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ABSTRACT

Risks and uncertainties are inherent in construction projects and if neglected these risks

often lead to project cost and time overruns. Traditional methods of forecasting risks

rely upon intuition and 'feel' which has proved inadequate for the needs of investors in

modern construction projects. To cope with these recognised risks, a risk management

framework, which consists four components (risk identification, risk classification, risk

analysis and risk response), has been developed. The present research focuses on

financial risks in construction management, and in particular, the development of

enhanced quantitative, probabilistic methods for risk analysis.

A comprehensive review of the treatment of risk and uncertainty in the construction

industry is undertaken. Background knowledge of probability theory and Monte Carlo

simulation is reviewed, as is previous investigations into construction network analysis

and project economics.

A comparison of the Programme Evaluation and Review Technique (PERT) and the

Monte Carlo Simulation (MCS) methods in construction networks risk analysis is

carried out. Two example projects are analysed by both methods. When applying the

MCS method, a sensitivity analysis is carried out by investigating the effect of different

probability distributions (Normal, Log-Normal, Beta, Triangular and Uniform) for

individual activity durations, the number of simulations used and the effect of the

manner of how the mean and standard deviations are set for the different probability

distributions.

A new analytical method, the Modified Stochastic Assignment Model (MSAM), is

proposed for the prediction of project duration. Five example projects are used to

demonstrate the validity of the MSAM and to illustrate its application in construction

project evaluations. The accuracy of the MSAM method is assessed by comparison to

the MCS method. A comparison of the MSAM with other analytical methods

commonly used in construction network analysis, such as PERT and the Probabilistic

Network Evaluation Technique (PNET), is also presented.
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The First Order Second Moment (FOSM) method, a methodology previously used

solely in system reliability analysis is applied to project economics. The definition of

the FOSM method is given and detailed mathematical treatments of these methods are

described. The methodology of using the FOSM in construction economics is

explained and ten examples are analysed using both the FOSM method and the MCS to

show the applicability and the degree of accuracy of these methods.

The current research shows that the MSAM method yields the probability of project

completion within a prescribed target time, or the required project time at a specific

probability. The research also shows that it is possible to use the FOSM methods for

risk analysis in decision-making in construction economics in such areas as selection of

project, elemental cost analysis, cash flow streams and setting of plant hire rates. Both

methods require computational time that is significantly less than an equivalent MCS.
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CHAPTER 1 INTRODUCTION

1.1 Nature of construction projects

Projects in the construction industry are inherently subject to more risk and uncertainty

than those in most other industries. For example, the required duration for completion

of an activity will normally depend on the availability of resources (labour and

equipment), on weather conditions and on the availability of materials. Quite often,

construction projects fail to achieve their time, quality, and budget goals. The purpose

of risk analysis and management is to help managers to avoid or minimise the

economic impact of these failures.

Each construction project is, by its nature, different. Based on the 'uniqueness' of the

project, there are many special problems in construction. As opposed to the view that

construction is a high risk business and that the future can not be forecast, some writers

CI '21 do not agree with these rather negative viewpoints. Raftery ill suggests: "In fact,

viewed systematically, there are many features common to a wide range of

construction projects. Most projects will have a start date and a finish date. Most

projects will be designed and built by teams of people and firms drawn together for

that particular project. Most projects will require contractors to marshal labour,

equipment, materials and components to a specific site. Many physical elements of

construction will recur across projects. For example, all bridges need a deck and a

supporting structure. All buildings need a substructure, cladding and services."

Indeed, looking at risk in a systematic way, Flanagan and Norman [21 state that the

typical risks on a construction project include:

• Failure to achieve completion within the stipulated design and construction time.

• Failure to obtain the expected outline planning, detailed planning or building

code/regulation approvals within the time allowed in the design program.

• Unforeseen adverse ground condition.

• Exceptionally inclement weather.

• Strike by the labour force.



• Unexpected price rises for labour and materials.

• Failure to let to a tenant upon completion.

• An accident to an operative on site causing physical injury.

• Latent defects occurring in the structure through poor workmanship.

• Natural disasters (flood, earthquake, etc.).

• A claim from the contractor for loss and expense caused by the late production of

design details by the design team.

• Failure to complete the project within the client's budget allowance.

Traditional methods of forecasting risks rely upon intuition and 'feel'. This is clearly

inadequate in modern construction project management. Risk analysis and

management provides a systematic framework in which management can pay greater

attention to risk and thus improve project performance.

1.2 A risk management framework

The managerial techniques used to identify, analyse and respond to risk have been

applied in construction only during the last two decades [3,4,5,6,7,8,9]• Healy [10] after

reviewing various authors, developed one approach which is suitable for risk

management in large projects. Wideman [111 proposed a theoretical framework of a

construction risk management model. Al-Bahar and Crandall 1121 based on Wideman's

[Ii] conceptual ideas converted the model into a completely defined, quantitative

management model.

Al-bahar and Crandall's model, entitled Construction Risk Management System

(CRMS), consists of the following four processes:

• Risk identification.

• Risk analysis and evaluation.

• Response management.

• System administration.

The models' particular emphasis is placed on how to identify and manage risks before,

rather than after, they materialise into losses or claims. The CRMS has the features of
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a systematic framework of risk management which is methodical, objective, analytical,

has quantitative measurement, and is self-contained.

Risk management framework is sometimes called Risk Management Process (RMP)

17,91 and can be described in terms of phases (stages), which are decomposed in a

variety of ways. Some models are more detailed than others, but all show similar

characteristics as the model by Flanagan and Norman [21 who have described a

framework as shown in Figure 1.1.

Risk identification

Risk classification

Risk analysis

Risk attitude .-

T

Risk response

Figure 1.1 The risk management framework

The risk management framework, sometimes called the risk management cycle in

engineering construction, consists of four components.

1. Risk identification:

In this stage, a clear view of the event is the first requirement, focusing on the

sources of risk and the effect of the event. One can do it in a structured and

systematic way by distinguishing between controllable and uncontrollable risks,

dependent and independent risks and total dependence or partial dependence.

Alternatively, one can work with an experienced team to consider explicitly three

separate areas. These are: risks internal to the project, risks external to the project

and anticipation of sources of claims. A formal brainstorming session can be used

at this stage in order to list possible risk sources. Alternatively, tick lists of similar

past projects can be reviewed as a guide to identify sources of risk on new projects.
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2. Risk classification:

The three ways of classifying risk are by identifying the type, impact and

consequence of risk. The types of risk in the construction industry can be classified

as:

• 'Pure' risk (no potential gain).

• 'Speculative' risk (possibility of loss or gain).

The impact of risk can be viewed in a risk hierarchy such as:

• Environment.

• Market/industry.

• Company.

• Project/individual.

The consequence of risk can also be classified into:

• Maximum probable loss.

• Most likely cost of the loss.

• Likely cost of servicing the loss if no insurance has been effected.

• Cost of insuring against the event occurring.

• Reliability of the prediction about the event.

3. Risk analysis:

The essence of risk analysis is that it attempts to encompass all feasible options and

to analyse the various outcomes of any decision. The use of risk analysis gives an

insight into what happens if the project does not proceed according to plan. The

risk analysis can be applied in following steps:

• All the various options should be considered.

• Consider the risk attitude of the decision-maker.

• Consider what risks have been identified, which are controllable and what the

impact is likely to be.

• Measurement, both quantitative and qualitative.

• Interpretation of the results of the analysis and development of a strategy to deal

with the risk.

• Decide what risks to retain and what risks to allocate to other parties.
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4. Risk response:

The purpose of the identification and the analysis is to enable the decision maker to

make a considered response in advance of the problem occurring. The response to

risk can take any of four basic forms: risk retention, risk reduction, risk transfer and

risk avoidance.

1.3 Research objectives

The primary goal of this PhD is to develop enhanced methods for risk analysis to aid

decision-making in project management. Techniques for risk analysis have been

theoretically established for a number of years and the most relevant to construction

can be summarised as follows:

1. Sensitivity analysis.

2. Probability analysis and Monte Carlo simulation.

3. Decision tree analysis.

4. Utility theory.

5. Portfolio theory.

These techniques have been applied to project management iri different situations to

different degrees and are well documented in numerous sources [2,4,9,13,14]

Probability theory concepts provide the theoretical framework for analysing risks and

various methods have been suggested. Some sophisticated methods such as Monte

Carlo simulation are well understood but there is still a gap between the theory and the

techniques applied in practice. The quantitative techniques appropriate to the analysis

of risk require further development and a step-by-step procedure for estimating the

impact of risk has not been provided.

The reasons for this may be due firstly to the necessity and importance of quantified

risk analysis not being recognised. Most people in practice believe that it is possible to

deal with risk competently, consistently, and comprehensively with the use of very

little mathematics. Also, there are quite strong opinions that there is no such thing as a

software-only solution to the problem of risk management. Risk analysis software is
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neither necessary nor sufficient for risk management. Rigorous, comprehensive and

competent risk analysis is primarily dependent on the attitude of the appropriate

decision maker and their advisers. Secondly, to analyse risk quantitatively may be too

costly. The people who perform the analysis need to be trained and the analysis may

be limited by computer resources.

However, due to the rapid developments in the construction industry, no one can

ignore the tools and techniques that can improve the quality and accuracy of risk

analysis. Also the dramatic growth of computer technology, especially the

development of cheaper and more powerful desktop personal computers, implies the

need for the appropriate techniques is more urgent than ever.

Based on the viewpoints above, the present research focuses on risk analysis,

emphasising financial risks in construction management, especially the quantitative

aspects of risk analysis. A review of the treatment of risk and uncertainty in

construction project management has been undertaken to identify the main areas of

study and the overall objective of this investigation is to develop enhanced

quantitative, probabilistic methods for risk analysis. The enhanced risk analysis

methods can then be used to improve decision-making and encourage appropriate risk

allocation, risk modification, mitigation or avoidance for highly uncertain investment

projects.

In particular, the specific research objectives in this study are as follows:

1. To review probability theory and the common probability distributions which are

used to model risk in project management.

2. To review the various methods which have been developed for network analysis in

construction projects.

3. To compare the project completion time predictions given by the Programme

Evaluation and Review Technique (PERT) with those from Monte Carlo

Simulation (MCS). Furthermore, to assess the influence of the various continuous

probability distributions and different numbers of simulations for activity duration

on predictions of overall project completion time when using MCS.
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4. To develop a computer program based on a Stochastic Assignment Model (SAM)

for a probabilistic network analysis of project completion time and to compare its

predictions with those from MCS. This developed method is referred to as the

Modified Stochastic Assignment Model (MSAM) and can be used in the planning

and execution stages of a project.

5. To show how First Order Second Moment (FOSM) methods used previously only

in the analysis of structural safety can be used for the assessment of various forms

of risk in project management. This method is especially suited to the conceptual

stage of a project but can be used to assess the failure probability throughout a

project life cycle.

1.4 Outline of thesis

Chapter one presents an introduction to the nature of risk in construction projects and

the scope and aims of the present research are described.

Chapter two provides a review of the mathematical foundations for risk analysis, such

as probability theory and principles of MCS. Some common probability distributions

for modeling risk and uncertainty that are used in the present study are detailed.

Previous investigations and methods of construction network analysis are also

reviewed.

In Chapter three, a comparison of the PERT and the MCS methods in construction

networks risk analysis is carried out and two example projects are analysed by both

methods. When applying the MCS method, a sensitivity analysis is carried out by

investigating the effect of different probability distributions for individual activity

durations, the number of iterations used and the effect of the manner of how the mean

and standard deviations are set for the different probability distributions.

In Chapter four, a new analytical method, the MSAM, is proposed for the prediction of

project duration. The MSAM algorithm is described and five example projects are

used to demonstrate the validity of the MSAM and to illustrate its application in

construction project evaluations. A comparison of the MSAM with other analytical
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methods commonly used in construction network analysis, such as PERT, the

Probabilistic Network Evaluation Technique (PNET) and MCS is presented.

Chapter five provides a description of the principles of FOSM methods previously

only used in the area of structural safety. FOSM methods are approximate analytical

methods used to analyse risk. A number of example problems have been analysed in

this chapter using FOSM methods to show the applicability of these methods and the

degree of accuracy of the results obtained has been assessed by comparison with

results from large sample MCS. The FOSM methods are also improved by giving a set

of concise algorithms that can be easily coded to a computer program for practical

application.

A summary of the conclusions of the study is given in Chapter six including

recommendations for further research.
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CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Management of risks and uncertainties in construction projects is only possible if risks

have been identified and the potential impacts have been analysed. Principles of

probability theory offer the mathematical basis for modelling risks and uncertainty and

the analysis of its effect. This chapter begins with a review of the basic concepts of

probability and some useful probability distribution functions which are commonly

used in the construction industry. Such probability distributions include the Normal,

Log-Normal, Beta, Triangular and Uniform distribution. Monte Carlo Simulation

(MCS) methods and the application of these concepts in construction engineering are

also reviewed. A literature review and historical development of construction Project

Network Techniques (PNT) is carried out, including Critical Path Method (CPM),

Program Evaluation and Review Technique (PERT), Probabilistic Network Evaluation

Technique (PNET) and MCS.

2.2 Probability theory

2.2.1 Basic probability concepts

Probabilities are used when considering future events with more than one possible

outcome. In a given situation only one of these outcomes will occur but in advance we

carmot say which. Such situations are called stochastic, as opposed to deterministic

situations where the outcome is determined in advance. The probability of an event is

a measure of the chance that it will occur and is measured as a value in the interval

between 0 and 1. Something that is almost certain to happen has a probability close to

1, while an event that is extremely unlikely has a probability close 0. Probabilities are

usually assessed (estimated) by experience based data.

In any case, an outcome or event may be identified through the value(s) of a function

and such a function is a random variable. Since the value of a random variable

represents an event, it can assume a numerical value only with an associated
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probability or probability measure. The rule for describing the probability measures

associated with all of the values of a random variable is a probability distribution.

Some probability distribution functions especially useful in the construction industry

are presented and their special properties are described in the Section 2.2.2.

2.2.2 Useful probability distributions

2.2.2.1 Normal distribution

The best-known and most important probability distribution is the Normal distribution,

also known as the Gaussian distribution. Historically, the Normal distribution has

played a central role in the development of probability and statistics. The reasons for

this pre-eminence are both practical and theoretical. The numerical measurements of

many diverse phenomena can be modelled by the Normal distribution - for instance,

the quantitative analysis of errors. The Central Limit Theorem, to be discussed in

Section 2.4.4, shows that the Normal distribution holds a special place among all

probability distributions.

The Normal distribution has a probability density function given by:

fx(x)—

_1 2.1
exP[	 .2(	 [a

x — pl
2
]

J]

	 oo < x < oo (	 )

where p and a are the parameters of the distribution, which are also the mean and

standard deviation, respectively, of the variate. A short notation for this distribution is

N(p, cr).

A Normal distribution with parameters p =0 and a = I is known as the standard

Normal distribution and is denoted appropriately as N(0,1). The density function,

accordingly, is:

fs (s). 	 expH (02 1
	

- (X) < S < 00
	

(2.2)
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The Normal cumulative probability distribution function is given by:

x 	 I 
Fx(x) = fo.	 exp[ 21 ( Y 0112

z
dy	 ( 2.3 )

Especially important in calculations is the probability distribution function of the

standard Normal variable, denoted by a special notation (I)(s), that is, (i(s) = Fs (s),

where S has N(0,1) distribution.

s	 [
CD(s) = Fs (s )= _.(0,127r exp — x 2	( 2.4 )

The above integral is not soluble analytically but has been numerically evaluated and is

widely tabulated in the literature 115'161.

With the table of (I(s), probabilities of any other Normal distributions can then be

determined readily as follows. Suppose a Normal variate X with distribution Au, a),

the probability:

P(a < X � b)=
b f a l 	 [x 1.1)2Fx

ex 
2L 

a (2.5)

Theoretically, this required probability can be obtained by evaluating the preceding

integral directly; however, this can be done also by making the following change of

variable:

S = X 
— p	

and	 dx a • ds	 ( 2.6 )
cr

Then:

Ab-pya 1
19(a < X b)= t_pv, 04:27r exp[— —21 (s)2]crds

=	 ib-"
)I 

c exp[— 
2
-1 (s)2]ds

1/ 27r a—Pcr 

( 2.7 )
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Thus:

P(„ X	 b 	 (1)( a 
cr )	 )

(2.8)

Empirical evidence 1171 indicates that the Normal distribution provides a good

representation for many physical variables. Examples include measurements on

weight, length and strength of material, instrumentation error and the financial rate of

return.

The Normal distribution is also often adopted as a convenient approximation to other

distributions which are less widely tabulated. For example, to find approximations to

probabilities associated with other distributions, such as the Gamma, the Binomial and

the Poisson.

2.2.2.2 Logarithmic Normal distribution

A random variable X has a Logarithmic Normal (or simply Log-Normal) probability

distribution if In X (the natural logarithm of X) is Normal. The Log-Normal

distribution has a probability density function of X is:

f x(x)= 	  [
 1ilnx-2 121

2a-Cx exPL	 )
0<x<co	 (2.9)

where A. = Min X) and C = VVat(ln X) are, respectively, the mean and standard

deviation of in X, and are parameters of the distribution.

Because of its relationship with the Normal distribution (that is involving a logarithmic

transformation), probabilities associated with a Log-Normal variate can also be

determined using the table of standard Normal probabilities. This is shown as follows:

Let:

bI 
1)(a < X � b f	 exp

Cx, I 21c [	 	 )
( 2.1 0 )
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Thus:

1
2 = in p — — 4 - 2

2
( 2.15 )

in x — A,
S =	 and dic = x‘ • ds	 ( 2.11 )

4-

Then:

13 (a	 X �. b) =
Inb-AVC	 [	 1 i u

eXp — — kS) idS
fin

( 2.12 )<	 r17-71.
.4 2 a-A. )1 C	 2	 ]

Thus:

19(a < X <b)=0 lnb — 2 0 ln a —.1,
( 2.13 )

4- 4.

In view of this convenient facility for calculating probabilities of Log-Normal variates

and also because the values of the random variable are always positive, the Log-

Normal distribution is useful in those applications where the values of the variate are

known to be strictly positive.

It can be seen that from Equation 2.9, the probability is a function of the parameters 2

and C. These parameters are related to the mean p and standard deviation a of the

variate as follows:

Let Y .-- ln X , which is N (1. , 4) . It follows that X = e Y and

p = E(X) = E(e Y ) = ex+. + —II)	 ( 2.14 )

Similarly, the mean-square value of X, .E(X 2 ) is:

E(X 2 ) = exp[2(1, + C 2 )]	 ( 2.16 )

Thus:

Var(X)= E(X 2 )— px 2 = p 2 (e 5.2 - 1)	 ( 2.17 )
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cr 2 )

4-2 = 141 +
P

( 2.18 )

1  (x — ar ' (b — xr - 1

f x (x) = {B(q,r)	 (b — a)r-`
0

( 2.20 )
a < x ..� b

elsewhere

If al ,u is not large, say � 0.30 , 141+ op i /1 2)1„,.., 0_2 / p 2 . In such cases, therefore:

( 2.19 )
P

where 8 is the coefficient of variation (COY).

The Log-Normal distribution has the theoretical advantage of precluding negative

values and has been used in a variety of applications. For example, the time for project

completion, the strength and fatigue life of material, and the volume of air traffic. The

Log-Normal distribution is also used very widely in reliability studies.

2.2.2.3 Beta distribution

A probability distribution appropriate for a random variable whose values are bounded,

say between finite limits a and b, is the Beta distribution. The density function of such

a distribution is:

in which q and r are parameters of the distribution, and B(q, r) is the Beta function:

1

41,0= fx q-1 0 — xr dx	 ( 2.21 )
o

which is related to the Gamma function as follows:

B(Tr)=
FF((qq)r±(:)) 	

( 2.22 )
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Depending on the parameters q and r, the density function of the Beta distribution will

have different shape.

If the values of the variate are limited between 0 and 1 (that is, a = 0 and b = I),

Equation 2.20 becomes:

fx (x)= {

/ 
B(q,r) )	 0<x<1

0	 elsewhere

( 2.23 )

which is called the standard Beta distribution.

The probability associated with a Beta distribution can be evaluated in terms of the

incomplete Beta distribution, which is defined as:

x

Bx (q,r). fy q-I (1— y)r_I 
dy	 0 <x <1	 ( 2.24 )

0

Values of the incomplete Beta function ratio have been tabulated; for example, by

Pearson [18] and Pearson and Johnson 1191 . Therefore, probabilities involving the Beta

distribution can be evaluated conveniently using tables of the incomplete Beta function

ratio.

By virtue of Equation 2.24, it is observe that the cumulative distribution function

(CDF) of the standard Beta distribution, Equation 2.23, with parameters q and r, is

given by:

xxig, r ) Bx(q,r)
I	 I3(q,r)

( 2.25 )

Effectively, therefore, tables of the incomplete Beta function ratio are also the tables

for the CDF of the standard Beta distribution.

The mean and variance of the Beta distribution are:

15



f(x)

p = a + --i— (b — a)	 ( 2.26 )
q + r

2 	 qra = i	 \„
	

(b —a)2
w+rf(q+r+1)

( 2.27 )

The Beta distribution is the basis for the approximation of activity time in a PERT

network. It can also be used as a rough model in the absence of data.

2.2.2.4 Triangular distribution

The Triangular distribution describes a situation where one can estimate the minimum,

maximum and most likely value. Values near the minimum and maximum are less

likely to occur than those near the most likely. The density function of the Triangular

distribution is:

2(x — a)

(b — a)(c — a)
2(c — x) 

(c — a)(c — b)

if a < x � b

if b < x � c
(2.28)

where a is minimum, b is most likely and c is maximum.

The probability distribution function of the Triangular distribution is:

F (x) =

,
( a)2x—

(c — aXb — a)
(c — x)2 

1
(c — a)(c — b)

( 2.29 )

The mean and variance of the Triangular distribution are:

a+b+c
/1= 	

3
( 2.30 )
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2 a2 + b 2 + c2 - ab - ac - bc
6 =

18
( 2.31 )

( 2.32 )
1 

f (x) = {13 - a
0

a � x � 13

elsewhere

The Triangular distribution is widely used because of its ease of use and can be used

when actual data is absent. However, its drawback is that it is an approximation.

2.2.2.5 Uniform distribution

The Uniform distribution with the parameters a and )6 is defined by the equation:

The probability distribution function of a Uniform distribution:

F(x)

1
x - a

if	 x � )3

if a � x � fl

otherwise

( 2.33 )
f3 - a

0

The mean and the variance of Uniform distribution are:

a + 13 ( 2.34 )
/4 =	 2

1 i ,
62 = -

12
v,

\-a)2 ( 2.35 )

The parameters a and fi are often defined as the minimum and maximum value, and all

values between these two values are equally likely to occur. The Uniform distribution

can be applied in situations where quantities vary uniformly between two values. For

example, if there has been no information about the existing utilities on the site the

value for any connections is equally likely to occur. However, the Uniform

distribution is only used in the case of low sensitivity variables or to be on the safe side

to overestimate the probability of the extremes of the variables' range 1201.
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2.3 Monte Carlo Simulation (MCS) techniques

2.3.1 Introduction

Simulation is the process of replicating the real world based on a set of assumptions

and conceived models of reality. It may be performed theoretically or experimentally.

In practice, theoretical simulation is usually performed numerically and this has

become a much more practical tool since the advent of computers. As with

experimental methods, numerical simulation may be used to obtain (simulated) data,

either in lieu of or in addition to actual real-world data. In effect, theoretical

simulation is a method of "numerical or computer experimentation."

The term Monte Carlo was introduced during World War II as a code name for the

simulation of problems associated with the development of the atomic bomb. Monte

Carlo Simulation (MCS) techniques are used for problems involving random variables

with known (or assumed) probability distributions. This involves repeating a

simulation process, using in each simulation a particular set of values of the random

variables generated in accordance with the corresponding probability distributions.

There are a wide variety of algorithms available for generating random samples from

different types of probability distributions. For a given set of generated random

numbers, the simulation process is deterministic. By repeating the process, a sample

of solutions, each corresponding to a different set of values of the random variables, is

obtained.

A sample from a Monte Carlo simulation is similar to a sample of experimental

observations. Therefore, the results of Monte Carlo simulations may be treated

statistically; such results may also be presented in the form of histograms, and methods

of statistical estimation and inference are applicable. For these reasons, Monte Carlo

simulation is also a sampling technique, and as such shares the same problems of

sampling theory; namely the results are also subject to sampling errors. The accuracy

of the Monte Carlo simulations is largely dependent on the randomness of the sample.

Generally, therefore, Monte Carlo solutions from finite samples are not "exact" (unless

the sample size is infinitely large).
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Apart from statistical errors which can be made as small as desired, in principle the

MCS yields exact information on model systems which are precisely characterised. In

contrast, the information provided by analytic theory is exact only in rare cases, while

in most other cases uncontrolled approximations are required. Thus computer

simulations are often designed to check the accuracy of some approximations made in

the analytical treatment of a model. In the present research, MCS is used to check the

accuracy of the proposed methods.

2.3.2 MCS applications in construction management

Newton's review 1211 of cost modelling activity in construction revealed how popular

the MCS has become as a construction management tool. The use of the MCS is very

straightforward and was described clearly in four main steps by Macaluso [221:

• Formulate a model.

• Distribute appropriate data in the model.

• Sample from the model data.

• Analyse the sample.

The PERT (Program Evaluation Review Technique) and the CPM (Critical Path

Method), widely used in construction project planning, have been developed using

MCS to account for uncertainty in the duration of construction operations. Karni's [231

stochastic project network uses samples from discrete probability states and not

continuous distributions at the heart of other applications described. It is of interest

that Karni concentrates on the development of the model rather than the data needed to

fit it, and uses a hypothetical (non-construction) project as an illustrative example.

Attempts to incorporate the effects of variable site productivity and interference from

external sources were undertaken by Bennet and Ormerod [24] . Where possible, the

risk elements were addressed using historical data. In other cases, a library of

distributions, from which the user selected the most appropriate to model variability,

were provided. Detailed data was easy to obtain from the meteorological office for the

weather simulation model of their programme.
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In contrast attempts to quantify the variability of different site activities was plagued

by a lack of information, highlighting the extent of the problems in construction

management. In the opinion of Baxendale [25] the available data was limited and of

dubious accuracy. Baxendale modelled project durations by recording the actual

duration of certain major site tasks rather than trying to model the factors which

influence them. Cost significant tasks which are repetitive in nature (such as pouring

floor slabs in Wilson's [26] example) make the best subjects for this type of modelling.

Reliable data can only be obtained by direct observation, for example by studying

actual concreting observations to tabulate a frequency distribution. The components of

the model represent known behaviour, and data can be collected from similar

processes. This provides probability distributions with a good description of the range

of possible values. The obvious drawbacks associated with this method are similar to

those of Wilson's [26] cost model, namely the great time and costs involved.

2.3.3 Advantages and disadvantages of MCS

It has been claimed that the introduction of simulation methods for construction

management is likely to have as great an impact on the construction industry as did the

introduction of network planning and scheduling methods some four decades ago [271.

Some of the advantages claimed for the technique can be summarised as [24]:

1. MCS provides an almost unlimited capacity to model construction operations, and

permits the construction manager to quickly evaluate many different combinations

of equipment and methods under varying conditions of operation at moderate cost.

2. MCS can give the manager an insight into which factors are important and hence

where to concentrate his effort and how they interact.

3. Additionally if a person can interact with the computer simulation in a gaming

environment, experience can be gained under realistic conditions before the work

is started. This should lead to better management through a deeper knowledge of

the problem.

20



4. MCS models often predict things which are not specifically incorporated into the

model. Simulation of repetitive processes has shown that when uncertainty exists

there are large penalties rather than benefits of scale. There is some evidence that

in the construction industry it is the larger projects which go wrong most

frequently. Also, most work-study experts talk about the benefits of specialisation.

MCS shows that for large projects subject to uncertainty there are penalties of

specialisation.

5. Further, most models of construction processes assume that the cost of a project is

the sum of the costs of the activities. MCS of a repetitive process shows that costs

are largely generated by the uncertainties that exist, and that simple additive

models like the Bill of Quantities seriously under-estimate cost.

However, MCS does have several disadvantages which include:

1. In theory, MCS can be applied to large and complex systems. However, in

practice, it may be limited by constraints of economy and computer capability.

This has been true in the past when the only computers with the required capacity

were large main-frame computers with high operating costs. Presently, however,

due to the rapid developments of computer software and hardware, the objection

that the process is time-consuming has been overcome.

2. MCS is a technique for solving random variable problems but it is prudent to

regard the present state of the art as incomplete when it is applied to construction

management [4] . For example, the difficulties of accommodating a correlation (or

interdependency) between two or more variables have long been recognised but

adequate techniques to manage these difficulties appear to be lacking. Other

concerns of considerable importance to a user, include the choice of distribution,

the number of variables, the range of variation and the number of iterations for the

statistical analysis.

3. Another limitation of MCS is that solutions obtained may not be amenable to

generalisation or extrapolation. Therefore, as a general rule, MCS should be used

only as a last resort [28,29] , that is, when and if analytical solution methods are not
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available or are ineffective (e.g. because of the need for gross idealisations).

Monte Carlo solutions, however, are often the only means of verifying or

validating approximate analytical solution methods.

2.3.4 @Risk MCS computer package

In the present research, the MCS were carried out using the @Risk (pronounced "at

risk") simulation computer package 130'311 . @Risk is a commercial package which

allows analysis of technical construction situations impacted by risk. It is a software

which "adds-in" to Microsoft Project & Excel or Lotus 1-2-3. @Risk uses a technique

of 'simulation' to combine all of the uncertainties identified in a model. Both Monte

Carlo and Latin Hypercube sampling are supported by the software, but only Monte

Carlo simulation was used in the present investigation.

@Risk provides over thirty probability distribution functions that allow the

specification of nearly any type of uncertainty. The common distribution types such as

Normal, Log-Normal, Beta, Triangular and Uniform, are all included.

During simulation the value of an operation is influenced by the effects of uncertainty

by being chosen at random from a range of possibilities. The total project duration and

cost are calculated from these randomly chosen values. This represents only one

possible way in which the project may proceed. The whole process of choosing

duration and cost under uncertain conditions is repeated and the result calculated to

produce a different answer. Each calculation is known as an 'iteration'. @Risk allows

any number of iterations in a simulation.

The results generated in a simulation are presented in histograms, cumulative curves,

summary graphs for cell ranges and zooming. Statistical reports on generated

distributions and probability of occurrence for target values in a distribution can also

be displayed.

All of the simulations in the present research were performed using an IBM-

compatible 586 computer with 16 Megabytes of R.A.M. and a 133 MHz processing

chip. A simulation of an activities network of about 60 activities (examples in
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Chapters 3 and 4) with 100,000 iterations using a combination of @Risk, Microsoft

Project and Excel takes approximately 4-5 hours to be completed while a simulation

performed by @Risk and Excel only (examples in Chapter 5) with 100,000 iterations

takes about 40 minutes to be completed.

2.4 Literature review of network analysis in construction

2.4.1 Introduction

When attempting to determine or predict the completion date for any project it is

necessary to program all the activities that make up the project. In order to analyse

risk affecting project duration, project network techniques (PNT) provide a basis for

such an assessment. This section starts with the history of the PNT, then focuses on

the quantitative methods used in analysis of project duration. Some most popular

methods used in network analysis such as CPM, PERT, PNET and MCS methods are

reviewed and discussed in detail.

2.4.2 History of Project Network Techniques (PNT)

2.4.2.1 Early development

The Egyptians, Romans and ancient Chinese worked construction miracles in their

day. Surviving ruins attest to the brilliance of their architecture, but of their

construction planning and scheduling, we know little. It can be supposed that they

solved many scheduling programs by the "use a bigger whip" philosophy. Project

management has other roots reaching back into the days before the pyramids.

Historical project managers included Noah, Solomon, and the unknown architect who

designed the Tower of Babel. History records much about the construction details, but

little about the methods of control. In the mid-nineteenth century, at least one writer

discussed a work-versus-time graphical representation very similar to today's bar

charts. However, it remained for Henry L. Gantt and Frederick W. Taylor in the early

1900s to popularise their graphical representations of work versus time E321 . Their

"Gantt charts" were the basis for today's bar graphs or bar charts. The work of Taylor

and Gantt was the first scientific consideration of the problem of work scheduling.

Although this work was originally aimed at production scheduling, it was readily
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accepted for planning construction and recording its progress. The bar graph was, and

is, an excellent graphic representation of activity. It is easily read and understood by

all levels of management and supervision.

2.4.2.2 Gantt chart

In the Gantt chart, the time that an activity should take is represented by a horizontal

line, the length of the line being proportional to the duration time of the activity. In

order that several activities can be represented on the same chart, a framework or

ruling is set up, giving time flowing from left to right, the activities being listed from

top to bottom [33] . See Figure 2.1:

Activity Week number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

B

C

Figure 2.1 The Gantt chart

Figure 2.1 reveals quite clearly how work should progress. Activities (A, B and C)

must be carried out in sequence and by the end of week 8, the whole of activity A and

B should be completed.

To show how work is actually progressing, a bar or line can be drawn within the

uprights of the activity symbol, the length of the bar representing the amount of work

completed. Thus, if 50 per cent of an activity is complete, then a bar half the length of

the activity symbol is drawn.

Figure 2.2 shows a Gantt chart combining planning and recording progress. When it is

viewed at the end of week 7 (denoted by two small arrows at the top and the bottom of

the chart), then the following information is readily apparent:

Activity A should be complete and, in fact, is so.
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Activity B should be 80 per cent complete, but, is only 20 per cent finished.

Activity C should not be started and, in fact, is not started.

Activity D should be 66 per cent complete and, in fact, is 83 per cent finished.

Activity E should be complete and, in fact, is so.

Activity F should be 85 per cent complete and, in fact, is already finished.

Thus we see that incomplete bars to the left of the cursor mean under-fulfilment, while

those to the right mean over-fulfilment.

Week Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A 1 , I

B
I— I

C I 1

D I1
,

E I, 1

F 1 1

At
Figure 2.2 Gantt chart combining planning and recording progress

By the use of codes and/or symbols, the reasons for any delays can be displayed, and

the whole chart can be very succinctly informative, combining both planning and

recording progress. For many tasks the Gantt chart is unsurpassed, and its use has

been very highly developed.

Though valuable, the Gantt chart presents two major difficulties, one concerning the

problem of inter-relationships, the second that of needing to take several decisions

simultaneously.

The problem of inter-relationships arises when for example, we consider activity E in

Figure 2.2. It is shown here to start at the beginning of the project. However, it may

be that there is another requirement, namely that it must be complete before activity C
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can start. This means that activity E can in fact 'slide' 4 weeks without detriment to

the whole project. There may also be another activity, K (not shown in Figure 2.2),

which can start only when F is complete. How can these inter-relationships be

displayed? It is possible, in small-scale work to 'tie' bars by dotted lines, but if more

than a few activities are concerned the chart becomes so muddled as to be useless.

The problem of simultaneous decisions can be seen that when locating an activity on a

Gantt chart, three simultaneous decisions have to be made:

1. Method (logic): activity C is shown to follow activity B, that is, a decision on the

way the project is to be carried out has to be made - the logic has to be decided.

2. Time: any activity bar has a length, that is, a decision has been made on the time

that each activity will occupy.

3. Resources: locating an activity in a position implies that resources are available to

carry out the activity.

All projects have these three dimensions - logic, time, resources - and each is equally

important. To require a planner to make decisions on these three features at one time

is to set an impossible task, yet this is what is required when a Gantt chart is drawn. In

practice the decisions must be taken serially.

The Gantt chart is now more generally referred to as a 'bar chart' - from which it was

derived.

2.4.2.3 Families of PNT

The middle 1950s and the 1960s saw an explosion of interest in the problem of

planning, and the family of methods, project network techniques (PNT), was born and

very rapidly developed. Essentially, these techniques involve representing the

proposed project by a diagram (or 'model') built up from a series of arrows and nodes

(boxes or circles). The original structure of the model depends only upon the proposed

method of proceeding and it is drawn in such a way that the logic is easily displayed

and tested.
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Broadly, there are two PNT families, the activity-on-arrow (AoA) family, where an

activity is represented by an arrow, and the activity-on-node (AoN) family, where an

activity is represented by a box or node. These two families each have their own

advantages and disadvantages. The activity-on-arrow (AoA) system is more generally

known as critical path analysis (CPA) or program evaluation and review technique

(PERT). The activity-on-node (AoN) family are also termed as precedence networks.

In Great Britain Andrew [341 of I.C.I. was using the 'controlling sequence duration' for

scheduling maintenance as early as 1955, and the Operational Research (0.R.) Section

of the General Electricity Generating Board investigated the problems concerned with

the overhaul of generating plant - a task of considerable complexity which was

increasing in importance as new high-performance plant was being brought into

service. By 1957 the O.R. Section had devised a technique which consisted essentially

of identifying the "longest irreducible sequence of events," and using this technique

they carried out in 1958 an experimental overhaul at a power station which reduced the

overall time to 42 per cent of the previous average time for the same work. Continuing

to work upon these lines the overhaul time was further reduced by 1960 to 32 per cent

of the previous average time. the rather clumsy name, "longest irreducible sequence of

events," was soon replaced by the name, "major sequence", and it was pointed out, for

example, that delays in the "major sequence", would delay completion times, but that

difficulties elsewhere need not necessarily involve extensions in total time. This work

of the O.R. group was not made public, although comprehensive reports were

circulated internally which foreshadowed much later work carried out elsewhere. In

France, Roy [35], began work on his 'method of potentials' in 1958 and had perfected a

working method by 1960. Wille [36] had told how a military air base was constructed

in Germany by Siemens & Halske under network control. Nevertheless, it is generally

agreed that the main impetus was generated in the United States.

At much the same time similar developments were being undertaken in the U.S.A., the

technique has developed along two parallel streams, one military, the other industrial.

In 1956, the E.I. du Pont de Nemours Company set up a group at its Newark,

Delaware, facility to study the possible application of new management techniques to

the company's engineering functions. One of the first areas considered was the
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planning and scheduling of construction projects. The group had a UNIVAC I

computer at its disposal and decided to evaluate the potential of computers in

scheduling construction work. Mathematicians worked out a general approach,

theorising that if the computer was fed with information on the sequence of work and

the length of each activity, it could generate a schedule of work.

In early 1957, the UNIVAC Applications Research Centre, under the direction of Dr.

John W. Mauchly, joined efforts with James E. Kelley, Jr., of Remington Rand

(UNIVAC) and Morgan Walker of Du Pont in direct charge at network. The original

conceptual work was revised and the resulting routines became the basic CPM. It is

interesting that no fundamental changes have been made in this first work.

In December,1957, a test group was set up to apply the new technique, then called the

Kelley-Walker method. The test team (made up of six engineers, a process engineer,

and an estimator) and a normal scheduling group were assigned to plan the

construction of a $10 million chemical plant in Louisville, Kentucky.

By March, 1958, both the normal and test planning groups had completed their work.

The effort expended by each group was about equal. At this point, the company

decided that the work would be done by contractors rather than by Du Pont forces.

Also, a number of design changes were introduced into the schedule, for which the

normal planning group expended about 40 percent of its original effort. The test

(CPM) team needed to use only 10 percent of its original effort in re-planning.

Following the first test case, a $2 million project was planned by the test team. This

effort was completed in July, 1958, and management now acknowledged the potential

of the new system. However, the first two projects would not be completed for some

time. To get a quick field test, the method was applied to an equipment turnaround. In

this particular turnaround, the product was a self-detonating neoprene intermediate.

This meant that the equipment could not be maintained while the unit was shut down,

purged, and maintained. The turnaround had been done many times before and the

average time for the shutdown was 125 hours. Using the CPM plan, the overhaul was

accomplished in 93 hours. This was starting, to say the least. CPM had been used on
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subsequent turnarounds of the same unit and the shutdown time had been reduced to

74 hours.

These tests at Du Pont are the only examples of a controlled experimental application

of CPM that have been published. (The 1959 Proceedings of the Eastern Joint

Computer Conference included a complete report by Messrs. Kelley and Walker) [371.

In 1958 Dr. Mauchly formed Mauchly Associates and was joined that year by Kelly

and Walker. Du Pont continued to use and develop CPM for its own purposes.

Through public and company-organised courses, particularly in the cost and resource

allocation areas. Gradually other firms came into the CPM picture. Since the

development of CPM has been funded by private industry on a competitive basis,

paradoxical situations have existed and still do. Firms, universities and consultants

have been retained to develop CPM - based routines which are already operational.

None of this is by design. Rather, it illustrates the complexity of reaching the

construction industry and the owners which it serves. The developers of CPM

expected instant success because the system was logical, common sense, and non-

complicated but the first years were uphill. No doubt Dr. Pasteur found it hard to sell

(or give away) the first antirabies vaccines [32] . Even today, after literally thousands of

key people have been directly exposed to CPM, it is difficult to understand why only a

minority of the construction industry utilise the technique.

In January, 1958, development of PERT (Programme Evaluation Research Task as it

was first called ) was originated by the Special Projects Office of the Navy Bureau of

Ordinance, which was charged with the overall management of the Polaris missile

program. At this time the Polaris program was already well under way and the

problem facing the Special Projects Office (SPO) was monitoring and controlling the

program. There were already more than 3,000 contractors and agencies working on

the program. If all these people delivered on contractual schedule, the program was

sure to be complete on time. To co-ordinate the wide-flung efforts of the contractors,

the SPO had instituted weekly meetings of key personnel. However, the thought that a

small contractor might be late with a minor but vital hardware assembly was a constant

spectre. It was with this in mind that the SPO wanted an organised and thorough
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method of keeping in constant touch with all components. The magnitude of the task

suggested the usefulness of a computer-oriented approach.

The SPO-PERT originating team included personnel of Navy SPO, Lockheed, and the

firm of Booz, Allen, and Hamilton. In July, 1958, a phase 1 report [38] was issued by

this team. This report outlined the theoretical basis for the technique and proposed the

method of application. In September, a phase 2 report [391 put forth detailed procedures

for the use of PERT, and PERT was imposed upon the first Polaris contractors on

October 16, 1958.

The first step in the application of PERT to Polaris was the identification of key

events, or 'milestones', which had to be met to complete Polaris on schedule. Minor

milestones within the major milestone areas were identified next. These milestones

were monitored biweekly to evaluate the program status.

The Navy credits PERT with helping to complete Polaris ahead of schedule. This is

particularly meaningful when we consider that the average weapons system contract

exceeds the original schedule by 36 percent 1321•

On June 1, 1962, the Secretary of Defence noted, "Very striking improvements in time

and cost control have been resulting from these procedures (i.e., critical path

scheduling and PERT) and it is essential that we encourage their application in the

future." Accordingly, the contractor working on government construction may

encounter either PERT or CPM. National Aeronautics and Space Administration

(NASA) in their description of NASA-PERT indicated that CPM is an equivalent 1321•

The term 'activity-on-node' (AoN) networking implies not a single system of

networking but a family. The form of 'activity-on-node' is also known as precedence

networks. The activity description is shown in a box or oval, with the sequence or

flow still shown by interconnecting lines. In some cases, arrowheads are not used,

although this leaves more opportunity for ambiguous network situations.
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Of these AoN systems possibly the best known and most used is the 'method of

potentials (MoP)' by Roy [35j , although these are indications that IBM's 'precedence

diagramming' is becoming popular. MoP is the simplest technique.

Professor John Fondahl of Stanford University, who was established in the early 1960s

as an expert on non-computerised solutions to CPM and PERT networks, was one of

the early supporters of the precedence method, terming it 'circle and connecting arrow

technique'. Professor Fondahl's study [401 for the Navy's Bureau of Yards and Docks

included descriptive material and gave the technique early impetus, particularly on

Navy projects.

An IBM brochure credits the H.B. Zachry Company of San Antonio with the

development of the precedent form of CPM. In co-operation with IBM, Zachry

developed computer programs which can handle precedence network computations on

the IBM 1130 and IBM 360. This is particularly significant, since in 1964, Phillips

and Moder 1411 indicated the availability of only one computerised approach to

precedence networks versus 60 for CPM and PERT.

The Precedence networks (AoN) actually was recast from CPM but with substantially

different in appearance. Simplicity of form is one of the great advantages of

precedence networks over CPM. Freedom from the need to introduce dummies is one

of the most frequently cited advantages of AoN networking while accepting this

considerable benefit it must be pointed out that an AoN diagram is likely to be larger,

and appear more complex than the equivalent AoA network. Since in network analysis

(calculating the duration of network) both AoA and AoN provided essentially the same

calculated result, the next of this thesis is pinpointed to discuss AoA network analysis.

2.4.2.4 AoA networks

As mentioned in last section, project network techniques (PNT) can broadly be classed

to two families: activity-on-arrow (AoA) family and activity-on-node (AoN) family.

In the AoA system, sometimes is called arrow diagram, more generally known as

critical path analysis (CPA) or program evaluation and review technique (PERT).

Since the CPM and PERT become the most popular methods in network analysis
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(calculating the duration of network), it is also that both AoA and AoN provided

essentially the same calculated result, the AoA network system is discussed in this

section: first the basic elements, then the dummy, and how to construct the networks

are described in details.

An arrow diagram is built up from only three main symbols: full arrow which

represent activities, nodes which correspond to events, and dummy arrows for logical

sequences.

An activity, is an element of the work entailed in the project. In some instances the

"work" is not real in the sense that neither energy nor money is consumed, and in some

cases (see dummy activities below) no time is used. However, ignoring these last

cases, an activity is a task which must be carried out. Thus, 'waiting for delivery of

component X' is an activity just as much as is 'making component Y', since both are

tasks that must be carried out. This 'non-work' aspect of some activities is sometimes

found difficult to accept until the test of needfulness to the project is applied. Once

this test is applied it is clear that waiting for delivery is an activity in the sense in

which the word is used in drawing networks.

Activities are represented by arrows, the arrow-heads being at the completion of the

activities. The length and orientation of the arrow are of no significance whatsoever,

being chosen only for convenience of drawing. It is equally not essential that arrows

should be straight, although it will be found that the appearance of the whole diagram

will be improved if the main portion of each arrow is both straight and parallel to the

main horizontal axis of the paper on which the diagram is drawn. This will often

require that arrows are 'bent'. The description of the activity should always be written

upon the straight portion of the arrow.

An event, which is the start and/or finish of an activity or group of activities. The

essential criterion is that a definite, unambiguous point in time can be isolated - a

broad band of availability is of no use. The word 'event' may be misleading here,

since there may in fact be a concurrence of a number of separate events, and for this

reason some authorities prefer the terms 'node', 'junction', 'mile-stone' or 'stage'. In

general, 'milestone' is reserved for particularly significant events that require special
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monitoring. 'Node' is possibly the most generally used term, and will be used

subsequently.

Events are represented by labels, usually within convenient geometrical shapes - often

circles. The node at the beginning of an activity is known as a 'tail' or 'preceding'

node, while that at the conclusion of an activity is known as a 'head' or 'succeeding'

node.

In some cases it is necessary to draw 'dummy' activities, that is activities which dc gict

require resources but may in some cases take time. A dummy activity is always

subject to the basic dependency rule that an activity emerging from the head node of

another activity depends on that activity.

There are three occasions when dummies are used: identity dummies, logic dummies

and transit time dummies. Dummies are drawn as broken or dotted arrows.

The arrows are arranged to show the plan or logical sequence in which the activities of

the project are to be accomplished. This is done by answering the following questions

with each arrow:

1. What arrows (activities) must precede this one?

2. What arrows (activities) can be concurrent with this one?

3. What arrows (activities) must follow this one?

4. What controls the start?

5. What controls the finish?

Basically, the representation of events and activities is governed by one, simple,

dependency rule which requires that an activity which depends upon another activity is

shown to emerge from the head of the activity upon which it depends, and that only

dependent activities are drawn in this way.

This dependency rule gives rise to two fundamental properties of events and activities:

1. An event cannot be said to be realised (or 'be reached' or 'occur' ) until all

activities leading into it are complete.

2. No activity can start until its tail event is realised.
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These two statements can effectively be combined into a single comment, namely that

'No activity may start until all previous activities in the same chain are complete'. It

must be understood, however, that this single statement has two facets as set out in 1

and 2 above.

