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Abstract 

In this thesis I present my research into the implementation of an edge point detection 

algorithm within a Smart CMOS Camera. The research includes the development 

and implementation of a new edge detection algorithm. The algorithm was designed 

for implementation in a Near Sensor Image Processing (NSIP) structure. This 

structure was integrated onto a CMOS substrate alongside a random access image- 

sensing array. The random access array employed pixels with integral gain. 
Operational specifications for the Smart CMOS Camera were derived from the spatial 

resolution, the frame rate and edge acuity, necessary to implement corridor 

autonomous navigation at a walking pace of lm/s. 

The architecture used to implement NSIP structure is referred to as the Scanned 

Layer Architecture (SLA). This reflects the layered processing adopted to overcome 

the connection restrictions of the CMOS substrate. The new edge detector was 

labelled as the SLA detector. This detector was developed from a study of the 

gradient based edge detection algorithms. Its integration into a mixed signal CMOS 

processor was facilitated by limiting the spatial derivative convolution coefficients to 

integer values, and by minimising the number of product terms. 

The SLA edge detector was designed to retain edge sense and edge direction 

information. Two directional edge sets were exported from each processed image. 

These were a vertical edge set and a horizontal edge set. Within these sets the edge 
information was encoded in a 3-state format to retain the edge sense information. A 

new edge point metric was developed for the quantitative assessment of the SLA 

algorithm results. This allowed the detector to be assessed against the requirements of 
a vision based navigation algorithm. Simulation results demonstrate the use of the 
SLA edge data to locate a robot's floor position within a corridor environment. 
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Chapter 1 Introduction 

1.1 Motivation 

The earliest fossil records, some 600 million years old, record the existence of flat 

worms and water invertebrates that employed light sensing spots to assist navigation. 

The worms still exist today and scientists have trained these worms to navigate on 

visual stimuli through a maze [1]. Biological evolution has brought us to the state 

where visual perception is the prime means that most earthly creatures use to find 

their food and avoid predators. These biological mechanisms have provided the 

inspiration for the development of artificial vision over the past 30 years. 

The desire to create a machine that can perceive the world in a manner equivalent to 

human perception is the driving force behind this research into vision processing. 

Approximately 50% of the human higher-level brain functions are devoted to the 

processing of visual stimuli [2]. Given that the brain has the capacity to perform 

trillions of synaptic operations per second [3] there is no prospect of this structure 

being fully replicated in an artificial machine. 

In the early 1970's the development of computing systems with memory capacity that 

was sufficient to store 2-D intensity profiles captured by imaging systems facilitated 

the first development of machine vision systems [4]. A critical aspect of this research, 

was the development of data structures that chart the sequence of transforms, needed 

to convert the data intensive sets generated through image capture, into the succinct 

scene descriptions. An example of a machine vision processing structure is illustrated 

in Figure 1.1 [5]. 

Figure 1.1 illustrates a staged processing structure. At the lowest level of the structure 
the sampled intensity profile is operated upon by domain independent, low-level 

processes. These assign edge and region primitives to each image sample, referred to 

as picture elements (pixels). The primitive data sets occupy address spaces 

equivalent in size to the sampled intensity profile. 
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Goal 
Processing Interpretation 

Symbolic L Image Segmentation 
Processing Object, Features 

Intermediate L Intrinsic Representation 
Processing Lines, Surfaces 

Low-Level Image Primitives 
Processing Edges, Regions 

Image 
Capture Intensity Profile 

Figure 1.1 Staged Image Processing Structure 

In the intermediate-level processing the primitive data sets are processed to give 

intrinsic representations of the object outlines and surfaces in the sampled intensity 

profile. In this intermediate stage transforms are applied to convert between data 

driven pixel assignments and symbolic vector assignments. The output set from the 
intermediate stage contains vectors that represent lines and surfaces detected in the 

sampled profile. 

The vector sets created by the intermediate-level processes are passed onto the 

segmentation processes. Here the intermediate vectors are merged to form 

segmentation vectors that mark whole objects or major features in the image. Finally 
interpretation processes are applied to the segmentation results to identify objects and 
generate a scene description. 
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Current research into the development of vision based autonomous navigation 
demonstrates that the processing overheads associated with the low-level vision 

processes limits the practical implementation of autonomous robotic systems. The 

research reported in this thesis is specifically aimed at resolving the power consumed 
by the processing needed to implement low-level vision tasks. 

1.2 Objectives 

If an autonomous system is to navigate freely along a corridor or through a room it 

needs to carry energy cells with sufficient capacity to supply its locomotion and 

information processing. The power consumption of the onboard information 

processing is critical to the operation of autonomous systems. In a review of the state 

of the autonomous systems carried out in 1996 by Uhlin etal [6], it was noted that the 

means to implement visual perception in an energy efficient way is lacking. Uhlin 

explained that the causes of this deficiency are centred on a limited understanding of 

the visual perception models and the lack of energy efficient processing structure to 

deal with the high data throughput generated by image sensing cameras [7-10]. 

A review of autonomous systems and the processing resources needed for vision 

based navigation is given in Chapter 2. This confirms Uhlin's assertion that there is a 

need for a compact power efficient vision processor that can act as a front-end 

accelerator for vision systems. The research work detailed in Chapters 3 to 5 describes 

the algorithmic developments, and the Complementary Metal Oxide Silicon 

(CMOS) circuit designs needed to realise a front-end vision accelerator. The vision 

accelerator developed was called a Smart CMOS Camera. A partial overview of the 

layout for the Smart CMOS Camera is illustrated Figure 1.2. 

The Smart CMOS Camera implements edge point detection at the pixel read rate, and 
is designed to supply edge point sets for the received image in real time. A layered 

processor structure is needed to implement the edge point detection. Three layers are 
identified. The first layer computes spatial derivatives for the pixels in a selected 
column within the array. In the second layer, the spatial derivatives are compared to 
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an externally supplied threshold to give a discrete derivative representation. In the 

third layer, logical processes are used to assign edge points to neighbourhoods of 

discrete derivatives. The architecture used for the Smart CMOS Camera was labelled 

as Scanned Layer Architecture (SLA). This label reflected the fact that the image 

data was scanned out of the image-sensing array and processed through layered 

circuits that formed the column processor of Figure 1.2. These layered processing 

circuits form a Near Sensor Image Processor (NSIP). 

Pixel Array r- 

Spatial Derivative Threshold Comparison Edge Point 

Spatial Derivative'-{ºThreshold Comparison j Edge Point 

Spatial Derivative 1--{º Threshold Comparisonjºj Edge Point 

Spatial Derivative "Threshold Comparisonjý Edge Point 

Column Select II Edge Threshold 

Figure 1.2 Smart CMOS Camera, Pixel Array and NSIP 

1.3 Thesis Overview 

The SLA NSIP edge detector was developed through image processing simulation 

described in Chapter 3. The edge detection and post edge detection processes 

developed through this simulation was labelled as the SLA algorithm. This new 

algorithm detected edges through parallel extraction of 1ST and 2°d order spatial 

derivatives. It was developed from a study of gradient based edge detection 

algorithms [11,12,13]. In order to ensure that the algorithm could be realised within 

mixed signal CMOS environment, the spatial derivative convolution coefficients were 
limited to integer values, and the number of product terms was minimised [14]. 

The SLA algorithm simulation described in Chapter 3 includes post detection 

processes that extract line vectors from the edge point sets. A demonstration of 
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Beveridge's [15] pose recovery algorithm is used to illustrate how the line vectors can 
be matched to an environmental model. It is further shown how the recovered pose 

can be used in the implementation of navigation decisions. 

In order to optimise parameter settings for the SLA edge point detection algorithm, 

and to test its performance against system level specifications a new Edge Point 

Metric (EPM) was developed. The implementation of this metric is described in 

Chapter 4. This metric was designed to embody Forstner's minimum quality 

specification [16]. This ensures that the metric is not limited to the quantitative 

comparison of detectors, but is of use in the selection and optimisation of a detector, 

for given vision system specifications. 

Chapter 5 describes the circuits designed to implement the Smart Camera of Figure 

1.2 on a CMOS substrate. This circuit implementation required the development of a 

random access pixel array and the design of a new contrast-sensitive current mode 

circuit. Results demonstrate the detection of edge points by a test implementation of 

the Smart CMOS Camera. 
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Chapter 2 Autonomous Vision Systems Review 

2.1 Introduction 

The general concept of an autonomous robot that can operate within the human 

environment and perform human type tasks provides the motivation for research into 

the field of autonomous vision. However, there is a problem, in that the energy 

consumed by current image processing systems is several orders of magnitude greater 
than that required by biological vision systems, whereas the acuity of these artificial 

systems is significantly less than that obtained from biological systems [6]. 

Section 2.2 reviews research into autonomous robots that depend on visual 
information for the implementation of navigation tasks. In these robotic systems there 

is a trade off between the degree of autonomy that can be obtained, and the electrical 

power required to process vision information. It is shown that if the robotic system is 

expected to operate in an office style environment then under current battery and 

processing technology limitations, it is not possible to implement autonomous 

operation. The operational systems reviewed used Digital Signal Processing (DSP) 

processing to implement their navigation decisions. 

The implementation of vision processing through DSP systems is reviewed in Section 

2.3. This establishes that for DSP a processing bottleneck exist in the low-level vision 

processes. The input data rate for low-level vision processes is set by the image 

sampling rate, as a result the low-level processing requirements are found to outstrip 

the capacity of current processor technology. 

In order to address the low-level processing bottleneck Neuromorphic vision 
processors have been developed [14,17,18]. Research into neuromorphic vision 
processors is examined in Section 2.4. These devices seek to mimic the physiology of 
biological vision processors. They implement the low-level vision processing through 

a uniform array of processors with a processor assigned to each sample space in the 
imaging array. This is classed as massively parallel processing. A 100xl00 imaging 

array will have 10,000 processors. In keeping with the biological model, and in order 

6 



to limit the substrate space occupied by the array processors, analogue circuitry is 

used to implement the low-level vision processes. However, the CMOS medium used 
to implement the neuromorphic devices exhibits significant variations in response 
across the analogue processing arrays [19]. This variation in response limits the 

practical application of the neuromorphic devices. 

Near Sensor Image Processors (NSIP) have been developed to address the response 

variations in the neuromorphic arrays, whilst exploiting the light sensing properties 

and dense component integration features of the CMOS medium [20]. Like the 

neuromorphic arrays these devices are designed to implement the low-level vision 

processes. However, they differ in that they employ circuit implementations of 

algorithms previously developed for DSP implementations. A review of NSIP 

developments is given in Section 2.5. 
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2.2 Autonomous Navigation and Passive Vision 

2.2.1 Navigation in Controlled Environments 

Environments where navigational cues, such as visible flags are placed to assist 

autonomous systems in resolving their locations are classed as controlled 

environments. The marker flags are placed at predetermined locations within the 

navigation environment. The correspondence of the position of the flags with known 

locations in the robot's internal map are used to estimate the robots current location. 

On the basis of the current location estimate, future movement of the robot can be 

determined. 

If the environment that the robot is required to operate within is primarily populated 

with fixed obstacles, and the illumination is controlled, then an autonomous system 

that relies upon flagged locations can be realised with current technology. The 

Mobile Detection Assessment Response System (MDARS) programme [21,22] was 

aimed at improving the effectiveness of unmanned security by deploying autonomous 

robots within a warehouse to detect intruders, fires and to monitor stock items. The 

MDARS robot navigates through a controlled indoor environment using optical 

tagging and sonar to assess its location and proceed with its patrol plan. 

The MDARS project demonstrated that by exploiting sensor fusion techniques the 

processing burden of the robot can be minimised and practical service robots realised. 
It was reported that the MDRAS robot could navigate through a warehouse interior by 

using a vision system to detect reflective strips placed upon walls and shelving 

uprights. The reflective strips mark critical junctions. At these junctions the sonar 

system is used to evaluate the robot's location and determine its next movements. The 

MDRAS navigation processor is a Zilog Z80 and its navigation processing consumes 

approximately 70mA. The system was reported as capable of following a predefined 

patrol path for extended periods of operation. 

The Artificial Intelligence Laboratory (AILab) at the University of Zurich has been 
investigating insect responses to visual stimuli [23]. They have sought to mimic these 

responses through robotic test beds with implementations of the compound eye. 
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Behaviour analysis of insects reveals that simple decision mechanisms explain their 

intelligent behaviour. The AILab robotic models limit the complexity of the on board 

processing circuitry by using relatively few light sensors. 

The AILab have reported a visual homing-robot [23] that employs analogue 

processing to find its home location within a given space. This space has a set of 

visual cues or landmarks. These are observed from a ring of 32 photo diodes that are 

mounted on the robot. The robot responds to the observed cues by generating an 

Average Landmark Vector (AL-Vector). The analogue circuit that implemented the 

AL-Vector processing used 91 op-amps and 12 analogue multipliers. 

The robot is returned to its home location by comparing the current AL-Vector with a 

stored home location AL-Vector. This comparison gives a motion direction for the 

robot. Results show that the homing action returned the robot to within 68mm of the 

home position when the test environment was Im square. If the home position is 

central to the Im square then the 68mm error equates to a positional uncertainty of 
14%. For an autonomous navigation system this is a relatively high level of positional 

uncertainty, but it is attributable in the homing-robot to the coverage of a 360° field of 

view with 32 sensors. 

The MDRAS and AILab robots illustrate that for controlled environments with a 

known navigation map, low complexity decision processes can be used to give an 

approximation to autonomous activity. However, the decision processes that rely on a 

structured environment have more in common with machine vision systems than the 

versatile navigation operation expected from autonomous systems. 

2.2.2 Navigation in Uncontrolled Environments 

In an uncontrolled environment no flags or markers are added to the operational 

environment to assist autonomous systems in their navigation tasks. This section 

examines two autonomous vehicles that employ passive vision as the main source for 

their navigation information in uncontrolled environments. In these petrol-powered 

vehicles, the capacity to supply electrical energy to the navigation processing is 
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significantly greater than for the battery powered systems reviewed in Section 2.2.1. 

The navigation processing examined in this section relies upon visual information 

similar to that used by a human driver of the test vehicles. 

In the Parma University ARGO project, a Lancia Thema 2000 car was converted into 

an autonomous vehicle by supplementing the manual controls with motor drives [24]. 

A pair of cameras mounted at the front of this car provided the navigation images. 

These navigation images were captured by a frame grabber board, mounted in a 
Pentium-I Personal Computer (PC). A Generic Obstacle and Lane Detection 

(GOLD) algorithm was implemented on this PC and control signals returned to the 

autonomous motor drives [25,26]. An override switch allowed a human supervisor to 

take control and operate the car as a normal road vehicle. The capabilities of this 

autonomous vehicle were demonstrated by its successful navigation of 2000km of 
Italian highways under normal traffic conditions. 

The GOLD algorithm employed by the ARGO vehicle utilised an Inverse 

Perspective Transform (IPT) which was applied to both camera inputs. In the IPT 

images, the road surface acted as a ground plane. Translation and subtraction of the 

two IPT images returned pointers to obstacles on the road surface. Thus obstacle 

avoidance measures could be activated by the PC control program. One of the IPT 

images was further processed to register the road markings in a binary format. 

Morphological operators were employed to extract the tracks of the lane markings and 
this data was used to maintain the car position in the centre of the near side traffic 
lane. 

The PC implemented the GOLD algorithm within lOms. This low latency in lane 
detection processing allowed ARGO to travel at speeds of up to 140km/hr. There 

were two important factors in the delivery of the ARGO vehicle performance. The 
first was that the GOLD algorithm was coded in assembly language and it exploited 
the pipeline processes available on the Pentium processor. This maximised the usage 
of the processor capacity. Secondly, the GOLD algorithm focuses upon the critical 
information clues that are available in the IPT road-traffic scenes. This passive vision 
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system is limited by the restrictions imposed by the IPT and thus has limited 

applications beyond the detection of obstacles on a uniform tarmac ground plane. 

An upgrade of the ARGO processor to a Pentium II processor permitted the inclusion 

of a stereo disparity algorithm without an increase in the processing lag [27]. The 

stereo disparity permitted accurate assessment of the distance to the other vehicles and 

thus enabled the autonomous vehicle to travel in convoy traffic conditions, at normal 

traffic speeds. 

The Carnegie Mellon Robotics Institute has been researching the use of stereo vision 

for off-road navigation [28]. The research work was funded by the Suffield Canadian 

Defence Research Establishment. A cross-country vehicle has been equipped with a 

pair of stereo cameras that provide the prime range and obstacle information for the 

navigation computations [28,29]. Stereo disparity information is extracted from the 

camera data by a dedicated Pentium I processor. The images were sub-sampled and 

the disparity width was limited to ensure that the system could generate depth maps at 

a rate of 2Hz. A SPARC 20 processor, also mounted within the vehicle, provided the 

navigation processing. Under rough terrain conditions the vehicle travelled 200 

meters in 6 minutes whilst avoiding 80 separate objects. 

It was noted that the electrical energy required by the processors to implement visual 
based navigation in an uncontrolled environment, places a minimum size limitation on 

the host autonomous system. The workstation processing structure reported by the 

Carnegie Mellon Robotics Institute is unsuitable for integration into a battery- 

powered robot that could operate within an office environment. The PC based 

navigation processor reported by the ARGO team is suitable for integration into a 
battery-powered office style robot. However, the reliance of this system on the road 

texture and road markings for navigational cues limits the practical operation of this 

system when it is removed from the highway environment. 
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2.2.3 Navigation in a Pedestrian Environment 

Autonomous systems that can operate in a pedestrian environment and interact with 

the humans are examined. These systems are required to operate using battery power, 

move at walking pace and extract their navigational cues from the positions of static 

objects, walls and doors. To implement this form of navigation they need a map of the 

operational environment. Furthermore they need an on-board electrical supply with 

sufficient capacity to provide locomotion and implement the processing necessary for 

human interaction and navigation. 

The development of an autonomous robotic system that can interact with humans is of 

commercial interest. The operational principle of these systems is that, upon receipt of 

a command the robot will commence a task and require no further command input 

until the task is completed. The household applications for these robots include 

cleaning floors and monitoring the well-being of elderly people. Public applications 
include giving porterage assistance to travellers in train stations, and for giving advice 

and guidance to visitors to exhibition centres. 

The Minerva robot [30,31] was designed to interact with people in public spaces. It 

perceives its environment through cameras, laser rangers and ultrasonic sensors. This 

robot has been deployed in the Smithsonian's National Museum of American History 

to approach visitors, offer them tours and then lead them to the exhibits. Minerva 

maintains a sense of its location through a comparison of its assumed location with 

that derived from an analysis of a ceiling image acquired from an upward looking 

camera. Laser range scans give an alternative estimate of the robots position. The two 

position estimates are compared and an aggregate position calculated. The use of an 

upward looking camera and the fusion of this information with laser range data 

provide a working autonomous navigation implementation. 

The Minerva robot was an extension of the RHINO-Project [32] researched by the 
Institute of Computer Science III, University of Bonn into the synthesis of complex 
adaptive systems. The vehicle for the study was an autonomous mobile robot called 
RHINO. This robot was successfully deployed in the Deutsches Museum, Bonn. In 
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this environment, it guided hundreds of visitors through the museum during a six-day 

period. 

The RHINO and Minerva robots demonstrated the feasibility of autonomous robots 

navigating within a pedestrian environment and interacting with humans. They have 

shown that it possible for a robot to map an environment, and then navigate through 

this environment providing a useful service to the public. These robots relied upon 

sensor fusion and active sensing to limit the complexity of their navigation algorithm 
[32]. The robots were battery powered and used three onboard PCs to process the 

active sensor data. A telemetry link provided access to off-board processing. In the 

case of the RHINO robot the off-board processing was used to implement stereo 
disparity evaluation [33]. Here, the camera data was first processed through a 
Datacube DSP system to detect the edge points within the images. This edge data was 

then communicated via a VME-S bus to a Sun workstation where a stereo disparity 

algorithm was used to extract depth information. The stereo disparity processing was 

performed on images sub-sampled to 244x58 pixels per image and processed at a 
frame rate of 4Hz. 

The architecture for an office delivery robot was reported in 1994 by the Laboratory 

4 of Image analysis, Alborg University [34,35]. This architecture split the function of 
the robot into room, hallway, and door navigation. Each of these functions accessed 

navigation subsystems that included obstacle avoidance, a path finder and uncertainty 

management. For a given task, the sub-systems were used to compute a trajectory. 

This architecture avoided the high computational costs of vision-only processing 
through the use of sonar sensors to avoid obstacles and to follow walls. The wall 
following is particularly sensitive to process lags because a small error in the robots 
trajectory can give rise to wall collisions. 

The designers of the Alborg, Minerva and RHINO systems used active sensing and 

off-board processing as a means of limiting the drain on the battery power capacity of 
the robots. If the active sensing was replaced by passive means then the systems 

processing requirements would be increased due to the greater complexity of the 
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perception algorithm. These robots highlight a significant deficiency in the current 

autonomous systems in that it is not practical to realise a system that can operate in a 

public space whilst relying solely upon passive vision for its navigation input. 

2.2.4 Indoor Vision Based Autonomous Navigation 

The discussion in Section 2.2.3 established that for autonomous systems the 

processing overheads associated with vision based navigation precludes the use of 
battery-powered pedestrian style robots. However, the ARGO implementation of 
Section 2.2.2 and the Minerva implementation of Section 2.2.3 demonstrate that 

significant processing efficiencies can be achieved if the navigation algorithm is 

designed to exploit structural features within the navigation environment. 

In this section algorithms designed for the realisation of vision based indoor 

autonomous navigation are reviewed [36-39]. These algorithms are characterised by 

goal orientated behaviour. A typical goal would be the movement of the robot to a 

new room location. The robot's current location is determined through the sensing of 
landmarks and environment features. As the robot moves, these are tracked through 

local searches. By matching the landmarks with models of the environment, the 

trajectory is modified. In this, consideration is given to uncertainty of the perceived 

location of the robot. Landmarks that are critical to the navigation algorithms include 

fixed structural items such as doors, windows, and furniture. Important features of the 

navigation environment include the free floor space in the direction of travel and the 

distance to side obstructions. The robot needs to possess the manoeuvrability to pass 

all obstructions in the environment. It also needs to have a low latency decision 

process, so that it can correct for the uncertainty in its trajectory estimates and so 

avoid collision with structural features in the environment. The low latency decision 

process is also important if the robot is to avoid collision with other users of the 

environment. 

The Active Vision methods proposed by Davison and Murray [36] employ an active 
stereo platform carrying two CCD cameras. The system chooses a set of high contrast 
landmark features. The pan and tilt functions of the camera platform allowed the robot 
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to maintain its fixation on the chosen features and thus track its own movement 

through the environment. Results from an implementation of this system 

demonstrated the robot moving at 20cm/sec when a single fixation point was used. PC 

processing was used to implement the vision functions. The stereo processing and the 

requirement to shift the camera pair between fixation points limited the practical 

operation of this robot. Davison and Murray's algorithm was implemented on a test 

bed that was joined through an umbilical to a static processing facility. Its use of 

depth perception to identify isolated key features was seen as a limitation of its 

practical implementation, as the stereo disparity computation is expensive in terms of 

processor capacity. 

The autonomous navigation model proposed by Kosaka etal [37,38], employed a wire 

frame model of the environment that is matched with extracted features from a single 

camera mounted on a robot. A comparison between the model and extracted features 

allows the position of the robot to be estimated. Experimental results for this 

navigation method within a corridor environment demonstrated a correct location hit 

rate of 90%. In contrast to the Davison and Murray [36] approach, this method 

demonstrated that depth perception was not necessary for navigating an environment 

where model matches for the detected structural features were stored by the vision 

system. In the corridor example given by Kosaka [37,38], door uprights were marked 
by vertical wires and the floor to wall boundaries were marked by diagonal wires. 
Navigation processing was affected through matching these wires with structural lines 

within a 3D model environment. This approach to autonomous navigation is limited 

by the tolerance of the model matching process to environmental variations. 

Gavriley etal [39] developed a model based navigation system that employed a single 

camera to collect image data that was subsequently processed to reveal the most 

significant gradients in a given scene. The direction and location of the gradients was 

used to infer the positions of doors and floor to wall boundaries in a corridor 

environment. This architecture proposes the use of a single camera to provide the 

visual information necessary for active perception A hierarchical processing structure 
is used to match gradient profiles found within the observed scene to known features 
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within a visual data-base. A PC based implementation was used to demonstrate this 

architecture. The approach taken by Gavriley was similar to that proposed by Kosaka 

[37,38]. 

The navigation algorithms that rely upon the positional clues collected from a single 

camera require a model of the environment in which they operate. If this model is 

required to reflect the exact dimensions of the environment, then the system has a 

relatively low degree of autonomy. If the model is generalised to environment classes 

such as corridor, room and concourse then the robot can be said to have a high degree 

of autonomy. Systems with a high degree of autonomy need to build a map of the 

environment in which they are located. The subjects of map building and pose 

recovery from a single camera viewpoint are addressed by Beveridge [15]. He 

demonstrated that an iterative method of matching estimates of the floor and wall 
features to boundary lines extracted from captured scenes provided for the recovery of 

a robot's pose. 

Indoor autonomous robot systems require battery power sources for locomotion and 
information processing. The demonstration models reported in this section were 
limited in their operation by either requiring external processing or needing long 

pauses in operation when updating their location estimates. In the following section 
the source of these processing limitations are examined. 
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Section 2.3 DSP Implementation of Vision Algorithms 

2.3.1 Low-Level Processing Bottleneck 

The autonomous robots reviewed in Section 2.2 used DSP methods for implementing 

their visual perception processes. A typical DSP implementation is composed of a 

camera, a frame-grabber and signal processing as illustrated in Figure 2.1 [40]. These 

DSP methods have been primarily developed for the implementation of machine 

vision systems. In the past twenty years DSP technology has evolved to provide an 

extensive range of object recognition systems that are employed in medical screening 

and industrial inspection. 

Host Processor 

VME Segmented Image 

or PCI 
BUS Pixel Memory Ma 

Illuminated Focused Frame 

Scene Camera Grabber 
DSP Unit 

Figure 2.1 DSP Implementation of a Vision System 

The frame grabber loads the serial stream of pixels generated by the camera into a 

memory mapped pixel array. This pixel array stores a two dimensional intensity 

profile of the illuminated scene. The DSP unit applies spatial filters and threshold 

functions to the pixel array to remove noise and generate a segmented image. In 

machine vision the segmentation processing requirements are minimised by 

maintaining a significant reflectance differential between the scene objects and the 

background. 

In autonomous vision there is limited a -priori information about the operational 

environment. The illumination direction and magnitude are variables. The 

illumination can be from single or multiple sources with the magnitude for natural 
lighting ranging over 60dB [41]. The observed objects are presented with rotations 
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about the vertical axis, and at distances that range beyond the camera's depth of field. 

This variability in the presentation of the image data gives rise to the high processing 

requirements of the perception algorithms used in autonomous vision. 

An example structure for an autonomous vision perception algorithm is illustrated in 

Figure 2.2. The algorithm employs a hierarchical data structure. In level `1' the 

segmentation primitives of edge points or textured regions are extracted. Also in level 
`1', optical flow may be extracted through the comparison of successive frames. In 

level `2' the segmentation primitives are then combined to provide partial object 

outlines, and depth information can be extracted from texture frequencies or pairs of 

stereo edge maps. In level `3' object recognition is implemented through vector 

matching and collision alerts are computed. At the top level `4', the navigation 
decision processes required by the autonomous systems are implemented. 

Level 4 Autonomous System Navigation 

Level 3' Object Recognition 

Level 2/ Structural 

Level 1/ Texture Regions 

Time to Contact 

Depth Information 

Edge Points 

Pixel Map 

Optical Flow 

Figure 2.2 Autonomous Vision Hierarchical Data Structure 

The processes in Level 1 of the Figure 2.2, vision structure are classed as low-level 

vision processes [5]. These operate on each pixel location within the sampled image 

and give rise to high processing requirements. If the system processes the data from a 
512x512 camera at 25 frames per second then the pixel data rate is 6MHz. The overall 
processor requirements are then evaluated as a multiple of this pixel data rate. For 

each processed pixel the area of pixels surrounding that processed pixel site are 
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accessed. Spatial averaging and spatial derivatives are applied to this accessed data. A 

low complexity pixel process such as the Sobel [12] detector requires 26 machine 
instructions per pixel giving a processor capacity requirement of 156x106 MIPS. 

The quality of the segmentation data generated by the edge point detector is critical to 

the performance of the autonomous vision system. Erroneous or missing outlines will 

cause the objects to be wrongly classified and structural features to be missed, leading 

to incorrect navigation decisions. Noise from the sampling process and multiple path 
illumination of the object boundaries gives rise to uncertainty in the location of the 

object boundaries. In order to enhance the quality of the segmentation results the 

connectivity of the edge detector can be increased, but this increases the systems 

processing requirements. 

