is presented in Figure 6.29. It appears that networks 

containing only five units per layer have a reduced pattern error, but on inspection of 

the network outputs it is apparent that the network simply differentiates between 

piles of which the toe is visible and those that it cannot. No diagnosis of faults along 

the pile length are made. 
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It is apparent that the errors for networks containing more than one layer are 

consistently lower than those containing just one. However, the addition of a third 

hidden layer does not appear to significantly improve network performance - which, 

as stated in Chapter 3 is in accordance with Kolmogorov's theorum. Overtraining 

occurs in all networks when the number of units per layer is greater than one 

hundred - as illustrated in Figure 6.30. Given that the networks' mean pattern error 

does not improve significantly above forty hidden units and the need to ensure 

overtraining does not occur the network selected for performance analysis is that 

with two hidden layers each containing forty units. 

6.5.2 The Use of Un correlated Noise 

As confirmed in the feasibility study of Chapter 4 the inclusion of uncorrelated 

white noise in the system input can assist in the prevention of overtraining. This 

improves generalisation so improving the results for field test data. In this case the 

noise is measured as a percentage of the maximum absolute input value in the 

pattern set. 

The graph of mean pattern error with respect to this noise is shown in Figure 6.31 

and is consistent with the findings of Chapter 4 shown in Figure 4.54. However, in 

this case no observable improvement is found by including noise as illustrated by 

the examples of Figure 6.32. It is suggested that this is because the model being 

employed in this study better represents the field data being tested and the pre­

processing employed minimises small temporal characteristics of the mathematically 

modelled data that encourages overtraining. 

6.5.3 Network Selectivity and Sensitivity 

During the parametric studies presented above the mean pattern error, a Euclidean 

cost function as defined in Equation 3.14, has been presented as a measure of the 

network's ability to carry out its required task. Using a pattern error to quantify 

network efficiency is however inappropriate because faults of smaller axial lengths 

may be completely missed yet still have a relatively small associated error. 

270 



Alternatively, a measure can be carried out on each unit individually to produce a 

measure of the networks' abilities with respect to a fault's position or severity. For 

example, Figure 6.33 provides a plot of the mean unit error with respect to that 

unit's position along the pile. However, this does not take into account any a priori 

knowledge of the test method employed and the fact that of primary importance is 

the diagnosis of the first significant fault in the pile: information on subsequent 

faults is useful, but not essential as low strain integrity testing is primarily an 

exercise in identifying anomalous responses. Specifically it is known that faults 

underlying other faults are more difficult to detect and so to present the data as in 

Figure 6.33 can be misleading. For all the error analysis presented in this and 

subsequent sections, therefore, only piles containing a single fault are considered. 

'Single fault' meaning a single neck, bulb, loss in section or gain in section. The 

measure of the network's ability is then summarised as the error in diagnosis of the 

change in section at the centre of this fault. 

The graph of Figure 6.34 shows the mean unit error for faults with 'respect to its 

position along the pile length. The error bars are obtained through the median 

quartile method, their large size being indicative of the fact that the variables upon 

which these graphs are taken are not independent i.e. there is an error distribution 

associated with each error value. As expected, faults towards the toe are larger, but 

faults of shorter axial length at that position will have a comparatively much larger 

value than the average, hence the large upward error bar. An example of the 

network's diagnosing abilities deteriorating with respect to position is shown in 

Figure 6.39. However, the network has been able to diagnose faults at the pile head 

from the frequency information, for example see Figure 6.40. This ability is not 

possible using conventional techniques because of the difficulty in resolving 

reflections from close to the pile head. The ability to diagnose the presence of a fault 

from dynamic stiffness measures in the frequency domain has, however, been 

predicted by Chan6
.
21

• 

Figure 6.35 shows how faults with a small axial length are more difficult to diagnose 

with respect to the average. This is as expected by theory: as shown in Chapter 4 the 

superpositioning of reflections from two spatially close changes in section causes the 
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return echoes to be very much smaller than those that may be expected. Examples of 

the network output for smaller changes compared to larger changes are shown in 

Figures 6.37 and 6.38. Also apparent from Figure 6.35 is the increase in error 

associated with fault lengths over 5.5m. It is suggested this is due to the fact that, by 

definition these faults will have their centre further down the pile length and so, as 

previously mentioned, the larger error may be expected. 

With respect to the degree of defect, that is the amount by which the fault's radius 

deviates from the design radius: the results shown in Figure 6.36 are inconclusive. 

They appear to indicate that larger errors were more difficult to detect. However, a 

number of factors should be considered when analysing these results. The first is of 

primary importance. The larger errors are small in comparison with the required 

change in section. For example an error of 0.008 corresponds to an error in 

calculated radius of 9mm for a 200mm change in section. It is also true that a larger 

error for larger losses in section is acceptable as long as the percentage error allows 

that change to be identified. A possible reason for the degradation of performance 

for larger changes in section is the shape of the activation function of the output 

units. As previously mentioned the hyperbolic tangent function has its most sensitive 

area, that where its gradient is highest, for output values nearer zero. However, the 

same shape that makes it ideal for resolving smaller errors means it is least sensitive 

as the outputs near its asymptote values of -1 and 1; i.e. higher magnitude outputs. 

While the required outputs of this network never exceed 0.3 it would explain the 

reduction in performance for larger magnitude faults. 

Further examples showing the network's success In resolving piles containing 

mUltiple faults are given in Figure 6.40. 

6.6 RADIAL BASIS NEURAL NETWORKS 

For the parametric investigation involving Radial Basis Neural Networks identical 

training and test sets are applied as those in the MLP case. The initialisation and 

subsequent back-propagation training of the networks are as described in Chapter 5 

and so the network output is composed of linear activation units. 
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6.6.1 Parametric Investigation 

For the investigation carried out in this study three learning parameters were 

derived. As described in Chapter 3, for radial functions two learning rates are 

required: one for the weight updates and one for the hidden unit centres. Preliminary 

investigations by the author, as well as providing 'ball park' values around which 

the study reported below was based, found that faster learning can be achieved when 

the two layers of weights have different learning rates applied to them. It is 

hypothesised that this is due to activation functions of the hidden and output units 

being different. Effectively the output of a hidden unit is very much more sensitive 

to a change in its fan-in weights compared to that of a linear output unit. It is, 

therefore, reasonable to find that the optimum values for the learning rate differ for 

the two levels. 

The results of this parametric study are shown in Figure 6.41. For each experiment 

while one parameter is varied the others remain static as either: u c=5 xl 0-4
, 

Uwi= 1 x 10-6, or U wo= 1 xl 0-2
. Where Uc is the learning rate for activation centres, Uwi 

is the learning rate for weights from the network inputs, and U wo is the learning rate 

for weights to the network outputs. These values were estimated from the initial 

investigation on a 50 hidden unit network. 

The results indicate that overall network performance was not particularly dependent 

upon Uwi although there was an optimum value at around 10-3. This value was a 

compromise between the gradient and smoothness of the convergence curve. For 

higher values the curve became very noisy and very little learning occurs while for 

much lower values the convergence curve decayed very slowly. This effect was also 

found for both other learning rates where raising the value increased the spiking in 

the convergence curve; decreasing the value decreased rate of convergence. The 

selected values of the learning parameters are, therefore, given as: u c=5xlO-2
, 

u Wi=lxlO-3
, and uwo=l xlO-2

. 
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U sing the parameters selected above this experiment has been repeated for systems 

with various numbers of hidden units. The results of this study are presented in 

Figure 6.42. In these results an optimum network is clearly found to contain around 

35 units. Overtraining was evident in all systems containing over 80 units. 

6.6.2 Network Selectivity and Sensitivity 

The initial observation of the error analysis of Figures 6.43-6.45 is the marked 

similarity of the results to those of the two layer MLP results of Figures 6.34-6.37. 

The general trends of higher errors for faults further down the pile and those with 

particularly large or small axial lengths are the same (see also the examples in 

Figures 6.46 and 6.47). This would appear to confirm the equivalence of the two 

network types as outlined in Chapter 3. However, in all cases, although the graph 

shapes for the errors are similar the values for the MLP case are consistently smaller, 

as are the error bars associated with these value. It is also noticeable that the graph 

of errors with respect to fault length is less consistent in this trend i.e. the resultant 

plot is far 'spikier' even though it is presented with a larger scale. 

It is hypothesised that this is due to the enclosed nature of the hidden unit activation 

functions making the training more pattern set dependent. Specifically, by 

regionalising the input space with respect to pattern density, and then to produce an 

output that is, essentially, independent of all patterns of any (Euclidean) distance 

away from that which is presented the output will become highly sensitive to the 

statistics of the pattern set. This can be thought of as an addendum to the so called 

'curse of dimensionality' mentioned in Chapter 3. That is, as the dimension of the 

input space increases, so the number of hidden units in the input space must increase 

to accurately regionalise it. However, as a consequence of this the number of 

patterns in the training set must also increase to better describe the pattern 

population density of the problem domain. Although the statistics of the pattern set 

are clearly of great importance to the MLP networks it is apparent that, for this case, 

the monotonic activation functions make this network's performance less dependent 

thereon. 
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One advantage of the localised nature of the radial basis activation function is the 

apparent ability of the network to isolate spatial regions of the pile more effectively 

than the MLP case. Empirical evidence for this is found in the Figures 6.46-6.49 

where the toe of the pile is better defined than the more rounded toes of Figures 

6.37-6.39. This effect is also discussed in Section 6.8, below. 

6. 7 WAVELET BASIS NEURAL NETWORK 

As in the RBNN case, for the parametric investigation involving Wavelet Basis 

Neural Networks identical training and test sets are applied as previously described. 

The initialisation and subsequent training of the networks were all as described in 

Chapter 5, and the output composed of linear activation units. The error analysis is 

carried out using ten repetitions of the chosen network with a different test set each 

time. This allowed all of the pattern set to be included in the evaluation of network 

performance. 

6.7.1 Parametric Investigation 

As with the RBNN network the optimum values for three learning rates are derived 

from a series of experiments. Again, the presented results have been preceded by a 

preliminary parametric study to provide a 'ball-park' estimate of the salient regions 

over which the final investigation should take place. For the results presented in 

Figure 6.51 while one parameter is varied the others remain static as either: 

u c=5xlO-2
, u Wi=lxlO-4

, or uwo=l x 10-2. Where Uc is the learning rate for activation 

centres, Uwi is the learning rate for weights from the network inputs, and Uwo is the 

learning rate for weights to the network outputs. These values were estimated from 

the initial investigation on a 50 hidden unit network. 

The graphs for the function centres and weights to outputs are similar to those of the 

RBNN network both in form and results. That is an optimum value is found below 

which learning is slow while higher values result in noisier convergence. The 

network performance, however, does appear to be far more dependent upon the 

value of the learning rate of the weights to the hidden layer (c.f. Figure 6.41). For 
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the higher level values of this parameter the convergence curve is extremely noisy to 

the point that no learning occurs at all. Remembering that the weights being updated 

in this layer are effectively the square root of the dilation parameter of the activation 

wavelet function, it is apparent that the change in polarity of the Mexican Hat 

function employed in this network makes it particularly susceptible to larger changes 

in this value. In the RBNN's as a weight in this layer decreases so the output of a 

given unit for a given pattern will become, monotonically, smaller. For the 

WBNN's, however, the output may change polarity before again increasing to an 

asymptotic value of zero as shown in Figure 5.21. If the changes in weight value for 

this layer, therefore, is large the repercussions for the output of the system may be 

extreme, hence the necessity in keeping weight changes for this level small. The 

selected values of the learning parameters are, therefore, given as: u c=lxI0-2, 

u Wi=lxI0-6
, and uwo=l xI0-3. 

Using these parameter values this network has been repeated for systems with 

various numbers of hidden units. The results of this study are presented in Figure 

6.52. In these results a optimum network is found to contain around 50 units. Unlike 

the results of the RBNN shown in Figure 6.42 for the WBNN case the effects of 

overtraining are very much less pronounced. The mean test pattern error for systems 

with 100 hidden units still decreases with training, but the convergence curve is a lot 

noisier than those containing a smaller number of units. As the mean pattern error 

presented is the mean of the last 25 epochs this is reflected in the larger recorded 

values. Convergence in the smaller networks is also to a lower level than that found 

in the equivalent RBNN networks. It is presumed that the increased number of units 

required to produce equivalent network performance in the WBNN case is simply 

due the difference in shape of the activation function with respect to that which is 

being approximated. 

