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Abstract: In high-voltage (HV) insulation, electrical trees are an important degradation phenomenon
strongly linked to partial discharge (PD) activity. Their initiation and development have attracted
the attention of the research community and better understanding and characterization of the phe-
nomenon are needed. They are very damaging and develop through the insulation material forming
a discharge conduction path. Therefore, it is important to adequately measure and characterize tree
growth before it can lead to complete failure of the system. In this paper, the Gaussian mixture
model (GMM) has been applied to cluster and classify the different growth stages of electrical trees
in epoxy resin insulation. First, tree growth experiments were conducted, and PD data captured
from the initial to breakdown stage of the tree growth in epoxy resin insulation. Second, the GMM
was applied to categorize the different electrical tree stages into clusters. The results show that PD
dynamics vary with different stress voltages and tree growth stages. The electrical tree patterns with
shorter breakdown times had identical clusters throughout the degradation stages. The breakdown
time can be a key factor in determining the degradation levels of PD patterns emanating from trees
in epoxy resin. This is important in order to determine the severity of electrical treeing degradation,
and, therefore, to perform efficient asset management. The novelty of the work presented in this
paper is that for the first time the GMM has been applied for electrical tree growth classification
and the optimal values for the hyperparameters, i.e., the number of clusters and the appropriate
covariance structure, have been determined for the different electrical tree clusters.

Keywords: gaussian mixture models; electrical trees; partial discharge

1. Introduction

Electrical treeing is a key degradation phenomenon of high-voltage polymeric in-
sulation [1]. When electrical trees are initiated, they grow until they bridge the entire
insulation material, resulting in catastrophic failure of the power system plant. Electrical
trees are strongly related to partial discharge (PD) activity, which is usually characterized
using techniques such as phase-resolved PD (PRPD) patterns [2,3], and, to a lesser extent,
pulse sequence analysis (PSA) [4], pulse waveform analysis [5], and nonlinear time series
analysis [6,7].

When PD activity is severe, there is higher dissipation of energy and greater PD
amplitudes, resulting in tree growth, and serious degradation [8,9]. As mentioned in
the literature [10], PD activity might be undetectable when the tree structure is forming
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conductive channels within the insulation system, therefore, thorough knowledge of PD
behavior related to treeing degradation is needed, especially for conditioning monitoring
engineers in the industry. Understanding the tree phenomenon is crucial in determining
the remaining lifetime of an electrical asset.

Several studies analyze tree growth from PD activity [10–14]. In particular, Lv et al. [10],
Bao et al. [11], Zhou et al. [14], and Alapati [13] investigated PD development during the
early stages of PD degradation in epoxy resin insulation, cross-linked polyethylene (XLPE)
cable, and low-density polyethylene (LDPE). These studies found that the growth rate
of electric trees is strongly influenced by the increasing level of voltages. However, for
electrical tree propagation in an XLPE cable, the skewness (i.e., the extent to which the
distribution deviates from the normal distribution) of the maximum amplitude-phase
distributions decreased with the spread of the electrical stress, and the skewness can be
considered as a parameter to fully identify different levels of electrical tree propagation.
Furthermore, the tree pattern feature in cross-linked polyethylene (XLPE) cable is similar
to the needle-plate electrode system.

In the case of the LDPE, there was a considerable decrease in PD repetition rate and
PD magnitude of LDPE filled with alumina nanocomposites compared to unfilled LDPE.
There was an increase in the PD inception voltage with 3% weight of the filler loadings and
then decreases when the filler loadings reached 5%. On the other hand, other researchers
investigated tree propagation mechanisms in XLPE cable insulation based on a double
electrical tree structure [12]. It was found that five types of electrical tree structures (branch,
forest, bine-branch, pine-branch, and mixed configurations) will propagate in XLPE cable
insulation due to the effect of the irregular congregating state, differences in the crystalline
structure, and the presence of residual stress in the semi-crystalline polymer.

Few investigations are found in the area of pattern identification of PD characteristics
from the initial stage to breakdown of the insulation due to electrical treeing. Park et al. [15]
evaluated and classified PD degradation of electric trees for cable insulation. The authors of
this study utilized three classification techniques: Adaptive neuro-fuzzy combination (AN-
FIS), multi-layer perceptron (MLP), and principal component analysis (PCA). Compared
to other defects, such as voids and metal surfaces, the findings specifically demonstrated
different features of electric trees. The results clearly showed distinct characteristics of
electrical trees as compared to that of other defects such as voids and metal surfaces.
Among all the classification techniques, ANFIS showed higher identification potential
and can be used for classifying electrical tree progression with about a 99% recognition
rate. In another investigation, Salama et al. [16] applied a MLP neural network (NN) to
discriminate between PD defects in voids and electrical trees. In particular, the algorithm
could recognize discharge patterns from different degradation levels of the electrical trees.
Although this algorithm was applied for the case of real power cable faults, it has not
been applied to electrical tree faults degradation up to the breakdown stage. In another
study, Park et al. [17] attempted to recognize three different electrical tree models using
the adaptive network-based fuzzy inference system. The models considered samples
with a needle-plane electrode, needle-void-plane electrode, and needle-metal strip-plane
electrode. Statistical features extracted from the aforementioned tree models were applied
as inputs to the ANFIS system. The results showed a good discrimination rate of these
models up to 100%. However, this work was limited to electrical tree patterns only, without
analyzing the progression and different stages of tree growth.

This paper studies the growth of electric trees in samples of epoxy resin under various
voltage levels aiming to correlate PD activity with the stage of tree growth through the
analysis of PRPD patterns using a Gaussian mixture-based model (GMM) clustering
technique. GMM was chosen over other techniques because it is flexible and can perform
hard clustering for complex data. Using this approach, it is expected to assess the remaining
life of insulation subjected to electrical treeing degradation more accurately.

