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Abstract 9 

Floor space is a key variable used to understand the energy and material demands of buildings. Using 10 

recent datasets of building footprints, we employ a random forest regression model to estimate the floor 11 

space of the North American building stock. Our estimate for floor space in 2016 is 88,033 (+15,907 / -12 

21,861) million m2—which is 2.9 times higher than current estimates from national statistics offices. We 13 

also show how floor space per capita (m2 cap-1) is not constant across the North American region, 14 

highlighting the heterogeneous nature of building stocks. As a critical variable in integrated assessment 15 

models to project energy and material demands, this result suggests the following: (1) the North American 16 

building stock is more energy efficient than previously realized, suggesting that buildings are 17 

underutilized, (2) the embodied environmental impacts of buildings have been underestimated in 18 

comparison to operational impacts, and (3) the near-term demand for floor space and, consequently, the 19 

future demand for materials and energy have been largely underestimated. 20 

1. Introduction 21 

To meet mid-century targets, the building industry must adapt to reduce greenhouse gas emissions and 22 

limit maximum global temperature rise to less than 1.5 °C. If left unaltered, the construction industry 23 

alone would be responsible for up to 60% of the projected remaining carbon budget of 340 GtCO2 
1

. This 24 
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presents a challenge, given that the total gross area of the built environment is expected to increase 173% 25 

by 2050 2, and buildings will drive a doubling of raw material consumption by 2060 3. 26 

  Many models have been developed to estimate the future resource demand of the global building 27 

stock 4. These models utilize either “top-down” or “bottom-up” approaches. In “top-down” methods, total 28 

resource consumption (e.g., energy, material) and floor space are known or estimated for the entire 29 

building stock 5. Useful statistics are then derived and reported per unit area of the total building stock. In 30 

a “bottom-up” approach 6–8, resource consumption is quantified per unit area (e.g., kWh/m2) for specific 31 

building typologies and multiplied by total gross areas of those building typologies within the building 32 

stock to estimate total resource consumption. Regardless of the approach, correct estimates of total 33 

building floor space are critical to ensure accurate quantification of current and future resource demand, 34 

since the results are directly proportional to the magnitude of those estimates. Floor space is typically 35 

estimated by using a floor space per capita for a particular region or per capita income level. Projections 36 

for regional or global floor space are estimated using the appropriate floor space per-capita estimates 37 

scaled by a projected population at specific income levels.  38 

Two primary methodologies have been adopted to calculate a floor space per capita. The first 39 

methodology relies on government organizations to collect national-scale data, typically through surveys, 40 

on the number of occupants and building size, which are then aggregated into national-level statistics in a 41 

“top-down” fashion. For example, the Commercial and Residential Energy Consumption Surveys 42 

(CBECS and RECS, respectively) conducted by the US Energy Information Agency (EIA) utilize this 43 

methodology 9 to estimate floor space for both commercial and residential buildings. A similar 44 

methodology, relying on nationally published statistics of building permits issued, estimated that the 45 

residential building stock of the US was 21,846 million m2 in 2010 10. From these estimates of floor 46 

space, floor space per capita are back-calculated (e.g., square-meter of floor space/person or square-meter 47 

of floor space/USD) based upon the total population or gross domestic product (GDP) of the year the 48 

statistics were collected. An example of where this methodology has been applied is in the global-scale 49 
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EDGE model 6. This model aggregates data from many national sources, including regions other than 50 

North America, to project regional floor space per capita based upon income levels, resulting in ranges 51 

between 31 m2 cap-1 and 111 m2 cap-1. Likewise, another recent estimate of global floor space utilizes a 52 

total per-capita range between 7.56 m2 cap-1 and 80.18 m2 cap-1 7.  53 

The second methodology uses surveys of individual buildings to estimate floor space per-capita 54 

metrics for a particular building typology, then aggregating total floor space based upon the total 55 

population. For example, residential net floor space per capita was estimated for the US and Canada to 56 

range between 22.00 m2 cap-1 and 50.98 m2 cap-1, depending upon the dwelling type, using a “bottom-up” 57 

modeling approach 11,12. 58 

Each of these methods for calculating per capita floor space has inherent weaknesses. Survey 59 

methods at the regional or national level are not always transparent and may contain implicit or explicit 60 