There are two conventions usually adopted in drawing networks and, like all

conventions, they may be ignored if circumstances warrant. The conventions are:

1. Time flows from left to right.

2. Head nodes always have a number higher than that of the tail node.

It is useful to realise that the head and tail labels of the activities effectively specific

the logic of the diagram, and that from a list of head and tail labels the network can be

constructed.

2.4.3 Critical Path Method (CPM)

The most commonly used method in network analysis is the well-known Critical Path

Method (CPM). Once an AoA network is constructed, the network analysis can be

carried out. The systematic analysis of a network sorts out the individual activities

into two main classes, critical and non-critical.

The main goal of network analysis is to find out the total project time (TPT). The TPT

is the shortest time in which the project can be completed, and this is determined by a

sequence (or sequences) of activities known as the critical path (or paths). Precisely, a

critical path in a network is that continuous sequence of activities which produces both

the maximum and the minimum duration time for the whole network.

The simplest way to calculate the TPT is to enumerate all the paths in a network and

the critical path can then be found. However, this total path-enumeration analysis will

not be useful in large networks and should be limited to small problems. The critical

path in a small network can be found fairly easily by trial and error. For larger

networks, a systematic procedure is needed.
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The Critical Path Method is a methodology that through study the earliest and latest

time of each activity or event in a systematic way that the TPT can be calculated, it

also means that the critical path can be identified. In the other words, the project

duration can be estimated.

2.4.3.1 CPM calculations

To determine the project duration, carry out a forward pass whereby the earliest

starting times (EST) for each activity is calculated. In the calculation it will sometimes

be necessary to refer to the earliest finishing time (EFT) of an activity, given by:

Earliest finishing time = earliest starting time + duration

The critical path is then identified by carrying out a backward pass whereby the latest

finishing time (LFT) of an activity and its associated latest starting time (LST) are

calculated, given by:

Latest starting time = latest finishing time - duration

The above activity times are indirectly derived from the forward and backward passes

which directly give the event times for the nodes. A node has two times associated

with it, one, from the forward pass, its earliest event time (EET), the earliest time the

event can be realised, the other, from the backward pass, its latest event time(LET), the

latest time by which the event must be realised if the total project time is to be

achieved. The EET is the EST of all emerging activities, whilst the LET is the LFT of

all entering activities.

The critical path in a network passes through all the events for which the EET and LET

are the same. However, this is a necessary but not a sufficient condition 1421 and float is

the only means of identifying the critical path 1331 . Detailed CPM calculations can be

found in many text books such as by O'Brien [32] , Battersby [421 and Lockyer and

Gordon 1331•
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2.4.3.2 Advantages and disadvantages of CPM

The main advantage of the CPM is that it is very simple and effective. A variety of

computer programs for CPM are available, such as "Microsoft Project", in which the

computer needs only the activity numbers, duration of each of activity and the

dependencies of these activities. From this it can mathematically construct the

network, the TPT can be calculated very quickly and also the floats, critical path (or

paths) and time-scaled bar chart can be given as part of the output.

The main disadvantage of CPM is that it assumes that the duration of activities are

deterministic and as such the project duration estimated from CPM using the activity

network is invariably deterministic. In the construction industry, in most projects, the

durations of the various activities are not always predictable. The activity durations

should therefore be modelled as random variables, and evaluation of the project time

considered as a problem of probabilistic network analysis. Some of the probabilistic

scheduling methods for risk analyses are reviewed below.

2.4.4 Program Evaluation and Review Technique (PERT)

The Program Evaluation and Review Technique (PERT) [38 ' 39 ' 43] was developed in

parallel with the CPM and they are essentially the same On arrow networks, with the

only difference being a measure of the uncertainties involved. PERT relies on a

formula for combining the estimates of three cases for an activity, namely:

• An optimistic time, which is considered to be the 'best' time given that all

associated factors fall into place.

• A pessimistic time, which is the 'worst-case' scenario, with everything going

wrong which could go wrong.

• A most likely duration, which is the 'normal' time for the activity, based upon

expert judgement, experience or other factors.

The PERT group assumed that these three estimates would fall on a bell-shaped (Beta)

curve but there was no proof available for this assumption The choice of the Beta

distribution is not justifiable on experimental grounds, but it is computationally easy to
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te =
(a + 4M + b) 

6

(b—a) 
s =

6

(2.36)

( 2.37 )

handle, and its users state that it gives significantly useful answers. When PERT is

applied to the three time estimates above, it can be shown that:

where te = expected duration, a = optimistic duration, M= most likely duration, b =

pessimistic duration and s= standard deviation.

PERT uses the Central Limit Theorem (CLT) to find the expected project duration.

The CLT indicates that for independent random variables:

(2.38)

S2 s+ 4 +...±sn2	 ( 2.39 )

where E(T) = expected project duration, t, = expected duration of th activity provided

the activity lies on the critical path, S= standard deviation of the project duration and s,

= standard deviation of ith activity duration.

The CLT theorem is valid irrespective of the distribution type for each of the activities

provided the number of activities is large enough (typically n � 30) and also provided

none of the activities is dominant.

2.4.4.1 Differences between PERT and CPM

It has been pointed out by Battersby 1421 that PERT has two main features, both

connected with probability, which set it apart from the simple CPM:

1. It provides a means of associating probabilities with the estimates of the duration

of an activity.

E(T)=ti+t2+•••+tn
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2. It allows the probabilities of individual activities to be combined along with the

durations so that the resultant estimate of the project duration is also qualified by

probability assessments.

Each of these features demands certain assumptions, in addition to those generally

associated with the employment of statistical methods such as the identification of

probability with relative frequency. For the above point 2 independence is necessary:

that is to say, the duration estimates for any one activity are assumed not to depend on

those of any other activity or activities. Variances are assumed to be additive which,

given independence, is reasonable. What is less reasonable is the assumption that the

addition of variances along the critical path would remain free from interference by

non-critical activities.

Assumptions about individual activity durations have provided a rich field for

academic exploration. A likely candidate is the well known Beta distribution which

has the desirable properties of being contained entirely inside a finite interval such as

(a, b), and can be symmetrical or skewed depending on the location of the mode, m,

relative to a and b. Lacking an empirical basis for choosing a specific distribution, the

Beta distribution was historically accepted as a mathematical model for activity

duration times in the PERT.

2.4.4.2 Advantages and disadvantages of PERT

PERT was the first attempt to quantify the uncertainty in activity durations and the

project network. Despite the well documented shortcomings of PERT, both in the

estimation of uncertainty in activity durations [44 '45'461 and in project networks [44,47,48] it

is still suggested by many as the solution to uncertainty in activity duration networks.

The shortcomings of PERT in the estimation of activity durations are the simplifying

assumptions in the approximation for expected value which restrict the shape of

probability distribution to only one of three, namely those of skewness ± /NI or 0.

The contention of flexibility is therefore illusory [44] and Sasieni [46] questions the

validity of the Beta distribution.
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Another drawback of PERT is the assumption that project duration and its uncertainty

can be determined by the longest (critical) path. While this assumption gives the

maximum expected value for project duration it does not necessarily evaluate the

maximum uncertainty because it ignores shorter but more uncertain paths 1481.

2.4.5 Probabilistic Network Evaluation Technique (PNET)

The method of Probabilistic Network Evaluation Technique (PNET) was introduced

by Mg, Abdelnour, and Chaker 1481 • The algorithm used by PNET is based on the

different modes of failure that a network can have. Failure, in this case, is the

completion of a project in a time longer than the target duration. Each path in the

network can become a mode of failure. Thus the completion of a project can be

delayed by one or more paths in the network. PNET uses the simplified, approximate

solution for the combination of modes of failure.

2.4.5.1 Probability of project completion time

Consider a project network with a specified number of activities. Completion of the

project obviously requires completion of all the activities, and thus of all the possible

paths in the network. That is:

(T	 (T, t)n(T, t) n n (T t) 	 ( 2.40 )

and by virtue of de Morgan's law:

> t ) =(T> t ) u(T2 > t) u	 n > t)	 ( 2.41 )

in which T is the actual completion time of the project, T t is the event of

completion of a project in time t and T1, T2, ..., Tn are the durations of the respective

paths. (-) represents an intersection and u as a union of events.

From Equation 2.40 we see that completion of a project in time t will involve all the

paths in the network. Theoretically, then, the probability of completing a project in

time t, denoted p(t), is:
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p(t)- P(T	 t)= P(T,	 t, T2 	t,...Tr,	 t)

whereas the probability that the project duration will exceed t, denoted q(t), is:

( 2.42 )

q(t)	 P(T > t)= P(7, > t	 T2 > tU ...UTn > t) ( 2.43 )

Clearly:

At) + q(t)= 1 ( 2.44 )

The events (Ti>t), (T2>t),...(Tn>t) are not mutually exclusive. Moreover, the different

paths in a network may have common activities and thus would be correlated (as

shown subsequently). For this reason, the events (Ti�t), (Tn�..1) are not

statistically independent and thus the determination of p(t) or q(t) requires the

calculation of multiple joint probabilities. Equation 2.41 can be expressed as the union

of the following mutually exclusive events:

(T. > t).	 > OU	 � t,T2	 � t,T2 � t,...,Tn_i t,T„ > t)	 ( 2.45 )

then:

p(t)= 1 — q(t)= 1 —[P(7 > t)+ 13(7 	 t , T2 >	 ... + P(rI -� t,T2 	 t,T > t)]

( 2.46 )

When considering individual paths, it can be assumed that the duration of the

individual activities in a network are random variables (rk, k = 1,2,..., with means and

standard deviations duk, ak, respectively) and that the activities are mutually statistically

independent.

The duration Ti in 7r, is the sum of the durations of the activities comprising path 7r„ in

which 2T1, 	 7rn are a set of all possible paths. Thus:

= Erk	 ( 2.47 )
kerr,
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1
a k

Ice irgvri)

Pi; = 
0-Tar,

( 2.50 )

Accordingly, the mean duration of path is:

PT, = Pk
ken,

and by virtue of statistical independence, the corresponding variance is:

2 X" 2
T = d k

ken-,

( 2.48 )

( 2.49 )

Although the individual activities are statistically independent, two different paths may

be correlated as a result of common activities. The correlation between any two paths

7; and 11.-1 can be shown to be:

in which kE( z ni 71-j ) denotes those activities common to paths gi and z. According

to Equation 2.50, the correlation between paths is always positive.

2.4.5.2 Bounds and approximations

The completion-time probability, p(t), of a project, or the complementary probability,

q(t) is bounded. These bounds are important because, aside from defining the limits of

p(t), they also provide the basis for the development of the PNET, described

subsequently.

From Equation 2.40, it can be seen that:

(T1 t) n 2 t)	 n (7, 	 c	 t)	 for any i	 ( 2.51 )

Therefore:
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P(T, t,...,T„	 P(T, t)
	

for any i	 (2.52)

and in particular:

At) miin[P(T, t)]
	

( 2.53 )

The equality in Equation 2.53 holds when all the paths in the network are perfectly

correlated.

Alternatively, since the correlation between any two paths ri and 71:1 is always positive,

0 we have:

14, t1T, t) � P(T, t)

Thus:

t,	 t	 P	 t )/3(7",	 t

And by induction:

P(T/ r,T2 t,...,T, t).� 13(T, t)13(T2	t)

which means:

( 2.54 )

( 2.55 )

( 2.56 )

At) � 1117 13(T; t)	 ( 2.57 )
r=1

In this case, equality holds when all the paths are statistically independent. The right-

hand sides of Equations. 2.53 and 2.57 therefore are, respectively, the upper and lower

bounds ofp(t). Thus:

nP(T, t) � At) min 13(T t)
	

( 2.58 )
i=1
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According to the previous bounds, therefore, the assumption of statistical

independence among all the paths gives conservative estimate, whereas assuming

perfect correlations among the paths would yield unconservative results. These may

be called, respectively, the most pessimistic and most optimistic predictions of the

completion-time. In this sense, PERT always gives the "most" optimistic estimate of a

project time, i.e., the resulting p(t) is too high. This is also evident from Equation 2.46

if 7r1 is assumed to be the mean critical path.

2.4.5.3 Basis of PNET method

From Equation 2.46 we see that successively better estimates of the project

completion-time probability can be obtained by considering more paths in the

evaluation of p(t). In particular, if the paths, gi, 7t2,..., gn, are arranged in decreasing

order of mean durations, i.e. such that:

PT, � PT2 � .•* � PT.
	 ( 2.59 )

then the additional paths in Equation 2.46 may be limited to the major paths (defined

as paths with long mean durations). However, unless the major paths are all

statistically independent (or perfectly correlated), the improvements suggested in

Equation 2.46 still require evaluation of the joint probabilities which are generally not

simple to perform.

PNET was developed as an approximate method for estimating p(t) in which all the

major paths are considered, but evaluation of the joint probabilities is avoided. The

method is an obvious improvement over the PERT method, and under certain

conditions (when paths are/or assumed perfectly correlated) it reduces automatically to

the PERT method.

PNET method is based on the following observations:

1 The paths with long mean durations and high coefficients of variation will have the

greatest significance on p(t).

2 According to Equation 2.53, if several paths are each highly correlated with a

major path, then these paths are "represented" by the same major path, i.e., the
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completion-time probability associated with these several paths is represented

approximately by that of this major path alone.

3 On the other hand, according to Equation 2.57, if several paths have low mutual

correlations, the completion-time probability associated with these paths can be

approximated with the product of the respective path probabilities.

Therefore, on the basis of these observations, if all the major paths in a network can be

divided into subgroups in accordance with their correlations, such that within each

subgroup the paths are highly correlated and thus are "represented" by one path,

whereas between the "representative" paths where the mutual correlation is low, then

the completion-time probability of the project would be given approximately as the

product of the completion-time probabilities of the individual "representative" paths.

This can indeed be done conveniently for any network, resulting in the PNET

algorithm for determining the project completion-time probability, p(t).

2.4.5.4 PNET Algorithm

I. Generate the major paths sequentially in order of decreasing mean path durations,

starting with the mean critical path, Ai. This process may be done systematically

and formally [491 • The major paths may be limited to those whose mean path

durations are at least a certain percentage of the mean critical path duration.

2. Evaluate the standard deviations for each of the major paths, using Equation 2.49.

3. Identify the "representative" paths as follows:

• Using Equation 2.50, calculate the correlations ph between the critical path,

and each of the other major paths, 7z-i. Those paths with Ai > 0.5 (assuming that

p = 0.5 represents the transition between high and low correlation) are

"represented" by 71j.

• For those paths with phi 0.5, consider these to be a subset of paths fri; j = 1,

2, ..., k} and designate the path within this subset with the longest mean

duration to be gib Calculate the correlations mu between irjj and ir; within this

subset. Again, those paths among gi with ply> 0.5 are "represented" by 71-11,
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whereas for those paths with is 0.5 the procedure is repeated to determine

the subsequent "representative" paths.

• The process then leads to the set of "representative" paths, 71-1, 71-11, gill, •••9

4. Calculate the probability of the "representative" paths, i.e.:

	

t),	 ll	 N t), assuming a convenient probability distribution

for T1, T11, TN and using the mean and variance evaluated in steps 1 and 2. The

project completion-time probability, p(t), then is given approximately by the

product:

	

At) P(7,	 (T11 4.* A, t)	 (2.60)

Observe that if all the major paths are highly correlated with r1, then Equation 2.60

becomes p(t) IV � t) and thus the PNET method reduces to the PERT method.

The probability of the individual paths P(T, t) may be calculated on the assumption

of Normal distributions for Ti. If there are a large number of activities in a path, the

path duration will tend toward a Normal variate (by virtue of the Central-Limit

Theorem). In the range of probabilities of general interest, say 0.05 P(t) 0.95, the

distribution type would not make a significant difference on the calculated

probabilities. The proposed PNET method, however, is independent of the distribution

function, and thus is equally valid if other distributions for Ti are used.

2.4.5.5 Advantages and disadvantages of PNET

It was claimed [48] that PNET has been verified by results of large-sample Monte Carlo

simulations and very close agreement was obtained for the entire range of probabilities

of interest. In contrast to the methods of CPM and PERT where only the main critical

path is considered, PNET includes all major paths in a network and can be expected to

generate better results [501.

However, PNET is an approximate method and the accuracy of the method was found

to be varying from "liberal or conservative" [51] . It was found that the variance

depended on the correlation coefficient, p, with a higher p being more convenient in
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some networks but giving more conservative results. As there is no evidence as to

why the correlation coefficient should be 0.5, the parametric choice of p requires

further study and it has been suggested that the problem may be solved by using two

different values of p and using judgement to arrive at an appropriate answer.

Another disadvantage is that PNET requires path enumeration and in large network,

the number of paths can be very large. A modification to the PNET was proposed by

Oday Al-sadek and David G. Carmichael [501 , by introducing dimensionless factors (1'1)

whose values correspond to the correlation coefficient between the critical path and the

ith path. T in Equation 2.60 then becomes:

P(T
I	

t) I)(T
"
 t) P (7' N t)

At) 
1— Pi 1 P 2	 1 PN

( 2.61 )

where any of the terms on the right hand side are greater than 1, these terms are set

equal to I. The use of Equation 2.61 over Equation 2.60 reduces the number of

computations.

2.4.6 Monte Carlo Simulation (MCS)

Monte Carlo simulation in the analysis of networks appeared since the 1960s by

authors such as Van Slyke [52], McGowan [531 and others P4'55'56571 and they all used a

simulation procedure. Before running a simulation of the duration of a construction

network the probability distribution function of each activity is determined or assumed.

During each replication in the simulation, random values are assigned to the

probability of completion of the activities. Once the probability of completion of the

activities are known, their durations can be determined by the expected duration and

the standard deviation of the critical path. Thereafter, the duration of each path is

found by summing up the durations of all activities in the path. The network duration

is the duration of the longest path [58]
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2.4.6.1 Problems encountered in MCS method

The problems encountered in Monte Carlo simulation mainly are the choice of the

probability distribution function of the individual activity and the correlation between

variables.

The choice of which probability distribution function to use for representing individual

activities has provided rich field for researchers. Standard distributions are in favour

since only a few parameters are needed to determine activity duration distribution.

However, there is no consensus on which standard distribution should be used in

construction project activities.

Normal and Log-Normal are the most common standard distributions being used in

construction networks because if there is a large number of activities in a path, the path

duration will tend toward a Normal variate due to the Central Limit Theorem. As was

explained in detail by Sculli [59] , the normality assumption for activity durations is

quite reasonable and another advantage is their simplicity. It is particularly valuable in

view of potential practical implementations, where project network structure and

evaluations of activity times may change often during project performance. This

should also give occasion to acceptance of the biases arising from the approximations.

The Beta distribution is often recommended because of its flexibility. AbouRizk and

Halpin 1601 show, through their analysis of empirical construction activity duration data,

that the Beta distribution is appropriate. AbouRizk, Halpin and Wilson [61,62]

developed a procedure to fit Beta distributions to construction operations. Triangular

and Uniform distributions are also common in practice [63 '64] . Erlang distribution [65'50],

Pearson family [661 , Mixture distributions [67,68] have also been suggested.

The effects of the correlations between each activity have not been given adequate

attention 120 '691 . It was shown in the works by Pouliquen [20] and Wall [691 that the effect

of correlations between variables is more significant than the effect of the choice of

distribution for an individual activity. Their work was limited to showing that 'with-

correlations' simulations produce results more like the distributions of actual data than

'without-correlations' simulations. They did not investigate whether one particular
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method of assessing and building correlations into MCS was better than any other. A

step by step procedure for estimating the impact of activity correlations on the total

project completion time using a simulation approach has not been provided.

2.4.6.2 Advantages and disadvantages of MCS

The major advantages of MCS is that the results provide an unbiased estimate of the

project completion distribution. MCS can provide an almost unlimited capacity to

model networks as long as the computers and software are appropriate. In the absence

of data, subjective judgement can be applied as different distributions for activities can

be assumed, to evaluate the project completion time. Another advantage of MCS is

that the method allows the calculation of a criticality index [50,52] • The criticality index

is the probability that an activity will be on the critical path.

The disadvantages of the MCS are the correlation between activities are difficult to

quantify and also that MCS is a time consuming method and expensive in computer

time. Two decades ago, researchers had to develop algorithms to simplify the

networks and thus reduced the time for the use of MCS [54,55] . This has been overcome

as the rapid development of computer processing power in recent years and as such

MCS has become a much more popular method.

2.4.7 Other methods in network analysis

Some less popular methods are discussed in this section. These are Narrow Reliability

Bounds Method (NRB) [701 , Probabilistic Network Analysis by Putcha & Rao 1711 and
Linear Scheduling Technique (LST) [72,73].

The Narrow Reliability Bounds Method (NRB) was developed for structural reliability

analysis by Ditlevsen [70] , and was earlier applied for scheduling by Laferriere 1741.

Like PNET, the NRB model is based on the probability of failure of each path. Failure

occurs when the network duration is longer than a predetermined target duration. A

failure mode is equivalent to a network path. Each path is considered to be Normally
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distribution with an expected duration and standard deviation. For a more detailed

discussion of this approach see Ditlevsen [70] and Diaz [58].

NRB finds two probabilities of failure for the combination of all existing paths: lower

bound probability and upper bound probability. NRB can be used for calculating the

probability of failure for target durations larger than the project expected duration. It

was found that the results from the upper tail of the NRB are consistent with MCS and

those from lower bound are at least as optimistic as those obtained with PNET or

PERT [51 ].

Unlike many authors who consider activities as a continuous probability distribution

function Putcha & Rao [711 used Rosenblueth's 'two point estimates scheme' 1751 for

representing the randomness of the activities in a network. This is to replace a random

variable with point estimates and according to Rosenblueth [76] and Lind 1771 , if

y = f(x) is a function of a random variable x, which has mean mx and standard

deviation ax , then the mean my and standard deviation cry can be calculated as:

M	

1

Y 
= -2

(
)

,+ + Y -)	 (2.62)

a
Y
 =1 (Y + —Y-)	 ( 2.63 )
 2

where y + = y(x + ).	 +o-x) and y- = y(x)= Amx — x ) The term mx is the

expected value of x represented as mx Mx).

This implicitly assumes that y is defined for x =m ±crx . These are supposed to be

exact for a particular distribution composed of two concentrated probability masses,

the magnitude of each being 0.5 and are located at x + and x. Such a distribution is

called Symmetrical Rosenblueth Distribution. The same procedure can be applied for

functions of several variables and the detailed procedure is discussed by Rosenblueth
[75,76].
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In the paper by Putcha & Rao [71] , the Rosenblueth method is modified to calculate the

final mean and standard deviation of project completion time, which is a random

variable and is the maximum of the all possible sequences from start to finish with a

given precedence. A scanning method was used and the last set of four points are then

reduced to a final two Rosenblueth points corresponding to the maximum duration of

all activities for the random variable T, representing project completion time. It has

shown that the results from the method proposed by Putcha & Rao checked with

Monte Carlo simulation and also a so call 'Exact' method. Excellent agreement was

obtained between those methods [71].

Linear Scheduling Technique (LST) has been developed from a graphical technique

172,783 to have the ability to determine a controlling activity path from activities on a

linear schedule 173 ' 79] . Unlike CPM, the location at which an activity changes from

non-controlling to controlling can occur at any point along a linear activity. It was

darned that this capability provides a much more realistic controlling activity path for

linear activities than can be obtained from CPM [79]•

However, LST can help with float identification, resource and cost allocation, schedule

stating and updating but in the sense of predicting the project completion time, it is a

deterministic method and risks and uncertainties can not be considered.

2.4.8 Concluding remarks

The techniques in construction network analysis have been reviewed. It can be seen

that MCS has become increasingly popular but more work is needed to investigate the

distribution choice for individual activities and the correlations between the variables.

Further development of analytical methods can not be neglected as these methods

provide approximate, yet acceptably accurate, probabilistic information and have the

advantage of computational efficiency which saves computer time and resources.
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CHAPTER 3 COMPARISON OF THE PERT

AND MCS METHODS

3.1 Introduction

In order to study network analysis in construction, the project duration of two example

projects was analysed by using two existing methods, the PERT and MCS methods.

As stated in Chapter 2, these two methods are the most common methods used in

construction network analysis. When applying the Monte Carlo simulation method, a

sensitivity analysis was carried out by investigating the effect of the different

probability distributions for individual activity durations, the number of iterations used

and the effect of the manner of how mean and standard deviations were set for the

different probability distributions. The results from PERT have been compared to

those of MCS method. Results and discussion are reported and from this conclusions

are drawn.

3.2 The PERT method

Full details of the PERT method can be found in Chapter 2. The use of the PERT for

calculating the total project duration is straightforward when the estimates of the

optimistic time (a), the most likely time (m) and the pessimistic time (b) of each

activity in the project are known, which is the case of the two example projects.

The following equations of PERT were used to calculate the expected duration and

standard deviation of each activity:

The total project duration is then assumed to follow a Normal probability distribution

with expected duration E(T) and variance S2:
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s2 =5, 12 +s22 ±...+sn2
( 3.4 )

The range of project duration estimated using the PERT method is the mean project

duration plus or minus 3 times the standard deviation. This is because it is assumed

that the project duration lies within three standard deviations from the mean (99%

confidence in a Normal distribution).

3.3 The MCS method

3.3.1 Introduction

The Monte Carlo simulation methodology can be seen in Chapter 2. In both examples

studied, five common standard distributions, namely the Normal, Log-Normal,

Triangular, Uniform and Beta distributions were assumed for individual activity

durations in order to compare the effects of different probability distributions for

individual activity duration in a particular construction project. To simplify the

problems, it was assumed that the activities are independent.

The number of iterations was investigated by running the simulation 100, 1000, 5000

and 10,000 times.

Further to this, the effect of the manner of how mean and standard deviations are set

for different probability distributions was analysed.

3.3.2 Assessment of the parameters for the different distributions

Before running a simulation of the duration of a construction network, the probability

distribution function of each activity has to be determined or assumed. For the purpose

of the present research, five common standard distributions, namely the Normal, Log-

Normal, Triangular, Uniform and Beta distributions were assumed for individual

activity durations in order to compare the effects of different probability distributions

for each individual activity duration in a particular construction project.
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The Monte Carlo simulations were carried out using the @Risk computer package

[30,3 In this particular package, probability distribution functions are used for adding

uncertainty (in the form of probability distributions) to each of the activity duration.

Distribution functions contain two elements; a function name and argument values

which are enclosed in parentheses. The type of distribution which will be sampled is

given by the name of the function and the parameters which specify the distribution are

given by the arguments of the function.

In most construction projects, due to the lack of objective data, subjective data

(estimates given by experienced estimators) such as minimum (a), most likely (m) and

maximum (b) are used. In the two models investigated, a, m, and b are used for

assessing the arguments (parameters) for different distributions.

3.3.2.1 Normal and Log-Normal distributions

The Normal and Log-Normal distributions in @Risk are expressed as:

• RislcNormal(mean, standard deviation)

• RiskLognorm(mean, standard deviation)

The parameters to be assessed in the above are the mean and standard deviation.

The three-point estimates are not suitable for assessing the parameters of mean and

standard deviation of Normal and Log-Normal distributions. This is because the

Normal distribution does not have finite boundaries and the Log-Normal distribution

does not have an upper boundary. Due to this, the mean and the standard deviation are

assessed by percentile confidence. In the two examples analysed, the confidence is set

at 99%.

The parameters are assessed using the PERT procedure. Though the most likely values

(m) indicate that the individual activities are not symmetric, this conflict is ignored

when these individual activities are assumed to have a Normal distribution.

The mean and the standard deviation therefore can be assessed by Equations 3.1 and

3.2.
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A further analysis of how the mean and standard deviation should be set (assuming a

symmetrical distribution for each activities) is continued in Section 3.3.3.

As the type of function is set by name in @Risk, therefore the mean and the standard

deviation are the same for Normal and Log-Normal distributions in both cases.

3.3.2.2 Uniform and Triangular distributions

The three-point estimates are easily applicable to estimate the parameters in both the

Uniform and Triangular distributions.

The Uniform and Triangular distributions in @Risk package are entered as:

• RiskUniform(minimum, maximum)

• RiskTriang(minimum, most likely, maximum)

As such, the information (a, m and b) provided by the models can be used directly in

the above.

3.3.2.3 Beta distribution

The Beta distribution is expressed in @Risk as:

• RiskBeta(alphal, alpha2)

In which alphal and alpha2 are shape parameters which must be assessed from

available data.

In theory, the parameters of the Beta distribution are very difficult to estimate

subjectively and as such the Beta distribution is not suitable for modelling with

subjective data. Since the three point estimates are not sufficient for determining the

Beta distribution which is a four-parameter probability distribution function, an

approximate method using PERT procedures is applied to assess the parameters.

For the Beta distribution, the mean and variance are calculated as follows:

a
' (b-a)p=a+ 

a+a2	
(3.5)

l 
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In the equations above, jt and a are the mean and standard deviation, a, m, b are

minimum, most likely, and maximum respectively and a l and a2 are the shape

parameters.

From these equations and in conjunction with PERT, (Equations 3.1 and 3.2), the

shape parameters can be assessed by:

It should be noted that the order of the a l and a2 cannot be incorrect when they are

placed in the @Risk program, otherwise the distribution generated will be skewed to

the right and give more conservative results. This is because the Beta distribution is

dependent on the shape parameters and B(al, a 2) is not equal to B(a2, ai).

3.3.3 Altering the manner of setting the mean and standard deviation

This section investigates whether the results of the distributions investigated are truly

dependent upon the shape of the distribution or merely on the manner in which the

distributions' mean and standard deviation are set.

Further analysis in this section is aimed at assessing the extent to which a shift in the

mean of the distribution is responsible for the sensitivity in overall project duration

rather than the shape of the chosen distribution. This analysis is based on the

following assumptions:
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1. By retaining the minimum and maximum values in Table 3.1 and Table 3.2, the

most likely values are set as (a+b)/2 for all distributions.

2. For the Normal and Log-Normal distributions:

where 11 is the mean, a is the standard deviation, a is the minimum and b is the

maximum value.

3. For the Uniform and Triangular distributions:

The parameters used are minimum and maximum for the Uniform distribution and

minimum, most likely and maximum for the Triangular distribution.

4. For the Beta distribution:

The PERT procedures are again used to assess the parameters. As the most likely

values are all set as (a+b)/2, using the Equations 3.1, 3.2, 3.5 and 3.6, the shape

parameters can be assessed. Thus: al = a2 = 4 .

3.4 Example project results

3.4.1 Example 3.1 — a house construction project

Example 3.1 is a simple project concerned with the construction of a house. It is

chosen from a published work by Risk Decisions Ltd. [8°1 . The project was chosen as

an example due to its simplicity and because it contains all of the information needed

for analysis, such as the dependency of the activities and the estimates of each activity.

Figure 3.1 shows the arrow network for the activities involved. Their dependencies

and estimates of the optimistic time (a), the most likely time (m) and the pessimistic

time (b) are shown in Table 3.1.
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Table 3.1 The activities involved in Example 3.1

Activity Description Duration Predecessors

code No. a m b

1-2 1 Clear site 3 4 5 -

1-4 2 Bring utilities to site 10 15 23 -

2-3 3 Excavate 3 5 9 1

3-4 4 Dummy 0 0 0 3

3-5 5 Pour foundation 7 8 10 3

4-8 6 Outside plumbing 18 26 40 2, 4

5-6 7 Frame house 13 14 16 5

6-7 8 Electric wiring 6 8 10 7

7-8 9 Lay floor 1 2 10 8

6-19 10 Lay roof 1 2 15 7

6-9 11 Dummy 0 0 0 7

7-16 12 Dummy 0 0 0 8

8-9 13 Inside plumbing 8 10 11 6, 9

9-15 14 Shingling 4 8 10 11, 13

15-13 15 Dummy 0 0 0 14

9-10 16 Outside sheathing insul. 1 2 3 11, 13

6-14 17 Install windows 2 6 10 7

14-10 18 Dummy 0 0 0 17

10-11 19 Brick work 6 7 8 16,18

9-16 20 Dummy 0 0 0 11,13

16-17 21 Insulate walls + ceiling 8 10 12 12, 20

17-18 22 Cover walls + ceiling 4 6 10 21

18-20 23 Dummy 0 0 0 22

19-20 24 Dummy 0 0 0 10

20-13 25 Insulate roof 2 3 20 23, 24

18-13 26 Finish interior 13 15 18 22

19-11 27 Dummy 0 0 0 10

11-12 28 Finish exterior 10 12 15 19, 27

12-13 29 Landscape 3 5 7 28

13-21 30 End 0 0 0 15, 25, 26, 29

Note: Activities in bold are those on the critical path.
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3.4.1.1 PERT results

The results of PERT are summarised in Table 3.2. The overall properties of the

distributions of the project durations and the percentile values are reported in Table

3.15.

Table 3.2 The project duration analysed by PERT of Example 3.1

Activity
No.

Activities in critical path Mean
duration

Variance Standard
deviation

1 Clear site 4.0 0.11 0.3

3 Excavate 5.3 1.00 1.0

5 Pour foundation 8.2 0.25 0.5

7 Frame house 14.2 0.25 0.5

8 Electric wiring 8.0 0.44 0.7

9 Lay floor 3.2 2.25 1.5

13 Inside plumbing 9.8 0.25 0.5

20 Dummy 0.0 0.00 0.0

21 Insulate walls + ceiling 10.0 0.44 0.7

22 Cover walls + ceiling 6.3 1.00 1.0

26 Finish interior 15.2 0.69 0.8

30 End 0.0 0.00 0.0

Project duration E(T) = E t i 84.2

Project variance S 2 = E S 12 6.69

Project standard deviation S = 1FST 2.6

3.4.1.2 Different number of iterations and distributions of MCS

The results from Monte Carlo simulations for Example 3.1 are reported in Appendix

A. Figures without a suffix are histograms and Figures with the suffix (a) are

ascending cumulative curves.

Figures A.1-A.20(a) show the effect of the number of iterations for several different

distributions. These are: Normal (Figures A.1-A.4(a)), Log-Normal (Figures A.5-

A.8(a)), Triangular (Figures A.9-A. 12(a)), Uniform (Figures A.13-A.16(a)) and Beta

(Figures A.17-A.20(a)) distributions.
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The number of iterations used with each distribution was: 100, 1000, 5000 and 10000

for both examples.

3.4.1.3 Different distributions with altered means and standard deviations

Figures A.21-A.24 (Appendix A) show the effect of varying the mean and standard

deviation for alternative distributions (Normal, Log-Normal, Triangular and Beta)

using a fixed number of iterations (10000) for Example 3.1.

3.4.1.4 Comparison of different iterations

Figures 3.2-3.6 show the comparison of the different number of iterations in all five of

the different distribution forms.

Tables 3.3-3.7 show the equivalent quantitative aspects of the results of the different

iterations in all five of the different distribution forms. The upper section of each table

denotes the overall properties of the distribution and the lower section denotes the

percentile values of the distribution for differing numbers of iterations (100, 1000,

5000 and 10000).

3.4.1.5 Comparison of different distributions forms

Figure 3.7 shows graphical results for project duration in days after 10,000 simulations

for each of the different distributions used.

Table 3.8 shows the quantitative results for project duration in days after 10,000

simulations at varying percentile values for each of the different distributions.

3.4.1.6 Comparison of different distributions when the mean is altered

Figure 3.8 shows graphical results for project duration in days after 10,000 simulations

at varying percentile values for the different distributions used with alternative means

and standard deviations.
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Table 3.9 shows the quantitative results for project duration in days after 10,000

simulations at varying percentile values for the different distributions when the mean is

altered.

3.4.1.7 Comparison of PERT with MCS

Figure 3.9 shows a comparison of PERT and Monte Carlo simulations with varying

distributions and distributions with altered means and standard deviations.

Table 3.8 shows the estimated project duration range calculated using the PERT

method and Monte Carlo simulation (at 10,000 simulations) using different distribution

forms.
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Figure 3.2 Comparison of different iterations (Normal) Example 3.1
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Figure 3.3 Comparison of different iterations (Log-Normal) Example 3.1
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Figure 3.4 Comparison of different iterations (Triangular) Example 3.1
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Figure 3.5 Comparison of different iterations (Uniform) Example 3.1
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Figure 3.6 Comparison of different iterations (Beta) Example 3.1
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Figure 3.7 Comparison of different distribution at 10000 iterations, Example 3.1

Figure 3.8 Comparison of different distribution at 10000 iterations when the

mean shifted, Example 3.1
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Table 3.3 Comparison of different iterations (Normal) of Example 3.1

Iterations 100 1000 5000 10000

'Minimum 80.57 78.28 76.29 76.29

Maximum 95.34 97.17 98.64 100.56

Mean 85.90 85.98 85.98 85.96

Std Deviation 3.03 2.98 3.07 3.07

Variance 9.20 8.87 9.41 9.44

Skewness 0.94 0.51 0.42 0.45

Kurtosis 3.97 3.40 3.43 3.48

Percentile Values

5% 81.59 81.59 81.29 81.28

10 % 82.34 82.40 82.24 82.28

15 % 83.25 82.97 82.94 82.93

20 % 83.50 83.46 83.42 83.40

25 % 83.71 83.94 83.89 83.86

30 % 84.00 84.28 84.27 84.25

35 % 84.44 84.63 84.67 84.65

40 % 84.65 84.99 85.05 85.02

45 % 85.13 85.29 85.38 85.37

50 % 85.45 85.67 85.78 85.75

55% 85.68 86.01 86.15 86.13

60 % 86.06 86.45 86.54 86.48

65 % 86.27 86.89 86.98 86.88

70 % 86.94 87.39 87.38 87.31

75 % 87.36 87.92 87.87 87.81

80 % 88.17 88.40 88.41 88.38

85 % 88.83 88.95 89.01 89.01

90 % 89.51 89.68 89.88 89.92

95% 92.08 91.14 91.33 91.41
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Table 3.4 Comparison of different iterations (Log-Normal) of Example 3.1

Iterations 100 1000 5000 10000

Minimum 80.19 77.19 76.96 76.96

Maximum 98.26 100.69 100.53 109.87

Mean 85.91 85.78 85.97 85.96

Std Deviation 3.45 3.23 3.26 3.30

Variance 11.87 10.46 10.64 10.91

Skewness 1.05 0.72 0.64 0.74

Kurtosis 4.34 4.01 3.71 4.18

Percentile Values

5% 81.36 81.10 81.22 81.20

10% 82.18 81.99 82.12 82.13

15 % 82.82 82.49 82.77 82.75

20% 83.13 83.08 83.26 83.22

25 % 83.35 83.46 83.72 83.68

30 % 83.64 83.87 84.10 84.05

35 % 83.99 84.25 84.49 84.46

40 % 84.58 84.71 84.86 84.84

45 % 84.82 85.05 85.26 85.22

50 % 85.34 85.45 85.63 85.60

55 % 85.89 85.85 86.04 86.00

60% 86.11 86.27 86.46 86.40

65 % 86.63 86.68 86.91 86.82

70 % 86.84 87.14 87.35 87.27

75 % 87.37 87.59 87.90 87.84

80% 88.24 88.13 88.44 88.42

85 % 89.35 89.06 89.16 89.22

90 % 90.05 89.96 90.13 90.21

95 0/0 92.46 91.79 91.95 92.05
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Table 3.5 Comparison of different iterations (Triangular) of Example 3.1

Iterations 100 1000 5000 10000

Minimum 80.88 76.81 75.75 75.75

Maximum 99.84 103.87 106.25 106.25

Mean 88.36 88.38 88.58 88.54

Std Deviation 3.97 3.95 3.98 3.95

Variance 15.73 15.57 15.81 15.64

Skewness 0.72 0.45 0.39 0.38

Kurtosis 3.52 3.24 3.13 3.16

Percentile Values

5 % 82.39 82.46 82.56 82.50

10 % 83.65 83.45 83.76 83.66

15 % 84.62 84.29 84.54 84.50

20% 85.03 84.97 85.18 85.18

25 % 85.53 85.55 85.79 85.78

30% 85.86 86.11 86.28 86.28

35 % 86.52 86.61 86.76 86.78

40 % 86.85 87.23 87.30 87.28

45 % 87.49 87.64 87.80 87.79

50 % 87.84 88.03 88.28 88.29

55 (1/0 88.60 88.67 88.77 88.77

60 % 88.77 89.13 89.32 89.29

65 % 89.22 89.61 89.81 89.79

70 % 89.59 90.13 90.46 90.36

75% 90.01 90.77 91.14 91.01

80% 91.34 91.43 91.87 91.77

85 % 92.52 92.35 92.71 92.63

90% 93.14 93.70 93.89 93.78

95 % 96.40 95.55 95.67 95.61
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Table 3.6 Comparison of different iterations (Uniform) of Example 3.1

Iterations 100 1000 5000 10000

Minimum 82.46 77.02 76.07 76.07

Maximum 105.54 108.80 109.37 109.69

Mean 91.64 92.15 92.15 92.13

Std Deviation 5.07 5.17 5.30 5.30

Variance 25.68 26.69 28.12 28.04

Skewness 0.56 0.27 0.21 0.22

Kurtosis 2.98 2.93 2.93 2.91

Percentile Values

5% 83.76 84.16 83.79 83.81

10 % 85.44 85.65 85.53 85.54

15 % 86.59 86.86 86.72 86.71

20 % 87.15 87.74 87.58 87.57

25 % 87.57 88.37 88.41 88.34

30 % 88.02 89.02 89.20 89.17

35 % 88.86 89.78 89.88 89.87

40 % 90.06 90.55 90.58 90.56

45% 90.55 91.21 91.28 91.26

50% 91.42 91.89 91.95 91.92

55 % 92.08 92.66 92.60 92.55

60 % 92.29 93.28 93.37 93.27

65 % 92.83 93.97 94.03 93.95

70 % 93.56 94.62 94.78 94.71

75 % 94.37 95.61 95.63 95.57

80 % 95.21 96.61 96.56 96.50

85 % 96.94 97.48 97.66 97.66

90 % 97.92 98.85 99.09 99.15

95% 102.18 101.35 101.21 101.40
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Table 3.7 Comparison of different iterations (Beta) of Example 3.1

Iterations 100 1000 5000 10000

Minimum 80.22 76.72 75.91 75.91

Maximum 95.86 98.84 101.85 101.85

Mean 85.88 85.78 85.95 85.92

Std Deviation 3.22 3.16 3.19 3.17

Variance 10.37 10.01 10.18 10.08

Skewness 0.84 0.51 0.46 0.45

Kurtosis 3.71 3.39 3.29 3.32

Percentile Values

5% 81.36 81.08 81.17 81.16

10% 82.13 81.94 82.10 82.08

15 % 83.00 82.47 82.75 82.70

20% 83.16 83.07 83.22 83.23

25 % 83.57 83.54 83.70 83.70

30% 83.72 83.92 84.11 84.13

35 % 84.26 84.35 84.47 84.48

40 % 84.60 84.78 84.88 84.87

45% 84.94 85.13 85.27 85.28

50% 85.45 85.51 85.71 85.69

55 cyo 86.05 85.89 86.07 86.06

60 % 86.17 86.31 86.52 86.48

65 % 86.58 86.76 86.92 86.89

70 % 86.87 87.15 87.40 87.35

75 % 87.32 87.67 87.93 87.86

80 % 88.41 88.23 88.57 88.48

85 % 89.13 89.05 89.28 89.20

90 % 89.57 90.03 90.23 90.16

95% 92.43 91.36 91.59 91.60
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Table 3.8 Comparison of different distributions at 10000 iterations of

Example 3.1

Iterations Normal Log-Nor. Triangular Uniform Beta PERT

Minimum 76.29 76.96 75.75 76.07 75.91 76.40

Maximum 100.56 109.87 106.25 109.69 101.85 92.00

Mean 85.96 85.96 88.54 92.13 85.92 84.20

Std Deviation 3.07 3.30 3.95 5.30 3.17 2.60

Variance 9.44 10.91 15.64 28.04 10.08 6.69

Skewness 0.45 0.74 0.38 0.22 0.45 0.00

Kurtosis 3.48 4.18 3.16 2.91 3.32

Percentile Values

5 0/0 81.28 81.20 82.50 83.81 81.16 79.92

10 0/0 82.28 82.13 83.66 85.54 82.08 80.87

15 % 82.93 82.75 84.50 86.71 82.70 81.51

20 % 83.40 83.22 85.18 87.57 83.23 82.01

25 % 83.86 83.68 85.78 88.34 83.70 82.45

30 % 84.25 84.05 86.28 89.17 84.13 82.84

35 % 84.65 84.46 86.78 89.87 84.48 83.20

40 % 85.02 84.84 87.28 90.56 84.87 83.54

45 % 85.37 85.22 87.79 91.26 85.28 83.87

50 % 85.75 85.60 88.29 91.92 85.69 84.20

55 % 86.13 86.00 88.77 92.55 86.06 84.53

60 % 86.48 86.40 89.29 93.27 86.48 84.86

65 % 86.88 86.82 89.79 93.95 86.89 85.20

70 % 87.31 87.27 90.36 94.71 87.35 85.56

75 ono 87.81 87.84 91.01 95.57 87.86 85.95

80 % 88.38 88.42 91.77 96.50 88.48 86.39

85 % 89.01 89.22 92.63 97.66 89.20 86.89

90% 89.92 90.21 93.78 99.15 90.16 87.53

95% 91.41 92.05 95.61 101.40 91.60 88.48
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Table 3.9 Comparison of different distributions at 10000 iterations when the

mean is altered of Example 3.1

Iterations Normal Log-Nor. Triangular Uniform Beta

Minimum 80.60 81.11 78.70 76.07 80.56

Maximum 104.23 107.46 104.56 109.69 101.53

Mean 90.07 90.15 90.64 92.13 90.08

Std Deviation 3.01 3.22 3.71 5.30 2.98

Variance 9.06 10.36 13.77 28.04 8.88

Skewness 0.40 0.67 0.32 0.22 0.31

Kurtosis 3.47 3.97 3.17 2.91 3.20

Percentile Values

5 cyo 85.41 85.43 84.81 83.81 85.39

10% 86.41 86.39 86.11 85.54 86.44

15 % 87.07 86.99 86.86 86.71 87.05

20 % 87.57 87.48 87.53 87.57 87.58

25 % 88.01 87.93 88.07 88.34 88.02

30 % 88.44 88.32 88.59 89.17 88.44

35 % 88.82 88.73 89.07 89.87 88.83

40% 89.19 89.11 89.54 90.56 89.21

45 % 89.52 89.47 90.00 91.26 89.56

50 % 89.89 89.84 90.46 91.92 89.94

55 % 90.25 90.22 90.94 92.55 90.31

60 % 90.63 90.61 91.37 93.27 90.67

65% 90.99 91.03 91.81 93.95 91.04

70% 91.42 91.47 92.36 94.71 91.47

75% 91.89 91.98 92.95 95.57 91.93

80 % 92.45 92.61 93.65 96.50 92.49

85 % 93.05 93.32 94.42 97.66 93.10

90 % 93.90 94.21 95.44 99.15 93.93

95 % 95.37 95.97 97.23 101.40 95.30
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3.4.2 Example 3.2 — a hypothetical project HABITAT

Example 3.2 is a more complicated project example with the number of the activities

increased to 50. The example is concerned with a hypothetical project HABITAT

chosen from Ahuja, Dozzi and Abourizk 1811 . Figure 3.10 shows the arrow network for

the project. The dependencies and estimates of the optimistic time (a), the most likely

time (m) and the pessimistic time (b) are shown in Table 3.10.

3.4.2.1 PERT results

The results of PERT are summarised in Table 3.11. The overall properties of the

distributions of the project durations and the percentile values are reported in Table

3.17.

3.4.2.2 Different number of iterations and distributions of MCS

The results from Monte Carlo simulations for Example 3.2 are reported in Appendix B.

Figures without a suffix are histograms and Figures with the suffix (a) are ascending

cumulative curves.

Figures B.1-B.20(a) show the effect of the number of iterations for the five different

distributions. They are: Normal (Figures B.1-B.4(a)), Log-Normal (Figures B.5-

B.8(a)), Triangular (Figures B.9-B.12(a)), Uniform (Figures B.13-B.16(a)) and Beta

(Figures B.17-B.20(a)) distributions.

The number of iterations used with each distribution was: 100, 1000, 5000 and 10000.

