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Abstract

The actions of intelligent agents, such as chatbots, recommender systems,
and virtual assistants are typically not fully transparent to the user. Conse-
quently, users take the risk that such agents act in ways opposed to the users’
preferences or goals. It is often argued that people use trust as a cognitive
shortcut to reduce the complexity of such interactions. Here we formalise
this by using the methods of evolutionary game theory to study the viability
of trust-based strategies in repeated games. These are reciprocal strategies
that cooperate as long as the other player is observed to be cooperating.
Unlike classic reciprocal strategies, once mutual cooperation has been ob-
served for a threshold number of rounds they stop checking their co-player’s
behaviour every round, and instead only check it with some probability. By
doing so, they reduce the opportunity cost of verifying whether the action of
their co-player was actually cooperative. We demonstrate that these trust-
based strategies can outcompete strategies that are always conditional, such
as Tit-for-Tat, when the opportunity cost is non-negligible. We argue that

?This is the accepted version of the manuscript published in Cognitive Systems Re-
search. The published version of record is available at https://doi.org/10.1016/j.

cogsys.2021.02.003. c©2021. This manuscript version is made available under the CC-
BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

∗Corresponding author
Email addresses: theanhhan.vn@gmail.com (The Anh Han),

cedric.perret.research@gmail.com (Cedric Perret), S.Powers@napier.ac.uk (Simon
T. Powers)

Preprint submitted to Cognitive Systems Research April 17, 2021

https://doi.org/10.1016/j.cogsys.2021.02.003
https://doi.org/10.1016/j.cogsys.2021.02.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


this cost is likely to be greater when the interaction is between people and
intelligent agents, because of the reduced transparency of the agent. Con-
sequently, we expect people to use trust-based strategies more frequently
in interactions with intelligent agents. Our results provide new, important
insights into the design of mechanisms for facilitating interactions between
humans and intelligent agents, where trust is an essential factor.

Keywords: Trust, evolutionary game theory, intelligent agents,
cooperation, prisoner’s dilemma, repeated games

1. Introduction1

Artificial intelligence is undoubtedly becoming more integrated into our2

every day lives. While much attention has recently been paid to deep machine3

learning, intelligent agents that exhibit goal directed behaviour (Wooldridge,4

2009) have also come of age. These range from purely software systems such5

as videogame characters or chatbots, through to cyberphysical systems such6

as smart fridges or autonomous vehicles. We are delegating more and more7

aspects of our daily lives to these agents, from the virtual sales agent that8

recommends products and services to us on an e-commerce website (Beldad9

et al., 2016), to the intelligent virtual assistant (e.g. Amazon Alexa, Apple10

Siri, Google Home) that plans our route to work and orders goods and ser-11

vices for us on command (Chung et al., 2017). But in all of these cases, the12

operation of the agent is not fully transparent to the end user. Although13

research in explainable AI is beginning to address these issues (Nunes and14

Jannach, 2017), it seems unlikely that a user will ever be able to get complete15

information about how and why the agent has taken a particular decision.16

Consequently, using such an agent, and accepting its recommendations, nec-17

essarily involves the user placing some degree of trust in the agent. In the18

broadest sense, trust is willingness to take risk under uncertainty (Luhmann,19

1979). Here the risk is that the agent will act in a way opposed to our own20

goals, and the uncertainty comes from us lacking complete information about21

the behaviour of the agent to be able to ascertain this.22

For example, consider again the virtual sales agent operating on the web-23

site of an e-commerce company (Chattaraman et al., 2012), which sells prod-24

ucts to customers based on the information that it learns about the customer25

through a chat dialogue, i.e. an agent-based recommender system (Pu and26

Chen, 2007; Yoo et al., 2012; Jugovac and Jannach, 2017). When a customer27
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interacts with this virtual sales agent it does not have complete information28

about why product A from company X is being recommended as opposed29

to product B from company Y (Grabner-Kraeuter, 2002). Thus, if the cus-30

tomer is going to use the virtual sales agent, they must take some degree31

of risk, for example, that the virtual sales agent recommends more expen-32

sive products, or those from manufacturers that the seller has a preferential33

relationship with, or does not provide full information about the quality of34

the product. Without a full understanding of the virtual sales agent’s source35

code, the specifications of the alternative products, and the relationships be-36

tween the sellers and manufacturers (Akerlof, 1970; Mahadevan, 2000; Lewis,37

2011), some degree of risk and hence trust must be involved (Luhmann, 1979;38

Grabner-Kraeuter, 2002; Kumar et al., 2020). Similarly, when a virtual as-39

sistant gives us directions, we do not have complete information either about40

the route planning algorithm that it is using, or about relevant environmen-41

tal conditions such as traffic levels. Again, this means that the use of such42

systems necessarily involves some degree of risk and hence trust.43

This raises the question: how will people behave when interacting with44

these kinds of intelligent agents? How will they handle the complexity of the45

interaction? Ultimately, this question will need to be answered by empirical46

work. However, to guide the empirical work it is necessary to generate hy-47

potheses about how we expect people to behave. Because intelligent agents48

exhibit goal directed behaviour, and their goals (as programmed by their49

designers) may be in conflict with the goals of their users, evolutionary game50

theory (EGT) (Maynard Smith, 1982; Sigmund, 2010) provides a suitable51

formal framework for modelling the strategic interaction and understanding52

behavioural dynamics (Shoham, 2008). This is because not only is the inter-53

action strategic, but there is empirical evidence that people use a standard54

set of social scripts whether they are interacting with a person or a machine in55