An analysis of the processing requirements of autonomous robots, machine vision and 

image coding was carried out by Erten [3]. This analysis shows that the processing 

requirements for real-time autonomous vision are orders of magnitude greater than 

current DSP systems capability. Erten gives the example of a 2D correlation between 

two frames where a 7x7 pixel area in one frame is checked for the best match in a 

21x21 pixel area in a second frame. If this process is repeated for each pixel location 

on 512x512 images at a framing rate of 30Hz then the processor requirements are 400 

billion instructions per second. Erten points out that the solution to low-level vision 

problems is between three and four orders of processing magnitude beyond current 

DSP systems and thus argues that alternative processing solutions should be sought. 

2.3.2 DSP Vision Processors 

A technology leader in the supply of DSP machine vision systems is Datacube of 
Danvers, MA, USA. Datacube provides vision processing products to aerospace, 
defence and medical instrumentation markets. It manufactures VME and PCI boards 

which employ pipeline processing structures to perform vision processing [42]. In 

this structure, the vision task is split into a sequence of operations which are 
implemented through a series of processors that form the pipe. At a given instant, the 

pipe will be processing the data for several pixel locations. The time delay between 
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the results generated by the pipe is set by the longest process within the pipe. The 

processing of a typical set of 3x3 kernel convolution upon an image will run at a 
frame rate of 25Hz with a processing lag of 7 ms. 

The Texas Instruments TMS320C80 Multi Video Processor (MVP) [43] provides an 

alternative to the Datacube pipelined systems. This MVP chip incorporates four 

parallel processors each of which has the facility to manipulate pixel data through 

arithmetic operations, bit field extraction and look up tables. A fifth master processor 

provides control of the four parallel processors. This chip provides the facility to 

apply standard integer based operations such as median filtering and Laplacian edge 
detection in real-time. 

The vision processors supplied by Datacube and Texas Instruments are targeted at 

machine vision applications where the controlled environment eliminates the need for 

depth perception and structured lighting maintains a high contrast between the 

observed objects and the background. Under these conditions the integer based 

operations and small area convolutions of 3x3 pixels are sufficient to generate 

segmented image data. 

Through advances in technology it is predicted that the capacity of DSP systems will 
increase and enhance the performance of the algorithms employed in the reviewed 
autonomous systems. However, it is worth considering that the low level processes 
employed in autonomous vision are relatively simple on an individual basis. The high 

processing requirements are derived from the large number of these processes that are 
needed to process an image frame. The implementation of these low level processes 
through massively parallel processors has been investigated through the development 

of neuromorphic systems. These are reviewed in the following section. 

0 
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Section 2.4 Neuromorphic Vision Processing 

2.4.1 Neuromorphic Processors 

It has been observed that biological systems are much more efficient in their use of 

energy when processing visual information than the DSP approaches adopted in 

vision systems [17]. In order to exploit these observed efficiencies neuromorphic 

systems have been developed. In a neuromorphic system light sensing and early 

vision processing are performed by analogue circuits that mimic the cellular structures 
found in living creatures. 

The image capture and the early vision processing circuits are combined on a single 

silicon substrate. This type of sensor has been referred to as a silicon retina [47], as a 

Focal Plane Processor [44,45] and as a retinomorphic sensor [46]. The biological 

functions that researchers have sought to incorporate into these sensors have included 

spatial enhancement, temporal displacement, lateral inhibition and sensitivity 

adaptation. 

The principal medium used for the development of neuromorphic vision sensors has 

been VLSI CMOS. The VLSI CMOS substrate provides the opportunity of integrating 

a light-sensing array with analogue and digital circuits. The component packing 

density for a CMOS process is amongst the highest available and the foundry costs 

are not excessive. However the VLSI CMOS foundry processes have been developed 

for the production of discrete circuits which tolerate significant variations in device 

parameters. Analogue circuits are particularly susceptible to these variations in device 

parameters and this limits the performance of neuromorphic circuits. 

2.4.2 Mead's Silicon Retina 

The creation of a silicon equivalent of the biological retina, ̀ a silicon retina', was first 

proposed by Carver Mead in 1988 [47]. Mead's silicon retina was one of the first 

vision chips to implement retinal style processing on a VLSI substrate. This chip, 
illustrated in Figure 2.3, integrated light transduction and an array of early vision 
processing circuits onto a single substrate. The array processor employed a resistive 
network to simulate the spatial averaging associated with the retina horizontal cells. 
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Figure 2.3 Meads Silicon Retina. 

The illuminance sensed by each pixel is buffered by the Operational 

Transconductance Amplifier, OTAJ, and summed into the resistive network. In the 

second amplifier, OTA2, the signal at the summing node is compared to the pixel 

luminosity signal to give the enhanced spatial contrast output. This comparison output 

is equivalent to the bipolar cell response found within biological retinas. In order to 

limit the power consumption of the array all the OTA's are operated in sub-threshold 

mode. No images captured by Meads Silicon Retina have been found in the reported 

results, it was therefore concluded that the output generated by the silicon retina was 

of low quality. 

This first silicon retina from Mead was designed to provide light transduction spatial 

contrast enhancement similar to that provided by the outer plexiform layers in a 

vertebrate retina. However the circuit was limited in the spatial resolution and by the 

variability in response across the array. Mead and Delbruck developed a time 

derivative pixel array [49-51]. This array provides temporal high pass filtering of the 

incident image and is designed for use as a pre-processor for a motion detection 

system. 

The pixels illustrated in Figure 2.4, adapt to the slow variation in the background 

illumination in a manner similar to that found in biological retinas. Thus the full 

dynamic range of the sensor is available for the communication of movement. Light is 

sensed through a reverse biased diode D1. An active load M1 is used to maintain the 

bias volts on the diode. Variation in this bias voltage is amplified through the cascode 
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circuit of M2, M3 and M4. This output voltage is fedback through a low pass circuit to 

control the active load. Results have been reported for single Adaptive 

Photoreceptor's but no results are reported for an array of these devices. 
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Figure 2.4 Delbruck and Mead's Adaptive Photoreceptor 

2.4.3 Andreou and Boahen's Spatial-Temporal Retina 

Andreou and Boahen developed a spatial temporal silicon retina [52,53]. This sensor 

exploits the native properties of sub-threshold CMOS circuits to realise an 
implementation of the vertebrate retina's outer plexiform layers. These are the layers 

of cone cells, horizontal cells, and bipolar cells [2]. The early vision spatial contrast 

enhancement function is achieved through low precision analogue circuitry. 

The core cell structure of this silicon retina is illustrated in Figure 2.5. There are two 

separate diffuse networks that represent the cones and horizontal cells of a biological 

retina. The horizontal network implemented by the MI transistors provides a wide 

area average of the sensed light and the M2 network provides a local average of the 

sensed light intensity. The M3 device compares the local to wide networks at each 

pixel site to give the output current lo�r. The light transduction and its active load are 
provided by M4 and Ti. A normalisation current is supplied into the I,,,, leg through 
M5. The control voltages Vn, Vc and Vh are globally supplied to the full array. The 

sensitivity of the array to local contrast is controlled by setting these control voltages. 

The Andreou and Boahen spatial contrast retina has been implemented in an array of 
210x230 pixels with the diffuse networks connected to six neighbours at each pixel 
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site. This sensor gives a uniform contrast sensitivity when there is a wide range of 
background illumination across the sensing area. Part of the image can be brightly 

illuminated and another part in deep shade. The sensor is designed to register contrast 
boundaries that occur in either region. 
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Figure 2.5 the Andreou & Boahen Silicon Retina. 

The practical application of the Andreou and Boahen silicon retina was evaluated at 

Bonn University [54] using a real time face recognition system. The system employed 

a DATACUBE MaxVideo 20 pipeline image processor to interface the silicon retina 

to a host workstation which implemented a face matching algorithm. The predicted 

recognition time for a face from a database of twenty faces was three seconds. No 

results from an operational Andreou & Boahen silicon retina have been reported from 

this research. 

There is currently ongoing research into neuromorphic sensors in a number of 

academic institutions [44,45,55-59]. The University of Seville has reported research 

on a mixed signal focal plane processing array [44,45]. Here the concept of a cellular 

neural network has been integrated into a 2D image acquisition array [55]. A 

neuromorphic linear sensor for visual tracking has been developed at the Institute of 
Neuroinformatics in Zurich [59]. This device employs the adaptive pixel developed 
by Delbruck. Analogue processing is applied to the pixel outputs to detect the location 

of edges on the linear array. The most significant of these edges is located through a 
winner-takes-all circuit. This discrete location within the array is then converted into 
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an analogue voltage. This device requires a high contrast level for successful edge 

detection and it has been incorporated into a track following robot. This type of 
device provides a means of reducing the computational load in a navigation or control 

system. 

2.4.4 CMOS Analogue Array Response Variation 

The practical use of neuromorphic sensors is limited through device parameter 

variations across an array of analogue processing circuits [19,60-62]. These variations 

are process dependent and remain an unresolved problem of the CMOS foundries. A 

study carried out by Pavasovic [19] where the sub-threshold current IST dependence 

on VGB was measured for arrays of 1024 4x4µm transistors illustrated this response 

variation. 

It was reported by Pavasovic [19] that IST exhibited a 30% variation across the array 

when VGB was an array constant. This variation exhibited a spatial period of between 

100µm and 2001im, which was labeled as a striation effect. In addition to the striation 

effect n-devices at the periphery of the array showed a reduction in 1' of up to 15%. 

At the periphery of the array, p-devices showed an increase in 1r of up to 50%. These 

are the combined results for tests on a total of 150,000 transistors. The above quoted 

percentage variations are the worst case results as IST ranged from l OpA to 100nA. 

In the interests of the Smart CMOS Camera research a numerical study was used to 
investigate the possible causes of the IST variation reported by Pavasovic. The 

relationships which determine IST are given in equations (2.1) to (2.7) [63,64]. The 

sub-threshold operation of a MOSFET is defined as the region of operation where the 

surface potential Vsw given by equations (2.2) varies between of and 20f , where of 

is the Fermi level for the substrate and is given by equation (2.6). In this region the 

transconductance of the MOSFET reaches a maximum. The scaling current Is given 
by equation (2.2), takes the Ebers-Moll form so that the MOSFET sub-threshold 

response resembles that of a Bipolar Junction Transistor. 

IsT_ - Is (eSB"OT 
_e ')B"OT) (2.1) 1 
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A number of the parameters in equations (2.2) and (2.3) are directly affected by the 

CMOS processes. The capacitance Co given by equation (2.4) is determined by the 

channel oxide diffusion depth x0. The body factor y given by equation (2.5) is 

determined by Co and by the substrate doping concentration NS�b. The Fermi potential 

f given by equation (2.6) is also dependent upon Ns�b. The flat band voltage VFB 

given by equation (2.7) is dependent upon the parasitic charge Q0. This parasitic 

charge is due to a combination of the surface states and the trapped charge in the 

oxide layer. 

Ca = 
K°e° 

(2.4) 
xo 
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y= (2.5) 
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Silicon foundries will not divulge parameters such as the doping concentrations or the 

variation of these parameters in their manufactured devices. In order to evaluate 

possible causes of the 30% variation in 1s reported by Pavasovic [19], it was decided 

to numerically analyse the dependence of 1sTon x0, Ns�b and Q°. In this analysis these 

process parameters were individually allowed to vary by 10% and the resultant 

variations in Ig' are noted Table 2.1. The dependence of 1sr was repeated for four 

settings of osw in the sub threshold region. The cpsw settings and the associated 

nominal values for 1sr are given in the first two rows of Table 2.1. The results indicate 
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that the nominal 10% variation in any of these parameters will result in a variation in 

I' greater than the 30% variation reported by Pavasovic [19]. 

Nom. I(A) 2.33x10-12 6.28x10"10 1.12x10'8 1.5x10"7 
(Psw 1.01 f 1520 f 1.780 f 2.010 

Nsub -34.7% -49.3% -42.8% -44.9% 

xo -39.3% -50.5% -55.5% -59.7% 

VFB -36.3% -38.1% -38.7% -39.1% 

Table 2.1 Percentage Change of Is' as CMOS Parameters Vary by 10% 

Pavasovic indicated that the striations in the 1sr response correlated with the surface 

preparation of the substrate prior to the implementation of lithographic processes. The 

level of response variation across the presented neuromorphic arrays is an important 

factor in the poor uptake of these substrate based mixed signal processors. Evidently 

there is a need for further investigation of these response variations in CMOS 

processes. However the commercial sensitivity of the foundry processes means that 

such an investigation may only be carried out under the auspices of an interested 

foundry. 

The neuromorphic substrate based processor has a relatively low density of cell 
interconnections when compared with biological cellular structures. The processors 

realised in the planar VLSI environment are limited to forming connections with the 

neighbouring cells. Thus the pixel connectivity is limited to connections between four 

or six local pixels. This level of connectivity cannot replicate the connectivity that is 

found in 3-D biological structures where the neurons are widely connected. The result 
is that it is not practical to implement the full cell structure found within a vertebrate 

retina on silicon. Neuromorphic research does however provide a valuable insight into 

biological processing structures. It is worth noting that these biological structures 
have been evolving since the earliest appearance of vertebrate life on earth. 
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Section 2.5 Near Sensor Image Processors 

An alternative to the focal plane processing adopted in neuromorphic processors is 

that of Near Sensor Image Processors (NSIP). As with the neuromorphic devices the 

image is sensed through a photo sensing array formed on a CMOS substrate. In the 

NSIP devices a mixed signal processor is placed on the substrate adjacent to the 

image sensing array. The image data in analogue format is loaded into the processing 

circuits where the low-level vision tasks are performed. 

2.5.1 Matrix Array Picture Processors 

A series of NSIP devices have been developed jointly by Linkoping University and 

Integrated Vision Products Inc (IVP) [20,65-67]. The IVP Matrix Array Picture 

Processor (MAPP) combines an image sensor and a general purpose image processor 

on a single substrate [68]. This sensor applies adaptive thresholds to the received 

image and programmable logic circuits to process the received data. The MAPP 

sensors have been successfully integrated into web inspection and process control 

machine systems. 

The research at Linkoping University pioneered the development of NSIP devices. 

They have sought to overcome the trade-off between spatial resolution and processor 

complexity through non-destructive pixel readouts and local processing. They limit 

the processing complexity by applying thresholds to the analogue pixel outputs to 

generate a binary readout from the array. They have exploited the local connectivity 
in the parallel array readouts to realise high-speed image processing algorithms 

required in machine vision. The MAPP sensors are of limited use in autonomous 

vision applications because they require structured illumination to successfully 
implement their segmentation functions. 

2.5.2 Mixed-Signal Array Processor 

A variation of the NSIP theme was reported by Martin et al [69] where the early 

vision tasks were implemented in a mixed-signal array processor. This processor was 
formed from an array of cells each of which utilises a programmable analogue 
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arithmetic unit. The arithmetic unit employs digital conversion to perform addition, 

subtraction and multiplication. Each cell within the array is independently 

programmed to give a multiple-instruction, multiple-data MIMD processor. The 

analogue pixel data is read into the first column of cells in the array. In each cell the 

analogue signal is converted to digital format for processing and reconverted to 

analogue format to be passed to the next column of cells in the processor array. The 

multiple conversions between analogue to digital formats limits the quality of the low- 

level vision processes. 

2.5.3 General Purpose Visual Computational Sensor 

The Sensory-Motor-Systems Laboratory at the Department of Electrical and 
Computer Engineering, Johns Hopkins University, Baltimore, has been researching a 

General Purpose Visual Computational Sensor (GPCS) [70]. In the GPCS spatial 

processing and temporal processing circuits are integrated into a NSIP structure. The 

GPCS also includes analogue to digital conversion for the pixel outputs and global 

pixel gain control. 

The GPCS employs current mode processing at the pixel level. Each pixel presents 

multiple current mode outputs, which are selectively summed through a set of nodes 

that form a spatial convolution mask. The programming of the convolution mask 

allows the GPCS to implement a series of vision convolution algorithms. The 

convolution algorithm can be set to be a pair of orthogonal Gabor filters, a smoothing 

filter, a Laplacian edge detector or a pair of directional edge detectors. 

The stated objectives for the development of the GPCS is that it should be integrated 

with other intelligent systems such as neural networks or expert systems to provide 
VLSI real time solutions to dynamic vision tasks. These dynamic vision tasks can 

range from video coding to autonomous vehicle navigation. The performance of these 

vision tasks is set by the quality of real time edge detection provided by the GPCS 

[71]. It was note from the reported results that the GPCS required a high level of 

contrast to register an edge in its processed images. 
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2.6 Conclusion 

The selection of robot research programmes reviewed pointed to the broad scope of 

the autonomous navigation problem. It was illustrated that the nature of the solution 

was dependent upon the level of structure in the navigation environment and the 

electrical power available to process the vision data. As the level of structure was 

reduced the processing requirements increased and thus the power consumption of the 

robot increased. 

It was evident from the review that the realisation of an autonomous vision system 

that can mimic human visual acuity and operate from a mobile, pedestrian style 

platform is still an open problem. A critical deficiency with the current technology is 

the lack of an energy efficient method of performing low-level vision tasks. Designers 

of autonomous vision systems have to make a trade off between the energy consumed 

by the system and the quality of vision processing that they employ. 

In the reviewed systems, the autonomous vehicles reported from Parma University 

and Carnegie Mellon University employed passive vision to implement their 

navigation algorithms. These systems could draw on electrical power generated by the 

vehicle alternators. The reviewed systems that depended upon battery power such as 

the Minerva and RHINO robots resorted to sensor fusion and off-board processing to 

implement their navigation algorithms. 

The Carnegie Mellon cross-country vehicle was considered the most complete 

autonomous system in the review and with an onboard workstation it was limited to a 
2Hz framing rate. These limited framing rates, despite the use of significant 

processing resources, are typical of the compromises that autonomous systems 
designers need to make in order to implement an operational system. The ARGO road 

vehicle demonstrated that exploitation of the dark road colouring considerably 

reduced the computational requirements, and that a 25Hz framing rate was necessary 
to mimic human road control activity. 
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The reviewed systems that achieved autonomous operation relied upon image capture 

and DSP processing similar to that found in machine vision systems. However, the 
low levels of scene structure available for autonomous vision operation significantly 
increases the complexity of the vision algorithm and hence the processing 

requirements. In order to overcome these limitations neuromorphic sensors that mimic 
the cell structure of vertebrate retinas have been developed. 

Research into neuromorphic vision systems capable of realising autonomous 

operation has been inspired by studies of biological vision systems. This research has 

been ongoing over the past ten years. In this, engineers seek to mimic on silicon 

circuits the cell structures and neural processes found within biological retinas. In the 

vertebrate retina a dense 3D cell structure implements the early vision tasks of light 

transduction, spatial contrast enhancement and motion detection with a fraction of the 

energy required by a DSP system. 

Neuromorphic researchers have exploited the high integration density of VLSI CMOS 

to implement up to three layers of retinal processing at each pixel site in an imaging 

array. They have demonstrated the replication of light transduction, spatial contrast 

enhancement and motion detection within a single silicon retina. The robustness of 
these processes is limited by the planar nature of the substrate upon which the 

processing circuits are formed. 

In order to overcome the limitations of the VLSI planar environment, an approach 
known as the Near Sensor Image Processor (NSIP) has been adopted for the 

realisation of a retinal equivalent sensor. In NSIP research the low level vision tasks 

are implemented through mixed signal processing circuits that are sited adjacent to the 
image sensing array on the CMOS substrate. In a NSIP device the image is read from 

the sensing array and loaded directly into the processing circuits. This architecture 
allows the spatial connectivity of the sensor to be extended beyond that found in 

neuromorphic structures. 

The NSIP and neuromorphic sensors offer a solution to the size and power 
consumption problems associated with DSP implementations. The quality of the early 
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vision processing provided by these sensors is inferior to that provided by DSP vision 

systems. These quality problems arise from the CMOS fabrication technology where 

process parameter variations give rise to noise in the integrated analogue processes. 

This noise limits the usefulness of these sensors. Hence there is a need for refinement 

of the CMOS foundry process before these analogue and mixed signal solutions can 

replace the current DSP implementations with equivalent quality in vision processing. 

It was concluded from the review that given current technology limitations, the 

research into a vision system front end accelerator should adopt a holistic approach to 
development of an accelerator for vision based navigation. In this the data structure 

needed for navigation, the quality of image primitives used by this structure and a 

sensor capable of delivering the image primitives should be examined. Thus the 

research proceeded on three fronts. These were the development of the development 

of an edge detection algorithm suitable for integration into a NSIP structure. The 

analysis of this detector's results with respect to the requirements of vision based 

navigation. The implementation of this detector within a compact, low power 

consumption, camera. 

The following Chapters detail the design and testing of a Smart CMOS Camera for 

use within autonomous and machine vision systems. The prime requirement for this 

smart camera was the generation of edge points sets for the captured images. These 

edge points sets were to be of sufficient quality to permit autonomous navigation to be 

realised. This research draws on the neuromorphic work and on the established 

computational methods employed in machine vision. The smart camera employs a 

new mixed signal processing architecture referred to as Scanned Layer Architecture 

(SLA) which is aimed at overcoming the tradeoff between spatial resolution and noise 

susceptibility of CMOS analogue processing. 
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Chapter 3 SLA Algorithm Simulation 

3.1 Introduction 

The review of autonomous vision systems in Chapter 2 demonstrated that current 

robotic systems are limited in their application because of the need to employ high- 

speed processors to implement low-level vision tasks. Designers of autonomous 

vision systems are forced to compromise between the quality of edge point data that 

they can extract from the received images and the energy consumed by the processing 

required to implement the edge extraction. In order to address these compromises 

between quality and processing power the Smart CMOS Camera was developed. This 

is a VLSI CMOS sensor designed to combine an imaging array with the processing 

necessary to implement edge point detection. The SLA edge detection algorithm 

developed for integration into this sensor is described in this chapter. 

The block diagram of Figure 3.1 illustrates the major processing stages and the 

memory blocks required by the SLA algorithm. Furthermore Figure 3.1 illustrates the 
integration of the SLA algorithm into a pose recovery algorithm. The layout 

constraints imposed by the CMOS implementation meant that the SLA algorithm was 

required to process the received images through two orthogonal scans. These have 

been labelled as the Horizontal and Vertical scans, each of which produces its own 
directional edge map for the image. These edge maps are operated on by Post 

Detection Processes to generate Horizontal and Vertical line lists. The list contents 
have a vector format and they provide the primitive structural outline information 

needed to recover the robot's pose, through a geometric model matching algorithm 
[15]. 
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Figure 3.1 Overview of SLA Algorithm 

The SLA directional edge point detector locates edge points through a distributed 

decision process illustrated in Figure 3.2. This process is initialised by the application 

of 1St and 2 °d order spatial derivative convolutions to the sampled intensity profile. 

Adaptive thresholds are computed for each pixel location. These are used to convert 

the spatial derivatives into a discrete format. An area based logical operation is then 

applied to the discrete derivative results to assign the image edge points. The spatial 

derivative convolutions are described in Section 3.2. The adaptive threshold 

evaluations and the edge decision logic are described in Section 3.3. The Post 

Detection processes are described in Section 3.4 

Although the SLA simulations were primarily aimed at developing an algorithm for 

integration into a CMOS VLSI, it was evident from the simulation results that the 

algorithm also represented an efficient DSP implementation. In Section 3.5 the 

computation resources necessary to implement the SLA edge detection and post edge 
detection processes are examined. It is shown that a real time implementation of the 

edge detection and line list generation is viable with current processor technology. 
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Figure 3.2 SLA Algorithm Processing Structure 

In Section 3.6 the use of the SLA line lists for the recovery of a robot's pose from 

within a corridor environment is studied. This study demonstrates that the retention of 
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edge sense information in the line lists allows co-linear line segments to be grouped. 

These groupings reduce the uncertainty of the match between the model and the 

structural features detected within captured images. In Section 3.7 consideration is 

given to the operational specifications for the SLA implementation. In Chapter 5 these 

specifications are used to set the operational parameters for the Smart CMOS Camera 

circuit implementation 

The SLA algorithm development borrowed heavily from the considerations of an edge 
detector that could be realised within the restrictive processing environment of 

analogue CMOS circuits. Particular effort was made to avoid product functions that 

would prove expensive in terms of substrate layout space [14]. The practicality of 

routing signals across the substrate was also considered in the choice of the data 

transfers used by the algorithm. 
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Section 3.2 The SLA Derivative Operators 

3.2.11" and 2nd Order Sparse Convolutions 

The algorithm employs a combination of I" and 2"d order spatial derivatives to locate 

edge points. This dual derivative method was adapted from the Canny algorithm [I I] 

which selects edge points from within its 1s` order results through non maximal 

suppression. The non-maximal suppression of the Ist order results is equivalent to 

searching for zero crossings within the 2"d order spatial derivatives. In the SLA 

algorithm edge points are located by combining the results of a I" order derivative 

operator with zero crossings detected within 2 "d order derivative results. 

The SLA algorithm requires a total of four derivative operators to process each pixel 
in of the image intensity profile. The operators are given by 1st and 2nd order 
derivative convolutions applied in both the horizontal and vertical directions. The 

application of these derivative operators to a sampled image profile I(x, y) has the 

general form of a two dimensional convolution given by equation (3.1) [72]. 

ddrcýý (x, Y)_ Z E1(x-i, Y-j)'hdKc�,. (i,. l) (3.1) 
1. J EH 

The derivatives of 1(xy) are given as ddrection(x, y). The subscript direction is set to v 

for the vertical direction and h for the horizontal direction. The superscript order is set 
to 1 for a 1St order derivative and 2 for a 2nd order derivative. The impulse response of 
the derivative convolution is given by h(i j). The masks that define the four derivative 

convolutions employed by the SLA algorithm are illustrated in Figure 3.3. Equation's 

(3.2) to (3.5) give the numerical operations applied to each pixel in the processed 
image. 
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Figure 3.3 SLA derivative masks (a) horizontal 15L order convolution, (b) horizontal 

2nd order convolution, (c) vertical 15` order convolution, (d) vertical 2 °d order 

convolution 

d;, (x, y)= (x, y+1)] (3.2) 

dti(x, y)=[I(x, y-2)-21(x, y)+I(x, y+2)] (3.3) 

d, (x, y)=[I(x-l, y)-I(x+1, y)] (3.4) 

d, (x, y)= [I(x-2, y)-21(x, y)+I(x+2, y)] (3.5) 

The convolution masks illustrated in Figure 3.3 are themselves the product of a series 

of convolutions. Consider the 1s` order derivative {1,0, -I); this is derived from the 

convolution of the short uniform average {+1, +1) with the short derivative {+I, -I} as 
illustrated in equation (3.6). The 2 °d order operator is given by two additional 

convolutions of these short operators as illustrated in equation (3.7). 

Thus the SLA algorithm derivatives are the realisation of a series of uniform averages 

and derivatives. If the length of the uniform average is increased, then the span of the 

convolutions are increased but the number of coefficients remain at two for the Vt 

order derivative and three for the 2 °d order derivative. As a result, the SLA algorithm 
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has been classed as a sparse convolution algorithm. Equations (3.8) and (3.9) illustrate 

the convolutions for a uniform filter of length 4. This length parameter controls the 

connectivity of the detector across the direction of the detected edge. The sparse 

convolutions of equations 3.8 and 3.9 afford the SLA algorithm, wide connectivity, 

with a minimal amount of routing [73]. 

{l, o, -i}={i, 1} * {1, 
-1} (3.6) 

{1,0, -2,0,11=11,0, -1} * 
{l, 1} * {1, -1} (3.7) 

{i, 0,0,0 - i} = {i, 1,1 i} * {i, -i} (3.8) 
{1,0,0,0-2,0,0,0 1)=Il, 0,0,0-i) * {i, 1,1 1} * {l, -1} (3.9) 

3.2.2 Averaged Sparse Convolutions 

A feature of the SLA NSIP orthogonal scans is that averaging normal to the spatial 
derivative direction is available without need for additional routing. In the case of the 

horizontal convolutions additional columns about the processed column can be 

enabled and summed to give uniform averaging. The convolution masks for 

averaging of width 3 are illustrated in Figure 3.4. Equation's (3.10) to (3.13) give the 

numerical operations when the convolution masks are applied to the image. 