3.4.2.3 Different distributions with altered means and standard deviations

Figures B.21-B.24 (Appendix B) show the effect of varying the mean and standard

deviation for alternative distributions (Normal, Log-Normal, Triangular and Beta)

using a fixed number of iterations (10000).
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Table 3.10 The activities involved in Example 3.2

Activity Description Duration Predecessors
code No. a m b
5-10 1 Obtain tank 9 10 11
10-15 2 General area of site decided 14 15 21 1
10-20 3 Umbilical initial design complete 59 60 80 1
10-25 4 Determine biological-

environmental requirements
50 60 90 1

10-30 5 Determine communication system
requirements

40 50 80 1

10-35 6 Determine electrical requirements 20 30 40 1
10-40 7 Determine required hull

modifications
10 15 25 1

10-45 8 Determine plumbing requirements 10 15 30 1
10-50 9 Determine interior layout

requirements
20 30 35 1

10-105 10 Testing procedure and apparatus
designed

40 50 60 1

10-110 11 Submerging procedure designed 70 80 90 1
15-55 12 Detailed data collection on area 14 15 16 2
15-115 13 Shore station designed 14 15 16 2
20-60 14 Umbilical final design complete 50 60 80 3,43,28,35,22
20-135 15 Umbilical materials obtained 50 60 61 3,43,28,35,22
25-65 16 Environmental maintenance

system designed
14 15 16 4

25-70 17 Sanitary and water facilities
decided

14 15 16 4

25-75 18 Environmental monitoring and
alarm system designed

29 30 31 4

30-80 19 System components designed 39 40 41 5
35-85 20 Electrical system designed 59 60 61 6,29,33
40-90 21 Full modifications complete 89 90 91 7, 45
45-20 22 Dummy 0 0 0 8,30
45-95 23 System component design

finished
9 10 11 8, 30

50-85 24 Dummy 0 0 0 9, 37
50-100 25 Interior layout designed 19 20 21 9, 37
55-120 26 Final site selected 14 15 16 12
60-135 27 Umbilical constructed and

tested
9 10 11 14

70-20 28 Dummy 0 0 0 17
70-35 29 Dummy 0 0 0 17
70-45 30 Dummy 0 0 0 17
70-125 31 System components obtained and

installed
29 30 31 17

80-30 32 Dummy 0 0 0 Invalid
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80-35 33 Dummy 0 0 0 19
80-125 34 Components obtained and

installed
29 30 31 19

85-20 35 Dummy 0 0 0 20, 24
85-125 36 Wiring fixtures, outlets, etc.,

installed
25 27 27 20, 24

90-50 37 Dummy 0 0 0 21
95-125 38 Sy stem installed 4 5 6 23
100-125 39 Interior construction finished 9 10 11 25
105-125 40 Testing apparatus constructed 19 20 21 10
110-130 41 Cradle and habitat transportation

arrangements complete
29 30 31 11

115-130 42 Shore station constructed 29 30 31 13
120-20 43 Dummy 0 0 0 26
120-130 44 Cradle designed and constructed 39 40 41 26
120-40 45 Cradle foundation designed and

constructed
30 41 60 26

125-130 46 Test and evaluation 19 20 21 31,	 34,	 36,
38, 39, 40

130-135 47 Cradle and habitat transported to
site

4 5 6 42,41,44,46

135-140 48 Habitat lowered and
connections made

4 5 6 15,27,47

140-145 49 Habitat made operational 4 5 6 48
65-145 50 Dummy 0 0 0 16
75-145 51 Dummy 0 0 0 18
145-150 52 Dummy 0 0 0 49, 50, 51

3.4.2.4 Comparison of different iterations

Figures 3.11-3.15 show the comparison of the different number of iterations in all five

of the different distribution forms.

Tables 3.12-3.16 show the equivalent quantitative aspects of the results of the different

iterations in all five of the different distribution forms. The upper section of each table

denotes the overall properties of the distribution and the lower section denotes the

percentile values of the distribution for differing numbers of iterations (100, 1000,

5000 and 10000).
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Table 3.11 The project duration analysed by PERT of Example 3.2

Activity
No.

Activities in critical path Mean
duration

Variance Standard
deviation

1 Obtain tank 10.00 0.11 0.33
2 General area of site decided 15.83 1.36 1.17
12 Detailed data collection on area 15.00 0.11 0.33
14 Umbilical final design complete 61.67 25.00 5.00
21 Full modifications complete 90.00 0.11 0.33
24 Dummy 0.00 0.00 0.00
26 Final site selected 15.00 0.11 0.33
27 Umbilical constructed and tested 10.00 0.11 0.33
35 Dummy 0.00 0.00 0.00
37 Dummy 0.00 0.00 0.00
45 Cradle foundation designed and

constructed
42.33 25.00 5.00

48 Habitat lowered and connections.. 5.00 0.11 0.33
49 Habitat made operational 5.00 0.11 0.33
52 Dummy 0.00 0.00 0.00

Project duration E(T) = E ti 269.83

Project variance S 2 = E S1 2 52.14

Project standard deviation S =	 ,IT2 7.22

3.4.2.5 Comparison of different distributions forms

Figures 3.16 shows graphical results for project duration in days after 10,000

simulations for each of the different distributions used.

Tables 3.17 shows the quantitative results for project duration in days after 10,000

simulations at varying percentile values for each of the different distributions.

3.4.2.6 Comparison of different distributions when the mean is altered

Figures 3.17 shows graphical results for project duration in days after 10,000

simulations at varying percentile values for the different distributions used with

alternative means and standard deviations.
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Tables 3.18 shows the quantitative results for project duration in days after 10,000

simulations at varying percentile values for the different distributions when the mean is

altered.

3.4.2.7 Comparison of PERT with MCS

Figures 3.18 shows the comparison of PERT and Monte Carlo simulations with

varying distributions and distributions with altered means and standard deviations.

Tables 3.17 shows the estimated project duration range calculated using the PERT

method and Monte Carlo simulation (at 10,000 simulations) using different distribution

forms.
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Figure 3.11 Comparison of different iterations (Normal) Example 3.2
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Figure 3.12 Comparison of different iterations (Log-Normal) Example 3.2
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Figure 3.13 Comparison of different iterations (Triangular) Example 3.2
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Figure 3.14 Comparison of different iterations (Uniform) Example 3.2
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Figure 3.15 Comparison of different iterations (Beta) Example 3.2
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Figure 3.16 Comparison of different distributions at 10000 iterations, Example
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Figure 3.17 Comparison of different distributions at 10000 iterations when the

mean shifted, Example 3.2
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Table 3.12 Comparison of different iterations (Normal) of Example 3.2

Iterations 100 1000 5000 10000

Minimum 252.59 244.87 244.87 238.55

Maximum 286.78 293.62 295.61 295.61

Mean 268.27 270.26 269.99 269.91

Std Deviation 7.18 7.14 7.17 7.23

Variance 51.62 50.97 51.41 52.26

Skewness 0.11 0.09 0.01 0.02

Kurtosis 2.57 3.17 2.95 2.98

Percentile Values

5 % 257.46 258.57 258.19 258.02

10 % 259.30 261.73 260.87 260.67

15 % 260.50 263.16 262.53 262.39

20 % 261.44 264.43 263.89 263.79

25% 263.17 265.59 265.17 265.05

30% 264.30 266.59 266.26 266.11

35% 265.17 267.56 267.24 267.13

40% 265.96 268.31 268.10 268.01

45 % 266.83 269.07 269.06 268.97

50 (1/0 267.60 269.87 269.91 269.87

55 % 268.64 270.77 270.85 270.80

60% 269.44 271.64 271.77 271.70

65 (3/0 270.70 272.56 272.72 272.67

70 % 271.24 273.73 273.71 273.60

75 % 272.84 274.72 274.78 274.75

80% 274.99 276.26 276.11 276.06

85 1)/0 276.81 277.71 277.51 277.47

90 % 278.25 279.35 279.31 279.20

95 % 279.99 282.28 281.93 281.90
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Table 3.13 Comparison of different iterations (Log-Normal) of Example 3.2

Iterations 100 1000 5000 10000

Minimum 253.64 249.08 247.59 242.08

Maximum 287.75 295.69 297.98 297.98

Mean 268.34 270.26 269.99 269.91

Std Deviation 7.18 7.20 7.20 7.25

Variance 51.60 51.89 51.80 52.60

Skewness 0.27 0.31 0.20 0.21

Kurtosis 2.62 3.22 3.01 3.06

Percentile Values

5% 257.76 259.12 258.56 258.47

10% 259.28 261.74 261.05 260.81

15% 260.62 263.15 262.55 262.44

20% 261.76 264.30 263.83 263.77

25 % 263.01 265.43 265.02 264.92

30 % 264.47 266.36 266.08 265.97

35 % 265.31 267.40 267.01 266.95

40 % 266.22 267.99 267.88 267.82

45 % 266.92 268.86 268.83 268.74

50 % 267.23 269.56 269.70 269.61

55 % 268.23 270.49 270.60 270.57

60% 269.25 271.36 271.53 271.48

65 °AI 270.59 272.38 272.49 272.45

70 % 270.82 273.65 273.54 273.46

75 cyo 272.58 274.67 274.70 274.63

80 % 275.46 276.07 275.99 275.98

85 % 276.80 277.75 277.53 277.48

90 % 278.70 279.82 279.47 279.37

95 % 280.69 282.89 282.38 282.32
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Table 3.14 Comparison of different iterations (Triangular) of Example 3.2

Iterations 100 1000 5000 10000

Minimum 253.73 250.77 248.09 245.46

Maximum 294.52 303.25 304.45 304.45

Mean 271.65 274.17 273.86 273.77

Std Deviation 8.90 8.88 8.93 8.99

Variance 79.19 78.87 79.78 80.83

Skewness 0.22 0.27 0.18 0.19

Kurtosis 2.43 2.82 2.69 2.73

Percentile Values

5 % 258.71 260.49 259.77 259.56

10 % 260.16 263.24 262.51 262.35

15 % 261.67 265.48 264.38 264.25

20 % 263.67 266.63 265.93 265.90

25 % 264.84 267.85 267.38 267.28

30 % 265.92 269.00 268.75 268.65

35 % 268.03 270.28 269.92 269.87

40% 269.21 271.33 271.22 271.11

45 (1/0 269.93 272.23 272.27 272.23

50 % 270.83 273.32 273.49 273.39

55 % 271.68 274.53 274.59 274.60

60 % 273.45 275.82 275.98 275.87

65 % 274.53 276.98 277.16 277.05

70 % 275.05 278.56 278.50 278.39

75 % 277.16 279.92 279.99 279.90

80% 280.95 281.81 281.65 281.59

85 % 282.30 283.76 283.58 283.42

90 % 284.39 286.37 285.84 285.69

95 % 286.27 289.81 289.23 289.27
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Table 3.15 Comparison of different iterations (Uniform) of Example 3.2

Iterations 100 1000 5000 10000

Minimum 250.87 246.61 243.76 243.76

Maximum 301.61 309.08 310.15 310.81

Mean 274.39 278.36 277.97 277.86

Std Deviation 12.23 12.02 12.20 12.29

Variance 149.53 144.51 148.90 151.08

Skewness 0.11 0.07 0.00 0.01

Kurtosis 2.32 2.53 2.44 2.46

Percentile Values

5 % 254.17 258.39 257.57 257.52

10% 258.02 262.68 261.46 261.22

15 % 259.73 266.14 264.56 264.27

20 % 262.66 268.15 266.89 266.82

25 % 264.43 269.96 269.23 268.99

30% 266.68 271.67 271.24 271.06

35 % 269.84 273.32 273.05 272.94

40 % 271.94 274.86 274.79 274.69

45 % 272.55 276.38 276.38 276.30

50 % 273.31 277.79 277.85 277.83

55 % 274.85 279.33 279.56 279.40

60% 277.12 281.03 281.18 281.07

65 % 279.25 282.77 283.05 282.84

70 % 280.99 284.74 284.56 284.55

75 % 282.07 286.76 286.51 286.52

80 % 284.81 289.06 288.76 288.75

85% 288.31 291.65 291.42 291.34

90 % 291.48 295.32 294.58 294.53

95 0/0 295.47 299.00 298.31 298.43
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Table 3.16 Comparison of different iterations (Beta) of Example 3.2

Iterations 100 1000 5000 10000

Minimum 253.75 251.26 248.86 246.36

Maximum 286.97 294.06 295.66 295.66

Mean 268.23 270.23 269.97 269.89

Std Deviation 7.18 7.16 7.20 7.24

Variance 51.57 51.32 51.78 52.49

Skewness 0.21 0.25 0.16 0.17

Kurtosis 2.46 2.89 2.74 2.78

Percentile Values

5 0/0 257.69 258.86 258.43 258.35

10% 259.16 261.41 260.85 260.67

15% 260.06 263.22 262.39 262.21

20% 261.90 264.23 263.68 263.61

25% 262.97 265.19 264.85 264.73

30 % 264.01 266.20 265.95 265.85

35 % 265.66 267.22 266.95 266.86

40 % 266.43 268.04 267.87 267.79

45 % 266.75 268.86 268.76 268.69

50 % 267.69 269.54 269.66 269.60

55 % 268.35 270.58 270.61 270.57

60 % 269.54 271.46 271.66 271.60

65 % 270.55 272.50 272.64 272.55

70 % 270.91 273.64 273.66 273.57

75 % 272.50 274.75 274.85 274.78

80 % 275.27 276.35 276.20 276.15

85 % 276.81 277.86 277.69 277.62

90 % 278.48 279.97 279.55 279.44

95 % 280.37 282.67 282.26 282.26
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Table 3.17 Comparison of different distributions at 10000 iterations of

Example 3.2

Iterations Normal Log-Nor. Triangular Uniform Beta PERT

Minimum 238.55 242.08 245.46 243.76 246.36 248.17

Maximum 295.61 297.98 304.45 310.81 295.66 291.49

Mean 269.91 269.91 273.77 277.86 269.89 269.83

Std Deviation 7.23 7.25 8.99 12.29 7.24 7.22

Variance 52.26 52.60 80.83 151.08 52.49 52.14

Skewness 0.02 0.21 0.19 0.01 0.17 0.00

Kurtosis 2.98 3.06 2.73 2.46 2.78

Percentile Values

5 % 258.02 258.47 259.56 257.52 258.35 257.95

10 % 260.67 260.81 262.35 261.22 260.67 260.58

15 % 262.39 262.44 264.25 264.27 262.21 262.35

20 % 263.79 263.77 265.90 266.82 263.61 263.75

25 % 265.05 264.92 267.28 268.99 264.73 264.96

30% 266.11 265.97 268.65 271.06 265.85 266.04

35 % 267.13 266.95 269.87 272.94 266.86 267.05

40% 268.01 267.82 271.11 274.69 267.79 268.00

45 % 268.97 268.74 272.23 276.30 268.69 268.92

50 % 269.87 269.61 273.39 277.83 269.60 269.83

55 % 270.80 270.57 274.60 279.40 270.57 270.74

60% 271.70 271.48 275.87 281.07 271.60 271.66

65 % 272.67 272.45 277.05 282.84 272.55 272.61

70 % 273.60 273.46 278.39 284.55 273.57 273.62

75 % 274.75 274.63 279.90 286.52 274.78 274.70

80% 276.06 275.98 281.59 288.75 276.15 275.91

85 % 277.47 277.48 283.42 291.34 277.62 277.31

90 % 279.20 279.37 285.69 294.53 279.44 279.08

95 %
,

281.90 282.32 289.27 298.43 282.26 281.71
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Table 3.18 Comparison of different distributions at 10000 iterations when the

mean is altered of Example 3.2

Iterations Normal Log-Nor. Triangular Uniform Beta

Minimum 250.15 249.56 246.78 243.76 250.79

Maximum 303.35 305.53 305.50 310.81 300.99

Mean 277.53 277.58 277.60 277.86 277.56

Std Deviation 7.22 7.26 8.84 12.29 7.24

Variance 52.18 52.66 78.09 151.08 52.38

Skewness 0.00 0.20 0.01 0.01 0.00

Kurtosis 2.99 3.06 2.72 2.46 2.75

Percentile Values

5 % 265.57 266.09 262.95 257.52 265.54

10 % 268.27 268.48 266.13 261.22 268.17

15 % 270.07 270.12 268.20 264.27 269.87

20% 271.44 271.45 269.95 266.82 271.30

25% 272.62 272.60 271.46 268.99 272.56

30 % 273.75 273.64 272.84 271.06 273.68

35 % 274.80 274.61 274.13 272.94 274.74

40 (1/0 275.74 275.50 275.22 274.69 275.62

45 % 276.62 276.42 276.44 276.30 276.61

50 % 277.57 277.30 277.57 277.83 277.55

55 % 278.50 278.25 278.75 279.40 278.51

60 % 279.34 279.17 279.87 281.07 279.41

65% 280.27 280.14 281.10 282.84 280.42

70% 281.23 281.14 282.30 284.55 281.40

75 % 282.32 282.30 283.75 286.52 282.58

80 % 283.57 283.66 285.32 288.75 283.85

85 % 284.95 285.16 287.00 291.34 285.24

90 % 286.75 287.03 289.02 294.53 286.92

95 % 289.45 289.98 292.26 298.43 289.55
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3.5 Discussion

3.5.1 Sensitivity analysis of Monte Carlo simulations

3.5.1.1 Effect of different number of iterations

From Figures 3.2 - 3.6 and 3.11 - 3.15, it can be observed that all of the cumulative

curves at 100 iterations show a relatively variable path. From 1000 to 10000 iterations,

as the number of iterations increase, the cumulative curves of the simulations tend

toward more regular curves (a quantitative description of each set of iterations can be

seen in Appendixes A and B). This shows that by increasing the number of iterations,

a reduction of the sampling variability can be attained.

From these figures, it can also be seen that the percentile values from 5% to 95% are

approximately the same at 1000, 5000 and 10000 iterations and only the minimum

(less than 5%) and the maximum (greater than 95%) percentile values are different.

This fact is irrespective of the type of probability distribution function specified for the

activity durations The project duration range (maximum minus minimum) is increased

as the number of simulations increase. For distributions without a boundary, such as

the Normal and Log-Normal (one side bounded) distributions, the project duration

range will tend to infinity. On the other hand, distributions with a boundary, such as

the Triangular, Uniform and Beta distributions, the project duration range will

converge at certain points (the minimum and maximum values). For example, in

Figure 3.4, the minimum percentile value decreases as the number of simulations

increases until it converges at 75.75 days. In contrast, the maximum percentile value

increases as the number of simulations increases until it converges at 106.25 days.

These results mean that assuming a Triangular distribution for the individual activity

duration, Example 3.1 is impossible to complete in 75.75 days or less and it can be

completed in 106.25 days with 100% confidence.

Tables 3.3 - 3.7 and 3.12 - 3.16 give quantitative results and from these it can be seen

that the results from 100 iterations are different from 1000 iterations in the same

assumed distribution but this difference reduces as the number of iterations increase. It

can also be observed that in all of the tables, the results of the overall properties
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(except the minimum and the maximum values) and the percentile values at 1000,

5000 and 10000 iterations are so similar (the difference being less than the second

decimal point in units of days) that they can be said to have converged.

These results show that for both of the examples analysed, 1000 iterations provide

sufficiently accurate results. For a further increase in confidence, results at 10000

iterations are used for further comparison throughout. The accuracy of the MCS

results can be seen in Table 3.19 and 3.20, where the standard error is calculated by:

(11)	 k	 a •al2 + ka12 jiCr )

where (/ - a) is the specified confidence level, Icap = 0:13 -1 (/ - a) is the value of the
2

standard Normal variate with cumulative probability level al 2 , is the sample mean,

a is the standard deviation and n is the sample size.

The standard error is the confidence intervals for the mean, these intervals contain the

population mean and the smaller of the standard error, the more accurate of the sample

mean.

Table 3.19 The standard error (95 % intervals) for the mean of Example 3.1

100 1000 5000 10000

Normal 85.31 - 86.49 85.80 - 86.16 85.89 - 86.07 85.90 - 86.02

Log-Normal 85.23 - 86.59 85.58 - 85.98 85.88 - 86.06 85.90 - 86.02

Triangular 87.58 - 89.14 88.14 - 88.62 88.47 - 88.69 88.46 - 88.62

Uniform 90.65 - 92.63 91.83 - 92.47 92.00 - 92.30 92.03 - 92.23

Beta 85.25 - 86.51 85.58 - 85.98 85.86 - 86.04 85.86 - 85.98

Table 3.20 The standard error (95 % intervals) for the mean of Example 3.2

100 1000 5000 10000

Normal 266.86-269.68 269.82-270.70 269.79-270.19 269.77-270.05

Log-Normal 266.93-269.75 269.81-270.71 269.79-270.19 269.77-270.05

Triangular 269.91-273.39 273.62-274.72 273.61-274.11 273.59-273.95

Uniform 271.99-276.79 277.61-279.11 277.63-278.31 277.62-278.10

Beta 266.82-269.64 269.79-270.67 269.77-270.17 269.75-270.03
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3.5.1.2 Effect of different distributions

Figures 3.7 and 3.16 show the comparison of different distributions at 10000 iterations

for the two examples investigated. It can be seen that between 5% and 95%, the

percentile values of the Normal, Log-Normal and Beta distributions share virtually

identical values but before the 5%th and after the 95%th, the percentile values of each of

the different distributions can be seen to be more varied. The percentile values from

the Uniform distribution are the most conservative and those of the Triangular

distribution lie between the three distributions (Normal, Log-Normal and Beta) and the

Uniform distribution.

Tables 3.8 and 3.17 show quantitative results for comparison. It can be observed that

after 10000 simulations, the results of Normal, Log-Normal and Beta distributions

show little difference. For example, in Table 3.8, the difference in the means of these

three distributions is 0.04 days (0.05% of 85.96 days for the Normal distribution). The

difference in the standard deviation is 0.23 days (7% of 3.07 days for the Normal

distribution). The greatest difference of the percentile values from 5% to 95% is 0.64

days at the 95% percentile (0.7% of 91.41 days for the Normal distribution). This is

because, when assessing the parameters for the different distributions for each

individual activity, the mean and standard deviation are assumed to be the same for the

three distributions. Example 3.2 (Table 3.17) confirms the same observation. Thus, it

can be said that the results of the Normal, Log-Normal and Beta distributions are

similar.

However, a small difference can still be seen and this shows the distinguishing

characteristics for the different distributions. For example, the differences can easily

be seen in the percentile values of less than 5% or greater than 95% percentile. The

Beta distribution is a bounded distribution so that it converges quickly with a minimum

of 75.91 days and a maximum of 101.85 days. The longest project duration is

produced by the Log-Normal distribution with a maximum of 109.87 days. This is

because the Log-Normal distribution is unbounded to the right so that a large number

of simulations allows more probability of the extreme values being included in the
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random number generation process. Characteristics of the Log-Normal distribution

can also be seen in the skewness and kurtosis which show larger values.

The results for the Triangular distribution lie between the three distributions (Normal,

Log-Normal and Beta) and the Uniform distribution. When compared to the Normal

distribution quantitatively, in Example 3.1, the difference of the mean is 2.58 days (3%

of the mean duration for the Normal distribution). The difference of the standard

deviation is 0.88 days (29% of 3.07 days for the Normal distribution) and the greatest

difference of the percentile values from 5% to 95% is 4.2 days (4.6% of 91.41 days for

the Normal distribution) at the 95% percentile. In Example 3.2, the difference of the

mean is 3.86 days (1.43% of 269.91 days for the Normal distribution). The difference

of the standard deviation is 1.76 days (24.3% of 7.23 days for the Normal distribution)

and the greatest difference of the percentile values from 5% to 95% is 7.37 days (2.6%

of 281.9 days for the Normal distribution) at the 95% percentile. From this, it can be

said that for both examples analysed, results from the Triangular distribution show

only minor differences to those of the Normal distribution.

Figures 3.7 and 3.16 and Tables 3.8 and 3.17 also show that for both examples the

Uniform distribution produces the most conservative results. The maximum project

duration provided by Uniform distribution is 109.69 days (9% longer than the 100.56

days of the Normal distribution) for Example 3.1 and 310.81 days (5% longer than the

295.61 days of the Normal distribution) for Example 3.2.

Tables 3.21 and 3.22 are derived from Tables 3.8 and 3.17 and show the sensitivity of

the project duration range (maximum-minimum) for different distributions. For

example, the project duration range of the Uniform distribution is 34 days (shown in

the 'Span 1' column of Table 3.19) and is the longest range in Example 3.1. Further

comparisons to exclude extreme values are achieved by considering the ranges between

the 5% and 95% percentile and between the 10% and 90% percentile. The same results

are again observed (shown in the 'Span 2' and 'Span 3' columns of Table 3.21) and

confirm that the Uniform distribution always produces conservative results. This is

because the Uniform distribution allows extreme values to be included in the random

number generation process with the same probability as any other values. Thus, it can
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be said that the results of the Uniform distribution are pessimistic and the form of the

distribution always overestimates the probability of the extremes of the variables'

range.

It has also been observed that the overall properties of each distribution generated by

the @Risk package show a characteristic probability distribution for the different

distributions. This shows that the @Risk package executes in a way that correctly

generates the random number according to the assigned distributions.

It can be concluded that the Normal, Log-Normal or Beta distribution functions for

individual activities give very similar prediction for the total project duration. The

Triangular distribution produces medium level duration which are proportionally

similar to the Normal distribution results. The Uniform distribution always

overestimates the probability of the extremes and therefore gives conservative results.

Table 3.21 The sensitivity of the project duration range for different

distributions of Example 3.1

Span 1

Maximum - Minimum

Span 2

95% - 5%

Span 3

90% - 10%

Normal 24.27 10.13 7.64

Log-Normal 32.91 10.85 8.08

Triangular 30.50 13.11 10.12

Uniform 33.62 17.59 13.61

Beta 25.94 10.44 8.08

PERT 15.60 8.56 6.66

When the mean is altered

Sym. - Normal 23.63 9.96 7.49

Sym. - Log-Normal 26.35 10.54 7.82

Sym. - Triangular 25.86 12.42 9.33

Sym. - Uniform 33.62 17.59 13.61

Sym. - Beta 20.97 9.91 7.49
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Table 3.22 The sensitivity of the project duration range for different

distributions of Example 3.2

Span 1

Maximum - Minimum

Span 2

95% - 5%

Span 3

90% - 10%

Normal 57.06 23.88 18.53

Log-Normal 55.90 23.85 18.56

Triangular 58.99 29.71 23.34

Uniform 67.05 40.91 33.31

Beta 49.30 23.91 18.77

PERT 43.32 23.76 18.5

When the mean is altered

Sym. - Normal 53.20 23.88 18.48

Sym. - Log-Normal 55.97 23.89 18.55

Sym. - Triangular 58.72 29.31 22.89

Sym. - Uniform 67.05 40.91 33.31

Sym. - Beta 50.20 24.01 18.75

3.5.1.3 Effect of the manner of setting the mean and standard deviation

Figures 3.8 and 3.17 show a comparison of different distributions when the mean and

standard deviation are altered (all of the distributions are assumed to be symmetric as

discussed in Section 3.3.3). Tables 3.9 and 3.18 provide the quantitative results.

When comparing the altered Normal, Log-Normal and Beta distributions, the results

show little difference. For example, in Table 3.9, the difference of the means of these

three distributions is 0.08 days (0.08% of the mean duration for the Normal

distribution). The difference of the standard deviation is 0.24 days (8% of 3.01 days

for the Normal distribution). The greatest difference of the percentile values from 5%

to 95% is 0.67 days (0.7% of 95.37 days for the Normal distribution) at the 95%th

percentile. This is because when the means and standard deviations are altered, the

means and standard deviations are assumed to be the same for these three distributions.

However, a small difference can be seen and this shows the different characteristics of

the different distributions. The percentile values of less than 5% or greater than 95%
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percentile and also properties such as the Log-Normal distribution have a greater value

of skewness and kurtosis.

When the altered Triangular distribution is compared to the altered Normal

distribution, an intersection point (between the 20%-25% percentile) can be observed

in both examples. Before this point, the Normal distribution provides more pessimistic

results. After the point the situation is reversed. This shows that the results of the

Normal distribution only have 25% probability of being larger than those of the

Triangular distribution. This is characteristic to the two distributions as when they are

assumed to be symmetric with a same extreme values of minimum and maximum, the

Normal distribution has more probabilities closer to the mean and the Triangular

distribution has more probabilities closer to the extreme values.

However, there are differences between the two distributions. For example, in Table

3.9, the difference of the means is 0.57 days (6% of the mean duration for the Normal

distribution). The difference of the standard deviations is 0.7 days (23% of 3.01 days

for the Normal distribution) and the greatest difference of the percentile values from

5% to 95% is 1.86 days (2% of 95.37 days for the Normal distribution) at the 95%th

percentile. Example 3.2 (Table 3.18) shows similar results. From this, it can be said

that for both examples analysed, results from the altered Triangular distribution show

only minor differences to those of the altered Normal distribution.

The Uniform distribution is the same in Figures 3.7 and 3.8 (before and after the

altering). It is also the same in Figures 3.16 and 3.17. This is because when altering

the means and standard deviations for the different distributions, the minimum and

maximum values are retained and the Uniform distribution only uses these two

parameters and thus the means and standard deviations of the distribution have not

been changed.

When the Uniform distribution is compared to the altered Normal distribution, a

intersection point at approximately the 25% percentile can also be observed. Below

this point, the altered Normal distribution produces more pessimistic results and after

this point the situation is reversed. It was noted that the differences of the results
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between the altered Normal distribution and the Uniform distribution are larger than

those between the altered Normal distribution and the altered Triangular distribution.

Figures 3.8 and 3.17 show the same characteristic probability distribution for the

different distributions as those of Figures 3.7 and 3.16 (before alteration). Thus, it can

be said that the results of the five distributions are truly dependent upon the shape of

the distribution.

Figures 3.9 and 3.18 show the comparison of different distributions at 10000 iterations

before and after the means and standard deviations are altered for the two examples. It

can be seen that the results after alteration of the different distributions are all more

pessimistic than those prior to the alteration. This is because most of the three point

estimates of each activities provided by the two examples are skewed to the right (the

most likely values closer to the minimum rather than to the maximum), thus the results

are more optimistic (prior to altering). When the distributions are assumed to be

symmetrical (the means and standard deviations are shifted), the probabilities of being

closer to the maximum or the minimum are equal and therefore the results will be more

pessimistic.

The comparisons show that the simulation results are not only dependent upon the

shape of the distributions but are also dependent upon the manner of setting the mean

and standard deviation. However, it can be seen that the effect of the choice of the

distribution is greater than the effect of the manner of setting the mean and standard

deviation in the two examples investigated.

3.5.2 Comparison of PERT and MCS methods

Figures 3.9 and 3.18 show the comparison of the PERT and different distributions of

Monte Carlo simulation methods. Tables 3.8 and 3.17 give quantitative results

respectively as the project durations predicted by the PERT are assumed following a

Normal distribution. It can be seen that the PERT gives the most optimistic results

when compared to those of the Monte Carlo simulation methods in both cases. This is

because in the PERT, the estimation of project duration is based on the uncertainty in
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the activities that lie on the critical path. Some paths have shorter expected durations

but may have a much higher level of uncertainty. The Monte Carlo simulation method

considers all of the paths having equal probability of being included in the random

generation process and thus produces more pessimistic results.

In the two examples investigated, PERT produces the most optimistic results, which is

in agreement with the common views in PERT studies [4448] . However, from a

quantitative point of view, the two examples studied show an insignificant difference

when the PERT results are compared to MCS. The difference can be ignored

especially when the way of the data collection (such as subjective estimations by

experience estimators) is taken into account. In present study, PERT has the

advantages of being easy to understand and can be calculated manually, thus saving

computational time.

On the other hand, the Monte Carlo simulation method can accommodate the different

distribution forms for the duration of individual activities and with large samples it can

provide more conservative results. It is easy to understand but it takes a considerable

time to be executed. In the two example projects studied, the simulations (10000

iterations) take approximately 4 - 5 hours to complete on a PC, IBM compatible 586

with 16 Megabytes of RAM and a 133 MHz processing chip.

It should be mentioned that one advantage that the MCS has when compared to the

PERT is that it can determine critical indices for a given network. Once uncertainty is

added to a project model, the critical path becomes less definite. A task that is critical

for one iteration may not be critical for the next. The critical index of a task is a

measurement of how often a task is critical during a simulation, or how often a task

falls on the critical path. The critical index is measured in percentages, or the percent

of time a task is critical during the simulation. The critical index gives managers the

ability to rate the importance of tasks.

For example, with PERT a project manager may have the following information:

Task 1	 Critical

Task 2	 Critical
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Task 3	 Non-critical

Task 4	 Non-critical

Thus allowing him to conclude that Task 1 and 2 deserve the most attention, while

Task 3 and 4 are less important. But, using Monte Carlo simulation, the following

information may be available:

Task 1	 Critical Index = 0.55, or 55%

Task 2	 Critical Index = 0.85, or 85%

Task 3	 Critical Index = 0.5, or 50%

Task 4	 Critical Index = 0.2, or 20%

With simulation, it can be concluded that Task 2 is the most important, while Tasks 1

and 3 are of medium importance and Task 4 is least important. The critical index

demonstrates that Task 3 is more important than the project manager first realised,

which may lead to a change in planning.

It is unfortunate that in the early version (1.12) of the @Risk package, when the two

examples were analysed, the Critical Index function did not function well and the

results can not be stated in this thesis. It is certain that in the later version (4.2) the

simulation output will have a value of 1 for each iteration that the task is critical and a

value of 0 when the task is not critical and the critical indices can be viewed easily on

the @Risk statistics report.

3.6 Summary of findings

The total project duration of two example projects has been studied by two existing

methods, the PERT and MCS methods. From the results of two case studies, the

following conclusions can be drawn.

3.6.1 Sensitivity analysis of Monte Carlo simulations

1. With an increasing number of iterations, a reduction of the sampling variability can

be attained.
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2. After a certain number of iterations, the percentile values from 5% to 95%

approximately tend to be similar and increasing the number of iterations only

affects the minimum (less than 5%) and the maximum (greater than 95%)

percentile values. This fact is irrespective of the type of probability distribution

function specified for the activity durations.

3. The project duration range (maximum minus minimum) is increased as the number

of simulations increase. For distributions without a boundary, such as the Normal

and Log-Normal (one side bounded) distributions, the project duration range will

tend to infinity. On the other hand, distributions with a boundary, such as the

Triangular, Uniform and Beta distributions, project duration ranges will converge

at certain points (the minimum and maximum values).

4. For the two projects studied, with 30-52 activities, 1000 iterations was sufficient to

provide accurate results.

5. After certain iterations, for example, 10000 iterations in the example projects, it

can be seen that between 5% and 95%, the percentile values of the Normal, Log-

Normal and Beta distributions share virtually identical values but before the 5%

and after the 95%, the percentile values of each of the different distributions can be

seen to be more varied.

6. For the parameters assessed in the present research, the Normal, Log-Normal or

Beta distribution functions for individual activities give very similar predictions for

the total project duration. The Triangular distribution produces medium level

durations which are proportionally similar to the Normal distribution results. The

Uniform distribution always overestimates the probability of extremes and

therefore gives conservative results

7. When the mean is altered, that is all of the distributions are considered symmetric,

Normal, Log-Normal and Beta distribution functions again give very similar

prediction for the total project duration. Before a turn point (20%-25% percentile

values), these three distributions (Normal, Log-Normal and Beta) provide more
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pessimistic results whereas a Uniform distribution provides the most optimistic

results. After that point, the three distributions provide more optimistic results

whereas a Uniform distribution provides the most pessimistic results. The

Triangular distribution produces medium level durations which are proportionally

similar to the Normal distribution results.

8. The results of the five distributions are dependent upon the shape of the

distribution. After altering the mean, the results of different distributions are all

more pessimistic than those of before the alteration.

9. The simulation results are not only dependent upon the shape of the distributions

but are also dependent upon the manner of setting the mean and standard deviation.

However, it can be seen that the effect of the choice of the distribution is greater

than the effect of the manner of setting the mean and standard deviation in the two

examples investigated.

10. The overall properties of each distribution generated by the @Risk package show a

characteristic probability distribution for the different distributions. The @Risk

package executes in a way that correctly generates the random number according to

the assigned distributions.

3.6.2 Comparison of PERT and MCS methods

1. PERT gives the most optimistic results when they are compared to those of the

MCS in both of the example projects.

2. PERT is easy to understand, can be calculated manually and saves computational

time.

3. Monte Carlo simulation method can accommodate the different distribution forms

for the duration of individual activities and with large samples it can provide more

conservative results.
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4. MCS is also very easy to understand but requires considerable computational time.

5. The MCS can determine critical indices for a given network whereas the PERT

cannot.
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CHAPTER 4 THE MODIFIED STOCHASTIC

ASSIGNMENT MODEL (MSAM)

4.1	 Introduction

As stated in Chapter 2, the network analysis methods usually used in construction

utilise classic analytical methods or involve some form of Monte Carlo simulation [82].

These methods are still commonly used in construction network analysis even though

most of them are up to 40 years old. The best known method is the CPM [37] • The

CPM is based on the assumption that the durations of the activities in a project network

are deterministic; accordingly, the project duration estimated with CPM are naturally

also deterministic [83].

In most projects, the durations of the various activities are not always predictable. The

activity durations should therefore be modelled as random variables, and evaluation of

the project time considered as a problem of probabilistic network analysis.

The PERT method [38 ' 39 ' 43] is the most commonly used method which considers the

activity durations as random variables. However, the required project duration is

usually determined solely on the basis of the mean critical path (the network path with

the longest expected time). This invariably underestimates the required completion

time for a given network [47,48,51,54,84,85].

Unlike PERT, which only considers the mean critical path, PNET [48] takes all of the

paths into consideration and can therefore be expected to generate more accurate

results [50,51,86].

The main disadvantage of PNET is that it requires path enumeration

and in a large network, the number of paths can be very large.

With the advent of increased computer processor power over the previous two decades,

Monte Carlo simulation methods [52] have become increasingly popular. However, for

large networks this requires considerable expense in terms of computational time that
82],may not be necessary [48.

103



The above summarised limited review of related methods indicate that there is a

considerable need for probabilistic analysis of construction networks. A practical

method for evaluating activity networks under uncertainty is needed to provide the

probabilistic information required for making proper decisions.

One of the objectives of this investigation is to propose a new analytical method, the

Modified Stochastic Assignment Model (MSAM) for the estimation of the project

completion time under uncertainty. The proposed method is inspired by a previous

method used solely in traffic networks, the Stochastic Assignment Model (SAM) [87].

The MSAM method employs a computational procedure proposed by Clark [88] . This

produces estimates of the first four moments for the maximum of two Normally

distributed random variables (representing activity durations). By repeated application

of Clark's result through a network of activities, it is possible to estimate the mean and

standard deviation of the project duration time. There is no literature describing

computational experience with an efficient, detailed algorithm which incorporates

Clark's results in construction network analysis. In contrast, within transportation

research, the SAM has been used to model drivers' route choice. As drivers are

assumed to select the shortest route, Clark's results are applied in an opposite way to

find the expected minimum perceived path costs. A computer program has been

written to implement the SAM algorithm by Maher [87] and Maher and Hughes 1891 . In

the present research, the proposed new method is modified from the SAM. This

chapter shows that the new method is an analytical counterpart of the Monte Carlo

simulation method, which can be applied to construction networks and provides

meaningful probabilistic information.

In the remainder of the chapter, a detailed description of the original SAM is given in

which the basic assumptions and mathematical formulation of SAM are described and

a summary of the algorithm is given. The proposed new method, the MSAM, is

presented through explaining the differences and similarities between transportation

and construction networks. This shows how and why the SAM can be applied to

construction network analysis. The MSAM algorithm is also described. Five example

projects are used to demonstrate the validity of the MSAM and to illustrate its
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application in construction project evaluations. The accuracy of the MSAM method is

assessed by comparing to the Monte Carlo simulation method. A comparison of the

MSAM with other analytical methods commonly used in construction network

analysis, such as PERT and PNET, has also been presented. Finally, a summary of

conclusions are given.

4.2	 The original SAM

4.2.1 Description and terminology

The Stochastic Assignment Model (SAM) described in Maher [87] and Maher and

Hughes 1891 , was originally developed for solving the stochastic traffic assignment

problem in transportation studies. It was the first to implement a probit assignment

model (that is assuming a Normal distribution for the link costs) without recourse to

full path enumeration in a transportation network. This was done by using a scanning

method, in conjunction with Clark's approximation [88] , to calculate the choice

probabilities at each node or junction.

To better understand the SAM, some terms used in transportation study are explained

below.

A network is referred to as a pure network if only its topology and connectivity are

considered. If a network is characterised by its topology and flow properties (such as

origin-destination demands, capacity constraints, path choice and link cost functions) it

is then referred to as a flow network (see Du and Nicholson [9°]). A transportation

network is a flow network representing the movement of people, vehicles or goods.

Any transportation network can be represented as a graph in the mathematical sense,

consisting of a set of links and a set of nodes. The links represent the movements

between the nodes, which in turn represent points in space (and possibly also in time).

The link may also refer to a specific mode of transport (for example, a movement by

car, bus, train bicycle or on foot), in which case a path in the transportation network

specifies both the route and the mode(s) of transport. An example transportation

network can be seen in Figure 4.1.
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node

Origin A

Destination B

Destination C

Figure 4.1 An example of transportation network

Travel behaviour with the network is governed by costs. Of particular interest is the

path cost. At equilibrium, drivers choose the paths that they perceive at the time to be

the least cost. Where the network is appropriately specified, this may represent both

route and mode choice. The trip cost is then equal to the cost of the path(s) chosen.

The level of demand is determined by the trip costs. Underlying both path and trip

costs are the link costs, as a path cost is the sum of the costs of the links constituting

the path, and the trip cost is the cost of the path with the minimum perceived cost. The

relationship between link cost and link flow is called the link cost function.

Traffic assignment is the problem of predicting drivers' route choices, and hence the

congestion which will occur in a road network. The simplest of all assignment

methods is the "all-or-nothing" model, in which the drivers' routes are found by means

of a shortest path algorithm such as that of Dijkstra [91] using constant link costs. There

is therefore no multi-routing. Traditionally there have been two techniques for

modelling the multi-routing which occurs in practice. Equilibrium methods and

stochastic methods. Equilibrium methods assume that drivers are identical, perfectly

knowledgeable and rational, and hence arrange themselves so that they minimise their

travel costs. The methods are deterministic using functional relationships between link

cost and link flow. Stochastic methods model the random variations in drivers'

perception of costs, due to their different levels of knowledge and priorities. Link costs

are therefore random variables. Within the class of stochastic methods, most models

either assume a Normal distribution for the link costs (probit model), or use the logistic

function to split traffic between a set of available routes (logit model).
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4.2.2 Assumptions

Stochastic assignment models are an extension of the all-or nothing model, where all

link costs are fixed, and drivers select the same minimum cost path between a

particular O-D (origin-destination) pair. All drivers are assumed to be the same in their

perception and knowledge of the network. However, in stochastic models, the

assumption is that drivers perceive cost differently from each other, either through

differing levels of knowledge of the network, or through differing priorities. For

instance some may be "time-minimisers" and others "distance-minimisers" and are

assumed to minimise their perceived cost. The consequence is that drivers choose

different "minimum cost" routes, and several routes will potentially be used between

any O-D pair.

The cost is no longer assumed to be a single value, instead the perceived cost is a

random variable taken from a probability distribution (Figure 4.2). The perceived costs

on different links are independent of each other. The independence assumption

ensures that in certain cases (the Normal and Gumbel distributions) the link cost

variables X„ can be summed to give the path cost variables Zk of the same distribution.

The assignment problem then becomes one of calculating the choice probabilities

between the different Zk. It is possible to imagine scenarios where this assumption

does not hold, for instance where drivers who prefer (or dislike) motorways will

consistently perceive all motorway links as having a lower (or higher) cost. However,

the assumption makes the problem much more tractable, and most authors have used it,

on the basis that it will have a small effect on actual link volumes, in comparison to the

difference between a stochastic and a deterministic method.

All-or-nothing

Figure 4.2 All-or-nothing versus stochastic models
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The choice of distribution for the link costs, the main distinguishing factor between

different approaches to stochastic assignment, determines the ease of calculation of the

choice probabilities.

SAM assumes that the cost of travel along link k is Xk, a random variable, independent

of any other link cost and whose distribution will be taken to be Normal (a probit

model). It follows then that the cost of travel along any prescribed path will also be

Normal with a mean and variance which are the sums of the means and variances of

the links which make up the path.

SAM operates by starting at an origin node and steadily moving a frontier through the

network until all destinations have been reached. There are two types of operation

The first is the merging of two (or more links) where they meet at a node (enter the

node), and the second is the scanning from a node to the ends of links which exit from

that node. In the following description, the set of links which enter node n (the

"before" links) is referred to as Bn and the set of links which exit from node n (the

"after" links) as An.

At each merge the split of traffic between the two routes is calculated and recorded for

later use. When the forward pass of the frontier is complete, a backward pass uses the

stored splits at each merge and uses these to load the traffic from that origin to all

destinations on to the network. Each origin is then considered in turn, and the traffic

loads built up incrementally. The main advantage of the method over other stochastic

methods is that proper account is taken of the correlations between routes at the merge

point.

The cost of travel from the origin to the end of link j is Y., and the cost from the origin

to node n is the random variable W,,. If the set of all links which end at node n is Bn,

then:

= min Yi	 ( 4.1 )
-	 fee„
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It is only possible to deal completely with a node (in the sense of constructing the

distribution of its W) when all contributing Y, are known. When all such l's are known

and W has been constructed, the node is "complete". At the same time are found the

proportions of traffic pi which arrive at node n by link j. These proportions are defined

by:

p = Pr ob(Yi = triBn(Yk ))( 4.2 )

In scanning from node n which is complete and for which the set of all links which

start there is An:

jEAn	 (4.3)

It is clear that as soon as node n is complete the distribution of Y for all links in A„ can

be found. In principle the specification of the distribution of the X, will lead, through

the repeated application of the merging and scanning processes of Equation 4.1 and

4.3, to the final result by the end of the forward pass through the network. A backward

pass is then made to load the traffic on to the network, using the splits determined at

each merging point by Equation 4.2.

Unfortunately, it can happen when treating a real network that there comes a point in

the process at which no node is complete. For example, the simple network in

Figure 4.3, in which A is the origin. Initially scanning is done from A, to the ends of

links AB and AC. At that point neither B or C is complete and no further progress can

be made, without some alternative course of action. This occurs when there is

"looping" in a network. This will be referred to as "deadlock" and is discussed in

(Maher [871 and Maher and Hughes [891 ). Since it does not exist in a construction

network (no looping is allowed in construction networks), the discussion is not

included here.
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( 4.7)

(4.8)

Figure 4.3 Three-nodes network

The second point concerns the manner by which the distributions (of the l's and WO are

determined. Mathematically it would be most convenient to use some known

distributional form, so that only the values of a few parameters such as mean, variance

and covariance need be evaluated. It soon becomes apparent though, when studying

Equation 4.1, that no such distributional form exists. To make progress therefore some

approximate method is required.

4.2.3 The Clark approximation

Clark [88] proposed an analytic result for the greatest of a finite set of Normal random

variables. This very useful result deals with the maximum of two Normal variables X1

and X2, which have expected values ph p2 and variances 072, 622, and such that the

correlation between XI and X2 is p12 . The resulting variable is also, approximately,

Normal with the following distribution:

Max(X 1 ,X 2 )-- N(V I ,V2 -1/ 12 )	 ( 4.4 )

where VI , 1/2 -1/ 12 are the expected value and variance of the random variable

Max(X),X2), Clark has proved that:

v1 =-- P1 ll47) + P2 (1)(— 7) + a0(7)
	

(4.5)

and

V2 = (111 2 + 0- 1 2 )1[13
(

1) + ( I-12 2 + C r 2 2 ):D(- r) + (PI + P2)a0(r)

,,,2	 2

" = (71 +Cr22 -2Cr1a2P12

r = (PI — 112)/ a

(4.6)
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where STI and 0 are respectively the probability distribution function and density

function for the Normal distribution:

cD(x), Loot	 ( 4.9 )

and

0(x) =	 70- 2 exp(— .1C 2 / 2) ( 4.10 )

The probability of X1 being the larger is pi where:

P =

and hence:

( 4.11 )

P2 = cl) (- Y) ( 4.12 )

If r denotes the coefficient of linear correlation, we write r(Xi, A'2) P12, r(XI, X3) =J3,

r(X2, X3)=P23. If the correlations p13 and p23 of X1 and X2 with a third Normal variable

X3 are known, then the correlation of the new variable Max(XI, X2) with X3 can be

found:

r[X 3 , Max(X I , X 2)] = I P 13 CIM+ C 2 P 23 (1) ( 7)1/(1 2 - v ) 2	 ( 4.13 )

Equation 4.13 is used in estimating moments of the greatest of more than two

Normally distributed variables. By repeated use of this result, the maximum of any

number of Normal random variable can be calculated recursively:

max (x ,	 .x,) = Max(Max(..Max(X n_2 ,Max(X , X n))-..))