6.7.2 Network Selectivity and Sensitivity 

The graphs of Figures 6.53-6.55 shows, again, how faults with smaller axial length 

and those near the pile toe have higher measured errors - see also for examples 

Figures 6.56-6.60. The error values and bars are larger than those measured for the 
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MLP networks for equivalent faults, but approximately the same as the RBNN case. 

However, it is noticeable that that the shapes of graphs 6.54 and 6.55 better 

approximate to the shapes of the MLP than the RBNN network. In fact, the error 

graph with respect to fault length (Figure 6.54) is considerably smoother even than 

that of the MLP case (Figure 6.35). It is hypothesised that this is due to the shape of 

the activation function employed. That is, it is known, for both RBNN's and 

WBNN's, that geometrically close hidden units will have similar activation values 

for similar, in the Euclidean sense, inputs. Referring to Chapter 5, it is also known 

that during the initialisation process the nearest k neighbours are required to produce 

outputs approaching the activation function maximum, where k is the number of 

patterns in the training set divided by the number of hidden units. As a consequence 

of the support of the Mexican Hat function being larger than that of the Radial 

Gaussian function, therefore, the resultant output of a given output unit will be 

dependant upon a proportionally greater number of hidden units in the WBNN case. 

It may also be that this 'more, distributed contribution from the hidden layer to an 

output layer value is the reason that overtraining is less apparent in the WBNN's 

case. If an output is less 'hidden unit dependant' then, by implication, it is less 

pattern space dependant. 

6.8 COMPARISON OF NETWORK PERFORMANCES 

In all the networks studied the initial change in radius caused by a fault has been 

consistently identified in form, i.e. neck or bulb, and position unless it has been 

missed completely. Only faults where a change in section of O.lm or less has 

occurred over an axial length of less than O.6m have changes been missed 

completely. This is on the borderline of test method limitations where, as discussed 

in Chapter 2, current evidence suggests faults with an axial length of less than 1 m 

cannot be reliably diagnosed and those of less than 10cm cannot be detected unless 

it involves close to a complete loss in section. However, there is plenty of 

misdiagnosis of second or third changes in section. This is predominantly due to: 

i) Faults beneath the first fault are hidden to a degree. 
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ii) Traces of piles containing multiple faults are less well described in the training 

set than those containing a single fault. That is, as more changes in radius occurs 

over the length of the pile so the possible permutations of these changes 

increases exponentially. The pattern space of these multiple faults is, therefore, 

less precisely described by the training set. 

However, as the principal task of the network is to find anomalous traces, the ability 

to correctly identify either the first or dominant fault within the pile would still 

make it a useful tool. 

As indicated in Figure 6.61 the more hidden units in the network, the more able the 

system is to model sharper discontinuities within the pile profile. However, the use 

of more hidden units results in a better resolution of the input space and, hence, an 

improved description of that space is required i.e. more patterns are required in the 

pattern set. 

This is particularly apparent in the RBNNs and WBNNs where input space 

undergoes vector quantisation during the initialisation procedure without reference 

to the required output. The MLP network appears to work better in this respect were 

it gives a consistently lower error when identifying a single fault along a pile length. 

Better pattern errors observed during training of the networks containing radial 

activation functions can be seen to be due to these networks being better at 

identifying whether the pile toe is visible or not i.e. the localised activation function 

appears better able to model localised regions of the pile profile. This is graphically 

illustrated in Figure 6.62 in a comparison of unit errors for all patterns in the pattern 

set (not just those containing a single fault) and for all three chosen networks. 

As can be seen in this figure the increase in the MLP pattern error is caused entirely 

by the larger error associated with the profile after the pile toe. For arbitrary pile 

profiles less than 9m from the pile head all networks produce similar errors. Since 

the MLP is clearly superior in identifying profiles containing a single fault, is more 

consistent in its selectivity and comparable with the other networks in diagnosing 
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arbitrary pile profiles it has been selected as the network of choice for evaluation 

using field test data. 

6.9 SUMMARY AND CONCLUSIONS 

A new concept in sonic echo data processing has been described: the mobility 

scalogram. De-noising using this method produces an input excitation independent 

trace better representative of the original signal than Fourier filtered equivalent. 

Parametric studies suggest that presenting the data as a continuous vector 

representation of the resultant trace gives superior error measures to those when the 

trace is further encoded into its predominant features. The de-noised and enhanced 

time history is, therefore, transformed into the Fourier domain to reduce the size of 

the input space before being used as the network input in its entirety. Specifically the 

network input consists of 64 scalar values. One for each of the imaginary and real 

components of the 32 discrete frequencies up to a 1500Hz limit. Faster learning rates 

have been achieved by presenting these scalars in a logarithmic form. 

Following a parametric study the output chosen for the network consists of a 50 unit 

array. Each unit presents the change in radius over a 0.3m unit length to that which 

is expected from an infinitely long pile of the same design radius in the same 

environment. 

For the five hundred patterns available for this study optimum pattern errors in an 

MLP network containing one hidden layer of 50 units was seen to drop by over 15% 

when over 400 patterns were included in the training set. Subsequent increases in the 

size of the training set did not provide equivalent increases in network performance. 

Consequently, in this study, the training set consisted of 450 patterns while the test 

set held 50. For error analysis of network performance, therefore, experiments where 

repeated 10 times, each time with a different test set. 
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For the MLP network with hyperbolic tangent hidden and output units the optimum 

learning rate was found to be 0.1 and momentum 0.9. While adding a second hidden 

layer of units did consistently improve network performance with respect to the 

number of units per layer, adding a third did not. The topology of the selected 

network, therefore, consisted of two hidden layers each of 40 hidden units. 

For both radial systems, improved results were obtained when two different learning 

rates were applied to the two weight layers. 

Optimum mean pattern errors were obtained for the Radial basis networks of thirty 

five hidden units with learning parameters: uc=5xl0-2, u Wi=lxl0-3, and uwo=1 xl0-2. 

Optimum mean pattern errors were obtained for the Wavelet basis networks of fifty 

hidden units with learning parameters: uc=1 x 10-2, u Wi=lx 10-6, and u wo=1 x 10-3. 

The best pattern error for the three network types are shoWn in Table 6.3, below. 

Table 6.3, Optimum Mean Pattern Error for the Three Network Types 

Network Type Optimum Mean 

Pattern Error 

MLP 0.506 

RBNN 0.486 

WBNN 0.462 

Although the results would appear to indicate improved performances for the radial 

activation functions these results are biased by their better isolation of the regions 

beneath the pile toe. This would indicate that radial activation functions are better 

for isolating local changes due to their enclosed decision regions. 

For all the network types described, their ability to identify a fault decreased with 

the depth of that fault. The spatial length of the input pulse applied was 3.5m 

(3500ms-
1 

x 1 x 1O-
3
s). In all cases the neural networks could identify changes in 

section within 1.75m of the pile head. 
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The MLP network was superior in identifying profiles containing a single fault, is 

more consistent in its selectivity and comparable with the other networks in 

diagnosing arbitrary pile profiles. As it is the dominant, or first, fault identification 

that is of primary importance in pile integrity testing it is the MLP that has, 

therefore, been selected as the network of choice for evaluation using field test data. 
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Figure 6.1 A block diagram of the final system processes for the interpretation of 
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Figure 6.2 A force excitation trace obtained when striking a pile head. This 
example is the force trace associated with Figure 6.3, below, where a 3 lb 
hand held sledgehammer with a hard plastic tip has been used. Courtesy 
Testconsult Ltd. 
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Figure 6.3 Showing the velocity trace from: (a) a sound pile, left, and (b) a pile 
with necking at 3.45m. Both piles have a diameter of750mm and a design length 
of II.3m. Courtesy Testconsult Ltd. 
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calibration data was supplied. Data courtesy of Technotrade Ltd. 
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no calibration data was supplied. Data courtesy of Technotrade Ltd. 
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1000 Hz, hence the smoother nature of the reflectogram 
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Figure 6.7 The original traces (left) and reconstructed traces (right) for piles 2,3, and 4. 
Again, the mobility curve has been truncated at 1000Hz. 

288 



Frequency -a 

Figure 6.8 The complex Mexican hat wavelet (left) and its associated frequency 
spectrum (right). The wavelet has no negative frequency components and has support 
in the time and frequency domains linked through the dilation parameter 'a' . 
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289 



X. 10-3 , 

7 
,...., 

6 ~ Vl g 
5 

.0 
'u 4 
0 ., 

3 > 
2 

I 

O~ 
-1 0 0.001 

0 0.001 

x 10-9 

7 

!'i 6 

~ 
5 

-- 4 E 
'-" 

g 3 

:0 2 0 

~ :U 
-I 

0 0.001 

~,~~--------------~ 

\ 

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 

Time (s) 

\ 

0.002 

l 

I 
I 
I 
I 

0.003 

Log coeff scaleogram 

,. 
I 

'j , 

0.004 0.005 0.006 0.007 0.008 0.009 0.01 

Time (s) 

-
0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 

Time (s) 
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Figure 6.11 The original traces (left) and reconstructed traces (right) for piles 2, 3, 
and 4. Note the similarity in amplitude and shape of the reconstructed trace with 
the reflectograms of Figures 6.6 and 6.7. 
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Figure 6.13 A diagrammatic representation of the Heisenberg boxes indicating the 
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wavelet set i.e. the wavelet frame takes the form of a decimated, dyadic grid. 
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Figure 6.14 Showing the original trace for pile 3, top, and, below this, its reconstruction 
from the highest 64 coefficients (of 1024) from its associated scalogram, bottom. Note that 
in this case, the reconstruction retains high frequency components. Hence this methodology 
is employed in an increasing number of data compression applications. 
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Figure 6.16 The convergence curves from a single layer MLP network of 60 hidden units 
and a two hidden layer system each layer also of 60 units. The network hidden units have 
sigmoid activation functions and the learning rate is given as 0.1. This network has 
successfully learned to reconstruct the original trace reflectogram from the presented 
mobility curve (see Figure 6.17 for examples). 
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Figure 6.17 Three arbitrarily chosen examples of the outputs for the single layer 
network of Figure 6.16. The ability of the network to reconstruct features within the 
original reflectogram is found to be frequency dependent. Lower amplitude, higher 
frequency, components are less accurately modelled. 
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Figure 6.18 The convergence curves from a layered MLP network of 60 hidden units 
in each layer. The network hidden units have sigmoid activation functions and the 
learning rate is given as 0.1. The network is less effective at reconstructing the original 
trace refiectogram using the wavelet coefficient data than when using the Mobility curve 
data, as in Figure 6.16. 
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Figure 6.19 Shows the weight matrix from the hidden to output units for the networks 
using mobility curve data (left) and wavelet data (right). Both are the single hidden 
layer networks. The weights leading to the left hand part of the reconstructed trace 
(containing the high amplitude input pulse) are towards the bottom of the graphs and 
generally have larger amplitudes. Although they are well distributed across all the units in 
the left hand graph for the wavelet coefficient case one hidden unit, unit 42, dominates. 
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Figure 6.20 Shows examples of the single layered wavelet pre-processed network 
of Figure 6.18. As suggested by the single, dominating, hidden unit of Figure 6.19 the 
network has reduced the pattern errors by fitting the high amplitude input pulse well. 
However, especially obvious in the bottom plot, where a returned echo is completely 
missed, it is apparent that this is at a cost to features later in the trace. 
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Figure 6.21 Showing network effectiveness with respect to the input encoding and 
pre-processing. Top, is the training set convergence curve and below the test set curve. 
Of particular note is the increase in learning rate and network effectiveness for those 
networks with Wavelet denoising. 
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Figure 6.22 Showing network effectiveness with respect to output coding and post­
processing. Top, is the training set convergence curve and below the test set curve. 
While these plots indicate the monotonic nature of the convergence curves it should be 
noted that the methods of output coding means direct comparison of network 
performance cannot be made through comparing the networks' mean pattern errors. 
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Figure 6.23 Showing the convergence curves for a network with two hidden 
layers each of 40 units. It is noted that for training sets of over 350 patterns 
no overtraining occurs. Identical test sets are used for each experiment. 
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Figure 6.24 The Mean Pattern Error after 300 epochs as a function of training set 
size. Of particular note is the drop in error when the set size is over 350 c.f. Figure 
6.23. 
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Figure 6.25 Shows the repeatability of training set learning. 
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Figure 6.26 Shows how the smaller size of the test set leads to statistical and, 
therefore, network measure, aberrations. When these test set results are visually 
inspected the same strengths and weaknesses in network effectiveness are 
observed e.g. smaller faults are more difficult to detect (see Figure 6.33 and 
subsequent figures). However, the occasional test set will contain a statistically 
unrepresentative pattern distribution which causes measurement aberrations such 
that observed in repetition 1. In all parametric investigations, therefore, the same 
test and training sets are used in order that like be compared with like. 
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Figure 6.27 Indicates the optimum training set performance of a single layer 
network with respect to the training parameters momentum (A) and learning 
rate (a). 
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Figure 6.28 Shows how an increased learning rate results in a noisier training 
set convergence curve. 
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Figure 6.29 A graph showing test set mean pattern error with respect to the 
number of hidden units in each network layer. Note, due to the non-monotonic 
nature of the convergence curve (see Figure 6.30, below) the value taken is the mean 
error value for the final 25 epochs of training. 
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Figure 6.30 An example of overtraining in a 160 unit system with one hidden 
layer where, although the training pattern error decreases with learning, the test 
set mean pattern error increases. This is due to the network learning the patterns 
in the training set rather than the functional mapping i.e no generalisation occurs. 