biases. Likewise, uncertainties in the metrics are not always reported. Additionally, due to the resource 61 

intensity of capturing national-scale data, a limited number of surveys can be performed. For example, the 62 

most recent US EIA RECS surveyed only 5,600 of the estimated 118.2 million dwellings 13. Another 63 

weakness of all methods is their inability to capture the underutilization of floor space. Surveys of 64 

occupied buildings will fail to capture unoccupied or underutilized building spaces. While capturing 65 

occupied buildings is certainly useful for modeling operational energy demand, it will underestimate the 66 

building stock’s demand for materials and their associated embodied emissions. To date, there has been 67 

no “bottom-up” survey of all North American buildings to quantify total floor space, which is the aim of 68 

this work.  69 

2. Aims and Objectives 70 

Floor space estimates underpin many energy and material demand models, yet a single value is commonly 71 

used to estimate the extent of a region’s building stock floor space. These estimates rely on small samples 72 

of the building stock, and so far, have failed to take advantage of recent advances made in deep learning 73 

and image classification. Thus, the present work has three objectives: (1) develop a methodology for 74 
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using remotely sensed building footprint datasets to estimate total floor space of a building stock, (2) 75 

apply the methodology in the context of the of North American building stock, and (3) report the 76 

uncertainty of floor space per-capita estimates. We define the North America region to include the United 77 

States and Canada to align with the regional definitions used by other models (e.g., International Institute 78 

for Applied Systems Analysis (IIASA) Global Energy Assessment). 79 

3. Methodology 80 

Using recently available remotely sensed satellite imagery 14–16, we propose a new method to estimate 81 

floor space and floor space per capita.  This methodology section is divided into subsections to discuss 82 

the datasets, the calculation of geometric features, the machine learning model, validation of the model, 83 

and the limitations. 84 

3.1 Dataset Description and Validation 85 

Three open-source datasets published by Microsoft were used in the analysis to quantify the North 86 

American building stock: (1) US building footprints 14, (2) Canada building footprints 15, and (3) US 87 

building footprints with height attributes 16. The first and second datasets were derived by extracting 88 

building footprints from satellite imagery using deep neural networks, while the third dataset is a subset 89 

of the first with the height attribute determined through interpolation of a digital terrain model. 90 

The US building footprint dataset was evaluated for its accuracy for three different urban areas 91 

(Los Angeles County, New York City, and Denver) by Heris et al.17. The authors found it to have 92 

precision (positive prediction value) between 98.2% and 99.5% for these urban areas and recall 93 

(sensitivity) between 93% to 99% for buildings larger than 200m2. In addition to the self-reported 94 

accuracy metrics which accompany the published dataset, these additional metrics show that the dataset 95 

accurately identifies true-positives and has very few false positives in urban areas. Yet the Microsoft 96 

building footprint dataset’s accuracy has not been assessed rigorously for non-urban areas. Heris et al., 97 

identified many false positives which occurred in areas of open water, high elevation, light colors (e.g., 98 
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snow and white sand), and bare ground. These false positives often have large footprint areas, making 99 

them problematic for assessing the extent of the North American building stock. 100 

To identify and remove these false positives, we perform an analysis under the assumption that 101 

the vast majority of the building stock is located near publicly accessible roads. Thus, the further a 102 

building footprint is from a road, the higher its probability of being a false positive. To do so, we aim to 103 

identify a threshold at which a footprint can be rejected, using logistic regression models. The distance 104 

between a footprint’s centroid and nearest road (metric of distance-from-road) is calculated for each 105 

building footprint of the dataset. Datasets for the North American roadways consisted of the US 106 

TIGER/Line shapefiles 18 and Canadian Open Roadway Data 19 which include both paved and unpaved 107 

roads. To ensure sufficient representation of buildings far from roads, we apply a base-10 log-transform 108 

to the distance-from-road metric. We then create a ground-truth dataset to identify the optimal distance-109 

from-road threshold for which to exclude footprints. To ensure sufficient representation along the tail of 110 

the distribution, and an adequate balance between building and non-building footprints, we sample 150 111 

buildings within each standard deviation of the log-transformed distribution (visualized in Figure S1.1). 112 

This sample comprises of 10 sampling buckets ranging from -2SD to +8 SD from the mean. We reviewed 113 