	

( 4.14 )

SAM uses Clark's results in an opposite way, to find the minimum of two random

variables, a simple modification is needed, using the fact that:

Min(X 1 , x2 ) = —Max(—	 2)

	
( 4.15 )
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( 4.19 )

( 4.20 )

so if:

Y = —Max(— X 1 ,—X 2)
	

( 4.16 )

then the Clark formula becomes:

E(Y)

=	 1-120(7)+

= flio(—r)+ P20(7)— asb(Y)

v2 (41 2 + 1 2 )(_)± (1.12 2 + 0 2 2
):1471 	(11 +1.12)aØ(y)

where

a
2 

=
2
 ± 0-2 2 2a 1 cr 2PI2

I =(ul —112)/ a

The probability that it is Y, which is the smaller is p, where:

p.

and hence:

P, =OW

( 4.17 )

( 4.18 )

( 4.21 )

( 4.22 )

Finally the covariance between W and some other variable Yk is:

COV(W ,Yk ) = p,v,k + p	 ( 4.23 )

where v,k is the covariance between Y1 and Yk. The accuracy of these results is

remarkably good, and certainly of sufficient quality to make the application to traffic

assignment feasible. This result gives a possible method for calculating the route flows

in a network, if the route cost variables, with their covariances, are known.
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a	 a	 a

4.2.4 The SAM algorithm

The SAM algorithm is now described in some detail; as stated above, the link costs are

assumed to be Normally distributed and independent with specified means and

variances. For simplicity, the variability parameter fi (the ratio of variance to mean) is

assumed to be constant for all links in the network, although this parameter could be

allowed to take different values for different links, with no alterations to the basic

method. In any case, it is often convenient keep the same value of /3 for the whole

network which ensures that a series of links will sum together to give a distribution

which has the same value of

( 4.24 )

In this way, the modeller can be assured that the ratio of variance to mean will not

depend on the level of detail of the network.

The algorithm loads each origin in turn, and comprises a forward pass, during which

choice probabilities at junctions are calculated, and a backward pass, in which the

probabilities are used to load the traffic. During the forward pass, the algorithm

progresses through the network outwards from the current origin, by a series of

'scanning' and 'merging' operations.

The first step is to scan outwards from the current origin r to the ends of all links which

leave the origin. This gives the travel time distributions from the origin to the ends of

those links (these random variables will be referred to as Ya, for any link a in the

network, dropping the reference to origin r for ease of notation). For the initial scan

from the origin, the means and the variances of the Ya are simply the means and

variances of the link costs.

Next comes the 'merge' step: find a node n, such that the distributions of the Ya

variables have been determined for all links a in the set B„. There will always be such

a node in the cases where the network contains no loops. (since looping does not exist
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W = minYn	 aeli,„ a ( 4.25 )

in a construction network, the discussion is restricted to such cases) The merge

calculation uses the Clark approximation (Equations 4.17 - 4.23) to find the minimum

of the Ya at this node, determining the distribution of the minimum perceived travel

time Wn from the origin to this node. The random variable W,, is defined as:

The calculations give the mean and variance of W„, as well as the probabilities pan that,

of all the traffic entering node n, it is the link a which has the minimum travel time.

That is:

Pan = prob(Ya = cnceiBn(Yk ))	 aEBn	 ( 4.26 )

Pan are defined such that E Pan 1 V n. These probabilities will later be used to split
aefi„

the traffic between the entering links. The node n is marked as 'complete'.

After merging at node n, scan from there. This involves calculating the Ya for the a in

An, The means of these Ya are simply the mean of Wn plus the mean of the link cost

distribution; the variances are calculated similarly. The covariances of the Ya for a in

An are also calculated, with all the other Ya known so far. The covariance between the

Ya for a in An are all equal to the variance of W. Other covariances are calculated by

the following formula:

V ab = EPanVcb
	 VaEAn, bEL, boAn	( 4.27 )

CE B„

in which vab is the covariance between activities a and b, where a belongs to one of the

activities after event n. Activity b belongs to L, in which L denotes all the known

activities excluding the set of activities Bn. After the scanning step, return to the merge

step, to find a node which is not yet complete, but has known Ya, for all the a in B„.

Repeat the merging and scanning steps for this new node and subsequent ones until all

nodes in the network are complete. This constitutes the end of the forward pass for the

114



current origin r; all the pan have been calculated, and will be used in a backward pass to

load the traffic.

In the backward pass the nodes are processed in reverse order to that of the forward

pass; for each node n, the links a in B, are allocated a flow xa, using the pan from the

forward pass:

xa = pan [q + E xa,)	 Va E B,,	 ( 4.28 )
a'EA„

where gm is the demand from r to n. This ensures that the demand from r to all

destinations is loaded.

Having carried out the forward and backward pass for origin r, the loading for r is

complete. The loading is carried out for all origins, with the link flows being summed

over the origins. This constitutes the end of a complete SAM loading. In summary

then, the steps for loading the demand, origin by origin, are as follows:

1. Scan outwards from the current origin to the ends of all links which leave the origin.

2. Find a node n, such that the distributions of the Ya variables have been determined

for all links a which enter node n. "merge" at this node, determining the distribution

of the minimum perceived travel time W„ from the origin to this node.

3. Scan out from node n (which was completed in step 2), estimating the distributions

of the Ya for all a E An.

4. If there are any nodes which are not complete, return to step 2.

Steps 1-4 comprise the forward pass for the current origin, in which all the required

probabilities pan are calculated.
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Then carry out the backward pass to load the traffic:

5. Using the splitting probabilities pa, from step 2, load the traffic, starting at the last

node at which merging took place, and work back through each node n towards the

origin, in the reverse order to which merging took place.

6. Repeat steps 1-5 for each node in turn.

4.2.5 SAM applied to a simple transportation network

In this subsection, a simple network is used to show the application of SAM. The

example is chosen from Philip Hughes's PhD thesis [92] • The network in Figure 4.4 has

five links, with the link number shown in brackets.

Figure 4.4 A transportation network with correlated routes

To illustrate the algorithm's workings, consider first the set of costs:

CI =5

C2 10

C3 =3

C4 =3.5

c3 = 6
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The parameter fi is set equal to 0.5 for this example, and assume that 100 units of

demand travel from node 1 to 4. For this simple case, the method is followed through

in some detail; when SAM is applied to the network, the steps of the algorithm will be

as follows:

1. Scan outwards from the origin, node 1, to the ends of all links which leave the

origin (link 1 only). Then E(Y1) = 5.

2. Find a node n, such that the distributions of the Ya variables have been determined

for all links a which enter node n. This node is node 2, as Yi was found in step 1.

The "merge" at this node is trivial, the distribution of the minimum perceived travel

time W2 is just the distribution of with mean 5 and variance 2.5.

3. Scan outwards from node 2, to the ends of all links which leave node 2 (links 2,3,

and 4). Then E(Y2) =15, E(Y3) =8, E(Y4) =8.5, found by adding E(W2) (5 units) to

the link costs cl, c2, and c3 respectively. The covariances of these distributions with

each other, and with Yi , are all equal to 2.5, the variance of

4. Find a node n, such that the distributions of the Ya variables have been determined

for all links a which enter node n. This node is node 3, as Y3 and Y4 are now

known. Merge at this node, determined the distribution of W3, which will be the

minimum of Y3 and 174. The mean of W3 is 7.5033, and the variance is 3.6026, as

given by v1 and v2 --1/ in the Equations 4.17 and 4.18 above. The probability for

link 3 is 0.6093, and for link 4 it is 0.3907.

5. Scan out from node 3, which has just been completed, calculating the distribution

Y5; the mean is 13.5033 (E(W3) + c5) and the variance is 4.1026 (found by

calculating Var(W3) + /3 c5 = 3.6026+3 = 6.6026). The covariances of Y5 with the

other known Ya distributions are also found now. For each link a, these are

calculated by multiplying the split for each link b in B3 by the covariance

Cov(Ya,Yb), and summing:
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Ca41/5  Yi ) = 0.6093 *	 , Y1 ) + 0.3907 * Cavfr4 , Yi ) = 0.6093 * 2.5 + 0.3907 * 2.5 = 2.5

Cov(Y5 , Y2 ) = 0.6093 *	 Y2) + 03907 * Cov(Y4 , Y2 ) = 0.6093 * 2.5 + 0.3907 * 2.5 = 2.5

Cov(Y5 , Y3 ) = 0.6093 * Cov(Y3 , Y3 ) + 0.3907 * 044 , Y3 ) = 0.6093 * 4 + 0.3907 * 2.5 = 3.4139

Covfr5 , Y4 ) = 0.6093 * Cov(Y3 , Y4 ) + 0.3907 * Cov(Y4 , Y4 ) = 0.6093 * 2.5 + 0.3907 * 4.25 = 3. 1838

6. Merge at node 4; Y2 and Y5 are now known, so this is possible. The mean of W4 is

12.9025 and the variance is 5.6204, and the split between links 1 and 4 is 0.3097

and 0.6903. All nodes are now complete, so the forward pass is finished.

For completeness the full covariance matrix V is given, where the diagonal elements

are the variances of the Ya distributions:

	

12.5 2.5	 2.5	 2.5	 2.5 \

	

2.5 7.5	 2.5	 2.5	 2.5

	

V= 2.5 2.5	 4.0	 2.5	 3.4139

	

2.5 2.5	 2.5	 4.25	 3.1838

2.5 2.5 3.4139 3.1838 6.6026 j

Then carry out the backward pass to load the traffic using the splitting probabilities pan

from step 2. The merge steps were carried out at nodes 2 then 3, so node 3 is now

processed first:

Node 3:

x1 = 0.3097 x 100 = 30.97

x4 = 0. 6903 x 100 = 69.03

Node 2:

x2 = 0.6093 x 69.03 = 42.0581

x3 = 0.3907x 69.03 = 69.0313
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4.2.6 Concluding remarks

The basis of SAM has been described, which was originally developed for solving

traffic assignment problems. It is the first to implement a probit assignment model,

without recourse to full path enumeration in a transportation network. This is done by

using a scanning method, in conjunction with Clark's approximation, to calculate the

choice probabilities at each junction. It is an analytical counterpart of the Monte Carlo

simulation method and takes proper account of the correlations between routes. A

computer program has been written, in FORTRAN 77, to implement the SAM

algorithm (Maher 1871 and Maher and Hughes [89]). Tests have been carried out and the

results agree closely with those from Monte Carlo simulation.

4.3 The proposed new method- Modified SAM (MSAM)

4.3.1 Similarities of transportation and construction networks

As already stated in Chapter 2 and the previous subsection 4.2.1, transport and

construction networks are quite similar. A construction network is a flow network as

well, it represents the activity durations and their dependencies in a construction

project. Both transport and construction networks considered as a network approach

being made up from arrows and nodes. Arrows represent links in transport networks

and activities in construction networks. Nodes represent points in space (and possibly

also in time) in transport networks and events in construction networks. In both cases

there are various paths from the starting point to the finishing point. In traffic

networks, more than one destination can sometimes be seen, but the network is always

analysed each O-D pair (Origin - Destination) in turn.

However, there are differences between the two types of networks. For instance,

"bidirected" or "parallel" cases can not be found in construction networks.

"Bidirected" means there are two orientations between the same pair of nodes (Figure

4.1, links 4 and 5 between nodes 1 and 4). Two links are said to be "parallel" if they

connect the same pair of nodes in the same direction. The logic of connectivity of the

"parallel" case is represented by a dummy activity (broken or dotted arrows) in

construction networks.
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Construction networks have a very special structure when compared to transport

networks. In particular, such representations contain arrows directed (which only have

one orientation) and form circuitless networks. In terms of a network, a circuit is

defined as a finite chain with the first and last nodes being coincident (looping). It can

also be stated that looping is not allowed in construction networks.

Further detailed descriptions of network concepts and their definitions are referred to

by Bell and Iida [93] for transport networks; Battersby [42] , Lockyer and Gordon [33] for

construction networks; and Phillips and Garcia-Diaz [94] for both types of network.

Network analysis problems are also quite similar in the construction and transportation

industries. The problem in the case of transportation is to minimise the transportation

costs (or time), in contrast, in the case of the construction, the problem is to determine

the project completion time being the longest path in network. Both problems are

solved under a network approach.

As explained in the previous section, SAM assumes that the driver's perceptions of

travel times along the links in a traffic network are random variables, independent of

any other link and whose distribution will be Normal. The cost of travel along any

prescribed path will also be Normal with a mean and variance which are the sums of

the means and variances of the links which make up the path.

SAM operates by starting at an origin node and steadily moving a frontier through the

network until all destinations have been reached. There are two types of operation.

The merging operation is used to determine the distribution of the minimum cost to

that node and also to find the proportions of traffic pi which arrive at node n by link j

(taking account of the correlations between routes). This is achieved by applying

Clark's formula in an opposite sense to find the least of the link costs. The scanning

operation is used to determine the distribution of the costs to the ends of links which

exit from that node. The repeated operations result in the distribution of the minimum

cost to any destination node n. The backward pass then uses the stored splits at each

merge and to load the traffic.
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It can be seen that under the same assumptions, that is if the duration of activities in a

construction network are random variables, independent of any other activity and

whose distribution will be Normal, the duration along any prescribed path will also be

Normal with a mean and variance which are the sums of the means and variances of

the activities which make up the path.

Using the same procedures as SAM, the repeated merging and scanning processes, the

maximum time to any destination node (end event) can be found. It should be noticed

that Clark's results are applied here in their original sense in contrast to that in the

SAM. The backward pass is not needed in construction network analysis since there is

no "loading" (SAM is a stochastic method assuming link costs are variables hence the

backward pass is needed to load the traffic). However, it can be used to determine the

probability of an activity being critical.

It is clear that with only minor modifications, the SAM method is applicable to

construction network analysis for project planning.

4.3.2 The MSAM algorithm

The MSAM algorithm is now described in detail. As stated above, the same

assumptions of the SAM still hold. The assumption of the randomness of individual

activity duration in a construction network is well accepted due to the many

uncontrollable factors, such as weather and resource availability, encountered in

practice [48 '95] • The Normality assumption for individual activity duration has often

been made in the literature  [48,59,71,96]. For a general network, if there are a large

number of activities in a path, the path duration will tend toward a Normal variate (by

virtue of the Central Limit Theorem [391 ). For most medium to large scale construction

networks there are enough activities for the C. L. T. to be valid. However, for small

scale networks, the accuracy of MSAM results need closer examination but the method

could still provide a useful approximate estimate of project duration.
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Wn = max Ya
ael3„

( 4.29 )

The algorithm treats each event in turn, carries out a forward pass, during which choice

probabilities at junctions are calculated. The algorithm progresses through the network

outwards from the start event, by a series of 'scanning' and 'merging' operations. At

the end of the forward pass, the expected value of the maximum path length (the

project duration) is known.

The first step is to scan outwards from the start event r to the ends of all activities

which leave the event. This gives the duration distributions from the event to the ends

of those activities (these random variables will be referred to as Ya, for any activity a in

the network, dropping the reference to event r for ease of notation). For the initial scan

from the start event, the means and the variances of the Ya are simply the means and

variances of the activity durations.

Next comes the 'merge' step: find an event n, such that the distributions of the Ya

variables have been determined for all activities a in the set B, (denoting the set of

activities "Before" event n). The merge calculation uses the Clark approximation

(Equations 4.4-4.14) to find the parameters of the distribution of the maximum activity

duration W, from the start event to this event. The random variable Wn is defined as:

The calculations give the mean and variance of W„, as well as the probabilities pan that,

of all the activities entering event n, it is activity a which was the latest to be

completed. That is:

Pan = prob(Ya = TeaBx(Yk ))	 a E Bn	( 4.30 )

Pan are defined such that E pa, =1 V n. The event n is then marked as 'complete'.
aeB„

After merging at event n, scan from there. This involves calculating the Ya, for the a in

A, (denoting the set of activities "After" event n). The means of these Ya are simply

the mean of Wn plus the mean of the duration distribution; the variances are calculated
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similarly. The covariances of the Ya for a in A n are also calculated, with all the other Ya

known so far. The covariance between the Ya for a in A,, are all equal to the variance

of Wn. Other covariances are calculated by Equation 4.31:

v ab = EPanycb
	 Va E An, bEL, beAn	( 4.31 )

ceB„

in which vat, is the covariance between activities a and b, where a belongs to one of the

activities after event n. Activity b belongs to L, in which L denotes all the known

activities excluding the set of activities Bn. After the scanning step, return to the merge

step, to find an event which is not yet complete, but has known Ya, for all the a in Bn.

Repeat the merging and scanning steps for this new event and subsequent ones until all

events in the network are complete. In construction networks, which contain no loops,

it is always possible to find such an event.

In summary, the steps of the MSAM are as follows:

1. Scan outwards from the start event to the ends of all activities which leave the

event.

2. Find a event n, such that the distributions of the Ya variables have been determined

for all activity a which enter event n. "merge" at this event, determining the

distribution of the maximum duration Wn from the start event to this event.

3. Scan out from event n (which was completed in step 2), estimating the distributions

of the Ya for all a E An.

4. If there are any events which are not complete, return to step 2.

Steps 1-4 comprise the forward pass for the network, in which all the required

probabilities pan are calculated.
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4.3.3 The MSAM as applied to a construction network

A case study project is used to illustrate the algorithm of the MSAM. The network is

shown in Figure 4.5 and the set of activity durations are shown in Table 4.1:

Figure 4.5 Arrow network of Example 4.1

Table 4.1 The mean and variance of each activity of Example 4.1

Activity Expected

value

Variance Standard

Deviation

A 12.00 1.78 1.33

B 20.00 9.00 3.00

C 14.00 4.00 2.00

D 16.00 16.00 4.00

E 28.00 40.11 6.33

F 15.00 4.00 2.00

G 36.00 16.00 4.00

H 22.00 7.11 2.67

I 18.00 2.78 1.67

J 24.00 11.11 3.33
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When the MSAM is applied to the network the steps of the algorithm will be as

follows:

1. Scan outwards from the start event, node 1, to the ends of all activities which leave

the node. They are activities A, B, and C. Then:

YA IIA = 12 , cr,21 = 1.78

YB 1.1 8 = 20 , c r B2 = 9

Yc Pc = 14 , (4 = 4

The covariances of these distributions with each other are all equal to zero because

of the assumption of independence.

Cov(YA ,YB )= 0

COV(Y A , Yc ) = 0

Co#B ,Yc.)= 0

2. Find an event n, such that the distributions of the Ya variables have been determined

for all activities a which enter event n. Such an event is node 2, as YA was found in

step 1. The "merge" at this node is trivial, the distribution of the maximum duration

W2 is just the distribution of Li, with mean 12 and variance 1.78.

3. Scan outwards from node 2, to the ends of all activities which leave event 2

(Activity E only). Then:

YE = W2 + E, Thus: ,u E = 12+ 28=40 , cr. = 1.78+40.11=41.89

The covariances of these distributions are:

Cov(YE,YA)=COV(YA,YA)=1.78

Cov(YE ,YB )= COV(Y A ,Y B ) = 0

COV(YE ,Yc.) . Cov(YA ,Yc )= 0

4. Find a event n, such that the distributions of the Ya variables have been determined

for all activities a which enter event n. This event is node 3, as Yc was found in step
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1. Merge at this node, the distribution of the maximum duration W3 is just the

distribution of Yc, with mean 14 and variance 4.

5. Scan outwards from event 3, to the ends of all activities which leave event 3

(Activity D and H). Then:

Y D = W 3 + D, Thus: pp = 14+16 =30, cr,;, = 4 +16 = 20

Y H = W 3 + H, Thus: ,uH = 14+ 22 = 36, c4.1 = 4 +7.11= 11.11

The covariances of these distributions are:

Cov(YD ,YH )= COV(W 3 ) = 4

Cov(YD ,Y,)=Cov(Yc ,Y A )= 0

COV(Y D ,Y B ) = COV(Yc,Y 8 ) = 0

COV(Y D ,Yc) = Cov(Yc., Yc )= 4

Cov(YD ,Y E ) == COV(Yc ,Y E ) = 0

COV( TH ,Y A ) --= COV(Yc ,Y A ) = 0

COV(Y H ,Y B )= COV(Yc ,Y B ) = 0

COV(Y H ,Yc) = Cov(Yc., Yc. )= 4

Co#H , YE )= Cov(Yc.,YE )= 0

6. Merge at node 4; YB and I'D  are now known, so this is possible. W4 is the maximum

duration of the YB and YD:

v1 = P Bo(r)+ Ai Do(- r)+ ao(r)

V22 = (11 123 + 0- 2B)0(r)+(ufo + 0-00(- r)+ (i B + PD)a(r)

1	 o•a2 = a-B2 +o-D —zaBCDPBD

PB —PD 
Y =

a

Thus:
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r- COV(Y B ,Y D 
9 +20- 2* 0 = 29a2 9 + 20- 2*1.1.9*-$120* 	 ,-

-‘19 *1120

20- 30
-7	 = 1.85695

429

V 1 20* (14- 1.85695)+ 30* 0(1.85695)+

V2 (20 2 + 9)* 4- 1.85695) + (30 2 + 2 0) *

,579* q5(- 1.85695) = 30.06652

0(1.8569.0+ (20 + 30)* NI-29 *	 1.85695)

922.9779

V2 -v = 922.9779 -30.06652 2 =18.9821

W4 Pw4 = 30.06652 , (3- 124,4 = 18.9821

The proportion are:

=0( 118	 Dj= (DV( )= 0.031659
a

p0 = (1:0 (- y) = 0.968341

7. Scan out from node 4, which has just been completed, to the ends of all activities

which leave node 4 (Activity F and G). Then:

YF W4 + F, Thus: ,uF = 30.06652 + 15 = 45.06652 , Ci 2F = 18.9821+4 = 22.9821

YG W4 + G,Thus: PG = 30.06652 + 36 = 66.06652 , o	 = 18.9821+16 = 34.9821

The covariances:

Cov(YF ,YG )= COV(W 4 ) = 18.9821

COV(YF ,YA ) = pB Cov(YB , YA )+ p DCov(YD,YA)=0

COV(YF B) = Pe Co4B 1Ye) ± PD Cov(YD, YB )= 0.031659* 9 +0 =0.284929

Cov(YF, Yc) = P B C°4 Y B' YC) ± P DC°V(YD,Yc)= 0 +0.968341* 4 = 3.873365

Cov(YF, YD) = P B C°V(Y B ' 17 D) ± P D C°17(17 D D ) = 0 + 0.968341* 20 = 19.36682

Cov(17F, YE) = PBCOV(YB,YE)+ pc,Cov(YD ,YE )= 0

Cov(YF ,YH) = PB C191 (YB ,YH) + P D C491 (Y D 2 YH) =0+ 0.968341* 4 =3.873365
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Cov(YG ,YA )= p $Cov(YB,Y,)+ p D Cov(Y D ,Y A ) = 0

Cov(Yc ,YB )== pB COV(YB ,Y8 ) ± p DCOV(YD,Y8)= 0,031659 * 9 + 0 = 0.284929

Cov(YG , Yc ) = p B C01,(YB ,Yc)+ ppCov(YD ,Yc )= 0 + 0.968341* 4 = 3.873365

Cov(YG ,YD )= p B C0417B ,YD )± pD Cov(YD ,YD )= 0 + 0.968341* 20 = 19.36682

Cov(YG 	p B Cov(YB ,YE )+ p D Cov(YD , YE ) = 0

COV(YG ,YH )--= p 8Cov(YB ,YH )+ ppCov(YD ,Yll )= 0 + 0.968341* 4 = 3.873365

8. Merge at node 5; YE and YF are now known, so this is possible. W5 is the maximum

duration of the YE and YF:

VI = PE O(7) + PF0(- r) + a0(y)

V2 =(u + c4)442') + (14 +a (- 7) + (PE 11F)410(.7)

a 2 =
L'E'''FPEF

PE -PF 
Y =

a

Thus:

a2 = 41.89 + 22.9821 - 2 *	 22.9821 * 	
COV(YE)
	  = 64.8721

1,r4F1-:(W * J22.9821

40 - 45.06652 
Y =	

64.8721 

= 0.62904

v = 40 * 01(- 0. 62904)+ 45.06652* 4(0.62904)-f 164.8721 * 0(- 0.62904) = 46.36203

v2 = (40 2 + 41.89)* 4130(4+ (45.06652 2 + 22. 9821)* cP(- y) + (40 + 45.06652)*

164.8721 * Ø(y)--= 2169. 182

2
V2 -V = 2169. 182 - 46.36203 2 = 19.74418

TV5 pws = 46.36203 ,	 = 19.74418

The proportion are:

PE = (1)( PE : PF )- (1)(y)= 0.26466

PF = CD(-- 7) = 0.73534
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9. Scan out from node 5, which has just been completed, to the ends of all activities

which leave node 5 (Activity I only). Then:

=W 5 ± I , Thus:

= 46.36203+ 18 = 64.36203 , 	 = 2.78 + 19.74418 = 22.52418

The covariances:

Coq), ,Y A )= pE Cov(YE ,YA )+pF Cov(YF ,YA )= 0.26466* 1.78 +0 =0.471095

Cov(Y1 ,YB )= pE Cov(YE ,YB )± pF Cov(YF ,YB )= 0 +0.73534 * 0.284929 =0.20952

Cov(YI ,Yc )= pE Cov(YE ,Yc )+ pF Cov(YF ,Yc )= 0 +0.73534* 3.873365 = 2.84824

Cov(YI ,YD )-= pE COV(YE ,YD )+ pF Cov(YF ,YD )=0± 0.73534* 19.36682 = 14.2412

Cov(YI ,YE )--= P E COV(YE ,YE )+ pF Cov(YF ,YE )= 0.26466* 41.89 +0 = 11.08661

Cov(YI ,YF )= pE COV(YE ,YF )+ pF C0v()'F ,YF )=0±0.73534* 22.9821= 16.89965

Cov(YI ,YG )= pE Cov(YE ,YG )± p F COV(YF ,YG ) = 0 ± 0.73534 * 18.9821= 13.95829

Cov(Y1 ,YH )= pE Cov(YE ,Y H )+ P F C0V()' F ,YH ) = 0 + 0.73534 * 3.873365 = 2.84824

10.Find a node n, such that the distributions of the Ya variables have been determined

for all activities a which enter node n. This node is node 6, as YH was found in step

5. Merge at this node, the distribution of the maximum duration W6 is just the

distribution of YH, with mean 36 and variance 11.11.

11.Scan outwards from node 6, to the ends of all activities which leave node 6

(Activity J only). Then:

Yj =W 6 H, Thus: pi =36 + 24=60, o-i = 11.11+11.11= 22.22

The covariances:

Cov(YJ ,Y A ) = COV(Y H ,Y A ) = 0

COV(Y ,Y B ) =-- COV(Y H ,Y B ) = 0

COV(Y ,Yc) = Cov(YH ,Yc)-- 4

Coq)", ,Y D ) = COV(Y H ,Y D )= 4
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G
a2 = 22.52418 + 34.9821 - 2 * V 22.52418 *1134.9821 * 	

Cov(Y, , Y)

122.52418 * V34.9821

COV(Yj ,Y E ) = COV(YH ,YE ) = 0

COV(Yj ,Y F ) = COV(YH ,YF ) = 3.873365

Cov(YJ , YG ) = COV(YH ,YG ) = 3.873365

Cov(YJ ,YH )= COV(YH ,1711 ) = 11.11

Cov(Y., ,Y1 )= Cov(Y,„ , y1 ) = 2.84824

12.Merge at node 7, as Yh YG, and are all known. First find the maximum of Y1 and

YG:

v1 = 11 1 (13$(7) ±	 7)± agr)

V2 = (14 + 471)(1316+-	 + 0-JD(- r)+ (PI + PG)a0(7)

a2 =o .12 + csG2 _ ,
4."

- PG 
r =

a

Thus:

= 22.52418 + 34.9821 - 2 * 13.95829

= 29.58969

64.36203 - 66.06652
-	 = 0.313346

1129.58969

= 64.36203 * (121(- 0.313340+ 66.06652 * (1)(0.313346)+129.579-T9 * c5(- 0.313346)

= 67.49005

v2 = (64.36203 2 +22. 52418)* 1 (y) + (66. 06652 2 + 34.9821)* (1)(- 7) +

(64.36203 + 66.06652) * V 29.58969 *

= 4580.74

v2 - v 2 = 4580.74- 67.49005 2 = 25.83253I

/21G =67.49005 c4G = 25.83253
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The correlation:

Co4Y, 	 _ 	 2.84824 
V 22.52418 *22.-271 - 

0.127315c T I C r

	.Cov(YG,Y.,) _=	 	 3.873365 loaf 

cs G cri .134.9821 * V-2272-2- 0.138929

The correlation between YJ and the maximum of Yi and 17 G9

a1PIJ cD(r) + crGPGJ C1) (- r)
PJ ,1G

1.11 2 -

22.52418 * 0.127315 * c130 (- 0.313346)+ 34.9821 * 0.138929 * (D(0.313346)

V25.83253
= 0.14554

Find the Max(Yj ,Max(YI,YG)):

=i1J0(r)i-p,G0(-y)±a0(7)

V2 =(iii 0-.241*)+(,4 + cr1G )a)(-- r ) + (14.1 PIG)a0(7)

a 2 =	 c	 2c7,1c 1G P .1,1G

Thus:

a 2 = 22.22 + 25.83253 - 2 * VTT22 * V 25.83253 * O. 14554 = 41.07876

60 - 67.49005 
= 

141.07876 

- 1.16863

V1 =60 * 01(- 1. 16863) + 67.49005 * (D(1. 16863) + -141.07876  * (4- 1.16863)

= 67.87338

v2 = (60 2 + 22.22)* cD(r) + (67.49005 2 + 25.83253)* (X- r)+(60 + 67.49005)

* V 41.07876 * AY) 4629.172

v2 - v; = 4629. 172 - 67.87338 2 = 22.37629

W pw7 = 67.87338 , 6524,7 = 22.37629
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Therefore, the maximum of project duration is with mean 67.87338 and variance

22.37629.

13 .For completeness the full covariance matrix V is given, where the diagonal elements

are of course the variances of the K, distributions:

( 1.78	 0 0 0 1.78 0 0 0 0.471095
\

0

0	 9 0 0 0 0.284929 0.284929 0 0.20952 0

0	 0 4 4 0 3.873365 3.873365 4 2.84824 4

0	 0 4 20 0 19.36682 19.36682 4 14.2412 4

1.78	 0 0 0 41.89 0 0 0 11.08661 0v=
0	 0.284929 3.873365 19.36682 0 22.9821 18.9821 3.873365 16.89965 3.873365

0	 0.284929 3.873365 19.36682 0 18.9821 34.9821 3.873365 13.95829 3.873365

0	 0 4 4 0 3.873365 3.873365 11.11 2.84824 11.11

0.471095	 0.20952 2.84824 14.2412 11.08661 16.89965 13.95829 2.84824 22.52418 2.84824

\ 0	 0 4 4 0 3.873365 3.873365 11.11 2.84824 22.22	 j

4.3.4 Validations and applications

4.3.4.1 Introduction

The proposed new analytical method, the MSAM, was developed in the previous

sections. In addition, a computer program has been modified from SAM, in

FORTRAN 77, to implement the MSAM algorithm. When applying MSAM in

practice, network analysis begins in a similar manner as any PERT networks: the

durations of the individual activity are estimated by experienced estimators, or

historical data is used to determine the mean and standard deviation of the activity

durations. The dependency of activities are then clearly stated (network is

constructed). The MSAM program can then be applied to estimate the total

completion time of the project duration. The program requires the event (node)

numbers, mean and standard deviation for each activity, number of predecessors, and

the dependency of activities. There is no limit on the number of activities in the

network. The calculation normally can be done in few seconds in a PC (IBM

compatible 586 computer with 16 Megabytes of R.A.M. and a 133 Mhz processing

chip).
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This section describes validation and applications of the analytical method. In most of

the examples presented in this section it is difficult to separate the validation studies

from the applications. Therefore, it will be helpful to the reader if the results from the

analytical method are viewed as applications and those from Monte Carlo simulations

are viewed as validations.

The only means of validating the analytical method is with Monte Carlo simulation.

This is because the results from Monte Carlo simulation can be said as "exact" if the

sample size is infinite [51] . Five examples were studied. Initially the first three

examples were intended for assessing the accuracy of the MSAM. The first example,

the case study project, was used to demonstrate the use of the MSAM program, such as

the input data needed and the output data which would be obtained. It can also be

compared to the manual calculation, which is in section 4.3.3. Other two examples

(Examples 4.4 and 4.5) were chosen from a published paper [48] and intended to use for

comparing with different analytical methods such as PERT and PNET. However, all

the examples were studied by both MSAM program and Monte Carlo simulation.

The simulations were performed by using the @Risk Monte Carlo simulation package
[30,31]. The results of Monte Carlo simulation are set at 10,000 iterations. They are

treated as "exact" because the sample size is large enough so that the standard error is

insignificant. The 99% confidence interval in 10,000 samples has calculated for all

,
projects using --1_ K 005 . These intervals are small, (such as the intervals of Example

n

4.4 and 4.5 are 0.14 and 0.25 days respectively), so the simulation results can be said to

be approximately "exact".

4.3.4.2 Example 4.1 - the case study project

The case study project illustrated step by step in section 4.3.3 was to show the MSAM

algorithm. The program is needed to input the event (node) numbers, mean and

variance for each activity (or the three estimate times of each activity: minimum, most

likely and maximum), number of predecessors, and the dependency of activities. For

example, in this case, the inputs are as listed in Table 4.2:
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Table 4.2 The input data required by MSAM for Example 4.1

Node

number

Mean Standard

Deviation

Number of

predecessors

Predeces

sors

101 0.00 0.00 0

102 12.00 1.33 1 101

103 20.00 3.00 1 101

104 14.00 2.00 1 101

105 16.00 4.00 1 104

106 28.00 6.33 1 102

107 15.00 2.00 2 103 105

108 36.00 4.00 2 103 105

109 22.00 2.67 1 104

110 18.00 1.67 2 106 107

111 24.00 3.33 1 109

112 0.00 0.00 3 108 110 111

Then the result is calculated by MSAM within seconds given the output as in Table

4.3:

Table 4.3 The results from the MSAM for Example 4.1

Mean: 67.8802762953

Variance: 22.3480833290

Standard Deviation: 4.72737594539

Run Time: 0.2197802

These results suggest that the total project duration of Example 4.1 analysed by MSAM

is approximated to a Normal distribution with a mean 67.88 days and the standard

deviation of 4.73 days.

The input data for the MSAM program and output results of Example 4.1 are also

shown in Appendix C.1.
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The results of the Monte Carlo simulation are listed in Appendix D.1.

From the results by MSAM and Monte Carlo simulations, a chart can be easily

produced to show the comparison of two method. This is shown in Figure 4.6:

Figure 4.6 Comparison of MSAM with MCS of Example 4.1

4.3.4.3 Example 4.2 - a house construction project

Example 4.2 uses a example studied in Chapter 3, Example 3.1 [80] . This example has

been studied using PERT and MCS methods in Chapter 3. In this Chapter, the

example is studied by using MSAM method, the results can then compare to MCS

method. The arrow network of the activities involved and their dependencies, the

estimates of the optimistic time (a), the most likely time (m) and the pessimistic time

(b) are already shown in Figure 3.1 and Table 3.1.

The input and output data from the MSAM program are shown in Appendix C.2.

Those results suggest that the total project duration of Example 4.2 analysed by

MSAM is approximated to a normal distribution with a mean 85.89 days and the

standard deviation of 3.11 days.

The results of the Monte Carlo simulation are listed in appendix D.2.
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The result of the comparison of the MSAM with Monte Carlo simulation is shown in

Figure 4.8:

Figure 4.7 Comparison of MSAM with MCS of Example 4.2

4.3.4.4 Example 4.3 - a hypothetical project HABITAT

Example 4.3 again uses a example studied in Chapter 3, Example 3.2 [81] . It has been

studied by PERT and MCS methods in Chapter 3. In this Chapter, the example is

studied by using MSAM method, the results can then compare to MCS method. The

arrow network of the activities involved and their dependencies, the estimates of the

optimistic time (a), the most likely time (m) and the pessimistic time (b) are already

shown in Figure 3.10 and Table 3.10.

The input and output data from the MSAM program are shown in Appendix C.3.

Those results suggest that the total project duration of Example 4.3 analysed by

MSAM is approximated to a Normal distribution with a mean 269.8 days and the

standard deviation of 7.21 days.

The results of the Monte Carlo simulation are listed in appendix D.3. The result of

comparison of the MSAM with Monte Carlo simulation is shown in Figure 4.10:
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Figure 4.8 Comparison of MSAM with MCS of Example 4.3

4.3.4.5 Example 4.4 - road pavement project

To compare the MSAM method with others (PERT, PNET and MCS), two examples

(this one and the next) were chosen from a published paper by Ang, Abdelnour and

Chaker [481 . In the paper, the authors used the examples to show the PNET method

compare to the PERT method and the Monte Carlo simulation method. The examples

are used here so that the results from MSAM can be compared to those from PERT,

PNET and Monte Carlo simulation methods.

Example 4.4 original taken from Brooks, Leahy and Shaffer [97] and involves the

paving of 2.2 miles of roadway pavement and the construction of appurtenant drainage

structures, excavation to grade, placement of macadam shoulders, erection of

guardrails, and landscaping.

The various activities of the project are described in Table 4.6, where the respective

mean durations and corresponding standard deviations are also listed. The project

network is shown in Figure 4.11. All of the nine paths of the network are listed in

Table 4.7, arranged in order of decreasing mean durations. The standard deviations of

these paths are also given in Table 4.7, calculated in accordance with the fact that the

corresponding variance is the sum of the individual variance of each activity

comprising that path because of the assumption of independence.
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Table 4.4 Activities and estimated durations of Example 4.4

Activity Description of activities Duration (days) Predecessors

code No. Mean S.D.

3-14 1 Dummy 0 0.0 3, 17

1-2 2 Set-up batch plant 2 0.5 -

1-3 3 Order and deliver paving mesh 5 1.0 -

1-4 4 Deliver rebars for double barrel

culvert

6 1.5 -

1-5 5 Move in equipment 3 0.5 -

1-6 6 Deliver rebars for small box culvert 7 4.0 -

4-7 7 Build double barrel culvert 10 2.0 4

5-8 8 Clear and grub from station 42 -

station 100

3 1.0 5

5-9 9 Clear and grub from station 100 -

station 158

7 1.5 5

6-10 10 Build box culvert at station 127 5 2.0 6

6-11 11 Build box culvert at station 138 3 1.5 6

7-8 12 Cure double barrel culvert 9 2.0 7

8-15 13 Move dirt between station 42 -

station 100

5 1.5 8, 12

9-12 14 Start moving dirt between station

100 - station 158

3 0.5 9

10-12 15 Cure box culvert at station 127 9 4.5 10

11-12 16 Cure box culvert at station 138 6 2.0 11

2-3 17 Order and stockpile paving material 2 0.5 2

15-16 18 Place subbase from station 42 -

station 100

7 1.73 13

12-13 19 Finish moving dirt between station

100 - station 158

5 2.0 14,15,16

16-17 20 Pave from station 42 - station 100 10 2.0 18, 28
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13-14 21 Place subbase from station 100 -

station 158

7 3.31 19

17-18 22 Cure pavement from station 42 -

station 100

6 1.5 20

14-19 23 Pave from station 100 - station 158 10 4.5 1, 21

19-20 24 Cure pavement from station 100 -

station 158

6 1.5 23

18-21 25 Place shoulders from station 42 -

station 100

3 1.0 22

20-21 26 Place shoulders from station 100 -

station 158

3 1.0 24

21-22 27 Place guardrail and landscape 5 1.5 25, 26

3-16
-

28 Dummy 0 0.0 3, 17

Table 4.5 Ordered paths and duration statistics of Example 4.4

Path Activities in path Mean duration

(days)

Standard

deviation

(days)

1 4, 7, 12, 13, 18, 20, 22, 25, 27 61 5.0

2 6, 10, 15, 19, 21, 23, 24, 26, 27 57 9.0

3 6, 11, 16, 19, 21, 23, 24, 26, 27 52 7.94

4 5, 9, 14, 19, 21, 23, 24, 26, 27 49 6.54

5 5, 8, 13, 18, 20, 22, 25, 27 42 4.0

6 3, 28, 20, 22, 25, 27 29 3.24

7 3, 1, 23, 24, 26, 27 29 5.19

8 2, 17, 28, 20, 22, 25, 27 28 3.16

9 2, 17, 1, 23, 24, 26, 27 28 5.12

The project duration was analysed by using the MSAM method. The input data for the

MSAM program and the results output from the MSAM method are shown in

Appendix C.4. Those results suggest that the total project duration of Example 4.4
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analysed by MSAM is approximated to a Normal distribution with a mean 63.39 days

and the standard deviation of 5.29 days.

Using the PNET method, Ang et al [481 had identified the "representative" paths among

the first five major paths and had given the completion-time probability of the project

(assuming normal distributions for T 1 and T2) as:

t-6	 —5
p(t)	 t)P(T2 9 =	

1)
06— (13

(t 7)
 9

in which T 1 and T2 are the completion times for path 1 and path 2. c1)(-) is the

cumulative probability of the standard normal distribution.

The results of the Monte Carlo simulation are listed in Appendix D.4.

The completion-time probabilities determined with the PNET method, MSAM method,

and Monte Carlo simulation are shown in Figure 4.12 for comparison. In this figure,

result of the PERT method, WI t) , is also shown.
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Figure 4.10 Comparison of MSAM with other methods of Example 4.4
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4.3.4.6 Example 4.5 - industrial building project

Example 4.5 is an industrial building project original taken from Brand, Meyer and

Shaffer [98]. This project involves the construction of a single story industrial building

with an adjoining parking lot. The building is comprised of reinforced concrete piers,

frost walls, structural steel columns, and a precast roof deck. The corresponding

project network is shown in Figure 4.13. The various activities are described in Table

4.8, with the means and standard deviations of the respective durations also listed. In

Table 4.9 are listed the first 10 paths arranged in decreasing mean path durations; also

shown are the corresponding standard deviations.
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Table 4.6 Activities and estimated durations of Example 4.5

Activity Description of activities Duration(days) Predecessors

code No. Mean S.D.

2-0 0 Dummy 0 0 -

0-1 1 Mobilisation 32 3.2 0

1-10 2 Move in 2 0.5 1

1-5 3 Initial layout 2 0.5 1

5-10 4 Dummy 0 0 3

10-15 5 Site rough grading 2 0.5 2, 4

5-15 6 Layout of piers 1 0.5 3

15-20 7 Excavate piers 2 1.0 5, 6

20-22 8 Dummy 0 0 7

0-22 9 Order and deliver rebars 40 12 0

22-25 10 Form and rebars piers 2 0.5 8, 9

25-30 11 Pour piers 2 0.5 10

30-35 12 Cure piers 4 0.8 11

35-45 13 Strip piers 1 0.1 12

35-40 14 Dummy 0 0 12

45-50 15 Dummy 0 0 13

20-50 16 Excavate frost walls 1 0.5 7

0-40 17 Order and deliver structural

steel columns

60 12 0

40-75 18 Erect	 structural	 steel

columns

5 1 14, 17

0-75 19 Order and deliver precase roof

deck

30 6 0

50-55 20 Form and mesh frost walls 3 0.9 15, 16

55-60 21 Pour frost walls 1 0.3 20

60-65 22 Cure frost walls 4 0.4 21

65-70 23 Strip frost walls 1 0.1 22
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70-85 24 Backfill 2 0.5
-

23

85-90 25 Grade and compact gravel for

floor

2 0.2 24

90-100 26 Rebar floor and set screeds 2 0.5 25

100-105 27 Pour and finish floor 2 0.5 26

105-110 28 Dummy 0 0 27

85-95 29 Excavate and grade parking 2 0.2 24

95-110 30 Stone base for parking 1 0.2 29

105-115 31 Dummy 0 0 27

75-80 32 Set roof deck 5 1.5 18, 19

80-115 33 Hang siding and waterproof

roof

6 1.2 32

80-81 34 Dummy 0 0 32

81-115 35 Hang doors 4 1.2 34

115-120 36 Clean up 2 0.5 31,33,35

110-120 37 Bituminous surface in parking 3 0.3 28, 30

120-125 38 Dummy 0 0 36, 37

Table 4.7 Ordered paths and duration statistics of Example 4.5

Path Activities in path Mean
duration

(days)
78

Standard
deviation

(days)
12.201 0, 17, 18, 32, 33, 36

2 0, 17, 18, 32, 34, 35, 36 76 12.20
3 0, 9, •.• a, 13, 15, 20, ... a, 28, 37 69 12.12
4 0, 9, •••a, 13, 15, 20, ••• a, 27, 31,36 68 12.14
5 0,1, 2, 5, 7, 8,10, ... a, 13, 15, 20, ... a,28,37 67 3.85
6 0, 1, 3, ... a, 5, 7, 8, 10, ... a, 13, 15, 20, ... a,

28, 37
67 3.85

7 0, 1, 3, 6,... a, 8, 10, ... a, 13, 15, 20, ... a, 28,
37

66 3.85

8 0, 9, •••a, 13, 15, 20, ... a, 24, 29, 30,37 66 12.09
9 0, 1, 2, 5, 7, 8, 10, ... a, 13, 15, 20, ... a,27,

31, 36
66 3.71

10 0, 1, 3, ... a, 5, 7, 8, 10, ... a, 13, 15, 20, ... a,
27, 31, 36

66 3.87

a Includes all intervening activities.
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In the use of the MSAM method, the input data and results output from the MSAM are

shown in Appendix C.5. Those results suggest that the total project duration of the

example 5 analysed by MSAM is approximated to a Normal distribution with a mean

83.3 days and the standard deviation of 8.16 days.

Using the PNET method, Mg et al [48] identified the "representative" paths among the

first ten paths and gave the completion-time probability of the project (assuming

normal distributions for all paths) as:

140	 t)P(T, t)P(T, < t) = 	 t	 781 0( t	 69	 t	 67
12.20) '12.12) L 3.85 )

where (DO is the cumulative probability of the standard normal distribution.

The results of the Monte Carlo simulation are listed in Appendix D.5.

The completion-time probabilities determined with the PERT method, PNET method,

MSAM method, and Monte Carlo simulation are shown in Figure 4.14 for comparison.

Figure 4.12 Comparison of MSAM with other methods of Example 4.5

•n'
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4.3.5 Discussion

4.3.5.1 Accuracy of the MSANI

The only means of evaluating the accuracy of the proposed Modified SAM algorithm is

with a large sample of Monte Carlo simulation. Such simulations were performed for

all of the examples illustrated in this chapter. From Figures 4.6, 4.8, 4.10, 4.12 and

4.14, it can be observed that in most of the cases the comparisons correspond well,

indicating that the proposed MSAM method gives a reliable project completion-time

probability for the entire range of probabilities of interest. With the results from both

MSAM and MCS methods (reported in Appendix C and D), a comparison table was

produced for all of the examples (Table 4.10).

However, in Figure 4.14, a degree of difference between MSAM and Monte Carlo

simulation can be observed. The inaccuracy of MSAM is inherent from the use of

Clark's results which replace non-Normal distributions with Normal distributions.

Therefore, MSAM is only an approximate method when the variables are not Normally

distributed.

There are other approximations, such as methods by Mendell and Elston [99] , Kamakura
[100] , 	[101on	 ,102],and Langd which work better than Clark's in this situation, and which

could be used to replace Clark's approximation in MSAM in order to improve

accuracy. However, this is discussed elsewhere and is beyond the scope of this thesis.