303 



0.6r---r---r---r----.----r_~-____,-__, 

0.55 

g 0.5 
w 
~ 0.45 
~ 
Q... 
§ 0.4 
11) 

;:;s 0.35 
''I'---e--

0.3 

5 IO 15 20 25 
Noise (%) 

30 35 40 

Figure 6.31 Shows how the mean pattern error for the network test set increases as 
more uncorrelated noise is added during training. 
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Figure 6.32 Two examples of interpretation of field test results for a pile with a neck, left , 
and a pile with a bulb, right. The top two profiles are the required profiles and those 
calculated by a system with the injection of 35% uncorrelated noise and beneath the same 
profiles from a network trained without noise. There is no observable improvement in network 
performance obtained through the use of noise. 
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Figure 6.33 Showing the the error in calculated pile radius with respect 
to position. Note this error measure does not take into account the masking 
of faults by others further up the pile. 
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Figure 6.34 Showing the error in calculated change in radius for a single change 
in section along the pile length with respect to that changes position. The error 
bars have been calculated by the median quartile method. 
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Figure 6.35 Showing the error in calculated change in radius for a single change 
in section with respect to the fault length. Of note is the comparative increase in 
errors for faults with an axial length of less than one metre. 
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Figure 6.36 Showing the error in calculated change in radius for a single change 
in section along the pile length with respect to the size of radial change. 
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Figure 6.37 Showing how the computed pile profiles, top, for piles with faults of short 
axial length are less ably distinguished by the neural network. 
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Figure 6.38 The successful identification of a neck and bulb by the MLP network, top. 
Beneath is the required pile profile - note the toe for the pile with necking (right) is 
not detectable, hence there is no observable end to the pile. 
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Figure 6.39 Indicates how identical faults towards the pile toe are less ably detected than 
those nearer the pile head. 
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Figure 6.40 Shows how a loss in section within 1m of the pile head has been correctly 
diagnosed by the network (left) and gives an example of a later fault being shielded by a 
fault nearer the pile head (right). 
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Figure 6.41 Shows the results of a parametric study on the learning rate parameters 
for a 50 unit Radial Basis Neural Network. 
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Figure 6.42 Indicates network effectiveness with respect to the number of units 
in the hidden layers. Overtraining was evident in systems containing over 80 units. 
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Figure 6.43 Showing the error in calculated change in radius at the first change 
in section along the pile length with respect to that changes position. As in the 
multi layered perceptron case the associated error increases for fault positions 
towards the pile toe. c.f. Figure 6.34. 
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Figure 6.44 Showing the error in calculated change in radius at the first change 
in section with respect to the fault length. Of note is the comparative increase in 
errors for faults with an axial length of less than 1m and of 6m or over. These 
results are similar to those obtained for the MLP network of Figure 6.35. 
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Figure 6.45 Showing the error in calculated change in radius at the first change 
in section along the pile length with respect to the size of radial change. 
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Figure 6.46 Giving examples ofthe network's inability to diagnose piles with faults 
of small (O.3m) axial length 
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Figure 6.47 Examples of the Radial Basis Neural Network's improved ability in diagnosing 
faults of larger axial length (left) and degree of change in section (right) than those of Figure 
6.46. 
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Figure 6.48 Examples of the Radial Basis Neural Networks ability in diagnosing faults 
at the pile head. 
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· Figure 6.49 Example of the network's diagnosis of a faultless pile, left, indicates the 
network's ability to correctly identify the pile's length. Right and below, Figure 6.50, 
shows the shielding of the lower part of the pile by other faults, positioned nearer the 
pile head. 
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Figure 6.50 Further examples of the shielding of the lower part of the pile leading to 
incorrectly derived profiles. (see also Figure 6.49, above) 
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Figure 6.51 Shows the results of a parametric study on the learning rate parameters 
for a 50 unit Wavelet Basis Neural Network. 
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Figure 6.52 Indicates network effectiveness with respect to the number of units 
in the hidden layers. 
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Figure 6.53 Showing the error in calculated change in radius at the first change 
in section along the pile length with respect to that changes position. As in the 
multi layered perceptron and RBNN cases the associated error increases for fault 
positions tow'!-rds the pile toe. C.f. Figures 6.34 and 6.43. 
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Figure 6.54 Showing the error in calculated change in radius at the first change 
in section with respect to the fault length. Of note is the comparative increase in 
errors for faults with an axial length ofless than 1m and of 6m and over. These 
results are similar to those obtained for the MLP network of Figure 6.35 and very 
similar for that of the RBNN of Figure 6.44. 
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Figure 6.55 Showing the error in calculated change in radius at the first change 
in section along the pile length with respect to the size of radial change. 
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Figure 6.56 Giving examples of the network's inability to diagnose piles with faults 
of small (O.3m) axial length 
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Figure 6.57 Examples of the Wavelet Basis Neural Network's improved ability in diagnosing 
faults of larger axial length (left) and degree of change in section (right) than those of Figure 
6.56. 
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Figure 6.58 Examples of the Wavelet Basis Neural Network's ability in diagnosing faults 
at the pile head. 

318 

IS 

IS 



E �,------.------.--------, 
'-' 

.2 o.s 
"0 

~ 0 
"0 
~ s.. -os 
E 
o _IL-----~----~---~ 
U 0 S 10 

Position (m) 

i-o.s i-o.s 
@ @ 

Position (m) 

f-; _I L... ____ ...L..-____ ...L..-___ -----' f-; -I L... ____ ...L..-____ -'-____ .....J 

OSlO IS 0 S 10 15 
Position (m) Position (m) 

Figure 6.59 Example of the network's diagnosis of a faultless pile, left, indicates the 
networks ability to correctly identify the pile's length. Right and below, Figure 6.60, 
shows shielding of the lower part of the pile by other faults, positioned nearer the pile 
head. 
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Figure 6.60 Further examples of the shielding of the lower part of the pile leading to 
incorrectly derived profiles. (see also Figure 6.59, above) 

319 

IS 



--~ 1.---------------~------, 
til 
::s 
:a 
C2 
'"0 0 

~ 
~-IL-------~------~------~ 

U 0 5 10 15 
Position (m) !2 1.-----------------------, 

'-" 
til 
::s 

~ 0 .... 
~ 
~-IL-------~------~--~--~ 

o 5 10 15 
Position (m) 

--~ 1 .---------------~------, 
til 
::s 
:a 
C2 0 
'"0 

~ 
~-IL-------~------~------~ 

U 0 5 10 15 
Position (m) !2 1.-----------------------, 

'-" 

in a 
~-IL-------~------~------~ 

o 5 10 15 
Position (m) 

Figure 6.61 showing an example of the smoothed results obtained from the RBNN 
network with 5 hidden units (left) compared to those from the 50 unit network (right). 
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Figure 6.62 Showing that, for piles with arbitrary profiles, i.e. not just piles with a 
single fault, the performances of networks are almost identical until the pile toe. The 
difference between networks' measured performance is thus shown to be caused by 
their relative abilities in diagnosing the profile beyond the pile toe. 
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7. System Field Testing 

7.1 INTRODUCTION 

In this chapter the neural system described in Chapter 6 is applied to field data from 

three sites. These sites are: Testal Ltd's base near Kirkintilloch, the EPSRC pile test site 

at Blyth and the EPSRC soft clay test site at Bothkennar. Their geographical locations 

are illustrated in Figure 7.1. The main purpose of this work was to identify the strengths 

and weaknesses of the system in the field. Essentially the robustness of the system with 

respect to deviations in material properties due to inhomogeneity and uncertainty was 

tested. 

At the Testal site the hardware described in Chapter 5 is validated by comparison to 

results from commonly used commercial equipment on uninstalled piles by an 

independent testing engineer: Mr Richard Nicholson of Testal Ltd. The neural system is 

then used to identify the length of an installed driven concrete pile having been trained 

on FEA data. 

The results from the Blyth test site have been kindly supplied by Testconsult Ltd of 

Warrington. The FEA model described in Chapter 4 is used to train a neural system 

which is applied to 16 cast in situ concrete piles with known defects. 

The author tested 9 piles from the Liverpool University test area at the Bothkennar test 

site, each with different design dimensions. A neural system was then used to estimate 

these piles' length and radius from the test results. A brief investigation on the effects 
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on network performance with respect to the amount of pile head exposed was also 

carried out. 

The results of these experiments suggest that the neural system can identify major 

defects in installed piles and can be applied to driven piles and piles of a non-circular 

section. However, they also show how the system is highly dependant upon the accurate 

modelling of the installed piles in the FEA training data. Specifically, errors in 

prevailing soil conditions and pile head dynamic stiffness produce errors in the 

calculated pile profile, see Section 7.3. 

For the Blyth test site data, differences in spectral mobility between the FEA training 

data and field test data were minimised through the use of logarithmic scaling. As 

described in Chapter 6, a dynamic gain was also applied to enhance small reflections 

from the pile toe. For the Bothkennar data, however, the soil is less stiff thereby 

reducing signal attenuation and so the dynamic gain was not applied. The ability to 

resolve differences in dynamic stiffness was necessary to distinguish between piles with 

different radii and so the logarithmic scaling was also withheld. 

7.2 KIRKINTILLOCH SITE 

The Kirkintilloch site is owned by Stent and Bardon Concrete, and used by Testal Ltd 

as a base for central Scotland. 

7.2.1 Hardware Validation 

Validation of the data acquisition system described in Chapter 5 was carried out under 

the supervision of an independent test engineer: Mr Richard Nicholson of Testal Ltd. 

Three uninstalled concrete piles with known defects were tested, see Figure 7.2. These 

piles were square in section (250mmx250mm). Two had design defects of a neck 
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(180mmx 180mm) and bulb (400mmx400mm) respectively while the third was defect 

free as illustrated in Figure 7.3. 

The hammer used for these uninstalled piles was the 'heavyweight' llb (0.454 kg) 

hammer, shown in Figure 5.6, with a hard plastic tip. An example of the impact 

observed when the defect free pile was struck is given in Figure 7.4. As expected for 

this tip hardness, the rise time of the pulse was measured at about 0.75ms and the 

frequency spectrum drops as 1500Hz is approached, c.f. Figure 4.8. 

The measured responses from the three piles tested are shown in Figures 7.5 to 7.7. 

Their shape is consistent with that obtained using commercial data acquisition 

equipment, namely: Pile Dynamics's Pile Integrity Tester (PIT) Collector, as employed 

by Testal Ltd. The results are summarised in Table 7.1. 

As can be seen from these results the close proximity of the changes in section for the 

piles with faults has caused their calculated positions to be slightly closer together than 

that which is actually the case. This effect is discussed in Section 4.2.4.2 and is caused 

by the superpositioning of the two reflected pulses. The pulse propagation velocity used 

in these calculations is 3590ms-1 and is derived from the propagation time of the defect 

free pile. 

Table 7.1 Results from Uninstalled Piles at Kirkintilloch 

Pile Change in Section Position (m) Computed Position Error 

(actual) (m) (c = 3600ms-1
) (%) 

Defect Free Toe 10.5 10.5 0 

Increase at start of bulb 3.0 3.1 3 

With Bulb Decrease at end of bulb 4.5 4.3 4 

Toe 10.5 not observed -
Decrease at start of neck 2.5 2.8 12 

With Neck Increase at end of neck 4.0 3.7 8 

Toe 10.5 not observed -
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Unfortunately, these piles' supports are not axisymmetric and are positioned at 

arbitrary positions along the pile. This resulted in reflections and low frequency 

resonance of the type observed for the laboratory piles of Section 4.2.4.3. This made 

them inappropriate for modelling using the FEA system described previously. They 

cannot, therefore, be tested using the ANN system described herein. They do, however, 

provide evidence for the effectiveness of the data acquisition equipment developed for 

this study. 