Section 2 details the experimental setup and the data capture procedure, describing
the dataset, and their analysis. Section 3 explains the GMM model used in this work.
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Section 4 is the data processing technique adopted, while Section 5 describes this work’s
results and conclusion.

2. Experiment and Data Capture Procedure
2.1. Experimental Setup

The samples were prepared using the conventional needle-to-plane configuration
with a gap distance of ~2 mm between the needle tip and the bottom of the sample. The
needle was a hypodermic needle Terumo with an approximate curvature radius of 3 µm,
the insulating material was epoxy resin (Mepox–1685/L, a Bisphenol A diglycidyl ether
(epoxy system) in Santiago, Chile and the cuboid dimensions were 10 × 10 mm base
and 25 mm height. Electrical treeing experiments were carried out using the test circuit
shown in Figure 1. The voltage source (Vac) was a transformer fed from the grid through
a variac (Variable AC Transformer). The samples were fed through a limiting resistance
(R) in order to reduce disturbances and protect the instruments in case of breakdown.
PD measurements were carried out using the balanced circuit shown in standard IEC
60,270 [18]. The treeing sample (N2) and the dummy sample (N1, PD free) were placed into
a transparent oil container to prevent unwanted surface discharges and allow visualization
of tree growth using an optical camera. The signals from the treeing and dummy samples
were subtracted in the subtracting circuit (SC), whose output was fed to a commercial PD
system (Acquisition System) that continuously registered PD activity. The voltage was
measured using a voltage divider (Vm), which was also used by the PD measurement
system. The minimum value of PD magnitude for the measurement was set to 2 pC;
however, to reduce the background noise recorded, a threshold between 10 to 15 pC was
used for the analysis.

Figure 1. Test circuit for electrical tree growth experiments.

Before the electrical tree growth experiment itself, an incipient electrical tree needed
to be created in each sample. To initiate an electrical tree, 12–16 kV 50 Hz voltage was
applied to each sample until the camera optically observed a tree, and then the voltage
was turned off and the sample was prepared for the tree growth experiment. By doing
this, the initiation stage was separated from the propagation stage, which was the stage
to be analyzed in this research. The electrical tree growth experiment was carried out in
the selected samples by applying 12, 14, and 16 kVrms 50 Hz until breakdown, according
to Table 1, where also the resulting time-to-breakdown (Time BD) is shown. This time is
the duration of tree growth from the initial stage until final breakdown of the insulation.
PD measurements were made using two simultaneous means: continuous recording with
filming camera and taking pictures every 10 s. The utilization of this simultaneous registry
system was required to correlate PD behavior (electrical response of the insulation) and
tree propagation shape/length (physical damage).
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Table 1. Samples, voltages, and the resulting time to breakdown of each experiment.

Sample Voltage (kV) Time BD (h)

A 12 3.8
B 14 1.5
C 14 1.4
D 16 0.6
E 16 0.47

2.2. Partial Discharge Recorded and Selected Data for Analysis

The measurements of the electrical tree growth experiment are shown in Figure 2,
where the PD amplitude time series (left axis) and the tree length progression (right axis)
are compressed in the same graph for each sample. Tree length was extracted from the tree
images taken during the growth and was measured as the furthest tree extent from the
needle tip in the direction of the plane electrode. In the graph, the length was represented
in per unit values, i.e., the ratio between the length (L) and the length of the first tree
branch that reached the plane electrode (Lmax). Note that dielectric breakdown did not
occur immediately after the tree arrived at the counter electrode. In particular, in the cases
of Samples A and B, a considerable amount of experimental time passed after the tree
bridged the insulation.

Although PD was recorded during the entire experiment, tree growth analysis was
carried out using ten selected windows or intervals of analysis to study the parameters’
evolution during tree growth. The selection of data and intervals followed the criteria
previously described by Zheng et al. [19]. Each interval was selected to have at least
10,000 PD events and at least 10 s of continuous measuring time. In practice, this resulted
in a total of 10,000–60,000 PD events (observations) per analysis interval for all the samples.
The first analysis interval was chosen to start three minutes after the beginning of the test
for a more stable PD activity, and the last interval was set to finish at least five minutes
before the breakdown. The separation between intervals depended on the duration of each
test. The intervals of analysis are shown as black bands in Figure 2a–e.

The results indicate that PD dynamics are different for every sample, depending on the
stressing voltages and the stage of tree growth. For example, Samples A and B had irregular
trends, and Sample B even had periods of no detected PD while the tree was growing.
This phenomenon has been reported before and is due to the growth of ‘filamentary’
trees [19]. This is observed in Figure 3; though Samples B and C were both stressed at
14 kV, time series of PD amplitudes had different behavior, which was also observed when
comparing Samples D and E, stressed at 16 kV. In particular, Sample D showed the highest
PD amplitude values among all the samples, with a constantly increasing trend.

Images of the electrical trees of each sample at interval 6 are presented in Figure 4. It
can be observed how Sample A, aged at 12 kV, presented the widest electrical tree. It is
worth noting that the images are from the same interval (6th), but they do not correspond
necessarily to similar stressing time; for Sample A, the 6th interval was at 130 min of aging,
which is longer than any other total stressing time.
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Figure 2. Time series of partial discharge (PD) amplitude and tree length for each sample: (a) Sample A, (b) Sample B,
(c) Sample C, (d) Sample D, and (e) Sample E different.
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Figure 3. Picture of Sample B at interval 2, showing a filamentary tree growth.