The accuracy of Clark's results, the Normal approximation of non-Normal variables,

has been discussed in great detail in the article by Dark 881 . He pointed out that in

many cases the moments of max gr, are adequately approximated by the moments

of max (771, 772), in which j and 2 are non-Normal variables and 17i and 772 are Normal

variables with the same expected value and variance corresponding to j and

respectively. If the difference E( 1)-E(2) is large relative to the greater of VI/2( ') and

(42), the random variable max	 2) is practically identical with 4j. In such a

case, no computations are required in order to approximate the first two moments of

max	 Certainly, there would be no significant error involved in replacing
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and 2 by Normal approximations. However, if E(i)-E(2) is small relative to the

standard deviations, max (i], 2) differs considerably from both and 2. In this case,

the use of Normal approximations for j and 2 could conceivably produce larger

errors in the approximation of the expected value and variance of the greater of the two

variables.

Table 4.8 Comparison of MSAM and MCS for all examples

MSAM

Approximate

MCS

Exact

Accuracy 'Yo

i Appr.-Ex a) 
*100

L	 Exa.

Example 1 Mean 67.88 67.85 0.04
Activities: 10 Variance 22.35 22.98 -2.76

S.D. 4.73 4.79 -1.39
5% 60.11 60.48 -0.62

95% 75.66 76.19 -0.70

Example 2 ' Mean 85.89 85.90 -0.01
Activities: 30 Variance 9.68 9.64 0.44

S.D. 3.11 3.10 0.22

5% 80.78 81.27 -0.61

95% 91.01 91.40 -0.43

Example 3 Mean 180.84 180.97 -0.07
Activities: 52 Variance 7.16 7.19 -0.35

S.D. 2.68 2.68 -0.19

5% 176.44 176.52 -0.05

95% 185.24 185.33 -0.05

Example 4 Mean 63.39 63.63 -0.37
Activities: 28 Variance 27.98 29.31 -4.55

S.D. 5.29 5.41 -2.30

5% 54.69 55.32 -1.14

95% 72.09 72.91 -1.13

Example 5 Mean 83.30 81.77 1.87
Activities: 38 Variance 66.67 92.34 -27.80

S.D. 8.16 9.61 -15.03

5% 69.87 67.64 3.29
95% 96.73 98.44 -1.74

In the present study, the variance of duration of Example 4.5 is large when compared to

the mean (the ratio of variance with mean is 0.8). The difference of the
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approximations of variance can be seen to be up to 28%. To look at the example more

closely, Table 4.11 was produced to show the percentile values of the project

completion-time from 5 to 95%. It can be seen that the differences are within ±5%.

The largest difference between the MSAM and Monte Carlo simulation method is 3.37

days (4.62%) in the percentile value of 20%. This approximation should be acceptable

when compared to the methods of data collection and the assumptions made.

Table 4.9 Accuracy of percentile values of MSAM in Example 4.5

Percentile

Values

MSAM

Approximate

MCS

Exact

Accuracy %

Appr.- Exa.) *100(	
Exa.

0.05 69.87 67.64 3.29

0.10 72.83 69.75 4.42

0.15 74.83 71.54 4.60

0.20 76.42 73.05 4.62

0.25 77.79 74.48 4.45

0.30 79.01 75.84 4.19

0.35 80.15 77.07 3.99

0.40 81.23 78.36 3.66

0.45 82.27 79.69 3.24

0.50 83.30 81.04 2.78

0.55 84.32 82.38 2.36

0.60 85.36 83.71 1.98

0.65 86.44 85.00 1.70

0.70 87.58 86.59 1.14

0.75 88.80 88.32 0.55

0.80 90.17 90.08 0.10

0.85 91.76 92.01 -0.28

0.90 93.76 94.66 -0.95

0.95 96.73 98.44 -1.74
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The most important information in the risk analysis of a project, is the probability for a

prescribed target time being achieved or the required project time at a specific

probability. If this criteria (percentile value) is used, the MSAM approximation is

sufficiently accurate for all of the examples discussed.

From the study of the examples in this chapter, it can be concluded that MSAM

method produces very good results for the entire range of probabilities of interest when

compared to Monte Carlo simulation. However, it should be accepted that MSAM is

an approximation method, especially when the case is that the variance is large

compared to the mean value and thus a closer check with Monte Carlo simulation is

recommended.

A sensitivity study of the ratio between variance (standard deviation) with mean which

affects the accuracy of the MSAM when compared to MCS was carried out. In

Example 4.5 (industrial building project), the means of each individual activity were

kept constant while the standard deviations of them were reduced 10% to 50%

respectively. Figure 4.13 shows the difference of the MSAM compared to MCS in the

50th percentile value is steadily reduced when the standard deviations of each

individual activity are reduced. This indicates the accuracy of the MSAM is

improving.

Figure 4.14 shows the comparison of the MSAM and MCS methods when the standard

deviations of each individual activity are reduced to 50% of the original data (Table 6).

It can be seen that the results of MSAM are in excellent agreement with large sample

(10,000) Monte Carlo simulations.

The observations are that for a general network, if the variance of a project duration is

small when compared to the mean, such as the ratio of the variance with mean is less

than 0.5, the MSAM produces excellent results when compared to those of MCS. If

the ratio is larger than 0.5, the MSAM is a more approximation method and produces

more pessimistic results.
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10% 20% 30% 40% 50%

Reducing standard deviation
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000,

Days
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0.9 —
0.8 —

2 0.6
0 5 —

.0	 •

II' 0.3 —
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0.1 —

0 	

60

-fr- MCS

MSAM

Figure 4.13 Improving accuracy of the MSAM as the standard deviations

reduced

Figure 4.14 Comparison of MSA1VI with MCS when the standard deviations are

reduced to 50% of the original data

4.3.5.2 Comparison of the MSAM with other methods

Examples 4.4 and 4.5 were used to study the comparison of MSAM with other

methods, such as PERT, PNET and Monte Carlo simulations. Figures 4.12 and 4.14
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provide a comparisons of these methods and the following observations can be

obtained:

Under certain conditions, if the variance is small when compared to the mean of the

project duration, MSAM produces excellent results when contrasted to those of Monte

Carlo simulation and PNET methods. If the ratio is large, MSAM produces more

pessimistic results when compared to those of other methods. PERT always gives the

most optimistic estimate of a project duration.

In contrast to the methods of PERT and CPM where only the critical path is

considered, MSAM takes total account of the correlations between paths in a network.

PNET and MSAM are both approximate analytical methods and consider path

correlations. Unlike PNET, in which all paths need enumeration, MSAM is a one -

pass method which can be more easily understood and implemented.

MSAM is a direct analytical procedure and is very efficient when compared to the

Monte Carlo simulation method in which repeated sample solutions are required. For

all the examples in this chapter, the calculations were completed in a matter of seconds

using the MSAM program whereas the Monte Carlo simulations took approximately 4-

5 hours for each example using the @Risk Monte Carlo simulation package in the

same computer.

4.4	 Summary of findings

A simple method for evaluating the project duration probabilities of project networks

has been presented. The proposed new method, MSAM, is a direct application of

Clark's results and is modified from the SAM, which is a method previously used

solely in traffic networks. A computer program has been written to implement the

MSAM algorithm. The method can be used to estimate completion times of projects in

the presence of uncertainty and thus permits the consideration of network decision

problems in terms of risk and probability.

152



The MSAM method is developed for analysing general construction networks. Five

example projects chosen randomly from published work have been studied, and the

validity of the method has been verified by results of large sample Monte Carlo

simulations. From the results of these examples, the following conclusions can be

drawn:

1. In all of the cases studied, MSAM produces very good results when compared to

MCS for the entire range of probabilities of interest. However, MSAM is an

approximate method, and in the case of the variance of project duration being large

when compared to the mean (Example 4.5), MSAM produces more pessimistic

results when compared to other methods (PERT, PNET and MCS).

2. PERT gives the most optimistic estimate of a project duration.

3. When the ratio of the standard deviation and the mean is reduced, the accuracy of

the MSAM improves.

4. It is possible to use other approximations, such as methods by Mendell and Elston
[99] , Kamakura [100], and Langdon [101,102], to replace Clark's results in order to

improve accuracy and still use the MSAM mechanism.

5. When compared to PERT and CPM, the MSAM has the advantage of taking total

account of the correlations between paths in a network.

6. When compared to PNET, the MSAM is a one-pass method which does not need

path enumeration and thus can be more easily implemented.

7. When compared to MCS, the MSAM is a direct analytical procedure and is very

efficient in saving computational time. The calculations take only few seconds

whereas the MCS take 4-5 hours in the same PC in all of the examples.

8. In its present form, the MSAM method yields the probability of project completion

within a prescribed target time, or the required project time at a specific
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probability. The method may be extended to consider the effects of uncertainty in

general activity and decision networks.
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CHAPTER 5 THE FIRST ORDER SECOND

MOMENT METHOD (FOSM)

5.1 Introduction

As stated in Chapter 1, the overall objective of this PhD is to develop risk analysis

methods for quantifying risk in construction project management. One of the

objectives of this PhD is to develop a statistical method, the FOSM method (a

methodology previously used solely in structural reliability analysis) as a method of

risk analysis to aid decision making in project management.

The FOSM methods have been developed over the last thirty years and have been

applied in other branches of engineering such as "Reliability and reliability-based
104 105 106],,,103,.design of engineering systems" [16	 These methods were specially

developed for estimation of structural failure probability. It has been shown that the

methods are computationally fast and provide a measure of risk with a desired degree

of accuracy. However, the FOSM methods have not been previously used in

construction project management.

Unlike the Modified Stochastic Assignment Model (MSAM) developed in Chapter 4,

which is specifically used in network analysis for prediction of project completion

time, the FOSM is a more general method, which can be applied for risk assessment. It

is especially suited to the conceptual stage of a project but can be used to assess the

failure probability throughout a project life cycle.

This chapter aims to show why and how the FOSM methods can be applied for risk

analysis in construction project management. Since only the latest developed FOSM

methods are applied to construction economics, these methods are expressed as one

method, FOSM method, in the present study. Firstly, the definition of the FOSM

method is given and a detailed mathematical treatment of the method is described. The

methodology of using FOSM in construction project management is explained. Eight

examples are analysed using both the FOSM method and Monte Carlo simulations to
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show the applicability and the degree of accuracy of the method. These examples are

chosen in a systematic way covering different aspects of common project management

problems (with linear or non-linear performance functions) and the distributions of the

variables are assumed with standard distributions commonly used, such as Normal,

Log-Normal, Triangular, Uniform and Beta. Finally, two further examples, a

probabilistic cost modelling example and a realistic plant hire rate setting example, are

illustrated to show further practical applications of the method.

5.2 The FOSM method

5.2.1 The basic problem of reliability of engineering systems

The philosophical basis of FOSM methods were presented in the works of Cornell PM,

Mg [108] , Mg and Cornell [109] , Hasofer and Lind [110], Rackwitz and Fiessler [111] and

Chen and Lind 11121 . The FOSM methods were initially applied in engineering relating

to the reliability of engineering systems. The problem of reliability of engineering

systems may be cast essentially as a problem of supply versus demand. Defining the

following random variables:

X= The supply capacity.

Y= The demand requirement.

The objective of reliability analysis is to insure the event (,11 1) throughout the useful

life of the engineering system. This assurance is possible only in terms of the

probability P(X>Y). This probability, therefore, represents a realistic measure of the

reliability of the system (denoted as Ps); conversely, the probability of the

complimentary event (X<Y) is the corresponding measure of unreliability (failure

probability denoted as p F).

It can be assumed that the necessary probability distributions ofX and Y are available,

that is, F x(x) or fx(x) and F(y)orfy(y) are known. The required probabilities may then

be formulated as follows:
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p F = PO( <11= EP(X < Y1Y = y)P(Y = y)
	

( 5.1 )
ally

If the supply and demand, X and Y, are statistically independent and continuous, the

above equation then becomes (Freudenthal, Garrelt and Shinozuka[113]):

PF CF,r(Afy(YPY
	

(5.2)

Equation 5.2 is the convolution with respect to y and may be explained with reference

to Figure 5.1 as follows: if Y = y, the conditional probability of failure would be Fx(y),

but since Y = y (or more precisely y<Y �_y=dy) is associated with probability

fr(y)dy, integration over all values of Y yields Equation 5.2.

x or y

Overlap Region

Figure 5.1 PDFs fx (x) and fy (y)

As portrayed graphically in Figure 5.1, the overlapping of the curves f,y(x) and f(y)

represents a qualitative measure of the failure probability p F . In this regard, it can be

observed that any measure of safety or reliability properly ought to be a function of the

relative positions offx(x) and fy(y) as well as of the degree of dispersions.

Theoretically, the failure probability p F will also depend on the form offx(x) and fy(y).

In practice, however, information is often limited; available information may be

sufficient only to evaluate the main statistics (or first few moments) of X and Y, such as

the mean values, ,ux and py, and the corresponding c.o.v.'s (coefficient of variation), ox
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Area = pF

A4(m)

and Sy. The quantitative evaluation of the true p, often poses major problems, for

example, the determination of the correct forms offx(x) and fr(y) would be necessary,

which may not be a simple task.

In Equation 5.2, X and Y are assumed to be statistically independent random variables.

In general, however, these variables may be correlated. In such cases, the probability

of failure may be expressed in terms of the joint PDF as follows:

PF = f [r fx , y Y)d)CIIY	 ( 5.3 )

The above supply versus demand problem may be formulated in terms of the safety

margin, M = X — Y. As X and Y are random variables, M is also a random variable

with corresponding PDF fm(m). In this case, failure is clearly the event (M<O), and

thus the probability of failure is:

P F = fm(m)dm = Fm(0)	 ( 5.4 )

Graphically, this is represented by the area underfm(m)< 0, as shown in Figure 5.2.

m(m)

Pm

Figure 5.2 PDF of safety margin M

5.2.2 Second-moment formulation

The calculation of the probability of safety, or probability of failure, requires the

knowledge of the distributions fx(x) and fy(y), or the joint distribution fx, y(x,y). In
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practice, this information is often unavailable or difficult to obtain for reasons of

insufficient data. Furthermore, even when the required distributions can be specified,

the exact evaluation of the probabilities, generally requiring the numerical integration

of Equations 5.1 - 5.4, may be impractical; as a practical alternative, equivalent Normal

distributions may be resorted to in approximation.

Not infrequently, the available information or data may be sufficient only to evaluate

the first and second moments; namely, the mean values and variances of the respective

random variables (and perhaps the covariances between pairs of variables). Practical

measures of safety or reliability, therefore, must often be limited to functions of these

first two moments. Under this condition, the implementation of reliability concepts

must necessarily be limited to a formulation based on the first and second moments of

the random variables - that is, restricted to the second-moment formulation (Cornell
[Dm, Ang and Cornell [109]).

With the second-moment approach, the reliability may be measured entirely with a

function of the first and second moments of the design variables; namely, the reliability

index, 13, when there is no information on the probability distributions; whereas, if the

appropriate forms of the distributions are prescribed, the corresponding probability

may be evaluated on the basis of equivalent Normal distributions.

Recall the safety margin M = X — Y. In this term, the "safe state" of a system may be

defined as (M>0), whereas the "failure state" is (M<O). The boundary separating the

safe and failure states is the "limit-state" defined by the equation M=0.

Cornell defined a safety index fl, which is given by:

13 = p. l am
	 ( 5.5 )

where Pm , and o-„, represents the mean and standard deviation of M respectively. If X

and Y are Normally distributed, then M is also Normally distributed. In this case, the

safety index fl is uniquely related to the failure probability by the expression:
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P1 =0(-13)
	

(5.6)

where (13(-) is the standardised Normal cumulative distribution function.

The reliability of an engineering system may involve multiple variables. In particular,

the supply and demand may respectively, be functions of several other variables. A

performance function can be defined as:

g(X)= g(X 1 , X2 ,... Xn )	 ( 5.7 )

where X = X1,X2,...,Xn is a vector of basic state (or design) variables of the system,

and the function g(X) determines the performance or state of the system. Accordingly,

the limiting performance requirement may be defined as g(X) = 0, which is the "limit-

state" of the system. It follows, therefore, that:

[g(X)>O] = the "safe state"

and

[g(X)<O] = the "failure state"

Geometrically, the limit-state equation, g(X) = 0, is an n-dimensional surface that may

be called the "failure surface". One side of the failure surface is the safe state, g(X)>O,

whereas the other side of the failure surface is the failure state, g(X)<0.

Hence, if the joint PDF of the design variables X1 , X2 ,... Xn is fx, A,,,(X1,„.,Xn), the

probability of the failure state is:

PF= Ig(X)<O) f fXi 	 X„(X 1 , • . •Xn )C fr 1 ...dxn	 (5.8)

which may be written, for brevity, as:

PF = Loof x(X)dX
	

(5.9)
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The evaluation of the probability p, through the above equation, however, is generally

a formidable task.

For practical purposes, alternative methods of evaluating Ps or pp (or its equivalent)

are necessary and these have been studied by a number of authors.

Consider firstly the case of uncorrelated variables. The set of uncorrelated reduced

variates are introduced (Freudenthal [114]):

,
X. = 	 = 1,	 n	 ( 5.1 0 )

Obviously, the safe state and failure state may also be portrayed in the space of the

above reduced variates, separated by the appropriate limit-state equation. The two -

variable case would be shown in Figure 5.3. In terms of the reduced variates, , the

limit-state equation would be:

g(o-	 + pxj = 0	 ( 5.1 1 )

Figure 5.3 Safe and failure states in space of reduced variates

Observe from Figure 5.3 that as the limit-state surface (or failure surface), g(X)=0,

moves further or closer to the origin, the safe region, g(X)>O, increases or decreases
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accordingly. Therefore, the position of the failure surface relative to the origin of the

reduced variates should determine the safety or reliability of the system. The position

of the failure surface may be represented by the minimum distance from the surface

,10]g(X)=0 to the origin of the reduced variates (Hasofer and Lind [1 Ditlevsen [n);

indeed, Shinozuka [115] has shown that the point on the failure surface with minimum
1,4] .distance to the origin is the most probable failure point (Freudenthal [1) Thus, in

some approximate sense, this minimum distance may be used as a measure of

reliability; the precise nature of this approximation is discussed in Section 5.2.4 for a

general (non-linear) performance function.

Following Shinozuka 11151 , the required minimum distance may be determined as

follows. The distance from a point X' = (x, X; ,..., A/n ) on the failure surface g(X)=0

to the origin of X' is:

D= NIX,' +...+X n.2 = (JO XT 2	 ( 5.12 )

The point on the failure surface, (4, x2'e ,...;), having the minimum distance to the

origin may be determined by minimising the function D, subject to the constraint

g(X)=0; that is,

Minimise D

subject to g(X)=0.

For this purpose, the method of Lagrange's multiplier may be used. Let

L = D + Ag(X)	 ( 5.13 )

or 

L = (X's X' )1 1 + 2g(X) ( 5.14 )

In scalar notation,

L = V X;2 ± Z2 +...+X;,2 +/Ig(XI ,X2,-, 2317„) ( 5.15 )
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dX;	 .qg= 0-

OX OX;	
x, ( 5.19 )

x'
2	 +1G--=0

(X.' X')
( 5.20 )

in which, X. 	 X; +

Minimising L, the following set of n+1 equations with n+1 unknowns are obtained:

a 	 x:
=  ,	 +	 = 0	 i = 1,2,...,n	 ( 5.16 )

c/X; vx,'2 + x2'2 +...+x„'2
and

a 
g(XI,X2,...,Xn)= 0
	

( 5.17 )

The solution of the above set of equations should yield the most probable failure point

Introduce the gradient vector:

G=( Glg
ex;	

( 5.18)

in which:

The above set of equations, Equation 5.16, can then be written in matrix notation as:

from which:

AD G
	

( 5.21 )

Therefore,
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—G*1Y*
= 	 \
p

*1 G* 2

( 5.25a )

( 5.25b )

D ={(.1,DG'PDG)1 1/2 = AD(G I G)' 2

and thus,

= (G I Gil 2

(

(

5.22 )

5.23 )

Using this last result in Equation 5.21 yields:

)17'	
—GD

( 5.24 )=	
I 2

G)

Conversely (pre-multiplying Equation 5.24 by G' ),

—G I X'
D— ( 5.25 )I 2

G)

Substituting Equation 5.24 in Equation 5.17 results in a single equation with the

unknown D; solution of the resulting equation then yields the minimum distance

dmin = fi, thus:

in which G* is the gradient vector at the most probable failure point (xi's ,x*,...,;•*). In

scalar form, Equation 5.25a is:
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* =  _G* ,8
(G *1	 2

( 5.24a )

( 5.26b )

where the derivatives (ol / OX;) * are evaluated at (x	 Using the above

Equation 5.24, the most probable point on the failure surface becomes:

the scalar form, the components of X' s , Equation 5.24a, are:

x;* =	 = 1,2,...,n	 ( 5.26a )

in which

are the direction cosines along the axes x: .

The results derived above, Equations 5.24a and 5.25a may be interpreted on the basis

of first - order approximations for the function g(X) as follows.

Expand the performance function g(X) in a Taylor series at a point x*, which is in the

failure surface g(x*)=0; that is,

g(X 1 , X 2 ,... , X pi ) = g(X; X;	 X n)

— x:)(
0 

+EE(X — 4)(X — x
2 gn n

i=1	 j=1 i=1	 0X,0X *

( 5.27 )

where the derivatives are evaluated at (x; , 	 ...,	 . But g(x; , x; , x;) = 0 in the

failure surface; therefore,
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,g(X 1 , X 2 ,..., X n ) --= E
J=1

nn	

/(  612 g	 +...

ff,e 3Xj=1 1=1

(5.28)

(5.34)

Recall that

x1 — x: =(-x; +p x	 (c7 x, x;* P = x,
	 (5.29)

and

(dX;	 I
( 5.30 )

01X	 ox; dX	 a xi(OX',

Then,

g(X 1 , X 2 • • ' X n) = E(X;	 x;`)(Gig) ( 5.31 )
i=l	 •

In first - order approximation, that is, truncating the above series at the first - order

term, the mean value of the function g(), therefore, is:

p Pe, —Ex;*( et,)
i=1	 i	 •

(5.32)

whereas the corresponding first - order approximate variance (for uncorrelated variates

is:

,(
g

=

ic—N2
i=1	 r.i OIX

(5.33)

From Equations 5.32 and 5.33, the ratio:

Comparing this with Equation 5.25b we see that the above ratio is the same as

Equation 5.25b, and thus ,11 g /°g is also the distance from the tangent plane of the

EE(x, —x:XXi — x!)
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failure surface at x* to the origin of the reduced variates. Therefore, the reliability

index is also:

fl=pglag	 (5.35)

It may be emphasised that the first-order approximation of ,u g and ag derived above

must evaluated at a point on the failure surface g(X)=0.

5.2.3 Linear performance functions

Consider a specialised class of performance functions, namely the linear performance

function. Aside from its own usefulness, certain aspects of the linear case would be the

basis for an approximation to non-linear performance functions, as will be discussed

later in section 5.2.4.

A linear performance function may be represented as:

g( X ) ao +	 X1	 ( 5.36 )

where ao and a. are constants. The corresponding limit-state equation, therefore, is:

ao +Ea,X = 0	 (5.37)

In terms of the reduced variates, Equation 5.10, the limit - state equation becomes:

ao +Ea,(cr	 +p)=0	 ( 5.37a )

The distance of the failure plane, Equation 5.37a, to the origin of the reduced variates

is:
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=
ao +
4(a; „,)2

(5.38)

5.2.3.1 Equivalent Normal distributions

If the probability distributions of the random variables X 1 ,X 2 ,..., X n are not Normal,

the probability pF and ps may be evaluated through Equations 5.8 and 5.9 (invariably,

numerical integration would be necessary), where in the case of linear performance

functions, g(X). at, + Ea,X, . However, Ps may be evaluated also using equivalent

116]Normal distributions (Paloheimo [ and Rackwitz [111). Theoretically, such

equivalent Normal distributions may be obtained through the Rosenblatt
[118]. With such equivalent Normal distributions, the calculation of pstransformation

follows the same procedure as that for Normal variates; that is through Equation 5.38

for linear performance functions.

For an individual variate, the equivalent Normal distribution for a non-Normal variate

may be obtained such that the cumulative probability as well as the probability density

ordinate of the equivalent Normal distribution are equal to those of the corresponding

non-Normal distribution at the appropriate point x,, on the failure surface.

Equating the cumulative probabilities as described above at the failure point xt*, we

have:

	

[•	 N

	

Xi	 X 

N I]= FXI (X

where:

(5.39)

N Nx, , C7 — The mean value and standard deviation, respectively, of the equivalent

Normal distribution for X,.

Fx, (4)= The original CDF of X evaluated at xi*.

o(-) = The CDF of standard Normal distribution.

The above equality then yields:
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[  *X, - Pl'xi,

N	
7-- f (x")

a X ) X"

( 5.41 )1

a N

010-'[Fx,(4)]} 

fx, (4)
( 5.42 )

•	 N'•	 N	 N
= ox  + P x, = ipCi x, +p x, ( 5.45 )

N 0-1
14, = xi - x,	 [Fx,(xi)}	 (5.40)

whereas equating the corresponding probability density ordinates at x: means:

where OH ------ the PDF of the standard Normal distribution; from this we obtain:

In the case of a linear performance function, the appropriate point on the failure surface

is given by Equation 5.26, where the direction cosines, a, Equation 5.26b are:

ai

and according to Equation 5.38, the safety index is:

ao +Eajex,

I= 	

-Nri )2

where the superscript N denotes the statistics for the equivalent Normal distribution.

Therefore, the failure point is:

It may be emphasised that replacing the actual distribution with an equivalent Normal

distribution requires replacing the actual mean and standard deviation with those of the

( 5.43 )

( 5.44 )

169



( 5.46 )

equivalent Normal distribution, that is, Equations 5.40 and 5.42. Using these in

Equation 5.44, we obtain the safety index A

5.2.3.2 Correlated variates

The procedure described above for evaluating the probability of safety or failure is

tacitly based on the assumption that the random variables X1 , X2 , X,, are

uncorrelated or statistically independent. For random variables that are correlated, the

original variates may be transformed to a set of uncorrelated variables. The procedure

described above, namely Equation 5.25a, may then be applied to the uncorrelated set of

transformed variables. Indeed, this has been explicitly shown by Shinozuka [115].

The required transformation is necessarily dependent on the covariances, or covariance

matrix, of the original variates and may be obtained as follows.

Suppose the covariance matrix of the original variates X i , X2 ,...,Xn is:

[c].

2
Cr X,	 COAX] , X2)

COV(X2 , )	 Cr
2
X 2

COO n , 1 ) COV(X n , X2)

COO , x3 ) • COO , n)

COO 2 , X 3 ) • • • COO 2 , Xn)

COV(X n , X 3 ) • • •
2
X„

where the elements, Cov(X„ XJ ) are the respective covariances between the pairs of

variables X, and X. The corresponding covariance between a pair of reduced

variates x: and X

Cov(X;, x E[(x; — px, )(x —

Ekx

crx,crx,

Co# X j)

CTCTX, X

= Px,,x,

( 5.47 )
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which means that the covariance between a pair of reduced variates, X,' and X, is

equal to the correlation coefficient between the corresponding pair of original variates

X, and X. Therefore, the covariance matrix of the reduced variates (Z,

is the corresponding correlation matrix of the original variates (X 1 ,X 2 ,..., Xn ); that is,

the covariance matrix of X, X; ,..., X  is:

[c']=

1 P12 P13 ••• Pin

P21 1 P23 ••• P2n
( 5.48 )

_Pnl Pn2 Pn3 1

The required set of (uncorrelated) transformed variates can be obtained from X'

through the following orthogonal transformation:

Y =	 ( 5.49 )

in which:

Y =	 , Y2 ,..., Yn } is the required set of uncorrelated transformed variates.

T = An orthogonal transformation matrix (superscript t represents the transpose).

T will be an orthogonal matrix if it is composed of the eigenvectors corresponding to

the eigenvalues of the correlation matrix [C]. Specifically, T is such that:

r[C]T =[2]
	

( 5.50 )

in which [A] is a diagonal matrix of the eigenvalues of [C]. It may be emphasised

that the matrix [C is real and symmetric, as py = p 1 ; and thus the eigenvectors are

mutually orthogonal.
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—G *1 X's
= 

(Git[cicsy
( 5.25c )

Observe that the covariance matrix of Y is:

	

[Cy ] = E(11'1 )=	 x' x't

	

=	 X1T

but

With the orthogonal transformation of Equation 5.49, it can be shown (Shinozuka 11151)

that the safety index of Equation 5.25a becomes:

The reduced variates x' and original variate X are related to Y as follows.

Since T is orthogonal, 	 = T` ; inversion of Equation 5.49 yields:

x' = TY
and

X ={o- x 1X' +px

= [o-x]TY+,ux

( 5.51 )

(5.52)

in which:

Eax 1 =

and

/-1 x =

x,	 0	 0

0	 v	 0

0	 0	 "•

( 5.53 )

(5.54)

(5.55)

E(X'x't = [C]	 (5.56)

Thus, with Equation 5.50,
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( 5.60 )a	 n n

z apaipy cr xi a x,
i.1 J.1

[Cy ]= T I [C]T =[.1,]	 (5.57 )

Hence, the eigenvalues of [C] are also the variances of the respective variates

In the space of the transformed variates Y, the derivatives may be obtained through the

chain rule of partial differentiation:

n	 eg X

= E
OK J=1 5 Xi' Hi

Moreover,

OgOgdXj

ox;. OXidX.;

( 5.58 )

( 5.59 )

The transformation of Equation 5.49 represents a rotation of the co-ordinates from X'

to Y; The origin of the Y axes remains the same as that of the X' axes.

The above transformation obviously applies also to linear performance functions. In

this case, the partial derivatives of Equation 5.58 are independent of the variables, and

thus the failure point y* and x* can be determined directly; that is, one iteration of the

numerical algorithm is sufficient. Alternatively, for linear performance functions of

correlated (Normal) variates, the safety index may also be determined directly from

Equation 5.25c or on the basis of Equation 5.35, yielding:

ao +	 ai l./ xi

in which pi/ is the correlation coefficient between Xi and X.
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Again, if the distributions of the original random variables are non-Normal, the

corresponding probability of safety or failure may be evaluated using equivalent

Normal distributions; in such a case, the mean values and standard deviations of the

equivalent Normal distributions, and o, must be used in place of ,u x, and o-x,,

in Equation 5.60.

5.2.4 Non-linear performance functions

For performance functions, g(X), that are non-linear, the evaluation of the exact

probability of safety or failure will generally be involved. The limit-state equation,

g(X)=0, will also be non-linear as shown in Figure 5.3; unlike the linear case, there is

no unique distance from the failure surface to the origin of the reduced variates. As

indicated in Section 5.2.2, the evaluation of the exact probability of safety will involve

the integration of the joint probability density function over the non-linear region

g(X)>O; generally, this will require multiple numerical quadrature.

For practical purpose, approximation to the exact probability will be necessary.

According to the results of Section 5.2.2, the point (x, * , x',...,xn ) on the failure

surface with minimum distance to the origin of the reduced variates is the most

probable failure point (Shinozuka 11151). The tangent plane to the failure surface at

(x* 	 ) may then be used to approximate the actual failure surface, and the

required reliability index or probability of safety may be evaluated as in the linear case

of Section 5.2.3. Depending on whether the exact non-linear failure surface is convex

or concave toward the origin, this approximation will be on the safe side or unsafe side,

respectively, as may be seen in Figure 5.4 for the two-variable case.
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Safe Regio Convex
g(X)=---0

Tangent Plane

Failure Region

A'2

Concave'
g(X)=0

( 5.61 )= 0

Figure 5.4 Tangent plane to g(X)=--0 at x'.

The pertinent tangent plane at	 =(x s ,x;* ,...,;) is:

where the partial derivatives (5g/ ; ) are evaluated at (x' `k	 ,•••)Xn)•

On the basis of the above approximation, the distance from the "minimum" tangent

plane, Equation 5.61, to the origin of the reduced variates is the appropriate reliability

index, which may be used to represent the measure of reliability.

In the present case (in which the performance function is non-linear, the pertinent point

of tangency on the failure surface is not, a priori, known. Consequently, the

determination of the required reliability index would not be as simple as in the linear

case (Section 5.2.3), even though linear approximation is invoked. The "minimum"

point of tangency on the failure surface may be determined through the Lagrange

multiplier method as described in Section 5.2.2. The relevant results of Section 5.2.2

may be summarised as follows.
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( 5.26b )

The most probable failure point of Equation 5.26a is:

	

x, * =	 fi	 ( 5.26a )

	

in which a. 	 the direction cosines of Equation 5.26b:

where the derivatives are evaluated at (xi's ,x s	 Then,

=	 + fi x, = ,u —a s,o- xjfi
	

(5.62)

The solution of the limit-state equation:

,g(x; , x;	 )= 0	 ( 5.63 )

then yields fl.

5.2.4.1 Numerical algorithm

The results summarised above would suggest the following simple algorithm

(Rackwitz [117]):

—1. Assume initial values of x,* ; i = 1,2,...,n and obtain x, = 	
ax

2. Evaluate (c 1. I OX;) and a s, at x.

3. Form x,* = px, — a:cr xi 18.

4. Substitute above x: in g(x;,x;,...,x:)= 0 and solve for fl.

5. Using the /3 obtained in Step 4, reevaluate x * = —a,fi.
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6. Repeat Steps 2 through 5 until convergence is obtained.

5.2.4.2 Accuracy of linear approximation

The "linear" approximation of non-linear performance functions is tantamount to

replacing an n-dimensional failure surface (a hyper-surface) with a hyper-plane tangent

to the failure surface at the "most probable failure point". In effect, this changes the

boundary between the safe state, g(X)>O, and the failure state, g(X)<O, from a general

curvilinear surface to a plane surface; the failure probability, pF, is then the generalised

volume integral of the joint PDF over the failure region g(X)<0. As observed earlier

from Figure 5.4, the reliability ps estimated on the basis of this approximate planar

failure surface will be on the conservative or un-conservative side depending on

whether the actual failure surface is convex or concave toward the origin of the

reduced variates. The accuracy may be improved through quadratic or polynomial

approximation (e.g. Fiessler, Neumann and Rackwitz [115]) at the cost of mathematical

and computational complications.

For a concave failure surface, the safe state, g(X)>O, is furthermore bounded between

the half-space with the tangent plane (of distance and the hyper-sphere of radius 13

(as illustrated in Figure 5.5 for two dimensions). The failure equation corresponding to

the hyper-sphere is (Hasofer and Lind [1201):

fi2 =0
	

(5.64)
i=1

If the variates X; are un-correlated standard Normal variates, the sum of squares

Eni-1 X; has a chi-square distribution with n degrees-of-freedom. Therefore, the

probability of failure becomes:

pF =l_ X;(182)(162) (5.65)

where xn2 (--) is the CDF of the chi-square distribution with n degrees of freedom.
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0:130(— fi) < pF <1— ;2(fl2)

	

(5.66)

Failure Region
g(X)<0

Concave , _

g(X)=0,-- -

,
,

;

/Safe Regio

0

Convex
g(X)=O

XI

.spc— Tangent Plane
,'	 N.,

,,,Hyper-Sphere 1

Accordingly, for concave failure surfaces the failure probability is bounded as follows:

Figure 5.5 Implications of various failure surfaces

In general, the accuracy of the second - moment linear approximation is difficult to

assess; this will depend on the degree of non-linearity of the function g(X). Obviously,

the method is mathematically exact if g(X) is linear. For a general non-linear g(X), the

accuracy may only be appraised numerically for specific forms of non-linear

performance functions.

For a general non-linear performance function, the "correct" probability of failure may

be evaluated through large-sample Monte Carlo calculations. In the next section,

results of Monte Carlo calculations for all of the examples, which involving non-linear

g(X), are compared to those of FOSM method. On this basis, the accuracy of the

second-moment approximate method may be inferred. The results (albeit limited)

provide evidence of the validity and accuracy of the second-moment approximation.

Moreover, all the non-linear performance functions examined are typical of those

found in practical engineering economics problems.
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5.2.5 Concluding remarks

It can be seen that the FOSM is an analytical and approximate method which only uses

the first two moments, namely the mean values and variances, of each variable. From

these, the probability of failure of the system can been found. It is logical that FOSM

can be applied in construction economics with only notational changes. Section 5.3

shows how the method can be applied in construction economics.

5.3 Use of FOSM for risk analysis in construction economics

5.3.1 Applicability of the FOSM in construction economics

In assessing the reliability of engineering systems, the problems of supply versus

demand (strength versus load) may equate to that of revenues versus costs in

construction economics. In considering whether to invest in a project, investors and

managers are concerned with ensuring that the revenues are sufficient to recover all

capital and interest, and earn a required rate of return on investment.

In economic analysis, if X represents the anticipated distribution, e.g. NPV (Net

Present Value) of the revenues from a project, and Y corresponding to the NPV of the

estimated costs. The failure probability, p F , will be the probability of the project being

a loss maker. Recall Figure 5.1 in section 5.2.1, the overlapping of the curves fx(x) and

fy(y) represents a qualitative measure of the failure probability p F . This area would

therefore represent the probability of a project being a loss in project economics

(Figure 5.6).

X Or y

Overlap Region pf

Figure 5.6 The loss marker pirtoss)
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The revenues X and costs Y may be modelled as random variables. Each of them also

can be a combination of several random variables. In these terms, therefore, the

financial risk of a project may be more realistically measured in terms of probability.

The objective of risk analysis is to insure the event (A'Y) throughout the project life

cycle.

Since the revenues and cost are random variables or a combination of several random

variables. The performance function M = X —Y is also a random variable. The

probability density function of M is the integration of the joint probability density

function of X and Y. As stated above, the FOSM method is a method which does not

require the joint probability density function of the basic variables but require only the

first two moments, namely, the mean values and variances, of each variable.

Therefore, it is logical that the FOSM can be used in construction economic analysis

with only notational changes.

The probability of loss making p105 	 construction economics, thus is:

PI. = PI = (1)( —1 6 )

	
(5.67)

5.3.2 Validations and applications

As previously stated in section 5.1, the following examples show different typical

aspects of construction economics with hypothetical numerical data used to aid

analysis and discussion of the results.

5.3.2.1 Example 5.1 — Linear, uneorrelated Normals

Consider the following mutually exclusive investment proposals. (See Table 5.1)
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Table 5.1 The present values (PV) of Example 5.1

Present values (£)

Project A Project B

Mean 3000 6000

Standard deviation 1000 2000

PV distribution Normal Normal

Risk analysis objective: To find out which project is the better project to invest in.

This can be done by computing the probability of failure, in which {PVA>PVB}.

Using the FOSM method:

The performance function: M = PV A — PVB

ig ... Pm _.= PA — Ps = 3000-6000 .
1.34

0M Va 24 + a 2B V 1000 2 + 20002

PF = 1 — T(fi) = 1 — cl)(— 1.34). 0.909877

Using the Monte Carlo simulation, the summary of the results are shown in Table 5.2.

Table 5.2 Results of MCS for Example 5.1

Iterations Failure probability

1,000 0.8917

5,000 0.9023

10,000 0.9073

Interpreting the results: The result of FOSM gives a quantitative answer that the

failure probability of {PV A>PVB } is 90.99%, this means PVA has only a 9% chance of

being larger than PVB . Therefore, Project B is a better project to invest in.

5.3.2.2 Example 5.2 — Linear, uncorrelated non-Normals

The material costs of a kitchen unit are estimated as follows in Table 5.3 (values are in

£). Assuming these costs are Triangular distributed and are statistically independent.
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L � x<M

M � x<H

Table 5.3 The material costs of Example 5.2

Material Low Most likely High

A 1800 2250 2800

B 50 75 120

C 80 150 170

D 4000 4800 6000

E 350 380 420

Risk analysis objective: To find out the probability that the total cost will exceed

£8500.

Using the FOSM method:

The performance function: X =A+B+C+D+E— 8500

Since the material costs are non-Normal distributed, equivalent Normal distributions

may be used to calculate the corresponding probability of failure. An iterative solution,

using Equations 5.40 and 5.42, is illustrated below.

For the first iteration, assume:

a' = 2250

b" =75

C' =150

d' = 4800

e" =380

For a Triangular distribution, the density function and the cumulative probability

distribution are:

f(x)= (II — LXM — L)
2.(H—x)

(H — LXH — M)
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F(x)

L x M

M<x � H

fA (as)= 2 .
	 — a.)

=0.002
—	 M)

(x - L)2

-	 — L)

— .02 

LXH — M )

For material A, assuming Triangular distributed and thus:

F A (a . ). 1 	
— a* y 

=
(H_LxH_Ad) 

0.45

Thus Equations 5.40 and 5.42 yield:

0{0-1[FA(d) = 197.9

fA

piAv = a  — cr oz13ci [FA (a m )]= 2274.9

Same can be done to material B, C, D and E. Then, according to Equation 5.44:

— ao + Ea„ux,

	

x	 \7	 140.AN + BN )2 ± (cr c•N )2 + r DN )2 + (cr EN )2

	

crN

	 ±,u/: +,u7. +,u7, tui: _8500	
= 1.6684

The direction cosine of A:

• 	
aA 

a A =	 = 0.4453
.11(01 )2 + ( 0 BN )2 + (0. c•N y	 DN + r

Thus the failure point is:
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a* =	 - a*A flo- = 2425.2

The results of iterations are summarised in Table 5.4:

Based on the results of the above 4th iteration:

p F = 1— (13(11)= 1— (1)(— 1.3682)=0.9144

Using the Monte Carlo simulation, the summary of the results are shown in Table 5.5.

Interpreting the results: The result of FOSM shows that there is only 91.44% chance

that the total cost will less than £8500.
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Table 5.4 Results of the iterations of FOSM for Example 5.2

Iteration

No.

Assumed

Failure

Point

cyN /IN
as 13

1

2250 197.9 2274.9 0.4553

-1.6684

75 13.1 79.8 0.0300

150 13.4 139.8 0.0308

4800 386.3 4897.9 0.8888

380 13.7 382.5 0.0316

2

2425 235.8 2270.1 0.4676

-1.3680

80 15.9 80.3 0.0315

140 20.4 136.3 0.0404

5470 444.7 4940.8 0.8819

383 15.2 382.6 0.0301

3

2421 235.9 2270.1 0.4696

-1.3682

81 16.1 80.3 0.0320

137 21.8 136.1 0.0434

5477 442.4 4943.6 0.8807

383 15.2 382.6 0.0302

4

2422 235.9 2270.1 0.4694

-1.3682

81 16.1 80.3 0.0320

137 21.8 136.1 0.0435

5477 442.6 4943.3 0.8808

383 15.2 382.6 0.0302

Table 5.5 Results of MCS for Example 5.2

Iterations Failure probability

1,000 0.9244

5,000 0.9242

10,000 0.9239
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5.3.2.3 Example 5.3 — Linear, correlated Normals

Consider a project whose net cash flow streams, Fn , are as follows in Table 5.6. In

addition, the correlation coefficients among the Fn's are known to be

POI = PO2 = p03 = 0.5 and p12 = p23 = p13 = 1 . Assuming the cash flow streams are

Normally distributed and the interest, i = 10%.

Table 5.6 The net cash flow streams of Example 5.3

Year (n) E(Fn) Var(Fn)

0 -10 9

1 3 4

2 8 16

3 10 25

Risk analysis objective: To find out the probability of the net present value being

negative

Using the FOSM method:

The performance function:

PV = Fo+ 
F
1 + 

F
2 ± 

F
3

1 ± i 0+02 0±03

a0+Eaipx,
fl.Ppv 	 	  = 0.640329

C r PV
1±± ajaipiicrxicrx,

i.1

PF 1 —QM = I —0(0.640329)= 0.260979

Using the Monte Carlo simulation, the summary of the results are shown in Table 5.7.

Table 5.7 Results of MCS for Example 5.3

Iterations Failure probability

1,000 0.2569

5,000 0.2565

10,000 0.2595
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Interpreting the results: The result of FOSM gives a quantitative answer that the

failure probability is only 26.1%. It means that the chance of PV being negative is

small.

5.3.2.4 Example 5.4 — Linear, correlated non-Normals

Consider the following investment cash flows over a 2-year life (Table 5.8). Assuming

that F1 and F2 are Beta distributed and partially correlated with p12 =0.3, also

1=10%.

Table 5.8 The cash flows of Example 5.4

li o- Min.(a) Max.(b)

Fo -500 0

Fl 200 50 100 300

F2 500 50 300 650

Risk analysis objective: To find out the probability of the net present value being

negative.

Using the FOSM method:

The performance function:

PV = gr(X)= F0 + 111 - + F2
1+i 0+02

For both F1 and F2, the parameters of the Beta distribution are

/ix = a + --q-- (b — a)
q+r

2 	 q•r 
a x = 

(q + 02 . (q + r + 1) (b— aY

Thus:

qF, =rF, =1.5

qF, ..-- 6.286,	 rF, = 4.714

And:
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a < x � b

elsewhere

fx(x)=  1 1 , (x-a)'.(b-x)r-'
Bkg,r )	 0 — arr-i

=0

Fx(x)= ffx414
	 a_ x � b

= 0	 elsewhere

The correlation matrix can be expressed as:

[cl.
_

1 0 0

0 1 0.3
0 0.3 1

The diagonal matrix of eigenvalues and orthogonal transformation matrix are

1 0	 0 -

[a] =
 0 1.3 0

0 0 0.7_

[T]=
,..

_

0	

1
0 —0.707

—0.707 — 0. 
0.

707

707

1 0	 0

For the first iteration, assume

f;., =200

=500

For cash flow F1

i. ( i. ,) 
— 

1 	 (x — ar i • 0 — xr-1 . 
O. 006366

j F1 V F' ) 14 7 , r)	 0 — ar r- '

F Fi ( f) = rfFi (U )dli = 0.5
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Thus Equations 5.40 and 5.42 yield:

Cr N IFI F (f;11 = 62.677
fFikf,

1

= fb*.,	 A. 200

Same can be done for F2-

According to Equations 5.51 and 5.52, the original variates can be obtained:

X =

X[axNJTY+ pN

'0	 0
0	 62.677

0

0

0

53.432

"1

0

\0

0

—0.707

—0.707

0	 \

—0.707

0.707

( Y1 ]

Y2

\Y3

+

( —500 \

200

\501.603J

Expand the above matrix:

[— 500

X= —44.305•Y2 - 44.305 . Y3 + 200

— 37.776 -Y2 + 37.776 . Y3 +501.603

The limit-state equation then becomes

g(X)= 96.124 —71.476 -Y2 - 9.070 -Y3 =0

Since the variables 171, Y2 and Y3 are uncorrelated, the safety index

96.124 11 - 	= 1.174
)A-71.476 ..)111.3)2 +(— 9.070 .11)2

The partial derivatives are

(
—g—a — 71 476
aY;
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12-gd = —9.070
ay; .

The direction cosines of Equation 5.27b, therefore are:

—71.476 ..s13

	

=  1	  = 0.996
V(-71.476 ...1112 +(— 9.070 . 03y	

— 9. 070 . ••n11

	

a * = i	 	  = 0.093
Y3 1.1 (- 71.476 ...s13)2 +(— 9.070 . „Foy

Hence, the components of the failure point in the Y space, are:

Y; = —a/317.3 = 4— 0.996)• 10 •,17.73 = 1.333

Y; = —a l:316,10.7 = -(— O. 093)• ,6 • NI-07 = 0.091

Whereas in the space of the original variates,

,f;, = —44.305 . Y2* - 44.305 . Y; + 200 = 136.91

fb" = —37.776 . Y; + 37.776 . Y; + 501.603 = 454.685

The results of iterations are summarised in Table 5.9.

Based on the results of the above 4th iteration:

pF = I— (1(/1) = 1 — 0(I . 241) = 0.107
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Table 5.9 Results of the iterations of FOSM for Example 5.4

Ite.

No

X.

d x:

crAN,
p,/,:', r ag l ai.,, New y,

ay, j.