7.2.2 Installed Driven Pile 

Also tested at this site was a short driven pile. The pile was known to have a complete 

loss in section at 4.2m with a measured 0.9m of the pile above ground level. The soil 

conditions were unknown for this case and so iterative wave matching was necessary to 

derive them. That is, multiple FEA runs were carried out until the generated trace 

matched that of the recorded trace. Notwithstanding the precedent of these techniques 

use in industry, it is recognised that this was not the ideal method for obtaining soil 

properties, but, under the circumstances, it was the only method available. The concrete 

material properties were derived by assuming a density of 2400kgm-3 and calculating 

the pile stiffness from the propagation velocity in the uninstalled piles. The properties 

used are given in Table 7.2 and the resultant trace shown in Figure 7.8 ~long with the 

recorded field test trace. 

Table 7.2 Material Properties Employed for Kirkintilloch Site Modelling 

Material Depth below ground Elastic Modulus Bulk Density Poisson's 

level (m) (MNm-2
) (kgm-3

) Ratio 

Concrete 0- 3.3 (+0.9 above) 30000 2400 0.2 

Soil 1 0-0.9 50 1400 0.2 

Soil 2 0.9 - 625 2000 0.4 
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As indicated in Table 7.2 the soil properties are typical of soft clay over stiff/very stiff 

clay with the soil properties being of the same orders of magnitude as those described 

for the Blyth (Table 4.10) and Bothkennar (Table 7.4) test sites. However, it is noted at 

this point that the FEA model is for a circular pile with the same cross sectional area as 

the square ones tested. For short piles such as this the signal attenuation caused by the 

difference in material properties across the pile-soil interface is minimal with respect to 

that caused by partial reflection at the pile toe. For longer piles where this effect is more 

significant it may be expected that the difference in pile profile will have an effect on 

the traces obtained. For a square section pile there is a greater proportional surface area 

making up the pile-soil interface and so the signal attenuation may be expected to be 

larger. 

When trained on FEA traces generated for piles of varying lengths with partial or 

complete losses in cross-sectional area the neural network described in Chapter 6 

correctly identified the length of the field tested pile, as shown in Figure 7.9. As 

expected the end of the pile tapers rather than coming to an abrupt end, but there is a 

complete loss in section at 4.2m. The effect of the modelled soil properties' contribution 

to this pronounced tapering will be discussed in Section 7.3.2. 

7.3 BLYTH SITE 

The second set of site data included in this study has been supplied by Testconsult Ltd, 

and comes from the EPSRC pile test site near Blyth in Northumberland, UK. The 

derivation of the soil and concrete properties employed in the FEA modelling has been 

exhaustively covered in Chapter 4 and so will not be repeated here. The reader is 

referred to Table 4.10 for a summary of their values. A site plan showing the piles 

included in this study and their location is given in Figure 7.10. The piles have a design 

radius ofO.375m and lengths between 11.3m and 11.7m. 
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7.3.1 Test Results 

As indicated in Figure 7.11 the general trend of increasing profile error with depth, 

highlighted in Chapter 6, also occurred in the field test results from this site. As also 

shown in this diagram, the profile errors for some of these plots were very large (120% 

in some cases). This was not, however, purely a reflection of the neural systems 

performance; rather it was a compound error affected by: errors in the design pile 

profile with respect to the actual pile profile, the accuracy of the training data and the 

known test method limitations. This coupled with the small size of the sample set means 

statistical measures, of the type produced in Chapter 6, are inappropriate. Instead each 

ofthe 16 piles will be considered individually in the following sections. 

One general point concerning the computed profiles presented in this section is the 

trend of the pile diameter to decrease with depth. This point is discussed fully in the 

next section, Section 7.3.2. All the velocity response traces presented in subsequent 

figures are shown against depth (calculated with c = 3450ms-1
) rather than time to 

facilitate comparisons with the pile profiles beneath them. 

7.3.1.1 Piles with Necking 

Shown in Figure 7.l2, Pile 1 is an 11.7m long pile with a 45% loss in diameter at 3.45m 

beneath the pile head extending for 0.6m. As can be seen in the computed pile profile 

there is a decrease in section at the expected depth A'. However, the subsequent 

increase is gradual and never attains the original design radius required. It is noted that 

the recorded test trace does not contain the pronounced trough following the first 

reflected peak, marked A, indicating a subsequent increase in section (c.f. Figure 4.33). 

This is the most likely cause of profile not returning to its original section. This would 

also explain the further decrease in section at approaching 8m depth, B', where a second 

reflection from the fault, B is found. In all the other examples where necking occurs a 

trough is found to follow the first peak, as expected, and the computed profile does 

return to its original radius (see Figures 7.13, 7.l4, 7.l5). It is, therefore, suggested that 
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this feature is an effect of the atypical nature of the trace rather than a failure of the 

neural network to identify the fault correctly. Further to this it is noted that the method 

used in forming this fault was the insertion of a foam annulus during construction. It is 

quite possible that this insert has become distorted during concrete pouring causing the 

annulus to become compressed at its base. As such this profile may describe the actual 

pile profile more accurately than that of the original design drawings. 

Shown in Figure 7.13, Pile 2 is an l1.3m long pile with a 45% loss in diameter at 

5.05m extending for 0.6m. Above this, at 3.65m there is a crack covering 50% of the 

pile area. This crack is difficult to detect due to superpositioning, as discussed in 

Chapter 4, and has resulted in an apparent single peak, A, shown on the trace. The 

network has interpreted this as a small loss in section at about 3.5m - A'. This is 

consistent with the data upon which it has been taught - no cracking was included in the 

training data and the smallest fault length the network was expected to identify is 0.3m. 

Subsequent to this the network has correctly identified a loss in section at around 5.5m, 

B'. As mentioned above, in this case, unlike Pile 1, a trough 'c' follows the peak 'B' 

and, hence, the network calculates a return to the original radius at C'. 

Shown in Figure 7.14, Pile 3 is an 11.4m long pile with 45% losses in diameter at 2.4m 

and 7.9m, both extending for 0.6m. The first neck, associated with reflections A and B, 

has been identified and can be found in the computed profile at a depth of about 3m. 

The minimum radius for this neck - at A' - is correctly identified as about O.2m (0.21 to 

2 decimal places) before returning to its design radius at B'. Subsequent to this the 

profile does decrease, but this is consistent with most other profiles and is considered a 

consequence of inaccurate soil modelling, see Section 7.3.2 below. 

Shown in Figure 7.15, Pile 5 is an 11.3m long pile with a 13% loss in diameter at 4.7m 

extending for l.2m. The fault has been correctly identified in the computed profile. 

However, it appears to have been over estimated in its magnitude, the minimum 

computed radius being 0.19m rather than the 0.32m required i.e. the calculated neck is 

over double that present. This may be due to inaccurate soil modelling, but the fact that 
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the network has identified and positioned the fault is significant given that little 

indication of such an event is found on the recorded trace. Again, it is stated that the 

task of this test method is to identify anomalous responses for further investigation and 

as such this goal has been achieved. 

7.3.1.2 Piles with Cracking 

As stated above the neural system training set does not include piles with cracks. 

However, this discussion has been included as an indication of how the network 

performs when data upon which it has not been trained is presented. 

Shown in Figure 7.16, Pile 7 is an 11.4m long pile with a crack resulting in a 30% loss 

diameter at 2.2m. While in Figure 7.17, Pile 8 is an ll.4m long pile with a crack 

resulting in a 16% loss in diameter at 2.9m. These have been formed by a foam and 

plywood insert and so the crack was designed as an open crack. As discussed in 

Section 2.7.7 cracks such as these are particularly difficult to detect due to the 

superpositioning of the two reflections from the decrease and subsequent increase in 

cross-section. 

It is apparent when comparing the calculated profiles from these two piles that the 

network has interpreted reflections A and B as a small neck, A', rather than a large 

crack. There is a loss in section reported in Figure 7.15 at about 2.5m, but none in 

Figure 7.16. This is consistent with known test method limitations where, as reported in 

Section 2.7.3, faults with an axial length of less than 100mm cannot be uniquely 

identified. The smaller of the two cracks cannot be resolved using this test method and, 

as such, it is not surprising that the ANN has failed to detect it. 

7.3.1.3 Piles with Occluded Voids 

As in the previous section, the system has not been trained using data that includes 

occluded voids. However, the loss in cross-sectional area caused by these voids 
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produced similar results to those produced by necking and so these traces have been 

included in this study. 

Shown in Figure 7.l8, Pile 9 is an 11.4m long pile with an occluded void at 2.9m. This 

void has a O.Sm diameter and extends for O.Sm. This occluded void is the equivalent of 

a neck resulting in a O.lm loss in radius (calculated from the equivalent losses in cross­

sectional area). There is a drop in radius of O.lm at 3.0m, A', which is noticeable when 

comparing the profile with that of Pile lOin Figure 7.l9. However, it is not suggested 

that the magnitude of this calculated loss in section could be identified without a priori 

knowledge of the pile profile. That is, within the context of the presented profile it is 

unlikely a user would conclude a loss in section at 3m with any confidence. 

Shown in Figure 7.l9, Pile 10 is an 11.3m long pile with an occluded void at 3.1m. This 

void has a O.4m diameter and extends for O.4m. This fault is not observable on the 

recorded trace and cannot be detected on the calculated pile profile. It is likely that the 

partial reflection of the propagating stress wave at the start of the foam disk has resulted 

in the subsequent attenuation being too great to allow the returned echo from being 

detected. 

7.3.1.4 Pile with a 'Soft toe' 

Shown in Figure 7.l9, Pile 11 is an 11.3m long pile with a soft toe. This is mimicked by 

a 0.3m long perforated foam disk being placed at 11m. This defect is not detectable on 

the recorded trace although there is some evidence for the pile length being between 

II.2m and 12.8m from the TDR7.1. Neither the pile toe nor the defect were detectable 

on the calculated pile profile . 

7.3.1.5 Piles with Bulbing 

The bulbs presented in these field tests have been created by under-reaming. 

Consequently, they have a conical leading edge as illustrated in Figures 4.40. and 4.44. 
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Shown in Figure 7.21, Pile 12 is an I1.3m long pile with an open crack covering SO% 

of the pile sectional area at 3m and a bulb of double the pile diameter at 7.2m extending 

for I.Sm. The crack is not visible on the pile profile although it is noticeable that neither 

is any definite feature on the recorded trace. This is especially apparent when this trace 

is compared to that of Figure 7.13 where the reflection from a similar crack is evident as 

peak A. It is, therefore, suggested that the failure to identify this fault is reflective of the 

recorded test trace rather than any failure of the neural network. The increase and 

decrease in section of the bulb results in peaks A and B in Figure 7.21. The profile 

clearly shows both the position and extent of the increase in section although the 

subsequent decrease has not been detected. 

Shown in Figure 7.22, Pile 13 is an II.3m long pile with a bulb of double the pile 

diameter at 4.0m extending for 2.4m. The bulb is correctly centred at a S.Sm depth, A' 

on the pile profile plot, and has a maximum radius of 0.7Im compared to the design 

bulb of 0.7Sm. However, the smoothed nature of the profile, identified in Chapter 6, 

means the fault appears to extend over a larger axial length than it, in fact, does. It is 

also noticeable that the profile beneath the bulb is not representative of the actual 

profile. This is not considered particularly disappointing given that the dominant fault 

has been identified. 

Shown in Figure 7.23, Pile 14 is an l1.3m long pile with two bulbs of double the pile 

diameter at 2.2m and 6.3m, both extending for I.Sm. A first bulb is clearly evident from 

the computed profile. However, it appears to have a maximum radius of 0.6Im as 

opposed to the required 0.7Sm and is positioned above 4.2m when it should be around 

3.3m (see Figure 4.44). Clearly the nature of the bulbs, as built, means it may be closer 

to 0.6m rather than the design 0.7Sm in size. From the recorded trace it would also 

appear that the position of maximum radius is nearer 4.2m than the designed 3.3m. This 

can be estimated as the mid-point between trough 'A' and peak 'B' i.e. the depth was 

neither particularly associated with an increase in section, nor with a decrease in section 

- the position marked 'X'. The second bulb and pile toe is shielded by the presence of 
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the first and, therefore, cannot be detected. However, again, these erroneous results 

include a total loss in cross-section, this time at D' which occurs at the same point as the 

secondary reflection from the first fault - point D on the time trace. It appears, therefore, 

that the presence of the secondary reflection has influenced the calculated pile profile. 

