
1

Reward-Reinforced Generative Adversarial
Networks for Multi-agent Systems

Changgang Zheng, Shufan Yang∗, Juan Parra-Ullauri, Antonio Garcia-Dominguez, and Nelly Bencomo

Abstract—Multi-agent systems deliver highly resilient and adaptable solutions for common problems in telecommunications,
aerospace, and industrial robotics. However, achieving an optimal global goal remains a persistent obstacle for collaborative
multi-agent systems, where learning affects the behaviour of more than one agent. A number of nonlinear function approximation
methods have been proposed for solving the Bellman equation, which describe a recursive format of an optimal policy. However, how to
leverage the value distribution based on reinforcement learning, and how to improve the efficiency and efficacy of such systems remain
a challenge. In this work, we developed a reward-reinforced generative adversarial network to represent the distribution of the value
function, replacing the approximation of Bellman updates. We demonstrated our method is resilient and outperforms other conventional
reinforcement learning methods. This method is also applied to a practical case study: maximising the number of user connections to
autonomous airborne base stations in a mobile communication network. Our method maximises the data likelihood using a cost
function under which agents have optimal learned behaviours. This reward-reinforced generative adversarial network can be used as a
generic framework for multi-agent learning at the system level.

Index Terms—multi-agent, reinforcement learning, GAN, reward-reinforced GAN, airborne base station (ABS)

F

1 INTRODUCTION

P Ractical applications of multi-agent systems, such as au-
tonomous airborne base stations, need accurate real-time state

estimation and learning capabilities to achieve optimised trajectory
planning with a maximised global goal (the maximum number of
users connected). The airborne base stations have a high degree
of autonomy, serving their own users within the signal coverage
range. At the same time, however, multiple airborne stations need
to be coordinated with each other to serve the users in a constantly
changing environment: users move around, and neighbouring base
stations produce signal interference. It is challenging to create
optimised trajectories for all agents (base stations) at the same
time, while considering the current state of neighbouring agents
and their performed actions.

Traditional centralised algorithms for multi-agent systems
allowing agents to share their information with a central node
are computationally expensive. Reinforcement learning-based dis-
tributed algorithms can only explicitly share information with
their neighbours, which is computationally efficient compared
with centralised algorithms. Reinforcement learning has had great
successes in solving multi-agent collaborative tasks when three
constraints are met: i) having an environment, ii) having a reward
generation process either through an approximated function or a
simple greedy method, and iii) having agents interacting with the
environment. However, those methods often have high variance
in their results. In addition, agents may start to compete instead
of collaborating with each other due to scarce resources, such

• Changgang Zheng is at Department of Engineering Science, Univer-
sity of Oxford, United Kingdom; Shufan Yang ∗ is the corresponding
author and currently is School of Computing, Edinburgh Napier Uni-
versity, Edinburgh, United Kingdom and Center of Medical and In-
dustrial Ultrasonics, University of Glasgow, Glasgow, United Kingdom
E-mail:s.yang@napier.ac.uk; Juan Parra, Antonio Garcia-Dominguez,
and Nelly Bencomo are with School of Engineering and Applied Science,
Aston University, United Kingdom.

Manuscript XXX XXX; revised XXXX XX XX.

as communication channel capacities. To date, most solutions
concentrate on the learning of individual agents, but neglect
approaches at the system level [1].

A conventional reward mechanism in a reinforcement learning
framework is designed to produce a cost-benefit assessment of a
given action, and subsequently apply a high or low reward in a
heuristic search approach [2]. Hjeldm et al. proposed an approach
to intelligent drone tracking using reinforcement learning [3].
This type of mechanism required continuous feedback from the
environment, which means this technique scaled poorly to a
large team with multi-agents; furthermore, traditional Bayesian
approaches to reinforcement learning problems cannot model the
inherent variability of the action of the state. Deep Q Network
(DQN) reinforcement learning method used multiple hidden layers
of a neural network to fit a state value and a state-action value
distribution into a single agent [3].

The goal of classical reinforcement learning was to find an op-
timal policy that could maximize rewards. Instead of searching for
a policy, researchers proposed a heuristic search which aimed to
improve an estimated state value function, in order to minimize the
expected distance between the value function’s output and agents’s
tates [4]. Since heuristic search methods were impossible to
emulate all states in an environment . Other researchers focused on
finding a reward function that ’experts’ are implicitly optimising
either from states to actions, or from states to reward values, often
called inverse reinforcement learning [5]. Two distinct approaches
of inverse reinforcement learning were explored: the first method
was proposed to seek a way for directly approximating the reward
function by tuning inputs [5]; the second one was focused on
learning a policy that matched its action with demonstrated be-
haviour [6]. The first approach depended on selecting a complete
reward structure or set of feature functions which can be hard to
generalise since various environments may use different reward
features [7]. The second approach was sensitive for deterministic
actions since the optimization became theoretically impossible if

2

the underlying reward function was a non-convex function [8]. The
inverse reinforcement learning method had generalisation issues
since it used “experts” to demonstrate how the optimal behaviour
should be, which was unrealistic in real-life. Furthermore, agents
based on inverse reinforcement learning methods were only as-
sumed to follow an optimal policy and were prone to only take
suboptimal actions by the agents.