111 
111000 
000 -2 -2 -2 
-1 -1 -1 000 

111 
(a) 

(b) 

1101-1 11 0 -2 10 -1 10 -2 10 -1 10 -2 
(c) (d) 

Figure 3.4 SLA Derivative Masks Length =2, Width = 3, (a) Horizontal 1St Order 
Convolution Mask, (b) Horizontal 2°d Order Convolution Mask, (c) Vertical 1st Order 

Convolution Mask, (d) Vertical 2 °d Order Convolution Mask 

1 0 -2 0 1 
1 0 -2 0 1 
1 0 -2 0 1 
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I(x-l, y-1)-I(x-1, y+1) 
d,, (x, y)= I(x, y-1)-I(x, y+l) (3.10) 

I(x+l, y-I)-I(x+l, y+1) 

1(x-I, y-2)-21(x-1, y)+I(x-1, y+2) 
dti(x, y)= I(x, y-2)-21(x, y)+I(x, y+2) (3.11) 

1(x+l, y-2)-21(x+1, y)+I(x+l, y+2) 

1(x-1, y-1)- 1(x+l, y-1) 
d; (x, y)= 1(x-1, y)-1(x+1, y) (3.12) 

1(x-1, y+1)-1(x+ 1, y+1) 

1(x-2, y-1)-21(x, y-1)+1(x+ 2, y-1) 
d, (x, y) = 1(x - 2, y) - 21(x, y)+ 1(x + 2, y) (3.13) 

1(x-2, y+1)-21(x, y+l)+1(x+2, y+1) 

3.2.3 Directional Derivative Sense Retention 

The image in Figure 3.5(a) is representative of the data that an autonomous navigation 

system will need to recover its pose from, if corridor navigation is to be implemented. 

The image is sampled at a resolution of 512x512 pixels. This image is used to 
illustrate the operation of the SLA algorithm. An important aspect of the distributed 

processing employed in the SLA algorithm is the retention of derivative sense 
information [74,75]. The retention of derivative sense information is illustrated in 

Figure 3.5(b) where a corridor image is processed by the vertical direction ls` order 
derivative of equation (3.12). On the plane surfaces, the derivative returns the mid- 
tone grey level to register no gradient. The derivative scan is from left. to right At 

dark to light surface transitions, the derivative returns negative gradients represented 
by the dark lines. At a light to dark surface transition the derivative returns positive 

gradients represented by the white lines. 
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Figure 3.5 Sense Information, SLA Length =2 Width=3, (a) Corridor Image, (b) IS` 

Order Vertical Derivative 
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Section 3.3 Adaptive Thresholds and Edge Assignment 

3.3.1 Adaptive Thresholds 

The SLA algorithm converts the analogue directional derivatives, given by the 

application of the equations derived in Section 3.2, into discrete signals through 

comparisons with local thresholds. The is` order discrete derivatives mark the regions 

of the image where edge points are located. The positions of the edge points within 

these regions are refined through the extraction of zero crossing points from the 2nd 

order discrete derivatives. 

In the SLA algorithm simulations the thresholds were adaptively set. The thresholds 

for each pixel derivative were set to a percentage of the average pixel intensity that 

contributed to that pixel derivative. The percentage component in the threshold 

calculation was set globally for the image. The use of the adaptive threshold was used 

to reflect the response of the contrast sensitive derivative circuits described in Section 

5.4. 

The adaptive threshold t(x, y) for the horizontal 1st order derivative convolution of 
Figure 3.4(a) is given by equation (3.14). This equation finds the average intensity of 

the pixels that contribute to the derivative and sets the threshold to a percentage of that 

average intensity. The percentage parameter Per l" is globally set for the image. The 

adaptive threshold t(x, y) for the horizontal 2 "d order derivative of Figure 3.4(b) is 

evaluated through equation (3.15), where the global percentage threshold is given by 

Per 2"d. The evaluations for the adaptive thresholds of the Figure 3.4 vertical 
derivatives are given in equations (3.16) and (3.17). 

I(x-l, y-1)+I(x-1, y+1) 
(x Perl" 

Ix 1+Ix +1 'Yý- 
(3x2xIO0 

('Y-) ( ýY ) (3.14) 
[J(x+l, 

y-1)+I(x+l, y+1) 

1(x-1, y-2)+21(x-1, y)+1(x-1, y+2) 
(3.15) 2 Per 2 'd 

th(x'y) 
3x4x100 

I (x, y- 2) +21 (x, y)+I (x, y+ 2) 
1(x+1, y-2)+21(x+1, y)+1(x+I, y+2) 
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1(x-l, y-1)+I(x+l, y-1) 
t'(x, y)= 

Per 1" 
3x 2x100 

I(x-l, y)+I(x+l, y) (3.16) 
I(x-l, y+l)+I(x+l, y+l) 

1(x-2, y-1)+21(x, y-1)+I(x+2, y-1) 
ý2(x, Y)_ 

Per 2nd (3x4xlOO 
I(x-2, y)+21(x, y)+I(x+2, y) (3.17) 
1(x-2, y+1)+21(x, y+l)+I(x+2, y+1) 

The percentage parameters in the ls` and 2nd order adaptive thresholds are used to 

control the type of edge set detected by the SLA algorithm. The structural outlines 
that the autonomous navigation system needs to identify are found by setting the 

Per ls` term to 5% and setting the Per 2"d term to 1%. By reducing both these terms 

by a factor of 5 the detector can be made to detect faint outlines and textured details as 

well as the structural outlines. 

3.3.2 Discrete Derivatives 

The conversions of the analogue derivatives, with the retained sense information, to a 
discrete format gives three possible states for each derivative. If the derivative is 

greater than t(x, y) then the derivative is assigned the Positive (P) state. If the 

derivative is less than -t(x, y) then the derivative is assigned to the Negative (N) state, 

otherwise the derivative is assigned to the Zero (Z) state. In equation (3.18) to (3.21) 

the discrete conversion for the vertical and horizontal derivatives are defined. 

P for (d;, (x, y) ? to (x, Y)) 
Dti (x, Y) = N for(d;, (x, Y) _< -tn (x, Y)) (3.18) 

Z otherwise 

P for (d, ý2 (x, Y) 2 tti (x, Y)) 
Dh (x, y) = N for(dh (x, y) <_ -th 

(x, y)) (3.19) 
Z otherwise 
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P ford. 1 (x, y) 'a tý (x, y)) 
D 

, 
l(x, y) = )V for(dl (x, y) s -t l 

(x, y)) (3.20) 
Z otherwise 

P for (d' (x, y) Z t, '(x, y)) 

D; (x, y) =N ford 
v 
(x, y) S -tv (x, Y)) (3.21) 

Z otherwise 

3.3.3 Edge Point Assignment 

The equations that define the SLA horizontal edge points EPh(x, y) and the vertical 

edge points EP,. (x, y) are given in equations (3.22) and (3.23). These edge points have 

the same three state discrete format used in the derivative processing. If an edge point 

exists it is either Positive (P), or Negative (N), otherwise no edge exists and the Zero 

(Z) state is assigned. A horizontal edge point assignment EPh(x, y) requires a non zero 
D'(x, y) and a zero crossing between D2(x, y-1) and D2(x, y+1). The derivative sense 
information is used to ensure that edges are only assigned when the direction of the 

zero crossing is valid for the sense of the 15t order derivative. 

P for(Dý, (x, y)=P]And[Dh(x, y-1)=P]And[Dti(x, y+1)=ND 
EPh (x, y) =N for JDti (x, y) = N}And [Dh (x, y -1) = N]And [Dti (x, Y+ 1) = PD (3.22) 

Z otherwise 

P for([D,, (x, y) = P]And[D, (x -1, y) = P]And[D, 
2 
(x + 1, y)= Nl) 

EP� (x, y) =N for([D, (x, y) = N]And [Dv (x -1, y) = N]And [D, (x + 1, y) = P]) (3.23) 

Z otherwise 

The zero crossing tests employed in equation (3.22) test for 2°d order derivatives that 

exceed the local thresholds at pixel sites (x, y-1) and (x, y+1). This avoids the need to 
determine if the 2nd derivative is zero at site (x, y). In theory a zero condition at site 
(x, y) indicates a zero crossing [13] and thus marks an edge point. However, due to the 
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Sampled nature of the processed data there can he no certainty that a Zero crossing ý\ III 

he marked by a zero in the 2'' Order derivative hrotiIc. Ihr approach adopted in the 

SI.: \ detector avoids this potential source of noise in the determination of edge 

Ioocaticros. In equation (3.23) the icro crossing fier site (x, y) in the vertical scan is 

determined by testing the 2 ordcr derivatives at sitcs and (x { /, y). As a result 

ob employing this thrcr-pixel spread in the icro crossing detection a double edge point 

is allocated ýOcre the cdge point occurs with an abrupt intensity discontinuity. 

3.3.4 Thresholds for Structural Edges 

The application of the SI. A analogue derivatives and discrete conversions to the 

corridor image are illustrated in Figure 1.6. the derivatives are given by equation's 

(3.10) to (3. l ;) and the adaptive thresholds by equations (;. 14) to (;. 17). Ihr Per IQ 

was set to 5°, b the Per 2"`r was set to 1 %0. 'Ihr three-state results C or the vertical and 

horizontal edge detection processes are givcn in Figure 3.6(a) and (h). The adaptive 

nature of the SI. A derivative thresholds ensures the detection of the double door 

features even though they are in a corridor region that is dimly illuminated. 

:- ý- 

ý, 

(a) (b) 

Figure 3.6 SLA Directional Edge Sets, (a) Vertical Edges, (b) Horizontal Edges 

The Per 1" and Per_2m1 settings used for the Figure 3.6 results give the detector a low 

susceptibility to noise. The main structural outlines are retained, but corner features 
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are missed. The missed comer features give rise to an edge set that is not aesthetically 

pleasing however, the suppression of corner details is critical to the efficient 
implementation of Beveridge's [15] pose recovery algorithm. The processing 

overheads are reduced if the pose recovery is limited to finding matches between 

straight lines in the model and the image extracted data. These threshold settings were 

used for the navigation analysis carried out in Section 3.6. 

46 



Section 3.4 Post Edge Point Detection Processing 

3.4.1 Test and Allocate Process 

The SLA Post Detection Processing is centred on a line extraction algorithm that 

converts the SLA direction edge maps, generated by equations (3.22) and (3.23), into 

line vector lists [76]. These line vectors have a total of six integer parameters that are 

used to describe the line's position and attitude. These vectors are written into a text 

file for use in the robot navigation algorithm [37,38]. It is demonstrated that the line 

length parameter provides a useful means of limiting the noise content of the line 

listing. The structure of the SLA post detection processing of the horizontal edge set is 

illustrated in Figure 3.7. 

SLA Post Detection Horizontal 
Horizontal Processor Edge Point Array 

Initial Line Token 
Test and Allocate 

Line Token 
Test and Reallocate 

Reallocation 
Required 

0 

Final Line Token 
Array 

Pixel Count Extract Last Pixel Extract 

Pixel Count Last Pixel 
Array Arr 

Compose 
Line Vector 

, _j 

Write Horizontal 
Line File 

Figure 3.7 Horizontal Edge Set Post Detection Processing 
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The line extraction algorithm is implemented through multiple scans of the edge map. 

In the first scan all connected edge points are allocated a token value. The token value 

gives the lowest address of a pixel that is linked to the Allocation Pixel (AP). The 

tokens are assigned through a test and allocate function that is raster scanned through 

the edge point set. In Figure 3.8 the AP and its spatial relationship to the connection 

Test Pixels (TP) is illustrated. The directions of the raster scan relative to AP are 

noted. If AP is not linked to a previously assigned pixel then it's token is set to the 

current pixel address. If one of the TP's has a token assigned to it then AP inherits this 

token. If more than one TP has a token assigned then the lowest of these is assigned to 

the AP site. 

TP TP TP 
TP AP ºScan 

Directions 

Figure 3.8 Test Pixel and Allocate Pixel Spatial Relations 

If the test and allocate function is limited to a single scan of the edge set then it is 

possible that an image line will have multiple tokens assigned to it. In order to 

remove this effect a redirect process is used. In this, the test and allocate function is 

scanned through the assigned token set to locate all lines with multiple token 

designation. Where multiple token assignments are located, the higher address token 

is redirected to the lower address token. If no lines with multiple tokens are found the 

line extraction process is complete. This second phase redirect process is repeated 

until all the multiple token lines are removed from the line set. Results from processed 
images showed that the redirect process is typically repeated twice to resolve the line 

token clashes. 

The final token sets given by the application of the line extraction function are 

processed to form lists of line vectors that are loaded into text files. A total of six 
integer values make up the line vectors. Four of these values were given by the line 

start and stop co-ordinates. The remaining vector values are given by the line sense 
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and the pixel COUllt results. I'he pixel count parameter is used to thin the line list by 

setting a minimum pixel count liar the IIIIC vectors to he writtell into the text IiIc. 

3.4.2 Pixel Count Threshold for Noise Removal 

The results given in Figure 3.9 illustrate the usefulness elf the pixel count pal'al»eter. 

The corridor image cif Figure 3.5(a) was processed with fil, A set to detect faint 

outlines. For this Per 1 was set to 1"ö and Per ? was set to 0.5%. These settings 

ensure that the faint outlines are detected. IIowever, they also cause the texture 

ccm ponents in the carpet to he registered. The läilnt outlines differ irom the textured 

lines in that they are composed of continuous lines with the sane edge sense. In 

contrast the direction of' the texture components are constantly changing. Thus they 

are characterised by short lines which can he removed through the application of a 

pixel count threshold to the extracted line sets. 

(a) (b) 
Figure 3.9 Combined Faint Outline Horizontal and Vertical Edge Sets, (a) No Pixel 

Count Threshold, (b) Pixel Count Threshold Set to 40. 

Figure 3.9(a) illustrates the results of the faint outline processing without the 

application of a pixel count threshold. The clutter created by the textured carpet 

surface obscures the important floor to wall boundary lines. In Figure 3.9(b) the 

application of a pixel line count threshold of 40 pixels removes the clutter associated 

with the floor texture and leaves the faint outlines in the processed image. 
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A comparison between the results of Figures 3.9(b) and Figure 3.6 demonstrates that 

the faint outline settings combined with line length thresholds gives a more complete 

segmentation. A subjective assessment will give the SLA detector set to the faint 

outline settings a higher quality rating than the structural setting of the SLA detector 

used in the Figure 3.6 results. This gain in qualitative response has been facilitated by 

the distributed nature of the SLA algorithm. By deferring the noise filtering operation 

until after the primitive line information has been collated, the SLA algorithm can 

retain low contrast outlines whilst removing high contrast noise. This strategy 

contrasts with established detectors [11,77-80] where the chief noise suppression 

mechanism is the application of low pass filtering prior to the derivative 

computations. 
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Section 3.5 SLA Computational Requirements 

The SLA edge detector was designed for incorporation in a CMOS NSIP. Its 

processes were therefore based on integer summations of pixel intensities in order to 

simplify the circuit implementation of the algorithm. The computational requirements 

of this algorithm were of interest, as in addition to the CMOS implementation there is 

the possibility that the algorithm could be integrated into a DSP structure. 

The structural overview of the SLA algorithm given in Figure 3.2 illustrates the 

sequence of pixel processes that transforms the sampled intensity profile into a 

succinct line vector listing. In Table 3.1 the processing requirements for the 

constituent parts of this algorithm are summarised. It is assumed that the horizontal 

and vertical processes are implemented separately. The tabulated results are given for 

the horizontal processing. It is further assumed that the frame capture process is 

complete, so that the data within the sampled image array is unchanged while the SLA 

edge detection process is implemented. The convolutions were assumed to have a 

width of 3 and the image resolution was set to a resolution of 512x512 pixels. 

Process Array 
Reads 

Array 
Writes 

Plus/Minus 
Operations 

Product 
Operation 

Convolution 15 
Derivatives 12 
Thresholds 12 2 

3-State Conv. 4 
Zero X Det. 2 

Edge allocate 1 2 1 
Token allocate 4 1 4 

Reallocate 4 2 4 
Refresh 2 1 1 

Pixel Count 2 1 1 
Last Pixel 2 1 1 

Vector Form 3 6 2 4 
Totals per 

Pixel 32 13 45 7 

Table 3.1 SLA Algorithm Processing Requirements 
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The tabulated results given in the 15t and 2 °d columns of Table 3.1 detail the number 

of image read and write operations required per processed pixel at each level in the 

algorithm. The plus/minus operations column gives the number summations, 

subtractions and comparisons needed to process each pixel address. The number of 

processor product operations was noted in the final column. 

A total of 97 machine instructions per pixel are required to implement the horizontal 

processing of the SLA algorithm. If a 512x512 image is processed with a 10Hz frame 

rate then a DSP system with a 2.54x108 MIPS would be required to fully process all 

the horizontal directional data generated by the sensor in real time. Critical to the DSP 

implementation of the SLA algorithm is the memory management necessary for the 

post detection processing. In the implementation of the SLA algorithm a maximum of 

12 memory bytes are required for each processed pixel. Thus the process memory 

required for a 512x512 image is 3.2Mbytes. These processor requirements would 

require a dedicated DSP processor. A Pentium III with processor capacity in excess of 

5x108 MIPS could implement the SLA algorithm for both horizontal and vertical 

directions. 

The review of navigation algorithms in Section 2.2.4 demonstrated that the process 

lag between image capture and the instigation of directional correction was critical to 

the implementation of vision based navigation. Consider the case of a robot travelling 

at walking pace of lm/sec. A process lag of 100ms, given by a 10Hz update rate is 

equivalent to 10cm of movement. This degree of overshoot would be insignificant in 

the operation of an indoor robot. 

A 

52 



3.6 SLA in Autonomous Navigation 
3.6.1 Integration of SLA into a Pose Recovery Algorithm 

It was decided to investigate the means by which the SLA algorithm results could be 

used to provide an efficient implementation of vision based autonomous navigation. 
The autonomous navigation architecture reported by Kosaka etal [37,38] was chosen 

as a target environment for the SLA algorithm. The 3D pose recovery algorithm 

proposed by Beveridge [15] was chosen as the mechanism for transferring the SLA 

scene description primitives into the model space required by the [37-38] algorithm. 
An analysis of the positional uncertainty was made for the SLA based 

implementation. 

The algorithms reviewed in Section 2.2.4 indicated that there were two major tasks 

required of the vision based indoor navigation system. These were door location and 

wall following. The forward view provided by a single camera as given in Figure 3.5 

allows the structure of environment to be mapped [37-39]. In this image the double 

doors provide a main target for the navigation algorithm and a comparison between 

successive frame mappings of the door location allows the robot to maintain a straight 

path towards the door. The estimate of the minimum distances between the robot and 

the walls of the corridor is determined by projections of the floor to wall boundaries. 

Uncertainties in the match between the model and the extracted image lines are 

amplified through these projections. 

In order to limit the errors in the robot to wall distance estimates it was decided to 

employ a wide-angle view of the corridor. The corridor image given in Figure 3.10(a) 

was used to evaluate the uncertainty that would result from the use of the SLA 

algorithm results to resolve the floor to wall boundaries and estimate the robot to wall 
distances. This image was processed through a SLA edge detector with the 

convolution uniform filter length set to 2 and the average filter width set to 3. The 

convolutions are given by equations (3.10) to (3.13). The thresholds were set for 

structural outlines with Per ls` was set to 5% and Per 2d set to 1%. The horizontal 

edge set for the image is given Figure 3.10(b). To facilitate the pose recovery 

explanation a set of (x, y) axis with (0,0) central to the image have been drawn on 
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Figure 3.10(1'). Model estimates of the corridor Iloor to wall boundaries have also 

been superimposed upon the Figure 3. I0(h) image, these are given by the two broad 

Iines with a disappearance point central to the double doors. 

(a) 

ýJ j 

:ý 

-, __ 
t, l 

-,. _ ý 
ýý 

(b) (c) 

Figure 3.10 Geometric Model Comparison to Extracted Lines. (a) Wide Angle 

Corridor View, (b) The Model Estimate and Horizontal Edge Set, (c) Boundary 

Model Estimate and Selected Lines 

The SLA algorithm retention of edge sense information provides an efficient means of 

selecting the image lines to be paired with the model estimate. The lines within the 

54 



extracted line set are grouped as a consequence of their angle, point of crossing the 

vertical y axis and their sense. One of these groupings and an initial model estimate 
for the left-hand floor to wall boundary are given in Figure 3.10(c). The Beveridge 

[15] method proceeded by evaluating the error between the model and the grouping of 
image lines. This error was then reduced through refining the model estimate and 

changing the selection of image lines paired with the model. 

When the robot's view of the doors in Figure 3.10(a) is obstructed by other corridor 

traffic then the floor to wall boundaries become the main navigational clue. For a 

given camera fixing these boundary lines give the position of the robot within the 

corridor and its heading along the corridor. The application of the Beveridge [15] 

geometric model matching to these lines allows the robot's pose to be recovered. If 

the extracted floor to wall boundary lines are corrupted through missing lines or 

cluttered through multiple returns from skirting boards then the geometric match 

processing requirements for the robot's navigation can become prohibitive. An 

efficient implementation of Beveridge's [15] algorithm requires the extracted image 

lines to exclude corner features. This can be achieved, as was noted in Section 3.3, 

through the use of the SLA structural line detector. This is the detector set-up used in 

Figure 3.10 results. 

The objective in the SLA post edge detection processing was to generate succinct line 

sets in a vector format that included a majority of the floor to wall boundary lines in 

the image. The extracted line vectors hold the line start and stop locations from which 

the line's axis crossing and the angle to the image (x, y) co-ordinate's can be 

calculated. The position of the robot within the corridor is resolved by minimising the 

error between selected image lines and the model estimate. In Figure 3.10, for a given 

camera fixing, the angles a and b and the lengths 11 and 12 uniquely define the 

position of the robot and its heading. 

3.6.2 Evaluation of Model Match Errors 

The pairing of the selected image lines with the model estimate gives displacement 

and angular errors. The errors calculated for the pairings of Figure 3.10(c) are 
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tabulated in Table 3.2. These errors are rms summed to give an overall displacement 

error of 24.44 pixels and an angular error of 11.94 degrees. An example of the 

refinement of the Figure 3.10(c) model estimate is given in Table 3.3. The rms errors 

are reduced by shifting and rotating the model estimate and changing the set of lines 

to be paired with the model. The new rms displacement error is 8 pixels and the rms 

angular error is 3.89 degrees. 

The results given in Tables 3.2 and 3.3 illustrate that the model refinement and local 

search techniques proposed by Beveridge [15] are readily implemented when the SLA 

extracted line lists are used as the source image information. The facility to group 
image lines on the basis of their sense as well as their direction and axis crossings 

ensured that the paired set is not cluttered by unconnected lines. The SLA sense 
information contributes to the model refinement process by limiting the search space 
for missing line segments. 

Line List Line Errors 

x start y start x end y end Angular Disp. 
Error Error 

(degree) (pixel) 
358 171 388 185 8.79 10.84 
391 188 400 192 9.84 15.40 
407 195 422 205 0.11 19.45 
433 212 460 228 3.15 21.56 
474 240 491 251 0.90 19.44 
500 255 508 257 19.77 25.24 
515 269 562 298 2.13 18.64 
562 302 567 304 12.00 15.49 
570 306 601 314 19.33 26.02 
602 329 681 376 3.05 18.49 
684 380 696 382 24.34 24.39 
720 384 758 406 3.74 52.46 

Model Estimate RMS Errors 
265 113 697 402 11.95 24.44 

Table 3.2 Initial Model Estimate Line Pairing Results 

In Figure 3.10 on the x axis, an error of 8 pixels in the evaluation of 12 is equal to 6 cm 
on the robot floor. When the distance from the robot to the 12 floor location is 3.5m the 
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combined effect of the 6cm and the 3.89° errors is to give an uncertainty of ±0.45m. 

The error in the angle estimate is the more significant of the two errors with respect to 

the uncertainty in the robot's position. Additional cycles of the local search algorithm 

may be used to reduce this error. However, there is a limit to the reduction in 

uncertainty that can be achieved through refinement of the model estimate. When the 

camera view of the floor to wall boundary is restricted to a length of 50 pixels and a 

potential error of ±1 pixels exist at either end of the line match, then the model 

estimate uncertainty is ±1.6°. Thus an analysis based on the Figure 3.10 image is 

limited to an uncertainty of ±0.19m in the distance of the robot from the corridor wall. 

Line List Line Errors 
x start y start x end y end Angular Disp. 

Error Error 
(degree) ixel 

358 171 388 185 6.90 6.90 
391 188 400 192 7.95 7.95 
407 195 422 205 -1.78 -1.78 
433 212 460 228 1.26 1.26 
474 240 491 251 -0.99 -0.99 
515 269 562 298 0.24 0.24 
602 329 681 376 1.16 1.16 
720 384 758 406 1.84 1.84 

Model Estimate RMS Errors 
270 113 734 402 3.89 8.00 

Table 3.3 Refined Model Estimate Line Pairing Results 

3.6.3 Smart CMOS Camera Specifications 

If the robot relies upon a single forward-looking camera, with the view given by 

Figure 3.10, to implement the wall following and door finding it must take up a 

position at least 0.19m away from the corridor wall. It was noted that the wall 
following could be implemented with less uncertainty if the camera was directed to 

view towards the wall. This will reduce the distance to the 12 measurement. Changing 

this distance from 3.5m to 1.17m will reduce the robot to wall distance uncertainty by 

a factor of 3. 
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The conflicting viewing requirements of the two tasks of wall following and door 

finding brought about the realisation that a single fixed camera could not gather the 

navigation information for both tasks. A single camera could be set to shift its view 
between three different positions, one forward view for door finding and two side 

views to monitor the distances to the side walls. 

An alternative strategy was chosen for the implementation of the vision based 

navigation. It was decided to proceed on the basis of a system that employed three 

fixed cameras to provide the navigation information. A central forward looking 

camera would provide door finding information while two side view cameras would 

provide the wall following information. The Smart CMOS Camera was seen as 

providing a solution to the integration of multiple fixed cameras onto a robotic 

platform. These devices described in Chapter 5 integrate the SLA edge detection 

algorithm into substrate NSIP structures. In order to optimise the camera function 

specifications were generated for the spatial resolution and frame rate of the Smart 

CMOS Camera that would act as a vision accelerator for the navigation tasks. 

The SLA algorithm, designed for structural line extraction, employs a width 

parameter that requires the data from a given pixel to be read on three successive 

accesses to the array. The accepted practice in CMOS image sensor is to use 
integrating pixels with destructive readouts. This form of readout cannot support the 

SLA algorithm. In order to facilitate the implement of the SLA algorithm it was 

necessary that the Smart CMOS Camera had a random access pixel array that 

permitted successive reads of the pixels. The use of a random access pixel array 

permits sub sampling of the image space. Thus in wall following mode the navigation 

processor does not need to access the full frame, instead the neighbourhood of the 

current model estimate of the floor to wall boundary can be processed to update the 

navigation information. 

If the wall following camera is fixed to view the floor to wall boundary, with the line 

that marks this boundary being the main feature in its field view, then the angular 
error constraints are reduced. If the robot takes up station 0.3m away from the wall 
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and the camera is angled so that the 12 measurement is made at 1.17m forward from 

the robots location then a 50 pixel section of floor to wall boundary will result in an 

uncertainty of 0.06m. Thus the spatial resolution of the camera can be reduced to the 

order of 100x100 pixels. 

In a camera that permits frame sub-sampling the 50 pixel line could be expected to 

exist within a 40x40 area of the image. An image search for this line could be limited 

to a space of 65x65 pixels given that the system remembers the location of the last 

estimate match. The NSIP structure of Chapter 5 employs parallel processing of the 

row and column data read from the image sensing array. The result of this parallel 

processing and the dual scan of the SLA algorithm is to set the pixel access rate to 

1300Hz, if the 65x65 search area is to be refreshed at 10Hz. The 1300Hz pixel access 

rate translates into a 100x100 full frame rate of 6.5Hz. 

When the edge detection function is implemented within the Smart CMOS Camera, 

the remaining post detection processes require 46 machine instructions per processed 

pixel (Table 3.1). Given a search space of 65x65 pixels with a frame refresh rate of 

10Hz the process lag given by the post edge detection processing is 0.33ms for a PC 

based processor with a capacity of 500x106 MIPS. 

In Figure 3.10(c) there are 12 candidate line segments that form two groups to be 

matched with the model estimate. The implementation of the geometric match 
described in Section 3.6.2 required 4 multiply and 10 sum operations per matched 

pair. Thus a total of 168 machine instructions are required to implement a model 

refinement cycle when there are 12 line match segments. If it is assumed that 5 

refinement cycles are needed to reduce the model error to an acceptable level then a 

total of 840 machine instructions are needed to adjust the model. The process lag 

given by the line matching algorithm is 1.7µs for a PC based processor with a capacity 

of 500x106 MIPS. 