Google satellite imagery for these 1,500 footprints by “hand” to create the ground-truth dataset for which 114 

each building is classified as a building (true positive, e.g., a cabin in a forest), or a non-building (false 115 

positive, e.g., a snow field at high elevation). 408 of the 1,500 footprints (27.2%) are identified to be false 116 

positives, showing sufficient sample size and representation of non-building footprints for the following 117 

logistic-regression models. We use these ground-truth classifications as the outcome variable, and 118 

distance-from-road threshold status (set to 1 if footprint distance-to-road is less than the threshold, and 0 119 

otherwise) as the predictor variable in a series of logistic regression models. Thus, we are able to test the 120 

discriminative ability for a multitude of distance-from-road thresholds, to find which threshold optimally 121 

segregated true building footprints from non-building footprints. We test threshold distances ranging 122 
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between 32 and 10,000m, and evaluate model accuracy using the area under the receiver-operating 123 

characteristic curve (AUC) and pseudo-R-squared metrics (i.e., Naglekerke and McFadden R-squared). 124 

The threshold distance which maximizes the AUC (and most adequately predicted false positives 125 

in the ground-truth dataset) is 487m with an AUC of 0.81. This AUC is considered excellent20 as the 126 

model at this threshold has an 81% chance of correctly distinguishing true building footprints from non-127 

building footprints. Across all thresholds, the model with inclusion/exclusion criterion set to 487m 128 

features a global maximum in accuracy as illustrated in Figure 1 (neither larger nor smaller thresholds 129 

improve the identification of non-building footprints). Thus, filtering on the distance-from-road metric 130 

adequately removes false positives from the dataset. It is important to note that this threshold is 131 

conservative, given that a considerable number of true positives are removed at the expense of filtering 132 

the majority of the less frequent false positives. For instance, large shopping centers surrounded by 133 

parking lots can have a distance from roads greater than 487m and are removed based upon this analysis. 134 

More stringent distance-to-road thresholds have similar model performance (AUC150m = 0.77 and 135 

AUC300m = 0.80). To be conservative, we utilize a 300m as a threshold for the results presented in Section 136 

4. Additional results from other threshold distances, both more and less conservative, are included in 137 

Supplements S5 and S6. 138 

 139 

(a) (b)
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Figure 1. (a) Area under the ROC curve (AUC) vs. log-transform of the distance from road with 95% 140 

confidence intervals. (b) Percent of variance explained using two pseudo R-squared metrics: Naglekerke 141 

and McFadden. 142 

 143 

The third dataset which we use is a sample of the first dataset and consists of approximately 8 144 

million footprints (6.4% of the total building stock identified by Microsoft) that were captured between 145 

2014 and 2015.16 The height attribute was determined through the interpolation of a digital terrain model. 146 

This dataset is considered the “training dataset” for the machine learning model and is deemed to be a 147 

representative sample of all buildings in North America. Additional outliers of each dataset are identified 148 

as buildings that are either extremely small, and unlikely to be inhabited (a footprint area smaller than 50 149 

m2), or extremely large (a footprint area larger than 10,000 m2). Additionally, some outlier data points are 150 

identified in the dataset and removed. For example, the tallest building of the dataset is identified to be a 151 

water tower in Florida with a height of over 9 million meters. This building, and others with obviously 152 

egregious height errors are removed (n=12 of 7,993,302; i.e., 0.00015%), based upon a visual inspection 153 

of the tallest 100 buildings identified in the dataset. Height detection of buildings in urban environments 154 

has typically been limited to the local scales (i.e., cities) and regional and global estimates are a current 155 

focus of the remote sensing community 21. 156 

3.2 Geometric Features 157 

Each building’s footprint is defined by a GeoJSON string which describes the latitude and longitude of 158 

each of vertex of the footprint. From a building’s footprint geometry, a large number of other metrics can 159 

be derived. We use 19 metrics ranging from the simple (e.g., perimeter and area), to the complex (e.g., 160 

compactness and fractality) as predictor variables for training a machine learning model. The metrics that 161 

are calculated for each building footprint are described in Table 1. The calculations are performed under 162 

four geographical projections depending upon the type of calculation (either distance or area) and region 163 

(Canada or United States). For area calculations, we use the USA Continental Equidistant Conic 164 
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(ESRI:102005) or Canada Albers Equal Area Conic (ESRI:102001) projections, while for distance or 165 

length calculations, we use the USA Continental Albers Equal Area Conic (ESRI:102003) or Canada 166 

Lambert Conformal Conic (ESRI:102002) projections.  167 

Table 1. Description of geometric characteristics of building footprint forms. Each metric is used as a 168 

predictor variable in the machine learning model which estimates building height. 169 

Variable Index Notation or 

Equation 

Description 

Size    

 

Perimeter 𝑃 Perimeter of the footprint. 