By contrast, generative adversarial networks (GANs) have
shown remarkable results at generating data that imitates a data
distribution in a multi-agent system [9]. For example, an extended
generative adversarial imitation learning framework was proposed
in [10] to train an action policy network for autonomous vehicles,
with only one action of the vehicle modelled. Although a large
number of studies on image data augmentation tasks provided
promising results, to our knowledge, far fewer research efforts
have been devoted to the application of adversarial training to
collaborative multi-agent systems.

Inspired by the study [11], we propose a deep generative model
and an opponent discriminator model followed by a two-player
min-max game formula [3] as the single learning process for
modelling the behaviour of the entire team. We built on a reward
mapping method that combines adversarial generative networks
with the use of reinforcement learning to produce domain-specific
rewards. The generative model is used to examine the distribution
of the value function for all agents, in order to reduce the training
steps while optimising the overall result. As aforementioned, we
applied our model to a practical case study: the optimised deploy-
ment of airborne base stations in mobile communications. In our
approach, the generator is trained to generate a predicted reward
map and trained adversely with discriminator, so that the networks
optimise the properties of distributed multi-agent behaviours in
an adversarial fashion. Our results show that Reward-Reinforced
Generative Adversarial Networks (RR-GANs) are able to achieve
the best global goal values, compared to other state-of-the-art
reinforcement learning methods. This is thanks to how our model
can represent the distribution of the value function, replacing the
approximation of Bellman updates via an adversarial learning
method.

2 METHODOLOGY

The modern field of reinforcement learning is based on optimal
control [12], which came into use during the 1960’s to describe the
problem of designing a controller to minimize a measurement of
a dynamic system’s behaviour . The Bellman equation, as defined
in (1), states that the value of the initial state must equal the
value of the expected next state, plus the expected reward along
the way. Instead of modelling the expectation of each value, we
design a new method which applies Bellman’s equation to provide
an approximated optimal value function. The distribution of Z is
characterized by the interaction of two distributions: the reward R
distribution, the probability that the tuple (s, a) at time t will lead
to the next distribution Z at time t+ 1.

Z(s, a) ≡D R(s, a) + Z(Ś, Á) (1)

To solve the Bellman equation, we aim to recover a estimation
probability distribution over the reward function from “expert”
demonstrations using generative adversarial modelling. At the
initial stage, agents exploit the environment and use maximum
likelihood rewards to choose best actions. At the execution stage,
the generative modelling is used for generated reward mapping.

Over time the agent is supposed to customize its actions to the
environment so as to maximize the sum of this reward.

2.1 Generic GAN
The generator G uses the original environment input o and a
randomly selected reward experience n to generate the predicted
reward map p. Or, in mathematical notation, G : {o, n} → p. The
adversarial discriminator D tries to classify the o concatenating
with p and the o concatenating with real reward map n.

LGAN (G,D) =Eo,p[logD(o, p)] + Eo,n[log(1−D(o,G(o, n))]
(2)

As shown in (2), the G aims at minimizing the objective
LGAN and the D tries to maximize the objective LGAN .

LL1(G) = Eo,p,n [‖p−G(o, n)‖2] (3)

We substitute the definition given by (3) into (4). The generator
objective for optimising the divergence between generated data
and the input real data is:

Gglobal = arg min
G

max
D
LGAN (G,D) + λLL1(G) (4)

2.2 RR-GAN
The data used for learning is obtained by a greedy method. An
agent only takes the action when the number of connected users
increases, where a reward is given. At the learning stage, the user
distribution (a part of the environment) is received as the input
to the generator network: the target location is the one with the
maximum reward.

The GAN is a multi-agent system with N agents and the
loss function LGAN (G,D) is denoted as f([θ1, θ2, . . . , θN], φ)
, where θN is the parameter vector of the N th agent and φ is the
parameter vector of the environment (i.e. the user distribution),
and where the objective functions of generator are f(θN) and the
objective function of discriminator −f(θN). The optimum is a
Nash equilibrium defined as in (5).