a particular social situation (Nass and Moon, 2000). This suggests that pre-56

dictions from game theoretical studies about human behaviour in traditional57

(e-)commerce, for example (e.g. Laaksonen et al. 2009; Dahlstrom et al.58

2014), can also be useful when the interaction is between a human and an59

intelligent agent representing another entity (individual, firm, organisation),60

rather than with that entity directly.61

In light of this, we propose that the types of interaction discussed above62

can be modelled as repeated games between the user and the agent (acting63

to fulfil the goals of its designer). Moreover, in important cases the actions64

available to the agent and the user correspond to “cooperate” and “defect”.65
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Cooperation between players represents both the user and agent behaving66

honestly, reliably and transparently with each other. For example, coopera-67

tion would be a virtual sales agent selling products that match the preferences68

that the user has revealed in the conversation, while defection might corre-69

spond to trying to upsell products or warranties. On the side of the user,70

cooperation could represent continued use of the agent, which benefits the71

seller by reducing their opportunity costs of answering customer enquiries72

themselves. Defection would then represent refusing to use the agent and73

instead speaking directly to a human sales advisor.74

The folk theorem of repeated games tells us that the key to cooperative75

outcomes, which benefit both sides, is sufficient information for the play-76

ers to be able to condition their actions on the past actions of the other77

player(s) (Fudenberg and Maskin, 1986). This allows for reciprocal strate-78

gies, e.g. cooperate if the other player cooperated in the previous interaction,79

as exemplified by the Tit-for-Tat strategy (Axelrod, 1984). However, the use80

of reciprocal strategies necessarily carries an opportunity cost. Part of this81

comes from devoting cognitive resources to remembering a history of past82

actions, and processing this when deciding how to act. But in addition to83

this, reciprocal strategies also involve verifying whether the observed action84

of the other player actually was cooperative or not. In traditional face-to-face85

interactions between humans verifying whether the other player cooperated86

might involve, for example, checking the quality and specification of goods87

that have been purchased, or that the correct amount of change has been88

given. However, these costs are usually assumed to be low compared to the89

benefit and cost of cooperation (Ho, 1996; Imhof et al., 2005a; Han, 2013),90

and are mostly omitted in (evolutionary) game theoretic models (McNally91

et al., 2012; Han et al., 2013b; Martinez-Vaquero et al., 2015; Garcia and92

van Veelen, 2018; Hilbe et al., 2017; Glynatsi and Knight, 2020; Han et al.,93

2020). But the transition to interactions over the internet increases these94

costs (Grabner-Kraeuter, 2002), since the increased separation in space and95

time over the course of the interaction makes verifying the action of the other96

player more costly. The move to interacting with intelligent agents increases97

these costs even more, since the interaction becomes less transparent to the98

user, and artificial agents have limited capacity to explain their action com-99

pared to humans. This issue becomes even more relevant when considering100

hybrid societies of humans and intelligent agents (Paiva et al., 2018; Santos101

et al., 2019).102

It is often argued that humans use trust as a cognitive shortcut, to reduce103
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the complexity of the interaction that they need to reason about (Luhmann,104

1979; Grabner-Kraeuter, 2002; Petruzzi et al., 2014). In this paper, we for-105

malise this in EGT by introducing trust-based strategies in repeated games,106

and study their evolutionary viability when competing with other strategies107

in repeated games, in a similar fashion to Imhof et al. (2005a). Unlike tra-108

ditional Tit-for-Tat, trust-based strategies only check a co-player’s actions109

occasionally after a trust threshold has been reached, i.e. after their co-110

player has cooperated for a certain number of rounds. By doing so, they111

reduce the opportunity cost of verifying the action of their co-player every112

round. We demonstrate that trust-based strategies can be more successful113

than Tit-for-Tat when the opportunity cost of using a conditional strategy114

is non-negligible. Moreover, one may ask under what kinds of interaction115

or business at hand are trust-based strategies more likely to be used by the116

parties involved? For instance, will users trust in a chatbot to handle highly117

important interactions such as a multi-million dollar transaction? We show118

that trust-based strategies are most successful when the interaction is of in-119

termediate importance, and the interaction is repeated over many rounds.120

These results provide game theoretic support for the theory that humans use121

trust to reduce the complexity of interactions, and suggest that people are122

likely to behave even more in this manner when interactions are with intelli-123

gent agents, since the opportunity costs of verifying the actions of intelligent124

agents are likely to be greater.125

2. Models and Methods126

2.1. Models127

We consider a population of constant size N . At each time step or gen-128

eration, a random pair of players are chosen to play with each other.129

2.2. Interaction between Individuals130

Interactions are modelled as a symmetric two-player prisoner’s dilemma131

game, defined by the following payoff matrix (for row player)132

(C D

C R S
D T P

)
.

A player who chooses to cooperate (C) with someone who defects (D) receives133

the sucker’s payoff S, whereas the defecting player gains the temptation to134
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defect, T . Mutual cooperation (resp., defection) yields the reward R (resp.,135

punishment P) for both players. Depending on the ordering of these four136

payoffs, different social dilemmas arise (Macy and Flache, 2002; Santos et al.,137

2006). Namely, in this work we are concerned with the prisoner’s dilemma138

(PD), where T > R > P > S. In a single round, it is always best to defect,139

but cooperation may be rewarded if the game is repeated. In repeated PD, it140

is also required that mutual cooperation is preferred over an equal probability141

of unilateral cooperation and defection (2R > T + S); otherwise alternating142

between cooperation and defection would lead to a higher payoff than mutual143

cooperation. For convenience and a clear representation of results, we later144

mostly use the Donation game (Sigmund, 2010)—a famous special case of145

the PD—where T = b, R = b− c, P = 0, S = −c, satisfying that b > c > 0,146

where b and c stand respectively for “benefit” and “cost” (of cooperation).147

In addition, in order to understand how the duration of the interaction or148

business at hand impacts the evolutionary viability of trust-based strategies149

in relation to others, we model how important or beneficial an interaction is150

using parameter γ > 0 (Han et al., 2013a). Hence, the payoff matrix becomes151

( C D

C γR γS
D γT γP

)
.