It was concluded that if the proposed Smart CMOS Camera can be realised, then the 

additional processing lags incurred of 0.33ms for post edge detection processing and 
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the 1.7µs for the line match can be neglected, as the camera 65x65 sub-frame refresh 

occurs at 10Hz. This will allow the wall following distance uncertainty to be limited 

to 0.06m. This indicates a successful implementation of the Smart CMOS Camera will 

prove of benefit to the development of vision based navigation. 
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3.7 Conclusion 

Simulation was used to develop the scanned layer solution to the implementation of 

an edge point detector. The scanned layer term was adopted from the substrate layout 

constraints imposed by the implementation of the NSIP processors adjacent to an 
image-sensing array. The label of Scanned Layer Architecture (SLA) was assigned to 

the edge detector that was created for incorporation in the Smart CMOS Camera. This 

device provides full image edge point results at the sensor frame rate. 

The SLA edge detector of Section 3.2 employs sparse convolutions to extract IS` and 

2"a order derivatives from the image profile. Adaptive thresholds convert these 

derivatives into a discrete format and logical operations locate the edge points within 

the discrete derivative results. It was demonstrated, in Section 3.3, that the SLA 

algorithm could detect edge points with sufficient quality for implementation of 

autonomous navigation. 

In Section 3.4 the SLA algorithm was extended through a post detection process to 

extract line information from the edge point data. The application of a line length 

threshold was used to demonstrate that the edge sense information retained in the SLA 

detection results facilitated the removal of noise and the retention of faint outlines. 
The edge sense information was also retained in the extracted line data. It was shown 
in Section 3.6 that the retained sense information allowed the grouping of line 

segments into extended lines. These extended lines were then matched with model 

estimates of major structural features and thus the pose of a robot could be recovered. 

Analysis of the positional uncertainty [37,38] in the pose recovery algorithms 
demonstrated that three fixed cameras were required for autonomous navigation. 
These cameras would monitor forward, left and right views around the robot. The 
forward looking camera providing long range target information. The side view 
cameras provided the information necessary to implement wall following. 

I 

The research objective chosen for the Smart CMOS Camera was the implementation 

of autonomous navigation in a compact and low power consumption system. The 
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integration of edge detection into a NSIP device would ensure that the power 

consumption of the low-level vision processes was minimised. The analysis of the 

wall following navigation function in Section 3.6 generated a set of specifications for 

the NSIP device. The analysis determined that the image sensing array should be set 

to 100x100 pixels. This resolution was sufficient for the uncertainty of the robot to 

wall distance to be 0.06m. The process lags could be maintained at an acceptable level 

for corridor travel speeds of lm/s, if the full frame refresh rate is set to 6.5Hz with a 

pixel access rate of 1300Hz. 

In Section 3.5 a DSP based implementation was considered for the realisation of 

autonomous navigation using the SLA edge and line detection processes. This 

established that sub-sampling and selective processing of the image data allowed for 

real-time operation of a robot within a corridor. The real time designation is given as a 

robot travelling along the corridor at lm/s whilst using visual sensing to maintain its 

track along the corridor. 
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Chapter 4 Analysis of Edge Point Detectors 

4.1 Introduction 

The review of autonomous vision systems demonstrated that edge point detection is a 

critical element in the implementation of autonomous vision. Edge point maps have 

been demonstrated as an efficient method of segmenting the intensity profiles and 

thereby generating useful scene descriptions. The binary nature of the edge point data 

provides a succinct representation of the scene's contents and thus limits the 

computational burden of subsequent processing. An important factor in the 

development of the SLA detector was the analysis of the quality of its edge point 

results [81]. Existing methods for assessing the performance of edge detectors are 

classed as either subjective [82-86] or objective [87-90]. 

In subjective analysis, results given by an edge detector are compared to the original 
image by an experienced observer who assesses the quality of the detectors results. 
This assessment is made on the basis of the completeness of the object and feature 

outlines given by the detector. Also considered are the detectors susceptibility to noise 

where it generate false edge points and it's propensity to displace the object outlines 
from their true image positions. There are two major deficiencies in this method. 
Firstly, the quality of the original image presented to the experienced observers 
determines their ability to assess the detector results. Secondly, it is expected that 

variance will exist in the assessment given by two experienced observers, because 

there are no established methods for this subjective analysis to be carried out. The 

difficulties in setting up an expert observer assessment are evidenced in the research 

reported by Heath [89]. 

In objective assessment, the edge detector is applied to an image for which a ground 
truth set exists. The ground truth set marks the ideal locations of all edge points in the 
test image. A comparison between the ground truth set and the edge detector results 
allows a quantitative analysis of the detector to be made. This comparison can be 

made through a computation process. A typical metric compares the edge results on a 
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pixel by pixel basis to the ground truth. The correspondence between the detector and 

ground truth results is measured through a figure of merit assigned to the detector. 

This Figure of Merit has a maximum of unity for a perfect detector, and a minimum 

of zero for a worst-case detector result. 

A number of metrics designed for the quantitative evaluation of edge detector results 

and a ground truth set have been reported [82-86]. None of these has gained wide 

acceptance in the field of image processing. This is in part due to the processing 

overheads associated with their implementation and systematic errors produced by the 

edge detectors that give erroneous performance ratings. In Section 4.2 the metrics 

proposed by Pratt [82] and Kitchen-Rosenfeld [83] are examined. The examination 

reveals shortcomings in the metric's facility to deal with systematic errors generated 

by edge detectors and the ambiguous nature of their figure of merit zero condition. 

A new metric labelled the Edge Point Metric (EPM) that was designed to address the 

shortcomings found in the Pratt and Kitchen-Rosenfeld metrics. A full description of 

this new metric is given in Section 4.3. Comparisons are drawn between the EPM 

and the Pratt and Kitchen-Rosenfeld metrics in Section 4.4. Edge point results given 
by the SUSAN Sobel and SLA edge detectors were used for the comparison tests. In 

Section 4.5 the EPM metric is used to optimise the SLA detector for use in vision 
based autonomous navigation. 
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4.2 Edge Point Metrics 

4.2.1 Pratt Metric 

In the past twenty years a number of quantitative methods for assessing the 

performance of edge detectors have been reported [82-86]. Unfortunately, none of the 

metrics has gained wide acceptance and as a result subjective analysis predominates 
in the assessment of edge detection algorithms. In this section, the Pratt [82] and the 

Kitchen-Rosenfeld [83] metrics are reviewed. 

Pratt proposed a figure of merit for edge detectors that evaluated contributions from 

three types of error: - 
A missed edge 

An edge generated as a result of noise 
The displacement of a valid edge. 

This quantitative measure required the use of a ground truth set that contains the 
location of all valid edges. The Pratt metric requires: - 

The Number of Ideal Edges (NIE) in the image. 

The Number of Actual Edges (NAE). 

The displacement d, between the Actual Edge and the nearest ideal edge. 
The Figure of merit (F) was defined as given in equation (4.1) where the Scaling 

Constant is set to (CS= 0.111) to penalise offset edges. At a value of unity F is a 

maximum and the detectors response is ideal. The figure of merit has a minimum of 

zero but the edge results necessary to give this minimum result were not specified. 

1 N4 1 

F 
max(NJE, NAE) 

, _1 
1+Cs(dj)Z 

(4.1) 

The Pratt metric tests for edges at all orientations [82]. It provides quantitative results 
that allow for the comparison of two or more edge detectors on a test image, for 

which a ground truth set exists. If the result given by one of these detectors has a 
systematic displacement of one or two pixels then these displacements will result in a 
low figure of merit rating from the Pratt metric. The inability of the Pratt metric to 
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deal with systematic displacements led to the development of the Kitchen-Rosenfeld 

metric. 

4.2.2 Kitchen and Rosenfeld Metric 

A detector evaluation method was reported by Kitchen and Rosenfeld which relied 

upon local edge coherence to give the Evaluation measure (E(jmage)). This metric does 

not need a ground truth set, but it requires a synthetic test image populated by vertical 

running edges [83]. The valid edges within this synthetic image are given as vertical 
lines. Thus there is no requirement for a ground truth, and lateral systematic 
displacements within the edge detector results are not registered as errors. 

The value of E(; mage) is given by an average of local coherence results taken from each 

pixel site in the image calculated as E, y) in equation (4.2). In these E(1y) varies from a 

maximum of one, where the edges form thin continuous vertical lines, to a minimum 

of zero. It was reported that the parameter y should be set to 0.8 to give a best 

compromise between continuation and thinness. 

E(x,, ) = yC+(1-y)T (4.2) 

The Continuity value (C) and the Thinness value (7) are calculated separately for a 
3x3 pixel neighbourhood given in Figure 4.1. The parameter (y) is chosen to adjust 

the bias of E towards well connected edges or towards thin contours, y may be set to 

any real value between zero and one. The continuity value C for each 3x3 

neighbourhood is in equation (4.3) given by the average of the left and right 

continuity measures (L(k,,, ) and R(k,,, ). 

C= (L(kº, J+ R(k )/2 (4.3) 
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3 2 1 

4 0 

5 6 7 

Figure 4.1 Kitchen-Rosenfeld `k' Values in 3x3 Neighbourhood 

The L(km,,., ) continuity measure, evaluated from equation (4.4. a), gives the a value 
between one and zero that signals the best continuation of the central pixel to the left 

hand side of the 3x3 kernel. Similarly, the R(kmý) continuity measure, evaluated in 

equation (4.4. b), gives the best continuation to the right hand side of the kernel. The 

evaluation of L(k) and R(k) is dependent upon an angle coherence function given by 

equation (4.5). This function ranges from unity to zero; at unity the angles (a;, 6) are 
identical, at zero the angles differ by ;r radians. 

L(km, 
ý) = max 

a(B,, Ok)*a(4 , 9, + 2) if k is an edge pixel (4.4. a) 

l0, otherwise 

a(O,, 9k )* a(ý' 
k, 

0, - 
;) if k is an edge pixel R(km) = max 42 (4.4. b) 

10, 
otherwise 

a(a, ß) = 
2r-ffa (4.5) 

The values of L(k,,,,, ) and R(km) are dependent upon the product of two applications 
of the angle coherence function. Where: - 

B, = the angle of the edge gradient of the central pixel 
8k = the angle of the neighbourhood pixel 
(i k14) = direction between the central pixel and pixel k 

(0, +=12) = ideal continuation to the left 

(6, -'r12) = ideal continuation to the right 
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The thinness value T is given by equation 4.6, where (NR) is the Number of the 

Remaining edge pixels. These are the kernel edges not used in the evaluation of 
(L(k,,,,,, ) and R(k,,, ý in 4.4(a) and 4.4(b). 

T=1-6R (4.6) 

The Kitchen-Rosenfeld metric [83] overcomes the sensitivity of the Pratt metric [82] 

to systematic displacements by limiting the metric to the analysis of vertical lines 

within a synthetic test image. However, this limitation will have the effect of skewing 
the performance of detectors optimised through analysis given by the Kitchen- 

Rosenfeld metric to detect vertical lines. 

The Kitchen-Rosenfeld and Pratt metrics provide quantitative figures of merit that 

range from unity to zero. At a figure of merit of unity the detector has a perfect 

performance and there are no false returns registered by the detector. However, at a 
figure of merit of zero there is no definition of the levels of false returns required to 

give rise to this performance rating. Indeed, it is difficult to devise a detector results 

set that would register a zero with either of these metrics. 
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4.3 Edge Point Metric 

4.3.1 EPM Error Classification 

The EPM figure of merit was designed to provide a means by which the performance 

of an edge detector could be judged against the specifications of a vision problem. In 

this the EPM's zero value was set to indicate when the detector's results were not 

adequate for the vision problem under review. There are seven types of pixel 

classification registered by the EPM. The error types are: - 
True Positive (TP) 

True Negative (TN) 

False Positives (FP) 

False Negatives (FN) 

Displaced Positives (DP) 

Displaced Negative (DN) 

Wide Positives (WP) 

The EPM figure of merit was based upon a linear scaled sum of the conditional 

probabilities of a FP, or a FN occurring within the detector results. Additional 

qualitative evaluation of the tested detectors was based on the conditional 

probabilities of a DP, or a WP occurring within the detector's results. 

Edge point detectors operate on sampled images and assign edge points through a 

series of discrete operations. These operations can give rise to systematic 

displacements between the detected edge points and the image ground truth set, a 

typical systematic displacement being a shift of one or two pixels. These minor 

systematic shifts in the edge sets do not reduce the performance of a vision system, 

thus it is necessary that they are not classed error returns. As a result of sampling a 

detector may register an edge location at two adjacent pixels. This is line broadening 

and its effect on a vision system performance is determined by the post edge detection 

processes adopted by the system. If the WP returns are classed as errors then the 

detector evaluation can be compromised. 
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4.3.2 DGC Algorithm Structure 

The Detector to Ground-truth Comparison algorithm (DGC) was designed to detect 

the presence of systematic displacements and line broadening within a detectors 

results through the application of a set of heuristics. An overview of the hierarchical 

structure of the DGC algorithm is given in Figure 4.2. The DGC algorithm employs 

three allocation phases to classify each pixel within the map into one of the seven 

states noted in Section 4.3.1. 

Phase I 

Phase 2 

Phase 3 

Figure 4.2 DGC Algorithm Decision Hierarchy 

For a given intensity profile I(,, y) the DGC algorithm takes two input sets. An Edge 

Point set EP(xy) generated by the application of an edge detector to the intensity 

profile, and a Ground Truth set GT(, y). that marks all the valid edge points in the 
intensity profile. 
The ground truth for the image profile I(x, y) is given as GT(x y) 

GT(x, y) =1 for valid edge pixel 

GT(,, y)=0 for valid non edge pixel 

The detector edge set for the image profile I(x, y) is given as EP( 

EP() =1 for a detected edge point 
EP(, y) =0 for no detected edge point. 
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In order for comparisons to be made between the SLA, Sobel and SUSAN detectors it 

was necessary to remove the SLA edge sense information. This edge sense removal 

was achieved by assigning the value 1 to the SLA edge points registered as P or N in 

equations 3.22 and 3.23, and assigning the value 0 to the points registered as Z in 

equations 3.22 and 3.23. The Horizontal and Vertical results are then combined 

through a logical OR function to give a binary edge set for the image. 

4.3.3 DGC Phase One 

In the first phase the EPA ) and GT(,,, y) sets are processed through a heuristic given by 

Truth Table 4.1 to give an interim MapI(),, y) populated by TP, TN, FP, FN states. 

EP(,,, y) GT(x, y) Map 1(x, y) 
1 1 TP 

0 0 TN 

0 1 FN 

1 0 FP 

Table 4.1 Phase I Heuristic Truth Table 

In the second and third phases the DGC algorithm requires the 10 heuristic tests given 
by equations (4.7) to (4.16). These tests are performed on a pixel basis and they use 
the convolution mask illustrated in Figure 4.3. The Central Pixel to this kernel is 

labelled ac (PC). For each heuristic test, the assignment result is loaded into the PC 
location. 

P14 P13 P12 P11 P10 

P15 P3 P2 P1 P9 

P16 P4 PC PO P8 

P17 P5 P6 P7 P23 

P18 P19 P20 P21 P22 

Figure 4.3 DGC Convolution Kernel 
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4.3.4 DGC Phase Two 

In the second phase, Map1(, y) is processed through the heuristics to allocate DP and 

DN states within the new image Map2(,, y). In these heuristics the false returns from the 

first phase are tested for displacements of one or two pixels from uncovered ground 

truth pixels. Where a displacement exists the FP return is reallocated as a DP state 

and the FN return is reallocated as a DN state. The TP and TN returns from the first 

phase are unchanged by the heuristics used in the second phase. 

Phase 2 Test 1 uses the convolution kernel elements highlighted in Figure 4.4. The 

test heuristic, given in equation (4.7a), tests for a 4-connected displaced positive. The 

heuristic, given in equation (4.7b), tests for a 4-connected displaced negative. 

I P2 

P4 PC PO 

P6 

Figure 4.4 Kernel for Phase 2 Test 1 

(P0 = FN) 

or(P2 = FN) 
AssignDP if (PC = FP)and (4.7a) 

or(P4 = FN) 

or(P6 = FN) 

(P0 = FP) 
b= 

AssignDN if (PC = FN)and or(P2 FP) 
(4.7b) 

or(P4 = FP) 

or(P6 = FP) 

Phase 2 Test 2 uses the convolution kernel elements highlighted in Figure 4.5. The 

test employs two heuristic given in equations (4.8a) and (4.8b). The heuristics assign 
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DP and DN values to the central pixel for a two-pixel displacement to the right 
direction. 

P2 P9 

PC PO P8 

P6 P23 

Figure 4.5 Kernel for Phase 2 Test 2 

11 (PC = FP) 1 
(P2 = FP) (P9 = FN) 

AssignDP if and (PO = TN) and 
land 

(4.8a) 

and (P8 = FN) 

{or(p6 

= FP) or(P23 = FN) 

11 (PC = FN) (P2 = FN) (P9 = FP) 
AssignDN if and (PO = TN) and and (4.8b) 

Land(P8 
=FP) 

{or(p6 

= FN) or(P23 = FP) 

Phase 2 Test 3 uses the convolution kernel elements highlighted in Figure 4.6. The 

test employs two heuristic given in equations (4.9a) and (4.9b). The heuristics assign 
DP and DN values to the central pixel for a two-pixel displacement in the up 
direction. 

P13 P12 P11 

P2 

P4 PC PO 

Figure 4.6 Kernel for Phase 2 Test 3 

(PC = FP) (P0 = FP) (P11= FN) AssignDP if and (P2 = TN) and and (4.9a) 

and(P12 = FN) or(P4 = FP) or(P13 = FN) 
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11 (PC = FN) ) 
AssignDN if and (P2 = TN) and 

(P0 = FN) 
and 

(P1 1= FP (4.9b) 

and(P12=FP) 
or(P4 = FN) or(P13 = FP) 

Phase 2 Test 4 uses the convolution kernel elements highlighted in Figure 4.7. The 

test employs two heuristic given in equations (4.10a) and (4.10b). The heuristics 

assign DP and DN values to the central pixel for a two pixel displacement in the left 

direction. 

P15 P2 

P16 P4 PC 

P17 P6 

Figure 4.7 Kernel for Phase 2 Test 4 

11 (PC FP) 1 
(P2 = FPý (P15=FN) 

AssignDP if and (P4 = TN)) and and (4.10a) 

and(P16 = FN 

{or(p6=FP)J 

or(P17 = FN) 

(PC=FN) 
(P2 = FN) (P15=FP )l 

Ob AssignDN if and (P4 = TN) and and (4, ) 

and(P16 = FP) or(P6 = FN) or(P17 = FP) 

Phase 2 Test 5 uses the convolution kernel elements highlighted in Figure 4.8 The 

test employs two heuristic given in equations (4.11a) and (4.11b). The heuristics 

assign DP and DN values to the central pixel for a two-pixel displacement in the down 

direction. 
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P4 PC PO 
I P6 

P19 P20 P21 

Figure 4.8 Kernel for Phase 2 Test 5 

(PC = FP) 1 
(P4 = FP) (P19 = FN) 

AssignDP if and (P6 = TN) and 
land 

(4.11 a) 
or(PO = FP) or(P21= FN) 

and (P20 = FN) 

1 (PC = FN) 1 (P4 = FN) (P19 = FP) 
AssignDN if 1 and (P6 = TN) and 

land 
(4.11 b) 

and(P20 = FP) or(PO = FN) or(P21= FP) 

Phase 2 Test 6 uses the convolution kernel elements highlighted in Figure 4.9. The 

test employs two heuristic given in equations (4.12a) and (4.12b). The heuristics 

assign DP and DN values to the central pixel for a diagonal displacement in the up- 

right direction. 

P12 

P3 P1 

PC P8 

P7 

Figure 4.9 Kernel for Phase 2 Test 6 

(PC = FP) (P3 = FP) (P12 = FN) AssignDP if and and (4.12a) 
and(P1= FN) or(P7 = FP) or(P8 = FN) 

(PC = FN) (P3 = FN) (P12 = FP AssignDN if and 
or(P7 = FN) and 

or(P8 = FP)) 
(4.12b) 

and(P1 = FP) 

) 
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Phase 2 Test 7 uses the convolution kernel elements highlighted in Figure 4.10. The 

test employs two heuristic given in equations (4.13a) and (4.13b). The heuristics 

assign DP and DN values to the central pixel for a diagonal displacement in the up- 

left direction. 

P12 

P3 P1 

P16 PC 

P5 

- [-i t ii 1 
Figure 4.10 Kernel for Phase 2 Test 7 

11 (PC = FP) (P1= FP) (P12 = FN) 4.13a AssignDP if and and () ftand(P3 
= FN) and(P5 = FP) and(P16 = FN) 

(PC = FN) (P1= FN) (P12 = FP) 
AssignDN if and and (4.13b) 

and (P3 = FP) and (P5 = FN) and (P 16 = FP) 

Phase 2 Test 8 uses the convolution kernel elements highlighted in Figure 4.11. The 

test employs two heuristic given in equations (4.14a) and (4.14b). The heuristics 

assign DP and DN values to the central pixel for a diagonal displacement in the down- 

left direction. 

P3 

P16 PC 

P5 P7 

1 1 P20 

Figure 4.11 Kernel for Phase 2 Test 8 

(PC=FPý (P3=FP) (P16=FN) 
AssignDP if and and 

JI 
(4.14a) 

and (P5 = FN) or(P7 = FP) or(P20 = FN), 
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11 (PC = FN) (P3 = FN) (P16 = FP) 
AssignDN if and and (4.14b) 

and(P5 = FP) or(P7 = FN) or(P20 = FP) 

Phase 2 Test 9 uses the convolution kernel elements highlighted in Figure 4.12. The 

test employs two heuristic given in equations (4.15a) and (4.15b). The heuristics 

assign DP and DN values to the central pixel for a diagonal displacement in the down- 

right direction. 

P1 

PC P8 

P5 P7 

1 P20 

Figure 4.12 Kernel for Phase 2 Test 9 

(PC = FP) (P1= FP) (P8 = FN) 
AssignDP if and and (4.15x) 

and(P7 = FN) or(P5 = FP) or(P20 = FN) 

(PC = FN) (P1= FN) (P8 = FP) 
AssignDN LI and and (4.15b) 

and(P7 = FP) and(P5 = FN) and(P20 = FP) 

4.3.5 DGC Phase Three 

In the third phase the FP returns of Map2(x y) are tested to see if they can be allocated 

as width modulation pixels. In this a FP return that increases the width of the detected 

line is reallocated as a Wide Positives (WP). The DGC algorithm Phase 3 uses a 

single heuristic test. The convolution kernel for this test is illustrated in Figure 4.13. 

This heuristic applies the 8-connected test of equation (4.16), to check for line 

broadening pixels, these are assigned the WP value. The TP, TN, DP, FN and DN 

returns in Map2(X, y) are not changed by the operation of this heuristic. The results 
from the third heuristic phase are loaded into Map3(x, y). 
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P3 P2 P1 

P4 PC PO 

PS P6 P7 

Figure 4.13 Kernel for Phase 3 Test 

AssignWP if ý (PC = FP)and- 

4.3.6 DGC Example Results 

(PO = TPýr(PO = DP) 

or(P1= TP»r(P1= DP) 

or(P2 = TP»r(P2 = DP) 

or(P3 = TPýr(P3 = DP) 

or(P4 = TP> r(P4 = DP) 

or(P5 =TP)r(P5 = DP) 

or(P6 = TP>or(P6 = DP) 

or(P7 = TP)or(P7 = DP) 

or(P8 = TP»r(P8 = DP) 

(4.16) 

The operation of the DGC algorithm is illustrated in Figure 4.14. In Figure 4.14 the 

dashed line that crosses the 5x6 pixel-grid, marks the hairline separation of the two 

regions of differing intensity. The pixels with bold outlines mark the ground truth 

pixels for this intensity discontinuity. The grey filled pixels in Figures 4.14(a), (b) and 
(c) illustrate results from three different detectors with systematic shifts, line 

broadening and noise related returns. The DGC allocation of states is given by the 

labels assigned to the Figure 4.14 pixels. In order to highlight the operation of the 

algorithm, the TN assignment labels have been omitted, so that all unlabeled pixels 

are in the TN state. 
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Row 1 
2 
3 
4 

Column 

1 

3 

1 

3 

(a) (h) (c) 
Figure 4.14 I)GC Algorithm results liar three edge detectors. (a) detector with 

systematic shift, (b) detector with line broadening, (c) detector with false retunrns. 

In Figure 4.14(a) the detector's results are shifted to the left of the ground truth pixels. 

The DGC algorithm employs the 4-connected heuristic test of equation 4.7 to match 

the single shifted pixels to adjacent ground truth pixels and gives the DP and DN 

states of rows 1.2 and 5. The edge pixel at row 4, column 3 or (43) is displaced by 

two pixels from the (4,5) ground truth location. This pixel is allocated to the DP state 

through a double pixel displacement heuristic given by equation (4.10). Similarly, the 

uncovered ground truth pixel (4.5) is part of a line segment displaced by two pixels 

from a vertical line segment and this is assigned to the DN state. Figure 4.14(b) 

illustrates results from a detector that generates line-broadening pixels. A PP return 

that is adjacent to a TP or DP pixel on an 8-connected test is reallocated to the WP 

state. 

The false returns that remain in Figure 4.14(c) after the DGC reallocation indicate 

errors in the image segmentation. These false returns contribute to a reduction in the 

usefulness of the edge detector. In contrast the detector results of Figure 4.14(a) and 

(b) have no false returns remaining after the reallocation phases, and these give 

complete segmentations of the original image. An assessment of the quality of these 

two complete segmentations shows Figure 4.14(b) to be of lower quality, because it 

has a higher density of width modulation pixels. The width modulation pixels disrupt 

the operation of line detection processes. These pixels may be removed through 

thinning processes. The high density of displacement pixels in the Figure 4.14(a) 

results have a relatively low effect on the quality of segmentation as long as the image 

is over sampled. 
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The DGC algorithm allows for systematic displacements of up to 2 pixels on either 

side of lines formed by the ground truth line. This results in a space 5 pixels wide in 

which a valid line may exist. This degree of flexibility in assignment of valid edges 

was found to be adequate to compensate for systematic displacements introduced by 

the tested detectors [11,12,80]. 
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4.4 EPM Figure of Merit 

4.4.1 Minimum Quality Specification 

Förstner [16] expressed the relationship between the edge detection algorithm and the 

minimum quality of result through equation (4.17). 

q(rl d; a, t) z qo (4.17) 

Where: - q= the qualitative result for a given test 

qo = the minimum quality that can be tolerated by the vision system. 

r= the edge detector result 

a= the edge detector algorithm 
d= the test data set 
t= the tuning parameters 

The analysis is repeated for a series of data sets that encompass the full range of edge 

characteristics encountered by the vision system. The data sets are drawn up through 
inspection of the images encountered by the vision system. The algorithm, the tuning 
factors and the minimum quality levels are fixed for a given empirical assessment. 

The EPM metric was designed to conform to the accepted practice of generating a 
figure of merit that ranged between unity and zero. A perfect detector would register a 
figure of merit equal to unity. However, it was decided to allocate Förstner's [16] 

minimum quality level to the zero result for the figure of merit. This allows the EPM 

to act as an edge metric and to implement Förstner's minimum quality test. Thus a 
detector that did not conform to the system requirements would register a negative 
figure of merit. This approach was adopted because it exploited the full dynamic 

range of the metric and provided an unambiguous representation of the host system 
specifications. 

4.4.2 EPM Scale Factors 

The SLA structural detector described in Section 3.3 presents a configuration problem 
common to many threshold dependent edge detectors, in that a compromise needs to 
be sought between the detectors susceptibility to False Negative and False Positive 
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returns. Thus in a metric that assesses the performance of the detector, the relative 

significance of the two types of false returns needs to be considered. This was 

achieved in the EPM metric by separately scaling the probabilities of the false returns 
before combining these results to give the EPM figure of merit. 

Analysed image results established that the extraction of valid line segments from the 
SLA detector of Section 3.3 was mainly limited through clusters of false returns. In 

the analysed results, false negative returns were found to cluster to form extended 
breaks in the image results and the false positive returns clustered to form false line 

segments. These error clusters present a significant problem for the line extraction 

process. As breaks occur in the valid outlines, this can result in sections of the 

outlines being removed by the minimum line length threshold (Section 3.4). However 

if the minimum length threshold is reduced then false line segments, due to groupings 

of false edge points, will be retained within the extracted line results and corrupt the 

operation of the pose recovery algorithm. 

An examination of the effect of error clustering reveals that the FP errors are four 

times more likely to link and form an error cluster than the FN errors. The FP have 

the facility to connect with eight adjacent pixels whereas the false negatives are 
limited to connecting with two adjacent pixels. This higher degree of connectivity in 

the FP returns means that the metric needs to apply higher weighting to these errors in 

the evaluation of the figure of merit. It should be noted that if the false returns occur 

as isolated single pixel errors, then a simple morphological process can be used to 

remove these errors. 