Θ ∈ argmaxf(Θ, φ∗), φ∗ ∈ argmax− f(Θ∗, φ) (5)

The maximum likelihood estimator solves dL
dx = 0, where

x = (Θ, φ)T . The Nash-equilibrium points pose the following
properties:

dLGAN
dΘ

=

[
df(x∗)
−df(x∗)

]
= 0 (6)

T (x∗) =

 d2f(x∗)
d2θ

df(x∗)
dθdΦ

−d
2f(x∗)
dθdΦ −d

2f(x∗)
d2Φ

 ≤ 0 (7)

We substitute the definition of T (x) and gradient of dLGAN

dθ , as
given by (6) and (7) into (8). Using consensus optimization [13],
the objective function of the generator can add a 2-norm as a
regularization term. The updated rule for the generator network
becomes:

xk+1 = xk + α
dLGAN
dθ

+ γT (x)T (8)

When γ and α are proper values using hypothesis testing,
the optimisation will be locally stable at the Nash equilibrium
if T (x) is inevitable. Hence, a stationary distribution exists, and

3

the GAN architecture can converge to this stationary distribution.
Furthermore, to avoid low convergence speed or even divergence,
we used the regulated RMSProp optimisation [14]. The empirical
results reported in the results section demonstrate the ability of
our method to solve the reinforcement learning tasks. Further
mathematical proof requires an argument similar to [14].

RR-GAN is used to generate the predicted reward maps from
the current environment input and randomly selected past rewards
from each agent. This method reduces the fitting difficulty of the
network of the discriminator D. The network mainly needs to
learn from the data source (i.e. user distribution), and the time
varying environment (i.e. how many users are within range of
each airborne base station). In the initial stage an agent is placed
in a situation without knowledge of any goals or other information
about other agents. As an agent acts in the environment, a
reinforcement reward governs its actions: increasing the number
of connected users is rewarded. By only giving the agent a reward
when connected users are reached, the agent learns to achieve
its goals. However, since each agent competes (due to signal
interference), generative modelling is used to generate reward
mapping at each execution stage. Over time, the agent customizes
its actions to the environment to maximize the sum of the rewards.

As shown in Fig. 1, real-time information from the environ-
ment (in this case, the user distribution) allows the network to self-
adjust. Agents will act according to the predicted reward map for
moving in the right direction. At the training stage, all agents will
use a greedy method to exploit the maximum users connections
in their own signal coverage areas to generate a reward map (blue
arrows in Fig. 1). After several iterations, all agents adjust their
behaviours according to the generated reward maps (red arrows in
Fig. 1).

[15].
The pseudo code of RR-GAN is shown below:

Algorithm 1: Reward-Reinforced GAN
Data: Environment E, Predicted Reward Map

Rpredicted, Reward Map R
Result: Trained Reward-Reinforced GAN parameters θ

1 Randomly generate environment E;
2 Exploit rewards using greedy methods and store reward map R;

3 for every epoch do
4 Train Generator by using stored E and R, (Update θ);
5 Train Discriminator by using stored R and Rpredicted;

6 for every iteration do
7 if environment changed then
8 Generator generate Rpredicted;
9 Find global optimal position;

10 end
11 Do action toward global optimal
12 end
13 end

Two aspects can be modified to enhance the stability of GAN
training: model setup, and optimization methods. In this work we
used the adversarial learned kernels in a batch training.

In our experiment, the generative neural network is composed
of both the generator model and discriminator model. Our net-

work structure follows Goodfellow’s published work [16]. The
generator model consists of a U-net network, which is composed
of two fully connected layers and eight deconvolutional layers.
The discriminator is composed of five convolution layers followed
by two fully connected layers. The convolution and deconvolution
layer come with a batch normalization layer. The output layer of
the generator uses the sigmoid function as the activation function
while all other and discriminator network are based on ReLu as
activation functions. Both generator and discriminator networks
are trained under the Adam solver [17] with a learning rate of
0.0001 [18], [19]. The parameters are selected with reference to
some other GANs [18], [19].

The specific structures of the generator and the discriminator
are shown in Tables 1, 2, and 3.

TABLE 1: Detailed model architecture —
Reward Map Prediction Network generator

Layer name Block type Output resolution Output depth

Down 1 Conv Block 100×100 64
Down 2 Bottleneck 50×50 128
Down 3 Bottleneck 25×25 256
Down 4 Bottleneck 12×12 512
Down 5 Bottleneck 6×6 1024

Up 1 Bottleneck 12×12 512
Up 2 Bottleneck 25×25 256
Up 3 Bottleneck 50×50 128
Up 4 Bottleneck 100×100 64

Out Conv Conv Block 100×100 n

TABLE 2: Bottleneck architecture

Layer name Out Direction Kernel size Stride size

Conv 1+BatchNorm+ReLU 3×3 1
Conv 2+BatchNorm+ReLU Up 3×3 1

Max Pool Down 2×2 2

TABLE 3: Detailed model architecture —
Reward Map Prediction Network discriminator

Layer name Kernel size Output depth Stride size

Conv 1+BatchNorm+ReLU 4×4 64 1
Conv 2+BatchNorm+ReLU 4×4 128 1
Conv 3+BatchNorm+ReLU 4×4 256 1
Conv 4+BatchNorm+ReLU 4×4 512 1
Conv 5+BatchNorm+ReLU 4×4 512 1
Fully Connected 1+Dropout — 128 —
Fully Connected 2+ReLU — 1 —

3 EXPERIMENTAL DESIGN AND RESULTS

In this section, we applied the proposed approach to control the
trajectory of airborne base stations in a mobile communication
system. It is worth noting that this approach can solve many
other tasks; for instance, trajectory prediction for industrial robotic
collaboration in warehouses [20]. More importantly, it can also be
applied to common multi-agent problems: multi-agent learning
can exhibit unexpected interactions between agents as they gravi-
tate toward an equilibrium [21].