In a population of N individuals interacting via a repeated (or iterated)152

PD, whenever two specific strategies are present in the population, say A153

and B, the fitness of an individual with a strategy A in a population with k154

As and (N − k) Bs can be written as155

ΠA(k) =
1

r(N − 1)

r∑
j=1

[(k − 1)πA,A(j) + (N − k)πA,B(j)], (1)

where πA,A(j) (πA,B(j)) stands for the payoff obtained from a round j as a156

result of their mutual behavior of an A strategist in an interaction with a A157

(B) strategist (as specified by the payoff matrix above), and r is the total158

number of rounds of the PD. As usual, instead of considering a fixed number159

of rounds, upon completion of each round, there is a probability w that yet160

another round of the game will take place, resulting in an average number of161

r = (1 − w)−1 rounds per interaction (Sigmund, 2010). In the following, all162

values of Π will be computed analytically.163

6



2.3. Strategies in IPD and the opportunity cost164

The repeated (or iterated) PD is usually known as a story of tit-for-tat165

(TFT), which won both Axelrod’s tournaments (Axelrod, 1984; Axelrod and166

Hamilton, 1981). TFT starts by cooperating, and does whatever the oppo-167

nent did in the previous round. It will cooperate if the opponent cooperated,168

and will defect if the opponent defected.169

As a conditional strategy, TFT incurs an additional opportunity cost,170

denoted by ε, compared to the unconditional strategies, namely, ALLC (al-171

ways cooperate) and ALLD (always defect). This cost involves a cognitive172

cost (to memorise previous interaction outcomes with co-players and make a173

decision based on them) and moreover, a cost of revealing the actual actions174

of co-players (cf. Introduction). The latter cost is usually ignored in previous175

works of IPD, but it can be non-trivial and thus significantly influence the176

nature of interactions. For instance, this cost is crucial to be considered in177

the context of human-machine interactions. For example, it might be quite178

costly and time consuming to check if one was charged the right amount179

when pay online/by Card/on ATM/ and whether the quality of the coffee180

produced by your coffee machine is reducing (and to what extent). This cost181

is even greater when interacting with intelligent agents whose operation and182

hence goals are less transparent, and which might, for example, be designed183

to hide pertinent information from users.184

Trust-based strategies185

We consider a new trust-based strategy that is capable of switching off the186

costly deliberation process when it trusts its co-players enough 1. Namely,187

this strategy starts an IPD interaction as a TFT player. When its ongoing188

trust level towards the co-player—defined here as the difference between the189

number of cooperative and defective moves from the co-player so far in the190

IPD—reaches a certain threshold, denoted by θ, it will play C uncondition-191

ally. We denote this strategy by TUC. TUC is illustrated in the Figure 1192

representing one game between TUC and TFT.193

1Our modelling approach is in accordance with the definition of trust often adopted
in various multi-agent research, e.g. (Dasgupta, 2000; Ramchurn et al., 2004). That is,
trust is a belief an agent has that the other party will do what it says it will (being honest
and reliable) or reciprocate (being reciprocal for the common good of both), given an
opportunity to defect to get higher payoffs.
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Figure 1: Diagram representing repeated interactions between a trust-based cooperator
TUC and a tit-for-tat TFT. First, both strategies cooperate and check other player’s
action. After θ rounds (here θ = 3), trust is reached and TUC now checks the action
of TFT occasionally with a probability p. Because TFT continues to cooperate, TUC
continues to trust and to cooperate.

Given the possibility of being exploited, but still to avoid costly deliber-194

ation, we assume that TUC will check, with a probability p, the co-player’s195

actions after switching off 2. If the co-player is found out to defect, TUC will196

revert to its initial strategy, i.e. TFT. As a counterpart of TUC, we consider197

TUD that whenever the ongoing trust level reaches the threshold θ, switches198

to playing D unconditionally. TUD is illustrated in the Figure 2 representing199

one game between TUC and TUD.200

The payoff matrix for the five strategies ALLC, ALLD, TFT, TUC and201

TUD, can be given as follows202



AllC AllD TFT TUC TUD

AllC R S R R θR+(r−θ)S
r

AllD T P T+(r−1)P
r

T+(r−1)P
r

T+(r−1)P
r

TFT R− ε S+(r−1)P
r − ε R− ε R− ε θR+S+(r−θ−1)P

r − ε
TUC R− θε

r −
p(r−θ)ε

r
S+(r−1)P

r − ε R− θε
r −

p(r−θ)ε
r R− θε

r −
p(r−θ)ε

r ΠTUC,TUD

TUD θR+(r−θ)T−θε
r

S+(r−1)P
r − ε θR+T+(r−θ−1)P−θε

r ΠTUD,TUC
θR+(r−θ)P−θε

r


(2)

203

For clarity, we write the payoff of TUC against TUD and TUD against

2We assume that, given a sufficient cost of checking, TUC can always correctly find
out the co-player’s actions.
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Figure 2: Diagram representing repeated interactions between a trust-based cooperator
TUC and a trust-based defector TUD. First, both strategies cooperate and check the other
player’s action. After θ rounds (here θ = 3), trust is reached for both strategies. TUC
now cooperates and TUD defects. This continues until TUC checks and realises that TUD
defects. After that, TUC looses trust, plays as a TFT and defects.