Shown in Figure 7.24, Pile 17 is an 11.3m pile with a bulb of double the pile diameter 

at 10m extending for O.8m. The actual bulb shape is a wedge shape manufactured by a 

single under-ream. The toe reflection is not apparent in the recorded trace and is not 

observed in the calculated pile profile. 

Shown in Figure 7.25, Pile 18 is an l1.3m long pile with a bulb of double the pile 

diameter. Like the previous pile this has been formed as a wedge shape 3.8m long and 

gradually increasing to a radius of O.75m over l.3m before sharply returning to its 

original radius. The calculated pile profile shows a maximum pile radius of O.59m at 

4.5m depth. The gradual increase in section has produced a response lower than that 

expected and at a position centred on the incline. Although the network has not been 

trained on this gradual increase in profile it has produced a sensible response with a 

bulb centred at the middle of the sloping incline with a maximum radius around (5% 

error) the average of the incline's (O.56m). This is a good example of the neural 

network's generalisation abilities. 

7.3.1.6 Pile with Weakened Concrete 

Shown in Figure 7.26, Pile 19 is an 11.3m pile with an area of weakened concrete at 3m 

down extending for a further 2m. No information concerning the composition of this 

concrete is given. Neither the weakened concrete area nor the pile toe are apparent in 

the recorded trace or the calculated pile profile. As quoted in Section 2.7.2.3 changes in 

concrete density must be large (of orders of magnitude) to produce a detectable 

reflection at the material discontinuity. It appears in this case, therefore, that the 

resultant reflections have not been large enough to produce detectable reflections, but 
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have been large enough to reduce the propagation stress wave to the extent that the 

reflection from the pile toe can no longer be detected. 

7.3.1.7 Defect Free Pile 

Shown in Figure 7.27, Pile 24 is an II.3m long defect free pile. Although the pile toe is 

visible in the recorded trace and is known to be visible in the FEA training data (see 

Figure 4.30) it cannot be identified in the calculated pile profile. It is likely this is due to 

the difference in soil stiffness along the pile shaft between the modelled, training, data 

and the field data. This appears to have a cumulative effect in that smaller reflections at 

depth are detected less reliably. Empirical evidence for this hypothesis is presented in 

the next section. 

7.3.2 General Points 

It can be seen from the traces of piles with small reflections or reflections from near the 

pile toe (Figures 7.16, 7.17 7.19, 7.20, and 7.26) that for any straight, uninterrupted, 

shaft the ANN tends to calculate a shaft gradually tapering inwards. It is hypothesised 

that this is due to differences between the modelled soils and those in the field. 

Circumstantial evidence for this can be found in noticing that the effect is more 

pronounced after 4.0m depth - the point at which the modelled soil changes from stiff to 

stiff/very stiff clay (see Table 4.10). To test this hypothesis the damping on the trace for 

Pile 24 (the defect free pile) was artificially reduced. This was done by adding an 

exponentially increasing gain to the de-noised signal below 4m, before the hanning-like 

gain is applied. The gain effectively decreases the soil stiffness around the lower pile 

shaft and nearly doubled the amplitude of the reflection from the pile toe. As can be 

seen from Figure 7.28 when this changed trace is presented to the neural system the pile 

shaft calculated has virtually no tapering and there is a pronounced neck at about 11m -

labelled A' - the position of the pile toe. This indicates the high dependency of the 

system on correctly modelled soil conditions for the identification of faults at greater 

depths or the pile toe. The work presented in this study represents the very limits of the 
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conditions under which this test is applicable as indicated by the amplitude of the 

returning echo from the pile toe in Figure 7.27. As such it can be considered the most 

testing conditions under which the network might be expected to operate. 

Conversely, faults at the pile head have been more successfully identified and located. 

The neural network appears to have identified a small difference between the field test 

piles and those upon which it has been trained. As discussed in Chapter 4, the network 

was trained on piles with O.4m radius - this facilitated the automatic generation of FEA 

meshes for piles with 25% 50% and 75% losses and corresponding increases in 

diameter. It was not expected that the neural network would be able to detect the 6% 

difference in diameter with respect to the field data given the inherent limitations of the 

test method. However, in all cases the calculated pile profile immediately drops from its 

start position of O.4m to a value between 0.33m and 0.38m. Checking the defect free 

pile, where it can be reasonably assumed that there is no interference· from faults near 

the pile head, the average pile radius over the first 2.5m is found as 0.365m - see Figure 

7.29. While this ability may appear facile at first glance the fact that the neural network 

can identify faults with this degree of accuracy this close to the pile head in field tests as 

well as the FEA data of Chapter 6 would suggest a significant improvement on current 

test methods. As reported in Section 2.7.3, contemporary literature states that faults at 

the pile head cannot be identified because of the rise time associated with the input 

pulse. This research suggests that a fault at the pile head can be identified and quantified 

using an ANN system. This finding; therefore, may prove significant in many areas of 

impact testing analysis. 

The ability of the neural system described to differentiate between piles of different 

design radii and length from the encoded data of the mobility scalogram was, therefore, 

carried out at the EPSRC's soft clay test site at Bothkennar. Here a brief study was also 

carried out into the effects of altering the pile head's stiffness through the excavation of 

surrounding soil. The results of these studies are be presented in Section 7.4, below. 
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7.4 BOTHKENNAR SITE 

Permission was granted by the EPSRC to use the facilities at their soft clay test site at 

Bothkennar. The piles tested in this study were part of the University of Liverpool's test 

area, as identified in Figure 7.30. This site contained 15 piles positioned as shown in the 

plan of Figure 7.31. These piles can be divided into two groups: anchor piles and test 

piles. The test piles were those originally used in load test experiments and the anchor 

piles used as part of a reaction frame to push against the loading equipment used. Of 

these piles 9 were selected for this study, each representing a unique type of radius and 

length combination of those at the site. A summary of those piles selected can be found 

in Table 7.3. 

Table 7.3 Summary of the Piles Included in this Study 

Pile Label Pile Type Design Radius (m) Design Length (m) 

AOI Anchor 0.200 13 

A15 Anchor 0.200 16 

T02 Test 0.200 9 

T03 Test 0.200 11 

T07 Test 0.200 13 

T09 Test 0.300 11 

TI0 Test 0.300 13 

T11 Test 0.375 11 

T12 Test 0.375 13 

The soils of this site are amongst the most widely investigated in the UK. An entire 

issue of Geotechnique has been given over to papers concerned with these 

investigations7.2. It is with some confidence, therefore, that the author has used the data 

published by Nash et al. 7.2 and summarised in Figures 7.32 and 7.33 as a basis for the 

material properties used in the FEA modelling. 

334 



The primary difference between the anchor and test piles is the presence of a casing 

surrounding the test piles, as indicated in Figures 7.34 and 7.35. Although no 

documentation concerning this casing exists, Dr Edward Dickin of the department of 

Civil Engineering at Liverpool University has been contacted directly and confirmed its 

length as 1m below ground level. A parametric investigation on the FEA model 

confirms that, because the soils towards the head of the pile contribute little towards the 

overall attenuation of the signal as long as it is modelled with at least 0.6m of the head 

exposed and no more that 4m exposed the overall trace matches that of the 'T' piles' 

field test data: the dynamic stiffness is correct within 5% as is the amplitude of the echo 

from the pile toe. The material properties used are summarised in Table 7.4 with the 

first 1 m of the pile modelled as being exposed. 

Table 7.4 Material Properties Used in the FEA Modelling 

Material Depth (m) Young's Modulus Poisson's Ratio Bulk Density 

(MNm-2
) (kgm-3) 

Soil 1 1.0-3.0 30 0.45 2000 

Soil 2 3.0-6.9 45 0.45 1600 

Soil 3 6.9-9.9 60 0.49 1700 

Soil 4 9.9-12.6 75 0.49 1700 

Soil 5 12.6-15.0 90 0.49 1700 

Concrete - 30000 0.22 2400 

The concrete density is assumed as 2400 kgm-3 and the elastic modulus taken as the 

average of those derived from the pulse propagation velocities of the piles tested. The 

accelerometer was attached to the pile head using wax that was melted using a butane 

soldering iron with its head detached. 

It should be noted at this point that, as discussed in Chapter 4, the lower stiffness of the 

surrounding soil, in this case, has necessitated a finer lateral mesh for the FEA 
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generated traces. Specifically, the inter-nodal lateral distances have been reduced from 

0.1 m in the above studies to 0.03m in this one. Parametric investigations indicate that 

no change in the reflected pulse's amplitude is observed for finer mesh divisions. 

7.4.1 Test Results 

As mentioned in the introduction to this chapter, because the neural network is now 

being required to identify piles of different dimensions the act of minimising differences 

in system damping is now a hindrance rather than a help. That is, in previous cases 

taking the logarithm of the input spectra before presenting them reduced the differences 

between the FEA and field test data caused by differences in prevailing soil conditions. 

However, in this case it is these differences that are most likely to facilitate the 

identification of the piles of different radii. It is also the case that reflections from the 

pile toes are now easily identifiable because of the reduced soil stiffness. For this study, 

therefore, the dynamic gain and logarithmic scaling of the input spectra are not applied. 

The results from the ANN system are shown in Figures 7.36-7.42 and summarised in 

Table 7.5, below. 

Table 7.5 A Comparison ofField Test Results and Design Pile Dimensions 

Pile Design Calculated Error Design Calculated Error 

Radius (m) Radius (m) (%) Length (m) Length (m) (%) 

T02 0.20 0.23 15 9.0 8.8 2 

T03 0.20 0.22 10 11.0 11.1 1 

T07 0.20 0.26 20 13.0 13.2 2 

T09 0.30 0.35 17 11.0 10.8 2 

TI0 0.30 0.38 27 13.0 12.3 5 

TIl 0.375 0.43 15 11.0 11.4 4 

T12 0.375 0.42 12 13.0 12.9 1 
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Given the curved nature of the pile toes in the calculated profiles a definite measure of 

the acoustic length of the pile is difficult. For this case the pile toe is described as the 

point at which the pile has lost more than half of its mean calculated radius. It should 

also be noted that because of the decimated nature of the pile profile the length cannot 

be given to an accuracy more than O.3m. This having been said the calculated pile 

lengths fall well within the error margins associated with this test method (±10%, as 

quoted in Section 2.7.3). 

The calculated radii of the tested piles are all larger than the design radii - an average of 

17% larger. While some of this error is possibly due to variations in the concrete mix 

used, a postulate born out by the variation found in piles of the same design radii, the 

fact that the results are consistently high suggest a systemic error is also present. In 

Figure 7.43 the wavelet reflectogram (the time domain version of the spectrum 

presented to the ANN) for pile 'T09' is shown with FEA. generated responses for its 

equivalent and that of a pile with a 0.35m radius. All three cases appear very similar, 

but the amplitude of the returning echo is clearly consistent with that of the O.35m FEA 

data. As such it would appear the network has correctly identified the radius according 

to its experience and the error, again, is an error associated with the accurate modelling 

of the pile head response. 

One possible reason for this over estimation of the pile radius is the apparent increase in 

stiffness of the pile head caused by surrounding soil. The next section, Section 7.4.3, 

investigates the performance of the MLP network with respect to the exposure of the 

pile head. 

7.4.2 Effects of Exposed Pile Section 

The results presented above are all for the 'T', test, piles all of which had a length of 

exposed shaft at the pile head. Also introduced at the start of this section were the 

anchor piles which did not. One of these piles 'AO l' has, therefore, been tested before, 
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and after, 250mm and then 500mm of the shaft has been exposed. The various stages of 

shaft exposure are shown in the plates of Figure 7.44. 

When the ANN, that has been trained on the FEA generated 'T' pile data, has the results 

from these tests presented to it the changes in computed radius are marked - as shown in 

Figure 7.44. The computed length of the pile is consistent at around 11.4m. This 

appears low compared to the design length of 13m, but the propagation velocity for 

these piles is very much larger than in the 'T' piles: an average of 3950ms-' as opposed 

to 3507ms-'(±15ms-'). This increases the acoustic length of the pile to 12.8m. When the 

pile head is exposed to 500mm the pile radius is correct to one decimal place as O.2m. 