4

G Loss
Mix Input

D Loss

Concatenate
Block

Convolution
Block

Normalization
Block

FC
Layer

Pooling
Layer

Predicted Reward
Map

ReLU
Block

Real Reward
Map

Label

Environment
Input

Environment

Reward Map

Data Pool

Experimenting TrainingAction

Environment

Fig. 1: General diagram of the proposed RR-GAN

3.1 Problem Statement

In a mobile communication network, there are various scenarios
where sudden spikes in connection demands can be generated,
such as large social events (e.g. business campaigns, political
rallies, university opening ceremonies or other unexpected events),
or emergencies like the malfunction of the existing mobile base
stations. Airborne base stations can provide a fast response to
these situations, as shown in Fig. 2. It is important to precisely
control the movement of the airborne base stations, in order to
connect the maximum number of users to the mobile network.

Fig. 2: Possible Airborne Base Stations using conditions: a static
base station (red) has malfunctioned; people gather at an area

with poor coverage from existing base stations

While providing mobile communications with airborne base
stations, interference and noise are two potential impairments to
signal quality [22]. Two parameters model communication chan-
nel (signal-to-interference-plus-noise ratio (SNIR), and reference
signal received power (RSRP)) can be computed as the Power
Density multiplied by the Antenna Effective Area [22], [23]. SNIR
and RSRP are used for evaluating the potential signal quality
between the mobile station and a user device. A threshold is used
to distinguish the connectivity between users and base stations.
The overall attenuation effects can be represented by path loss
(free-space loss). The behaviour of the airborne base stations

depends on their proximity to the neighbouring airborne base
stations, and how many users are being served. Our objective is
to learn a joined distribution of the reward map of each airborne
base station for making long-term predictions about the optimised
number of users staying connected to a mobile network.

The communication model follows the formula in (9). All
parameters in Table 4 are remained the same in all experiments.

Ls =

(
4πd

λ

)2

(9)

In (10), c is the speed of light in metres per second; EIRP is the
Equivalent Isotropic Radiated Power (the drone transmit power)
in watts; fc is the carrier frequency in hertz; d is the distance
between the user and the airborne base station in metres and the
wavelength is λ = c

fc
.

RSRPn,u =
EIRP

Ls
=
EIRP c2

(4πfcd)
2 (10)

In (10), the RSRP for the link between the user u and the
airborne base station n is calculated according to the EIRP, and
the free space path loss is given in (9).

SINRn,u =
RSRPn,u

N +
∑
∀i 6=nRSRPi,u

(11)

The Signal to Interference plus Noise Ratio (SINR) is defined
in (11), where N is the noise power in Watts.

As an example, the distribution of users (and their mobile
phones) can be modeled by a bivariate distribution consisting of
a mixture of distinct Gaussian clusters [24]. The probability of
users appearing can be treated as a mixture of two time-invariant
2-dimensional Gaussian distributions varying with time [25], [26].
Each airborne base station have many users (mobile phones) [24].
For each Gaussian user cluster, the “user appearing” probability

5

TABLE 4: Communication and environment parameters

Parameters Value

Communication Parameters

Lowest SINR requirment, θµ 0dB
UAV-base station antenna directivity angle, φap 60◦
Carrier frequency, fc 2.4GHz
Drone transmition power 40dBm
Bandwidth 200kHz
Noise power spectral density 10−20.4W/Hz

Environment Parameters

Random seed 19
Length of the area 100m
Width of the area 100m
Drone step size 10m
Cluster number 4
Ratio of users of each cluster 4:5:6:6
Total number of users, Nu 1050
Drone numbers, Nd 1,2,4,8
User Height, hu 1.5m
Drone Height, hd 30m

also follows a 2-dimensional Gaussian distribution. The users in
each mobile communication cell follows the distribution in (12).

(Xpl, Ypl) ∼ N
(
Xgc, σ

2
gc1, YGc, σ

2
gc2, ρgc

)
(12)

The distribution fpl(x, y) of user locations follows a 2-
dimensional Gaussian distribution, where Xgc, YGc is the cluster
center. The standard deviation, including gc1, gc2, pl1 and pl2,
are random variables.