Figure 4. Images of electrical trees at interval 6 in each sample: (a) Sample A, (b) Sample B, (c) Sample C, (d) Sample D, and (e)
Sample E.
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3. Gaussian Mixture Model Clustering Technique and Classification Model

Clustering techniques have been widely used in power system analysis and
Rajabi et al. [20] have discussed a literature survey of various clustering techniques avail-
able and their application towards smart metering. Out of all the available models for
unsupervised learning, the most popular is k-means clustering, which groups data ac-
cording to a distance-based calculation with respect to a centroid [21]. The centroids are
updated iteratively through a mean value and the clustered data will be in a circular shape.
The drawback of the k-means clustering is that it fails to cluster data that are not in a
circular shape, such as elliptical shape or irregular patterns. This drawback is overcome
by GMM, which uses a probability density function (PDF) determining parameters by
expectation-maximization (EM) technique. Compared to the k-means, the centroid formed
by GMM takes into account the mean as well as the variance of the data, accommodating
different sized clusters with varying correlations within them [22].

The clustering of unimodal distribution and multimodal distribution using GMM is
explained in [22–24]. The comparison in [25] reveals that GMM takes more simulation
time than k-means. Additionally, GMM can group complex patterns into similar compo-
nents that match closely while k-means uses simple principles to produce only abstract
information. The performance and comparison of the sampling methods used in GMM are
reported in [26].

GMM can also be used for both hard and soft clustering of the dataset. In hard cluster-
ing, the GMM assigns each query data point to a particular cluster, which will maximize
the posterior probability of the component given the data. In soft clustering, the GMM
calculates the likelihood of the query data point belonging to a specific cluster and then
assigns the query data point to a cluster, which would have maximum posterior probability,
calculated using Bayes’ theorem. In this study, the versatile soft clustering GMM is utilized
for unsupervised learning to model unknown data distribution by multivariate normal
distributions. Unfortunately, k-means clustering has no means to measure the likelihood or
uncertainty of cluster assignments. On the other hand, GMM uses probability distribution
functions that can model any input dataset by assigning each point a probability to belong
to a certain cluster. Hence, it is used for clustering in this work.

The various steps in the GMM are explained in [22]. The Gaussian model is formulated
by Equations (1) and (2). Let X = {x1, x2, · · · xn} be a set of n observations. The variable
xi is distributed among a mixture of M components. The PDF of xi is written as shown in
Equation (1), which is the weighted sum of Gaussian densities given by Equation (2) and

the sum of weights
M
∑

i = 1
wi = 1, wi represents the mixing probabilities.

p(xi|λ) =
M

∑
i = 1

wig(xi|µi, Σi) (1)

g(x|µi, Σi) =
1

(2π)D/2|Σi|1/2 exp
{
−1

2
(x − µi)

TΣ−1
i (x − µi)

}
(2)

where M is the number of Gaussian densities, x-D is the dimensional continuously valued
data vector, wi, I = 1 . . . M is the weight of the mixture,g(x|µi, Σi), i = 1, 2 . . . M is
the component of Gaussian densities, µ is the mean vector of dimension D, Σ is the
covariance matrix of dimension D×D, and λi = {wi, µi, Σi} is the parameter of the GMM.
In this study of clustering for insulation degradation using GMM the following covariance
structure is adopted:

1. The covariance structure of the components will determine the shape and orientation
of the ellipsoid drawn over the cluster. The covariance matrix is diagonal instead of
being full to avoid the over-fitting problem, and major and minor axes of the ellipsoid
are parallel and perpendicular to the abscissa and the ordinate. The covariance matrix
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is shared among the components; hence, the ellipse of each cluster has the same size
and orientation.

2. The expectation-maximization (EM) algorithm fits the GMMs. The initial values of
the parameters are set, and then the initial cluster assignments for data points are
allowed to be selected randomly.

3. Regularization is applied in order to avoid the likelihood of data point becoming
ill-conditioned and starts moving towards infinity.

3.1. The Expectation Maximization (EM) Algorithm

Expectation maximization (EM) is a mathematical algorithm used to find the correct
parameters for a model. The estimated parameter of mean, variance, and weight are
necessary to cluster the data, but this is possible only if the Gaussian family is known. The
EM algorithm starts with random parameters, and then the optimal parameters are found
by iteration. This algorithm has the capability to deal with latent variables. Assuming k
clusters are to be assigned, then k distributions are required with mean and covariance
values of µ1, µ2, . . . , µk and Σ1, Σ2, . . . , Σk, respectively. The EM algorithm generally has
two main steps, i.e., the Expectation step (E-step) and the Maximization step (M-step) [27].

3.1.1. The Expectation Step (E-step)

In this step, using randomly initialized parameters, for every point xj, we obtain the
likelihood of belonging to a certain cluster c1, c2, ..., ck. This is achieved using Equation (3).

rjc =
probability that xjbelongs to c

sum o f probability xj belongs to c1, c2 . . . ck
=

πc N
(
xj ; µc , Σc

)
Σc′πc′N

(
xj ; µc′ , Σc′

) (3)

This value would be high if the point is allocated to the correct class, or vice versa.

3.1.2. The Maximization Step (M-step)

In this step, the parameter λ is updated as follows:

1. The weight is updated using Equation (4), which is the ratio of cluster points to the
overall number of points.

wc =
Number o f points assigned to a cluster

Total numbero f points
(4)

2. Then, the covariance and the mean values are modified using Equations (5) and (6) in
relation to the probability values for the data point and based on the values assigned
to that particular distribution. Therefore, any data point having a high probability of
being a member of the distribution should be contributing a higher portion.