1

F0 -500

Fi 200 62.677 200.000 -71.476 -0.996 - (- 0.994 /3 • -%/T3

F2 500 53.432 501.603 -9.070 -0.093 - (- 0.093)• 13 • -n,1

g(X)= 96.124 -71.476 . Y2 - 9.070 . Y3 =0

/3=1.1741.174

2

Fo -500

F1 136.910 42.114 184.962 -58.233 -0.999 - (- 0.999)• ,o • .1-11-3

F2 454.685 53.372 501.148 4.103 0.052 _ 0. 052. fl..1O3

g(X)= 82.078 - 58.233 • Y2 - 4.103 . Y3 =0

13 = 1.234

3

Fo -500

F1 144.707 47.134 190.238 -61.110 -1.000 - (- 1)• fl • -sfE3

F2 446.056 52.774 500.527 0.528 0.006 _ a 06 . 15. . ..,.

g(X)= 86.361- 61.110 • Y2 + 0.528 . Y3 =0

fi = 1.239

Fo -500

4

F1 143.370 46.312 189.404 -60.539 -1.000 -4-1 )* fi'1173

F2 447.561 52.701 500.624 1.013 0.012 _ a 012 . /3 .110

g(X)= 85.684 -60.539 • Y 2 + 1.013 . Y3 = 0

fi = 1. 241
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Using the Monte Carlo simulation, the summary of the results are shown in Table 5.10.

Table 5.10 Results of MCS for Example 5.4

Iterations Failure probability

1,000 0.0910

5,000 0.0972

10,000 0.0965

Interpreting the results: The result of FOSM gives a quantitative answer that the

failure probability is only 10.7%. It means that the chance of PV being negative is

small.

5.3.2.5 Example 5.5 – Non-linear, uncorrelated Normals

Suppose that an uncertain lump-sum return F is expected shortly after termination of a

project. Because of current uncertain market conditions, the earning interest rate (i)

seems to fluctuate for the foreseeable future. It is believed, however, that both the

lump sum and the interest rate are Normally distributed but each with a unique range:

F	 Normal (150, 30)

Normal (10%, 2%)

Assuming that this uncertain lump sum is to be reinvested at an interest rate i over the

next 3 years. The future worth would be:

Z = FV(0= F0+03 = FY3

where Y = 1+ i . Assume that the F and V(i) are uncorrelated.

Risk analysis objective: If the target of the future worth is £200, find the probability

that the investment does not meet the target.

Using the FOSM method:

The performance function: g(x) = FY3 – 200

The partial derivatives are:

(—OaFg' = crF .173
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(=g-a j= F • 3 .Y2
ay'

For the first iteration, assume: 	 f* = 150, i * = 10%

Then

= o-F • Y 3 = 30 . (i +0.01)3 = 39.93

= F • 3 . Y 2 . = 150 . 3 .(1 + 0.01) 2 . 0.02 = 10.89

The direction cosines of Equation 5.26b, therefore, are:

(Og

OX;).	 39.93
a. . = 	 	 	 =0.965

F	

1	
2 -J 39.93 2 + 10.892

11E
\OX:

Y =
	 =0.263

1139.93 2 + 10.892

Hence, the components of the failure point are:

= 150 -a *F..fl . 30 = 150-0.965.13.30

y * = 1.1 - a l*/ '6 • 0.02 = 1.1 - 0.263 . 16 • 0.02

Substituting these into the limit-state equation: f* Y e3 — 200 = 0 yields the following

equation:

(150 —0.965 . fi • 30X1. 1 — 0.263 16 -0.02)3 —200 = 0

From which the solution is obtained

fi = —0.00846

The revised failure point then becomes

f* = 150 -0.965 fi . 30 = 150.2447

y * = 1.1 - 0.263 . 16 . 0.02 = 1.100044

10.89
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Repeating the procedure for the results are summarised in Table 5.11.

Table 5.11 Results of the iterations of FOSM for Example 5.5

Ite.

No

Xi Assumed ag ax, New x

1 F 150 39.93 0.965 150 —0.965 .) 6 .30

Y 1.1 10.89 0.263 1.1 — 0.263 . fi - 0.02

fl = —0.00846

2 F 150.2447 39.93 0.965 150 —0.965 . /1 . 30

Y 1.100044 10.91 0.264 1.1 — 0.264 . /1 . 0.02

/3 = —0.00845

3

_

F 150.2447 39.93 0.965 150 —0.965 . fl . 30

Y 1.100045 10.91 0.264 1.1 — 0.264 . fl . 0.02

p = —0.00845

Based on the results of the above 3 th iteration:

pF =1— (D(p) = 1 — ci)(— O. 00845) = 0.5034

Using the Monte Carlo simulation, the summary of the results are shown in Table 5.12.

Table 5.12 Results of MCS for Example 5.5

Iterations Failure probability

1,000 0.5439

5,000 0.5108

10,000 0.5081

Interpreting the results: The result of FOSM gives a quantitative answer that the

failure probability is 50.34%. It means that the investment has half of the chance to

meet the target.
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5.3.2.6 Example 5.6 — Non-linear, uncorrelated non-Normals

Suppose the random variables in Example 5.5 are non-Normal, with the following

distributions:

Uniform (120, 180)

Uniform (8%, 12%)

Assume that the F and V(i) are uncorrelated.

Risk analysis objective: If the target of the future worth is also £200, find the

probability that the investment does not meet the target.

Using the FOSM method:

The performance function: g(x) FY 3 — 200

where Y =1+ i .

The partial derivatives are:

(--aaFg = crF 173

()
. F • 3 • Y 2 • 0 -

ay'

For the Uniform distribution, the probability density function and cumulative

probability distribution are:

f x (x) = b 1 a (a < x < b)

	

= 0	 (elsewhere)

	

F x (x) = 0	 (x< a)

x — a
x < b)

b — a

	

=1	 b)

For the first iteration, assume:	 fs = 150, i s = 10%

According to Equations 5.40 and 5.42,
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, 0{43 [FF(f*) . 23.9365CIF -=

fFV*)

= 150 — cb -1 [FF (f * )]= 150

Same as for Y:

N 014:1-1 [FY SY* 	
0.015958

The partial derivatives are:

=	 .Y 3 = 23.9365 • 1.1 3 =31.85949
aF'

(

--La	 = F • 3 • Y 2 • al = 150 • 3 • 1.1 2 . 0.015958 = 8.688953
DY' e

The direction cosines of Equation 5.26b, therefore, are:

1F

(ag 

ax;) ,	 31.85949
a

.
. = 	 = 	  = 0.965

1

	 2 	 •%I 31.86 2 + 8.6892
E 

ag 

ay . - 	 	 -= 0.263
1131.86 2 + 8.6892

Hence, the components of the failure point are:

f = 150 — a *F. • ,6 • ol = 150 — 0965 • fi • 23.9365

ys = 1.1—a; • fi • O. 015958 = 1.1— 0.263 41 • 0.015958

Substituting these into the limit-state equation: f* y *3 — 200 = 0 yields the following

equation:

(1 50 — 0.965 • /3 • 23.9365X1. 1 — 0.263 • fi • O. 015958Y — 200 = 0

From which the solution is obtained

/3 = —0.0106

fr(Y*

/.41 = 1.1— cr;,v 0-1[Fy(y*)]= 1.1

8.689
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The revised failure point then becomes:

= 150 - 0.965 • p • 30 = 150.2447

y* = 1 . 1 - 0.263 • /3 • 0.02 = 1.100044

Repeating the procedure for the results are summarised in Table 5.13.

Table 5.13 Results of the iterations of FOSM for Example 5.6
-

Ite.

No

Xi Assume

d x:

0- A'x, p';', ag a l, New :x(	 )

1 F 150 23.9365 150 31.859 0.965 150 - 0.965 - 16 • 23.937

Y 1.1 0.01596 1.1 8.6890 0.263 1.1 - 0.263 • /3 • 0.01596

13 = -0.0106

2 F 150.245 23.9353 150 31.862 0.965 150 - 0.965 • 16 • 23.935

Y 1.10004 0.01596 1.1 8.7038 0.264 1.1- 0.264 • fi .0.01596

,(3 = -0.0106

3 F 150.245 23.9353 150 31.862 0.965 150 -0.965 • ,6 • 23.935

Y 1.10005 0.01596 1.1 8.7038 0.264 1.1 - 0.264 • i6 - 0.01596

16 = -0.0106

Based on the results of the above 3 th iteration:

PF =1-0(fl)=1- (1(- O. 0106) = 0.5042

Using the Monte Carlo simulation, the summary of the results are shown in Table 5.14.

Table 5.14 Results of MCS for Example 5.6

Iterations Failure probability

1,000 0.5383

5,000 0.5095

10,000 0.5081
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Interpreting the results: The result of FOSM gives a quantitative answer that the

failure probability is 50.42%. It means that the investment has half of the chance to

meet the target.

5.3.2.7 Example 5.7 — Non-linear, correlated Normals

Consider the break-even equation of a property development

Z	 — C) . V — K

where M is the unit sales price, C is unit variable cost, V is sales volume, K is a fixed

cost, and Z is profit realised. Assuming that K is known with certainty (K=£2500x103)

but M, C and V are Normally distributed dependent random variables with the

following statistics (within the parentheses are mean and standard deviation

respectively):

M Normal (100x103, 7000) Pmc 0.5

C Normal (50x103 , 3500) Pmv 0.3

V Normal (100, 10) Pcv 0.1

Risk analysis objective: The target profit is set to £2000x 10 3, find the probability of

the target profit not being achieved.

Using the FOSM method:

The performance function:

g(X)= Z 2000 • 103

= — V — K — 2000 • 103

=(M— C) • V — 4500 . 103

with the notation X = 1M, C, , the pertinent correlation matrix, therefore, is:

I 0.5 0.31

{C 'i 0.5	 1	 0.1

0.3 0.1	 1

The diagonal matrix of eigenvalues and orthogonal transformation matrix are:
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0.457	 0	 0 -

[A]=	 0	 0.912	 0

0	 0	 1.631_

[0.73	 —0.084 0.678

T = —0.619 —0.502 0.604

—0.289 0.861 0.418

Thus, the transformed variates Y of Equation 5.51 are:

Y = X' and x" =TY

Also,

X=krxITY+px

X=

7000

0

\ 0

0

3500

0

0 \

0

10

( 0.73

—0.619

—0.289

—0.084

—0.502

0.861

0.678\

0.604

0.418

( Y, \

Y2
\.Y3j

+

( 100x 103\

50x103

100

Expand the above matrix:

5110.0 • Y, —588.0• Y2 ± 4746.0 • Y3 + 100000 -

[X = — 2166.5 • Y, — 1757.0 . Y2 + 2114.0 . Y3 + 50000

— 2.89 . Y, + 8.61 . Y2 + 4.18 . Y3 + 100

The limit-state equation then becomes

AX)= —21029.085 . Y12 + 59272.255 . Y, • Y2 + 22809.29	 • Y3 +583150.0Y1

+ 10065.09 . Y22 +27547.94Y2Y2 • Y3 +547400.0Y2Y2 ±

+ 11001.76 . Y32 + 472200.0 . Y3 +500000

=0

The partial derivatives are

ay,
ag = —42058.17 • Y, + 59272.255 • Y2 ± 22809.29 . Y3 + 583150.0

ag = 59272.255 . Y1 + 20130.18 . Y2 + 27547.94 . Y3 + 547400.0
aY2
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ag
= 22809.29 • + 27547.94 • Y2 + 22003.52 . 173 +472200.0

For the first iteration, assume:

x; = = oo x o3

x; = = 50x103

x; = = 100

Since the corresponding mean values of Y are zero,

ay3

(

ag

aY,),

(

ag

aY2).

(sag')

= 583150.0

= 547400.0

= 472200.0

The direction cosines of Equation 5.26b, therefore are:

583150 • 11-0-.57
ay, = 	 	  = 0.443

11(583150 . ,hT4.-.0 + (547400 . 1157)2 + (472200 . 1,1)2

a. 	 547400 •
= =0.587

Y2 11(583 1 5 0 ,NZ.5)2 + (547400 . „Th-.--2-)2 ± (472200 . 117.31)2

472 200 • -11.6.T 
= 	 =0.677

11 (5 8 3 1 5 0 • .10.57)2 + (5 4 7 4 0 0	 ± (4 7 2 2 0 0 •

Hence, the components of the failure point in the Y space, are:

Y; = —a l*,, fl-g.71757 = —0.443•fl • •10.457

Y; = —42 ,5\12 = —0.587 • /3 • -,[0.91

= —4, 131/T637 = —0.677 /3 VTE.37

Substituting these into the failure equation, g(X)=0, we obtain:

fi = 0.576
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Thus the new components of the failure point in the Y space, are:

Yi* -ct;	 = -0.443 . fi • -./T4757 -0.172

-0.587 . fi	 = -0.323

Y; -ce; /310731 = -0.677 . fi -,11:67.31 = -0.498

The results of iterations are summarised as follows in Table 5.15:

Table 5.15 Results of the iterations of FOSM for Example 5.7

Ite.

No

Variable

Yi

Assumed

Y:

ag

,

al*,, New y,

aYi

.

1

YI o 583150.0 0.443 - 0.443 . fi • -g..7.-57

Y2 0 547400.0 0.587 - 0.587 - 13 ..,1

173 0 472200.0 0.677 - 0.677 . fi •VTIK.-31

/3=0.5760.576

-

2

Yi -0.173 559890.9 0.448 - 0.448 . fi • KO

Y2 -0.323 516935.4 0.584 - 0.584 . 18 ..NN.9

Y3 -0.498 448395.9 0.677 - 0.677 . fl•-,131

fl = 0.576

-

3

,

Y1 -0.174 560075.0 0.448 - 0.448 . fl • .g.4.-T7

Y2 -0.321 516870.5 0.584 - 0.584 . fi ...NT/2

Y3 -0.498 448408.1 0.677 - 0.677 . fl •-s/I.K-31

,6 = 0.576

Based on the results of the above 3 th iteration:

pF = 1 -	 =1- 0(0.570= 0.2823

Using the Monte Carlo simulation, the summary of the results are shown in Table 5.16.
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Table 5.16 Results of MCS for Example 5.7

Iterations Failure probability

1,000 0.2795

5,000 0.2911

10,000 0.2889

Interpreting the results: The result of FOSM gives a quantitative answer that the

failure probability is 28.23%. It means that the chance of not achieving the target

profit is small.

5.3.2.8 Example 5.8 — Non-linear, correlated non-Normals

Consider the same problem as Example 5.7, except that the variable are now

distributed as follows

M	 Log-Normal

C	 Log-Normal

V	 Normal

Otherwise, the same statistics apply, namely (within the parentheses are mean and

standard deviation respectively):

M Log-Normal (100 x 10 3, 7000) pmc 0.5

C Log-Normal (50x103, 3500) Pmv 0.3

V N(100, 10) Pcv 0.1

Risk analysis objective: The target profit is also set to f2000x 10 3, find the

probability of the target profit not being achieved.

Using the FOSM method:

The performance function:

g(X)=Z —2000.103

=(M — C) . V — K-2000.103

=(M —C)• V —4500.103

with the notation X ={M,C,V}, the pertinent correlation matrix, therefore, is:
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_
1	 0.5 0.3

[C1= 0.5 1 0.1

0.3 0.1	 1 _

The diagonal matrix of eigenvalues and orthogonal transformation matrix are
_	

-0.457 0 0

[A] = 0 0.912 0

0 0	 1.631- -
_

0.73 — 0.084 0.678

T = —0.619 — 0.502 0.604

—0.289- 0.861 0.418_

Since M and C are Log-Normally distributed, the parameters of the Log-Normal

distribution for M are:

,	 0•	 7000  
-0.07

,u 100000

Am =Inp—i4-2 =11.51

and

Flo (m) 0(1 nm— Am  )

4 - m

iv (m)--=	 0(117 m — Am)

InC	 cm

Then, Equations 5.40 and 5.42, respectively, yield:

0. N _  1  010_,[0(lnm — Am  )]} 	 I  or  in m - AA,f )_ m . 4..m

M AM* )	 CM	 AM* )	 CM

pz . m * _ az 0 _i [0( in M4,-xf Am  )1 m* _ m* ,,m ( in M - Am  ) - lm* 
kl —1nm * + Am)

( 4- m

and so as C:

o- 3500 
4-C ''''''	 '''''	 "n:: 0.07

p 50000

Ac = In p -÷4-2 = 10.82

41. = cs‘c
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= c * — ln c* +,)

For the first iteration, assume

x; = = mo x lo3

x; =C= 50x 103

x; = =i00

Thus,

= Cm =0.07 . 100x 10 3 =7000

pAN,, = m * (1—lnin* + 2,11 )= 100x 10 3 •(1 —14100 x 10 3 )+ 11.51)= 9.976 . 104

•ch: = c s‘c. =3500

licA! = c * (I —Mc * + ylc )= 4.988 104

Thus, the transformed variates Y of Equation 5.51 are:

Y =T ` X' and X' = TY

Also,

X =k-AlY + pAN,

X=

(7000

0

0

0

3500

0

0 \

0

10

( 0.73

—0.619

0.289

—0.084

—0.502

0.861

0.678\

0.604

0.418

(Y1 \

Y2

\Y3

+

"99760"

49880

100

Expand the above matrix:

[5110.0 - Y1 — 588.0 -Y2 + 4746.0 . Y3 +99760

X= — 2166.5 -Y1 — 1757.0-Y2 + 2114.0 -Y3 + 49880

— 2.89 . Y1 + 8.61 . Y2 + 4.18 . Y3 + 100

The limit-state equation then becomes

g(X)= —21029.085 -Y12 + 59272.255 . Y, .Y2 + 22809.29 . Y1 -Y3 + 583496.8 .Y1

+ 10065.09 . Y22 + 27547.94 . Y2 • Y3 + 546366.8 -Y2+

+ 11001.76 . Y32 + 471698.4 -Y3 + 488000.0

=0
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ag
= 22809.29 . + 27547.94 . Y2 + 22003.52 . 1'3 + 471698.4

aY3

The reduced variates at the failure point:

x; = 
x: 

Crx,

The partial derivatives are:

ag
= —42058.17 . 1, + 59272.255 . Y2 + 22809.29 . Y3 + 583496.8

ag
= 59272.255 . + 20130.18 . Y2 + 27547.94• Y3 + 546366.8

ay,

aY2

Thus:

= 
100000 — 9.976• 1 0 4

=0.034
7000

50000 — 4.988 . 104
C =	 = 0.034

3500

The transformed variates are:

Y

Yi2

Y 3 /

=

/	 0.73

—0.619

\— 0.289

—0.084

—0.502

0.861

0.678\

0.604

0.418

/ 0.034\

0.034

0

=

2.1964 .

— 3.8114

1.9448 .

10-2

. 10-2

10-2

— 
*— 

5 808 . 105
(ay, a 

--g—a 	— *5 474 . 105
(93172 

--g—a  — 4 716 . 105
(ay, „—

The direction cosines of Equation 5.26b, therefore are:

5.808•10 5 .1.1a.57 
a; = 	 = 0.442

11(5.808 . 10 5 . „gz-02 ± (5.474 . J . „Thy + (4.716 . 10 5 1.631
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_ 	 5.474 . 10 5 • -,,T9T2 
0.588

V(5.808 • 10 5 • „gz-57)2 +(5.474.10 5 ..g y ±(4.716 10 5 •I/Tc-37 -y

4.716 • 10 5 • 4-176I1 ay, - 	 	 =0.678

11(5.808 • 10 5 ..,[674.7y+(5.474.105.vo-75)2+(4.716.105.v)2

Hence, the components of the failure point in the Y space, are

Yis	p.,,Z457 -0.442 • fi • -,Zi757

Y; -4,A-167912 = -0.588 . fi

1'3*	 fl-II6731 = -0.678 . p

Substituting these into the failure equation, g(X)=0, we obtain

/3 = 0.5620.562

Thus the new components of the failure point in the Y space, are

13,10.4-75 = -0.442 -fi • lb.	 -0.168

Y; = -a, /3-.J0.912 -0.588 • fi • -s.0.9-1-2- = -0.316

Y3* = -(43 ,6,1T-673i -0.678 • fl • ,I=1731 =-0.487

The original variables

5110.0 . Y1 - 588.0 • Y2 + 4746.0 -1'3 + 99760

X= - 2166.5 . Y1 - 1757.0 . Y2 ± 2114.0 . Y3 ± 49880

-2.89 . Y + 8.61 -Y2 + 4.18 . Y3 + 100

m* = 5110.0 • y; - 588.0 • y; + 4746.0 . y; + 99760 = 9.678 • 104

c* = 4.977 .104

v * = 95.734

The results of iterations are summarised in Table 5.17.
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Table 5.17 Results of the iterations of FOSM for Example 5.8

Ite.

No

Assume

d x:

cr,'‘̀"! il'A`,1 i y: ag( 

aY,	 ,

) al; New y:

1

.

Ai 100000 7000 99760 0.02196 580800 0.442 —0.299.13

C 50000 3500 49880 -0.0381 547400 0.588 —0.562 ./i

V 100 10 100 0.01945 471600 0.678 —0.866 . fi

/3=0.562

2

M 96780 6775 99710 -0.6021 590600 0.472 — 0.319 . fl

C 49770 3484 49880 0.02556 510600 0.576 —0.550-16

V 95.734 10 100 -0.0812 442600 0.668 —0.853.16

)6 =0.568

3

M 96770 6774 99710 -0.5990 590900 0.471 — 0.318 .10

C 49800 3486 49880 0.02712 511300 0.576 — 0.550./I

V 95.808 10 100 -0.0695 442800 0.667 — 0.852 . )3

[1 =0.569

4

M 96770 6774 99710 -0.5996 590900 0.472 — 0.319./i

C 49800 3486 49880 0.02651 511200 0.576 —0.550.'3

V 95.803 10 100 -0.0699 442800 0.668 — 0.853 . '3

p = 0.568

Based on the results of the above 4 th iteration:

p F = 1 — 0(fi). 1 — (D(0.568)= 0.285

Using the Monte Carlo simulation, the summary of the results are shown in Table 5.18.

Table 5.18 Results of MCS for Example 5.8

Iterations Failure probability

1,000 0.2829

5,000 0.2928

10,000 0.2926
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Max. +4 x Mos.+ Min.
Mean =

6
Max.— Min.

S.D. = 
6

( 5.68 )

( 5.69 )

Interpreting the results: The result of FOSM gives a quantitative answer that the

failure probability is 28.5%. It means that the chance of not achieving the target profit

is small.

5.3.3 Practical applications

5.3.3.1 Example 5.9 — Elemental cost analysis

This elemental cost model chosen to illustrate the potential application of FOSM is

based on published data by Chau [121]. In the paper subjective estimates of the

construction costs of the ten major subsystems of electrical services contracts of

government clinics in Hong Kong are examined. The data is summarised in Table

5.19.

All of the subsystem costs are extracted from seven experienced estimators in

conventional three-point estimates (maximum, most likely and minimum) and the

average of these estimates are listed on the right hand side of the table. Since there is

no information on the form of distribution for the subsystems, the PERT procedures

(Equations 5.68 and 5.69) have been used to assess the means and standard deviations

for the subsystems. All of the subsystem costs are then assumed to have a Normal

distribution:

Risk analysis objective: Based on the subjective estimates of elemental costs,

calculating the probability of the total cost does not exceed the expected revenue,

which is assumed Normally distributed with mean 900 and standard deviation 100

(Figures are in Hong Kong dollars). The expected revenue maybe uncertain depending

on the contractual arrangement between the client and the contractor.
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Table 5.19 Probabilistic estimation of subsystem costs for Example 5.9

(Figures are in Hong Kong dollars, expressed per square metre of gross floor area.)

Subsystems Estimator A.E.

1 2 3 4 5 6 7

1. LV switchboard Max. 143 170 180 190 160 300 250 199

Mos. 87 124 120 140 100 110 100 112

Min. 50 55 50 60 60 50 65 56
_
2. Main and Max. 174 250 270 200 160 110 300 209

submain Mos. 111 112 150 130 110 75 120 115

distribution Min. 56 85 60 80 60 60 70 67

3. General final Max. 367 411 540 420 500 600 400 463

circuit and Mos. 297 335 300 340 350 350 320 327

equipment Min. 185 230 220 210 200 250 250 221

4. Special final Max. 43 62 50 80 50 72 70 61

circuit and Mos. 36 44 40 40 40 45 45 41

equipment MM. 27 30 25 30 28 25 35 29

5. Conduit Max. 21 45 28 40 28 30 55 35

trunking system Mos. 15 25 15 30 22 25 25 22

for other services Min. 11 12 10 15 10 14 11.5 12

6. Power supplies Max. 60 150 130 180 80 80 70 107

to air conditioning Mos. 41 71 60 60 45 50 40 52

and ventilation Min. 12 20 11 20 15 12 20 16

7. Earthing Max. 5.5 16 8 15 5 10 6 9

Mos. 3.5 7 5 6 3.3 5.5 4.5 5

MM. 2 3 2 2 1.5 2 2.5 2

8. Labour for Max. 3.5 3.3 4 4 7.5 6 3.5 5

fixing items Mos. 2.8 3 3.5 3 3 4 2.5 3

supplied by Min. 1.8 2.2 2.4 2 2.5 2 2 2

9. Testing and Max. 27 19 18 20 18 30 23 22

commissioning Mos. 16 13 10 10 14 15 10 13

Min. 3 4 5 5 4.5 5 5 5

10. Equipotential Max. 39 81 50 72 60 45 70 60

& supplementary Mos. 31 47 35 40 35 35 30 36

bonding Min. 22 17 15 15 15 20 20 18
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Using the FOSM method:

/0
The performance function: g(X). Ci

al"	 E C sub cos is

10

900 — Lisub cos Is

	

fi
Pg 	 n=1 

= — = 	

	

g	 mo 2 +E(asub cos ls
)2

10

n=1

— 1.302

Pf = 1 —	 = 1 —	 .302)= 0.0965

Using the Monte Carlo simulation, the summary of the results are shown in Table 5.20.

Table 5.20 Results of MCS for Example 5.9

Iterations Failure probability

1,000 0.1111

5,000 0.0988

10,000 0.0949

Interpreting the results: The result of FOSM gives a quantitative answer that the

failure probability is 9.65%. It means that the chance of total cost will exceed the

expected revenue is small.

5.3.3.2 Example 5.10 — Setting realistic plant hire rate

This example is chosen from a text book, "Management and Investment Decisions

Construction Plant" (Harris and McCaffer 11221).

An excavator, crawler mounted, 11/2 m 3 capacity, is purchased new for £46000. Its

estimated life is 10 years, with a historical resale value of £4000. Other information:

Fixed overhead £4000
Road tax and licences £100
Insurance premium £200
Consumables £400
Maintenance £4600
Total £9300
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The targeted plant hire rate for year 5 is set by the required rate of return on the

investment and the inflation being 15% and 10% respectively per annum over 10 years.

In reality, both the interest rate of return and inflation rate can not be predicted over

time, hence, it has been assumed that both rate are variables Normally distributed with

the following statistics per year over ten years (within the parentheses are mean and

standard deviation respectively):

Interest rate of return: Normal (15%, 3%)

Inflation rate:	 Normal (8%, 4%)

Analysis objective: Calculating the probability of the plant hire rate for year 5

exceeding the targeted plant hire rate.

The targeted plant hire rate for year 5 can be set as following steps:

1. The cost of capital and depreciation are calculated in Table 5.21, in which id is the

inflation rate.

Table 5.21 Calculation of depreciation over time

Year
(n)

Index
(E)

Replacement
price

(E)
Accumulated

historical
depreciation

(E)
Accumulated

inflated
depreciation

(E)
Book
value

A
100*a+id)"

B
46000*A/100

C
(46000-4000)/10*n

D
C*A1100

E
B-D

0 100.0 46000 0 0 46000
1 110.0 50600 4200 4620 45980
2 121.0 55660 8400 10164 45496
3 133.1 61226 12600 16771 44455
4 146.4 67349 16800 24597 42752
5 161.1 74083 21000 33821 40263
6 177.2 81492 25200 44643 36848
7 194.9 89641 29400 57292 32349
8 214.4 98605 33600 72025 26581
9 235.8 108466 37800 89130 19335

10 259.4 119312 42000 108937 10375
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2. Interest on finance is calculated as follows:

With inflation at 10% the apparent rate of return must be used in the calculations:

(1 + ia) = (i ± 00 + id )

where: id = apparent rate of return, ir = real rate of return, id = rate of inflation.

Therefore,

(1+ ia ) = (1+ /A/ + id) = (1+ 0.1.5)(1+ 0.1) = 1.265

ic, = 1.265 —1 = 0.265 = 26.5%

The capital recovery factor:

la (1 + jar  . 0.265 x 1.26510

(1 + On —J	 1.26510 — 1
= 0.2929

Thus interest on finance using the capital recovery factor:

46000 x 0.2929 x 10— 46000 
= £8873

10

3. If inflation continued as shown by the indices then the targeted plant hire rate for

year 5 should be:

Depreciation for year 5: (33821-24597) £9224

Interest on finance: (step 2) £8873

Other items: (9300*161.1/100) £14860

Total: £32957

Using the FOSM method to calculate the probability of the plant hire rate for year 5

exceeding the targeted plant hire rate when both the interest rate of return and inflation

rate are considered as variables:

The performance function:

g(M)= X + Y + Z — 32957

where X is the depreciation for year 5, Y is the interest on finance, and Z is other

items.
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46000 x 10 x[(1+ ,.)(1 + id )-11— 46000
Y

10

X = (1+ id ) 5 x 5 x 4200 —(1+ id ) 4 x 4 x 4200

=(1+ id ) 5 x 21000 —(1 + id ) 4 x 16800

46000 x[(1 + 0(1 + id ) 1J-4600

= 46000 x (1+ i r )(1+ id ) — 50600

Z= 9300 x + id)5

Thus the performance function becomes:

g(M)= X + Y+ Z — 32957

= (1 + id ) 5 x 21000 —(1 + id ) 4 x 16800 + 46000 x(1+ i r )(1 + id ) — 50600 +

+ 9300 x (1 + id ) 5 —32957

= (1 + i4 5 x 21000 —(1 + id ) 4 x 16800 + 46000 x (1+ i,.)(1 + i d ) + 9300 x(1+ id )5 —83557

where

= Normal (15%, 0.03)

id = Normal (8%, 0.04)

Since the calculation involving powers of the ir and id, the performance function is

non-linear and an iterative solution is needed.

The partial derivatives are:

ad' • 
= x + i'd ) 4 x 21000 x a-, —4 x (1+ 4) 3 x 16800 x a, + 46000 x (1 + j ar ) x cr,d

+ 9300 x 5 x + 4) 4 x

(gg—a;-) 
= 46000 x + 4)x o-,„
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For the first iteration, assume that: i; = i; = 0.08 , and i:	 = 0.15 , then

(21 ) = 5x(1+ 0.08)4 x 21000 x 0.04 - 4 x(1+0.08)3 x 16800x 0.04 + 46000x(1+ 0.15)x 0.04

+ 9300x 5 x(1 + 0.08) 4 x0.04

= 6974.457

(A] = 46000 x(1+ 0.08)x 0.03 = 1490.4

The direction cosines are:

(IA	 6974.457 
a,d = 	 -04 	 = 	 =0.9779

1,1).

2

ad +(ai 

2

* 116974.457 2 + 1490.42

(-1,1	  1490.4 
a	 = 	 =0.2090

clr) 
2 +L2 

NI6974.457 2 + 1490.42

a	 ).

Hence the components of the failure point are:

i sd = 0.08 +0.9779 x 0.04 x /3

= 0.15 + 0.2090 x 0.03 x /3

Substituting these into the limit-state equation, g(M) = 0, solve for fi

= -0.6428

The revised failure point then becomes:

= 0.08 + 6974.457 x0.04 x(-0.6428)= 0.105144

= 0.15 + 1490.4 x 0.03 x (-0.6428) = 0.15403
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Repeating the procedure for subsequent iterations, the results are summarised in the

following Table 5.22:

Table 5.22 Results of the iterations of FOSM for Example 5.10

Iteration

No.

Variable Assumed

Failure

point

a •
m, New m*i

•

1 id 0.08 6974.457 0.9779 0.105144

ir 0.15 1490.4 0.2090 0.15403

13=-0.6428

2 id 0.105144 7534.844 0.9801 0.105199

ir 0.15403 1525.099 0.1984 0.153825

13=-0.64276

3 id 0.105199 7535.73 0.9801 0.1052

ir 0.153825 1525.175 0.1984 0.153825

13=-0.64276

Based on the results of the above 3 th iteration, therefore, the underlying probability of

failure is:

PF = 1- CD (-0.64276) = 0.7398 = 73.98%

Using the Monte Carlo simulation method, the summary results are shown in Table

5.23:

Table 5.23 Results of MCS for Example 5.10

Iteration Probability

1000 0.7578

5000 0.7485

10000 0.7462

Interpreting the results: When both the required rate of return and inflation are

considered as being uncertain, the probability of exceeding the targeted hire rate for

year 5 is 73.98%.
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5.3.4 Discussion

5.3.4.1 Discussion of individual examples

Example 5.1 is a typical example of selecting a project or alternatives using the FOSM

method.

The results from the FOSM for Example 5.1 are exact when the performance function

is linear and the variables are Normally distributed. The explanation for this can be

referred back to the definition of the reliability index (safety index), which is defined as

the minimum distance from the tangent plane of the failure surface to the origin of the

reduced variates (Equations 5.1 0-5.3 8). It can also be seen from Figure 5.3, that when

the performance function is linear, g(X1 ,X2 )=0 is a straight line, thus the minimum

distance from the failure surface, g(XI ,Y172 )= 0, to the origin of the reduced variates is

unique. This is same for Example 5.9.

Example 5.2 and Example 5.9 represent a typical task in economic analysis, elemental

cost analysis, the subsystem costs have been assumed to be Triangular and Normally

distributed respectively in the two examples.

Example 5.2 used the three point parameters (minimum, most likely and maximum)

estimates and assumed the Triangular distribution for the subsystem costs. This

approach (using the three point parameters estimates) is very common when objective

data is unavailable and subjective data must be acquired by the use of experienced

estimators. (Wilson [26] , Raftery [123] , Newton [63] and Chau 11211).

Example 5.2 involves non-Normal distribution and as stated in section 5.2.3.1, for an

individual variate, the equivalent Normal distribution for a non-Normal variate may be

obtained such that the cumulative probability as well as the probability density ordinate

of the equivalent Normal distribution are equal to those of the corresponding non-

Normal distribution at the appropriate point x,s , on the failure surface. This can be

done by using Equations 5.40 and 5.42. The procedures have been applied to all of

examples involving non-Normal distribution (Examples 5.2, 5.4, 5.6, and 5.8).
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Although the performance function of Example 5.2 is linear, the mean values and

standard deviations required in Equation 5.38 are unknown as these are now functions

of the respective failure point values. An iterative solution, using Equations 5.40 and

5.42, is therefore necessary.

The first iteration is assumed using the most likely values. Four iterations were carried

out. It can be seen that the third and fourth iterations are identical and thus three

iterations are sufficient for the result to be convergent in this case.

Example 5.3 involves correlated variables and despite of this, since the performance

function is linear and the variables are Normally distributed, the result of the FOSM

from Equation 5.60 is exact. This is because as stated in section 5.2.3.2, when random

variables are correlated, the original variates may be transformed to a set of

uncorrelated variables. Equation 5.49 indicates that a rotation of the co-ordinates from

X' to Y and the origin of the Y axes remains the same as that of the X' axes.

When the performance function is linear, it can be seen from Figure 5.3 but now the

axes x' s have rotated to Y, a1 ,)(2 )=0 is a straight line, thus the minimum distance

from the failure surface, a 1 ,X2 )=0, to the origin of the reduced variates is still

unique.

Alternatively, results of the FOSM of Example 5.3 can be obtained using Equations

5.46-5.59 (as those in Example 5.4), in such one iteration of the algorithm is sufficient.

Examples 5.3 and 5.4 represent another typical economic analysis, net cash flow

streams problems including net present value and future worth. Both examples are

linear cases as the interest rate is constant.

The algorithm of Examples 5.4 is a combination of Examples 5.2 and 5.3. It can be

seen that in the linear cases, equivalent Normal distribution using Equations 5.40 and
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5.42 are proceeded first and Equation 5.60 is then used for solving the correlation

problem.

The first iteration uses the mean values of the variables and it can be seen that four

iterations are sufficient for this example.

Examples 5.5 and 5.6 also represent a typical economic analysis of net cash flow

streams as Examples 5.3 and 5.4. The difference is that when the interest and/or cash

flows are considered as variables, these examples become non-linear cases.

When the performance functions are non-linear, the limit state equation,

g(X,,t12)=-- 0, will also be non-linear as shown in Figure 5.3 and unlike the linear

case, there is no unique distance from the failure surface to the origin of the reduced

variates. Thus the results from the FOSM are approximate.

As stated in section 5.2.4, the point (xi on the failure surface with

minimum distance to the origin of the reduced variates is the most probable failure

point (Shinozuka,1983). The tangent plane to the failure surface at (x;',,...,x,C*)

may then be used to approximate the actual failure surface, and the required reliability

index or probability of safety may be evaluated as in the linear case of Section 5.2.3.

Depending on whether the exact non-linear failure surface is convex or concave toward

the origin, this approximation will be on the safe side or unsafe side, respectively.

In the case of the performance function is non-linear, the pertinent point of tangency on

the failure surface is not, a priori, known. Consequently, the determination of the

required reliability index would not be as simple as in the linear case (Section 5.2.3),

even though linear approximation is invoked. The "minimum" point of tangency on

the failure surface may be determined through the iterative algorithm as described in

Section 5.2.4.1. These iterative procedures have been applied to the examples with

non-linear performance function (Examples 5.5-5.8).
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Example 5.6 is similar to Example 5.5, except that both variables are considered to be

Uniformly distributed instead of Normally distributed. In these two particular cases,

the effect of the form of distribution is small as the failure probabilities are 0.5034 and

0.5042 respectively for Examples 5.5 and 5.6. The reason for this is because the

variables of the two examples and their standard deviations are relatively small. This

may also be the reason for the accuracy, the results of the FOSM of these examples are

deemed to be accurate after only two iterations.

Examples 5.7 and 5.8 are again considered to be the same problems with the only

difference being that the variables are Normally and non-Normally (Log-Normal)

distributed.

Both examples involve correlated variables and the performance functions are non-

linear. Therefore, the iterative solutions have to be used.

From both examples, the third iteration is sufficient for an accurate result and the

failure probabilities are 0.2823 and 0.2850 respectively for Examples 5.7 and 5.8. The

results again show the effect of the form of the distribution is small in these cases. The

reason for this is believed same as in Example 5.5 and 5.6, that the variables of the two

examples and their standard deviations are relatively small.

Example 5.10 shows that the FOSM can be applied to a typical problem in

construction, that of setting plant hire rate. Traditionally, plant hire rates are set

deterministically and a contingency is then used to offset the perceived uncertainty.

The example used here shows that the FOSM can provide additional probabilistic

information for decision making.

In this example, the interest rate of return and inflation are considered as variables.

Since the standard deviation of both rates is small, it can be seen that the results of the

second and third iteration are identical and as such the second iteration was sufficient

for this example.
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5.3.4.2 Accuracy of the FOSM

The results from the FOSM are exact when the performance function is linear and the

variables are Normally distributed, such as already discussed in Examples 5.1, 5.3 and

5.9.

However, when the variables are non-Normal and/or the performance function is non-

linear, the FOSM uses an iterative solution and thus the results are approximate.

For a general performance function, the "correct" probability of failure can be

evaluated through large sample of Monte Carlo simulations.

For assessing the accuracy of the FOSM methods, all of the examples were studied

also using the Monte Carlo simulations method. The accuracy of the MCS results can

be seen in Table 5.24, where the standard error is calculated by:

(p) i_a =(5c- - k 	 +kal2
	 )
	

( 5.70 )

(
where (i - a) is the specified confidence level, kap = (120-/ / -	 is the value of the

standard Normal variate with cumulative probability level a/2, Y is the sample mean,

c is the standard deviation and n is the sample size.

Table 5.24 The standard error (95 % intervals) for the means in MCS

Iterations 1000 5000 10000

Example 5.1 -2945.74 ± 146.35 -2950.43 ± 61.806 -2984.37 ± 43.669

Example 5.2 -715.581 ± 29.013 -696.902 ± 12.862 -690.917 ± 9.0206

Example 5.3 6.89553 ± 0.6675 6.85393 ± 0.2964 6.86533 ± 0.2090

Example 5.4 96.0179 ± 4.2774 93.9599 ± 1.9314 95.0143 ± 1.3748

Example 5.5 -3.73617 ± 2.5658 -0.34529 ± 1.1642 -0.52390 ± 0.8165

Example 5.6 -2.35412 ± 1.4731 -0.40026 ± 0.6661 -0.49229 ± 0.4697

Example 5.7 514471 ±54635 523407 ± 24721 517219± 17507

Example 5.8 514621 ± 54575 523375 ± 24800 516957 ± 17549

Example 5.9 145.074 ± 6.9801 148.434 ± 3.2073 148.576 ± 2.2530

Example 5.10 -4844.70 ± 457.59 -4504.15 ± 200.05 -4427.32 ± 140.60
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Table 5.24 shows that the results at 1000 iterations of the MCS provide sufficiently

accurate results for all of the examples. For a further increase in confidence, results at

10000 iterations are used for comparison.

Table 5.25 shows a comparison of the results from both FOSM and Monte Carlo

simulations for all of the examples. The results of the MCS are generated at 10000

iterations and the 95% intervals for the pF are calculated using the following equation:

(P) 1, = (I3 - kap ligi
n
- P),. p + k 11130 - P)I

al2
n )

( 5.71 )

where (i - a)is the specified confidence level, and ± kap is values of the standard

Normal variate with cumulative probability levels a/2 and (i-42), respectively,

fi is the calculated failure probability, n is the sample size which in the current case is

10000.

Table 5.25 Comparison of calculated failure probabilities of FOSM with MCS

FOSM MCS 95% Confidence interval

Lower upper

Example 5.1 0.9099# 0.9073 0.9016 0.9130

Example 5.2 0.9144* 0.9239 0.9187 0.9291

Example 5.3 0.2610# 0.2595 0.2509 0.2681

Example 5.4 0.1070* 0.0965 0.0907 0.1023

Example 5.5 0.5034 0.5081 0.4983 0.5179

Example 5.6 0.5042 0.5081 0.4983 0.5179

Example 5.7 0.2823 0.2889 0.2800 0.2978

Example 5.8 0.2850 0.2926 0.2837 0.3015

Example 5.9 0.0965# 0.0949 0.0892 0.1006

Example 5.10 0.7398 0.7462 0.7377 0.7547

# denotes the result of FOSM is exact.

* denotes the result of FOSM is not included in the 95% confidence intervals of the

MCS.
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Table 5.25 shows that only two examples out of ten that the results of FOSM are

slightly not included in the 95% confidence intervals of those of MCS. It can be seen

that the results of the FOSM are very accurate for the examples studied when

compared to MCS. This is believed in the present study, the numbers of the variables

in the examples is relatively small as most of the examples have two to five variables.

Example 5.9 has ten variables but the distribution of these variables are Normal and

the performance function is linear, thus the results are exact. Also in most of the

examples studied the standard deviations of the variables are relatively small.

Therefore, the approximations tend to be very accurate.

These results (although limited) provide evidence of the validity and accuracy of the

FOSM method. Moreover, all the examples examined are typical of those found in

practical construction economics.

5.3.4.3 The algorithm of the FOSM

The methodology of the FOSM has been illustrated in detail through ten examples and

from these the complete algorithm of the FOSM can be summarised in Figures 5.7-

5.15.

Form Figures 5.8 and 5.12, it can be seen that when the performance function is linear

and the variables are Normally distributed, the FOSM is very straight forward - the

safety index can be calculated in an equation and the probability of failure can then be

found (Examples 5.1, 5.3 and 5.9).

Figures 5.9, 5.11, 5.13 and 5.15 show when the performance function is non-linear, an

iterative solution is needed using the algorithm described in section 5.2.4.1 (Examples

5.5, 5.6, 5.7, 5.8 and 5.10).

Figures 5.10, 5.11, 5.14 and 5.15 show when the variables involving non-Normal

distribution, equivalent Normal distribution (Equations 5.40 and 5.42) are used and the
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calculation of the failure probability then follows the same procedure as that for

Normal variates (Examples 5.2, 5.6, 5.4 and 5.8).

Figures 5.12 - 5.15 show when the variables are correlated, the original variates have to

be transformed to a set of uncorrelated variables (Examples 5.3, 5.4, 5.7 and 5.8).

However, when the performance function is linear and the variables are Normally

distributed (Figure 5.12), one iteration of the numerical algorithm is sufficient

(Example 5.3).

These algorithms indicate that there are no limits to the number of variables and they

can have different probability distribution forms within a performance function.

These Figures also show that the algorithms of the FOSM can be easily written to a

computer code.

223





g(x)=a0 +Eaii

a o +Eaipx,

2

'

P f = 1 — 4(u)

Evaluate (i€) and

ct at x:.

et:j

* — 	 	
•

Figure 5.8 Logic for linear,

uncorrelated Normals

Assume x:; i=1,2,...n

x i — lix,
,x, =

a x,

Form

* =	 — a: a x,fi.

Substitute above x: in

g(x; ,x; ,...,x)= 0 and

solve for /3.

Re-evaluate x = —ot,fl.

Convergence?
No

Yes

= 1 - (DO)

Figure 5.9 Logic for non-

linear, uncorrelated Normals

225



Assume x; 1=1,2, ...n
N

, * xi
x i = 	

Cr x

Equivalent Normal
distributions:

01 Cc' [F1,(4)]}
x,

4

ao + aipx,

I= 

liE(a,0"Nxi)
2

Obtain a;

a,o- x,
a,

.
 =

Evaluate (,c11.6X.,) and

a: at x:.

(c ;) *

a,
*
 = 	 	

2

0( *

Substitute above x: in

g(x; ,x; ,...,x;)= 0 and

solve for fl .

Form
•	 N	 •	 N

=	 pa x,

Re-evaluate	 = —al'/3.

p1 = 1 006)

Assume x; 1=1,2, ...n
N

,*	 Xi — dUXi
xi = 	

a X

Equivalent Normal
distributions:

010-1 [F x	 )1}

a X, =
f X ,(4)

= - Cc' [F/1 1:11,1 x xi(X:)] N	 •	 N -
= - (1)

1 (X1]x, crx, [FA,p

Re-evaluate
NNx i

* px, — a, po- x,

p = 1 —0(151)

Figure 5.10 Logic for linear,

uncorrelated non-Normals

Figure 5.11 Logic for non-linear,

uncorrelated non-Normals

226



Assume x; i= I ,2, n

x, - p
=

x,

g(X)=a0 +ZaiX

ao +Ea„ux,

n

EEcr,aipucrx,crx,
1.0.1

/3=
1=1

Substitute above Yin

g(x; ,x; ,...,x;)= 0 and

obtain: g(Y) = 0

p = 1 - (1(j)

Form y: = -ayi* fio- .

Substitute above y: in

,g(17)= 0 and solve for fl.

Transformed variates
X =[0-x, 	 + px,

Figure 5.12 Logic for

linear, correlated Normals Evaluate (5g/510. and

a," at y:.

(
4r
clYi J. ay,

2

(-eld111

Re-evaluate
y: = -ayi* flay,

X =k-xi ITY + px,

P f = 1

Figure 5.13 Logic for non-

linear, correlated Normals

227



The reduced variates
• N
- pxi

X = 	

CrXi

Transformed variates

y * T, = .x,

New
y, =—ay*iflo-y,

X =[(31, 1TY +

No

No

Assume x: ; i=1,2, ...n

Equivalent Normal
distributions:

0{ 4)- [F (X: )1}
N =

X

p x", = x: - 00-1[Fx,(4)]

Transformed variates
X=

Substitute above Y to
obtain: g(Y)= 0

Evaluate Ogl ay;

a; at y.

Form y: =—a;ificryi.

Substitute above y: in

g(Y)= 0, solve for fi.

New
y, =	 fio-y,

X = kr.; }TY +,uxN,

Assume x: ; i=1,2,...n

Equivalent Normal
distributions:

(xi

xNi = X: - CT xiVi (1:1-1 [Fx, (X: )]

Transformed variates
X =[crITY + t

Substitute above Y to
obtain: g(Y)= 0

Evaluate (t/e7Y; ). and

ce; at y:.

Form y: =—ct,ficryi.

Substitute above y1*

g(Y)= 0 , solve for fl.

•
X

f(x)
Cr	 =

fX, (4)

Pf = 1 CIO)

Convergence?

Yes

Figure 5.14 Logic for linear,

correlated non-Normals

Convergence?