(Xcn, Ycn) ∼ N
(
Xpl, σ

2
pl1, Ypl, σ

2
pl2, ρpl

)
(13)

The user distribution fcluster(xcn, ycn) for cluster n, in (13),
follows a 2-dimensional Gaussian distribution [27].

fMS(x, y) =
1

k + 1

(
uniform+

k∑
n=1

clustern

)
(14)

Layer 1: 2-dimensional
Gaussian distributions

Layer 2: 2-dimensional
Gaussian distributions

Layer 3: 2-dimensional
Gaussian distributions

Layer 4: 2-dimensional
Uniform distributions

……

Fig. 3: User distribution

The distribution of users is defined in four layers in our
simulation, with three 2-dimensional Gaussian layers (layer 1,
layer 2 and layer 3) and one uniform distribution layer (layer 4),
as shown in Fig. 3. The orange cluster in Fig. 3 shows the biggest
size of the cluster compared with the green and purple clusters,
where these three clusters simulate an emergency scenario with
many users. The fourth layer is a uniform distribution layer, where
the normal distribution is used to simulate a general scenario. The
number of users at each Gaussian-distributed layer are 300, 250,
and 200 respectively. The standard deviations of each cluster are
10, 7, and 6 (14).

Fig. 4: Reward analysis of Q-learning

3.2 Results
Each airborne base station chooses one action among five options
at each iteration: move “east”, “west”, “south”, or “north”, or stay
at the same spot. All base stations start at the right bottom corner.
If an airborne base station moves in a direction which increases
the number of users, the reward for this airborne base station will
increase. However, if this airborne base station is too close to the
neighbouring base station, the neighbouring base station will lose
users. The global goal is to provide connectivity for the maximum
number of users.

We compare the performance of the proposed method with
the following baseline models: Q-learning, SARSA, DQN and k-
means. All the baseline models use the same input features, and
are trained with the same iterations and the same learning rate.

• Q-learning is a model-free off-policy algorithm [28],
which provides agents with the capability of learning to
act optimally in Markovian domains [29]. The reward
map is exploited and updated through the Q-table [30].
Fig. 4 shows the dispersion of the global rewards over
each training episode in the airborne base station system
using the Q-learning algorithm. As the graph describes, the
global rewards stabilize around values between 250 and
300, with a median of 269 connected users. The maximum
value of the global reward is not within the first and third
quartiles.

• SARSA applies the same policy in both data generation
and evaluation. SARSA follows a Markovian (history-
independent) structure [30], [31], [32]. Under this struc-
ture, the value function can be expressed in an algorithmic
form known as the Bellman equation, and used to update
Q-values in the lookup tables.

• A Deep-Q Network (DQN) can directly use deep learning
methods to bridge the divide between high-dimensional
inputs and agent actions [33]. The Deep Neural Network
predicts the Q value of the current or potential states
and actions. Two convolutional neural networks constantly
update its parameters to learn the optimal option.

• A clustering network divides data objects with high sim-
ilarity into clusters [34]. Currently popular clustering
methods are k-means and mean-shift. In this work, the
k-means algorithm is used as one of the baseline methods.
It is interesting to test whether a clustering simulation of
the user distribution favours the clustering method. The
position of the ABS is randomly chosen, and their moving

6

direction is controlled using L2 distance followed by (15).

aj =
1

|ci|
∑
x∈ci

x (15)

The positions of the ABSes aj are updated with the
number of users x in each center. As shown in Fig. 5, the k-
means method actually performed very poorly, especially
in the scenarios with 4 and 8 airborne base stations.

Fig. 5 compares the performance of RR-GAN against the four
other baseline methods. As illustrated in Fig. 5, the RR-GAN
method attains the highest average percentage of connected users
over all airborne base stations, even with an increased number of
airborne base stations. Since other methods do not consider the
positions of the other base stations and the uncertainty during the
initial learning period, RR-GAN can achieve the highest number
of user connections.The theoretical best performance is calculated
using a heuristic method. The performance of random position
experiments is simulated when Airborne base stations moves
following a random walk distribution. It is worth noting that the
DQN method cannot minimize the divergence of the generated
sample distribution and over-fits the training set by maximizing
the likelihood, which reduces model generalizability.

3.3 Multi-agent Reinforcement Learning
The Markov game framework, proposed in Littman (1994)’s semi-
nal work has long been used to develop multi-agent reinforcement
learning algorithms [35]. When autonomous agents operate with a
shared reward scheme, each agent can have an identical value
function or Q-function [36]. On the other hand, when agents
cooperate, a team-average reward method is implemented [37].
In the case of competitive setting, it is typically modelled as Zero-
sum Markov games [38]. In the present case study, ABSes are
in a mixed setting, where cooperative and competitive actions
among agents co-exist. Compared with single-agent reinforcement
learning system, multi-agent reinforcement learning presents a
more difficult challenge, providing the non-convergence of policy-
based methods when action dimension increases exponentially due
to the number of agents. One possible solution for the scalability
issue is to assume additionally the factorized structures of either
the value or reward functions with regard to the action dependence
as proposed by Guestrin et al. (2002) [39]; while Kok and Vlassis
(2004) improved the original heuristic ideas, Sunehag et al.(2018)
provided empirical progress in their study [40] [41].