The autonomous vision problem of Section 3.6 matched image line segments to 

model estimates of structural features. The model estimates were required to be of the 

order of 50 pixels long to ensure a pose recovery that was adequate for the task of 
navigating along a corridor. It was decided that the minimum quality level for the 

matched line segments should be set to one pixel in six pixels being missed. Thus as a 
result of error clustering, an image line of 50 pixels length could be split into a 
maximum four sections. This minimum quality level can also be expressed in terms of 
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the probability of a FN occurring as 0.167. Under the rule that the FP returns are four 

times more likely to link and form false line segments, a minimum level of 0.042 was 

assigned to the FP error probability in the autonomous navigation problem. 

4.4.3 Figure of Merit Evaluation 

The EPM figure of merit is calculated from the DGC results using equation (4.18). 

This equation employs two scaling factors that produce a result of zero or less when 

the false negative probability is 0.167, or the false positive probability is 0.042. The 

scaling factor, S1, of equation (4.18) is set to 6. The scale factor S2 is set to 4 to reflect 
the relative weighting of the false positive and false negative returns. The conditional 

probabilities for a false positive P(FP) and a false negative P(FN) were calculated 
from the DGC results as given in equations (4.19) and (4.20). The Totals of the TP, 

TN, FP, FN, DP, DN and WP were found by accumulating the number of pixels in 

each of these states in the detector results after the application of the DGC algorithm. 

EPM =1- S, (P(FN) + S2 P(FP)) (4.18) 

Tota1FN 
P (FN) 

Total P+Tota1FN+TotaIDP 
(4.19) 

_ 
TotalfP ýý 

Total7N+TotadFP+TotadDN 
(4.20) 

Equation (4.19) and equation (4.20) demonstrate the function of the DGC algorithm. 
It reclassifies the false positive returns as DP returns. These are then treated as true 

positives in the P(FN) probability evaluation. The false negative returns were re- 
classified as DN. These are then treated as true negatives in the P(FP) probability 
evaluation. However, it is important to know the degree to which these effects occur 
within the detector's results. Thus the EPM figure of merit results were augmented 
through the evaluation of the conditional probabilities of width modulation and edge 
displacement. The width modulation quality measure is given by the P(WP) 

evaluation of equation (4.21). The displacement quality measure is given by the 
P(DP) evaluation of equation (4.22). 
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= 
Total WP 

P(WP) 
TotalTP + Total WP + Tota1DP 

(4.21) 

P(DP) = 
Tota1DP 

TotalTP + Total WP + Tota1DP 
(4.22) 

The combination of the DGC algorithm and the EPM evaluations provided a means 
for evaluating the performance of an edge detector against a problem specification. 
There are two methods of deriving test images for this evaluation. In the first, 

captured images are used and hand editing of these provides the ground truth against 

which the detectors performance is assessed [88,90]. In the second, a graphical draw 

package is used to create synthetic test images and the ground truth is extracted from 

the image hairline outlines [82,85]. In the captured image method, the hand edit is 

labour intensive and the validity of the assessment is dependent upon the choice of 

test images. In the synthetic image method, validity of the assessment is dependent 

upon whether the characteristics of the constructed test edges are representative of the 

edges encountered in the captured images. 

Synthetic test images were used in the analysis of edge detectors for the autonomous 

navigation problem. These synthetic test images were constructed from analysis of the 

edge results taken from captured images. Edge profiles representative of the 

autonomous navigation problem were used to populate the test images. Noise with a 
Gaussian profile and a zero mean was added to the test images to exercise the 
detectors over the SNR range noted in the captured image results. The SNR in dB 

evaluation is given by equation (4.23), where d is the depth of the intensity 

discontinuity and als the standard deviation of added noise. 

SNR = 20 log( -) 6 
(4.23) 
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4.5 Metric Results Edge Detector Comparisons 

4.5.1 Synthetic Image for Metric Comparison 

In this section, comparisons are drawn between Pratt, Kitchen-Rosenfeld and EPM 

metrics [82,83]. A synthetic vertical bar image was generated for these comparisons. 
The synthetic test image, exclusive of added noise, is illustrated in Figure 4.15(a). The 

profile from the cross section line AA is shown in Figure 4.15(c). The profile steps 

oscillate about the mean grey level of 127. The step amplitude is set to 13 grey levels 

to give a 10% contrast shift at each edge point. Analysis of captured images from 

corridor environments established this 10% level as a minimum contrast level that 

marked structural outlines. A ground truth set was created by extracting the hairline 

outlines from the vertical bar image. As the Kitchen-Rosenfeld metric [83] is limited 

to the analysis of vertical lines, the vertical bar test image ensured that useful 

comparisons could be drawn between the metrics. The Pratt [82] and the EPM metrics 

are capable of analysing edge points at any orientation. 

Noise with a zero mean and Gaussian distribution was added to the vertical bar image 

to give a series of test images. The standard deviation a of the added noise was varied 
from 1 to 10 grey levels to create a total of ten test images. The image of Figure 

4.15(b) has a standard deviation of 8 grey levels. A vertical striation component was 
included in the added noise to exercise the facility of the detectors to correctly locate 

the vertical lines of edges. 

The detectors chosen for these comparison tests were the SLA algorithm, detailed in 

Chapter 3, the Sobel detector [12] and the SUSAN detector [80]. The Sobel detector is 

a low connectivity derivative based detector. This detector has limited scope for 
dealing with the added noise in the synthetic image tests. However, it is similar to the 
SLA detector in that it employs integer coefficients and relatively few product 
operations. The SUSAN detector is an area-based detector that also relies on integer 

operations to locate edge points. The degree of connectivity used by the SUSAN 
detector matches that used by the SLA implementation. 
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Figure 4.15 Vertical Bar Synthetic Test Image. (a) Vertical Bar no added Noise (b) 

Vertical Bar Noise 6=8, (c) Cross Section Profiles AA and BB 

4.5.2 Qualitative Analysis of SLA, SUSAN and Sobel Detectors 

The SLA configuration was set to uniform filter length of 6 pixels and the convolution 

width was set to 7 pixels. This gave rise to a detector that covered an area of I5x7 
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pixels and 56 pixels from this area were used to evaluate the edge point locations. The 

SUSAN detector employed a 37 pixel kernel upon which the edge decision is 

computed 1801. By pre-processing the image with it 5x5 median filter, the effective 

connectivity of the detector is increased to 109 pixels. The Sobel detector employs a 

30 kernel to implement its edge decision and this low connectivity is reflected in its 

poor results 1121. 

In Figure 4.16 sections of' the results obtained from the three detectors, when the 

standard deviation of the added noise was set to 8 grey levels, are illustrated. "These 

sections measure 5 12x6() pixels and are taken across the centre of the images. These 

results were used to implement a qualitative analysis of' the detectors. The detectors 

were rated according to the level of noise and the continuity of the step edges. The 

qualitative ratings are summarised in "Table 4.2 along with the metric results liar the 

test image. In this test the added noise had a standard deviation of'8 pixels. 

j: 

" . . 

Figure 4.16(a) SUSAN Detector results Noise a =8 

Figure 4.16(b) SLA Detector results Noise 6 =8 

'ao S'a 
r .. eyo -b 

Fr ýS ä^ y' 
a ý; 

tf 

Figure 4.16(c) Sobel Detector results Noise a =8 
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ýý rtic (T 

SI. 

Sol- 

liar Qualitative Qualitative I: I'M Pratt KR 

Noise ('cmtinuity' 

ýN Adequate Poor 0.02 0.66 0.66 

Adequate Adequate 0.42 0.82 0.80 

el Poor Poor -4.69 0.12 0.48 

Table 4.2 Metric (OMIXIrisom to Qualitative Results 

The qualitative noise ratings was based on an assessment of' the level of false returns 

in the image and their facility to link and türm short line segments. The qualitative 

continuity rating was based on an assessment of the level of the breaks occurring in 

the image lines. The ratings for each of these qualitative measures were set to Good, 

. 
1clegtrute and Pow % 

The SUSAN detector is registered as Adequate on noise measures and Poor on the 

connectivity measure. The level of line breaks place it on the limit of that which is 

acceptable for the autonomous navigation problem. The SLA results score Adequate 

for the noise assessment because although there are relatively few false edge returns 

they do link to form significant false line segments. The SLA detector is also rated as 

Adequate in the continuity measurement because of the large break in one of the 

image lines. The Sobel detector registers Poor on both qualitative measures because 

the image lines are missed and there is a high density of noise returns. 

The effects of the scaling factors applied to the FIM results is illustrated in the Sobel 

results where Poor qualitative ratings are ascribed a negative result of -4.69 by the 

EPM figure of merit. For the same results the Pratt metric [82] registers a rating of 
0.12, and the Kitchen-Rosenfeld metric [83] registers a rating of 0.48. The Sobel 

detector is not capable of resolving the vertical lines when 6 is set to 8. By specifying 

the levels of false returns that give a zero result the EPM metric is not limited to 

comparing detectors but allows a detector to be assessed against vision problem 

specifications. 
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4.5.3 Metric Comparisons 

In Figure 4.17 results 1'mm the three metrics für the SI. A's responses to the vertical 

bar image are given. I hese results demonstrate good agreement between the metrics 

until the SNR reaches IOdU. Ilerc, the FPM result indicates a marked decline as the 

added noise disrupts the operation of' the detector and renders it unsuitable for the 

autonomous Vision problem. The Pratt and Kitchen-Rosenlcld metrics do not exhibit 

this marked decline. 
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Figure 4.17 SLA Metric Results for Vertical Bar Image 

When in Figure 4.17 the SNR reaches 1.6dB. the SLA results are at the limit of their 

practical use in the autonomous navigation problem. This is evidenced by Figure 4.18 

which shows the SLA results given for the vertical bar test with a=10 and 

SNR=1.6dB. The qualitative noise test was assigned an Adequate rating and the 

qualitative continuity test was assigned a Poor rating. The level of breaks in the 

vertical lines place these results at the limit of the acceptability for the autonomous 

vision navigation. 
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Figure 4.18 SLA results Noise a=10 SNR=1.6dB 

In Figure 4.19, the full metric results for the SUSAN detector are given for the 

vertical bar test images. The three metrics follow similar curves until the added noise 

gives rise to significant error levels and then the scaling factors in the EPM metric 

give rise to a steep roll off in the results. A comparison of the SLA, SUSAN detector 

metric and qualitative results demonstrates that the SLA detector has the better 

performance. This performance advantage is directly related to the higher degree of 

connectivity employed in the SLA detector. 
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Figure 4.19 SUSAN Metric Results for the Vertical Bar Test Images 

The low connectivity Sobel detector is more susceptible to the added noise than the 
SLA or SUSAN detectors. When the noise level is low, the Sobel detector performs as 

well as the other tested detectors. However, when the SNR reaches 15dB the metrics 

record a decline in the detector performance. The Sobel detector falls outwith the 
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autonomous navigation specification at a SNR of 10dB whereas the SUSAN detector 

maintains the navigation specifications until the SNR reaches 3.5dB and the SLA 
detector extends the specification compliance to a SNR of 1.6dB. 
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Figure 4.20 Sobel Metric Results for the Vertical Bar Test Images. 
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4.6 SI. A Algorithm Configuration for NS1P implementation 

-1.6.1 SLA NSII Test and Optimisation Synthetic Images 

The use of' Fixed Focus lenses in the Sl. A NSIP sensor results in detoocusing occurring 

within scenes. such as the double door image given in Figure 4.21a. This is an out of' 

locus section 01, the corridor image given in I igure 3.5. Uhjects that are uutwith the 

lens's depth of' field will be delineated by spread-edges 17o)1. These are characterised 

by an intensity discontinuity that occurs across three or more pixels. The spread-edge 

has the general form of' a sampled hyperbolic Ian curve. The edge point Fir this curve 

being allocated at the point of'steepest gradient in the profile. 

Figure 4.21(a) Double Door Image 
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The cross section profile BB given in Figure 4.21(c) illustrates a pair of spread-edges. 

The spread profiles give rise to a reduction in the magnitude of the 1St order derivative 

and increase the uncertainty in the edge point location. The wide connectivity of the 

SLA detector allows the spread-edges to be detected. By inspection, the edge point for 

the falling spread-edge would be allocated to either pixel 7, or pixel 8, or both. The 

rising edge would be allocated to either pixel 19, or pixel 20, or both. 

As the connectivity of a detector is increased to detect the out of focus edges so it's 

sensitivity to narrow features is decreased. An example of a narrow feature is also 

taken from the double doors of Figure 4.21(b). Cross section AA illustrates a narrow 

groove feature. By inspection, the groove is delineated by two edge points. The falling 

edge point being assigned to pixels 6, or pixel 7, or both. The rising edge point being 

assigned to pixel 7, pixel 8, or both. 

To ensure that the edge point set is complete it is necessary to establish that the 

narrow features, as well as the spread-edges are detected. These conflicting 

requirements result in a compromise in the configuration of the detector. The option 

of using multiple passes of the detector set to different connectivity scales was not 

practical in the SLA NSIP as the routing of the derivatives and the logical operations 

are fixed in the substrate layout. 
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In order to configure the SI, n algorithm fier the autonomous vision Problem the 

synthetic images of' Figure 4.22 were created using a graphical draw package. 'I'hr 

hairline outlines of'the draw package were processed to give ground truth sets fir the 

synthetic images. The concentric ring profiles ensured that edge point at all possible 

angles are tested. In Figure 4 22(a), narrow features were created with a width of' 3 

pixels, similar to the V shaped groove given in Figure 4.21(h). 'I'hr edge profiles in 

Figure 4.22(h) were smoothed to give edge spreads of' 5 pixels, similar to those 

illustrated in Figure 4.21(c). Noise with a (4aussia11 distribution was added to these 

synthetic images to give a set of' test images against which the SI. A detector 

configurations could he assessed. 

Figure 4.22(a) Narrow Feature Test Figure 4.22(b) Spread Edge Test 

The cross sections CC and DD from image 4.22 are illustrated in Figure 4.23. Cross 

section CC illustrates the narrow features used to configure the SLA algorithm. The 

narrow feature is delineated by a pair of edge points. These edge points are separated 
by a single pixel space. Cross section DD illustrates the spread edges used to 

configure the SLA algorithm. The edges are spread over 5 pixels with the maximum 

gradient central to this range. 
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Figure 4.23 (b) Spread Edge Cross Section DD 

4.6.2 SLA Detector Uniform Filter Length of 4 Average Width of 3 

The widely connected SLA detector employed in the metric comparisons of Section 

4.4 was configured to detect vertical and horizontal lines. The width setting of 7, in 

this detector limited its facility to detect lines that lie on a diagonal. The analysis of 
Section 3.6 established that the diagonal lines are critical to the successful 
implementation of the autonomous navigation problem. In order to ensure that 
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diagonal lines were not missed by the SLA detector its width parameter was limited to 

a maximum of 3 pixels. The width, the Per ls` and Per 2°d parameters of the SLA 

algorithm are adaptive in the NSIP configuration. The uniform filter length is fixed 

through the CMOS layout and this parameter was the main focus of the configuration 

analysis. 

EPM results for the SLA algorithm, with the length of the uniform filter set to 4 

pixels, are illustrated in Figure 4.24. In this implementation the I" order directional 

derivative has a span of 5 pixels and the 2°d order derivative has a span of 9 pixels. A 

convolution of this form maximises the 1St order response to the spread edges of 

Figure 4.22(b). The Per lst was set to 5% and the Per 2°d was set to 0.1%. The 

minimum line pixel count was set to 3. 
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Figure 4.24 SLA Detector Filter Length of 4 

The EPM results given in Figure 4.24 show that this SLA configuration maintains 
high metric returns until the SNR reaches 15dB. At a SNR of 10dB and 9dB, the 

spread edge and narrow feature results cross zero. This zero crossing indicates that 

when the SNR of the captured image is of the order of 10dB that the SLA detector 
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fails to segment the images with sufficient quality to allow the autonomous vision 

algorithm to be implemented. Further illustrated in Figure 4.24 is the displacement 

probability for edge points detected in the narrow feature test images. This shows that 

approximately 45% of the edges are displaced. This is due to broadening of the 

narrow feature. Inspection of the detector results demonstrated that the SLA, with 

convolutions based on uniform filter of length 4, caused the width of the Figure 

4.22(a) narrow feature to be increased from 3 pixels to 5 pixels. 

4.6.3 SLA Detector Uniform Filter Length of 2 Average Width of 3 

In order to avoid broadening of the narrow feature the SLA detector was reconfigured 

with a uniform filter length of 2. The convolution width was maintained at 3, the line 

pixel count threshold was set to 3. Per 1 s` was set to 4% and Per 2°d was set to 0.1 %. 

The EPM results for this amended configuration are given in Figure 4.25. As a result 

of reducing the degree of connectivity in the SLA detector, the probability of a 

displacement occurring in the narrow feature results was reduced to approximately 

10%. However, the reduced connectivity also causes the zero crossing points of the 

EPM results to be increased to 14dB for the spread edge tests and 13dB for the narrow 
feature tests. 
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Analysis of the corridor test image of Figure 3.5 gave a worst case SNR of 16.5dB for 

structural edges. These worst case results were found in the neighbourhood of the 

dimly illuminated double door. Thus the synthetic test results established that the 
SLA NSIP should be configured with convolutions of uniform filter length 2. The 

equations that describe these convolutions were derived in Section 3.2. The Is' order 
derivative convolution is given by equation (3.10) and the 2 "d order derivative 

convolution given by equation (3.11). 

The EPM quantitative measure proved an effective tool for the assessment of the 

detector. It allowed a quantitative assessment of the detector to be made and 

alternative configurations to be compared. By setting the gain in the linear 

combination of the error probabilities to give a zero crossing metric the useful range 

of the detector was clearly indicated. 

In Appendix A, five examples of the operation of the SLA algorithm with the span set 

to 2, width set 3, Per 1 S1 set to 4% and Per 2, d set to 0.1% are given. The example 
images include three indoor views that are representative of the scenes likely to be 

encountered by an autonomous navigation robot. Also included in Appendix A are the 

Lena and Clare images. These are accepted as standard segmentation test images in 

the field of vision processing. The results in Appendix A demonstrate that the SLA 

edge detector which was optimised for the detection of narrow features and spread 

edges is effective in the segmentation of the standard images and indoor scenes. 
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4.7 Conclusion 

The quality of the information contained in an edge point data set is critical to the 

overall performance of the vision system. An assessment of the quantitative edge 
detector metrics proposed by Pratt [82] and Kitchen-Rosenfeld [83] was carried out. It 

was noted that these metrics were limited to comparing edge detectors and are not 
designed to compare a detectors performance to a vision systems specification. A new 

metric called the Edge Point Metric was developed. This metric allows for the 

inclusion of a minimum quality specification [16] for the edge detector. The EPM 

results were used to select the convolution span, filter width and threshold parameters 

of a SLA detector for use in autonomous navigation. 

The new metric employs a Detector to Ground truth Comparison algorithm (DGC), 

described in Section 4.3, that compensates for systematic displacements of up to two 

pixels on either side of the ground truth line. This DGC algorithm ensures that the 

metric assessment is not skewed as a result of image sampling or the discrete detector 

processes. The DGC compensation employs heuristics that can be implemented 

through an image processing package that allows kernel based logical operations to be 

applied to binary images. Accumulated results from the DGC algorithm allow the 

EPM figure of merit to be evaluated from the conditional probabilities of the detector 

registering a FP or FN return. 

A comparison of the vertical bar image results given by the SLA detector in Figure 

4.17 and the SUSAN detector in Figure 4.19 demonstrates that the SLA detector 

returns higher figures of merit results across the tested SNR ranging down to 2dB. 

The connectivity of the SUSAN detector used in these tests was 109 pixels and the 

connectivity of the SLA detector extended over an area of 105 pixels of which 56 

were sampled to give recorded results. This comparison establishes that the SLA 
detector with its sparse convolution operators and distributed decision logic give a 
higher quality performance than the SUSAN detector. 
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Chapter 5 Smart CMOS Camera Implementation 

5.1 Introduction 

This Chapter presents research into the circuit realisation of the Smart CMOS 

Camera. The medium chosen for this camera research was the Mietec 2.4µm CMOS 

process. The research covers the development of a random access pixel array and the 

circuit implementation of a Near Sensor Image Processor (NSIP) that incorporates the 

SLA edge detection algorithm. The operational specifications for the camera were 

determined from the analysis of the requirements of autonomous corridor navigation 

given in Section 3.6. 

A block diagram of the Smart CMOS Camera is given in Figure 5.1. The camera 

hosts a pixel array and two implementations of the SLA NSIP. The array pixel 

selection circuits allow the image data to be readout in two orthogonal scans. These 

have been nominated as the Vertical Scan and the Horizontal Scan. In the horizontal 

scan columns of edge points are extracted by the Horizontal SLA NSIP. In the vertical 

scan rows of edge points are extracted by the Vertical SLA NSIP. 

The SLA NSIP was designed to allow parallel detection of edge points on a row or 
column basis, as the image data was readout from the array. The timing diagram of 
Figure 5.2 illustrates the edge point readout sequence. In the camera Frame Period 
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the two orthogonal scans are implemented. In the first scan, all the pixels from each 

accessed column are processed in parallel through the Horizontal SLA NSIP to give 

columns of edge points, that are loaded into the Horizontal Edge Points Array. In the 

second scan, all the pixels from each accessed row are processed in parallel through 

the Vertical SLA NSIP to give rows of edge points, that are loaded into the Vertical 

Edge Points Array. The Edge Output sequence of Figure 5.2 illustrates the order in 

which the edge points are generated by the two scans of the image array. 

Frame n- 
-F--L-Orthogonal Scans Horizontal Processor Vertical Processor 

Column Select Clock n FL-J-1-_ 
Row Select Clock _! 

-l-Fl. 
-l_ nn 

0,0 1,0 2,0 98,0 99,0 0,0 0,1 0,2 0,98 0,99 
Edges Output 0,1 1,1 2,1 98,2 99,1 1,0 1,1 1,2 1,98 1,99 
(row, column) 0,2 1,2 2,2 98,2 99,2 2,0 2,1 2,2 2,98 2,99 

0,99 1,99 2,99 98,99 99,99 99,0 99,1 99,2 99,98 99,99 

Figure 5.2 Smart CMOS Camera Timing Diagram 

In the design of the autonomous navigation sensor the full frame process rate was set 

to 6.5Hz, to comply with navigation uncertainty requirements detailed in Section 3.6. 

The uncertainty requirements also set the array spatial resolution to 100x100 pixels. 
In keeping with these settings the period of the Row and Column Select Clocks were 

set to 0.77ms to give a pixel read rate of 1300Hz. 

In keeping with the constraints imposed by commercially available optics it was 

elected to limit the image sensing area to a maximum of 0.8x0.8cm. This receive area 

could be accommodated by a 1" format lens F/1.2. Thus the square pixel pitch for the 
100x100 array was set to 80µm with each pixel measuring 80x8Ogm. 

The random access operation of the pixel array meant that the instantaneous photo 
currents generated by the pixels would set the signal levels readout from the sensor 
array. In Section 5.2 the photo currents generated by CMOS light sensing diodes are 
evaluated. It is noted that these diode currents limit the SLA NSIP framing rate to less 
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than the required 6.5Hz. To overcome this limitation, it was decided to integrate a 

vertical Bipolar Junction Transistor (BJT) into a light sensing diode structure to 

provide gain at each pixel site. An evaluation of the gain available through the BJT 

pixel is given in Section 5.3. Measurements made on a test pixel structure established 

that the BJT pixel would comply with the random access requirement of the Smart 

CMOS Camera. 

The NSIP circuit implementation of the spatial derivatives required by the SLA 

algorithm is described in Section 5.4. The circuits are designed to provide both 1st and 

2nd order spatial derivatives. The layout of the derivative circuits was designed to fit 

within the 80µm pitch of the image-sensing array. This allowed the spatial derivative 

processes to be implemented in parallel for the columns and rows of image data 

readout from the array. 

A test implementation of the Smart CMOS camera created in the Mietec 2.4µm 

CMOS process is described in Section 5.6. In this, an array of 10 rows and 4 columns 

of 80x80µm pixels provided the image sensing. Column selection circuitry and a 

horizontal SLA NSIP were integrated on the CMOS substrate alongside the image 

sensing. The NSIP circuits used to convert the spatial derivatives into a discrete 

format and the edge decision logic are described in Section 5.5 Results from this test 

implementation of the Smart CMOS Camera demonstrate the detection of edge points. 

102 



5.2 ('MOti Phototransduction Diodes 

Ihr random access operational requirement specified for the Smart ('MOS Camera 

meant that the sensor I inction was dependent upon the instantaneous photo- 

transduction processes within the silicon substrate 1911. In a silicon substrate, photo- 

transduction occurs when absorbed photons oI incident light excite electrons tirom the 

valence to conduction hand mthin a diodes depletion region. I'hoto-transduction also 

occurs when this excitation occurs within a diffusion length of the diode depletion 

region. A reversed-bias applied to the diode allows it to act as a current source giving 

a photo generated current 11th. Three types ut'('MOS light sensing diode structure are 

illustrated in Figure 5.3. These are the N- well to P- substrate structure of l igurc 

5.3(a), the N+ diffusion to P- substrate of Figure 5.3(h) and the N- well to P+ 

diffusion of Figure 5.3(c). 

Light 
Iý, h Flux ºº 

N-well 

f'-substrate 

I. iýht 
Ili H (A ol lp 

- N±diftusion 

" 
P-substrate 

light 
ýIE, h Iý lux 

-! P+diffustonj 
N-%\cli 

I'-substrate 

(a) (b) (C ) 

Figure 5.3 CMOS diode structures, (a) N- well to P- substrate diode (b) N+ diffusion 

to P-substrate diode (c) N- well to P+ diffusion diode 

The relationship between the photo current IpA incident flux intensity Po and the 

receive area of the diode 
.1 

is given in equation (5.1) [911. The energy A 'I) of the 

absorbed photons is dependent upon the wavelength of the incident light. The factor R 

is the reflection coefficient for silicon. The internal quantum efficiency 17, is the 

probability that a photon will excite an electron from the valence to conduction band 

to create an excess minority carrier. The factor F gives the probability that this 

minority carrier is collected and contributes to Iph. 

Iph=qPo (l-R)i7, F 
EI) (5.1) 
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A theoretical analysis of photo-transduction in CMOS diode structures was carried 

out by Moini [92]. This analysis reports the probability product (qF) for the diode 

structures of Figure 5.3. These probability products were evaluated for wavelengths 

ranging from 300nm to I µm. Integrals were taken of Moini's (i F) probability 

products for the photopic range of 400nm to 700nm. These were used to evaluate the 

currents generated by the Figure 5.3 diode structures, under white light illumination, 

for the Illumination Engineering Society (IES) lighting conditions given in Table 5.1 

[42]. The lighting conditions assessed in Table 5.1 are representative of the 

environments that the smart camera is expected to operate within. 

Environment Illuminance 
Minimum 

(lx) 

Diff-Substrate 
Diode 
(nA) 

Well-Substrate 
Diode 
(nA) 

Diff-Well 
Diode 
(nA) 

Storage Areas 50 0.46 0.39 0.27 

General Office 200 1.85 1.13 1.08 

Assembly Work 500 4.63 3.92 2.71 

Inspection 1500 13.9 11.8 8.12 

Fine Detail Work 5000 46.3 39.2 27.1 

Table 5.1 Currents Generated by CMOS 56x56µm Diode Structures 

Commercial considerations prevent the Mietec foundry from releasing the diffusion 

depths or doping concentrations necessary for a full analysis of the light detection 

properties of diode structures formed within their 2.4µm process. The Moini analysis 

was made on a process equivalent to the Mietec 2.4µm CMOS process. Thus it was 
decided to base the analysis of the light detection diode structures on the data supplied 
by Moini. 

The array of 80x80µm pixels incorporates readout circuitry that has the effect of 

reducing the area available for the detection of light in each pixel. In this analysis, the 

pixels were assumed to have a fill factor of 50%, allowing half of the pixel area to be 

taken over by the readout circuitry and routing. The light sensing area would be a 
central 56x56µm region within the pixel. The currents for CMOS diodes given in 
Table 5.1 are calculated for diodes with a sensing area of 56x56µm. In the calculation 
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of pixel currents given in Table 5.1 the optical gain supplied by the camera's image 

focus lens was assumed to be unity. 