However, for the 250mm and no excavation case the radius is computed as 0.3 and 0.4 

respectively. It is apparent, therefore, that the ANN is deriving the pile radius from the 

dynamic stiffness of the pile head. The increase in the effective stiffness caused by the 

surrounding soil has then produced an overestimation of the pile radius. 

It is suggested, therefore, that the overestimation of the pile radius for the 'T' piles of 

Section 7.4.1 is due either to the concrete stiffness being too low or the exposed section 

of pile being too large in the FEA training data. In either case it is another example on 

the network performance's dependency upon the modelled training data. However, 

these results provide further evidence that that a pile head profile may be estimated 

through mobility spectra and a neural network trained by numerically generated data. 

7.5 SUMMARY AND CONCLUSIONS 

The hardware developed for data acquisition has been validated by an independent test 

engineer and has produced test traces of the same shape as those produced by industry 

standard equipment. Specifically, the ratio of input pulse to reflection amplitude appears 

visually similar and the calculated pile lengths are the same. 
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The neural network system described in Chapter 6 has successfully identified a 

complete loss of section in a driven pile of a square sectional shape. 

The neural system described in Chapter 6 has identified known faults from test traces 

taken from the EPSRC test site at Blyth. The performance of the system is dependent 

upon known test method limitations and the accuracy of the training data employed. 

The network can identify faults nearer the pile head more accurately than those towards 

the pile toe. This is due to : 

i) Attenuation of the stress wave makes more distant faults more difficult to detect. 

ii) Inaccurate soil modelling has an additive effect on systemic errors for faults 

further down the pile. 

The neural network can identify faults or changes in radius located within one impact 

pulse wavelength from the pile head. A 6% difference in pile head diameter between the 

FEA generated training data and data from the Blyth test site was identified and 

diagnosed to within 3% of its actual value. 

The neural system can identify, locate and quantify necks and bulbs of greater than 50% 

of the pile radius, along the pile length, within the confines of known test method 

limitations. 

The neural network gives 'sensible' results for field test data upon which it has not been 

trained. Specifically, small losses in section are reported when results from piles 

containing occluded voids and cracking are presented. 

The neural network can identify changes in pile head radius in soft and stiff clay sites to 

an accuracy predominantly defined by the accuracy of the training data. 

The derived pile lengths for all piles tested at the Bothkennar site are correct to ±5%. 
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The calculated pile radii for all piles tested at the Bothkennar site are correct to within 

20% of the actual radius. This error is predominantly due to errors in the modelling of 

the pile head where the surrounding soils' effect on the pile head's dynamic stiffness 

strongly influences the system's response. 

REFERENCES 

(7.1) Testconsult Ltd, Blyth SERe Project, Internal Report, Testconsult Ltd, 

Warrington UK (1990). 

(7.2) Nash D F T, Powell J J M; and Lloyd I M, Initial Investigations of the soft clay 

test site at Bothkennar, Geotechnique, Vol. 42, No.2 (1992) pp163-183. 

340 



Site One 

Testal Ltd 
at StentlBardon Concrete 
near Kirkintilloch, 
Scotland 

Site Three 

EPSRC Test Site 
at Bothkennar 
near the Kincardine 
Bridge, Scotland 
(see Figure 7.31) 

Site Two 

EPSRC Test Site 
at Blyth, Northumberland 
(now decommissioned) 
Data courtesy of 
Testconsult Ltd 
(see Figure 7.10) 

Figure 7.1 Identifies the three test sites from which data was used for the field testing 
of the neural system described in Chapter 6. 
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Figure 7.2 Testing of the three uninstalled piles (centre) with Dr Tong 
(Napier University, left) and Mr Nicholson (Testal Ltd, right). 

Pile with 
bulbing 

Pile with necking 

Defect free pile 

Figure 7.3 The three uninstalled piles tested, from far left: with bulbing, with 
necking and defect free. 
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Figure 7.4 A typical impact trace obtained when striking the defect free pile. 
Shown both in temporal (left) and Fourier (right) domains . 
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Figure 7.5 The pile head response of the defect free pile. Apart from the acoustic 
length being measurable and correct within known test method limitations it is 
noticeable that the prevailing support conditions have caused the low frequency 
aberrations in the trace identified in the laboratory tests of Chapter 4. 
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Figure 7.6 The recorded trace of the uninstalled pile with bulbing. Clearly 
observable in this trace are the reflections from the increase and decrease in 
section although the pile toe has been shielded by this fault. 
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Figure 7.7 The recorded trace of the uninstalled pile with necking. As in 
Figure 7.6, the reflections from the decrease and increase in section are seen 
although, again, the pile toe cannot be resolved. 
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Figure 7.8 Shows the FEA generated trace for the installed foundation pile 
(left) and the field test data (right). 
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Figure 7.9 Shows the neural network's calculated pile profile (top) and the actual 
pile profile (beneath) for the installed concrete pile. 
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Figure 7.10 A plan view of the Blyth test site. Each pile is at least 5m from its 
nearest neighbour and as such group effects can be ignored. Some piles have not 
been included in this study. Specifically, piles 4, 6, 15, 16,20,21,22, and 23 are 
longer than those included in this study and no reflections are observed from their 
toes. The data provided7.l for pile 25 was incomplete and so it was also excluded 
from this study. 
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Figure 7.11 Shows the increase in calculated profile error with respect to depth. 
It also shows two examples where the errors appear extremely large. However, 
when observed in Figures 7.14 and 7.23, it is apparent that these errors are not 
solely reflective of the systems ability to interpret a sonic echo trace - the 
first major fault has been identified in both cases. In fact, they are a compound 
error of, the test method's limitations, the training data (modelling) accuracy, and 
the precision of the pile's reported dimensions with respect to its construction. For 
these reasons, as well as the small sample set, no statistics can be carried out as 
in Chapter 6. Instead each of the 16 piles are considered individually in Figures 
7.12-7.27. 
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Figure 7.12 Pile 1 is an 11.7rri long pile with a 45% loss in diameter at 3.45m 
extending for 0.6m. The loss in section, causing the positive pulse, A, in the 
recorded trace (top), has resulted.in a loss in section on the computed diameter 
profile at 3.5m, A' (beneath, left). 
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Figure 7.13 Pile 2 is an 11.3m long pile with a 45% loss in diameter at 5.05m 
extending for 0.6m. Above this, at 3.65m there is a crack covering 50% of the 
pile area. The neck detectable on the computed diameter profile, as B', at 
5.5m. The crack, A', is observed as a loss in radius on the computed profile. 
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Figure 7.14 Pile 3 is an II.4m long pile with 45% losses in diameter at 2.4m 
and 7.9m, both extending for O.6m. The first loss in section is detectable on· 
the computed profile, as A', at 3.0m before returning to its original radius at B'. 
The second neck is not visible on the computed profile. 
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Figure 7.15 Pile 5 is an II.3m long pile with a 13% loss in diameter at 4.7m 
extending for 1.2m. The loss in radius, is visible on the trace as A and on the 
computed profile, as A' at 5.5m. The pile profile returns to its original radius at 
B'. 
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Figure 7.16 Pile 7 is an 11.4m long pile with a 50% loss sectional area at 2.2m. 
This crack is not visible on the computed profile although a small neck is 
apparent at position A'. 
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Figure 7.17 Pile 8 is an 11.4m pile with a 30% loss sectional area at 2.9m. 
This crack is not visible on the computed profile. 
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Figure 7.18 Pile 9 is an 11 Am long pile with an occluded void at 2.9m. This 
void has a 0.5m diameter and extends for 0.5m. This void is the equivalent of 
a 0.2m (25%) loss in diameter and, although visible in the recorded trace as points 
A and B is not conclusively visible on the computed pile profile - although there is 
a slight loss in radius at A' when cOlnpared to Figure 7.19, below_ 
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Figure 7.19 Pile 10 is an 11.3m long pile with an occluded void at 3.lm. This 
void has a OAm diameter and extends for OAm. This is the equivalent of a 0.12m 
(15%) loss in diameter. It is not visible on the computed pile profile. 
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Figure 7.20 Pile 11 is an 11.3m long pile with a soft toe. This is caused by a 
O.3mlong perforated foam disk being placed at 11m. This defect has not been 
detected on the recorded trace or the pile· profile. 
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Figure 7.21 Pile 12 is an 11.3mlong pile with an open crack covering 50% ofthe 
pile sectional area at 3m and a bulb of double the pile diameter at 7.2m extending 
for 1.5m. The crack is not visible on the computed profile although the increase in 
section is clearly observable at AI. 
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Figure 7.22 Pile 13 is an II.3m long pile with a bulb of double the pile diameter 
at 4.7m extending for I.Sm. This bulb is clearly visible on the computed profile 
at A' although erroneous results are calculated for the shaft below it. 
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Figure 7.23 Pile 14 is an II.3m long pile with two bulbs of double the pile 
diameter at 2.2m and 6.3m, both extending for I.Sm. A first bulb is visible 
on the computed profile at A' although erroneous results are obtained for the 
shaft beneath it. 
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Figure 7.24 Pile 17 is an 113m pile with a bulb of double the pile diameter 
at 10m extending for O.8m. This bulb is not visible on the computed profile. 
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Figure 7.25 Pile 18 is an 11.3m long pile with a bulb of double the pile diameter 
at 4.5m extending for O.8m. This bulb is visible on the computed profile at 4.5m, 
position A'. 
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Figure 7.26 Pile 19 is an 11.3m pile with an area of weakened concrete at 
3m extending for 2m. No information concerning the composition of this 
concrete is given and its presence is not observed in the computed pile profile. 
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Figure 7.27 Pile 24 is an 11.3m defect free pile. The pile toe is not visible on the 
computed pile profile. 
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Figure 7.28 Shows the effect of artificially reducing the effects of soil damping 
beneath 4m for the defect free pile: Pile 24. Note how the computed pile profile, 
left, no longer tapers inwards as in Figure 7.27. 
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Figure 7.29 Shows the drop in computed radius from 0.400m to an average of 
0.365m. This average is taken over the shaft length between 0.3 and 2.5m from 
the pile head for the defect free pile. The Blyth field piles have, in fact, a 0.375m 
radius rather than the O.4m radius that the ANN has been trained on. The network 
has apparently identified this difference and derived the correct pile diameter to 
within a 3% margin of error. 
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Figure 7.30 The plan for the EPSRC site at Bothkennar (see Figure 7.1). The piles 
included in this study are those found in the Liverpool University test area which 
can be located using the marked survey points and the bearings given above. 
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Figure 7.31 The Liverpool University test area at Bothkennar. The piles included in this 
study are those marked in black. These represent one of each the design dimensions 
present on this site thereby covering all combinations of diameter and design length. 
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Figure 7.32 Soil constituents and bulk density with depth at Bothkennar (after 
Nash et al. 7.1) 
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Figure 7.33 Soil shear modulus verses depth at Bothkennar (after Nash et al .7.1). 
The values used in this study are those associated with the seismic cone test as 
these were obtained using shear wave velocity measures. Thus they better represent 
the low strain dynamic values required for this study than those obtained by the 
SBPM pressure measures. 
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Shell thickness = 65mm 
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Figure 7.34 The case dimensions for the 'T' piles of this study and the impact 
and accelerometer positions during testing. 

Figure 7.35 Shows the pile head of pile T12. The area of accelerometer 
attachment was first dried using a butane soldering iron with no head attached. 
The fixing wax was then melted using the same iron (shown in use, above) 
before the accelerometer was positioned. 
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Figure 7.36 Shows the computed profile for pile T02 (top) and its actual profile 
(beneath). The actual radius is O.2m while the average computed radius is 0.23m. 
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Figure 7.37 Shows the computed profile for pile T03 (top) and its actual profile 
(beneath). The actual radius is O.2m while the average computed radius is 0.22m. 
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Figure 7.38 Shows the computed profile for pile T07 (top) and its actual profile 
(beneath). The actual radius is O.2m while the average computed radius is 0.26m. 
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Figure 7.39 Shows the computed profile for pile T09 (top) and its actual profile 
(beneath). The actual radius is O.3m while the average computed radius is O.35m. 
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Figure 7.40 Shows the computed profile for pile TIO (top) and its actual profile 
(beneath). The actual radius is 0.3m while the average computed radius is 0.38m. 
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Figure 7.41 Shows the computed profile for pile TIl (top) and its actual profile 
(beneath). The actual radius is 0.375m while the average computed radius is 0.43m. 
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Figure 7.42 Shows the computed profile for pile TI2 (top) and its actual profile 
(beneath). The actual radius is O.375m while the average computed radius is 0.42m. 