We compared the performance of the proposed RR-GAN with
the one of the recent developed factorization methods known as
Value-Decomposition Networks (VDN) [41] in order to evaluate
the multi-agent reinforcement learning in a cooperative and com-
petitive setting. Fig. 6 shows the performance comparison with
VDN and our RR-GAN method. In VDN, the vector factorisation
DQN network transformed the original joint action-value function
into an easily factorizable one, with the same optimal actions,
which provides better performance compared with DQN [41].
However, from the three experiments (2, 4 and 8 ABSes), RR-
GAN has superior performance with especially larger margins
in our case study. It is suggested that those non-cooperative
behaviour may more aggressively impact on the overall reward.
Furthermore, the performance for the 4 and 8 ABSes cases in VDN
performed even worse than baseline performance. It is discussed
that factorizing the value function is a very challenging task, which
is a concern evidenced in [42].

3.4 Robustness Comparison
The potential application environments for airborne base stations
are complex, real-world domains, which need to overcome the
problems of high sample complexity and brittle convergence prop-
erties, requiring less meticulous hyperparameter tuning. Therefore,
here different learning rates, greedy factors and user distribution
are all tested; to allow the ABS to be fully aware of the neigh-
bouring ABS, we also tested on 100 rounds, 1,000 rounds, 10,000
rounds and 100,000 rounds. The reward map is generated based
on various amounts of exploration, stopping if there is no higher
total reward for the last n rounds of stochastic exploring. The
different number of n rounds is used to test network performance.
Fig 8 shows a testing environment with 2 ABSes (airborne base
stations), 4 ABSes, and 8 ABSes.

For all rounds, the time taken to reach maximum performance
follows the same trend, particularly so for 8 airborne base stations.
For 2 or 4 ABSes, a shorter exploring time may introduce oscil-
lations in performance, but all achieve a similar plateau within a
longer time frame.

A comparison of robustness with other baseline algorithms can
be found in Fig. 9. The greedy parameter is a key parameter in
evaluating the algorithm’s performance to value their new actions.
During the changing of the value of greedy parameters, we can
investigate how each method responds with learning information
and timing needed for training. With all else held equal, the greedy
policy is tested under the values 0.7, 0.8, and 0.9, with the learning
rate and discount factor fixed to 0.1 and 0.5, respectively. The user
environment is generated with the same random seed.

As shown in Fig. 9, final performance improves as the learning
rate approaches 1. Additionally, the larger the greedy factor is,
the faster the algorithm will converge. Although initial efficacy is
low, RR-GAN has a steeper convergence rate when compared to
other baseline methods and, most importantly, is the only method
to reach the global optimal. It is noted the DQN method is not
chosen in the greedy method comparison. The DQN method hasn’t
performed well since state transition probability is approximated
with one hidden layer neural network.

3.5 Scalability Test
To investigate the impact of the number of user clusters on the
performance of RR-GAN, we ran a scalability test to investigate
how much the number of user clusters inevitably affected the RR-
GAN method. As shown in Fig. 10, even with an increased number
of user clusters, RR-GAN performed consistently well with 2
airborne base stations, 4 airborne base stations and 8 airborne
base stations.

3.6 Learning from the Neighbouring Base Station
Airborne base stations will interfere with each other if they are
too close. When airborne base stations move close to a user
cluster, the reward increases; however, if a neighbouring airborne
base station has already moved towards that centre, the reward
decreases. This experiment uses an environment of two airborne
base stations to demonstrate that our RR-GAN can be made aware
of the neighbouring base station via checking the history rewards
of neighbouring ABSes. As shown in Fig. 7, the first channel of
the reward map is generated for the first ABS. This airborne base
station gains awareness of the fact that the left user cluster has
the second optimal reward. For that reason, the network predicts
that the second airborne base station will move to that place in

7

4 airborne base stations 8 airborne base stations2 airborne base stations

Fig. 5: Comparison among Q-learning, SARSA, k-means, DQN and RR-GAN

0 10 20 30 40 50 60 70 80 90
Episode

0

20

40

60

80

Co
nn
ec
te
d
us
er
 c
lu
st
er
s’
pe
rc
en
ta
ge
 (%

)

VDN 2 ABSes
RR-GAN 2 ABSes

VDN 4 ABSes
RR-GAN 4 ABSes

VDN 8 ABSes
RR-GAN 8 ABSes

Fig. 6: Comparison among RR-GAN and VDN
User Distribution Drone 1 Reward Map Drone 2 Reward Map

Can Learn Conflicting Data

Fig. 7: Learning from neighbour

next epoch, which results in the first ABS not moving into that
direction. Similarly, the second ABS, with the help of the second
channel of the reward map, will predict and find the global optimal
for the first ABS and automatically reduce the rewards. In this
manner, RR-GAN can successfully predict the neighbouring ABS
trajectory to achieve the best global goal.