The rate at which the pixels can be accessed from within the array is dependent upon 

the photo current generated by the pixels and upon the line readout capacitance. The 

line readout capacitance was calculated from the Mietec 2.4µm Electrical 

Characteristics [93]. This line readout capacitance is composed of three components; 
Metal to Substrate Capacitance CM = 512 IF 

ON-MOSFET Capacitance CON = 19.7fF per MOSFET 

OFF-MOSFET Capacitance COFF = 11.8fF per MOSFET 

The SLA implementation described in Section 3.7, shows that for each processed 

pixel location three pixels are connected to each readout line. The resultant 
LineCapacitance for the array readout line is given by equation 5.2 as 1.68pF. 

LineCapacitance = CM + 3CON +97CoFF (5.2) 

The slew rate that could be expected for the readout line when the sensor was 

operated under the General Office condition of Table 5.1, was used to assess the 

practicality of a random access array constructed from diffusion to substrate diodes. 

An illumination level of 2001x on the diffusion to substrate diode gives rise to a 

maximum slew rate of 1.1 V/ms when the diode output current charges a 1.68pF 

capacitance. If the pixel to pixel voltage swing is IV, the maximum pixel read rate 
that can be supported by this diode structure is 908Hz. This read rate is less than the 
1300Hz required for a 6.5Hz framing of the 100x100 sensor. As a result of this 
limited pixel read rate it was decided to consider the practicality of introducing gain 
into the pixel structure. 
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5.3 Pixel vvith Integral Gain 

5.3.1 MIT Pixel 

In the N-%\ell to substrate diode structure it is possible to integrate a vertical Bipolar 

Junction Transistor (13.1"I) capable of' providing current gain. I'hese W"I's have been 

sited as viable light detectors. \vith reported theoretical gains in the order cif' 00 

Nloini 1921. For the development of'the Smart ('MOS Camera random access array, it 

was decided to investigate the pixel structure illustrated in Figure 5.4(a). The 

equivalent circuit tier this structure is given in Figure 5.4(h). 

I' suhstratc 
1' } diffusion Output 

N- \\ell ('urrcnt 
." 

" 
Vertical PNP 
Transistor 

(a) (b) 

Figure 5.4(a) Cross Section cif ßJ"1' Pixel, (b) Equivalent Circuit for 13.1T Pixel 

In the Figure 5.4(a) configuration. light is sensed by the N- well to substrate diode and 

current gain is effected by the vertical PNP transistor created by the P+ diffusion on 

the well surface. The P+ diffusion forms the transistor emitter. The N- well 

underneath the diffused emitter forms the base and the adjacent P-substrate forms the 

collector. The substrate is grounded and a positive potential applied to the emitter 

forward biases the base emitter junction and reverse biases the N- well to P- substrate 

junction diode. This diode jointly forms the transistor collector and the light sensing 

diode structure of the pixel. Photons that are absorbed within the diode depletion 

region or within a diffusion length of the depletion region give rise to an excess 

carrier current in the well that is conducted through the base emitter junction. The 

transistor current gain results from the fact that under the forward active bias 

conditions the emitter collector current is nominally 100 times greater than the base 

emitter current. 
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5.3.2 BJT Pixel Gain Analysis 

The maximum current gain available from a BJT is given by equation (5.3) [94]. Gray 

and Meyer [94] state that the gain is dependent upon the base width WB, the emitter 

width WE and upon the N, /ND ratio of the emitter/base doping densities. The diffusion 

coefficients given by Dp and D� were calculated from the empirical equations (5.4) 

and (5.5) given by Moini [92]. The diffusion length of minority carriers in the base is 

Lp. This length was also calculated from the empirical equations (5.4) (5.6) and (5.7) 

given by Moini. 

ßFina = WB 
1 

+ 
DnW'ND 

2L 
p DPWENA 

(5.3) 

kT 370 ý DP =q 
(370 

+ 1+ 1.563 x 10"'$ No 
(5.4 

kT 1180 ) D� =q 232+1+1.125x10"N,, (5.5 

_1 (5.6) Zp 7.8x10'13ND+1.8x10-31ND 

Lp = DP-r, (5.7) 

Due to commercial considerations, CMOS foundries will not divulge the doping 

concentrations that they employ in the creation of wells or surface diffusions. 

However, based on published parameters for CMOS processes [63,64,92,94,95] 

estimates were made of the doping concentrations and the well and diffusion depths 

for a 2.4µm CMOS process. The P+ doping concentration NA was assumed to be 

1x1019 cm3 and the N- doping concentration ND was assumed to be 2.5x10'6 cm 3. 

The P+ diffusion depth WE was set to 0.4µm and the base width WB was set to 2.6µm. 

Substitution of the assumed values in the empirical equations gives a ßßF,,, for the 

vertical PNP transistor of 180. Yang [64], and Gray and Meyer [94] describe the fall 

of ßßF as the level of forward active bias is reduced. This is expressed by the inclusion 
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of a third ratio term in the denominator of equation (5.8). The ßßF reduction is a result 

of recombination within the base emitter depletion region. The third term in the ßF 

denominator gives the ratio of the emitter current IpE equation (5.9) to the 

recombination current 1, g equation (5.10). 

ßF = WB 
1 

DfWBND IPE (5.8) 
+ 

2Lp DPWENA Irg 

I 
PE = -gADD 

1 VDE 
,'e mr (5.9) n 

7D WS 

An W 
1qi de 
ý8 

v 
em (5.10) 

2ro 

Equations (5.9) and (5.10), as given by Yang [64], illustrate the dependence of the 

emitter and recombination currents on the bias potential VBE. In these equations, the 

area of the emitter is given by A, r,, [64] is the carrier lifetime in the base emitter 

depletion region and IVdE is the width of this depletion region. The factor `2' in the 

denominator of the 1, g exponential term causes the recombination current to become 

more significant as the level of bias applied to the base emitter junction is reduced. As 

the level of bias is reduced the transistor gain is decreased. It was reported by Yang 

[64] that at high bias levels, the transistor gain would fall off as the base injected 

minority and majority carrier densities become comparable. As a result of these 

reductions in gain the useful range of the transistor is limited to a variation in 

collector currents of three or four orders of magnitude. 

In order to exploit the useful gain range of the vertical BJT within the CMOS N-well, 

it was necessary to match the moderate bias condition of VB=0.63 to the mid range 
pixel current. This current was set for the Smart CMOS Camera by the Table 5.1 
Assembly Work illumination of 5001x. An initial estimate of this mid range current 

was taken as 0.71µA, given by a transistor ßF of 180 and the N-well to P-substrate 

pixel current evaluated at 500lx in Table 5.1. In the CMOS fabrication process the 
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area of the emitter A is available for adjustment. The emitter area that will satisfy this 

bias condition of VBE=0.63 volts and IpE = 0.71µA is given by equation (5.11) as a 
6x6µm square area. 

_V 
A_I Pfi 

Noble OF 
gDpn; 

e (5.11) 

In Figure 5.5 a simulation gain plot for a BJT with a 6x6µm emitter is given. The plot 

was calculated from equation (5.8) with: - 
A= 36µm2 
NA=1XI019Cm3, 

ND = 2.5x1016Cm3 

WE = 0.4µm 

WWB = 2.6µm 

r0 =15x10'6sec. 

190 

180 

Q 170 

a 
C 
ca 

0 160 
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140 

Simulated 6x6um BJT 

Figure 5.5 Simulated Gain for BJT Emitter 6x6µm 

The gain is plotted against emitter currents ranging from 2nA to 5µA. This range is 

representative of the currents to be expected from a 80x80µm BJT pixel with a 50% 
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till (actor. I'hc evaluation indicatcs that gains of greater than 145 are availahlc across 

this current range when the emitter sirs is forme d h` a 6x6pni (11h union area. 

5.3.3 B. I'I' Pixel (:: yin Measurement 

An experiment was set uh to test the assumptions cif' the gain characteristics 01' the 

vertical ß. l"I' embedded in the N- \\ell to substrate pixel structure. On a Mietec 2.4Fºm 

CAMS substrate. two N- wells both measuring l20x I6Opm were lOrmed. One of 

these was used to create a N- \\cll to P- substrate diode sensor. The other was used to 

create a diode sensor ' ith integral 13.1"I' as illustrated in Figure 5.4. These devices 

exceed the Smart C'MOS Camera pixel S6xS6In sense area by a factor of 6. This was 

done to ensure that the expected diode currents could he measured. The layout of 

these N- \\ell detectors is illustrated in Figure 5.6. The diode detector was l'Ormed by 

connecting to the N- well sense surfiºcc through N+ dif'f'usions. The f3. t'I' detector was 

formed by connecting to the N- well sensing surlier through P+- diffusions. The 

emitter for this pixel measured 45 tm-. 

N-well guard ring 

N-ýýrll SCnsinýý area 

A 

comicction to sensor 

bias supply and current 
A sense 

bias supply 
to guard ring 

linimum well to 
vell spacing 

A 

Figure 5.6 Layout of the 120x160µm Diode Detectors 

In the test structure the maximum separation between the contacts to the N- well 

sensing area was set to 315µm to replicate the losses due to recombination centres 
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within a 56x56µm well with a 6x6µm central emitter. The maximum diffusion length 

of 310µm, calculated from equation 5.7, indicates that the detectors of Figure 5.6 can 

collect photon-excited carriers from an area spanning 730x780µm. For the image- 

sensing array it is necessary to limit the pixel's response to light incident upon the 

pixel sense area. The N-well guard ring that encloses the N-well sensing area is biased 

to create a vertical field that will collect carriers from out with the sense area and 

conduct them away into the guard ring bias circuit. 

The experimental set up to measure the BJT pixel gain is illustrated in Figure 5.7. A 

diffuse white light source illuminated a pair of the diode and BJT sensors, with 

layouts as illustrated in Figure 5.6. A Thorlabs Calibrated detector was used to 

measure the level of incident illumination. In the experiment the incident illumination 

was varied between 501x and 50001x. This range was chosen to reflect the levels of 
incident illumination to which the Smart CMOS Camera was expected to respond. 

Diffuse 
Source 

\ý \i 

Thorlabs 
Detector 

Figure 5.7 BJT Pixel Gain Measurement 

The method adopted for measuring the current generated by the test pixels is given in 

Figure 5.7. The currents generated by the pixels do not fall within the current 

measuring capabilities of general purpose multi-meters. The Fluke 85 meter [96] used 
in these measurements has a minimum DC current range of 400.0µA with a minimum 

resolution of 0.1µA. Thus the expected diode currents ranging from 2.4nA to 240nA 

cannot be measured directly by this meter. 
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The photo current measurement method of Figure 5.7 exploits the 10MS2 standardised 
input impedance of the Fluke 85 multi-meter. When the meter is set to measure dc 

volts a standardised 10Mg resistance exists across the input terminals. In the battery 

powered Fluke 85 this 10M) resistor accounts for input leakage currents. The M1 

and M2 meters in Figure 5.7 are set to the DC volts mode. The 10Mf input 

impedance acts as a current sense resistor. When the Fluke 85 is set to the 400.0 mV 

range, this measurement technique gives DC current measurement with a scale 

maximum of 40.00nA and a resolution of lOpA. Setting the Fluke 85 to the 40.00V 

range gives a scale maximum of 4µA and a resolution 1nA. The bias applied to the 

pixel is evaluated from the volts registered by M3. 

In the experiment the current sourced by both pixels was continuously monitored. A 

ratio was taken of these two currents to give the BJT gain. In Figure 5.8 the measured 

gain is plotted against the BJT emitter current. The 120x160µm pixel exhibited a gain 

that varied from 120 to 170 as the emitter current was varied between 20nA and 5µA. 

Figure 5.8 includes simulation results for an equivalent BJT. The simulated results 

were given by equation (5.8) with: - 
A= 435µm2 

NA= 1x1019cm3, 
ND = 2.5x1016Cnl3 

WE = 0.4µm 

WB = 2.6µm 

r0 =15x10-6sec. 

A good match is recorded between the simulated and measured results. This indicates 

that the general form of equation (5.8) is valid. Further verification of the listed 
diffusion, width and the lifetime terms used in equation (5.8) are required if this 

equation is to be generally applied. However, the results of Figures 5.8 and 5.5 
demonstrate that the useful gain of the BJT pixel extends over three orders of 
magnitude. Through the selection of the pixel emitter area, this useful gain range can 
be centred on the illumination range that the Smart CMOS Camera is expected to 
respond to. 
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Figure 5.8 Measured and Simulated Gain of a 120x160 BJT Pixel 

5.3.4 BJT Pixel Layout and Switching Circuit 

The switching necessary to implement both the vertical and horizontal access to the 

BJT pixels is illustrated in Figure 5.9. In order for the BJT pixel to comply with the 

image sensing array random access requirement, it was necessary to ensure that when 
the device was not being accessed its bias conditions were maintained. If the bias is 

removed from the BJT pixel the charge stored in the light sensing reversed-bias diode 

will leak away. A recharge through the emitter base junction of the transistor will 
introduce a significant switch on time delay and thus reduce the pixel access rate. 
Figure 5.9 illustrates the means by which the pixel bias was maintained for the two 

orthogonal scans. Standby switching transistors were included to connect the BJT 

emitter to a bias supply in the periods when the pixel was not being accessed. These 

switching transistors were controlled by signals supplied by the row and column 

selection circuitry. 
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Figure 5.9 Pixel Readout Switching Circuit 
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The horizontal readout is implemented by switching MOSFETs Ml and M2. In 

standby mode, M2 is ON and MI is OFF to connect the BJT to the bias supply and 

isolate it from the readout line. In read mode, M2 is OFF and MI is ON. During the 

horizontal scan both M3 and M4 are OFF. The timing diagram of Figure 5.10 

illustrates the switching of MOSFETs in columns 5 and 6 needed to place the photo 

currents from pixels 3,5 and 3,6 on the row 3 readout line. 

M1 Column 5 Enable 

M2 Column 5 Standby 

M1 Column 6 Enable 
M2 Column 6 Standby 

Horizontal Readout Row 3 ixe ixe , 

Figure 5.10 Pixel Access Timing Diagram 

The layout of the BJT pixel, inclusive of row and column switching devices is 

illustrated in Figure 5.11. The central N- well is reverse-biased through the potential 

applied to the central P+ diffusion. This P+ diffusion, that forms the emitter of the 

BJT, is 4µm wide and 9µm long to comply with the SLA NSIP emitter area evaluated 
from equation (5.11). The guard ring that surrounds the pixel sensing area is 

connected to the sensor's Vdd potential. This provides a substrate for the P-channel 
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Figure 5.11 80x8O im Pixel Layout 

The switching circuit for each pixel occupies two wings of the N-well guard ring. 

This leaves two wings of the guard ring available for adjacent pixels to locate their 

row and column switching devices. The 80µm dimensions for the pixel are marked on 

Figure 5.11. In this array layout it was found that the bias supply and the column and 

row selection lines could be routed to each pixel over the space occupied by the guard 

ring. Thus the shielding of the N- well sense area from incident light was limited to 

routing necessary for the sensed photo current. 

An implementation of the 8Ox8O tm pixel structure, illustrated in Figure 5.11, was 

fabricated in the Mietec 2.4µm process. The photo current measurement set up given 
in Figure 5.7 was used to measure emitter current under General Office lighting 

conditions. Table 5.1. This nominal illuminance of 2001x gave an average emitter 

current of lOOnA. This signal current is capable of supporting a maximum pixel read 

rate of 59.5K1 lz, as given by the pixel read rate calculation of Section 5.2. Thus the 
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random access requirement pixel access rate of 1.3KHz, can be met for scenes 
illuminated to the level of a General Office. The pixel test structure had the 

passivation layer in place over the 56x56µm sense area. The passivation layer is 

formed by Si02 and contains contaminants that limit the transmission of light to the 

detector. Removal of this passivation layer through foundry processing will increase 

the sensitivity of the pixels to incident light. 
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5.4 Current Mode Processing in the SLA NSIP 

5.4.1 Sub-Threshold Operation for Spatial Derivative Processing 

The results of Section 5.3 established that the BJT pixel structure would generate 

sufficient instantaneous photo-current to drive the readout line of the 100x100 array, 

at a frame rate of 6.5Hz, when the viewed scene was a general office environment. 

The photo currents generated by the BJT pixels are less than 2µA and as such are 

classed as sub-threshold currents. It was decided to let these photo currents set the 

quiescent currents in the spatial derivative circuits implemented by the SLA NSIP 

processors. This approach was adopted to facilitate the current mode circuit 
implementation for the spatial derivatives. In current mode operation the wide 
dynamic range of the pixel-generated currents can be accommodated without recourse 

to range switching. 

A MOSFET operated in the sub-threshold mode does not have an inversion channel 
formed under the gate. Diffusion rather than drift accounts for the charge transport 

across the MOSFET [63]. The diffusion transport mechanism is slower than the drift 

mechanism and sub-threshold circuits are limited to low frequency processing. In 

Section 5.2 it was noted that the 6.5Hz frame rate, combined with the parallel 

processing of row and column data, set the pixel process rate to 1300Hz. This is low 

frequency processing which can be accommodated by the subthreshold mode of 

operation. In this mode the power consumed by the CMOS circuits is considerably 
less than that when the circuits operate under strong inversion. The low power 

consumption was also seen as beneficial in the realisation of the Smart CMOS 

camera. 

The SLA algorithm detects edges on the basis of 1st and 2nd order spatial derivatives. 
The Smart CMOS Camera employs NSIP structures to implement these spatial 
derivatives. The derivatives are evaluated by summing and subtracting the photo- 
current generated by pixels local to the processed site. The horizontal and vertical 
readout lines given in Figure 5.11 route the localised pixel photo currents from within 
the array to the horizontal and vertical NSIP structures at the edge of the pixel array. 
Parallel processing within these NSIP structures required the layout of the spatial 
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derivative circuits to be realised within the 80µm pixel pitch of the image-sensing 

array. 

5.4.2 1't Order Spatial Derivative 

Current mode summations can be realised by forming a node that connects the high 
impedance outputs of two or more current sources. The SLA derivative convolutions 

introduced in Section 3.3 employ plus and minus integer coefficients. The negative 

coefficient requires an inversion of the current sourced from the readout line. 

Equation 5.12 expresses the dependence of the Is` order derivative at pixel site (n) on 

a pair of readout line outputs I,, -I) and 1(�+I) selected from a row or column sequence 

For the researched NSIP implementation the variable n ranges from 0 to 99. 

di 
n =1cn->>-1ýý+>> (5.12) 

The current difference circuit developed to give a I" order differential is illustrated in 

Figure 5.12. In this, a pair of pixel photo currents represented by 1(�_1) and I(�+1) are 

processed through mirror circuits to give a differential output at Vo. The W/L ratios of 

the mirror circuits are set for a 1: 1 ratio between the input and output currents. 
Variations in the summing node output voltage, vo indicate the magnitude and sense 

current difference between the input pixel currents. Figure 5.12 is a transresistance 

circuit where the variation in the output voltage vo is given by equation (5.13). The 

transresistance RT is given by the parallel combination of the two MOSFET output 

resistances Ro(�+I) and Ro(�_t). 

Ro(_1) * Ro V (n+i) 1(n+, )JIRr) (5.13) 
Ro(n_1) + Ro(n+, ) 
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Figure 5.12 Current Mirror Implementation of 1St Order Derivative 

The output impedance Ra of a MOSFET under sub-threshold operation is given by 

Tsividis [63] in equation (5.14). This is valid while the device remains in saturation; 

the saturation operation of sub-threshold devices being given by Vos greater than 

13OmV at 300K [63]. The voltage VAW is the equivalent of the BJT Early Voltage and 

it is dependent upon the length of the MOSFET channel. Tsividis evaluates VAW from 

equation (5.15) where the L is the MOSFET length, and K, 4W is an extracted device 

parameter with the units V/µm. 

Ro = "w (5.14) 
IDS 

VAW = KAw L (5.15) 

If the output resistances Rod�_, ) and Ro(�+I) are matched and the input currents I(�+J) 

and I(�_1) are equal then the summing node Vo potential will be Vdd/2. Laker and 
Sansen [97] specify representative values of KAw, as 4V/µm for an N-channel device 

and 7V/µm for a P-channel device. Thus for this set of representative constants a VAw 

match is obtained when the length of the N-channel device is set to 1.75 times the 
length of the P-channel device. 

When the current differential between 1(�_l) and 1(�+i) is small relative to the common 

mode current, the derivative output vo of the circuit is given by equation (5.16) where 

119 



the common mode current is given by In equation (5.16) the RT is 

expressed in terms of Vow and the input currents. In this RT is inversely proportional to 

the common mode current. This inverse dependence gives rise to a constant contrast 

sensitivity response from the current differential circuit. A I% derivative between 

I(�. I) and I(�+J) will give a va output of 0.005VAW . This contrast sensitive response 

closely mimics the spatial contrast response of the outer plexiform layers in biological 

retinas [98]. 

VAW 

vo = 
ýý1(ý-ý) 

-1(n+ý)ý I- +1 
(5.16) 

n+l))] 

5.4.3 Measurement of VAw. 

The contrast sensitivity response of the Figure 5.12 circuit is dependent upon the 

degree to which the VAw of the output MOSFETs varies with IDs. An experiment was 

set up to measure the relationship between VAw and Ios across the operational range of 

the current mode pixel. In this experiment, the drain current IDS was monitored while 

the drain source voltage VDS was varied between 150mV and 5V for a series of fixed 

Gate to Source voltages Vas. The values of Vas were chosen to bias the test MOSFET 

in the subthreshold mode. The value of VAw was then found by extrapolation of the 

saturation IDs: Vos curve to the point where it crossed the VDS axis. 

The tested device in this experiment was a 4µm long p-channel device fabricated in 

the Mietec 2.4µm process. Results from this experiment are illustrated in Figure 5.13. 

The results established that as the bias level of IDS was increased so VAW increased. At 

an IDS of lOnA, VAW was 12.5V and at 2uA, VAW was 18V. Thus the contrast 

sensitivity of the Figure 5.12 circuit would vary by approximately 50% across the 

range of currents expected in the SLA NSIP operation. This variation in VA W indicates 

that the single extracted parameter KAw [63,97] gives a limited approximation to the 

value of Ro. 
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Figure 5.13(b) VAW Measurements 100nA to l OnA 

The SLA simulation results, of Section 3.3, established that for structural analysis of a 
scene, the 1St order differential circuit was required to detect percentage contrasts of 
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5% and the 2"d order differential was required to detect percentage contrasts of 1%. 

The scaling factor in equation (5.15) is given as 0.005 VwA per % contrast between the 

input photo currents. For the measured VAW of 12.5V at a common mode input of 

1 OnA, the scaling results in contrast sensitivity of 0.0625 V/ % contrast, and gives a vo 

of 0.313V for a 5% contrast. If the common mode input is increased to 2µA the 

contrast sensitivity increases to 0.09 V/% contrast to, give a vo of 0.45V for a 5% 

contrast. 

5.4.4 Feedback Circuit to Match Complementary Output Conductances 

The successful operation of the contrast sensitive spatial derivative circuit given in 

Figure 5.12 is dependent upon the matching of Vow for the complementary MOSFET 

outputs. The measured results indicated that VAW value was not dependent upon a 

single extracted device parameter. In order to limit the dependence of the spatial 

derivative circuit upon extracted device parameters it was decided to introduce 

feedback control into mirror circuits to match the output conductance of the 

complementary outputs at each readout line. The mirror circuit with back-gate 

feedback control [99] used to implement this conductance match is illustrated in 

Figure 5.14. 

The Current Mirror circuit of Figure 5.14 was designed to provide conductance 

matching and implement the photo current signal inversion. In this circuit, the current 
from the array readout line (n) is processed to give two output sets. One of these sets 

gives three inverted versions of the pixel current M9(a), (b), (c). The other gives three 

non-inverted versions of the pixel current M10(a), (b), (c). These outputs may then be 

summed with complementary outputs from adjacent pixel readouts to give the Pt and 
2t d order derivatives required for the implementation of the SLA edge point detector. 

The circuit of Figure 5.14 was designed to fit within the 80µm pitch of the SLA NSIP 

array, so that this circuit could be replicated on the substrate for each readout line. 
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Figure 5.14 Line Readout, Current Mirror Circuit 

The conductance of M10 devices is matched to that of M9 devices through the M3-M8 

circuit. The input pixel current is reflected into MS through the 1: 1 mirror of M2 and 

M5. A comparison between the external reference Vc and the M5/M6 divider sets the 

back-gate voltage of M3 [99]. This back-gate voltage modulates a mirror of the pixel 

current that is supplied to M4 via M3. The M4 current is mirrored in M6 to close the 

control loop. The control loop maintains the M5/M6 divider voltage at (Vc + Vcs8)" 

When this voltage is set to Vdd/2, M6 and M5 have matched output conductance. The 

layout widths and lengths of M2, M5 and M9 devices are set equal so that the input 

current 1(n) is reflected in the M9 outputs. The layout lengths of the M6 and M10 

devices are set equal to match the output conductance of the M10 devices to the M9 

devices. 

5.4.5 Measurements on the 1" Order Spatial Derivative 

The circuit configuration of Figure 5.15 illustrates the cross connection between two 

conductance match circuits necessary to give a 1St order derivative. Simulation tests 

were performed using the level 3 model cards supplied for the Mietec 2.4µm process. 

The tests were designed to test for the contrast sensitivity response predicted through 

the theory of Section 5.4.2. The current I(�+J), mirrored in M9(a), was set as a 
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reference while the current 1(�_I) mirrored in M1O(a) was set to vary by ±1 % about the 

reference current. 
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Figure 5.16 Contrast Sensitivity of Current Difference Circuit 
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The simulation results given in Figure 5.16 indicate a contrast sensitivity response of 
0.08V/%contrast at an input reference current of 1nA. The contrast sensitivity 

response remains near constant at 0.08V/%contrast until the reference input is 100nA. 

At this point the simulation results register an abrupt change and reach 
0.14V/%contrast when the reference input current is 500nA. The abrupt change was 

attributed to the level 3 simulation changing between sub-threshold and weak 

inversion modes. 

An implementation of the Figure 5.15 test circuit was fabricated in the Mitec 2.4µm 

technology. In tests on this circuit the reference input I(�., ) was varied between 2nA 

and 41iA, while the I(�+I) input had a 1% variation applied about this reference current. 
The output Vo was monitored through a high input impedance FET probe. The 

contrast sensitivity results obtained from this experiment are plotted in Figure 5.16. 

The measured results confirm the direct relationship between contrast sensitivity and 

common mode current predicted from the measurements of Vow of Section 5.4.3. At 

2nA the contrast sensitivity measured 0.06V/%, whilst at 2.7µA, the contrast 

sensitivity measured 0.12V/%. The level 3 model used in the simulation does not 
include a parametric representation of the measured variation of VAw. This limitation 

combined with the sub-threshold to weak inversion model change accounts for the 

limited agreement between the simulation and measured results of Figure 5.16. 

The simulation tests were used to evaluate the frequency response of the Pt order 
derivative circuit given in Figure 5.15. The reference current was set to lOnA and a 
10% contrast modulation was applied to the second differential input. The frequency 

of the 10% modulation was swept from 1Hz to 100kHz. The results of this frequency 

sweep are illustrated in Figure 5.17. The response is flat to within 5% until the 

modulation frequency reaches 10KHz and the 3dB frequency is at 30kHz. Additional 

tests demonstrated that if the reference current is increased, then the 3dB frequency is 

increased. These results indicate that the 1300Hz array sample frequency required to 

give a 6.5Hz framing rate can be achieved with the array pixel active areas set to 
56x56µm in a 100x100 pixel array. 
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Figure 5.17 Frequency Response of ls` Order Derivative Circuit 

The simulation and measured results for the 1 order spatial derivative circuit of 

Figure 5.15 demonstrate that this current differential configuration mimics the 

contrast sensitivity response found in biological retinas. The circuit does not require a 

range adjustment as the input currents are varied from IOnA to 5uA. Also within this 

range the circuit can support a 6.5Hz frame rate for arrays of pixels configured as 
illustrated in Figure 5.11. 

5.4.6 2°d Order Derivative Circuit 

Equation 5.17 expresses the dependence of the 2nd order derivative on three readout 
line outputs, 1(, ), 1(, 

-2) and 1(�+2). The 2°d order derivative is generated by summing two 

negative reflections of a central readout line with positive reflections from two 

adjacent readout lines. The circuit implementation for this derivative is given in 

Figure 5.18. The 2nd order derivative makes use of the mirrored outputs M9(b), M9(c), 
M10(b) and M1O(c) given by the Figure 5.14 circuit. The 1St order derivative 
illustrated in Figure 5.15 used the mirrored outputs M9(a) and M1O(a). Thus, from the 

circuit of Figure 5.14, at each readout line, two separate summing nodes are formed, 

one of these gives a Is` order spatial derivative and the other a2 °d order derivative. 
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5.5 Three Layer SLA NSIP Edge Detector. 