µc =
1

Number o f points assigned to cluster
Σjrjcxj (5)

Σc =
1

Number o f points assigned to cluster
Σjrjc(xj − µc)

T(xj − µc) (6)

Based on the updated parameters the E-step is repeated. These two steps are iterated
until the optimal parameters are obtained using the log-likelihood function as described
in [3].

4. Data Processing

Data pre-processing is an important step in machine learning models. To explain the
data pre-processing steps, dataset A at the first interval (A1) is used. Sample A1 analysis is
summarized in Table 2. The dataset has 10,139 observations with minimum values of Phi
(phase angle) and Q (PD amplitude) are −1.790 × 10−5 and −7.220 × 10−11, respectively.
The maximum values of Phi and Q are 9.997 × 10−1 and 8.880 × 10−11, respectively. In the
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data pre-processing step, the data is transformed using the normalized function available
in MATLAB, which transforms the data with a mean of 0 and standard deviation of 1. The
transformed variables Phi (Stdscale) and Q (Stdscale) are used by the clustering algorithm,
which has a mean of 0 and standard deviation of 1 as shown in Table 2.

Table 2. Statistical evaluation of Sample A at the first time interval.

Count Mean Standard Deviation Minimum Maximum

Phi 10139.0 4.460 × 10−1 3.053 × 10−1 1.790 × 10−5 9.997 × 10−1

Q 10139.0 −1.297 × 10−12 4.454 × 10−11 −7.220 × 10−11 8.880 × 10−11

Phi (Stdscale) 10139.0 8.964 × 10−17 1.000 × 10 −1.460 × 10 1.813 × 10
Q (Stdscale) 10139.0 1.971 × 10−18 1.00 × 10 −1.591 × 10 2.022 × 10

5. Results and Discussion
5.1. Gaussian Mixture Model Clustering

GMM clustering was applied to generate clusters for every training pattern from the
initial stage to the breakdown of the insulation, for each dataset. The overall aim was to
be able to understand and classify different PD patterns during the stages of tree growth.
The important hyperparameters in GMM are the number of clusters k and appropriate
covariance structure Σ. In GMM the covariance structure includes a covariance matrix,
which can be diagonal or full, and the nature of the covariance matrix, which can be
shared or unshared. When a diagonal covariance matrix is chosen, the minor and major
axes of the confidence ellipsoids drawn over the clusters are parallel or perpendicular to
the x and y axes. When a full covariance matrix is chosen, there is no restriction to the
orientation of the minor and major axis of the confidence ellipsoids drawn over the clusters.
A shared covariance matrix indicates that all confidence ellipsoids have the same size and
orientation, whereas an unshared covariance matrix indicates different sizes and shapes of
the confidence ellipsoids. Choosing the appropriate hyperparameter is a very important
task, and the method adopted is presented in the next section.

5.1.1. Hyperparameter Tuning of GMM

The number of cluster components k and appropriate covariance structure Σ is un-
known for each stage of electrical treeing in Samples A−E. The most commonly used
technique to tune the hyperparameters is by comparing the Akaike information criterion
(AIC) and Bayesian information criterion (BIC). AIC is the relative distance between the
unknown true likelihood function of the data and the fitted likelihood function of the
model. A lower AIC means the model is closer to reality. BIC is an estimate function
of the posterior probability of a model being true under certain assumptions, so a lower
BIC means the model is bound to be the genuine model. A detailed discussion on the
importance of AIC and BIC related to model selection is available in [28]. The procedure to
choose the optimal values for the hyperparameters namely the number of clusters k and
appropriate covariance structure Σ is shown in Figure 5 and was coded using MATLAB.
A regularization value of 0.01 is specified and the EM iteration is specified as 10,000 in
order to avoid ill-conditioning of the covariance matrix during EM iteration. The number
of clusters k takes a value from 1 to 12.

The procedure shown in Figure 5 is performed for all fifty datasets. The procedure is
explained for the initial stage of electrical treeing in Sample A in the first interval and the
same procedure is applicable for other datasets. For sample A1, the AIC and BIC values are
summarized in Tables 3 and 4, respectively. The bar plots grouped by the number of clusters are
shown in Figures 6 and 7, respectively. From the bar plot it is very clear that when the number
of clusters is more than 1, the AIC and BIC values decrease, and after a specific number of
clusters is reached, the variation of AIC values is significantly low. The point where the change
in AIC value declines the most is the elbow point. The elbow point in Figures 8 and 9 was
determined by plotting a curb, and corresponds to the number of clusters k = 4 and covariance
structure which is full and unshared. These are the best hyperparameters for dataset A1. The
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same procedure has to be repeated in all datasets and the best hyperparameter for each dataset
in samples A to E are provided in Tables 5–9, respectively.

Figure 5. Procedure to choose the hyperparameters.

Table 3. Akaike information criterion (AIC) values for dataset A at the first interval (A1).

k Value
Covariance Structure Σ

Diagonal-Shared Full-Shared Diagonal-Unshared Full-Unshared

1 57,553 55,530 57,553 55,530
2 46,946 40,758 41,388 35,693
3 26,410 26,141 23,569 21,568
4 23,538 22,957 21,616 19,709
5 22,017 22,015 20,161 18,875
6 21,776 21,002 19,396 18,683
7 20,981 22,024 19,441 18,252
8 20,300 20,495 19,135 18,178
9 20,527 20,263 18,821 17,898
10 20,286 20,259 19,069 17,885
11 20,139 20,056 18,758 18,064
12 20,297 20,298 19,089 17,907
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Table 4. Bayesian information criterion (BIC) values for dataset A at the first interval (A1).

k Value
Covariance Structure Σ

Diagonal-Shared Full-Shared Diagonal-Unshared Full-Unshared

1 57,582 55,566 57,582 55,566
2 46,996 40,816 41,453 35,772
3 26,482 26,221 23,670 21,691
4 23,632 23,058 21,753 19,875
5 22,132 22,138 20,334 19,084
6 21,913 21,146 19,606 18,936
7 21,140 22,190 19,686 18,548
8 20,481 20,683 19,417 18,517
9 20,729 20,472 19,139 18,281
10 20,510 20,490 19,423 18,312
11 20,385 20,309 19,148 18,534
12 20,565 20,573 19,516 18,420

Figure 6. Bar Plot of Akaike information criterion values for each fit in dataset A1.