- Fielddata 
------ FEA 300mm 
............ FEA 350mm 

8 10 
-3 

X 10 

Figure 7.43 Shows how the de-noised field data for pile T09 (lIm long and 300mm 
diameter) gives a trace closer to that of the FEA data for a 350mm diameter pile. 
Hence the over estimation of the pile radius shown in Figure 7.39. 
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Figure 7.44 Shows plates of pile AOI excavated to 500mm (top), 250mm (middle) and 
with no excavation (beneath). 
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Figure 7045 Shows the effects of excavating the pile head. When the head is 
excavated (as modelled in the FEA generated training data) the radius is correctly 
identified as 200mm (a). However, for the traces where only 250mm of the head is 
excavated (b) or no excavation (c) the increase in apparent pile head stiffness has 
resulted in an overestimate of the pile radius: O.3m for the 250mm excavated pile 
and OAm for the results with no excavation. 
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8. Conclusions 

The load bearing capacity and settlement characteristics of a cast in situ pile can 

only be satisfactorily deduced from static load tests. However, load testing of entire 

pile groups is impractical. Integrity testing is therefore employed to find piles with 

atypical acoustic characteristics which can then be load tested or investigated 

further. This enables all piles with suspected abnormalities to be included in the test 

set so limiting the over design necessary in the pile group. 

The most widely used integrity test for small diameter cast in situ piles, in the UK, is 
the low strain integrity test. 

Conventional interpretation of these tests' results requires the iterative process of 

wave matching which can involve a great deal of time and, therefore, expense. 

Recently developed deterministic methods for the automated reconstruction of the 

pile profile from test results suffer from the high degree of processing necessary in 

the wave trace methods. 

The most significant achievements resulting from this research are: 

i) The development of the mobility scalogram which in the context of this 

research has been shown to be superior to Fourier mobility curves in the pre­

processing of test data. 

ii) The use of this signal processing methodology in the development of a neural 

system whose strengths are the weaknesses of human experts: specifically the 

identification of defects within one pulse length of the pile head. 

In the following section an overview of the degree to which the key objectives 

outlined in Chapter 1 have been achieved is given. This is followed by in-depth 

conclusions drawn from this study. 
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8.1 KEY OBJECTIVE ACHIEVMENTS 

With reference to the key research objectives outlined in Section 1.2, the overall 

project conclusions are as follows: 

i) Current methods employed in the integrity testing of cast in situ foundation 

piles have been reviewed and an industry survey has been completed to 

determine their relative popularity, perceived effectiveness, and costs. The 

Sonic Echo Integrity Test method has been identified as a suitable candidate 

for interrogation by neural networks because: it contains noisy and uncertain 

data, it is difficult to model the system mathematically, and the system is 

required to integrate different types of data (data fusion) i.e. temporal (the 

trace) and spatial (the environment). 

ii) An FEA model for the simulation of a pile head's response to hammer blow 

excitation has been presented, see Section 8.3. This generated data has been 

used in the supervised learning of neural systems. 

iii) A feasibility study has been completed. By limiting the problem domain to 

uninstalled piles containing a single fault an indication that a neural system 

can learn the necessary mapping such that the primary research objective can 

be fulfilled was obtained. 

iv) An investigation into the effects of pre- and post-processing on system 

performance has been completed. This included the development of a novel 

wavelet transform technique, the mobility scalogram, as well as 

consideration of conventional Fourier techniques. As reported in Section 

6.2.4, this method of data filtering and presentation proved to give superior 

network performance over that of the Fourier mobility curve data (::::;25% 

lower mean test pattern error). 
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v) Optimum network architecture and training methods have been reported for 

the three networks under investigation, namely: Multilayered Perceptron 

(MLP) networks, Radial Basis Neural Networks (RBNN) and Wavelet Basis 

Neural Networks (WBNN). Specific conclusions relating to this aspect of the 

research can be found in Section 8.4. 

vi) The selected system, the MLP network, has been evaluated through its 

performance with respect to field test data - see Section 8.5. 

8.2 CONCLUSIONS SPECIFIC TO MODELLING 

Network training using collated field test data was impossible due to uncertainty 

inherent in both input and output data sets. 

The finite element method was capable of generating time traces which include 

features associated with pile head ringdown and radial shear wave propagation 

within the soil. The use of implicit integration methods in this model has resulted in 

traces consistent with field test results. The mechanical ringdown reported in 

previous research and described in Chapter 4, it is suggested, is more likely to be a 

consequence of the numerical aberrations inherent in the explicit integration 

methods employed. 

For plastic tipped hammers the input pulse has been shown to be better 

approximated through a Gaussian estimate rather than conventional half-sine pulse 

shapes. The frequency make-up of the resultant pulse then produces a mobility curve 

more in keeping with observed field test results. 

The proportion of the incident pulse that is reflected and transmitted across a change 

in pile section is consistent with one dimensional wave theory. The presented model 

also has measured particle velocity attenuation consistent with that of one 

dimensional wave theory. The mesh density required for this correlation to hold was, 

however, shown to be dependent on the stiffness of the soil being modelled. 
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Results for this finite element model correlate well with in situ field test results. 

Calculated fault depths were consistent with theory and correspond well with field 

test data. 

8.3 CONCLUSIONS SPECIFIC TO SYSTEM DEVELOPMENT 

Commercially available data acquisition equipment is light and robust, but inflexible 

in its usage and prohibitively expensive for research purposes. Equipment previously 

employed by the University for data acquisition is bulky and complex in its usage. It 

is neither conducive to the rapid checking of pile groups nor the 'on-line' analysis of 

collected data. 

A new data acquisition system has been developed for this study. All its components 

are ISO 9000 quality assured and have been supplied with calibration certificates. 

Custom software has been developed by the author to control this hardware through 

a graphical user interface and import the collected data directly to Matlab™ for 

subsequent analysis. A suite of network simulators have also been written for the 

initialisation and training of Multilayered Perceptron (MLP) networks, Radial Basis 

Neural Networks (RBNN) and Wavelet Basis Neural Networks (WBNN). 

For RBNN's, training through vector quantisation initialisation followed by back 

propagation learning has shown improved results over those using either one of 

these methods independently. 

A new method for initialising WBNN's has been presented based on the vector 

quantisation method used for RBNN's. This is computationally quicker and less 

memory intensive than the modified Gram-Schmidt algorithm. No claims are made 

about relative performances of the two methods. 

Validation of the network simulator software has been presented. For the MLP case 

previously published results have been satisfactorily reproduced. For the RBNN and 
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WBNN networks an arbitrary function containing a spike, a Gaussian and a plateau 

has been approximated with results consistent with those expected. That is, network 

performance improved as the number of hidden units was increased and improved 

further subsequent to back propagation training. 

A new concept in sonic echo data processing has been presented: the mobility 

scalogram. De-noising using this method produces an input excitation independent 

trace better representative of the original signal than Fourier filtered equivalent. This 

method of data filtering and presentation proved to give superior network 

performance than that of the Fourier mobility curve data (~25% lower mean test 

pattern error). 

Parametric studies show that presenting the data as a continuous vector 

representation of the resultant trace gives superior error measures to those when the 

trace is further encoded into its predominant features. Faster learning rates have been 

achieved by presenting these scalars in a logarithmic form. 

Superior results are obtained for an output array of 50 units where each unit 

represents the difference in radius over a 0.3m unit length to that which is expected 

rather than the pile radius at that location. 

For the five hundred patterns available for this study, optimum pattern errors in an 

MLP network containing one hidden layer of 50 units were seen to drop by over 

15% when over 400 patterns were included in the training set. Subsequent increases 

in the size of the training set did not provide equivalent increases in network 

performance. Thus, in this study, the training set consisted of 450 patterns while the 

test set held 50. For error analysis of network performance experiments were 

repeated 10 times, each time with a different test set. 

For the MLP network with hyperbolic tangent hidden and output units the optimum 

learning rate was found to be 0.1 and the optimum momentum, 0.9. While adding a 

second hidden layer of units did consistently improve network performance with 

respect to the number of units per layer, adding a third did not. The topology of the 
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selected network, therefore, consisted of two hidden layers each of 40 hidden units. 

For both radial systems, improved results were obtained when two different learning 

rates were applied to the two weight layers. Optimum mean pattern errors were 

obtained for the Radial Basis networks of thirty five hidden units with learning 

parameters: u c=5xlO-2
, u Wi=lxlO-3

, and uwo=l xlO-2
• Optimum mean pattern errors 

were obtained for the Wavelet Basis networks of fifty hidden units with learning 

parameters: u c=lxlO-2
, u Wi=lxlO-6

, and uwo=l x 10-3
. 

The MLP network was superior in identifying profiles containing a single fault, was 

more consistent in its selectivity and comparable with the other networks in 

diagnosing arbitrary pile profiles. As it is the dominant, or first, fault identification 

that is of primary importance in pile integrity testing it is the MLP that was, 

therefore, selected as the network of choice for evaluation using field test data. 

8.4 CONCLUSIONS SPECIFIC TO FIELD TESTING. 

The neural network system described in Chapter 6 has successfully identified a 

complete loss of section in a driven pile of a square cross-sectional shape. Hence, 

this methodology need not be restricted purely to circular, cast in situ piles. 

The neural system described in Chapter 6 has identified known faults from test 

traces taken from the EPSRC test site at Blyth. The performance of the system was 

dependent upon known test method limitations and the accuracy of the training data 

employed. That is, the network's performance deteriorates for smaller faults and 

those located nearer the pile toe. 

The neural network identified faults or changes in radius located within one impact 

pulse wavelength from the pile head. A 6% difference in pile head diameter between 

the FEA generated training data and data from the Blyth test site was identified and 

diagnosed to within 3% of its actual value. 
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The neural system identified, located and quantified necks and bulbs of greater than 

25% of the pile radius, along the pile length, within the confines of known test 

method limitations. 

The neural network gave reasonable results for field test data upon which it has not 

been trained. Specifically, small losses in section were reported when results from 

piles containing occluded voids and cracking were presented. 

The neural network identified changes in pile head radius in soft and stiff clay sites 

to an accuracy predominantly defined by the accuracy of the training data. The 

derived pile lengths for all piles tested at the soft clay site at Bothkennar site were 

Correct to ±5%. While the calculated pile radii for the piles at this site were correct 

to within 20% of the actual radius. This error is predominantly due to errors in the 

modelling of the pile head where the surrounding soils' effect on the pile head's 

dynamic stiffness strongly influences the system's response. 
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9. Recommendations for Future 
Research 

9.1 INTRODUCTION 

In this Chapter a number of suggestions are made concerning the logical continuation 

of the research reported in this thesis. For clarity, these suggestions have been 

categorised into four sections: pile response modelling, hardware, pre-processing and 

neural systems. 

9. 2 PILE RESPONSE MODELLING 

With respect to the generation of the traces used for training the neural networks: it is 

recognised that the pattern set size of five hundred is not optimal. That is, the test set 

mean pattern error is still decreasing when larger training sets are applied. Using five 

hundred patterns also restricts the test set size such that experimental repetitions have to 

be carried out for error analysis to be considered valid. However, five hundred patterns 

represents four weeks processing time on a Pentium ™ 166MHz personal computer. 

Even allowing for the batch processing techniques developed by the author, the mesh 

generation and post-processing necessitated by this technique equates to over two 

months work simply to provide the data needed for the execution of the presented 

research. Clearly this methodology would not lend itself to commercial testing. 

Given that the network can analyse hundreds of traces in a matter of seconds, the rapid 

generation of data takes on a far greater importance if this research is to be exploited to 
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produce an industrially useful tool. If the time taken to produce a trace could be 

reduced to the order of tens of seconds rather than tens of minutes then a complete 

system could be trained to analyse any number of traces, automatically, overnight. 

One dimensional modelling can reduce the time taken to generate a trace to less than a 

second. This equates to 5000 generated traces in less than an hour and a half; a trained 

network and its analysed results could then be expected in under four hours. However, 

although one dimensional modelling is widely used in industry, research suggests that 

the its results are inferior to those obtained by finite element analysis in the modelling 

of in situ piles. The effects on network performance of this inferior modelling technique 

should, therefore, be quantified with a view to their use in any future applications. 