The SLA edge detection algorithm is implemented through the three layer edge 
detection circuit illustrated in Figure 5.19. This is the NSIP implementation of the 
SLA algorithm. In layer 1 the 1st and 2"d order derivatives are generated through 

summation nodes formed as illustrated in Figures 5.15 and 5.18. The summing node 
derivatives have an analogue signal format. In layer 2 the analogue derivatives are 
converted into discrete format through window comparison circuits. In layer 3 the 1S` 

and 2°d order discrete derivatives are combined through logical operations to assign 

edge points. The circuit of Figure 5.19 illustrates the layered circuits necessary for 

edge point assignment at location (n). This edge detector operates with a span of 7 

pixels. 

EP(. )P 

EPA 
fl)N 

Figure 5.19 SLA NSIP Edge Point Detector 
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The layer 1 summing node derivatives are coupled into the window circuits of layer2. 

Each window circuit is comprised of two voltage mode comparators. These compare 
the summing node voltages to positive and negative thresholds. In the 1St order 

windowing operation applied to the d1(�) summing node output, the positive threshold 
b'V+ is set to Vdd/2+V, h, eshold and the negative threshold D'V- is set to Vdd/2- 

Vihreshold" The value of VgJ1eshold is given by the contrast sensitivity threshold specified 
for the vision problem. If this contrast sensitivity is specified as 5% and VAW for the 

circuit is 12.5V, then, as evaluated in Section 5.4.2, the value of Vghreshold is 0.313V. If 

the summing node input is greater than the positive threshold then the D'P(�) output is 

set high. If the summing node input is less than the negative threshold the D'N(�) 

output is set high. Otherwise both the D'P(�) and DIN(� outputs are set low. 

A schematic of the positive threshold comparator is given in Figure 5.20. Transistor 

Ml and Rext provide the input stage bias current. The voltage generated at the drain 

gate connection of MI is bus connected to all the positive threshold circuits. The 

value of Vth is set so that when Vo is greater than Vdd/2+Vrheshold M3 changes to a 
low impedance state. A pair of inverters, given by device combinations M4/M7 and 
M6/M5, condition the switching signal generated by M3 and its load M2 into a logic 

compatible waveform. In Table 5.2 the results obtained from a test implementation of 

the positive threshold comparator are given. These demonstrate that a hysteresis of up 

to 0.15V exists between the high-low and low-high transitions of the comparator 

circuit. 

Vdd 

M1 -cl M2 1 M4 r-I M6 

Vo  1 M3 

RextH Vth M' Ll MS 

M1-M6 W=6 L=4 
M7 W=6 L=12 

Figure 5.20 Positive Threshold Comparator Circuit 
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Vth 

N) 

Vo Low-High 

(V) 

Vo High-Low 

(V) 

0.4 1.95 2.10 

0.6 2.25 2.39 

0.8 2.50 2.65 

1.0 2.76 2.91 

1.2 3.02 3.12 

1.4 3.31 3.39 

1.6 3.70 3.75 

Table 5.2 Comparator Switching Thresholds 

In layer 3, the SLA algorithm completes the edge detection process through the edge 

point decision logic. The decision logic employs two three input AND gates. Truth 

tables for these gates are given in Table 5.3. This logic circuit implements the SLA 
discrete edge point assignment given by equation 3.22. The edge point has three 

possible states. The first is a zero state given by both the EP(, )P and EP(�)N outputs set 
low. The second is a positive state given by EP(,, )P high and EP(�)N low. The third is a 

negative state given by EP(�)P low and EP(�)N high. 

D2P(,. 1) D 7N(.,. 1) DP(., ) D 'N(�) D 2P(�+1) D; N(, +1) EP(�)P EP(, )N 
1 0 1 0 0 1 1 0 

0 1 0 1 1 0 0 1 

0 0 X X X X 0 0 

X x 0 0 X X 0 0 

X X X x 0 0 0 0 

Table 5.3 Truth Table for SLA NSIP Layer 3 Edge Decision Logic 
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5.6 Smart CMOS Camera Edge Detection Test 

An image sensing array composed of 10 rows and 4 columns of pixels was fabricated 

to test the operation of the NSIP SLA edge detection circuit. A layout overview of this 

test device is given in Figure 5.21. This illustrates the tiled structure of the pixel array 

and the adjacent layered NSIP structure. The three processing layers in the NSIP are 
interspersed with connection matrices that make the distributed connections necessary 
for the SLA algorithm. 

Column selection circuitry was used to route the pixel outputs through horizontal 

readout lines to the NSIP structure. The circuits and routing of Figure 5.21 needed for 

the assignment of a single edge point were repeated in the NSIP test device for four 

edge point assignments. Column routing in the NSIP structure was used to supply the 

window circuit thresholds and the mirror circuit Vc control voltage. 

Logical Operations to Assign Edge Points 

Window Comparison Circuits 
Summing Node Connections- 
Current Mode Mirrors-----, 

Figure 5.21 Layout Overview of the Smart CMOS Camera Test Chip - 
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The measurement set up illustrated in Figure 5.22 was used to test the edge detector. 

The pixel array was directly illuminated by a white light source chopped by a rotating 
blade. As the shadow of this blade traversed the array the conditions for an edge with 

a contrast shift greater than 50% were created. Under these conditions it was found 

that the window threshold and the Vc control inputs could be adjusted so that one of 

the four edge point detectors would register both the positive and negative edges 

generated by the sweeping blade. Example Oscilloscope traces for the EP(n)P and 

EP(n)N edge outputs are given in Figure 5.23. The edge frequency was 10Hz. The 

phase shift between the traces result from EP(n)P registering the blade leading edge 

and EP(n)N registering the blade trailing edge. These results established the 

functionality of the SLA NSIP circuits. 
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Figure 5.22 Edge Detection Test Instrumentation 
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Figure 5.23 Results from the Edge Detection Tests 
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The Smart CMOS Camera test chip was limited to detection of edge points with 

spatial contrasts of greater than 50%. Tests carried out on four IS` order spatial 
derivative circuits established a variation in the summing node potentials of 1.7V, 

under uniform illumination of the array with Vc fixed. This order of variation in the 

summing node outputs would limit the facility of the windowing circuits to convert 
the derivative outputs into discrete representations. The results obtained in Figure 

5.23 were obtained by setting the Vthreshold parameter to 1.1 V for both the 1st and 2nd 

order window circuits. 

Possible causes of the variation in the summing node potential were considered. It 

was noted that a number of circuit features could contribute to the phenomena. 
Variations in the pixel gain due to differences in the doping densities of the P+ 

emitters across the array could contribute to the summing node voltage variations. In 

the current mirror circuits of Figure 5.14 variation in the MOSFET threshold voltages 

of M2 and MS along the NSIP linear array could result in summing node voltage 

variation. Also in this circuit, the MOSFET M8 that compares Vc to a control sample 

of the summing node potential is susceptible to variation in the substrate potential. 
Further research is required to quantify the contribution that each of these mismatch 
factors makes to the noted variation in the summing potential. 
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5.7 Power Consumption 

5.7.1 Vision Based Autonomous Navigation 

A critical aspect of the development of the Smart CMOS Camera was the power 

consumption that could be expected for the device. The important query was; could 

such a device make a significant reduction in the power required to implement the low 

level vision processing necessary for autonomous navigation? A comparison is drawn 

between the power consumption of the CMOS implementation of the SLA algorithm 

and an equivalent low power Complex Programmable Logic Device (CPLD) 

implementation [100]. Consideration is given to the power consumption of a DSP 

devices in the implementation of low level vision processing. These considerations 

established that the Smart CMOS Camera does hold out the prospect of a providing a 

significant reduction in the power required to implement low level vision processing. 

The workstation and PC based approaches to navigation based on visual sensing are 

indicative of a computationally complex problem [24-29]. The Smart CMOS Camera 

and its associated SLA algorithm implement a front-end accelerator for low level 

vision processing. This device was designed to reduce the power consumption due to 

low level vision processing in an autonomous battery powered system. The reported 
battery powered autonomous systems [30-35] employed sonar and laser ranging to 

deal with problems such as wall following and obstacle avoidance. These single point 

sensing mechanisms require considerably less processing capacity than that needed 
for pixel-array vision sensors. The battery powered autonomous systems [30-35] use 
lead acid batteries that provide 200 amp hours at 12V. This power resource was used 
to supply the motor drive, the human interface and the autonomous processing. 

The subject of low level vision accelerators was addressed by Jordan and Holburn 
[7,8], when a CCD camera was closely coupled to a DSP device to minimise the 
signal transmission power costs. No specifics were quoted for the power consumption 
of this vision accelerator. However, Texas Instruments [43] quote the current drawn 
by the TMS320C80 as 1 amp for a typical low level vision process such as the Sobel 
edge detector. As noted in Section 2.3 the low connectivity of the processing afforded 
by DSP vision systems cannot generate the quality of segmentation results required by 
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the autonomous navigation processes. The SLA algorithm that was developed to meet 
the connectivity requirements of autonomous vision cannot be integrated into the 3x3 

and 5x5 kernel structures that are provided by DSP vision processors [42,43]. 

5.7.2 CPLD Implementation of SLA Algorithm 

The SLA algorithm was primarily developed for inclusion within a NSIP structure 
described in Sections 5.4 and 5.5. However, the diffuse processing structure and the 

use of integer only coefficients allows for a programmable logic implementation of 

this algorithm. The CPLD devices supplied by Xilinx [100] have low power 

consumption and are ideally suited to battery powered applications. Thus it was 
decided to investigate the power consumption of a SLA implementation based on 

these devices. 

The system overview given in Figure 5.24 illustrates the use of four Xilinx 

XC95288XV devices in conjunction with a CMOS camera, a frame grabber and static 
RAM to implement the SLA algorithm. The image grabbed from the camera is loaded 

into a frame memory. The uniform averages and the horizontal and vertical scan 

mappings are implemented by CPLD 1 and by CPLD3. The averaged and re-mapped 
data is loaded into horizontal and vertical frame buffers. An implementation of the 

SLA edge detector is programmed into CPLD2 and CPLD4, these devices generate 
horizontal and vertical edge sets for the input image and load this data into the output 

edge map memory. 
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Figure 5.24 CLPD Implementation of SLA Edge Detector 

The XC95288XV is the largest CPLD currently available from Xilinx, the 288 macro 

cells contained within this device do not allow a full implementation of the SLA 

algorithm within one device. Thus it was necessary to split the uniform averaging and 

derivative computations between two CPLD's for each scan direction. This device 

capacity restriction does not exist within currently available Field Programmable Gate 

Arrays (FPGA), however the FPGA's are not designed for low power 
implementations, and a single FPGA implementation would exceed the power 

consumption of the multiple CPLD solution. 

In the power consumption evaluations for the CPLD implementation the processing 

requirements were set by the 100x100 array with a 6.5Hz frame rate specified for the 

Smart CMOS Camera in Section 3.6. The current draw evaluation for the 

XC95288XV is given in equation (5.18) [100]. In this equation MCHP gives the 

number of macro cells in high-performance mode, MCLP gives the number of cells in 

low-performance mode, MC is the total number of macro cells and f is the clock 
frequency in MHz. 

Icc() = MCHp(0.5) + MCLP(0.3) + MC(0.0045 mA/MHz)f (5.18) 

Analysis of the registers and logic necessary to implement the scan re-mappings and a 
uniform filter of width 3 set the cell usage in CPLD 1 and CPLD3 to 118 MCLP. The 
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clock frequency that these devices are required to operate at is 3 times the edge point 

generation rate. There is limited scope for parallel operation in the CPLD 

implementation. Thus the edge point generation rate is set to 130KHz, that is 100 

times the row and column access rate of the Smart CMOS Camera. Thus the clock 

rate for CPLD1 and CPLD3 is set to 390KHz. The re-mapping and uniform filtering 

processes give rise to a current draw of 35.5mA on the 2.5V supply used by the 

XC95288XV. The re-mapping and uniform average devices are enabled separately, 

each for 50% of the frame period. Thus the total power consumption due CLPD 1 and 
CPLD3 is 88.7mW. 

Analysis of the registers and logic necessary to implement the derivatives, adaptive 

thresholds and edge decisions of the SLA edge point allocation gave a total of 125 

MCLp for the operation of CPLD2 and CPLD4. The clock frequency that these 

devices were required to operate at was five times the edge point generation rate, and 

this clock was set to 650KHz. Thus the current draw presented by both these devices 

given by equation (5.18) is 37.5mA. These two devices are separately enabled, each 
for 50% of the frame period. Thus the total power consumption due to CPLD2 and 
CPLD4 is 93.8mW. The total power consumption for the four CPLD devices is 

182.5mW. The static memory power consumption was assumed to be negligible in 

comparison to the CPLD requirements. It was assumed that a low power CMOS 

camera and frame grabbing would add an additional 200mW power requirement to 

the proposed CPLD implementation. The power consumption for the Figure 5.24 

implementation of the SLA algorithm is estimated to be between 350mW and 
400mW. 

5.7.3 Smart CMOS Camera Power Consumption 
The power consumption of the Smart CMOS Camera is directly related to the level of 
illumination received by the device. This is a result of the quiescent current in the 
analogue section of NSIP structure being set to the line sense current and the necessity 
to have all the pixels in the array continuously biased at the full read potential. The 
analysis of the Smart CMOS Camera power consumption identified three separate 
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current draws that are made on the 5V Vdd supply. These are the array biasing and 

analogue processing current, the NSIP logic signal processing current, and the control 

logic current. 

Consider the case of General Office illumination generating an average pixel current 

of IOOnA then for the 100x100 array the total array current will be 1mA. Under these 

same conditions with the SLA width set to 3, the line current fed to each of the current 

mirror circuits will be 300nA. In the current mode circuit six separate Vdd to OV 

channels exist. Thus the 100 mirror circuits will draw a total of 0.18mA from the 
device supply. The total illumination related current is thus 1.18mA when the average 

pixel current is set to I OOnA. 

In the NSIP discrete processing the bias current drawn by the input to the voltage 

comparators was set to 4µA by Rext in Figure 5.20. Four of these comparators are 

used for each array readout line. A total of 100 readout lines are processed to give a 

1.6mA current draw from the power supply. The power consumption of the switching 
inverters is given by equation (5.19) [101]. Where the switching frequency fsi is set 

to 1300Hz, as specified in Section 3.6. The inverter load capacitance CL is 40fF. NI is 

the total number of inverter drives. In the NSIP comparator section 500 inverter drives 

are activated at each array access cycle. In the NSIP circui an additional 600 inverters 

drives are required to implement the output AND gates. Thus a total of 1100 inverters 

drivers are activated for each array access in the Smart CMOS Camera. The power 

consumption of these inverters is given by equation (5.19) as 1.43µW. The 

comparator first stage bias current consumes 8mW, thus the NSIP switched inverter 
drive power consumption can be neglected. 

P =NICLVdd2fsLA (5.19) 

The design of the array pixel selection circuitry, and output addressing circuitry has 
not been included in the circuit descriptions of Chapter 5. However, from the array 
access and the device control requirements it has been estimated that a total of 3312 
inverter drives are needed to allow the device to run of an external 2600Hz clock. The 
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inverter load capacitance is given as 40fF. Thus from equation (5.19) the array access 

and device control circuitry will consume 8.6µW. 

The total estimated current draws and power consumption for the Smart CMOS 

Camera in the operational environments considered in Section 5.2 are given in Table 

5.4. The power consumption of the inverter drives in the Smart Camera is 10µW, and 

this can be neglected. The current draw estimates for the Smart CMOS Camera supply 

were determined from a summation of the illumination related current drawn by the 

pixel array and analogue processing, and the current need to bias the first stage of the 

comparator circuits. 

Operational 

Environment 

Illuminance 

(lx) 

Current Draw 

(mA) 

Power Consumption 

(mW) 

Storage Area 50 1.90 9.5 

General Office 200 2.78 13.9 

Assembly Work 500 4.55 22.8 

Inspection 1500 10.45 52.2 

Fine Detail Work 5000 31.10 155.5 

Table 5.4 Power Consumption of 100x100 Smart CMOS Camera 

5.7.4 Comparison of Power Consumption Estimates 

Three separate methods of providing low level vision processing have been 

considered. In the use of close integration DSP devices the current draw of the 
TMS320C80 was specified as IA to give power consumption in the order of 5 watts. 
This would provide a significant improvement on power consumption of the reported 
navigation systems [24-29] that employed PC and workstations to implement their 
low-level vision processing. Caution is needed in citing the DSP based solutions 
because of the limited connectivity in their processing structures. 
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It was noted in Section 3.5 that the SLA algorithm has a discrete implementation that 

can be readily implemented within current PC technology. It also lends itself to partial 

implementation within programmable logic as indicated in Section 5.7.2. The 

analysis of the of a CPLD implementation gave power consumption in the order of 

400mW when the spatial resolution and framing rate were equivalent to those set for 

the Smart CMOS Camera. The CPLD implementation represents a significant 

advance on the DSP implementation. The improvements in power consumption are 

attributable to advances in programmable logic technology and by ensuring that the 

processor clock does not run faster than is necessary. 

In Table 5.4 the 22.8mW of power consumed by the SLA CMOS implementation for 

an illumination level of 5001x represents a factor of 17 reduction in power 

consumption noted for the CPLD implementation. The power consumption of the 

CMOS implementation is dependent upon the level of environmental illumination. If 

it was necessary to limit the maximum power consumption to 22.8mW then iris 

control should be added to the Smart CMOS Camera to limit the level of illumination 

sensed by the imaging array. The results given in Section 5.6 demonstrate a limited 

quality of edge point detection for the current CMOS implementation. However, the 

extremely low power consumption afforded by this device does suggest that further 

research should be directed to the development if the Smart CMOS Camera. 
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5.8 Conclusion 

The research presented in this Chapter demonstrated the integration of the SLA edge 
detection algorithm into a NSIP structure. It also demonstrated a random access pixel 

array suitable for use in conjunction with the NSIP. The array and NSIP structures 

were combined to form a test device for the Smart CMOS Camera. The test device 

was fabricated in the Mietec 2.4µm CMOS process. Results from the test device 

showed the detection of edge points and confirmed the successful integration of the 

SLA edge detection algorithm. The contrast sensitivity of the test device was 

considerably less that that required for successful implementation of the autonomous 

navigation problem examined in Section 3.6. Additional research will be necessary 
before the full potential of the Smart CMOS Camera can be realised. 

The random access pixel array developed for the Smart CMOS Camera incorporated a 

gain BJT at each pixel site. A method of matching the BJT to the output current of the 

pixel was demonstrated. In the Mietec 2.4µm CMOS process current gains in excess 

of 120 were recorded in the BJT pixel structure for output currents ranging from 20nA 

to 600nA. A pixel 80x80µm layout, including the switching necessary to give two 

orthogonal array scans, was designed. Measurement established that this pixel layout 

gave sufficient output for an array of 100x100 pixel to be accessed with a frame rate 

of 6.5Hz. 

The NSIP circuits employed a sub-threshold current mode implementation of the 

spatial derivatives required by the SLA detector. This current mode circuit was 
demonstrated to have a near constant contrast sensitivity response for photo currents 

ranging from 2nA to 2.7µA. A minimum contrast sensitivity of 0.06V/% contrast was 
reported for the 2nA inputs. This contrast sensitivity response allows the NSIP circuit 
to mimic the operation of biological retinas that respond to intensity contrasts. The 

near constancy of the response over a wide dynamic range simplified the design of 
analogue to discrete derivative conversions employed in the NSIP. 
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Results in Section 5.6 established that the Contrast Sensitive Circuit described and 

tested in Section 5.4 failed to provide a uniform response across the NSIP linear array 

processor. This lack of a uniform response was attributed to the device mismatch 

characteristics. These mismatch characteristics are at their worst when the circuit is 

operated in sub-threshold mode and when the devices are minimum sized. The circuit 

of Figure 5.15 was populated by minimum sized devices to maximise the frequency 

response and it was operated in sub-threshold mode so that the pixel currents could be 

directly processed in the NSIP structure. 

The results of Figure 5.17 show the circuits useful frequency response extending up to 

10KHz, thus a relaxation in the minimum size constraint can be tolerated. It has been 

reported [60-62] that the mismatch variance in CMOS devices is inversely 

proportional to the square root of the device area. Thus a redesign that increases the 

area of the current mode circuit devices will allow a reduction in the mismatch 

characteristics whilst maintaining the required pixel process rate of 1300Hz. 

In the tested implementation of the NSIP circuit the spatial contrast circuits all shared 

the same layout, the mirrored devices all were set to the same orientation and the 

spacing between mirrored devices was minimised. This layout is accepted practice in 

the limitation of device mismatch. However as a result of the limited number of 

design fabrication and test cycle available there was no opportunity to find the 

orientation of the wafer striations that are a major contributor to device mismatch 
[19]. Thus a redesign needs to resolve the striation orientation either through foundry 

supplied data or through a fabrication and test cycle. 

The analysis of power consumption given by the DSP implementation of low level 

vision processing and of the SLA implementations based on CMOS technology and 
CPLD technology established that the CMOS implementation exhibits the lowest 

power consumption figures. The 100x100 Smart CMOS Camera can be expected to 

consume less than one tenth of the power needed to implement the same spatial 
resolution and frame rate in a CPLD implementation. The CPLD implementation 

consumed one tenth of the power need to operate a TMS320C80 that implements low 
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level vision processing. The improvements in power consumption that can be 

achieved in the CMOS implementation of the SLA edge detection algorithm provide 

support to the arguments for continuation of research into this Smart Camera. In 

addition to the power consumption advantages that can be derived from the CMOS 

implementation, the low mass of the device in comparison to the CPLD and DSP 

implementations provides for the development of less massive autonomous systems. 
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Chapter 6 Conclusion and Future Work 

6.1 Conclusion 

In this thesis, the design of a Smart CMOS Camera for use in autonomous navigation 

systems has been addressed. The research has focused on the development of a Near 

Sensor Image Processing (NSIP) structure that implements edge point detection at a 

camera frame rate of 6.5Hz. An algorithm specifically designed for incorporation in 

the NSIP structure was developed and tested through simulation. In order for this 

vision function to be integrated onto the same substrate as an image sensing array a 

new mixed signal structure referred to as the Scanned Layer Architecture (SLA) was 

developed. 

In the review of autonomous systems in Chapter 2 it was established that an important 

limiting factor in the development of robotic units is the power consumption of the 

processors needed to implement low level vision tasks. The SLA NSIP reported in 

this thesis was designed to overcome this power limitation. The sensor was designed 

to minimise power consumption through the use of subthreshold CMOS circuits to 

achieve the task of edge point detection. The results given in Section 5.5 established 

that edge point detection could be realised through the SLA mixed signal processor. 

However device parameter variation across an array limited the quality of the edge 

results. Thus, the current NSIP design is not suitable for the stated aim of this research 

of providing the edge sets suitable for autonomous navigation processing. 

The simulation of the SLA edge detector in Chapter 3 demonstrated that high quality 

edge point sets can be generated for natural images without the need to employ 
floating point arithmetic. The effectiveness of the SLA edge detector was further 
demonstrated through the quantitative analysis carried out in Chapter 4. The SLA 

simulation was extended to demonstrate how its 3-state edge point representation 
facilitated the extraction of line segments. The directional nature of the line segments 
gave rise to two important effects. In the first of these the directional information 

allowed the noise and texture related edge points to be removed from the image line 
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list. In the second, the directional information allowed co-linear lines to be grouped so 
that the uncertainty of geometrical model matches could be minimised. 

The matching of lines extracted from images with geometrical models is a critical 

aspect of the implementation of vision based autonomous navigation. The processing 

requirements to implement wall following with the SLA edge point detection and line 

extraction algorithm were also analysed in Chapter 3. In this it was demonstrated that 

with current PC processor technology, wall following was feasible and a travelling 

pace of lm/s could be sustained. 

Analysis of the conflicting requirements of side view wall following and forward 

view target tracking revealed that if mechanical camera position shifts were to be 

avoided then the autonomous robot should be equipped with separate cameras for 

these two navigation tasks. The Smart CMOS Cameras that were the objective of this 

research would be well suited to this type of robot implementation because they have 

low mass and integrated processing that minimises their power consumption. 

The SLA contrast sensitive circuit introduced in Chapter 5 is a significant departure 

from the neuromorphic temporal contrast processors reviewed in Chapter 2. The NSIP 

structure allows spatial contrast to be applied to the image data and, at a subsequent 

stage temporal displacements can be extracted. The SLA detector employed 
distributed processing structure to assign edge points to the image intensity profile. 
Sparse convolutions facilitated separate evaluations of the Ist and 2°d order spatial 
derivatives. Threshold circuits converted these derivatives into a discrete format. 

Logical operations applied to the discrete derivatives completed the edge point 
assignment. 

The contrast sensitive circuit of Figure 5.15 exploits the inverse relationship between 

output resistance and output current of a MOSFET current mirror operated in the 
subthreshold mode. Matching the output resistances of two complementary mirrors 
that are connected to form a summing node allows a current contrast differential to be 
registered as a voltage output. No previous report of this current differential circuit 
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was found in the reviewed texts. The results detailed in Section 5.4 confirmed the low 

frequency relationship of the current contrast differential to the MOSFET Early 

Voltage. The results demonstrate that the current contrast differential varies by ±20% 

as the common mode current is varied over three orders of magnitude. When the 

differential currents are set by the outputs from current mode pixels a spatial contrast 

sensitive response is effected. 

The spatial contrast processing of the SLA NSIP requires a random access current 

mode pixel array. In Section 5.3, the realisation of a pixel structure that was capable 

of supplying the spatial contrast circuit was researched. It was found that the parasitic 
PNP BJT, formed through a P+ diffusion on a N- well, would provide current gain of 

the order of 120. A design procedure was developed where the area of the P+ 

diffusion that formed the BJT emitter was set to give moderate bias conditions for the 

transistor at the expected pixel signal currents. This procedure enabled the formation 

of an image sensing array with pixels measuring 80x80µm and a fill factor of 50%. 

Chapter 4 presented a new metric for the evaluation of edge detectors that reflects the 

specifications of a host vision system through the incorporation of scaling factors that 

set the metric's zero condition. This metric was referred to as the Edge Point Metric. 

This metric complies with the accepted practice of established metrics by assigning 

unity as the figure of merit of a perfect detector. However, it deviates from the 

accepted practice by assigning the figure of merit zero condition to a detector that 
fails to meet with the host vision systems edge point detection specifications. In 

established metrics [82,83] this zero condition is not specified and the metric function 

is limited to comparisons between edge detectors. The new metric allows a given edge 
detectors performance to be assessed against a systems specification. 

The EPM zero figure merit condition is set by specifying the minimum levels of false 

positive and false negative returns that can be tolerated by the host vision system. A 
linear combination of the scaled levels of false returns is used to generate the EPM 
figure of merit. Prior to determining the levels of false positive and false negative 
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returns the new metric applies an algorithm that is designed to compensate for 

systematic shifts introduced by the detector under evaluation. 

The compensation algorithm recovered line shifts of up to two pixels from the image 

ground truth locations. In addition, it identified line broadening edge points in the 

detector results. These displaced lines and line broadening returns were then excluded 
from the false return sets used to evaluate the figure of merit. In many vision systems 

these displacements and line broadening effects are insignificant to the systems 

performance. Thus, it was decided that the EPM method should evaluate these 

qualitative effects separately from the figure of merit. These qualitative effects are 

assessed through the probability of line displacement or line broadening in the edge 
detector results. 

Although this research did not result in a functional Smart CMOS Camera there have 

been two significant advances made towards this goal. These were the design of a 

robust edge point detection algorithm that relied upon integer based arithmetic and the 
development of a contrast sensitive current mode differential circuit that mimicked 
the adaptive response of the bipolar cells found in biological retinas. 

The measured results for the Smart Camera given in Chapter 5 were taken from two 
CMOS custom layout design, fabrication and test cycles. Further refinement of the 
Smart CMOS Camera structure will require additional design, fabrication and test 

cycles. It is evident from the low power consumption and low mass of smart 

processing structures created through the integration of mixed signal processing onto 
the image sensing substrate that significant advances can be made in respect of 
autonomous systems development. 
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6.1 Future Work 

The restrictions imposed by the target CMOS environment for the SLA algorithm has 

given rise to a robust and efficient edge detection algorithm. The analysis of the DSP 

implementation requirements given in Chapter 3 established that PC processing could 
be employed to implement a navigation algorithm based on the SLA approach and 
incorporating geometric model matching as proposed in [15,37,38]. 

The PC based implementation was not pursued under the current research programme 
because the additional time and resources needed to follow this course, and the 

CMOS NSIP device held the prospect of significantly lower power consumption. 