Figure 7. Bar Plot of Bayesian information criterion values for each fit in dataset A1.
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Figure 8. Plot of Akaike information criterion values for each fit in dataset A1.

Figure 9. Plot of Bayesian information criterion values for each fit in dataset A1.

Table 5. The choice of best hyperparameter for dataset A.

Dataset
AIC BIC

k Value Σ Choice k Value Σ Choice

A1 4 Full-unshared 4 Full-unshared
A2 6 Full-unshared 6 Full-unshared
A3 5 Full-unshared 5 Full-unshared
A4 6 Full-unshared 6 Full-unshared
A5 8 Full-unshared 8 Full-unshared
A6 8 Full-unshared 8 Full-unshared
A7 7 Full-unshared 7 Diagonal-unshared
A8 5 Full-unshared 5 Full-unshared
A9 8 Diagonal-unshared 8 Diagonal-unshared
A10 6 Diagonal-unshared 6 Diagonal-unshared
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Table 6. The choice of best hyperparameter for dataset B.

Dataset
AIC BIC

k Value Σ Choice k Value Σ Choice

B1 8 Diagonal-unshared 8 Diagonal-unshared
B2 6 Full-unshared 6 Full-unshared
B3 8 Full-unshared 8 Full-unshared
B4 6 Full-unshared 6 Full-unshared
B5 6 Diagonal-unshared 6 Diagonal-unshared
B6 6 Diagonal-unshared 6 Diagonal-unshared
B7 7 Diagonal-unshared 7 Diagonal-unshared
B8 8 Diagonal-unshared 8 Diagonal-unshared
B9 7 Full-unshared 6 Diagonal-unshared
B10 6 Full-unshared 6 Full-unshared

Table 7. The choice of best hyperparameter for dataset C.

Dataset
AIC BIC

k Value Σ Choice k Value Σ Choice

C1 4 Full-unshared 4 Full-unshared
C2 6 Full-unshared 6 Full-unshared
C3 6 Full-unshared 6 Full-unshared
C4 6 Full-unshared 6 Full-unshared
C5 5 Full-unshared 5 Full-unshared
C6 5 Full-unshared 5 Full-unshared
C7 6 Full-unshared 5 Diagonal-unshared
C8 6 Full-unshared 6 Full-unshared
C9 6 Full-unshared 5 Diagonal-unshared

C10 6 Full-unshared 6 Full-unshared

Table 8. The choice of best hyperparameter for dataset D.

Dataset
AIC BIC

k Value Σ Choice k Value Σ Choice

D1 5 Full-unshared 5 Full-unshared
D2 6 Diagonal-unshared 6 Diagonal-unshared
D3 6 Full-unshared 6 Full-unshared
D4 6 Full-unshared 6 Full-unshared
D5 6 Full-unshared 6 Full-unshared
D6 5 Full-unshared 5 Full-unshared
D7 6 Full-unshared 6 Full-unshared
D8 5 Full-unshared 5 Full-unshared
D9 6 Full-unshared 6 Full-unshared
D10 6 Full-unshared 6 Full-unshared

According to Tables 5–9, the minimum value of k is 4 and its maximum value is 8.
The nature of the covariance matrix is mostly full with an unshared structure and rarely
diagonal with an unshared structure. The values of hyperparameters selected for the GMM
are shown in Table 10.

The shared covariance is false, which indicates a non-identical or unshared covariance
matrix. The grid length is important in order to draw the confidence ellipsoids over the
clusters. Grid length and the number of iterations for the EM algorithm are selected by
trial and error.
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Table 9. The choice of best hyperparameter for dataset E.

Dataset
AIC BIC

k Value Σ Choice k Value Σ Choice

E1 6 Full-unshared 6 Full-Unshared
E2 6 Full-unshared 6 Full-Unshared
E3 6 Full-unshared 6 Full-Unshared
E4 6 Full-unshared 6 Full-Unshared
E5 8 Full-unshared 8 Full-Unshared
E6 6 Full-unshared 6 Full-Unshared
E7 7 Full-unshared 7 Full-unshared
E8 5 Full-unshared 5 Full-unshared
E9 6 Full-unshared 6 Full-Unshared
E10 5 Diagonal-unshared 5 Diagonal-unshared

Table 10. The parameter values for Gaussian mixture-based model (GMM).

Parameter Value

Number of GMM components/clusters 6
Covariance matrix Full
Shared covariance False

Grid length 500
Number of iterations for the EM algorithm 1000

5.2. GMM Results and Discussions

The six clusters with their centers and confidence ellipsoids as shown in Figure 10 indi-
cate GMM models for the PRPD patterns of the initial stage (interval 1) of electrical treeing
in Samples A, B, C, D and E. From Figure 10, it is clear that the ellipsoids are of different
sizes and there are no restrictions to the orientation of their minor and major axis. Figure 11
shows the six clusters with their centers and confidence in the final stage (interval 10) of
electrical treeing in Samples A, B, C, D and E ,which is close to the insulation breakdown.
An interesting observation from Figure 11 is that none of the clusters are circular in shape
and, therefore, K-means clustering could not be used here since it is not built to account for
other shapes and a circular fit would be a bad fit to the data. In samples C and D, cluster
overlapping can be clearly appreciated. The GMM algorithm produces the cluster centers
based on the shape of the PRPD pattern and the PD activity and plots confidence ellipsoids
with a 99% probability threshold as specified in the MATLAB program.