TUC separately. Namely, the payoff of TUC against TUD is given by

ΠTUC,TUD =

1

r
(θR− θε+ S + p(r′ − 1)(P − ε) + (1− p)(S + p(r′ − 2)(P − ε) + (1− p)[....]))

=
1

r

(
θR− θε+ S

r′−1∑
i=0

(1− p)i + p(P − ε)
r′−1∑
i=0

(r′ − i− 1)(1− p)i
)

=
θR− θε

r
+

1

r

(
S(1− (1− p)r−θ)

p
+

(P − ε)((1− p)r−θ + (r − θ)p− 1))

p

)
where r′ = r − θ. Similarly,

ΠTUD,TUC =
θR− θε

r
+

1

r

(
T (1− (1− p)r−θ

p
+
P ((1− p)r−θ + (r − θ)p− 1)

p

)
The payoff formulas can be explained as follows. In the first θ rounds both204

TUC and TUD play C and keep checking, so they obtain in each round R−ε.205

As trust is reached, from next rounds TUC will check only occasionally with206

probability p. For example, if in the next round TUC checks, it obtains S207

in that round and P − ε in the remaining rounds since it will play TFT.208

Otherwise, i.e. if TUC does not check in that round (with probability 1−p),209

the process above is iterated for the payoffs calculation.210
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2.4. Evolutionary dynamics in finite populations211

We resort in this paper to Evolutionary Game Theory methods for finite
populations understanding evolutionary dynamics of trust-based behaviours,
in relation to other strategies (Imhof et al., 2005b). In this context, agents’
payoff represents their fitness or social success, and evolutionary dynamics
is shaped by social learning (Sigmund, 2010), assuming that more successful
agents will tend to be imitated more often by the others. We adapt here
the pairwise comparison rule (Traulsen et al., 2006) to model social learning,
where an agent A with fitness fA adopts the strategy of another agent B
with fitness fB with probability given by the Fermi function,

PA→B =
(
1 + e−β(fB−fA)

)−1
.

The parameter β stands for the imitation strength or intensity of selection,212

i.e., how strongly agents base their decision to imitate on fitness comparison,213

where with β = 0, the imitation decision is random, while for increasing β,214

imitation becomes increasingly deterministic.215

In the absence of behavioural exploration or mutations, end states of216

evolution inevitably are monomorphic. That is, whenever such a state is217

reached, it cannot be escaped via imitation. Thus, we further assume that,218

with some mutation probability, an agent can freely explore its behavioural219

space. In the limit of small mutation rates, the behavioural dynamics can220

be conveniently described by a Markov Chain, where each state represents a221

monomorphic population, whereas the transition probabilities are given by222

the fixation probability of a single mutant. The resulting Markov Chain has a223

stationary distribution, which characterises the average time the population224

spends in each of these monomorphic end states.225

Suppose there exist at most two strategies in the population, say, k agents226

using strategy A (0 ≤ k ≤ N) and (N − k) agents using strategies B. Let227

us denote by πX,Y the payoff an agent using strategy X obtained in an228

interaction with another individual using strategy Y (as given in the payoff229

matrix (2)). Hence, the (average) payoff of the agent that uses A and B can230

be written as follows, respectively,231

ΠA(k) =
(k − 1)πA,A + (N − k)πA,B

N − 1
,

ΠB(k) =
kπB,A + (N − k − 1)πB,B

N − 1
,

(3)
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Now, the probability to change the number k of agents using strategy A232

by ± one in each time step can be written as (Traulsen et al., 2006)233

T±(k) =
N − k
N

k

N

[
1 + e∓β[ΠA(k)−ΠB(k)]

]−1
. (4)

The fixation probability of a single mutant with a strategy A in a population234

of (N−1) agents using B is given by (Traulsen et al., 2006; Karlin and Taylor,235

1975; Imhof et al., 2005b)236

ρB,A =

(
1 +

N−1∑
i=1

i∏
j=1

T−(j)

T+(j)

)−1

. (5)

When considering a set {1, ..., s} of distinct strategies, these fixation proba-237

bilities determine the Markov Chain transition matrix M = {Tij}si,j=1, with238

Tij,j 6=i = ρji/(s − 1) and Tii = 1 −
∑s

j=1,j 6=i Tij. The normalised eigenvec-239

tor of the transposed of M associated with the eigenvalue 1 provides the240

above described stationary distribution (Imhof et al., 2005b), which defines241

the relative time the population spends while adopting each of the strategies.242

3. Results243

We use the model defined above to answer two questions. First, when will244

individuals use trust? To answer this question, we investigate under which245

conditions trust is an evolutionary viable strategy. We measure the success246

of trust by the frequency of the trust-based cooperative strategy (TUC), i.e247

the proportion of time the population is composed of only TUC. Second,248

when should there be trust? This is measured by how well the prevalence249

of trust-based behaviour enhances cooperation outcomes. We investigate the250

second question by looking under which conditions the presence of trust-251

based strategies (both TUC and TUD) increase the frequency of cooperation252

in the population.253

The default values of the parameters, unless otherwise specified, are for254

the game payoffs R = 1, S = −1, T = 2, P = 0 (i.e. b = 2 and c = 1 in255

Donation game), the importance of the game γ = 1, the number of rounds256

r = 50, the population size N = 100, the intensity of selection β = 0.1, the257

trust threshold θ = 3, the probability of checking its partner p = 0.25 and the258

opportunity cost ε = 0.25. The analysis of the model has been implemented259

using the package EGTTools (Fernández Domingos, 2020).260
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Figure 3: Left: Frequency of strategies as a function of the opportunity cost
ε. Right: Frequency of cooperation in absence or presence of trust-based
strategies TUC and TUD, as a function of the opportunity cost ε. The difference
in frequency of cooperation between the two scenario is shaded in green when positive and
red when negative.