Area 𝐴𝑓𝑜𝑜𝑡 
Area of the building 
footprint. 

 

Mean radius 𝑅𝑚𝑒𝑎𝑛 =  
1

𝑁
∑ 𝑅𝑖

𝑁

𝑖=1
 

Mean distance from the 

building centroid to each 
vertex of the perimeter. 

Minimum radius 𝑅𝑚𝑖𝑛 =  min (𝑅𝑖) 
Minimum distance from the 

building centroid to each 
vertex of the perimeter. 

Maximum radius 𝑅𝑚𝑎𝑥 =  max (𝑅𝑖) 

Maximum distance from the 

building centroid to each 

vertex of the perimeter. 

Shape    

 

Convex hull perimeter 𝐶𝑋𝑃 Perimeter of the convex hull. 

Convex hull area 𝐶𝑋𝐴 Area of the convex hull. 

 

Minimum Bounding Rectangle 

     Perimeter 𝑀𝐵𝑅𝑃 
Perimeter of the minimum 
bounding rectangle. 

     Area 𝑀𝐵𝑅𝐴 
Area of the minimum 

bounding rectangle. 

     Width 𝑀𝐵𝑅𝑤 
Width of the minimum 
bounding rectangle. 

     Length 𝑀𝐵𝑅𝑙 
Length of the minimum 

bounding rectangle. 

MBR Orientation 𝑀𝐵𝑅𝑂 
Orientation of the minimum 
bounding rectangle (MBR). 

Perimeter

Area

R1

R2

Ri

RN

R3

R4

Centroid

Convex Hull Perimeter

Convex Hull Area

MBR Perimeter

MBR 
Orientation

MBR Area

MBR Width M
B
R

 L
en

gt
h

MBR
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Number of Vertices 𝑛𝑣𝑒𝑟𝑡 
Number of vertices that 
make up the building 

footprint geometry. 

 

Cooke JC index 

𝑃

4√𝐴𝑓𝑜𝑜𝑡

− 1 
Measure of a footprint’s 
shape efficiency with respect 

to a square 22. 

 

Compactness 
4𝜋 ∗ 𝐴𝑓𝑜𝑜𝑡

𝑃2
 

Measure of a footprint’s 
circularity or compactness 23. 

 

Fractality 1 −
log (𝐴𝑓𝑜𝑜𝑡)

2 ∗ log (𝑃)
 

Logarithmic ratio between 

the footprint area and 
perimeter 24. 

 

Concavity 
𝐴𝑓𝑜𝑜𝑡

𝐶𝑋𝐴

 

Ratio of the footprint area to 
the area of the convex hull 
24. 

 

Elongation 
𝑀𝐵𝑅𝑙

𝑀𝐵𝑅𝑤

 

Ratio of the length of the 

MBR to the width of the 
MBR 25. 

 170 

3.3 Machine Learning Model 171 

With these predictor variables, the Python scikit-learn (v0.22.1) package 26 is employed to train 172 

machine learning models. Linear, ridge, support vector machine, gradient boosting, random forest, and 173 

Adaboost regression models are considered, using a 70/30 training-to-test split of the training dataset. 174 

Testing mean absolute error (MAE) and model training time are used to evaluate the performance of each 175 

model. Out of each of the six models, a random forest regression model has the highest performance. 176 

Random forest regression models are a commonly used ensemble learning method which predict a 177 

response (in this case building height) based upon the average prediction of many decision trees. A tree is 178 

formed by creating branches of nodes. Nodes are created at points when the input variables minimize the 179 