Yes

pf = 1-0(fi)

Figure 5.15 Logic for non-linear,

correlated non-Normals

228



5.4 Summary of findings

The current research shows that it is possible to use the FOSM methods for risk

analysis and decision-making in construction economics. From the results of the

examples, the following conclusions can be drawn:

1. The results from the FOSM are exact when the performance function is linear and

the variables are Normally distributed.

2. When the variables are not Normally distributed, the equivalent Normal

distribution for a non-Normal variate is obtained such that the cumulative

probability as well as the probability density ordinate of the equivalent Normal

distribution are equal to those of the corresponding non-Normal distribution at the

appropriate point x:, on the failure surface. Thus an iterative procedure is needed.

3. When the variables are correlated, the original variates may be transformed to a set

of uncorrelated variables. The procedure in Equation 5.25a can then be applied to

the uncorrelated set of transformed variables.

4. When the performance functions are non-linear, the tangent plane to the failure

surface at most probable failure point is used to approximate the actual failure

surface. Since the pertinent point of tangency on the failure surface is not, a priori,

known, the "minimum" point of tangency on the failure surface may be determined

through the iterative algorithm. The results of the FOSM are approximate and

depending on whether the exact non-linear failure surface is convex or concave

toward the origin, this approximation will be on the safe side or unsafe side,

respectively.

5. When iterative procedures are applied, for the first iteration, it is always assumed

that the possible failure points are those mean values of the variables. In most of

the cases, three or four iterations are sufficient to achieve accurate results.
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6. In all of the cases studied, the results of 1000 iterations of MCS are sufficiently

accurate.

7. The algorithm of the FOSM indicates that there are no limits to the number of

variables. Furthermore, the variables can have different probability distribution

forms within a performance function.

8. The FOSM methods are computationally fast and provide measures of risk with a

desired degree of accuracy when compared to MCS. The algorithms of the FOSM

have been summarised and it can be seen that they can easily be written into a

computer code and once it is programmed, the calculation takes only a few

iterations, unlike the MCS in which large samples are needed.

9. The FOSM methods are appropriate to practical problems of risk analysis such as

selecting project alternatives, elemental cost analysis, cash flow streams and setting

realistic plant hire rates.

However, if variables involved are non-normal, correlated, or a performance function

is non-linear, the results of the FOSM methods are approximate and the accuracy

would need further investigation.
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CHAPTER 6 CONCLUSIONS AND

FURTHER DEVELOPMENTS

6.1 Introduction

This thesis has developed original work in proposing a new method, the Modified

Stochastic Assignment Model (MSAM) for analysis of project completion time and

also applying the First Order Second Moment (FOSM) method in construction project

management. Prior to this, the popular methods used for project duration analysis, the

Programme Evaluation and Review Technique (PERT) and Monte Carlo Simulation

(MCS) were studied and compared on the basis of two example projects.

This chapter presents general conclusions followed by specific conclusions arising

from each strand of the research. By drawing them together in this manner it is hoped

to eliminate unnecessary duplication and present clarity of thinking in the summing up

of this thesis.

This chapter also provides recommendations for possible future research into the field

of risk analysis in construction economics, particularly in project duration analysis and

problems involving failure probability (probability of economic loss in project

management).

6.2 Summary of conclusions

6.2.1 Literature review conclusions

The literature review showed that the Normal distribution is the most popular

distribution used for developing probabilistic approximate analytical methods in risk

analysis. This is due to the simplicity of the distribution (only two parameters can

define the Normal distribution) and the Central Limit Theorem.

The literature review showed that MCS is the most popular method and PERT is the

simplest probabilistic analytical method used in construction network analysis. It was
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also found that more probabilistic approximate analytical methods are needed for

network analysis.

6.2.2 PERT and MCS methods

PERT is easy to understand, can be calculated manually and saves computational time.

PERT gives the most optimistic results when they are compared to those of the MCS

in both of the example projects.

MCS is also very easy to understand but requires considerable computational time.

MCS can accommodate the different distribution forms for the duration of individual

activities and with large samples it can provide more conservative results. Also MCS

can determine critical indices for a given network whereas the PERT cannot.

When applying MCS, it can be seen that with an increasing number of iterations, a

reduction of the sampling variability can be attained. For the two projects studied,

with 30-52 activities, 1000 iterations was sufficient to provide accurate results.

The project duration range (maximum minus minimum) is increased as the number of

simulations increase. For distributions without a boundary, such as the Normal and

Log-Normal (one side bounded) distributions, the project duration range will tend to

infinity. On the other hand, distributions with a boundary, such as the Triangular,

Uniform and Beta distributions, project duration ranges will converge at certain points

(the minimum and maximum values).

After a certain number of iterations (1000 iterations for the examples studied), the

percentile values from 5% to 95% approximately tend to be similar and increasing the

number of iterations only affects the minimum (less than 5%) and the maximum

(greater than 95%) percentile values. This fact is irrespective of the type of probability

distribution function specified for the activity durations.

For the parameters assessed in the present research, the Normal, Log-Normal or Beta

distribution functions for individual activities give very similar predictions for the total

project duration. It can be seen that between 5% and 95%, the percentile values of the

232



Normal, Log-Normal and Beta distributions share virtually identical values but before

the 5% and after the 95%, the percentile values of each of the different distributions

can be seen to be more varied. The Triangular distribution produces medium level

durations which are proportionally similar to the Normal distribution results. The

Uniform distribution always overestimates the probability of extremes and therefore

gives conservative results.

When the mean is altered, that is all of the distributions are considered symmetric,

Normal, Log-Normal and Beta distribution functions again give very similar

predictions for the total project duration. Before a turn point (20%-25% percentile

values), these three distributions (Normal, Log-Normal and Beta) provide more

pessimistic results whereas a Uniform distribution provides the most optimistic results.

After that point, the three distributions provide more optimistic results whereas a

Uniform distribution provides the most pessimistic results. The Triangular distribution

produces medium level durations which are proportionally similar to the Normal

distribution results. This suggests the Triangular distribution is the best choice of

distribution (not optimistic nor conservative) when using the subjective three point

estimates (minimum, maximum and most likely) for risk analysis, particularly in the

absence of objective data which is a common feature in project management.

The simulation results are not only dependent upon the shape of the distributions but

are also dependent upon the manner of setting the mean and standard deviation.

However, it can be seen that the effect of the choice of the distribution is greater than

the effect of the manner of setting the mean and standard deviation in the two

examples investigated. After altering the mean (the distributions are considered

symmetric), the results of different distributions are all more pessimistic than those of

before the alteration.

The overall properties of each distribution generated by the @Risk package show a

characteristic probability distribution for the different distributions. The @Risk

package executes in a way that correctly generates the random number according to the

assigned distributions.
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6.2.3 MSAM method

The proposed new method, MSAM, is a direct application of Clark's results and is

modified from the SAM, which is a method previously used solely in traffic networks.

A computer program has been written to implement the MSAM algorithm. The

method can be used to estimate completion times of projects in the presence of

uncertainty and thus permits the consideration of network decision problems in terms

of risk and probability. It can be used in the planning and execution stages of a

project.

The MSAM method has been developed for analysing general construction networks.

Five example projects chosen randomly from published work have been studied, and

the validity of the method has been verified by results of large sample Monte Carlo

simulations. From the results of these examples, the following conclusions can be

drawn.

In all of the cases studied, MSAM produces very good results when compared to MCS

for the entire range of probabilities of interest. However, MSAM is an approximate

method, and in the case of the variance of project duration being large when compared

to the mean (Example 4.5), MSAM produces more pessimistic results when compared

to other methods (PERT, PNET and MCS). PERT gives the most optimistic estimate

of a project duration. When the ratio of the standard deviation and the mean is

reduced, the accuracy of the MSAM improves. It is possible to use other

approximations, such as methods by Mendell and Elston (24) , Kamakura (25), and

Langdon (26' 27) , to replace Clark's results in order to improve accuracy and still use the

MSAM mechanism.

When compared to PERT and CPM, the MSAM has the advantage of taking total

account of the correlations between paths in a network. This enables the shorter but

more uncertain paths to be considered thus increasing the accuracy of the prediction.

When compared to PNET, the MSAM is a one-pass method which does not need path

enumeration and thus can be more easily implemented and is also better to cope with

large networks. When compared to MCS, the MSAM is a direct analytical procedure

and is very efficient in saving computational time. The calculations take only few

234



seconds whereas the MCS take 4-5 hours on the same PC in all of the examples. This

would enable considerable financial and time savings during the planning stage of a

project where these aspects are usually critical.

In its present form, the MSAM method yields the probability of project completion

within a prescribed target time, or the required project time at a specific probability.

The method may be extended to consider the effects of uncertainty in general activity

and decision networks.

6.2.4 FOSM method

The current research shows that it is readily possible to use the FOSM methods for risk

analysis and decision-making in construction economics. This method is especially

suited to the conceptual stage of a project but can be used to assess the failure

probability throughout a project life cycle. From the results of the examples, the

following conclusions can be drawn.

The results from the FOSM are exact when the performance function is linear and the

variables are Normally distributed. When the variables are not Normally distributed,

the equivalent Normal distribution for a non-Normal variate is obtained such that the

cumulative probability as well as the probability density ordinate of the equivalent

Normal distribution are equal to those of the corresponding non-Normal distribution at

the design point on the failure surface. Thus an iterative procedure is needed.

When the variables are correlated, the original variates may be transformed to a set of

uncorrelated variables. The procedure in Equation 5.25a can then be applied to the

uncorrelated set of transformed variables.

When the performance functions are non-linear, the design point on the failure surface

with minimum distance to the origin of the reduced variates is the most probable

failure point. The tangent plane to the failure surface at the design point may then be

used to approximate the actual failure surface. Since the pertinent point of tangency on

the failure surface is not, a priori, known, the "minimum" point of tangency on the

failure surface may be determined through the iterative algorithm as described in
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Section 5.2.4.1. The results of the FOSM are approximate and depending on whether

the exact non-linear failure surface is convex or concave toward the origin, this

approximation will be on the safe side or unsafe side, respectively.

When iterative procedures are applied, for the first iteration, it is always assumed that

the possible failure points are those mean values of the variables. In most of the cases,

three or four iterations are sufficient to achieve accurate results and these are very

close to the results of 1000 iterations of MCS. If variables involve non-normal,

correlated, or a performance function which is non-linear, the results of the FOSM

methods are more approximate than when dealing with Normal, uncorrelated variables

and linear performance function.

The algorithm of the FOSM indicates that there is no limit to the number of the

variables and they can have different probability distribution forms within a

performance function.

The FOSM methods are computationally fast and provide measures of risk with an

excellent degree of accuracy when compared to MCS. The algorithms of the FOSM

have been summarised and it can be seen that they can be easily written into computer

code and once it is programmed, the calculation takes only a few iterations and unlike

the MCS in which large samples are needed. This significantly reduces computational

time.

The FOSM methods are appropriate to practical problems of risk analysis such as

selecting project alternatives, elemental cost analysis, cash flow streams and setting

realistic plant hire rates.

6.3 Recommendations for further research

PERT and MCS are well developed methods for project duration assessment. Future

work should emphasise on the collection of objective data and based on this the

distributions of activities and the dependent relationships of the activities can be

determined.

236



The MSAM method has been written in FORTRAN 77 to implement its algorithm.

Further work can be done by writing the program into different computer codes and

developed into a more user friendly computer package, preferably in a windows

environment.

The algorithm of the MSAM can be improved by using different approximate results

instead of using Clark's results only.

The MSAM method should be tested in realistic situations, such as in a particular type

of network, by which the practical accuracy of the method can be assessed.

In its present form, the MSAM method yields the probability of project completion

within a prescribed target time, or the required project time at a specific probability.

The method may be extended to consider the effects of uncertainty in general activity

and decision networks.

The present research has shown the applicability of FOSM method in construction

economics and the logic of the algorithm has been summarised. However, it has not

been written as a computer program to implement its algorithm. Further work can be

done by writing the program into different computer codes and developing into a more

user friendly computer package, preferably in a windows environment.

The accuracy of the FOSM needs to be tested in realistic situations. Furthermore,

where the performance function is non-linear or the variables are non-Normal, the

accuracy of the FOSM method could be improved by including higher order

approximation to the design point in determining the value of /3, the reliability index.

This area requires further investigation.

The FOSM method has a great potential for application into other areas of civil

engineering where little quantitative probabilistic work has been carried out so far.

Although the FOSM method was originally developed within the civil engineering

industry, well presented and easy to understand computer software is still lacking for
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practical use. It is also likely that both the MSAM and FOSM methods can be

adjusted to apply to other industries.

In general, risk analysis and management methods are increasingly being accepted as

providing a rational basis for decision making in the construction industry.

Widespread use of risk analysis, such as within tender proposals, will only be possible

if further research is undertaken to provide standardised solutions which can be easily

adopted by practitioners in industry. Without such further development, some useful

risk analysis methods will remain highly specialised and relatively unused tools.
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APPENDIX A

RESULTS OF MCS FOR EXAMPLE 3.1

Figure A.1 Total project duration of Example 3.1. Histogram in curve.

Normal distribution, 100 iterations

Figure A.la Total project duration of Example 3.1. Ascending cumulative curve.

Normal distribution, 100 iterations
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Figure A.2 Total project duration of Example 3.1. Histogram in curve.

Normal distribution, 1000 iterations

Figure A.2a Total project duration of Example 3.1. Ascending cumulative curve.

Normal distribution, 1000 iterations
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Figure A.4 Total project duration of Example 3.1. Histogram in curve.

Normal distribution, 10000 iterations
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Figure A.4a Total project duration of Example 3.1. Ascending cumulative curve.

Normal distribution, 10000 iterations
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Log-Normal distribution, 100 iterations
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Figure A.6 Total project duration of Example 3.1. Histogram in curve.

Log-Normal distribution, 1000 iterations

Figure A.6a Total project duration of Example 3.1. Ascending cumulative curve.

Log-Normal distribution, 1000 iterations
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Figure A.7 Total project duration of Example 3.1. Histogram in curve.

Log-Normal distribution, 5000 iterations

Figure A.7a Total project duration of Example 3.1. Ascending cumulative curve.

Log-Normal distribution, 5000 iterations
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Figure A.9 Total project duration of Example 3.1. Histogram in curve.

Triangular distribution, 100 iterations

Figure A.9a Total project duration of Example 3.1. Ascending cumulative curve.

Triangular distribution, 100 iterations

260



Expected Value=
88.385

@RISK Simulation Results

	

0.14 	

0.12

	

0.1	 	

	

0.08 	

	

0.06 	

	

0.04 	

	

0.02 	

	

0 	

76

P
R
0
B

91 1019681	 86

76
	

81
	

86
	

91
	

96
	

101

Example 1 Project duration (Triangular, 1000)

Expected Valu
88.385

[@R1SK Simulation Results

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

P
R
0
B

Example 1 project duration (Triangular, 1000)

Figure A.10 Total project duration of Example 3.1. Histogram in curve.

Triangular distribution, 1000 iterations

Figure A.10a Total project duration of Example 3.1. Ascending cumulative curve.

Triangular distribution, 1000 iterations
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Figure A.12 Total project duration of Example 3.1. Histogram in curve.

Triangular distribution, 10000 iterations

Figure A.12a Total project duration of Example 3.1. Ascending cumulative curve.

Triangular distribution, 10000 iterations
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Figure A.13 Total project duration of Example 3.1. Histogram in curve.

Uniform distribution, 100 iterations

Figure A.13a Total project duration of Example 3.1. Ascending cumulative curve.

Uniform distribution, 100 iterations
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Uniform distribution, 5000 iterations

Figure A.15a Total project duration of Example 3.1. Ascending cumulative curve.
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Figure A.16 Total project duration of Example 3.1. Histogram in curve.

Uniform distribution, 10000 iterations

Figure A.16a Total project duration of Example 3.1. Ascending cumulative curve.

Uniform distribution, 10000 iterations
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Figure A.17 Total project duration of Example 3.1. Histogram in curve.

Beta distribution, 100 iterations

Example 1 project duration (Beta, 100)

Figure A.17a Total project duration of Example 3.1. Ascending cumulative curve.

Beta distribution, 100 iterations
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Figure A.18 Total project duration of Example 3.1. Histogram in curve.

Beta distribution, 1000 iterations

Figure A.18a Total project duration of Example 3.1. Ascending cumulative curve.

Beta distribution, 1000 iterations
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Figure A.19 Total project duration of Example 3.1. Histogram in curve.

Beta distribution, 5000 iterations

Figure A.19a Total project duration of Example 3.1. Ascending cumulative curve.

Beta distribution, 5000 iterations
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Figure A.20 Total project duration of Example 3.1. Histogram in curve.

Beta distribution, 10000 iterations

Figure A.20a Total project duration of Example 3.1. Ascending cumulative curve.

Beta distribution, 10000 iterations
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Figure A.21 Total project duration of Example 3.1. Histogram in curve.

Symmetric Normal distribution, 10000 iterations

Figure A.21a Total project duration of Example 3.1. Ascending cumulative curve.

Symmetric Normal distribution, 10000 iterations
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Figure A.22 Total project duration of Example 3.1. Histogram in curve.

Symmetric Log-Normal distribution, 10000 iterations

Figure A.22a Total project duration of Example 3.1. Ascending cumulative curve.

Symmetric Log-Normal distribution, 10000 iterations
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Figure A.23 Total project duration of Example 3.1. Histogram in curve.

Symmetric Triangular distribution, 10000 iterations

Figure A.23a Total project duration of Example 3.1. Ascending cumulative curve.

Symmetric Triangular distribution, 10000 iterations
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Figure A.24 Total project duration of Example 3.1. Histogram in curve.

Symmetric Beta distribution, 10000 iterations

Figure A.24a Total project duration of Example 3.1. Ascending cumulative curve.

Symmetric Beta distribution, 10000 iterations
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Figure B.1 Total project duration of Example 3.2. Histogram in curve.

Normal distribution, 100 iterations

Figure B.la Total project duration of Example 3.2. Ascending cumulative curve.

Normal distribution, 100 iterations

276



Expected Value--
270.258

@RISK Simulation Results

Expected Value=
270.258

1
0.9 '
0.8 :"

P
R
0

0.7

0.5
0.4

0 .6	 	 ..-
:-
".B 0.3	 	 :-

0.2 •-•
0.1 	 :•

0

@RISK Simulation Results I

:	 I 	 1.•
-: 	
: 

. 	
.: 	  	

	

: 	 :•
	

	  1 	  I 	 :	
4 	  ; 	 .'"

41 	
T	 I	 I	 I-

244	 254	 264	 274	 284	 294

HABITAT project duration (Normal, 1000)

	..

—
P
R
0
B

0.16

0.14

0.12

0.1

0.08
0.06

0.04

0.02

o
244	 254 264	 274	 284	 294

IHABITAT project duration (Normal, 1000)

Figure B.2 Total project duration of Example 3.2. Histogram in curve.

Normal distribution, 1000 iterations

Figure B.2a Total project duration of Example 3.2. Ascending cumulative curve.

Normal distribution, 1000 iterations

277



Expected Value=

269.993
I@RISK Simulation Results

244
	

254
	

264
	

274
	

284
	

294

HABITAT project duration (Normal, 5000)

Expected Value

269.993
I@RISK Simulation Results

0.14 .
0.12 	 :- 	 1

P 0.1 	 ;. 	 	 4

R 0.08	 	 :- 	 J..

0 0.06	 	 :- 	
B

0.04 - 	 '	 	:- 	 J..

0.02	 	 	4-

0

244 254	 264	 274	 284 294

HABITAT project duration (Normal, 5000)

Figure B.3 Total project duration of Example 3.2. Histogram in curve.

Normal distribution, 5000 iterations

Figure B.3a Total project duration of Example 3.2. Ascending cumulative curve.

Normal distribution, 5000 iterations

278



238	 248	 258
	

268
	

278

HABITAT project duration (Normal, 10000)

288

	,

Expected Valuc=
269.906

I@RISK Simulation Results

I

0.7
0.8	 	

.
'	
1	P

R
0.5
0.6	 	 4
	  ...

0 0.4 -r- 1B 0.3	 	 1
0.2	 	 4
0.1 	  -:

0

.1.	 	
'.

's.
4 	

I. 	

i

1 	
I

4
,

i

1.
-..

	 ..:

Expected Value=
269.906

@RISK Simulation Results

P
R
0
B

0.16

0.12
0.1

0

0.14	 	

0.08	 	
0.06	 	
0.04	 	
0.02 —‘ 	

	I	
i
1
1 	

.: 	
	  ; 	

238	 248
	

258
	

268
	

278
	

288

HABITAT project duration (Normal, 10000) I

Figure B.4 Total project duration of Example 3.2. Histogram in curve.

Normal distribution, 10000 iterations

Figure B.4a Total project duration of Example 3.2. Ascending cumulative curve.

Normal distribution, 10000 iterations
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Figure B.7 Total project duration of Example 3.2. Histogram in curve.

Log-Normal distribution, 5000 iterations

Figure B.7a Total project duration of Example 3.2. Ascending cumulative curve.

Log-Normal distribution, 5000 iterations
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Figure B.9 Total project duration of Example 3.2. Histogram in curve.

Triangular distribution, 100 iterations

Figure B.9a Total project duration of Example 3.2. Ascending cumulative curve.

Triangular distribution, 100 iterations
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Triangular distribution, 1000 iterations

Figure B.10a Total project duration of Example 3.2. Ascending cumulative curve.

Triangular distribution, 1000 iterations
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Figure B.11 Total project duration of Example 3.2. Histogram in curve.
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Figure B.11a Total project duration of Example 3.2. Ascending cumulative curve.
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Uniform distribution, 100 iterations
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Figure B.14 Total project duration of Example 3.2. Histogram in curve.

Uniform distribution, 1000 iterations

Figure B.14a Total project duration of Example 3.2. Ascending cumulative curve.

Uniform distribution, 1000 iterations
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Figure B.16 Total project duration of Example 3.2. Histogram in curve.

Uniform distribution, 10000 iterations

Figure B.16a Total project duration of Example 3.2. Ascending cumulative curve.
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Figure B.17 Total project duration of Example 3.2. Histogram in curve.

Beta distribution, 100 iterations

Figure B.17a Total project duration of Example 3.2. Ascending cumulative curve.

Beta distribution, 100 iterations
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Figure B.18a Total project duration of Example 3.2. Ascending cumulative curve.

Beta distribution, 1000 iterations
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Figure B.19 Total project duration of Example 3.2. Histogram in curve.

Beta distribution, 5000 iterations

Figure B.19a Total project duration of Example 3.2. Ascending cumulative curve.
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Figure B.21 Total project duration of Example 3.2. Histogram in curve.

Symmetric Normal distribution, 10000 iterations

Figure B.21a Total project duration of Example 3.2. Ascending cumulative curve.
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Symmetric Triangular distribution, 10000 iterations

Figure B.23a Total project duration of Example 3.2. Ascending cumulative curve.
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Figure B.24 Total project duration of Example 3.2. Histogram in curve.
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Figure B.24a Total project duration of Example 3.2. Ascending cumulative curve.
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APPENDIX C

DATA INPUTS AND OUTPUTS OF MSAM

FOR EXAMPLES 4.1-4.5

Appendix C.1 Example 4.1

Data input for MSAM

100
101
102
103
104
105
106
107
108
109
110
111

0
12
20
14
16
28
15
36
22
18
24
0

0
0
0
0
0
0
0
0
0
0
0
0

0.00
1.33
3.00
2.00
4.00
6.33
2.00
4.00
2.67
1.67
3.33
0.00

0
1
1
1
1
1
2
2
1
2
1
3

100
100
100
103
101
102
102
103
105
108
107

104
104

106

109 110

Data output from MSAM

Mean: 67.8802762953
Variance: 22.3480833290
Standard Deviation: 4.72737594539
Run Time: 0.2197802
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Appendix C.2 Example 4.2

Data input for MSAM

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

0
3
10
3
0
7
18
13
6
1
1
0
0
8
4
0
1
2
0
6
0
8
4
0
0
2
13
0
10
3
0

0
4
15
5
0
8
26
14
8
2
2
0
0
10
8
0
2
6
0
7
0
10
6
0
0
3
15
0
12
5
0

0
5
23
9
0
10
40
16
10
10
15
0
0
11
10
0
3
10
0
8
0
12
10
0
0
20
18
0
15
7
0

0
1
1
1
1
1
2
1
1
1
1
1
1
2
2
1
2
1
1
2
2
2
1
1
1
2
1
1
2
1
4

100
100
101
103
103
102
105
107
108
107
107
108
106
111
114
111
107
117
116
111
112
121
122
110
123
122
110
119
128
115

104

109
113

113

118
113
120

124

127

125 126 129

Data output from MSAM

Mean: 85.8927999511
Variance: 9.67770709467
Standard Deviation: 3.11090133155
Run Time: 0.1098901
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Appendix C.3 Example 4.3

Data input for MSAM

100 0 0 0 0
101 9 10 11 1 100
102 14 15 21 1 101
103 59 60 80 1 101
104 50 60 90 1 101
105 40 50 80 1 101
106 20 30 40 1 101
107 10 15 25 1 101
108 10 15 30 1 101
109 20 30 35 1 101
110 40 50 60 1 101
111 70 80 90 1 101
112 14 15 16 1 102
113 14 15 16 1 102
114 50 60 80 5 103 143 128 135 122
115 50 60 61 5 103 143 128 135 122
116 14 15 16 1 104
117 14 15 16 1 104
118 29 30 31 1 104
119 39 40 41 1 105
120 59 60 61 3 106 129 133
121 89 90 91 2 107 145
122 0 0 0 2 108 130
123 9 10 11 2 108 130
124 0 0 0 2 109 137
125 19 20 21 2 109 137
126 14 15 16 1 112
127 9 10 11 1 114
128 0 0 0 1 117
129 0 0 0 1 117
130 0 0 0 1 117
131 29 30 31 1 117
132 0 0 0 0 0
133 0 0 0 1 119
134 29 30 31 1 119
135 0 0 0 2 120 124
136 25 27 27 2 120 124
137 0 0 0 1 121
138 4 5 6 1 123
139 9 10 11 1 125
140 19 20 21 1 110
141 29 30 31 1 111
142 29 30 31 1 113
143 0 0 0 1 126
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144
145
146
147
148
149
150
151
152

39
30
19
4
4
4
0
0
0

40
41
20
5
5
5
0
0
0

41
60
21
6
6
6
0
0
0

1
1
6
4
3
1
1
1
3

126
126
131
141
115
148
116
118
149

134
142
127

150

136
144
147

151

138
146

139 140

Data output from MSAM

Mean: 269.838918321
Variance: 51.9581049811
Standard Deviation: 7.20819706869
Run Time: 0.7142856
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Appendix C.4 Example 4.4

Data input for MSAM

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

0
0
2
5
6
3
7
10
3
7
5
3
9
5
3
9
6
2
7
5
10
7
6
10
6
3
3
5
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.0
0
0.5
1.0
1.5
0.5
4.0
2.0
1.0
1.5
2.0
1.5
2.0
1.5
0.5
4.5
2.0
0.5
1.73
2.0
2.0
3.31
1.5
4.5
1.5
1.0
1.0
1.5
0.0
0.0

0
2
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
3
2
1
1
2
1
1
1
2
2
1

103
100
100
100
100
100
104
105
105
106
106
107
108
109
110
111
102
113
114
118
119
120
101
123
122
124
125
103
127

117

112

115
128

121

126
117

116

Data output from MSAM

Mean: 63.3899700621
Variance: 27.9750679538
Standard Deviation: 5.28914624053
Run Time: 0.1098901
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Appendix C.5 Example 4.5

Data input for MSAM
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

0
32
2
2
0
2
1
2
0
40
2
2
4
1
0
0
1
60
5
30
3
1
4
1
2
2
2
2
0
2
1
0
5
6
0
4
2
3
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.0
3.2
0.5
0.5
0.0
0.5
0.5
1.0
0.0
12
0.5
0.5
0.8
0.1
0.0
0.0
0.5
12
1.0
6.0
0.9
0.3
0.4
0.1
0.5
0.2
0.5
0.5
0.0
0.2
0.2
0.0
1.5
1.2
0.0
1.2
0.5
0.3
0.0

0
1
1
1
1
2
1
2
1
1
2
1
1
1
1
1
1
1
2
1
2
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
3
2
2

100
101
101
103
102
103
105
107
100
108
110
111
112
112
113
107
100
114
100
115
120
121
122
123
124
125
126
127
124
129
127
118
132
132
134
131
128
136

104

106

109

117

116

119

133
130
137

135

Data output from MSAM
Mean: 83.2956197052
Variance: 66.6662400250
Standard Deviation: 8.16493968287
Run Time: 0.0549451

305



APPENDIX D

RESULTS OF MCS FOR EXAMPLES 4.1-4.5

Table D.1 Results of MCS for Example 4.1

Simulation Statistics
Date: 7/31/99 at 15:09
Iterations:	 10000
Simulations:	 1

Worksheet: Project1
Output Range: DURATION_

P
Cell: Duration 1

Minimum= 53.98958206

Maximum= 88.31874847

Mean= 67.85377102

Std Deviation= 4.793780295

Variance= 22.98032951

Skewness= 0.323868499

Kurtosis= 3.075345021

Percentile Values

5Perc= 60.48125076

10Perc= 61.83124924

15Perc= 62.87083435

20Perc= 63.76041794

25Perc= 64.4604187

30Perc= 65.13124847

35Perc= 65.81041718

40Perc= 66.40208435

45Perc= 67

50Perc= 67.55000305

55Perc= 68.16874695

60Perc= 68.76875305

65Perc= 69.44999695

70Perc= 70.18125153

75Perc= 70.94999695

80Perc= 71.87916565

85Perc= 72.86042023

90Perc= 74.12916565

95Perc= 76.18958282

Target Values:

Value#1= 54

Pro b#1 0.01%

Value#2= 56

Pro b#2= 0.24%

Value#3= 58

Pro b#3= 1.04%

Value#4= 60

Pro b#4 3.85%

Value#5= 62

Pro b#5= 10.69%

Value#6= 64

Prob#6= 21.63%

Value#7= 66

Pro b#7= 36.68%

Value#8= 68

Pro b#8= 53.70%

Value#9= 70

Pro b#9= 68.80%

Value#10= 72

Pro b#10 80.64%

Simulation Statistics
Date: 7/31/99 at 15:16
Iterations:	 10000
Simulations:	 1

Worksheet: Project1
Output Range: DURATION_

P
Cell: Duration 1

Minimum= 53.98958206

Maximum= 88.31874847

Mean= 67.85377102

Std Deviation= 4.793780295

Variance= 22.98032951

Skewness= 0.323868499

Kurtosis= 3.075345021

Percentile Values

5Perc= 60.48125076

10Perc= 61.83124924

15Perc= 62.87083435

20Perc= 63.76041794

25Perc= 64.4604187

30Perc= 65.13124847

35Perc= 65.81041718

40Perc= 66.40208435

45Perc= 67

50Perc= 67.55000305

55Perc= 68.16874695

60Perc= 68.76875305

65Perc= 69.44999695

70Perc= 70.18125153

75Perc= 70.94999695

80Perc= 71.87916565

85Perc= 72.86042023

90Perc= 74.12916565

95Perc= 76.18958282

Target Values:

Value#1= 74

Prob#1= 89.60%

Value#2= 76

Pro b#2= 94.60%

Value#3= 78

Prob#3= 97.55%

Value#4= 80

Prob#4= 99.08%

Value#5= 82

Pro b#5= 99.58%

Value#6= 84

Pro b#6 99.88%

Value#7= 86

Pro b#7 99.96%

Value#8= 88

Pro b#8 99.99%

Value#9= 90

Pro b#9= 100.00%

Value#10= 92

Prob#10= 100.00%
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Table D.2 Results of MCS for Example 4.2

Simulation Statistics
Date: 8/2/99 at 14:41
Iterations:	 10000
Simulations:	 /

Worksheet: EXAM2.MPP
Output Range: duration_p

Cell: Duration 1
Minimum= 75.40208435

Maximum= 105.8104172

Mean= 85.90435374

Std Deviation= 3.104058027

Variance= 9.635176236

Skewness= 0.551237836

Kurtosis= 3.858188682

Percentile Values

5Perc= 81.26875305

10Perc= 82.20207977

15Perc= 82.84999847

20Perc= 83.34791565

25Perc= 83.76875305

30Perc= 84.17708588

35Perc= 84.56874847

40Perc= 84.9375

45Perc= 85.2895813

50Perc= 85.68125153

55Perc= 86.03749847

60Perc= 86.42082977

65Perc= 86.78333282

70Perc= 87.21875

75Perc= 87.70207977

80Perc= 88.2895813

85Perc= 89.03125

90Perc= 89.9291687

95Perc= 91.40208435

Target Values:

Value#1= 75

Pro b#1= 0.00%

Value#2= 77

Prob#2= 0.05%

Value#3= 79

Pro b#3= 0.52%

Value#4= 81

Prob#4= 4.05%

Value#5= 83

Pro b#5= 16.58%

Value#6= 85

Prob#6= 41.06%

Value#7= 87

Prob#7= 67.43%

Value#8= 89

Prob#8= 84.87%

Value#9= 91

Pro b#9= 93.96%

Value#10= 93

Prob#10= 97.68%

Simulation Statistics
Date: 8/2/99 at 14:45
Iterations:	 10000
Simulations:	 /

Worksheet: EXAM2.MPP
Output Range: duration_p

Cell: Duration 1
Minimum= 75.40208435

Maximum= 105.8104172

Mean= 85.90435374

Std Deviation= 3.104058027

Variance= 9.635176236

Skewness= 0.551237836

Kurtosis= 3.858188682

Percentile Values

5Perc= 81.26875305

10Perc= 82.20207977

15Perc= 82.84999847

20Perc= 83.34791565

25Perc= 83.76875305

30Perc= 84.17708588

35Perc= 84.56874847

40Perc= 84.9375

45Perc= 85.2895813

50Perc= 85.68125153

55Perc= 86.03749847

60Perc= 86.42082977

65Perc= 86.78333282

70Perc= 87.21875

75Perc= 87.70207977

80Perc= 88.2895813

85Perc= 89.03125

90Perc= 89.9291687

95Perc= 91.40208435

Target Values:

Value#1= 95

Prob#1= 99.33%

Value#2= 97

Prob#2= 99.75%

Value#3= 99

Prob#3= 99.91%

Value#4= 101

Prob#4= 99.97%

Value#5= 103

Prob#5= 99.99%

Value#6= 105

Prob#6= 99.99%

Value#7= 107

Prob#7= 100.00%

Value#8= 109

Pro b#8= 100.00%

Value#9= 111

Prob#9= 100.00%

Value#10= 113

Pro b#10= 100.00%
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Table D.3 Results of MCS for Example 4.3

Simulation Statistics
Date: 8/8/00 at 19:32
Iterations:	 10000
Simulations: 1

Worksheet: E2NOR4.MPP
Output Range: duration_p

Cell: Duration 1
Minimum= 238.5500031

Maximum= 295.6104126

Mean= 269.9060544

Std Deviation= 7.229252349

Variance= 52.26208952

Skewness= 0.017100126

Kurtosis= 2.980746525

Percentile Values

5Perc= 258.0187378

10Perc= 260.6708374

15Perc= 262.3916626

20Perc= 263.7895813

25Perc= 265.0520935

30Perc= 266.1104126

35Perc= 267.1291809

40Perc= 268.0125122

45Perc= 268.9729309

50Perc= 269.8687439

55Perc= 270.8020935

60Perc= 271.7000122

65Perc= 272.6708374

70Perc= 273.6020813

75Perc= 274.75

80Perc= 276.0604248

85Perc= 277.4708252

90Perc= 279.1979065

95Perc= 281.8979187

Target Values:

Value#1= 238

Prob#1= 0.00%

Value#2= 241

Prob#2= 0.01%

Value#3= 244

Prob#3= 0.02%

Value#4= 247

Prob#4= 0.06%

Value#5= 250

Prob#5= 0.24%

Value#6= 253

Prob#6= 0.87%

Value#7= 256

Prob#7= 2.76%

Value#8= 259

Prob#8= 6.47%

Value#9= 262

Pro b#9 13.77%

Value#10= 265

Prob#10= 24.79%

Simulation Statistics
Date: 8/8/00 at 20:03
Iterations:	 10000
Simulations:	 /

Worksheet: E2NOR4.MPP
Output Range: duration_p

Cell: Duration 1
Minimum= 238.5500031

Maximum= 295.6104126

Mean= 269.9060544

Std Deviation= 7220252340

Variance= 52.26208952

Skewness= 0.017100126

Kurtosis= 2.980746525

Percentile Values

5Perc= 258.0187378

10Perc= 260.6708374

15Perc= 262.3916626

20Perc= 263.7895813

25Perc= 265.0520935

30Perc= 266.1104126

35Perc= 267.1291809

40Perc= 268.0125122

45Perc= 268.9729309

50Perc= 269.8687439

55Perc= 270.8020935

60Perc= 271.7000122

65Perc= 272.6708374

70Perc= 273.6020813

75Perc= 274.75

80Perc= 276.0604248

85Perc= 277.4708252

90Perc= 279.1979065

95Perc= 281.8979187

Target Values:

Value#1= 268

Prob#1= 39.89%

Value#2= 271

Pro b#2 55.98%

Value#3= 274

Prob#3= 71.64%

Value#4= 277

Pro b#4 83.38%

Value#5= 280

Pro b#5= 91.90%

Value#6= 283

Pro b#6= 96.47%

Value#7= 286

Prob#7= 98.74%

-Value#8=
289

Prob#8=
99.58%

Value#9=
292

Pro b#9=
99.86%

Value#10=
295

Prob#10=
99.97%
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Table 0.4 Results of MCS for Example 4.4

Simulation Statistics
Date: 7/31/99 at 14:45
Iterations:	 10000
Simulations:	 1

Worksheet: EXAM4.MPP
Output Range: duration _p

Cell: Duration 1
Minimum= 42.25

Maximum= 92.56874847

Mean= 63.62653417

Std Deviation= 5.413610697

Variance= 29.30718078

Skewness= 0.485088111

Kurtosis= 3.913638397

Percentile Values

5Perc= 55.32083511

10Perc= 57.03125

15Perc= 58.31041718

20Perc= 59.22916794

25Perc= 59.98125076

30Perc= 60.73125076

35Perc= 61.37916565

40Perc= 62.01874924

45Perc= 62.59166718

50Perc= 63.24166489

55Perc= 63.95416641

60Perc= 84.59791565

65Perc= 65.31874847

70Perc= 66.0708313

75Perc= 66.8833313

80Perc= 67.78125

85Perc= 68.97916412

90Perc= 70.42082977

95Perc= 72.91249847

Target Values:

Value#1= 42

Pro b#1 0.00%

Value#2= 45

Prob#2= 0.02%

Value#3= 48

Prob#3= 0.05%

Value#4= 51

Prob#4= 0.50%

Value#5= 54

Pro b#5= 2.60%

Value#6= 57

Prob#6= 9.84%

Value#7= 60

Pro b#7 25.14%

Value#8= 63

Pro b#8= 48.05%

Value#9= 66

Pro b#9= 69.60%

Value#10= 69

Prob#10= 85.09%

Simulation Statistics
Date: 7/31/99 at 14:49
Iterations:	 10000
Simulations:	 1

Worksheet: EXAM4.MPP
Output Range: duration_p

Cell: Duration 1
Minimum= 42.25

Maximum= 92.56874847

Mean= 63.62653417

Std Deviation= 5.413610697

Variance= 29.30718078

Skewness= 0.485088111

Kurtosis= 3.913638397

Percentile Values

5Perc= 55.32083511

10Perc= 57.03125

15Perc= 58.31041718

20Perc= 59.22916794

25Perc= 59.98125076

30Perc= 60.73125076

35Perc= 61.37916565

40Perc= 62.01874924

45Perc= 62.59166718

50Perc= 63.24166489

55Perc= 63.95416641

60Perc= 64.59791565

65Perc= 65.31874847

70Perc= 66.0708313

75Perc= 66.8833313

80Perc= 67.78125

85Perc= 68.97916412

90Perc= 70.42082977

95Perc= 72.91249847

Target Values:

Value#1= 72

Pro b#1= 93.42%

Value#2= 75

Pro b#2 97.13%

Value#3= 78

Prob#3= 98.73%

Value#4= 81

Pro b#4= 99.57%

Value#5= 84

Prob#5= 99.80%

Value#6= 87

Prob#6= 99.90%

Value#7= 90

Prob#7= 99.97%

Value#8= 93

Prob#8= 100.00%

Value#9= 96

Prob#9= 100.00%

Value#10= 99

Pro b#10 100.00%
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Table D.5 Results of MCS for Example 4.5

Simulation Statistics
Date: 8/3/99 at 13:34
Iterations:	 10000
Simulations:	 1

Worksheet: EXAM5.MPP
Output Range: duration_p

Cell: Duration 1
Minimum= 58.91041565

Maximum= 124.4604187

Mean= 81.76537563

Std Deviation= 9.609289841

Variance= 92.33845125

Skewness= 0.439385036

Kurtosis= 2.920759189

Percentile Values

5Perc= 67.63957977

10Perc= 69.75208282

15Perc= 71.5395813

20Perc= 73.05000305

25Perc= 74.4770813

30Perc= 75.83958435

35Perc= 77.07291412

40Perc= 78.36042023

45Perc= 79.68958282

50Perc= 81.0395813

55Perc= 82.375

60Perc= 83.7104187

65Perc= 85

70Perc= 86.59166718

75Perc= 88.31874847

80Perc= 90.08125305

85Perc= 92.01249695

90Perc= 94.66041565

95Perc= 98.43958282

Target Values:

Value#1= 60

Prob#1= 0.05%

Value#2= 63

Prob#2= 0.41%

Value#3= 66

Prob#3= 2.71%

Value#4= 69

Prob#4= 8.24%

Value#5= 72

Pro b#5= 16.33%

Value#6= 75

Prob#6= 26.94%

Value#7= 78

Pro b#7= 38.75%

Value#8= 81

Prob#8= 49.88%

Value#9= 84

Prob#9= 61.08%

Value#10= 87

Prob#10= 71.25%

Simulation Statistics
Date: 8/3/99 at 13:38
Iterations:	 10000
Simulations:	 /

Worksheet: EXAM5.MPP
Output Range: duration_p

Cell: Duration 1
Minimum= 58.91041565

Maximum= 124.4604187

Mean= 81.76537563

Std Deviation= 9.609289841

Variance= 92.33845125

Skewness= 0.439385036

Kurtosis= 2.920759169

Percentile Values

5Perc= 67.63957977

10Perc= 69.75208282

15Perc= 71.5395813

20Perc= 73.05000305

25Perc= 74.4770813

30Perc= 75.83958435

35Perc= 77.07291412

40Perc= 78.36042023

45Perc= 79.68958282

50Perc= 81.0395813

55Perc= 82.375

60Perc= 83.7104187

65Perc= 85

70Perc= 86.59166718

75Perc= 88.31874847

80Perc= 90.08125305

85Perc= 92.01249695

90Perc= 94.66041565

95Perc= 98.43958282

Target Values:

Value#1= 90

Prob#1= 79.83%

Value#2= 93

Pro b#2= 86.92%

Value#3= 96

Pro b#3= 92.07%

Value#4= 99

Prob#4= 95.48%

Value#5= 102

Prob#5= 97.33%

Value#6= 105

Prob#6= 98.61%

Value#7= 108

Prob#7= 99.32%

Value#8= 111

Pro b#8= 99.63%

Value#9= 114

Prob#9= 99.83%

Value#10= 117

Prob#10= 99.91%
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APPENDIX E
RESULTS OF MCS FOR EXAMPLES 5.1-5.10

Table E.1 Result of MCS for
Exam le 5.1 Iterations: 1000
Simulation Statistics
Date: 9/24/00 at 13:23
Iterations:	 1000
Simulations:	 1

Worksheet: [EXAM511
.XLS]She
et1

Output Range: c1
Cell: $C$1

Minimum= -9663.2686

Maximum= 4444

Mean= -2945.7387

Std Deviation= 2361.3011

Variance= 5575742.91

Skewness= 0.02243602

Kurtosis= 2.80546027

Percentile Values

5Perc= -6954.8208

10Perc= -5949.603

15Perc= -5434.144

20Perc= -4960.5894

25Perc= -4517.8452

30Perc= -4151.8223

35Perc= -3893.0293

40Perc= -3598.2373

45Perc= -3318.2656

50Perc= -3059.0066

55Perc= -2665.7585

60Perc= -2366.0605

65Perc= -2018.9436

70Perc= -1600.5569

75Perc= -1299.4365

80Perc= -943.86066

85Perc= -544.10931

90Perc= 176.533005

95Perc= 1103.59827

Target Values:

Table E.2 Result of MCS for
Exam le 5.1(Iterations: 5000
Simulation Statistics
Date: 9/24/00 at 13:43
Iterations:	 5000
Simulations:	 1

Worksheet: [EXAM512
.XLS]She
et1

Output Range: c1
Cell: $C51

Minimum= -10458.243

Maximum= 4630.61035

Mean= -2950.4287

Std Deviation= 2229.77259

Variance= 4971885.82

Skewness: -0.0279121

Kurtosis= 2.9146982

Percentile Values

5Perc= -6627.02

10Perc= -5858.4907

15Perc= -5253.0962

20Perc= -4808.271

25Perc= -4421.1377

30Perc= -4096.1587

35Perc= -3812.741

40Perc= -3524.3831

45Perc= -3251.7473

50Perc= -2973.1616

55Perc= -2665.7585

60Perc= -2388.1514

65Perc= -2088,7673

70Perc= -1783.895

75Perc= -1419.657

80Perc= -1058.7205

85Perc= -654.39386

90Perc= -26.648571

95Perc= 724.312378

Target Values:
0Value#1= 0 Value#1=

90.23%

Value#2=

Prob#2=

Value#3=

Prob#3=

Value#4=

Pro b#4

Value#5=

Prob#5=

Value#6=

Prob#6=

Value#7=

Prob#7=

Value#8=

Prob#8=

Value#9=

Prob#9=

Value#10=

Prob#10=

Value#2=

Prob#2=

Value#3=

Prob#3=

Value#4=

Prob#4=

Value#5=

Pro b#5

Value#6=

Prob#6=

Value#7=

Prob#7=

Value#8=

Pro b#8

Value#9=

Prob#9=

Value#10=

Prob#10=

Pro b#1= 89.17% Prob#1=
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Table E.3 Result of MCS for
Example 5.1 (Iterations: 10000)

Simulation Statistics
Date: 9/24100 at 14:06
Iterations:	 10000
Simulations:	 1

Worksheet: [EXA M513
.XLS1She
et1

Output Range: c1
Cell: $C$1

Minimum= -11581.647

Maximum= 5108.83838

Mean= -2984.3708

Std Deviation= 2228.0176

Variance= 4964062.44

Skewness= 0.00396843

Kurtosis= 2.97025509

Percentile Values

5Perc= -6642.9585

10Perc= -5869.8999

15Perc= -5293.2651

20Perc= -4862.1792

25Perc= -4479.042

30Perc= -4149.73

35Perc= -3836.416

40Perc= -3555.2551

45Perc= -3272.7834

50Perc= -2991.3821

55Perc= -2694.0796

60Perc= -2418.0503

65Perc= -2134.6563

70Perc= -1815.8226

75Perc= -1483.0277

80Perc= -1110.149

85Perc= -689.37946

90Perc= -107.59158

95Perc= 682.096008

Target Values:

Table E.4 Result of MCS for
Example 5.2 (Iterations: 1000)

Simulation Statistics
Date: 9/24/00 at 14:18
Iterations:	 1000
Simulations:	 1

Worksheet: [EXAM521
.XLS]She
et1

Output Range: b1
Cell: $B$1

Minimum= -1765.0129

Maximum= 603.375488

Mean= -715.58121

Std Deviation= 468.091297

Variance= 219109.462

Skewness= 0.19173856

Kurtosis= 2.58295499

Percentile Values

5Perc= -1476.3433

10Perc= -1333.89

15Perc= -1224.0652

20Perc= -1129.718

25Perc= -1043.0052

30Perc= -977.72021

35Perc= -916.95184

40Perc= -856.27869

45Perc= -804.07874

50Perc= -745.21069

55Perc= -689.03204

60Perc= -621.82452

65Perc= -547.14642

70Perc= -483.59274

75Perc= -397.47775

80Perc= -301.58673

85Perc= -202.57747

90Perc= -64.112083

95Perc= 75.8667297

Target Values:

Value#1= 00 Value#1=

Prob#1=

Value#2=

Prob#2=

Value#3=

Pro b#3=

Value#4=

Pro b#4

Value#5=

Pro b#5=

Value#6=

Pro b#6=

Value#7=

Pro b#7=

Value#8=

Prob#8=

Value#9=

Prob#9=

Value#10=

Pro b#10

Value#2=

Prob#2=

Value#3=

Pro b#3=

Value#4=

Pro b#4

Value#5=

Pro b#5=

Value#6=

Prob#6=

Value#7=

Prob#7=

Value#8=

Pro b#8=

Value#9=

Prob#9=

Value#10=

Pro b#10

90.73% Prob#1= 92.44%
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Table E.5 Result of MCS for
Example 5.2 (Iterations: 5000)

Table E.6 Result of MCS for
Example 5.2 (Iterations: 10000)

Simulation Statistics
Date: 9/24100 at 14:30
Iterations:	 5000
Simulations:	 1

Worksheet: [EXAM522
.XLS]She
et1

Output Range: b1
Cell: $13$1

Minimum= -1913.1836

Maximum= 700.233521

Mean= -696.90153

Std Deviation= 464.037291

Variance= 215330.608

Skewness= 0.14744288

Kurtosis= 2.55967529

Percentile Values

5Perc= -1443.7096

10Perc= -1305.248

15Perc= -1194.4382

20Perc= -1110.3376

25Perc= -1034.5133

30Perc= -963.26733

35Perc= -894.63483

40Perc= -831.5816

45Perc= -774.53729

50Perc= -715.60284

55Perc= -656.6582

60Perc= -590.32068

65Perc= -518.54053

70Perc= -444.33749

75Perc= -368.94357

80Perc= -294.15656

85Perc= -191.58217

90Perc= -64.406837

95Perc= 92.8300095

Target Values:

Simulation Statistics
Date: 9/24/00 at 14:44
Iterations:	 10000
Simulations:	 1

Worksheet: [EXAM523
.XLS]She
et1

Output Range: b1
Cell: $13$1

Minimum= -1974.674

Maximum= 783.390686

Mean= -690.91723

Std Deviation= 460.236729

Variance= 211817.846

Skewness= 0.1392014

Kurtosis= 2.58862764

Percentile Values

5Perc= -1428.3361

10Perc= -1287.4854

15Perc= -1179.9274

20Perc= -1094.4569

25Perc= -1022.5876

30Perc= -952.84241

35Perc= -886.06207

40Perc= -826.45734

45Perc= -771.19385

50Perc= -711.24554

55Perc= -651.71515

60Perc= -584.80768

65Perc= -517.15625

70Perc= -445.14413

75Perc= -368.27719

80Perc= -287

85Perc= -186.73816

90Perc= -67.991859

95Perc= 99.0868988

Target Values:

Value#1= 00 Value#1=

Pro b#1

Value#2=

Prob#2=

Value#3=

Prob#3=

Value#4=

Pro b#4=

Value#5=

Pro b#5=

Value#6=

Pro b#6=

Value#7=

Prob#7=

Value#8=

Prob#8=

Value#9=

Pro b#9=

Value#10=

Prob#10=

Value#2=

Pro b#2=

Value#3=

Pro b#3=

Value#4=

Prob#4=

Value#5=

Prob#5=

Value#6=

Pro b#6=

Value#7=

Prob#7=
Value#8=
Prob#8=
Value#9=

Pro b#9=

Value#10=

Prob#10=

92.42% Prob#1= 92.39%
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Table E.7 Result of MCS for
Example 5.3 (Iterations: 1000)

Simulation Statistics
Date: 9/24/00 at 15:48
Iterations:	 1000
Simulations:	 1

Worksheet: [EXAM531
.XLS]She
et1

Output Range: g1

Cell: $G$1
Minimum= -36.762199

Maximum= 43.9394493

Mean= 6.89553458

Std Deviation= 10.7689985

Variance= 115.971329

Skewness= 0.01634484

Kurtosis= 3.12804619

Percentile Values

5Perc= -10.458655

10Perc= -7.044415

15Perc= -4.4867992

20Perc= -2.3535042

25Perc= -0.2849787

30Perc= 1.2991457

35Perc= 2.68727422

40Perc= 4.39856577

45Perc= 5.67128944

50Perc= 6.79565287

55Perc= 8.02162361

60Perc= 9.74863243

65Perc= 11.0057831

70Perc= 12.2635469

75Perc= 13.5652895

80Perc= 15.662323

85Perc= 18.4235859

90Perc= 20.8623314

95Perc= 24.7833309

Target Values:

Value#1=

Table E.8 Result of MCS for
Example 5.3 (Iterations: 5000)

Simulation Statistics
Date: 9/24/00 at 16:02
Iterations: 5000
Simulations:	 1

Worksheet: [EXAM532
.XLS]She
et1

Output Range: g1
Cell: $G$1

Minimum= -31.327232

Maximum= 41.8832474

Mean= 6.8539356

Std Deviation= 10.6934314

Variance= 114.349474

Skewness= -0.029442

Kurtosis= 3.06841175

Percentile Values

5Perc= -10.821691

10Perc= -6.8102102

15Perc= -4.0151949

20Perc= -1.9846771

25Perc= -0.1901521

30Perc= 1.40919054

35Perc= 2.84251714

40Perc= 4.14949894

45Perc= 5.69266939

50Perc= 6.90265894

55Perc= 8.14382553

60Perc= 9.39259052

65Perc= 10.7588911

70Perc= 12.4248838

75Perc= 13.9434052

80Perc= 15.8373642

85Perc= 18.0796642

90Perc= 20.4335442

95Perc= 24.1932201

Target Values:

Value#1=
25.65%Pro b#125.69%Prob#1=

Value#2=

Pro b#2=

Value#3=

Pro b#3

Value#4=

Prob#4=

Value#5=

Prob#5=

Value#6=

Prob#6=

Value#7=

Prob#7=

Value#8=

Prob#8=

Value#9=

Pro b#9=
Value#10=

Pro b#10=

Value#2=

Prob#2=

Value#3=

Prob#3=

Value#4=

Prob#4=

Value#5=

Prob#5=

Value#6=

Pro b#6=

Value#7=

Prob#7=

Value#8=

Pro b#8=

Value#9=

Prob#9=

Value#10=

Prob#10=
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Table E.9 Result of MCS for
Example 5.3 (Iterations: 10000)

Simulation Statistics
Date: 9/24100 at 16:37
Iterations:	 10000
Simulations:	 1

Worksheet: [EXAM533
.XLS]She
et1

Output Range: g1
Cell: $G$1

Minimum= -33.284164

Maximum= 46.6574135

Mean= 6.86532694

Std Deviation= 10.6610837

Variance= 113.658706

Skewness= -0.0132921

Kurtosis= 2.96907989

Percentile Values

5Perc= -10.858703

10Perc= -6.7663484

15Perc= -4.1733117

20Perc= -2.0116925

25Perc= -0.27588

30Perc= 1.28513455

35Perc= 2.73557949

40Perc= 4.13635159

45Perc= 5.55665779

50Perc= 6.78287411

55Perc= 8.18251228

60Perc= 9.53145504

65Perc= 10.9226713

70Perc= 12.3976498

75Perc= 13.9669104

80Perc= 15.8484955

85Perc= 17.9988232

90Perc= 20.7258568

95Perc= 24.5490437

Target Values:

Table E.10 Result of MCS for
Example 5.4 (Iterations: 1000)

Simulation Statistics
Date: 9/24/00 at 17:03
Iterations:	 1000
Simulations:	 1

Worksheet: [EXAM541
.XLS]She
et1

Output Range: f1
Cell: $F$1

Minimum= -89.332573

Maximum= 271.938477

Mean= 96.017898

Std Deviation= 69.0112536

Variance= 4762.55312

Skewness= -0.0056363

Kurtosis= 2,39654348

Percentile Values

5Perc= -15.579628

10Perc= 3.27033496

15Perc= 19.6893406

20Perc= 31.0949192

25Perc= 43.6366081

30Perc= 55.1318359

35Perc= 67.3055038

40Perc= 77.3235092

45Perc= 87.0890579

50Perc= 95.9907684

55Perc= 106.895538

60Perc= 115.357872

65Perc= 125.881012

70Perc= 135.079117

75Perc= 145.339279

80Perc= 156.526749

85Perc= 172.124573

90Perc= 189.901611

95Perc= 208.099625

Target Values:
0Value#1= Value#1=0

Prob#1=

Value#2=

Prob#2=

Value#3=

Pro b#3=

Value#4=

Prob#4=

Value#5=

Prob#5=

Value#6=

Prob#6=

Value#7=

Prob#7=

Value#8=

Pro b#8

Value#9=

Prob#9=

Value#10=

Prob#10=

Value#2=

Pro b#2

Value#3=

Pro b#3=

Value#4=

Prob#4=

Value#5=

Pro b#5=

Value#6=

Prob#6=

Value#7=

Prob#7=

Value#8=

Prob#8=

Value#9=

Pro b#9=

Value#10=

Prob#10=

25.95% Pro b#1 9.10%
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Table E.11 Result of MCS for
Example 5.4 (Iterations: 5000)

Table E.12 Result of MCS for
Example 5.4 (Iterations: 10000)

Simulation Statistics
Date: 9/24/00 at 17:17
Iterations: 5000
Simulations:	 /

Worksheet: [EXAM542
.XLS]She
et1

Output Range: f1
Cell: $F$1

Minimum= -116.15926

Maximum= 275.643524

Mean= 93.9599403

Std Deviation= 69.6791869

Variance= 4855.18909

Skewness .= -0.078298

Kurtosis= 2.52703636

Percentile Values
5Perc= -23.315098

10Perc= 1.3281368

15Perc= 19.1741028

20Perc= 33.0485191

25Perc= 44.8157806

30Perc= 55.1193619

35Perc= 64.9777145

40Perc= 75.6762238

45Perc= 85.6387329

50Perc= 95.1725845

55Perc= 103.907097

60Perc= 114.104477

65Perc= 123.524048

70Perc= 133.38324

75Perc= 144.111679

80Perc= 156.369675

85Perc= 169.691925

90Perc= 186.106689

95Perc= 208.259949

Target Values:

Simulation Statistics
Date: 9/24/00 at 17:37
Iterations:	 10000
Simulations: /

Worksheet: [EXAM543
.XLS]She
et1

Output Range: fl
Cell: $F$1

Minimum= -127.67753

Maximum= 282.725494

Mean= 95.0142941

Std Deviation= 70.1430636

Variance= 4920.04937

Skewness= -0.0446689

Kurtosis= 2.49646264

Percentile Values
5Perc= -21.388271

10Perc= 1.32783759

15Perc= 18.6947327

20Perc= 32.5424118

25Perc= 45.142601

30Perc= 55.7441521

35Perc= 66.1949844

40Perc= 75.751297

45Perc= 85.3317871

50Perc= 95.5725327

55Perc= 104.484718

60Perc= 114.397163

65Perc= 124.680656

70Perc= 135.537979

75Perc= 146.773193

80Perc= 158.738312

85Perc= 171.751572

90Perc= 186.608719

95Perc= 209.063019

Target Values:
Value#1= 00 Value#1=
Prob#1=
Value#2=
Pro b#2=
Value#3=
Pro b#3=
Value#4=
Pro b#4=
Value#5=
Pro b#5=
Value#6=
Pro b#6=
Value#7=
Pro b#7=
Value#8=
Prob#8=
Value#9=
Pro b#9
Value#10=
Prob#10=

Value#2=
Prob#2=
Value#3=
Pro b#3=
Value#4=
Prob#4=
Value#5=
Prob#5=
Value#6=
Prob#6=
Value#7=
Prob#7=
Value#8=
Pro b#8=
Value#9=
Pro b#9=
Value#10=
Prob#10=

9.72% Prob#1= 9.65%
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Prob#1=

Value#2=

Table E.13 Result of MCS for
Example 5.5 (Iterations: 1000)

Simulation Statistics
Date: 9/24100 at 17:45
Iterations:	 1000
Simulations:	 1

Worksheet: [EXAM551
.XLS]She
et1

Output Range: b1
Cell: $E51

Minimum= -160.65192

Maximum= 124.311569

Mean= -3.7361749

Std Deviation= 41.3966

Variance= 1713.67849

Skewness= 0.05138072

Kurtosis= 2.95067304

Percentile Values

5Perc= -70.225014

10Perc= -57.168552

15Perc= -48.304653

20Perc= -38.011036

25Perc= -31.725298

30Perc= -26.526337

35Perc= -20.255077

40Perc= -14.833058

45Perc= -10.215347

50Perc= -3.8569243

55Perc= 0.35001042

60Perc= 5.86884212

65Perc= 12.8138599

70Perc= 17.3719234

75Perc= 23,1092033

80Perc= 30.693615

85Perc= 38.7512779

90Perc= 49.6102791

95Perc= 66.7696991

Target Values:

Table E.14 Result of MCS for
Example 5.5 (Iterations: 5000)

Simulation Statistics
Date: 9/24100 at 17:53
Iterations: 5000
Simulations:	 1

Worksheet: [EXAM552
.XLS]She
et1

Output Range: b1
Cell: $%1

Minimum= -160.65192

Maximum= 148.971756

Mean= -0.3452853

Std Deviation= 42.002376

Variance= 1764,19959

Skewness= 0.0761609

Kurtosis= 3.02896889

Percentile Values

5Perc= -68.356339

10Perc= -54.369816

15Perc= -43.661034

20Perc= -35.294518

25Perc= -28.06793

30Perc= -22.309908

35Perc= -16.653494

40Perc= -11.367287

45Perc= -6.2642765

50Perc= -1.1310232

55Perc= 4.1264534

60Perc= 9.84256172

65Perc= 15.5110922

70Perc= 21.0051117

75Perc= 26.9546585

80Perc= 33.9089012

85Perc= 42.9630699

90Perc= 53.4009361

95Perc= 70.0624313

Target Values:
0Value#1= Value#1=0

Pro b#1 51.08%54.39%

Value#2=

Pro b#2 Prob#2=

Value#3= Value#3=

Pro b#3 Prob#3=

Value#4= Value#4=

Pro b#4= Pro b#4

Value#5= Value#5=

Prob#5= Pro b#5

Value#6= Value#6=

Pro b#6= Pro b#6=

Value#7= Value#7=

Pro b#7= Prob#7=

Value#8= Value#8=

Prob#8= Pro b#8=

Value#9= Value#9=

Prob#9= Prob#9=

Value#10= Value#10=

Prob#10= Prob#10=
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Table E.15 Result of MCS for
Example 5.5 (Iterations: 10000)

Simulation Statistics
Date: 9/24100 at 18:05
Iterations:	 10000
Simulations:	 1

Worksheet: [EXAM553
.XLS]She
et1

Output Range: b1
Cell: $B$1

Minimum= -160.65192

Maximum= 177.273682

Mean= -0.5238962

Std Deviation= 41.6582346

Variance= 1735.40851

Skewness= 0.07595041

Kurtosis= 3.04112621

Percentile Values

5Perc= -68.127388

10Perc= -53.999634

15Perc= -43.830036

20Perc= -35.482227

25Perc= -28.557957

30Perc= -22.551968

35Perc= -16.880651

40Perc= -11.4816

45Perc= -6.1627154

50Perc= -0.8212615

55Perc= 4.24390936

60Perc= 9.96992874

65Perc= 15.3333626

70Perc= 20.8457336

75Perc= 26.7856178

80Perc= 34.0170631

85Perc= 42.5923882

90Perc= 52.661541

95Perc= 68.4345779

Target Values:

Table E.16 Result of MCS for
Example 5.6 (Iterations: 1000)

Simulation Statistics
Date: 9/25100 at 10:39
Iterations:	 1000
Simulations:	 1

Worksheet: [EXAM561
.XLS]She
et1

Output Range: b1
Cell: $B$1

Minimum= -47.996399

Maximum= 51.1980705

Mean= -2.3541231

Std Deviation= 23.7667493

Variance= 564.858371

Skewness= 0.1090199

Kurtosis= 1.95346002

Percentile Values
5Perc= -37.880852

10Perc= -34.202728

15Perc= -30.397425

20Perc= -25.957621

25Perc= -22.333754

30Perc= -19.043139

35Perc= -15.023026

40Perc= -11.519631

45Perc= -7.5585423

50Perc= -2.8802407

55Perc= 0.50922072

60Perc= 4.98452568

65Perc= 9.24302864

70Perc= 12.9785805

75Perc= 16.9875278

80Perc= 21.3547001

85Perc= 25.631813

90Perc= 30.0369415

95Perc= 36.193203

Target Values:

Value#1= 0Value#1=

Pro b#1=
Value#2=
Prob#2=

Value#3=

Prob#3=

Value#4=
Prob#4=

Value#5=
Prob#5=

Value#6=
Pro b#6=

Value#7=
Pro b#7

Value#8=

Prob#8=

Value#9=
Prob#9=

Value#10=

Pro b#10

Value#2=
Pro b#2=

Value#3=

Probit.3=
Value#4=
Pro b#4=

Value#5=
Prob#5=

Value#6=
Pro b#6=

Value#7=
Prob#7=

Value#8=
Pro b#8=

Value#9=
Pro b#9=

Value#10=

Pro b#10=

50.81% Pro b#1 53.83%
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Table E.17 Result of MCS for
Example 5.6 (Iterations: 5000)

Table E.18 Result of MCS for
Example 5.6 (Iterations: 10000)

Simulation Statistics
Date: 9/25/00 at 11:01
Iterations: 5000
Simulations:	 /

Worksheet: [EXAM562
.XLS]She
etl

Output Range: bl
Cell: WV

Minimum= -48.529606

Maximum= 52.2067642

Mean= -0.4002599

Std Deviation= 24.0317788

Variance= 577.526391

Skewness= 0.04539308

Kurtosis= 1.97227798

Percentile Values

5Perc= -37.643738

10Perc= -32.909523

15Perc= -28.843691

20Perc= -24.563255

25Perc= -20.289772

30Perc= -16.448608

35Perc= -12.465761

40Perc= -8.5529766

45Perc= -4.783761

50Perc= -0.6568476

55Perc= 3.14949346

60Perc= 7.46211147

65Perc= 11.4038429

70Perc= 15.5157652

75Perc= 19.4222965

80Perc= 23.1471195

85Perc= 27.5908833

90Perc= 31.7397041

95Perc= 38.1779861

Target Values:

Simulation Statistics
Date: 9/25/00 at 11:25
Iterations:	 10000
Simulations:	 1

Worksheet: [EXAM563
.XLS]She
etl

Output Range: bl
Cell: $B$1

Minimum= -48.529606

Maximum= 52.2906189

Mean= -0.4922912

Std Deviation= 23.9656899

Variance= 574.354292

Skewness= 0.0407718

Kurtosis= 1.95787886

Percentile Values

5Perc= -37.643738

10Perc= -32.819801

15Perc= -28.803192

20Perc= -24.756281

25Perc= -20.634268

30Perc= -16.693901

35Perc= -12.692547

40Perc= -8.7334299

45Perc= -4.8551817

50Perc= -0.5728708

55Perc= 3.32977605

60Perc= 7.62647724

65Perc= 11.4043121

70Perc= 15.4353952

75Perc= 19.2139816

80Perc= 23.1984386

85Perc= 27.3627319

90Perc= 31.5872669

95Perc= 37.6813889

Target Values:

Value#1= 0Value#1=0

Prob#1r--

Value#2=

Prob#2=

Value#3=

Pro b#3=

Valueit4=

Pro b#4=

Value#5=

Pro b#5=

Value#6=

Prob#6=

Value#7=

Pro b#7=

Value#8=
Pro b#8=

Value#9=

Prob#9=

Value#10=

Pro b#10=

Value#2=

Prob#2=

Value#3=

Pro b#3=

Value#4=

Prob#4=

Value#5=

Prob#5=

Value#6=

Prob#6=

Value#7=

Prob#7=

Value#8=

Pro b#8=

Value#9=

Pro b#9=

Value#10=

Pro b#10

50.95% Pro b#1= 50.81%
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Table E.19 Result of MCS for
Example 5.7 (Iterations: 1000)

Simulation Statistics
Date: 9/25/00 at 11:47
Iterations:	 1000
Simulations:	 1

Worksheet: [EXAM571
.XLS]She
et16

Output Range: f1
Cell: $F$1

Minimum= -1996647

Maximum= 2985513.25

Mean= 514470.976

Std Deviation= 881480.748

Variance= 7.7701E+11

Skewness= 0.14943519

Kurtosis= 2.72049455

Percentile Values
5Perc= -913304.94

10Perc= -631837.63

15Perc= -447767.88

20Perc= -290041.53

25Perc= -100288.66

30Perc= 57381.6445

35Perc= 179916.516

40Perc= 279185.156

45Perc= 382915.031

50Perc= 475166.969

55Perc= 574169.563

60Perc= 709655.813

65Perc= 825439.875

70Perc= 950014.563

75Perc= 1074339.88

80Perc= 1242797.38

85Perc= 1472565.25

90Perc= 1741234.88

95Perc= 1990182.13

Target Values:

Table E.20 Result of MCS for
Example 5.7 (Iterations: 5000)

Simulation Statistics
Date: 9/25/00 at 12:05
Iterations: 5000
Simulations:	 I

Worksheet: [EXAM572
.XLS]She
et16

Output Range: f1

Cell: $F$1
Minimum= -2193586.8

Maximum= 4068546.75

Mean= 523407.019

Std Deviation= 891845.119

Variance= 7.9539E+11

Skewness= 0.26643133

Kurtosis= 3.04365304

Percentile Values

5Perc= -892800.5

10Perc= -605240.13

15Perc= -378396.88

20Perc= -231269.05

25Perc= -98312.578

30Perc= 26705.3047

35Perc= 143883.156

40Perc= 259587.344

45Perc= 375457.594

50Perc= 475400.656

55Perc= 584705.188

60Perc= 699491.313

65Perc= 821643.125

70Perc= 969100.938

75Perc= 1112838.13

80Perc= 1275270.13

85Perc= 1466090.5

90Perc= 1688293.5

95Perc= 2048684.75

Target Values:

Value#1= 00 Value#1=

Prob#1=
Value#2=
Pro b#2=
Value#3=
Prob#3=
Value#4=
Pro b#4=
Value#5=
Prob#5=
Value#6=
Prob#6=
Value#7=
Pro b#7
Value#8=
Pro b#8=
Value#9=
Prob#9=
Value#10=
Pro b#10

Value#2=

Prob#2=

Value#3=

Prob#3=

Value#4=

Prob#4=

Value#5=

Pro b#5

Value#6=
Prob#6=
Value#7=
Prob#7=
Value#8=
Prob#8=
Value#9=
Prob#9=
Value#10=
Pro b#10=

27.95% Prob#1= 29.11%
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Table E.21 Result of MCS for
Example 5.7 (Iterations: 10000)

Simulation Statistics
Date: 9/25/00 at 12:22
Iterations:	 10000
Simulations: 1

Worksheet: [EXAM573
.XLS]She
et16

Output Range: f1
Cell: $F$1

Minimum= -2380475

Maximum= 5149482

Mean= 517219.373

Std Deviation= 893205.308

Variance= 7.9782E+11

Skewness= 0.29551465

Kurtosis= 3.17899037

Percentile Values

5Perc= -885443,13

10Perc= -600145.19

15Perc= -395872.63

20Perc= -238349.28

25Perc= -102408.47

30Perc= 27819.041

35Perc= 141928.438

40Perc= 250856.906

45Perc= 358412.375

50Perc= 479925.344

55Perc= 583621.25

60Perc= 703642.375

65Perc= 821644.188

70Perc= 945794

75Perc= 1087090.75

80Perc= 1252198.38

85Perc= 1444897.63

90Perc= 1689089.75

95Perc= 2048360.25

Target Values:

Table E.22 Result of MCS for
Example 5.8 (Iterations: 1000)

Simulation Statistics
Date: 9/25/00 at 12:30
Iterations:	 1000
Simulations:	 1

Worksheet: [EXAM581
.XLS]She
et16

Output Range: fl
Cell: $F$1

Minimum= -1981126

Maximum= 3031806.25

Mean= 514621.184

Std Deviation= 880510.711

Variance= 7.753E+11

Skewness= 0.23988034

Kurtosis= 2.77984541

Percentile Values

5Perc= -869915.56

10Perc= -620364.31

15Perc= -453524.41

20Perc= -284014.34

25Perc= -113780.21

30Perc= 52216.3164

35Perc= 180117.484

40Perc= 258820.094

45Perc= 364386

50Perc= 458445

55Perc= 560487

60Perc= 696399.063

65Perc= 808717.063

70Perc= 936092.688

75Perc= 1056983.88

80Perc= 1233062

85Perc= 1462355.88

90Perc= 1732165.25

95Perc= 2010415.63

Target Values:

Value#1= 0Value#1=0

Pro b#1=

Value#2=

Prob#2=

Value#3=

Prob#3=

Value#4=

Pro b#4=

Value#5=

Prob#5=

Value#6=

Pro b#6=

Value#7=
Pro b#7

Value#8=

Pro b#8

Value#9=

Prob#9=

Value#10=

Prob#10=

Value#2=

Prob#2=
Value#3=

Prob#3=

Value#4=

Pro b#4=

Value#5=

Pro b#5=

Value#6=

Prob#6=

Value#7=

Pro b#7

Value#8=

Prob#8=
Value#9=

Pro b#9=

Value#10=

Prob#10=

28.89% Pro b#1 28.29%
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Table E.23 Result of MCS for
Example 5.8 (Iterations: 5000)

Table E.24 Result of MCS for
Example 5.8 (Iterations: 10000)

Simulation Statistics
Date: 9/25/00 at 12:40
Iterations:	 5000
Simulations:	 1

Worksheet: [E)(AM582
.XLS]She
et16

Output Range: f1
Cell: $F$1

Minimum= -2128897.3

Maximum= 4257503.5

Mean= 523375.516

Std Deviation= 894724.361

Variance= 8.0053E+11

Skewness= 0.36094143

Kurtosis= 3.16190517

Percentile Values

5Perc= -864039.44

10Perc= -589847.06

15Perc= -370679.47

20Perc= -234153.42

25Perc= -104914.98

30Perc= 21002.9668

35Perc= 131612.125

40Perc= 246497.906

45Perc= 360741.938

50Perc= 458906.125

55Perc= 569098.75

60Perc= 682099.313

65Perc= 814899.625

70Perc= 958128.063

75Perc= 1097579.75

80Perc= 1267116.5

85Perc= 1461873.63

90Perc= 1696130.63

95Perc= 2092442.63

Target Values:

Simulation Statistics
Date: 9/25/00 at 13:33
Iterations:	 10000
Simulations:	 1

Worksheet: [EXAM583
.XLS]She
et16

Output Range: fl
Cell: $F$1

Minimum= -2097735.8

Maximum= 5546798.5

Mean= 516957.624

Std Deviation= 895368.327

Variance= 8.0168E+11

Skewness= 0.39090599

Kurtosis= 3.3116238

Percentile Values

5Perc= -854943.69

10Perc= -592739.94

15Perc= -393540.13

20Perc= -243081.69

25Perc= -107496.58

30Perc= 18528.8984

35Perc= 132352.156

40Perc= 241213.563

45Perc= 345110.031

50Perc= 467906.906

55Perc= 569000.75

60Perc= 689756.25

65Perc= 808014.375

70Perc= 933878.5

75Perc= 1075468.38

80Perc= 1245072.75

85Perc= 1448588.75

90Perc= 1692789.88

95Perc= 2071704.13

Target Values:

Value#1= 00 Value#1=

Pro b#1

Value#2=

Pro b#2=

Value#3=

Prob#3=

Value#4=

Prob#4=

Value#5=

Prob#5=

Value#6=

Pro b#6

Value#7=

Pro b#7

Value#8=

Prob#8=

Value#9=

Prob#9=

Value#10=

Pro b#10=

Value#2=

Prob#2=

Value#3=

Prob#3=

Value#4=

Pro b#4=

Value#5=

Prob#5=

Value#6=

Pro b#6
Value#7=

Pro b#7=

Value#8=

Prob#8=

Value#9=

Pro b#9=

Value#10=

Prob#10=

29.28% Pro b#1 29.26%
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Table E.25 Result of MCS for
Example 5.9 (Iterations: 1000)

Simulation Statistics
Date: 9/25/00 at 14:10
Iterations:	 1000
Simulations:	 1

Worksheet: [EXAM591
.XLS]She
et1

Output Range: b1
Cell: $B$1

Minimum= -195.91122

Maximum= 508.555878

Mean= 145.074344

Std Deviation= 112.616969

Variance= 12682.5816

Skewness= -0.0006628

Kurtosis= 2.86244348

Percentile Values

5Perc= -45.621143

10Perc= -6.7190733

15Perc= 18.4842529

20Perc= 49.6194305

25Perc= 72.2490082

30Perc= 89.2270279

35Perc= 105.184105

40Perc= 118.042801

45Perc= 130.619141

50Perc= 145.587784

55Perc= 161.142456

60Perc= 175.17804

65Perc= 190.37854

70Perc= 207.052505

75Perc= 220.240036

80Perc= 239.02887

85Perc= 257.609619

90Perc= 284.817474

95Perc= 330.901031

Target Values:

Table E.26 Result of MCS for
Example 5.9 (Iterations: 5000)

Simulation Statistics
Date: 9/25/00 at 14:19
Iterations:	 5000
Simulations:	 1

Worksheet: [EXAM592
.XLS]She
et1

Output Range: b1
Cell: $13$1

Minimum= -283.62384

Maximum= 592.517029

Mean= 148.434327

115.710122(Ski Deviation=

Variance= 13388.8323

Skewness= 0 01177897

Kurtosis= 3.07661376

Percentile Values

5Perc= -41.55402

10Perc= 1.08793116

15Perc= 27.3380356

20Perc= 51.5654411

25Perc= 71.7176437

30Perc= 90.1675644

35Perc= 106.454956

40Perc= 120.967499

45Perc= 133.924591

50Perc= 147.552689

55Perc= 162.263626

60Perc= 175.91713

65Perc= 191.838547

70Perc= 207.556335

75Perc= 224.99263

80Perc= 245.061111

85Perc= 265.70929

90Perc= 295.758972

95Perc= 338.595337

Target Values:
00Value#1= Value#1=

Pro b#1= Prob#1= 9.88%

Value#2=

Prob#2=

Value#3=

Prob#3=

Value#4=

Prob#4=

Value#5=

Prob#5=

Value#6=

Prob#6=

Value#7=

Pro b#7=

Value#8=
Pro b#8

Value#9=

Pro b#9

Value#10=

Pro b#10

Value#2=

Prob#2=

Value#3=

Pro b#3=

Value#4=

Prob#4=

Value#5=

Pro b#5=

Value#6=

Prob#6=

Value#7=

Prob#7=

Value#8=

Prob#8=

Value#9=

Prob#9=

Value#10=

Prob#10=
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Table E.27 Result of MCS for
Example 5.9 (Iterations: 10000)

Table E.28 Result of MCS for
Example 5.10 (Iterations: 1000)

Simulation Statistics
Date: 9/25/00 at 14:39
Iterations:	 10000
Simulations:	 1

Worksheet: [EXAM593
.XLS]She
et1

Output Range: b1
Cell: $13$1

Minimum= -362.9595

Maximum= 592.517029

Mean= 148.576017

Std Deviation= 114.949351

Variance= 13213.3533

Skewness= -0.0341989

Kurtosis= 3.05086777

Percentile Values
5Perc= -41.008083

10Perc= 3.23528552

15Perc= 28.9392242

20Perc= 51.265564

25Perc= 71.1767197

30Perc= 89.2869415

35Perc= 105.011925

40Perc= 119.948166

45Perc= 133.584793

50Perc= 148.196335

55Perc= 162.825043

60Perc= 177.548248

65Perc= 193.304047

70Perc= 208.6064

75Perc= 226.459702

80Perc= 246.2854

85Perc= 267.327332

90Perc= 295.74173

95Perc= 335.970001

Target Values:

Simulation Statistics
Date: 9/25/00 at 14:47
Iterations:	 1000
Simulations:	 /

Worksheet: [EXAM510
1.XLS]Sh
eet1

Output Range: b1
Cell: $13$1

Minimum= -25775.414

Maximum= 16596.1348

Mean= -4844.6972

Std Deviation= 7382.84175

Variance= 54506352.4

Skewness= 0.25827092

Kurtosis= 2.92069759

Percentile Values
5Perc= -16236.593

10Perc= -14313.745

15Perc= -12473.52

20Perc= -11225.131

25Perc= -9960.2607

30Perc= -8763.7695

35Perc= -7778.561

40Perc= -6980.0366

45Perc= -6182.9785

50Perc= -5055.2129

55Perc= -4368.8569

60Perc= -3285.2429

65Perc= -2429.52

70Perc= -1356.5184

75Perc= -249.83247

80Perc= 1094.30762

85Perc= 2706.62866

90Perc= 5049.39258

95Perc= 8365.88965

Target Values:
Value#1= 0 Value#1= 0

Pro b#1
Value#2=
Pro b#2=
Value#3=
Pro b#3=
Value#4=
Pro b#4=
Value#5=
Pro b#5=
Value#6=
Pro b#6
Value#7=
Prob#7=
Value#8=
Pro b#8=
Value#9=
Pro b#9
Value#10=
Pro b#10=

Value#2=
Prob#2=
Value#3=
Pro b#3
Value#4=
Pro b#4=
Value#5=
Pro b#5
Value#6=
Pro b#6=
Value#7=
Prob#7=
Value#8=
Prob#8=
Value#9=
Pro b#9=
Value#10=
Prob#10=

9.49% Prob#1= 75.78%
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Table E.29 Result of MCS for
Example 5.10 (Iterations: 5000)

Table E.30 Result of MCS for
Example 5.10 (Iterations: 10000)

Simulation Statistics
Date: 9/25/00 at 14:54
Iterations: 5000
Simulations:	 1

Worksheet: [EXAM510
2.XLS]Sh
eet1

Output Range: b1
Cell: $E51

Minimum= -28598.707

Maximum= 25319.082

Mean= -4504.145

Std Deviation= 7217.02984

Variance= 52085519.7

Skewness= 0.32992361

Kurtosis= 3.24790517

Percentile Values

5Perc= -15647.145

10Perc= -13409.619

15Perc= -11934.222

20Perc= -10636.951

25Perc= -9523.6064

30Perc= -8459.3477

35Perc= -7509.7461

40Perc= -6623.0894

45Perc= -5711.1104

50Perc= -4867.4346

55Perc= -4075.0247

60Perc= -3083.4956

65Perc= -2118.9106

70Perc= -1104.8951

75Perc= 33.4974098

80Perc= 1290.69324

85Perc= 2863.36426

90Perc= 4963.35352

95Perc= 7964.53711

Target Values:

Simulation Statistics
Date: 9/25/00 at 15:06
Iterations:	 10000
Simulations: /

Worksheet: [EXAM510
3.XLS]Sh
eet1

Output Range: b1
Cell: $13$1

Minimum= -28598.707

Maximum= 25319.082

Mean= -4427.3228

Std Deviation= 7173.22026

Variance= 51455088.8

Skewness= 0.32141265

Kurtosis= 3.13209567

Percentile Values

5Perc= -15562.58

10Perc= -13370.849

15Perc= -11828.785

20Perc= -10561.132

25Perc= -9423.4854

30Perc= -8389.4512

35Perc= -7476.3335

40Perc= -6564.1055

45Perc= -5657.9888

50Perc= -4802.6709

55Perc= -3920.3535

60Perc= -2965.554

65Perc= -1981.9266

70Perc= -1012.8314

75Perc= 70.6205521

80Perc= 1361.66223

85Perc= 2928.51611

90Perc= 5038.22363

95Perc= 8059.94971

Target Values:

Value#1= 0Value#1=0

Pro b#1=

Value#2=

Pro b#2=

Value#3=

Pro b#3=

Value#4=

Prob#4=

Value#5=

Prob#5=

Value#6=

Pro b#6=

Value#7=

Prob#7=

Value#8=

Pro b#8=

Value#9=

Prob#9=

Value#10=

Prob#10=

Value#2=

Pro b#2=

Value#3=

Pro b#3=
Value#4=

Pro b#4=

Value#5=

Prob#5=

Value#6=

Prob#6=

Value#7=

Pro b#7

Value#8=

Prob#8=

Value#9=

Pro b#9=

Value#10---

Pro b#10

74.85% Prob#1= 74.62%

325


	DX215873_1_0001.tif
	DX215873_1_0003.tif
	DX215873_1_0005.tif
	DX215873_1_0007.tif
	DX215873_1_0009.tif
	DX215873_1_0011.tif
	DX215873_1_0013.tif
	DX215873_1_0015.tif
	DX215873_1_0017.tif
	DX215873_1_0019.tif
	DX215873_1_0021.tif
	DX215873_1_0023.tif
	DX215873_1_0025.tif
	DX215873_1_0027.tif
	DX215873_1_0029.tif
	DX215873_1_0031.tif
	DX215873_1_0033.tif
	DX215873_1_0035.tif
	DX215873_1_0037.tif
	DX215873_1_0039.tif
	DX215873_1_0041.tif
	DX215873_1_0043.tif
	DX215873_1_0045.tif
	DX215873_1_0047.tif
	DX215873_1_0049.tif
	DX215873_1_0051.tif
	DX215873_1_0053.tif
	DX215873_1_0055.tif
	DX215873_1_0057.tif
	DX215873_1_0059.tif
	DX215873_1_0061.tif
	DX215873_1_0063.tif
	DX215873_1_0065.tif
	DX215873_1_0067.tif
	DX215873_1_0069.tif
	DX215873_1_0071.tif
	DX215873_1_0073.tif
	DX215873_1_0075.tif
	DX215873_1_0077.tif
	DX215873_1_0079.tif
	DX215873_1_0081.tif
	DX215873_1_0083.tif
	DX215873_1_0085.tif
	DX215873_1_0087.tif
	DX215873_1_0089.tif
	DX215873_1_0091.tif
	DX215873_1_0093.tif
	DX215873_1_0095.tif
	DX215873_1_0097.tif
	DX215873_1_0099.tif
	DX215873_1_0101.tif
	DX215873_1_0103.tif
	DX215873_1_0105.tif
	DX215873_1_0107.tif
	DX215873_1_0109.tif
	DX215873_1_0111.tif
	DX215873_1_0113.tif
	DX215873_1_0115.tif
	DX215873_1_0117.tif
	DX215873_1_0119.tif
	DX215873_1_0121.tif
	DX215873_1_0123.tif
	DX215873_1_0125.tif
	DX215873_1_0127.tif
	DX215873_1_0129.tif
	DX215873_1_0131.tif
	DX215873_1_0133.tif
	DX215873_1_0135.tif
	DX215873_1_0137.tif
	DX215873_1_0139.tif
	DX215873_1_0141.tif
	DX215873_1_0143.tif
	DX215873_1_0145.tif
	DX215873_1_0147.tif
	DX215873_1_0149.tif
	DX215873_1_0151.tif
	DX215873_1_0153.tif
	DX215873_1_0155.tif
	DX215873_1_0157.tif
	DX215873_1_0159.tif
	DX215873_1_0161.tif
	DX215873_1_0163.tif
	DX215873_1_0165.tif
	DX215873_1_0167.tif
	DX215873_1_0169.tif
	DX215873_1_0171.tif
	DX215873_1_0173.tif
	DX215873_1_0175.tif
	DX215873_1_0177.tif
	DX215873_1_0179.tif
	DX215873_1_0181.tif
	DX215873_1_0183.tif
	DX215873_1_0185.tif
	DX215873_1_0187.tif
	DX215873_1_0189.tif
	DX215873_1_0191.tif
	DX215873_1_0193.tif
	DX215873_1_0195.tif
	DX215873_1_0197.tif
	DX215873_1_0199.tif
	DX215873_1_0201.tif
	DX215873_1_0203.tif
	DX215873_1_0205.tif
	DX215873_1_0207.tif
	DX215873_1_0209.tif
	DX215873_1_0211.tif
	DX215873_1_0213.tif
	DX215873_1_0215.tif
	DX215873_1_0217.tif
	DX215873_1_0219.tif
	DX215873_1_0221.tif
	DX215873_1_0223.tif
	DX215873_1_0225.tif
	DX215873_1_0227.tif
	DX215873_1_0229.tif
	DX215873_1_0231.tif
	DX215873_1_0233.tif
	DX215873_1_0235.tif
	DX215873_1_0237.tif
	DX215873_1_0239.tif
	DX215873_1_0241.tif
	DX215873_1_0243.tif
	DX215873_1_0245.tif
	DX215873_1_0247.tif
	DX215873_1_0249.tif
	DX215873_1_0251.tif
	DX215873_1_0253.tif
	DX215873_1_0255.tif
	DX215873_1_0257.tif
	DX215873_1_0259.tif
	DX215873_1_0261.tif
	DX215873_1_0263.tif
	DX215873_1_0265.tif
	DX215873_1_0267.tif
	DX215873_1_0269.tif
	DX215873_1_0271.tif
	DX215873_1_0273.tif
	DX215873_1_0275.tif
	DX215873_1_0277.tif
	DX215873_1_0279.tif
	DX215873_1_0281.tif
	DX215873_1_0283.tif
	DX215873_1_0285.tif
	DX215873_1_0287.tif
	DX215873_1_0289.tif
	DX215873_1_0291.tif
	DX215873_1_0293.tif
	DX215873_1_0295.tif
	DX215873_1_0297.tif
	DX215873_1_0299.tif
	DX215873_1_0301.tif
	DX215873_1_0303.tif
	DX215873_1_0305.tif
	DX215873_1_0307.tif
	DX215873_1_0309.tif
	DX215873_1_0311.tif
	DX215873_1_0313.tif
	DX215873_1_0315.tif
	DX215873_1_0317.tif
	DX215873_1_0319.tif
	DX215873_1_0321.tif
	DX215873_1_0323.tif
	DX215873_1_0325.tif
	DX215873_1_0327.tif
	DX215873_1_0329.tif
	DX215873_1_0331.tif
	DX215873_1_0333.tif
	DX215873_1_0335.tif
	DX215873_1_0337.tif
	DX215873_1_0339.tif
	DX215873_1_0341.tif
	DX215873_1_0343.tif
	DX215873_1_0345.tif
	DX215873_1_0347.tif
	DX215873_1_0349.tif
	DX215873_1_0351.tif
	DX215873_1_0353.tif
	DX215873_1_0355.tif
	DX215873_1_0357.tif
	DX215873_1_0359.tif
	DX215873_1_0361.tif
	DX215873_1_0363.tif
	DX215873_1_0365.tif
	DX215873_1_0367.tif
	DX215873_1_0369.tif
	DX215873_1_0371.tif
	DX215873_1_0373.tif
	DX215873_1_0375.tif
	DX215873_1_0377.tif
	DX215873_1_0379.tif
	DX215873_1_0381.tif
	DX215873_1_0383.tif
	DX215873_1_0385.tif
	DX215873_1_0387.tif
	DX215873_1_0389.tif
	DX215873_1_0391.tif
	DX215873_1_0393.tif
	DX215873_1_0395.tif
	DX215873_1_0397.tif
	DX215873_1_0399.tif
	DX215873_1_0401.tif
	DX215873_1_0403.tif
	DX215873_1_0405.tif
	DX215873_1_0407.tif
	DX215873_1_0409.tif
	DX215873_1_0411.tif
	DX215873_1_0413.tif
	DX215873_1_0415.tif
	DX215873_1_0417.tif
	DX215873_1_0419.tif
	DX215873_1_0421.tif
	DX215873_1_0423.tif
	DX215873_1_0425.tif
	DX215873_1_0427.tif
	DX215873_1_0429.tif
	DX215873_1_0431.tif
	DX215873_1_0433.tif
	DX215873_1_0435.tif
	DX215873_1_0437.tif
	DX215873_1_0439.tif
	DX215873_1_0441.tif
	DX215873_1_0443.tif
	DX215873_1_0445.tif
	DX215873_1_0447.tif
	DX215873_1_0449.tif
	DX215873_1_0451.tif
	DX215873_1_0453.tif
	DX215873_1_0455.tif
	DX215873_1_0457.tif
	DX215873_1_0459.tif
	DX215873_1_0461.tif
	DX215873_1_0463.tif
	DX215873_1_0465.tif
	DX215873_1_0467.tif
	DX215873_1_0469.tif
	DX215873_1_0471.tif
	DX215873_1_0473.tif
	DX215873_1_0475.tif
	DX215873_1_0477.tif
	DX215873_1_0479.tif
	DX215873_1_0481.tif
	DX215873_1_0483.tif
	DX215873_1_0485.tif
	DX215873_1_0487.tif
	DX215873_1_0489.tif
	DX215873_1_0491.tif
	DX215873_1_0493.tif
	DX215873_1_0495.tif
	DX215873_1_0497.tif
	DX215873_1_0499.tif
	DX215873_1_0501.tif
	DX215873_1_0503.tif
	DX215873_1_0505.tif
	DX215873_1_0507.tif
	DX215873_1_0509.tif
	DX215873_1_0511.tif
	DX215873_1_0513.tif
	DX215873_1_0515.tif
	DX215873_1_0517.tif
	DX215873_1_0519.tif
	DX215873_1_0521.tif
	DX215873_1_0523.tif
	DX215873_1_0525.tif
	DX215873_1_0527.tif
	DX215873_1_0529.tif
	DX215873_1_0531.tif
	DX215873_1_0533.tif
	DX215873_1_0535.tif
	DX215873_1_0537.tif
	DX215873_1_0539.tif
	DX215873_1_0541.tif
	DX215873_1_0543.tif
	DX215873_1_0545.tif
	DX215873_1_0547.tif
	DX215873_1_0549.tif
	DX215873_1_0551.tif
	DX215873_1_0553.tif
	DX215873_1_0555.tif
	DX215873_1_0557.tif
	DX215873_1_0559.tif
	DX215873_1_0561.tif
	DX215873_1_0563.tif
	DX215873_1_0565.tif
	DX215873_1_0567.tif
	DX215873_1_0569.tif
	DX215873_1_0571.tif
	DX215873_1_0573.tif
	DX215873_1_0575.tif
	DX215873_1_0577.tif
	DX215873_1_0579.tif
	DX215873_1_0581.tif
	DX215873_1_0583.tif
	DX215873_1_0585.tif
	DX215873_1_0587.tif
	DX215873_1_0589.tif
	DX215873_1_0591.tif
	DX215873_1_0593.tif
	DX215873_1_0595.tif
	DX215873_1_0597.tif
	DX215873_1_0599.tif
	DX215873_1_0601.tif
	DX215873_1_0603.tif
	DX215873_1_0605.tif
	DX215873_1_0607.tif
	DX215873_1_0609.tif
	DX215873_1_0611.tif
	DX215873_1_0613.tif
	DX215873_1_0615.tif
	DX215873_1_0617.tif
	DX215873_1_0619.tif
	DX215873_1_0621.tif
	DX215873_1_0623.tif
	DX215873_1_0625.tif
	DX215873_1_0627.tif
	DX215873_1_0629.tif
	DX215873_1_0631.tif
	DX215873_1_0633.tif
	DX215873_1_0635.tif
	DX215873_1_0637.tif
	DX215873_1_0639.tif
	DX215873_1_0641.tif
	DX215873_1_0643.tif
	DX215873_1_0645.tif
	DX215873_1_0647.tif
	DX215873_1_0649.tif
	DX215873_1_0651.tif
	DX215873_1_0653.tif
	DX215873_1_0655.tif
	DX215873_1_0657.tif
	DX215873_1_0659.tif
	DX215873_1_0661.tif
	DX215873_1_0663.tif
	DX215873_1_0665.tif
	DX215873_1_0667.tif
	DX215873_1_0669.tif
	DX215873_1_0671.tif
	DX215873_1_0673.tif
	DX215873_1_0675.tif
	DX215873_1_0677.tif
	DX215873_1_0679.tif
	DX215873_1_0681.tif
	DX215873_1_0683.tif
	DX215873_1_0685.tif
	DX215873_1_0687.tif
	DX215873_1_0689.tif
	DX215873_1_0691.tif
	DX215873_1_0693.tif
	DX215873_1_0695.tif