3.1. Trust as a mechanism to reduce opportunity costs261

The intuitive benefit of trusting something is to limit the cost of moni-262

toring their actions in a long-term interaction, providing a shortcut in the263

decision making process. This is in line with several common definitions and264

theories of trust (Luhmann, 1979; Grabner-Kraeuter, 2002; Petruzzi et al.,265

2014). Thus, we explore first the effect of opportunity cost ε on the strategies266

employed by individuals and the resulting frequency of cooperation.267

The left panel of Figure 3 shows that TUC is the most common strategy268

for a low to intermediate opportunity cost ε (between 0 and 0.3). When the269

opportunity cost ε is zero, both TUC and TFT are successful strategies and270

the population is composed of either one of them for most of the time. The271

success of TUC and TFT is explained by the capacity of these strategies to272

maintain high levels of cooperation within their homogeneous populations,273

while avoiding exploitation by AllD. Yet, the success of TFT is limited by274

the opportunity cost paid to check its partner’s actions. This is shown in the275

results by the population being mostly AllD when the opportunity cost ε is276

high. Compared to TFT, TUC can limit this opportunity cost by reducing277

its attention to its partner’s actions once trust is reached. This is why as278

the opportunity cost increases, the frequency of TFT plummets while TUC279

becomes more commonly observed.280

The right panel of Figure 3 shows that the presence of trust-based strate-281
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gies increases the frequency of cooperation 3. Importantly, this increase hap-282

pens even when the opportunity cost ε is high (ε ≈ c), and not only when283

TUC is the most frequent, e.g. for low ε. This is because a high frequency of284

cooperation is already reached for a low opportunity cost due to TFT. The285

presence of TUC has a more important effect on cooperation when the oppor-286

tunity cost increases since in that case the performance of TFT significantly287

reduces.288

To conclude, trust-based cooperation is a particularly common strategy,289

in particular in interactions with moderate opportunity cost, and it promotes290

cooperation for a large range of opportunity costs.291

3.2. Length of interactions and importance of the game292

We now investigate (i) the importance of the game γ because this affects293

the relative cost of checking the other player and (ii) the number of rounds,294

because this affects the relative time that is required for trust to be estab-295

lished. The results are presented in Figure 4. First, we discuss the cases296

on the left column, where repeated interactions are short (expected num-297

ber of rounds r = 20). The top left panel of Figure 4 shows that in such298

conditions, TUC is successful for medium values of the importance of the299

game parameter. TUC is also the most frequent strategy for a large range of300

the importance of the game parameter (note that the results presented are301

on a logarithmic scale). When the importance of the game is very low e.g.302

γ = 0.1, the most frequent strategy is AllD. In this condition, the opportu-303

nity cost is too high relative to the benefit provided by cooperation for either304

of the conditionally cooperative strategies, TUC or TFT, to thrive. When305

the importance of the game is very high, e.g. γ = 1000, TUC is almost never306

observed and TUD is, by far, the most frequent strategy. When the impor-307

tance of game is high, defecting while the other player cooperates provides308

a huge benefit. AllD gets this benefit on the first round played with AllC,309

TFT and TUC. On the other hand, TUD obtains this advantageous payoff310

at least on the round after trust is established when interacting with TUC311

and TFT. This advantage by TUD is hard to recover through reciprocity if312

3It is noteworthy that we compare the overall cooperation in our model to a baseline
model that includes AllC, AllD and TFT. That is, there are three out of five cooperative
strategies in our model, in comparison to two out of three in the baseline model. Thus,
under neutrality (i.e. when all strategies have the same strategies, when β → 0), it would
be 60% cooperation vs 66.6% cooperation which is not in favour of our model.
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Figure 4: Top: Frequency of strategies as a function of the number of rounds
r and importance of the game γ (logarithmic scale); Bottom: Frequency of
cooperation in absence or presence of trust-based strategies TUC and TUD, as
a function of the number of rounds r and importance of the game γ (logarithmic
scale). For clarity, the difference in frequency of cooperation is shaded in green when
positive and red when negative.
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the number of rounds is not sufficiently high. It is noteworthy that β and313

the game importance parameter γ do not have the same effect. The former314

scales the whole fitness function, while the latter only scales the entries of315

the PD payoff matrix. Thus, β also scales the opportunity cost ε. A supple-316

mentary figure in appendix B shows that a higher β steepens the relationship317

between opportunity cost and frequencies or cooperation. In addition, a high318

intensity of selection leads to trust evolving only for a low opportunity cost.319