1

32

4

5

6

Nvert = 6

Cooke JC index = 1.0Cooke JC index > 1.0Cooke JC index >> 1.0

Compactness = 1.0Compactness < 1.0Compactness << 1.0

Afoot

P

CXA

Afoot

MBR Width

M
B

R
 L

e
n
g
th

MBR
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variance of the response variable. Subsequent nodes are then created along a branch and its length 180 

controlled by the depth of the tree. Controlling the depth of the tree is important to avoid the overfitting of 181 

the model. While useful for high dimension data, random forests are prone to overfitting and are difficult 182 

to visualize, although overfitting can be minimized by tuning the hyperparameters. Upon a large grid 183 

search of hyperparameters with 5-fold cross-validation, the random forest model found to have the lowest 184 

testing MAE consists of 100 trees, makes selections at each node using mean standard error, has a depth 185 

of 10 nodes, is limited to 9 estimators, and for a node to be created requires at least 9 samples. This model 186 

has a training mean absolute error (MAE) of 1.98 m, a training root mean square error (RMSE) of 3.49 m, 187 

a testing MAE of 1.98 m and testing RMSE of 3.52 m. There is negligible difference between the training 188 

and testing MAE suggesting that the identified random forest model is not overfit. This low MAE is a 189 

result of the error of predicting an individual building’s height being insignificant in the context of the 190 

entire building stock. 191 

While the structure of the forest is difficult to visualize, the predictor variable importance is 192 

summarized in Figure 2. Surprisingly, the orientation of the minimum bounding rectangle and fractality 193 

of a building footprint have the most predictive power within the random forest model. We suspect this 194 

result to be attributed to the fact that tall buildings are nearly always located in dense urban areas, while 195 

shorter buildings (i.e., residential buildings) are often located along curved streets in suburbs. In the US 196 

and Canada, many city centers have grid-like road structures oriented along north-south meridians and 197 

east-west circles27. Thus, the orientation of the minimum bounding rectangle is useful for separating out 198 

buildings based upon their heights. Likewise, tall buildings are typically simple in their building footprint 199 

and do not consist of multiple wings. Complex building footprints (higher fractality) are often shorter, as 200 

it is less efficient to construct a tall building with a complex footprint. For additional details regarding the 201 

random forest model and predictor variables, see Supplement S3 for a link to the code and data 202 

repositories. 203 
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 204 

Figure 2. Variable importance of the predictors used in the random forest regression model. 205 

 206 

This random forest regressor model is applied to all footprints in the US to predict the building 207 

height (ℎ𝑖). To quantify uncertainty around each height prediction, the test MAE is added and subtracted 208 

to create three height predictions for each building footprint (upper, lower, and predicted). We then 209 

estimate the total floor space of North American buildings according to the following: 210 

𝐹𝑇 = ∑ 𝐴𝑓𝑜𝑜𝑡,𝑖 ∗ (⌊
ℎ𝑖

ℎ𝑖𝑛
⌋ − 1)𝑁

𝑖=1      (Eq. 1) 211 

where, 𝐹𝑇 is the total gross floor space, 𝐴𝑓𝑜𝑜𝑡,𝑖 is the individual footprint area, ℎ𝑖 is the estimated height 212 

of each footprint, ℎ𝑖𝑛 is the interstory height, and 𝑁 is the total number of polygons identified from the 213 

satellite imagery. ℎ𝑖 and ℎ𝑖𝑛 are visualized in Figure 3 for a building with a pitched roof. The number of 214 

stories is determined by dividing the estimated height by the interstory height, rounding down to only 215 

count full stories, and subtracting one story. For the building in Figure 3, Equation 1 calculates the 216 

0 0.1 0.2 0.3 0.4 0.5
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POP Index
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building to have two stories. One story is subtracted due to the height prediction being that of the 217 

maximum height. This value is determined by a visual inspection of the ground truth number of stories of 218 

150 buildings against the predicted number of stories using Google street view imagery 28. The buildings 219 

sampled are identified in Supplement S3. On average, the ground truth number of stories was determined 220 

to be 1.10 stories less than the only using the predicted height since the predicted height is recorded as the 221 

maximum height of the building, rather than the average height. 222 

 223 

Figure 3. Visual description of the height variables used by Equation 1. 224 

 225 

A floor space per capita is then estimated by dividing the total floor space by the total population 226 

of each region. It is assumed that the shape of each building is an extrusion of the building footprints and 227 

that only full stories contribute to floor space.  This assumption ignores the fact that a building can have 228 

various heights for different parts of its footprint (e.g., a building with wings may have various heights), 229 

or that a façade may be tiered with reduced floor space at higher stories. Because this is a large-scale 230 

regional analysis, and the optimal means of carrying vertical loads is through vertical elements29, we 231 

consider the difference in floor space from buildings with discontinuous floor plates to be negligible. 232 