For each dataset sample, the normalized data is clustered into six groups, differentiated
by color, using the GMM clustering. For each cluster in the two-dimensional (2D) plane,
the midpoint of the cluster is also indicated in Figures 10 and 11. In each case, the Phi and
Q are normalized to return the vector-wise Z score of all the datasets (i.e., Samples A−E)
with center 0 and standard deviation 1. The midpoints of the six clusters for each sample
are shown in Appendix A.

For each dataset, the normalized data is clustered into six groups using the GMM
clustering. From Figures 10 and 11, it can be seen that the clusters are different, showing
that the applied voltage and the stage of tree growth have a significant effect on the
generated PD patterns. The initial and final stage clusters appear to be different for all the
samples except for Sample A. For this sample, there is a similarity between the initial and
the final stage clusters probably due to the continuous irregular trend in PD because of
the formation of filamentary trees. The variance of the data in each cluster appears to be
higher in the final tree stages when compared to the initial stages. This might be the PD
mechanism over time and the increase in the number of PD events as the tree approaches
the breakdown stage. It can be seen that the PRPD pattern clusters for all 5 samples at the
initial stage appeared to be centered at different positions despite the fact that the applied
voltages are close to each other. This shows that, even for the same applied voltage, the
PD phenomenon in trees exhibits complex behavior and does not show any clear trend,
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making it difficult to evaluate in some instances. These conclusions can also be associated
with the final stages of the treeing patterns in Figure 11.

Figure 10. Clusters for the different datasets at the initial stage of degradation (a) Sample A,
(b) Sample B, (c) Sample C, (d) Sample D, and (e) Sample E.



Sensors 2021, 21, 2562 16 of 21

Figure 11. Clusters for the different samples at the final stage (interval 10): (a) Sample A (b) Sample B
(c) Sample C (d) Sample D and (e) Sample E.
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As a further analysis of the GMM technique, Appendices A and B shows the cluster
centers and their mean values/variances for all the samples (A−E), i.e., from the initial to
the final stages of tree growth. In Appendix A, the cluster centers for the different sample
datasets are shown. It can be seen that for samples A, B, and C, the positioning of the
clusters from the beginning to the breakdown level varies significantly, although the first
and the third cluster for all the samples A−E, fall within close range with insignificant
variance in the X-axis in Appendix B. However, cluster 2 evidenced higher variance for
samples A−C. This might be due to the stochastic nature of the PD mechanism of electric
trees and the fact that the occurrence of the PD patterns within the first and last half of
the AC power cycle are similar. Furthermore, it is interesting to note that the patterns
for samples D and E have very similar pattern trends in the initial stage and the final
breakdown stage, with insignificant variance among all the cluster shapes (see Appendix B,
Table A6). This is a clear indication that with a lower breakdown time of insulation, treeing
patterns are identical, and can easily be categorized. In the case of samples A−C, the
results showed wider PD variability among the samples, showing their distinct nature. It
was difficult to clearly differentiate between the initial and breakdown stage of the PD
patterns. In addition, most of the pattern cluster centers show lower variance along the
x-coordinates as compared to the y-coordinate, showing higher amplitude variation for the
PD patterns as compared to the phase changes. The information in appendix B can serve
as a statistical tool to predict and identify the applied voltages of the treeing patterns and
their breakdown times for electrical trees in epoxy resin insulation. Assuming that there
are new samples, they need to be classified as belonging to any of the confidence intervals
of the samples in Appendix B and can be regarded as that particular sample.

In general, the results imply that the GMM can classify different degradation stages
of the treeing patterns up to breakdown for samples having breakdown times higher
than one hour, while it cannot effectively perform the same function for samples with
shorter breakdown times, e.g., half an hour and lower. This might be because the PD
mechanism has not been allowed to develop and it bridges the insulation in a shorter
time, while more time before breakdown refers to a wider spread of treeing branches and
more deterioration of the insulating material. To a certain extent, it can be said that the
information in Appendix B almost correlates with the breakdown times but not necessarily
the applied electrical stress across the sample defects. Although voltage can be regarded as
one of the factors affecting the tree growth shape and structure in the cases analyzed here,
the insulation breakdown time appears to be a key factor in determining the degradation
levels of the PD patterns emanating from electrical trees.

5.3. Electrical Tree Pattern Recognition

As GMM is an easy and efficient technique for clustering, it has been shown, in
the previous section, to aid the classification of electrical tree patterns. The fundamental
flowchart for the electrical tree pattern recognition is shown in Figure 12. First, the data is
captured and subsequent PRPD patterns are formed, followed by the data processing and
the GMM clustering. The recognition of the tree growth clusters can be done by PD pattern
judgment, i.e., comparing the clusters with the already established cluster confidence
intervals in Appendix B. In this case, the level of the tree growth can be known, i.e., the
initial, final, or other stages of degradation can be determined.
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Figure 12. Flowchart for GMM Electrical tree pattern recognition.