However, beside this expected effect, the qualitative results remain similar320

for a wide range of reasonable values of β (0.05 to 1).321

This result is dependent of the length of the interactions. The top part322

of Figure 4 shows that a higher number of rounds r leads to (i) a higher323

frequency of TUC and (ii) the prevalence of TUC for a wider range of im-324

portance of game γ. TUC remains the most frequent strategy even when325

the importance of the game is high if the interactions are sufficiently long.326

This is because the high number of rounds where both individuals cooperate327

make up for the few initial rounds where TUC is exploited by TUD (and on328

a lesser extent, AllD).329

The bottom part of Figure 4 shows that the presence of trust-based strate-330

gies increases the frequency of cooperation for all conditions examined. The331

highest frequency of cooperation is obtained for long interactions and high332

importance of the game. As shown by the similar shape of the curves, the333

higher frequency of cooperation appears to result from the high frequency334

of TUC. There is one notable exception. As shown in the bottom left figure335

(low r and high γ), the presence of trust based strategies also increases coop-336

eration when TUC is not present. This is because TUD strategies cooperate337

more (for θ rounds) than AllD strategies which never cooperate.338

In conclusion, trust is favoured for long-term interactions and can be339

observed on a wide range of importance of the game. The presence of trust-340

based strategies increases the frequency of cooperation for the whole set of341

parameter values studied.342

3.3. Trustfulness and TUD343

We have seen from the above results that trust-based cooperators are344

vulnerable to exploitation by TUD players, which are specifically tailored to345

take advantage of unconditional trust. This vulnerability was limited so far346

as we considered a rather careful truster with a p = 0.25. We now look at347

what is the effect of the probability of checking p on the success of TUC and348

the frequency of cooperation. For clarity, we present the result as a function349
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Figure 5: Top: Frequency of strategies as a function of the opportunity cost ε
and trustfulness 1/p (average number of rounds between checking event). Bot-
tom: Frequency of cooperation in absence or presence of trust-based strategies
TUC and TUD, as a function of the opportunity cost ε and trustfulness 1/p
(average number of rounds between checking event). For clarity, the difference in
frequency of cooperation is shaded in green when positive and red when negative.
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of 1/p, which approximates the trustfulness (which is larger for a smaller350

probability of checking) of TUC on the overall game, rather than p, which351

represents the carefulness of TUC on a single round.352

The top part of Figure 5 first confirms that it is important for TUC’s353

success to continue checking after trust is reached as TUC is much less fre-354

quent for a high value of trustfulness (i.e high 1/p). If TUC is too trustful,355

the game is either dominated by TFT when the opportunity cost is small, by356

TUD when the opportunity cost is intermediate, and and AllD when the op-357

portunity cost is high. There is an intermediate optimal trustfulness 1/p at358

which TUC is the most frequent strategy (except for zero opportunity costs359

where the lowest trustfulness and the highest probability of checking is the360

best strategy, which is equivalent to TFT). On the one hand, low trustful-361

ness makes TUC less successful because TUC checks its partner often and so362

pays a higher opportunity cost. On the other hand, high trustfulness makes363

TUC vulnerable to exploitation by TUD for a longer number of rounds. The364

results show that there can be an optimal level of trust resulting from this365

trade-off.366

The bottom part of Figure 5 shows that the presence of trust-based strate-367

gies increases the frequency of cooperation when the opportunity cost is mod-368

erate or high. This cooperation improvement is the highest for the optimal369

trustfulness at which TUC is very frequent. Again, the presence of trust-370

based strategies can lead to an increase in the frequency of cooperation even371

if they are not the most frequent strategy e.g. for very high opportunity costs372

ε. Unlike previously, the results also show that the presence of trust-based373

strategies can reduce the frequency of cooperation. This happens when the374

opportunity cost ε is low and the trustfulness 1/p is high. In these con-375

ditions, trustful and careless TUC players get exploited by TUD players,376

which increases the frequency of TUD, making cooperation a less viable op-377

tion (evolutionarily). In the absence of trust-based strategies, TFT is careful378

enough to avoid this pitfall.379

To conclude, unconditional trust is a viable strategy only in limited con-380

ditions and how much TUC relies on trust can have significant effect on the381

success of the strategy.382

4. Discussion383

Trust is a commonly observed mechanism in human interactions, and dis-384

cussions on the role of trust are being extended to social interactions between385
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humans and intelligent machines (Andras et al., 2018). It is therefore impor-386

tant to understand how people behave when interacting with those machines;387

particularly, whether and when they might exhibit trust behaviour towards388

them? Answering these questions is crucial for providing suitable designs389

of mechanisms or infrastructures to facilitate human-intelligent machine in-390

teractions, e.g. in engineering pro-sociality in a hybrid society of humans391

and machines (Paiva et al., 2018). To this end, this paper provides a game392

theoretic analysis, where we formalised trust as a behavioural strategy and393

integrated it into an EGT model to study (i) its success in competition with394

non-trusting strategies and (ii) its effect on the level of cooperation.395

Our results show first that trust is expected to be a pervasive cooperation396

enabling strategy. It is a frequent strategy for a large range of parameters,397

even in the presence of other strategies that are traditionally successful such398

as unconditional defection and Tit-for-Tat. Second, our results show that399

trust is a desirable mechanism in social systems because the presence of400

trust-based strategies increases the level of cooperation for a wide range of401

parameters. Finally, we show that trust-based cooperators are vulnerable to402

trust-based defectors, which are specialised to exploit them. However, our403

results also suggest that a minimum carefulness after trust is reached (low404

p) strongly limits this vulnerability.405

Overall, our analysis shows that trust can emerge because it reduces the406

opportunity costs paid by individuals during interactions. It is a form of407

cognitive shortcut that, while exposing the player to some risks, can allow408

individuals to cooperate at lesser cost. If the pitfalls of trust have often been409

discussed, our results underlie the importance of taking into account both410

the benefits and the risk that the use of trust involves. Understanding the411

balance between these two is a first step to optimise the benefits of trust in412

intelligent machines while limiting the costs. On this line, further work could413

expand the model to look at different forms of trust based cooperation and414

defection strategies, how they co-evolve, and how exploitation of trust-based415

cooperators can be avoided. It is noteworthy that our additional (numerical)416

analyses have shown that all the observations described above (i.e. in Figures417