Furthermore, the optimal building form is cuboid in shape, meaning that it is an extrusion from a 233 
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rectangular shape,30 yet additional investigation is warranted for determining the extent to which 234 

vertically discontinuous buildings exist in the North American building stock. 235 

3.4 Model Validation 236 

To validate the random forest regression model’s predictive power, the model is applied to all footprints 237 

in the US building footprints with height attributes 16 dataset. The total floor space is then calculated using 238 

both the reported height (from the training dataset) and predicted height (from the random forest 239 

regression model) with an interstory height of 3.6m. We assume that each building has an interstory 240 

height of 3.6m. This value is determined based upon a sensitivity analysis in which we considered various 241 

distributions of interstory heights. For the details of this sensitivity analysis, see Supplement S2. We find 242 

that using a single value of interstory height yields similar results to using other distributions. Interstory 243 

height has not been robustly measured in the North American building stock and would incrementally 244 

improve the present analysis. 245 

3.5 Limitations 246 

• A key assumption of this analysis is that the training dataset is representative of the entire North 247 

American building stock. While the data is taken from 44 states in the US, it has primarily 248 

coverage of urban areas rather than rural areas. Additionally, the error associated with quantifying 249 

building height using an interpolated digital terrain model is not expressed. While 150 buildings 250 

were visually checked for accurate prediction of number of stories using Equation 1, there still 251 

remains some uncertainty with the quality of the building height data used to train the model. 252 

• Correctly estimating building height is an important component of the model, and this aspect can 253 

be improved upon as new methods for estimating building heights across large scales are 254 

developed 21. While the quality of the comprehensive building footprint datasets 14,15 were 255 

validated for three metropolitan areas 17, they have not been validated across the entirety of North 256 

America. Thus, while we manually checked a small fraction of building footprints for their 257 
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accuracy and deemed them representative, it was not feasible to check the quality of the entire 258 

datasets due to their sheer size. 259 

• In determining an appropriate distance to road threshold value, only 1500 building footprints 260 

were used. Additional ground-truth sampling of buildings far from roads might refine this 261 

criterion and provide further evidence for the best threshold distance. 262 

• While the random forest model identified for predicting building heights in this study works well 263 

at the building stock scale, another model may be better suited to predict the height of an 264 

individual building. Furthermore, characteristics other than footprint geometry should be explored 265 

as predictor variables. While the random forest model used had sufficient predictive power for 266 

this study, it may not be the optimal model for predicting individual building heights, which 267 

would be useful for characterizing smaller-scale building stocks. 268 

 269 

4. Results and Discussion 270 

4.1 Estimate of Floor Space in North America 271 

Across North America, our model estimates a total of 88,033 million m2 of floor space with an upper 272 

bound of 103,940 million m2 and a lower bound of 66,172 million m2. Upper and lower estimates are 273 

associated with the error in estimating the height of an individual building footprint (see Section 3.3). 274 

When converting these estimates to floor space per capita, 242 m2 cap-1 is predicted with an upper bound 275 

of 288 m2 cap-1 and lower bound of 182 m2 cap-1. The distribution of floor space between the United 276 

States and Canada is 91.6% and 8.4%, respectively. Likewise, there is a 15% difference between the per 277 

capita floor space metrics for the two countries, with the US having 246 m2 cap-1 and Canada having 210 278 

m2 cap-1. Figure 4a and 4b show the predicted floor space per capita estimate for each state or territory of 279 

the United States and Canada. Detailed results for these estimates are available in Supplements 6 and 7. 280 