4 CONCLUSION AND DISCUSSION

In this paper, a Reward-Reinforced GAN (RR-GAN)-based
generic framework for multi-agent systems is proposed, which are
potentially generalised to any multi-agent system. We propose to
use a generator network as an implicit indication of the distribution
of users, in order to achieve the maximum global goal. Our case
study demonstrates how RR-GAN has the best system perfor-
mance compared with other baseline methods (the source code
can be accessed via GitHub link: https:\\github.com\Changgang-
Zheng\Reward-reinforced-Generative-Adversarial-Network \). In
terms of future developments, while this work demonstrated the
advantages of using RR-GAN for multi-agent learning, several
challenges still remain:

• Convergence Failures: The convergence properties for
generative neural networks constitute an open research
question. The theoretical condition for the adversarial
model is when the loss function is a class of convex
optimisation algorithms [15]. In that case, the adversar-
ial model can be guaranteed to find a unique solution.
However, when neural networks are used for the generator
and the discriminator (as in this paper), it is not always
guaranteed to converge to a unique solution. We used
Nash equilibriums from game theory to demonstrate the
possibility of converging for an adversarial model when a
small change in probabilities for discriminator leads to a
situation where two conditions hold: the generator did not
change and has no better strategy in the new environment.
At the training stage, it is a challenge to modify GAN
design so that the discriminator can be trained optimally,
avoiding the issue of convergence failures. The current
research is investigate how to move away from unimodal
distributions as a natural relaxation to solve potential
convergence failures [43].

• Uncertainty Quantification: Accurately estimating user
movements is commonly based on Bayesian methods,
which introduces epistemic uncertainty into the model pa-
rameters (cluster centres and random seeds) [44]. Gaussian
processes present issues of model inadequacy and param-
eter uncertainty when scaling to high-dimensional prob-
lems. Our RR-GAN network creates out-of-distribution
samples so that classifiers can be explicitly taught about
uncertain inputs. We evidence the complications in the
training process from computer simulations, the impli-
cations of which for real-life experimental data are still
unknown.

• Explanation of uncertainty: Creating explanations for
the causes of model uncertainty [45] is a relatively under-
explored area. In a GAN, uncertainty may arise because an
input is unlike the training data and has been constrained
by a set of known features in a previous unseen combina-
tion. This type of explanation has only been very recently
explored by Merric and Taly to calculate the variance of
Shapley values [46], despite the fact that it remains a
challenging research area which may produce important
consequences for assessing multi-agent learning systems.

8

4 airborne base stations 8 airborne base stations2 airborne base stations

Fig. 8: Robustness comparison with various greedy methods

4 airborne base stations 8 airborne base stations2 airborne base stations

Fig. 9: Robustness comparison among Q-learning, SARSA, K-means, DQN and RR-GAN with various greedy methods

4 airborne base stations 8 airborne base stations2 airborne base stations

Fig. 10: Robustness comparison among environment with different amount center

9

ACKNOWLEDGEMENTS

We would like offer our sincerest gratitude to Paulo Valente Klaine
and João P.B. Nadas, who provided an initial discussion for this
project.

REFERENCES

[1] F. L. Da Silva, P. Hernandez-Leal, B. Kartal, and M. E. Taylor,
“Uncertainty-aware action advising for deep reinforcement learning
agents.” in AAAI, 2020, pp. 5792–5799.

[2] N. K. Long, K. Sammut, D. Sgarioto, M. Garratt, and H. A. Abbass,
“A comprehensive review of shepherding as a bio-inspired swarm-
robotics guidance approach,” IEEE Transactions on Emerging Topics in
Computational Intelligence, 2020.

[3] Y. Liu, X. Wang, G. Boudreau, A. B. Sediq, and H. Abou-zeid, “Deep
learning based hotspot prediction and beam management for adaptive
virtual small cell in 5g networks,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 4, pp. 83–94, 2020.

[4] S. Russell, “Learning agents for uncertain environments,” in Proceedings
of the eleventh annual conference on Computational learning theory,
1998, pp. 101–103.

[5] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

[6] C. L. Baker, R. Saxe, and J. B. Tenenbaum, “Action understanding as
inverse planning,” Cognition, vol. 113, no. 3, pp. 329–349, 2009.

[7] A. Coates, P. Abbeel, and A. Y. Ng, “Apprenticeship learning for
helicopter control,” Communications of the ACM, vol. 52, no. 7, pp.
97–105, 2009.

[8] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[9] A. R. Shirazi and Y. Jin, “A strategy for self-organized coordinated mo-
tion of a swarm of minimalist robots,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 1, no. 5, pp. 326–338, 2017.

[10] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in neural information processing systems, 2016, pp. 4565–
4573.

[11] G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias,
and A. Aspuru-Guzik, “Objective-reinforced generative adversarial
networks (organ) for sequence generation models,” arXiv preprint
arXiv:1705.10843, 2017.

[12] R. E. Bellman, “Dynamic programming,” Princeton University Press,
1957.

[13] L. Mescheder, S. Nowozin, and A. Geiger, “The numerics of gans,” arXiv
preprint arXiv:1705.10461, 2017.

[14] M. Arjovsky and L. Bottou., “Towards principled methods for training
generative adversarial networks,” arXiv:1701.04862, 2017.