6. Conclusion

In this paper, the GMM has been utilized for clustering and classification applications
in electrical trees emanating from epoxy resin insulation. Different PD samples were
captured at different voltages from the initial to the final breakdown stage. The results
show that PD dynamics vary with different stressing voltages and with the level of the
tree growth. Depending on the sample and the applied electrical stress, there are different
breakdown times. The GMM is chosen over other techniques in this work because it is
robust and can perform hard clustering for complex data such as electrical tree patterns.
The results clearly indicate that GMM can effectively classify patterns from the initial to
the breakdown level for breakdown times above an hour, but not breakdown times of less
than an hour, as the ones obtained with samples stressed at the highest stressing voltage of
16 kV. The PD patterns for shorter breakdown times possess identical clusters through the
degradation stages. In this paper, the cluster centers and their confidence intervals have
been developed to recognize the PD patterns in electrical trees at different stages ranging
from the initial to the breakdown stage. However, the results presented in this paper can be
further validated by experimenting with different samples captured at different voltages
and breakdown times. Further research can also be conducted for different insulating
materials such as polyethylene or cross-linked polyethylene to ascertain the efficiency of
the proposed classification tool.
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Appendix A

Table A1. Cluster centers for dataset A.

Sample
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

X Y X Y X Y X Y X Y X Y

A1 −1.186 1.173 −1.125 0.387 −0.1354 −0.5698 0.1385 −0.8057 0.5116 −1.016 1.692 0.7549
A2 −1.056 −0.7532 −1.009 0.7146 −0.7347 −0.0112 −0.4768 −0.4107 0.8848 1.143 1.092 −0.251
A3 −1.058 −0.8859 −0.8825 −0.13 −0.7949 −1.403 0.8898 1.16 0.9781 0.03578 1.139 1.042
A4 −1.187 −0.0547 −1.157 0.7761 0.3293 −0.5711 0.7657 −0.8412 0.8846 0.2357 1.306 0.8736
A5 −1.006 1.686 −0.9573 0.2095 −0.5926 0.1435 0.859 −1.802 0.987 −0.2418 1.26 −0.3535
A6 −1.258 0.5283 −1.248 0.4826 −0.0548 0.8886 0.3141 −0.7269 0.5488 −1.603 1.241 0.5868
A7 −1.253 −0.3607 −0.4423 0.7335 0.07192 −0.3853 0.5229 −0.3716 0.5925 0.9693 1.06 −0.5146
A8 −1.461 1.946 −1.214 0.1791 −1.18 0.9087 0.4871 −0.8243 0.5937 −0.1102 1.912 0.854
A9 −1.256 0.2578 −1.057 1.301 −0.693 0.9227 0.5859 −0.897 0.9851 −1.136 1.791 0.1495
A10 −1.308 1.352 −1.035 0.8009 −0.1624 −0.0638 0.1342 −0.6821 0.5402 −1.284 1.675 0.3228

Table A2. Cluster centers for dataset B.

Sample
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

X Y X Y X Y X Y X Y X Y

B1 −1.058 0.9892 −0.2775 0.0886 0.4043 −0.723 0.6774 −1.306 0.7123 −0.8706 1.966 0.7448
B2 −1.052 −0.897 −0.8772 −0.803 −0.7855 0.1771 0.8965 1.125 1.001 −0.1212 1.156 1.217
B3 −1.124 −0.871 −0.8612 −0.761 0.8251 0.7749 1.017 −0.0478 1.118 1.362 1.268 −0.0238
B4 −1.167 −0.6658 −0.9213 −1.19 −0.8323 −0.0097 −0.7085 −1.357 0.9122 1.061 1.134 0.4679
B5 −1.385 −1.039 −1.011 0.2924 −1.014 −0.2318 0.4921 0.7703 0.8353 −0.2362 1.903 −1.131
B6 −1.009 1.087 −0.8759 0.7558 −0.6402 0.2205 0.8734 −0.7698 1.076 −1.097 1.223 0.0073
B7 −1.064 0.7804 −0.942 0.9484 0.6927 −0.5958 0.9069 −2.673 1.033 −0.8764 1.079 0.3853
B8 −1.197 0.8737 −0.221 1.253 0.0151 −1.092 0.1591 −0.6668 0.425 0.3127 1.348 0.9801
B9 −1.185 0.7059 −1.107 0.2628 −0.1266 −0.3775 0.7336 −0.1164 0.8355 −0.2372 1.706 −0.1947

B10 −1.08 0.7476 −1.052 0.0127 0.8639 −0.6798 1.016 −0.1925 1.135 0.1445 1.346 11.28

Table A3. Cluster centers for dataset C.

Sample
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

X Y X Y X Y X Y X Y X Y

C1 −1.059 0.8105 −1.05 0.7709 −0.9109 1.265 −0.4285 −0.5041 0.9417 −0.7893 1.037 −1.096
C2 −1.184 0.6434 −1.163 −0.7276 −0.9362 1.299 0.6173 −0.5202 0.9107 −1.187 1.396 0.4608
C3 −1.527 1.04 −1.228 1.053 0.1526 −0.5048 0.1862 −0.2235 0.2575 −1.061 1.653 0.638
C4 −1.32 0.8908 0.1122 −0.3929 0.1897 −0.3052 0.2012 −1.057 0.2261 −0.5983 1.631 0.6416
C5 −1.167 0.5778 −1.129 1.218 0.2461 −0.6028 0.4939 −1.508 0.5652 −0.4843 1.845 0.6457
C6 −1.057 0.5739 −0.9929 −1.147 −0.9911 0.7769 −0.8845 1.249 0.96 0.7948 0.965 −1.215
C7 −1.039 0.721 −1.035 −1.094 0.01662 1.051 0.879 −1.046 0.9277 0.7006 1.009 −1.649
C8 −0.9087 0.7963 −0.8923 −1.116 0.41 0.2699 0.9988 −1.02 1.072 −1.278 1.077 0.8119
C9 −0.9412 0.7026 −0.9178 −1.116 −0.8695 0.9657 1.041 0.701 1.055 −1.199 1.105 0.9908
C10 −0.9553 0.662 −0.8707 −0.1081 0.9538 −0.9378 1.061 0.9778 1.07 −1.384 1.095 0.5495

Table A4. Cluster centers for dataset D.