No distinction is made herein between residential and non-residential buildings. However, the floor space 281 

could be subsequently disaggregated using high-fidelity data collected from other surveys. For example, 282 
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the US HAZUS, estimates the US building stock to consist of 77.3% residential, 14.2% commercial, 3.0% 283 

public, and 5.5% agricultural and industrial 31. 284 

The floor space per capita visualized in Figure 4 show variation between administrative 285 

boundaries. For large-scale models that consider multi-national regions, using an average floor space per 286 

capita is appropriate. However, for sub-national analyses, floor space per-capita estimates vary greatly 287 

between states or territories, and especially, counties. For example, our analysis estimates that Denver 288 

county has a per capita floor space of 141 m2 cap-1, while some rural, sparsely populated counties have 289 

floor space per capita larger than 1000 m2 cap-1. We attribute this result to the large variation in economic 290 

activity between counties, limited land availability driving buildings to be smaller, and the disaggregation 291 

between the location of population centers and the location of buildings. While the metric of floor space 292 

per capita is commonly used for large-scale modeling purposes, caution should be taken when using this 293 

metric for analyses of sub-national building stocks. This analysis’ primary aim was to estimate floor space 294 

per capita at the regional scale, so further investigation into individual counties was not performed, yet 295 

may yield interesting insights into the composition and heterogeneity of the North American building 296 

stock. 297 

 To elucidate whether floor space per-capita metrics are effective means of representing floor 298 

space, the correlation coefficient between population and floor space is computed for all administrative 299 

boundaries. A strong correlation at the state and province level is found (0.976), validating the use of 300 

floor space per capita for prognosticating the future demand and growth of floor space. 301 
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 302 

Figure 4. (a) Floor space per capita (m2 cap-1) for each state in the USA. (b) Floor space per-capita (m2 303 

cap-1) for each province and territory of Canada. 304 

4.2 Comparison to Existing Floor Space Estimates 305 

Our estimated floor space per capita are 2.4 – 3.0 times greater than other estimates for the North 306 

American region. As previously discussed, a limiting assumption of our model is that building stock 307 

height data has not been as robustly validated to ground truths as the other building footprint datasets. We 308 

test this assumption by randomly forcing a percentage of the building stock to only be single-story. For 309 

example, a large department store may have a relatively tall building height, yet only be single-story. Our 310 

model would predict it to be a multistory building, when in reality it is only single story. The results of 311 

this analysis are shown in Figure 5, with the computed floor space per capita compared against other 312 

estimates 6,7,13,32–34. Other estimates for floor space align well with one another, often relying on the same 313 

foundational data sets. If we assume the building footprint datasets used herein comprehensively represent 314 

the North American building stock, then to arrive at the floor space per capita used by other models, every 315 

building would be required to be single-story (or 0% considered multi-story). In other words, the total 316 

area of building footprints is equivalent to these other estimates. We know this not to be true, which 317 

demonstrates that these other per-capita floor space metrics drastically and conclusively underestimate the 318 

total floor space in North America. 319 

(b)(a) Floor Space Elasticity 
(m2 cap-1)
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The extent of the underestimation of the North American building stock by many models 320 

necessitates a reevaluation of the methodologies used to estimate floor space per capita. Potential 321 

discrepancies between estimates of per capita floor space may be attributed to buildings being under 322 

occupied, having higher-than-expected rates of unoccupied buildings, or national surveys not being 323 

representative of the total building stock. Moreover, the complexity and uncertainty of commercial floor 324 

space may not be accurately captured by these models. 325 

 326 

Figure 5. Floor space per-capita for different administrative boundaries of the North American building 327 

stock compared against other estimates. 328 

4.3. Implications of Results 329 
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Floor space per capita is a critical variable in many global scale models, such as the MESSAGE 35, EDGE 330 

6, and TIMER 36 models, which estimate the future energy demand of the building sector. Furthermore, 331 

the demand for construction materials11,12, their availability for future reuse37, and their potential to store 332 

carbon38 also rely on this metric, as it is a key driver for projections. These resource demands are modeled 333 

using the Kaya identity methodology39. For example, residential energy demand can be modeled as: 334 

𝐸𝑟𝑒𝑠 = h 
𝑝

ℎ

𝐴

𝑝

𝐸

𝐴
      (Eq. 2) 335 

where 𝐸𝑟𝑒𝑠 is the total energy demand of a residential building stock, h is the number of households, (p/h) 336 

is the number of persons per household, (A/p) is the floor space per capita (or floor space elasticity), and 337 