3 - 5) are robust, e.g. for different values of the threshold number of rounds418

required for trust to be established (i.e. θ) (see Appendix). Moreover, note419

that in the current model we consider that TUC and TUD have the same420

θ, which is the worst case scenario for the evolution of TUC (and cooper-421

ation), since it represents the situation where TUD can perfectly recognise422

when TUC starts trusting a cooperative co-player and therefore becomes less423

18



vigilant of exploitation. More realistically, TUD might need to spend extra424

resources to gather information about TUC (e.g. providers learn about their425

customers’ preferences and behaviours) to determine what is TUC’s θ. On426

the other hand, TUC should not easily reveal or make available their infor-427

mation (that can be used to infer their θ), to better deal with TUD. Future428

work should address how these aspects might change the outcome of the429

evolutionary dynamics.430

One of the most famous previous formalisations of trust is an experiment431

from behavioural economics called the trust game (Berg et al., 1995). This432

game consists of one individual receiving an endowment of money, of which433

it must choose a certain amount (which can be zero) to send to the other434

player. The amount sent to the other player is tripled by the experimenter (so435

that sending money represents an investment). The other player then decides436

what amount of this money (if any) to send back to the first player (so that437

there is risk in the first player sending money). While the Nash equilibrium438

is for the first player to send nothing to the other player, in experiments in-439

dividuals usually deviate from this by sending a positive amount (Berg et al.,440

1995). The amount that the first player sends can be understood as mea-441

suring how much the first player trusts the second to reciprocate. However,442

in contrast to our formalisation, the trust game measures more a willingness443

to take risks blindly, as interactions are between anonymous individuals and444

are played only once. By contrast, we have considered repeated interactions445

between the same individuals, which has enabled us to look at the success of446

strategies that build up trust over time.447

Within the context of the trust game, it has been shown recently that448

trust and trustworthiness cannot evolve in well-mixed and spatial networks449

with a homogeneous structure; they can evolve only in heterogeneous net-450

works under highly advantageous conditions (Kumar et al., 2020). Moreover,451

within an overall grand challenge to understand the evolution of moral be-452

haviour (beyond that of cooperation) (Capraro and Perc, 2018), the role of453

network topology in promoting honesty has been studied in (Capraro et al.,454

2019), extending works on honest signalling (Smith, 1991). Similarly, ly-455

ing behaviour have recently been looked at within the context of well-mixed456

populations (Capraro et al., 2020).457

In line with our approach, trust enabling strategies were previously con-458

sidered in the context of repeated games (Han et al., 2011), where trust is459

built over time as a component of a larger decision making process, for pre-460

diction of opponents’ behaviour. Trust was also considered for enabling co-461
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operation in a one-shot prisoner’s dilemma (Janssen, 2008; McNamara et al.,462

2009), but it was assumed that players can recognise how trustworthy a co-463

player is based on additional cues such as signalling. Our work differs from464

these approaches in that we consider trust as a cognitive shortcut to avoid465

deliberation and having to check the outcomes of previous interaction(s),466

thereby limiting the opportunity cost of conditional strategies. More gener-467

ally, the role of an opportunity cost of monitoring the action of a co-player on468

the equilibrium level of cooperation has been studied in classic game theory469

models (for instance, see Lehrer and Solan (2018)). Using an evolutionary470

game theory approach, we complement this literature by showing that trust-471

based strategies are likely to emerge to deal with the cost of monitoring, even472

when players are short-sighted and only care about their immediate payoffs.473

We show conditions under which the presence of trust-based strategies can474

promote a high level of cooperation in comparison to the case where trust-475

based strategies are not available, e.g. where only classic reciprocal strategies476

such as TFT are possible.477

In addition, trust has been used extensively in various computerised sys-478

tems, such as in multi-agent open and distributed systems, to facilitate479

agents’ interactions. Agents may have limited computational and storage480

capabilities that restrict their control over interactions, and trust is used481

to minimise uncertainty associated with the interactions, especially when482

agents inhabit in uncertain and constantly changing environments (Ram-483

churn et al., 2004; Falcone and Castelfranchi, 2001). This is the case for vari-484

ous applications including peer-to-peer computing, smart-grids, e-commerce,485

etc (Kamhoua et al., 2011; Ramchurn et al., 2004; Papadopoulou et al., 2001;486

Petruzzi et al., 2014; Brooks et al., 2020). These studies utilise trust for the487

purpose of regulating individual and collective behaviours, formalising dif-488

ferent aspects of trust (such as reputation and belief) (Castelfranchi, 1997;489

Castelfranchi and Falcone, 2010). Our results and approach provide novel490

insights into the design of such computerised and hybrid systems as these491

require trust to ensure high levels of cooperation or efficient collaboration492

within a group or team of agents, including human-machine hybrid interac-493

tions. For instance, our results show that the importance of the business494

at hand (relative to the opportunity cost) needs to be taken into account495

to ensure a desired level of cooperation. Also, the system needs to be de-496

signed so that the opportunity cost of verifying the actions of an intelligent497

machine is sufficiently low (relative to the benefit and cost of the game) to498

enable a long-term trusting relationship with customers, e.g. making the499
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activities transparent either directly to the user or to expert auditors that500

follow professional codes of ethics (Andras et al., 2018).501

In the current work, since our goal was to explore the effect of trust-502

based strategies and a non-trivial opportunity cost in the context of human-503

intelligent machine interactions, we have based our analysis on a baseline504

model of IPD with three strategies (i.e. AllC, AllD and TFT), as described505

(Imhof et al., 2005a). There are other important strategies in this context,506

such as win-stay-lose-shift, grim and generous TFT, which are particularly507

relevant if errors in players’ behavioural implementation is taken into account508