Alternatively, finite element analysis may be optimised to reduce the speed of 

computation of a pile head response. Energy absorbing boundary conditions could been 

used for modelling infinite boundaries for dynamic analysis. This cQuld potentially 

reduce the mesh size and, therefore, the computation time. A full parametric study of 

the effects of utilising such a feature would then have to be carried out. 

In summary, if a method for the rapid generation of pile data could be developed then 

the neural network method could become a commercially useful quality assurance tool 

for the automated checking of integrity test data. 

9.3 HARDWARE 

While a considerable improvement on the data acquisition equipment previously used 

for impact testing research at Napier the hardware is still bulky and complicated when 

compared with its industrial equivalents. The cost of purchasing commercially 

available pile test equipment may be considered prohibitively high for the purposes of a 

postgraduate project, but a number of design features may be copied to improve the 

usability of the described hardware. Specifically, by integrating the junction box and 
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signal conditioning units into a single module the portability of the equipment will be 

improved and length of cabling reduced. This may also improve the signal to noise 

ratio of the recorded trace. 

9.4 SIGNAL PRE-PROCESSING 

A great deal of recent research has been carried out by the author, at Napier University, 

into the utilisation of Wavelet processing of Sonic Echo test data. This has taken the 

form of two successful Engineering and Physical Sciences Research Council (EPSRC) 

grant applications sponsored by industrial collaborators. It has culminated in a number 

of publications, as listed at the front of this thesis. Specifically, it has resulted in the 

wavelet mobility scalogram and temporal filtering techniques described herein. 

Work is continuing in this field to develop more sophisticated algprithms for the 

interpretation of the modulus maxima plots and ridge following techniques. For 

example, it is known that a singularity in the analysed trace will result in scalogram 

coefficient values decaying exponentially from a maximum with respect to increasing 

scale (band pass centre frequency). It may, therefore, be possible to estimate the 

expected value for very high frequency components that are corrupted by white noise. 

The resultant de-noised trace will thus become a better estimate of the original signal 

through the utilisation of a priori knowledge of the signal under investigation and the 

mathematical properties of the wavelet used. 

Further research into the applicability of orthonormal wavelets and discrete wavelet 

transforms are also being researched. Wavelets with a more compact frequency support 

are being considered and the effects of their lack of shift invariance quantified. If 

successful this could provide a basis for wavelet encoding of trace data for network 

input. 
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9.5 NEURAL SYSTEMS 

Before considering possible future research concerning neural networks in this field it 

is worth considering the possible utilisation of the wavelet encoding strengths identified 

in Chapter 6. It has been shown that the salient information contained in the sonic echo 

trace can be encapsulated in as few as ten wavelet coefficients with their associated 

scale and time parameter values. It would, therefore, be reasonable to suggest that these 

coefficients could be used as a basis for a knowledge based system. While the 

complexity of the system domain would necessitate automated rule inference the 

coefficients do appear a more sensible primitive for the trace dt'(scription than the 

straight line parsing used in previously reported research. 

With respect to neural network types: as reported in Chapter 3 there remains a plethora 

of architectures and learning paradigms that may be employed for the described task. 

However, the promise shown by the systems developed in this thesis leads the author to 

believe that the feedforward networks, with their function approximation strengths, 

remain the most likely to be utilised in any industrial tool. The Euclidean distance 

measure employed by the radial network types does not, however, appear particularly 

suitable for this task. For example, the Mobility Curve, as discussed in Chapter 2, is 

highly dependent upon soil damping. Consequently piles of identical profiles in slightly 

different soil conditions will produce curves with the same general shape, but with 

consistently higher or lower values i.e. the shape will remain the same, but the curve 

slightly displaced. This will lead to a relatively high Euclidean separation distance 

between the two curves. Conversely, a third curve with completely different peak and 

trough positions, that happens to coincide with the first for some of its length, may give 

a relatively low separation distance. While it is recognised that other generally used 

distance measures like the Hamming distance will suffer from the same effects, there 

exist measures that better describe the relative curve shapes rather than simply a 

summation of differences between vector components considered in isolation. The 

application of a new rule of propagation would necessitate the derivation of a new 
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learning paradigm and as such would fall outside the specification of the research 

described herein, but may improve system performance. 

As discussed in Chapter 6 it may be that improving the size of the pattern set enables 

the network to produce a better performance through a better description of the input 

space and more hidden units allowing better resolution in the output space. However, 

these are essentially problems associated with modelling. If these problems could be 

overcome then it would be feasible to extend the research contained in this thesis to 

produce a more flexible system capable of providing an output for any site given the 

prevailing soil conditions and pile design dimensions. Such a system would, however, 

be necessarily large and with the increased size of the required training set would take a 

long time to train (of the order of days, if not weeks). It is hoped the research presented 

in this thesis may be a step towards this ultimate goal. 
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APPENDIX I 

Industry Survey Questionnaire 

and .List of Respondents 



!l7Iegrily Te.\·ling Questionnaire Page' (If 2 

This Questionnaire is purely for academic research purposes. Its contents are considered to be 
confidential and the views of individual companies will not be disclosed or published without their 
express permission. 

Company contact: ........................ .. ............ .. Phone: ....................... . 
[Preferably the person who completes the questionnaire] 

The LCE 'Specification for Piling' suggests three methods for the integrity testing of piles. Do you use: 

o Sonic echo method. [Please complete section I] 
o Vibrational method. [Please complete section Il] 
o Sonic logging (coring) [Please coinplete section 1lI] 

Tfyouuse none of the above, what method do you use? ..... 

Why? ... 

T. Sonic Echo. 

What type of testing do you carry-out?­
[CESTP, TNO, own method]: 

Do you consider the accuracy of the testing to be limited by the hardware you presently 
employ? If so do you ever investigate new equipment with a view to changing to a more 
reliable, more automated system? 

o Present system more than adequate, would stick to tried and trusted formula. 
o Would change systems ifit was shown to facilitate testing. 

How much (very approximately) does it cost you to test a pile by this method? .................... .. 

[I. Vibrational Method. 

Do you consider this method to be more accurate than the sonic echo method? 

DYes oNo o Sometimes 

Why/Under what circumstances? ................. . 

How much (very approximately) does it cost you to test a pile by this method? .... 



Illtegrity Tes/illg Qllestionllaire 

II I. Sonic Logging Method. 

Do you consider this method to be more accurate than the sonic echo method? 

DYes ONo o Sometimes 

WhyfUnder what circumstances? . 

How much (velY approximately) does it cost you to test a pile by this method? 

Common to all Sections· 

Are you interested in fault diagnosis or is fault location adequate for the work you carry out? 
~ if a pile had overbreak and necking which also caused areas of weakened concrete would 
you: 

o want to know these faults & their locations? 
o ·be satisfied with the knowledge the pile i.s completely unsound? 

Would it be possible for me to observe some testing being carried out in the field? This would 
help me a gn:at deal in appreciating the problems and principles involved in piled foundation 
integrity testing. 

o Unfoliunately, we are unable to fulfil this request. 
o In principle, this could be arranged. 

Thank you very much for taking the time to fill out this foml. May I, again, state that this is purely for 
research purposes and ask that if you have any other information or literature you think may be 
relevant that you let me know. 

Thanks Again. 

Jamie Watson BSc(Hons) MSc 
Dept. Civil & Transportation Engineering 
Napier University 
LO Colinton Road 
Edinburgh. 
EHIO SOT 



A list of the companies that kindly replied to the questionnaire reported in Chapter 2. 

British Geotechnical, Bridgenorth. 

Cementation Piling and Foundations Ltd, Rickmansworth. 

Central Piling Ltd, Halstead. 

Co lets Piling Ltd, Effingham. 

Costain Civil Engineering Ltd, Erith. 

Del Piling Contractors, Chesterfield. 

Fugro Ltd, Hemel Hemstead. 

Metropolitan Specialist Services Ltd, London. 

ND Technology, Southampton. 

NDT Services, Darlington. 

Rock and Alluvium Ltd, Wimbledon. 

Roger Bullivant, Burton on Trent. 

Simplex Piling Ltd, Chingford. 

Stent Foundations Ltd, Hook. 

Swanthorpe Piling and Civil Engineering, Farnham. 

TBV Stranger, Elstree. 

Technotrade Ltd, Harpenden 

Testconsult Ltd, Warrington. 

Testing and Analysis Ltd (Testal), Somercotes. 

Westpile Ltd, Uxbridge. 



!' 
I 

i 
I 

PUBLISHED PAPER(S) 

NOT INCLUDED WITH THESIS 

'. . I' 

.. 

c • 

. .' 
" '. . 

, , . 


	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	000015
	000016
	000017
	000018
	000019
	000020
	000021
	000022
	000023
	000024
	000025
	000026
	000027
	000028
	000029
	000030
	000031
	000032
	000033
	000034
	000035
	000036
	000037
	000038
	000039
	000040
	000041
	000042
	000043
	000044
	000045
	000046
	000047
	000048
	000049
	000050
	000051
	000052
	000053
	000054
	000055
	000056
	000057
	000058
	000059
	000060
	000061
	000062
	000063
	000064
	000065
	000066
	000067
	000068
	000069
	000070
	000071
	000072
	000073
	000074
	000075
	000076
	000077
	000078
	000079
	000080
	000081
	000082
	000083
	000084
	000085
	000086
	000087
	000088
	000089
	000090
	000091
	000092
	000093
	000094
	000095
	000096
	000097
	000098
	000099
	000100
	000101
	000102
	000103
	000104
	000105
	000106
	000107
	000108
	000109
	000110
	000111
	000112
	000113
	000114
	000115
	000116
	000117
	000118
	000119
	000120
	000121
	000122
	000123
	000124
	000125
	000126
	000127
	000128
	000129
	000130
	000131
	000132
	000133
	000134
	000135
	000136
	000137
	000138
	000139
	000140
	000141
	000142
	000143
	000144
	000145
	000146
	000147
	000148
	000149
	000150
	000151
	000152
	000153
	000154
	000155
	000156
	000157
	000158
	000159
	000160
	000161
	000162
	000163
	000164
	000165
	000166
	000167
	000168
	000169
	000170
	000171
	000172
	000173
	000174
	000175
	000176
	000177
	000178
	000179
	000180
	000181
	000182
	000183
	000184
	000185
	000186
	000187
	000188
	000189
	000190
	000191
	000192
	000193
	000194
	000195
	000196
	000197
	000198
	000199
	000200
	000201
	000202
	000203
	000204
	000205
	000206
	000207
	000208
	000209
	000210
	000211
	000212
	000213
	000214
	000215
	000216
	000217
	000218
	000219
	000220
	000221
	000222
	000223
	000224
	000225
	000226
	000227
	000228
	000229
	000230
	000231
	000232
	000233
	000234
	000235
	000236
	000237
	000238
	000239
	000240
	000241
	000242
	000243
	000244
	000245
	000246
	000247
	000248
	000249
	000250
	000251
	000252
	000253
	000254
	000255
	000256
	000257
	000258
	000259
	000260
	000261
	000262
	000263
	000264
	000265
	000266
	000267
	000268
	000269
	000270
	000271
	000272
	000273
	000274
	000275
	000276
	000277
	000278
	000279
	000280
	000281
	000282
	000283
	000284
	000285
	000286
	000287
	000288
	000289
	000290
	000291
	000292
	000293
	000294
	000295
	000296
	000297
	000298
	000299
	000300
	000301
	000302
	000303
	000304
	000305
	000306
	000307
	000308
	000309
	000310
	000311
	000312
	000313
	000314
	000315
	000316
	000317
	000318
	000319
	000320
	000321
	000322
	000323
	000324
	000325
	000326
	000327
	000328
	000329
	000330
	000331
	000332
	000333
	000334
	000335
	000336
	000337
	000338
	000339
	000340
	000341
	000342
	000343
	000344
	000345
	000346
	000347
	000348
	000349
	000350
	000351
	000352
	000353
	000354
	000355
	000356
	000357
	000358
	000359
	000360
	000361
	000362
	000363
	000364
	000365
	000366
	000367
	000368
	000369
	000370
	000371
	000372
	000373
	000374
	000375
	000376
	000377
	000378
	000379
	000380
	000381
	000382
	000383
	000384
	000385
	000386
	000387
	000388
	000389
	000390
	000391
	000392
	000393
	000394
	000395
	000396
	000397
	000398
	000399
	000400
	000401
	000402
	000403
	000404
	000405
	000406
	000407