(E/A) is the energy use intensity for a particular end-use (e.g., space heating or space cooling). A similar 338 

approach can be taken for commercial buildings, using area divided by GDP as the use-intensity driver. 339 

With this modeling approach, the total resource demand of a building stock is directly proportional to the 340 

floor space per capita or floor space per unit of economic output. A second approach uses the floor space 341 

per-capita and simple physics-based models (e.g., degree-day method) or regressions to estimate energy 342 

end-use demand for different building typologies6. In both of these approaches, the floor space per-capita 343 

metric is a critical component. While each model which uses the Kaya identity methodology has more 344 

complexity to it than the simple linear relationship presented in Equation 2, the total resource demand 345 

estimated by each analysis is directly proportional to the metric of floor space per capita. The results 346 

presented herein cause concern for the estimated resource consumption of the North American building 347 

stock, since the floor space estimates are 2.4 – 3.0 higher than the values used in other modeling efforts. 348 

There may be potential positive sides to this finding. For example, if the current underestimation is a 349 

result of underutilized floor space, then a significant opportunity exists to reduce the demand for new 350 

construction and its associated material and embodied emissions. With more floor space already available 351 

in the building stock, focus can shift from new construction to renovations and refurbishments. 352 

 Additionally, there is a lack of data that describe building stocks in the Global South. As these 353 

economies continue to develop, it is expected that their floor space per capita will also increase7,35,40. This 354 
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expected increase is based upon estimates for North America and other developed economies. By 355 

underestimating the floor space per capita of higher-income level countries, the current projections for 356 

global floor space growth—especially in the Global South—may be vastly underestimated. This is 357 

concerning given that most of the growth in floor space is expected to occur in the Global South7. 358 

 Bottom-up models for operational energy demand which utilize the Kaya identity methodology 359 

are often validated using top-down estimates. This validation suggests that the floor space per capita used 360 

is appropriately scaled for occupied, conditioned spaces. The results presented by our analysis utilizes a 361 

bottom-up approach, which considers all building footprints in North America, regardless of if they are 362 

unoccupied or unconditioned. To explore this discrepancy, we consider two scenarios. The first is that 363 

operational energy demand is appropriately modeled using floor space per-capita metrics derived from the 364 

US EIA and validated with top-down estimates. When considering the results from our analysis, this 365 

would mean that only up to one-third of the building stock is occupied and conditioned, an implausible 366 

scenario. An alternative scenario is that the building stock is much more energy efficient than previously 367 

realized, due to an extent of underutilization. While some unconditioned buildings (e.g., agricultural and 368 

industrial) are included in our analysis, but excluded in the US EIA’s analysis, they only contribute 5.5% 369 

of the total building stock31, which is not enough to rectify the discrepancy observed. 370 

Regardless, the fact that the building stock is 2.4 – 3.0 times larger than expected causes concern 371 

when modeling material projections and embodied carbon emissions, since all buildings will have this 372 

demand for material, regardless of whether or not they are fully conditioned. This underestimation of 373 

embodied carbon emissions is worrisome as much of the attention in the past decades has been paid to 374 

reducing operational emissions, when in fact embodied emissions are more significant than realized. By 375 

further characterizing the North American building stock, using bottom-up approaches, we will gain a 376 

better understanding of where the opportunities might lie to reduce life cycle energy demand and carbon 377 

emissions.  378 
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Understanding floor space per capita is essential to quantifying global resource demand. We 379 

present in this work a novel method for quantifying the floor space of the North American building stock. 380 

The results call for the reevaluation of how floor space per-capita metrics are calculated for building 381 

stocks throughout the world. The methodology for estimating floor space using satellite imagery and 382 

machine learning can be applied to other regions of the world, specifically the Global South, as high-383 

quality data becomes available. These insights will improve systems-scale models for predicting global 384 

energy and material demand, existing material stocks in the built environment, and the carbon storage 385 

potential of the global building stock.  In addition, newfound estimates of floor space per-capita metrics 386 

will aid in identifying and prioritizing building-related interventions required to minimize greenhouse gas 387 

emissions from the building sector. 388 

Supporting Information 389 

Details on distance from road threshold; sensitivity analysis of interstory height; link to code repository; 390 

validation of Equation 1; floor space per capita by USA county; additional results for different distance 391 

from road threshold values.  392 
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