(Nowak and Sigmund, 1993; Imhof et al., 2007; Sigmund, 2010). For example,509

forgiveness is an important mechanism to deal with such errors, e.g. to510

resolve conflicts and avoid long-term retaliation in a long-term relationships.511

We will explore how trust-based strategies can be enhanced with forgiveness,512

as for instance errors might lead to difficulty in building initial trust and/or513

destroying built mutual trust not on purpose, and thus more forgiving trust-514

based strategies might better promote cooperation. On the other hand, these515

more forgiving strategies might be subject to more exploitation. In general,516

it is important to investigate a larger space of strategic behaviours in the517

context of IPD as it might influence the outcome of evolutionary dynamics.518

An assumption made in our work is that the mutation or behavioural519

exploration is rare (Sigmund, 2010; Traulsen et al., 2006), allowing us to520

conveniently calculate the long-term frequencies (i.e. stationary distribution)521

of the strategies in the population. In reality, the mutation rate might be non-522

negligible and might have an effect on the evolutionary dynamics (Traulsen523

et al., 2009; Rand et al., 2013; Duong and Han, 2019). In general, larger524

mutation rates add more randomness to the system dynamics and might525

enable cooperation in situations where it is difficult to evolve otherwise, and526

vice versa (Hauert et al., 2007; Han et al., 2012; Rand et al., 2013; Garćıa527

and Traulsen, 2012). We aim to study the effect of mutation in future work.528

In the current work we have focused on the prisoner’s dilemma as it repre-529

sents the hardest (pairwise) scenario for cooperation to emerge. Many other530

scenarios might be represented using other social dilemmas such as coordi-531

nation or snowdrift games (Santos et al., 2006; Sigmund, 2010). Considering532

such games where it is easier for cooperation to emerge has the potential to533

open new windows of opportunity for long-term trust-based relationships to534

be established. Our future work will study how trust-based strategies (as we535

have modelled) evolve in the context of other social dilemmas. Moreover,536

given the importance of population structures in the emergence of trust and537
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trustworthiness in the context of the trust game (Kumar et al., 2020), our538

future work will examine how different population structures influence the539

outcome of trustful behaviours in our context. Finally, we have assumed that540

agents always pay the cost of checking, but an alternative is that, they might541

choose not to check when it is too difficult or costly to do so (for example,542

checking if an AI development company complies with safety requirements in543

the development process within a competition to reach technology supremacy544

(Han et al., 2020)).545

5. Conclusion546

We have demonstrated in this paper that evolutionary game theory pro-547

vides a valuable framework to study trust. Social interactions often result548

in complex dynamics with unexpected consequences, which a quantitative549

model is able to shed light on. Our model provides formal support for the550

theory that trust is a cognitive shortcut which people use to reduce the com-551

plexity of their interactions. The results of the model provide new insights552

into the questions of whether and when humans might trust intelligent ma-553

chines, generating reasonable behavioural hypotheses that empirical studies554

can test.555
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Appendices758

Appendix A: Results for different trust threshold θ759
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Figure 6: Left: Frequency of strategies as a function of the opportunity cost
ε. Right: Frequency of cooperation in absence or presence of trust-based
strategies TUC and TUD, as a function of the opportunity cost ε. The difference
in frequency of cooperation between the two scenario is shaded in green when positive and
red when negative. Each results are presented for different trust threshold θ = 5 and θ =
10. Parameters: β = 0.1, N = 100, γ = 1, r = 50, p = 0.25, R = 1, S = −1, T = 2, P = 0.
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Figure 7: Top: Frequency of strategies as a function of the number of rounds
r and importance of the game γ (logarithmic scale); Bottom: Frequency of
cooperation in absence or presence of trust-based strategies TUC and TUD, as
a function of the number of rounds r and importance of the game γ (logarithmic
scale). For clarity, the difference in frequency of cooperation is shaded in green when
positive and red when negative. Each results are presented for different trust threshold
θ = 5 and θ = 10. Parameters: β = 0.1, N = 100, p = 0.25, R = 1, S = −1, T = 2, P = 0.31
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Figure 8: Top: Frequency of strategies as a function of the opportunity cost ε
and trustfulness 1/p (average number of rounds between checking event). Bot-
tom: Frequency of cooperation in absence or presence of trust-based strategies
TUC and TUD, as a function of the opportunity cost ε and trustfulness 1/p
(average number of rounds between checking event). For clarity, the difference in
frequency of cooperation is shaded in green when positive and red when negative. Each
results are presented for different trust threshold θ = 5 and θ = 10. Parameters: β = 0.1,
N = 100, γ = 1,r = 50, R = 1, S = −1, T = 2, P = 0.
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Figure 9: Left: Frequency of strategies as a function of the opportunity cost
ε. Right: Frequency of cooperation in absence or presence of trust-based
strategies TUC and TUD, as a function of the opportunity cost ε. The difference
in frequency of cooperation between the two scenario is shaded in green when positive and
red when negative. Each results are presented for different intensity of selection, from top
to bottom β = 0.05, β = 0.1 and β = 0.5. Parameters: N = 100, γ = 1, r = 50, p = 0.25,
R = 1, S = −1, T = 2, P = 0.
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