[15] Z. Pan, W. Yu, B. Wang, H. Xie, V. S. Sheng, J. Lei, and S. Kwong, “Loss
functions of generative adversarial networks (gans): Opportunities and
challenges,” IEEE Transactions on Emerging Topics in Computational
Intelligence, 2020.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 3rd International Conference on Learning Repre-
sentations, ICLR 2015 - Conference Track Proceedings, pp. 1–11, 2015.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[18] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1125–
1134.

[19] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[20] J. Li, H. Ma, and M. Tomizuka, “Interaction-aware multi-agent tracking
and probabilistic behavior prediction via adversarial learning,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 6658–6664.

[21] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization
and equilibrium in generative adversarial nets (gans),” arXiv preprint
arXiv:1703.00573, 2017.

[22] F. Afroz, R. Subramanian, R. Heidary, K. Sandrasegaran, and S. Ahmed,
“Sinr, rsrp, rssi and rsrq measurements in long term evolution networks,”
International Journal of Wireless & Mobile Networks, 2015.

[23] M. La Rocca, “Rsrp and rsrq measurement in lte,” laroccasolutions
Technology & Services, Feb, vol. 2, p. 9, 2015.

[24] F. Ricciato, P. Widhalm, M. Craglia, and F. Pantisano, Estimating
population density distribution from network-based mobile phone data.
Publications Office of the European Union, 2015.

[25] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user
movement in location-based social networks,” in Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2011, pp. 1082–1090.

[26] H. Gao, J. Tang, and H. Liu, “Exploring social-historical ties on location-
based social networks,” in Sixth International AAAI Conference on
Weblogs and Social Media, 2012.

[27] K. Murphy, “Conjugate bayesian analysis of the gaussian distribution,”
pp. 1–28, 11 2007.

[28] R. S. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” in Advances in neural information
processing systems, 1996, pp. 1038–1044.

[29] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[30] E. A. Petter, S. J. Gershman, and W. H. Meck, “Integrating models of
interval timing and reinforcement learning,” Trends in cognitive sciences,
vol. 22, no. 10, pp. 911–922, 2018.

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[32] V. G. Lopez and F. L. Lewis, “Dynamic multiobjective control for
continuous-time systems using reinforcement learning,” IEEE Transac-
tions on Automatic Control, vol. 64, no. 7, pp. 2869–2874, 2019.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” nature, vol.
518, no. 7540, pp. 529–533, 2015.

[34] A. Akarsu and T. Girici, “Fairness aware multiple drone base station
deployment,” IET Communications, vol. 12, no. 4, pp. 425–431, 2017.

[35] M. L. Littman, “Markov games as a framework for multi-agent reinforce-
ment learn-ing,” in Machine learning proceedings 1994. Elsevier, 1994,
pp. 157–163.

[36] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of
multiagent reinforcement learning,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Ap-plications and Reviews), vol. 38, no. 2, pp.
156–172, 2008.

[37] T. Doan, S. Maguluri, and J. Romberg, “Finite-time analysis of dis-
tributed td (0) with linear function approximation on multi-agent rein-
forcement learning,” in International Conference on Machine Learning.
PMLR, 2019, pp. 1626–1635.

[38] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[39] C. Guestrin, S. Venkataraman, and D. Koller, “Context-specific multia-
gent coordination and planning with factored mdps,” in AAAI/IAAI, 2002,
pp. 253–259.

[40] J. R. Kok and N. Vlassis, “Sparse cooperative q-learning,” in Proceedings
of the twenty-first international conference on Machine learning, 2004,
p. 61.

[41] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017.

[42] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran:
Learning to factorize with transformation for cooperative multi-agent re-
inforcement learning,” in International Conference on Machine Learning.
PMLR, 2019, pp. 5887–5896.

[43] J. Li, A. Madry, J. Peebles, and L. Schmidt, “On the limitations of first-
order approximation in gan dynamics,” in International Conference on
Machine Learning. PMLR, 2018, pp. 3005–3013.

[44] J. R. van Dorp, “A dependent project evaluation and review technique: A
bayesian network approach,” European Journal of Operational Research,
vol. 280, no. 2, pp. 689–706, 2020.

[45] S. Yang, K. Wong-Lin, I. Rano, and A. Lindsay, “A single chip system for
sensor data fusion based on a drift-diffusion model,” in 2017 Intelligent
Systems Conference (IntelliSys). IEEE, 2017, pp. 198–201.

[46] L. Merrick and A. Taly, “The explanation game: Explaining ma-
chine learning models with cooperative game theory,” arXiv preprint
arXiv:1909.08128, 2019.

	Introduction
	Methodology
	Generic GAN
	RR-GAN

	Experimental design and results
	Problem Statement
	Results
	Multi-agent Reinforcement Learning
	Robustness Comparison
	Scalability Test
	Learning from the Neighbouring Base Station

	Conclusion and Discussion
	References