Sample
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

X Y X Y X Y X Y X Y X Y

D1 −1.344 1.282 −1.246 0.4507 −0.1909 −0.3922 0.2312 −1.058 0.3376 −0.7218 1.624 0.7341
D2 −1.325 1.267 −1.269 0.3666 −0.2559 −0.2663 0.0334 −0.6915 0.4417 −0.9802 1.619 0.7413
D3 −1.582 1.118 −1.295 1.007 −0.2618 −0.213 −0.2295 −0.2193 0.2859 −0.8178 1.623 0.6534
D4 −1.262 0.8567 −0.448 −2.087 −0.2115 −0.0535 0.2842 −0.3403 0.3249 −0.962 1.648 0.7744
D5 −1.155 0.786 −1.13 0.33 −0.0899 −0.1165 0.4073 −0.8235 1.451 0.4504 1.69 0.6882
D6 −1.199 0.8595 −1.128 0.2565 −0.0391 −0.4619 −0.0344 −0.1949 0.4355 0.9097 1.64 0.4941
D7 −1.385 0.8288 −1.116 0.89 −0.1785 −0.1113 0.0824 −0.7388 0.4462 −1.074 1.571 0.5003
D8 −1.223 0.9173 −0.3391 −1.581 −0.1936 −0.097 0.2715 −1.239 0.3142 −0.5205 1.585 0.5408
D9 −1.042 0.9082 −0.9933 0.4894 −0.9854 0.2218 0.0139 −0.3329 0.4613 −1.136 1.638 0.5217
D10 −1.131 0.8649 −1.113 0.3652 −0.0428 −0.4083 0.2569 −0.188 0.4195 −1.031 1.587 0.5078
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Table A5. Cluster centers for dataset E.

Sample
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

X Y X Y X Y X Y X Y X Y

E1 −1.364 4.287 −1.25 0.1643 −1.048 0.4162 0.306 −0.9729 0.568 −0.1896 1.601 1.363
E2 −1.187 0.6647 −1.158 0.3211 −0.0214 −2.769 0.3147 −0.6605 0.9189 0.9922 1.642 0.7291
E3 −1.321 5.777 −1.04 0.2963 0.1226 −0.2736 0.282 −2.814 0.7842 −0.2625 2.089 1.537
E4 −1.102 0.4142 −0.2398 2.35 0.4716 −2.943 0.5297 −0.344 0.6166 −0.4342 1.94 0.4602
E5 −1.298 5.447 −1.154 0.0571 −1.13 2.824 0.4232 −0.0249 0.6845 −2.31 1.729 0.0095
E6 −1.155 2.081 −1.103 0.0718 0.4351 −1.365 0.4831 0.0177 1.784 0.06676 1.8 1.247
E7 −1.103 1.011 −1.053 0.3248 −0.9927 −0.0764 0.4207 −1.048 0.5579 −0.0067 1.773 0.6432
E8 −1.057 0.7747 −1.021 0.2494 0.5946 −0.3008 0.7169 −1.044 0.8952 −0.1777 1.984 0.3507
E9 −1.036 0.9421 −1.03 0.2727 0.5772 0.3024 0.5828 −0.1803 0.5843 −0.9298 1.873 0.3772

E10 −1.162 0.8128 −1.07 0.0872 0.5089 −0.4731 0.5709 −0.6004 1.829 0.8053 1.853 −1.366

Appendix B

Table A6. Mean values of the cluster centers and their variances.

Sample
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

X Y X Y X Y X Y X Y X Y

A
Mean −1.2029 0.48886 −1.013 0.54543 −0.3947 −0.0141 0.422 −0.62 0.75064 −0.3 1.4168 0.34645

Std.Dev 0.13659 1.01512 0.2303 0.40629 0.4713 0.7643 0.4153 0.737 0.20825 0.943 0.3172 0.564852

B
Mean −1.1321 0.1711 −0.815 0.08594 −0.0598 −0.2537 0.6064 −0.523 0.90833 −0.06 1.4129 1.373295

Std.Dev 0.10887 0.90572 0.3089 0.80068 0.7302 0.5543 0.5318 1.1006 0.21865 0.811 0.3254 3.54433

C
Mean −1.1158 0.74183 −0.917 −0.266 −0.1739 0.3277 0.4165 −0.295 0.79859 −0.65 1.2813 0.07783

Std.Dev 0.19142 0.14603 0.3803 0.95324 0.6944 0.851 0.6592 0.9567 0.32744 0.793 0.3219 0.984708

D
Mean −1.2648 0.96884 −1.008 0.04874 −0.2449 −0.1898 0.1317 −0.583 0.49178 −0.59 1.6225 0.61561

Std.Dev 0.15299 0.18377 0.3367 1.02863 0.2722 0.2047 0.191 0.3815 0.34311 0.701 0.0351 0.113455

E
Mean −1.1785 2.22115 −1.012 0.41947 −0.0482 −0.4658 0.463 −0.767 0.92226 −0.24 1.8284 0.535085

Std.Dev 0.11378 2.11348 0.2807 0.68629 0.7234 1.6552 0.1407 0.8244 0.48385 0.917 0.1518 0.830019
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