However, it was recognised that valuable insights into autonomous navigation could 
be gained from creating a working robot that incorporated CCD or CMOS cameras 

and PC processing. The use of side view cameras to implement the wall following and 

separate forward view cameras to locate objectives should be investigated. Results are 

needed to determine the optimal spatial resolution and framing rate for the robot's 

camera. These camera functions need to be assessed with respect to positional 

uncertainty allowed in the robot's navigation processes. 

The realisation of a low mass, low power consumption, smart camera that implements 

edge point detection as an integrated function remains an open problem. The 

navigation problem analysis carried out in this research demonstrated that this type of 

smart camera development is critical to the field of autonomous robots. The results 
from the SLA NSIP implementation, see Section 5.5, demonstrated that the random 

access pixel array and contrast sensitive circuits worked as predicted by the 

theoretical evaluations. However device parameter variations limited the practical 
implementation of a parallel set of 100 edge point detectors in a NSIP structure. 

There are two possible courses of action that may be followed to seek a resolution to 
the problems of device parameter variation that limited the implementation of the 
SLA NSIP device. Firstly, analysis of the causes of the device parameter variation 
could be embarked upon under the auspices of a foundry that was interested in 
developing a CMOS process for mixed signal and analogue processing. Secondly, a 

148 



redesign of the current mirror circuit of Figure 5.8 should be embarked upon. In this 

redesign, the effects of the source to substrate voltage on device threshold voltage 

need to be considered to resolve the variation in the summing node potential noted in 

Section 5.6. 

In the foundry linked research there is a need to resolve the causes of the striations 

noted by Pavasovic [19]. These striations present a severe restriction on the 

implementation of analogue processing that seeks to exploit the high component 

packing density afforded by CMOS fabrication processes. There is also a need to 

characterise through measurements the variance of the mismatch characteristics given 
by fabricated devices. This data can be used to extend the parameter set of the circuit 

simulation and thus the pre-fabrication analysis would reflect the mismatch 

characteristics of proposed camera structures. The measured mismatch characteristics 

can also be used to allow the SLA simulation to generate edge point results that are 

representative of a fabricated camera. Thus under algorithmic simulation a more 

robust edge detector could be developed. 

The future of NSIP and Neuromorphic processing is closely linked to the key issue of 
device mismatch in the CMOS medium. Future contributors to this field need to either 

to improve the CMOS fabrication processing so that device mismatch is significantly 

reduced. Or to develop more robust and adaptive circuits that can tolerate the 
imperfections of the CMOS fabrication processes. The biological vision processes 
that we are attempting to replicate have been under development for more than 600 

million years. The field of neurmorphic processing is 22 years old. Research in this 
field should be seen as evolutionary, it requires the exploration of new circuits and 

new algorithms as well as the refinement of existing neuromorphic and NSIP circuits. 
The failures of past circuits or algorithms should not discourage. 
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Symbolic Terms 

SLA Simulation 

I(x, y) A image intensity profile sampled with row variable x and column 

variable y 

d order a�ec(x, YAnalogue directional derivative operator applied to sample space with ný 
row variable x and column variable y. Superscript for the order of the 

derivative(I=15` and 2=2"d). Subscript for direction of the derivative 

(h=horizontal and v= vetrical) 

to"' (x, YDirectional threshold operator applied to sample space with row direction 

variable x and column variable y. Superscript for the order of the 

derivative (1=15` and 2=2°d). Subscript for direction of the derivative 

(h=horizontal and v= vetrical) 

Dd recIJon(x, y) Discrete directional derivative operator evaluated from the 

dýreýtion (x, y) and týreýtion (x, y) operator outputs 

EPd�r, �ofl 
(x, y) Edge point assignment operator. Accepts inputs from a neighbourhood 

of Dd 
recb0 

(x, y) operators to assign directional edge points. Subscript 

for direction of the derivative (h=horizontal and v= vetrical) 

Per 1St The global percentage threshold applied to the 1St order derivative 

Per 2°d The global percentage threshold applied to the IS` order derivative 
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Edge Point Metric 

TP True Positive Edge point assigned 

TN True Negative Edge point assigned 

FP False Positive Edge point assigned 

DP Displaced Positive Edge point assigned 

DN Displaced Negative Edge point assigned 

WP Wide Positive Edge point assigned 

P(FN) Condition Probability of a False Positive occurring 

P(FP) Condition Probability of a False Negative 

P(DP) Condition Probability of a Displaced Positive 

P(WP) Condition Probability of a Wide Positive 

CMOS Implementation 

K Boltzmann's Constant 

T Temperture in Kelvin 

q electron charge 

Iph Photo generated current given by a silicon detector 

Po Incident light intensity and 

R Silicon reflection coefficient 

Ep Energy of incident photons 

F Fraction of minority carrier collected by photo detector 

Il; Internal Quantum Efficiency of photo detector 

A Area of the Vertical PNP emitter 
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WB, Bipolar Transistor Base Width 

WE Bipolar Transistor Emitter Width 

WdE is the width of this depletion region 

IpE the emitter current 

11g recombination current of emitter base depletion region 

nj Intrinsic doping concentration 

NA Acceptor doping concentration 

ND Donor doping concentration 

Dp diffusion coefficient of holes 

Dp diffusion coefficient of electrons 

To carrier lifetime 

L. diffusion length of holes 

RT transresistance of contrast sensitive circuit 

Ro MOSFET output resistance 

VAw MOSFET equivalent of the BJT Early voltage 

KAw MOSFET extracted device parameter for Early Voltage 

165 



Glossary 

Adaptive Thresholding: 
A threshold operation performed changing the threshold value based on local 
brightness characteristics of an image. 

Bipolar Transistor 
An active semiconductor device formed by two P-N junctions whose function 
is amplification of an electric current. 

CCD Charge Coupled Device. A photo-sensitive image sensor implemented with 
large scale integration technology. 

CMOS 
Complementary Metal-Oxide Semiconductor. A MOS technology in which 
both P-channel and N-channel components are fabricated on the same die to 
provide integrated circuits that use less power than those made with other 
MOS (metal oxide semiconductor) or bipolar processes. 

Contrast 
The difference of light intensity between two adjacent regions in the image of 
an object. 

Contrast Sensitivity 
The contrast required to obtain a criterion response from a cell or a human 
subject as a function of spatial frequency. Falls off in sensitivity as the spatial 
frequency of the test pattern increases. 

Cone Retina photoreceptor for day vision. 

Convolution 
Superimposing amxn operator (usually a 3x3 or 5x5 mask) over an area of 
the image, multiplying the points together, summing the results to replace the 
original pixel with the new value. This operation is often performed on the 
entire image to enhance edges, features, remove noise and other filtering 
operations. 

Convolution Kernel 
The set of coefficient values that are used as weights for calculating the 
weighted average of the source neighbourhood for performing a convolution. 

DSP Digital Signal Processing A processor used for high speed data manipulations 
of audio, video, graphical, or image information. 

Depth of field 
The range of an imaging system in which objects are in focus. 

166 



DGC Detector to Ground-truth Comparison This algorithm was developed to in 
this research to locate systematic displacements between the edge detectors 

Edge A change in pixel values exceeding some threshold amount. Edges represent 
borders between regions on an object or in a scene. 

Edge Detector 
A process used to determine the true edge of an object. 

EPM Edge Point Metric. A new metric developed in the course of this research. 
Designed to incorporate a minimum quality specification into the metric's 
figure of merit. 

Edge Sense 
An Edge Point generated by a detector is set to retain the sense of the lst order 
derivative that gave rise to the edge by assigning the edge a 3-state value, no 
edge, positive edge or negative edge 

Frame 
A single picture, usually taken from a collection of images such as in a movie 
or video stream. 

Frame Grabber 
Computer card that samples and digitises analogue video signals so that the 
information may be processed, stored, or operated on by the computer. It is 
also called image acquisition or image capture board. 

Frame Rate 
The rate at which image frames are processed by a digital image processing 
system. 

Grey level 
A quantified measurement of image irradiance (brightness), or other pixel 
property typically in the range between pure white and black. 

Greyscale Image 
An image consisting of an array of pixels which can have more than two 
values. Typically, up to 256 levels (8 bits) are used for each pixel. 

Horizontal Cells 
Cells in the retina connected via gap junctions that mediate lateral information 
transfer over large distances. 

Image Scan 
A scanning pattern, generally from left to right while progressing from top to 
bottom of the imaging sensor. 
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Intensity 
The relative brightness of a portion of the image or illumination source. 

Low-Level Vision 
A label applied to the vision processes need to convert the sampled intensity 
profile given by a camera into image primitives such as edge points or texture 
attributes at the pixel level. 

Machine Vision 
The use of devices for optical non-contact sensing to automatically receive and 
interpret an image of a real scene, in order to obtain information and/or control 

ti machines or processes. 

Median Filter 
A method of image smoothing which replaces each pixel value with the 
median greyscale value of its immediate neighbours. 

Minimum Quality Specification 
A specified limit for the performance of an edge detector used within a 
modular vision system. 

MIPS Millions of Instructions per Second measure for computer processing speed. 

NSIP Near Sensor Image Processing A image processing circuit that has been 
integrated on a sensor substrate. Designed to minimise power consumption 
and limit the mass of the vision system 

Outer Plexiform Layers. 
The layered structure of a retina that perform the low level vision functions of 
light sensing and spatial contrast enhancement 

Parallel Processor 
A hardware design using a number of processors so multiple pixels may be 
processed at the same time. 

Passivation 
The final, protective layer(s) of silicon nitride or silicon dioxide applied to a 
wafer. 

Photodiode 
A single photoelectric sensor element, either used stand-alone or a pixel site, 
part of a larger sensor array. 

PCI bus 
PCI local bus is a standard used in computers for high speed component-to- 
component connection. 
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Pipeline Processor 
An image processor that passes steams of image data through a series of high 
speed specialized processing elements to process images. 

Pixel Picture Element. The smallest distinguishable and resolvable area in an image. 
The discrete location of an individual photo-sensor in a solid state camera. 

Pose Recovery 
Refers to the process of finding the position and attitude of a robotic system 
within a known environment 

Random Access 
The ability to read out chosen lines or windows of information from an imager 
as needed. 

Real Time Processing 
In autonomous navigation, the ability of a system to perform a complete 
analysis and take action without halting the systems movement. 

Resolution, Spatial 
A direct function of pixel spacing. Pixel size relative to the sensors field of 
view. 

Segmentation 
Dividing an image into discrete objects and background. 

SLA Scanned Layer Architecture 
A term applied to the substrate layout structure required to implement parallel 
processing of the image data read out from an image sensing array 

Sonar 
Low frequency radiated acoustical waves just above human sound perception 
which are useful for the "illumination" of solid objects. 

Spatial Filter 
A filter that operates in the spatial domain as opposed to the frequency domain 
to accentuate or attenuates the appearance of the spatial details, for example 
the transitions of intensity in an image. 

Spatial Resolution 
The number of pixels in the horizontal and vertical dimensions used to 
represent a digital image. 

Texture 
The degree of smoothness of an object surface. Texture affects light reflection, 
and is made more visible by shadows formed by its vertical structures 
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Thresholding , 
The assigning of a binary value to a pixel based on whether its intensity falls 
below, or above a threshold value. 

VLSI Very Large Scale Integration. Semiconductor fabrication technology that can 
create a density of between 1000 and 1,000,000 devices on each individual 
die. 
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Appendix A 
Example SLA Edge Detection Results 

The SLA edge detector that was optimised in Section 4.6 for the detection of narrow 
features as well as spread edges within the same image is tested on five images. These 

include indoor images that are representative of the scenes likely to be encountered by 

an autonomous navigation robot. The Lena and Clare images are accepted standard 
images for the field of vision processing. The standard images are processed with a 
SLA edge detector using the optimal parameter settings derived for the indoor image 

analysis. The standard image results allow for a general performance assessment to 

be made of the SLA edge detector. For each of the processed images the edge results 

are given in binary format. This binary format combines the 3-state directional edge 

sets generated by the SLA detector into a single image 

The indoor images are all sampled at 768x576. They have varied illumination. In 

Image (a) the illumination is given by artificial ceiling lighting. In Image (b) the 

illumination is given by sunlight coming from the left and through the glass door. In 

Image (c) there are two sources of illumination, from the front of sunlight illuminates 

the room beyond the half open door and from above the artificial lighting illuminates 

the room that the image was taken from. The critical issues for autonomous 

navigation operation are the detection of the floor to wall boundaries, the 

identification of free floor space and the extraction of outlines associated with doors 

walls and furniture. It is evident from the results given that in all three images the 

SLA algorithm detects these critical features. 

The Lena and Clare image results confirm the facility of the SLA detector to recover 
both fine detail and spread edges without recourse to the use of multiple scales in the 
detection process. Examine the fine detail that is detected at the corners of Lena's 

mouth and the upright strut behind Lena that is out of focus. The adaptive thresholds 
that are used in the SLA algorithm allow the folds in Clare's jacket to be resolved. 
The apparent limited resolution of the Clare image is attributable to its 256x256 size, 
in contrast the Lena image has a 512x512 sample space. 
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SMART CMOS CAMERA FOR MACHINE VISION APPLICATIONS 

Moorhead, T. W. J. & Binnie, T. D. 

School of Engineering, Napier University Scotland 

Abstract. An edge detection algorithm designed for a 
custom CMOS hardware implementation is presented. 
The integration of this edge detector into an image- 

sensing chip has been evaluated through SPICE analysis 
and measurements on fabricated devices. The 

performance of this edge detector has been quantified 
through image processing simulation. 

1 INTRODUCTION 

Autonomous vision systems are limited in their 
application because of the need to employ high-speed 
processors to implement early vision tasks. The robotic 
systems that were reported by Murray et at (4) and 
Kosaka et al (2) demonstrate the viability of active 
vision but highlight operational limitations due to 
processor power requirements. In order to ameliorate 
these limitations, a low power smart CMOS camera that 
integrates the early vision tasks into an image sensing 
chip is proposed. This smart camera employs a novel 
processing architecture called Scanned Layer 
Architecture (SLA). In this architecture the early vision 
tasks are implemented through a distributed hybrid 

processor. 

Edge points are one of the most common image 
primitives used in machine vision segmentation. These 
points are detected through analysis of the image spatial 
intensity gradients. The SLA vision chip detects edge 
points within an image through layered processing 
circuits. These layered circuits are placed adjacent to 
the image-sensing array. The image data is separately 
scanned through row and column layered processors. 
This architecture gives the SLA vision chip spatial 
resolution equivalent to that found in commercial 
CMOS cameras and provides efficient parallel 
processing of the sensed image. 

The SLA edge detection algorithm (section2) is a 
development of the Marr and Hildreth (3) edge 
detection scheme. The SLA edge detector employs 
directional derivatives and a distributed decision 
process. The SLA circuit (section 3) is designed for 
custom CMOS fabrication. The function of this circuit 
has been assessed through image processing simulation. 
Results of this simulation are presented in section 4. 
Comparisons are made between the SLA edge detection 
algorithm and the Canny (1) edge detection method. 

2 SLA EDGE POINT DETECTION ALGORITHM 

It was shown in (3) that edges points are located at 
maxima and minima in the 1" order spatial derivative of 
the image intensity profile. These points were also 
marked by zero crossings in a 2"d order spatial 
derivative of the intensity profile. A laplacian 
convolution was demonstrated to detect edge points. 
The noise susceptibility of the (3) detector was reduced 
by applying a gaussian filter to the intensity profile. 
This method returns a maximum gradient for all edges 
in the processed image. This is a computationally 
intensive process and is not practical for real time 
machine vision systems. 

2.1 Directional Derivatives 

The circuit based SLA edge detection algorithm was 
developed from analysis of the critical data paths in the 
(3) method. The SLA algorithm employs directional 
derivative operators to give an efficient circuit 
implementation of a 2nd order spatial derivative edge 
detector. In this algorithm, two pairs of directional 
derivative operators are required. These are 1" order 
directional operators (D. ' and Di') and 2"d order 
directional operators (D 2 and Dy ). The DD operators 
are defined in equations I and 2. 

Dx1= d/dx (1) 
DX2 = d2/dx2 (2) 

The circuit implementation of the SLA algorithm allows 
a row pixels to be processed simultaneously. In row 'k' 
of the intensity profile I(xy), the convolutions required 
for each pixel are given by equations 3 and 4. The 
variable 'n' signifies the pixel location within the 
processed row. The scan proceeds to the next row by 
incrementing the `y' value in equations 3 and 4. The 
full algorithm is implemented in two separate scans of 
the processed image. In the first scan, the Dx 
convolution generates an edge map for the image, and in 
the second scan edges generated by the Dy convolution 
are added to this map. 

Dx'&I(x, Y)Ir=k = I(x(n)) - I(xcn-D) (3) 
ßx2&I(x. Y)Ir-k = 2%I(x(�)) - I(x(�-l)) - I(x(n+t)) 

(4) 

The presence of noise in captured images limits the 
performance of edge detection schemes. In the SLA 
algorithm the noise susceptibility is reduced through 



extensions to the D operators. These extensions are 
realized by increasing the widths of the D operators. 
The convolutions for the D, r operators with widths of 
two are given in equations 5 and 6. 

S2D,, '&I(X, Y)jy-k = I(x(n+q) + I(x(�)) - I(X(, 
-q) - I(x(fl-2) ) 

(5) 
S2Dx2&I(x, Y)ly-k ° 2%I(x(�)) - I(x(�-2)) - I(x(�+z)) 
(6) 

The SLA algorithm has a minimum probability of 
detecting an edge, which is lying at 45° to the 
directional derivatives. A rotation of 45° will cause the 
spread of an edge to change by 41 %. The effect of a 45° 
rotation on the probability of detecting an edge is 
measured in section 4.1. 

2.2 Distributed Decision Process 

The SLA algorithm employs a distributed decision 
process. In this process the D' magnitudes are 
compared to set thresholds to give a (posD, negD, 
nu11D) three state output. The nu11D state signifies that 
there is no edge at this location otherwise the posD and 
negD states signify a possible edge and it's direction. 
The location of an edge within a group of posD or negD 
returns is marked by a zero crossing between adjacent 
D2 outputs. The algorithm has two possible valid edge 
outputs. These are set by the edge direction, and are 
either a RisingEdge (RE) or FallingEdge (FE). The 
conditions for the RE and FE valid edges are given in 
equations 7 and 8. 

RE = posD'(,, ) & posD2(�) & negD2(7) 
FE = negD'(�) & negD2(�) & posD2ýMýý (8) 

If the D2 zero crossing detector is presented with a 
ramp style edge nulls occur within the D2(�) and DZ(n_1) 
markers. In order to ensure that this type of edge is 
detected, the algorithm employs extensions to the edge 
detection logic. The RE condition is OR'ed with the 
NulledRisingEedge (NRE) condition, where a null 
condition at DTI,, ) is tested. A similar extension is used 
for FE. 

NFE = posD'(o) & posD2(�+I) & nu11D2(n) 
& negD2(,,. 1) (10) 

The SLA algorithm provides the facility to apply 
thinning and smoothing to the streams of valid edges 
generated by the orthogonal scans. Boolean operators 
have been designed to remove isolated edges and 
straighten short line sections. The edge direction 
information supplied by the valid edge detectors is 
critical to the implementation of these functions. 

Section 2.3 Edge Detector Performance Value 

A quantitative measure for the performance of edge 
detectors has been developed. This is defined as the 

detector Performance Value (PV). The PV is 
determined by numbers of false returns from the 
application an edge detection algorithm. The false 
returns are either False Positives (FP), or False 
Negatives (FN). If the edge detector is not affected by 
the applied noise there are no false returns, and PV is 
unity. When the level of false returns renders the 
segmentation results unusable for machine vision 
applications, the PV value is zero. The value of PV falls 
to zero when the probability of a false positive P(FP) is 
0.09 (one in eleven pixels is a FP), or when P(FN) is 
0.25 (one in four edges are missed). 

PV =1-( 4%P(FN) + Il%P(FN) ) 
(11) 

3 SLA CIRCUIT IMPLEMENTATION 

The SLA overview (Figure 1) illustrates the four layers 
of the row processor needed to implement edge point 
detection. The image data is processed a row at a time 
through this layered structure. In this, each accessed 
row generates a line of edge points, which are stored in 
the edge map. A second scan of the image through an 
identical column processor is used to complete the 
image edge detection. 

I 
select pixels for column processor 

In layer 1, the pixel photo currents are mirrored and 
summed to give the D., ' and D2 analogue signals. A 
pair of D,, signals is generated for each pixel in the 
accessed row. In layer 2, voltage comparators convert 
the analogue Ds signals from each pixel to discrete three 
state outputs. In layer 3, logical circuits detect the 

Figure 1. SLA Image Processor 



presence of il id edges within the /), three state outputs. 
In laver 4. the streams of'Valid edge points are smoothed 

and isolated edge points renn cd. I pese processed 

edge points are then loaded into the edge nmap. 

3.1 SLA Pixel 

I he analogue circuits of' the SI. A vision chip permit 
the wide dynamic range of silicon photo-detectors to be 

exploited. Io facilitate this process the pixel array is set 
to operate in current mode. I he pixel structure (figure 
2), is designed to provide it continuous current output 
that is direclk related to the intensity of received light. 
In this stricture, light is sensed hN the N-well to 

substrate diode. A ýcrlical PNI transistor l rmed hý 

central P, diffusion pros ides current gain. Figure 2 
includes an equivalent circuit fier this structure. 

P- substrate 
Output 

P+diffusion Current 
N well 

jý 
[v 

Vertical PNP 
Transistor 

Figure 2 Current Mode Pixel 

Measurements have been made on test pixels 
fabricated in the MIE I EC N-well 2.4pm CMOS 

process. A S0xS0pm N-well with a Sx5bm central P, 
diffusion has been frond to generate a current of I2OnA 

under illumination of 500 Lux. The response of this 
pixel has been measured from 31. ux to 3000Lux. In this 
range. I00Lux corresponds to corridor lighting, 500Lux 

to office lighting, and 2000Lux corresponds to 
inspection lighting. A plot of the pixel current gain for 

the daylight visibility range is given in Figure I 

Measurements on switching devices in the 2. -IEun 
technology established that a I011z training rate is 

available for a 250x250 array under corridor 
illumination. 
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used ill Iavcr 1. Ihr purpose Of this IaVrr is to compute 
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section 2.2. These analogue signals are realised as 
voltages at nodes hwiiied when the positive and nre, ativc 
outputs from adjacent cells are linked. 
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Figure 4 Layer 1: Current Mode Cell 

the positive and negative outputs necessary for the 
analogue signals are supplied by multiple 

mirrors of the M9 and M 10 devices shown in Figure 4. 
The conductance of MIO is matched to that of M9 
through the M3-M8 circuit. A comparison between the 
external reference Vc and the M5'M6 divider potential 
sets the back-gate voltage of M3. This back-gate 

voltage modulates a mirror of the pixel current that is 

supplied to M4. The M4 current is mirrored in M6 to 
close the control loop. The pixel current is also 
mirrored in M5. The control loop maintains the M5, 'M6 
divider voltage at (Vc + V(; 58). When this voltage is set 
to Vdda/?, M6 and Mi have equal conductance. The 

geometry of M6/M 10 and M5%M9 are matched to give 
the equivalent output conductance. SPICI: simulations 
have been used to confirm that this conductance match 
is maintained as the input pixel current is swept over the 
daylight visibility range of the 50x0 tm pixel (InA- 
2 tA). 

100 3.3 Three Layer Edge Detector 
80 
60 A schematic representation of the three-layer edge 
40 detection process is given in Figure 5. This illustrates 
20 the circuits and connections necessary for a minimal 

a it ý21a,, I,, s implementation lementation of the SLA edge detection algorithm. io in = io 
The photo currents from four pixels are processed Pixel Illumination (Lux) 
through layer I to yield the D' and D analogue signals. 
In layer 2, voltage comparators provide a discrete 

Fiuure3 Current Mode Pixel Gain conversion for these analogue signals. In layer 3 logic 
circuits detect the valid edges FE and RE (equations 7 
and 8) within the discrete outputs. SPICE analysis has 



been used to confirm that this circuit implements SLA 

edge detection algorithm. 

layer I layer 2 layer 3 

FE 

RE 

Analysis of the SLA circuit has established that a smart 
CMOS camera with the facility to provide real time 
edge point detection is practicable. The pixel design 

and linear processing of the SLA first layer gave this 
smart camera the facility to detect edges within an 
image where the contrast levels range over three orders 
of magnitude. In comparison, a machine vision system 
that processes sampled image data would require a 10- 
bit digital conversion of pixel intensities to detect edges 
over three orders of magnitude. 

4 IMAGE PROCESSING SIMULATION 

Image processing simulation has been used to assess 
the SLA algorithm and compare its performance to 
Canny edge detector distributed by Parker (5). The 

code used in the simulation reflected the functional 
limitations of low-complexity SLA circuits described in 

section 3. The simulation also reflected the addressing 
limitations of the substrate-based processor. 

4.1 SLA Edge Detection 

The edge profile illustrated in Figure 6 was used in the 
evaluation the SLA algorithm. This profile is 
representative of a pair of real image edges. Gradient 
maxima mark the ideal edge locations. The effect of 
adding noise with a standard deviation of 2.3 to this 
profile is illustrated in the dashed overlay. The level of 
added noise was varied and PV's recorded to provide 
performance plots of Figures 7 and 9. The PV for the 
minimal implementation (Figure 5 circuit) reduced to 
zero when the standard deviation of added noise was set 
to 0.5. 
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Figure6 Edge Test Profile 

The effect of changing the D operator width in the 
SLA algorithm is illustrated in Figure 7. The "S2D" 
plots (equations 5 and 6), were obtained for D operators 
acting on adjacent pairs of pixels. In the "S4D" plots, 
the D operators acted on two adjacent groups of four 
pixels. For each SLA configuration there is a plot for 
the 0° profile and a plot for the 45° profile. These plots 
illustrate the variation in the performance of the SLA 
algorithm as the orientation of an edge is rotated in the 
plane of the directional operators. The plots also show 
that extending the width of the D operators reduces the 
noise susceptibility. 
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Figure? Comparison of SLA Widths Two and Four 

4.2 Canny SLA Comparison 

The SLA algorithm has been compared to the Canny 
edge detector (5). These comparisons have been made 
through performance value tests on synthetic images 
and through segmentation results from captured images. 
In the comparison tests the Canny detector employed a 
sigma of 1.0 and 7x7 convolution masks. The SLA 
detector employed 8x1 convolution masks. The Canny 
thresholds were set to a high of 60 and a low of 30. The 
SLA detector employed a null band of ! 20 for the D' 
operator, and null band of a !5 of the D2 operator. The 
Canny detector required a floating-point processor. The 
SLA algorithm employed integer additions, subtractions 
and logical functions. 

Figures SLA Edge Point Detector. 



The segmentation results from the "Clare" image given 
in Figure 8 provide a subjective comparison of the SLA 
and Canny edge point detectors. These results show 
that both algorithms detect hard and soft edges within 
the image and reject noise. The SLA edge detector 
gives better corner definition, considering the jacket 
lapels the Canny detector gives a more rounded return. 
The finer grain of the SLA algorithm also provides a 
more detailed segmentation of the eyes. 

Results from a set of performance tests carried out on a 
synthetic image are illustrated in Figure 9. These 
results demonstrate that the SLA and Canny detectors 
have equivalent responses. The synthetic image had a 
series of steps (height of 64). The fall-off in PV for 
both detectors was due to false positives. At a SNR of 
11.8, both detectors properly detected the image steps. 
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Figure9 Synthetic Image Segmentation 

5 CONCLUSION 
The proposal for a Smart CMOS Camera has been 

evaluated through measurements on fabricated CMOS 
devices, SPICE analysis and results from image 
processing simulation. An edge detection algorithm 
designed for CMOS circuit implementation has been 
developed. The algorithm has been realised through a 
Scanned Layer Architecture, which provided efficient 
parallel processing of the image data. This architecture 
allowed the smart camera to have a spatial resolution 
similar to that found in commercial CMOS cameras. 

The simulation results have established that the SLA 
algorithm has a performance similar to the 
computationally intensive Canny edge detection 

method. The low power required by the SLA CMOS 
circuit, coupled with its high quality edge detection 
provides a solution to the problem of primitive 
extraction for autonomous vision systems. Future work 
will include the fabrication of sensing array with an 
orthogonal scan and layered processing circuits. 
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An Edge Point Metric for the Contextual Assessment of Detectors 

T. W. J. Moorhead, T. D. Binnie, School of Engineering, Napier University, Edinburgh 

Abstract 

The optimisation and analysis of edge detectors are critical factors in the successful implementation of vision 

systems. Existing metrics for appraising edge detector performance are not comprehensive. We report a new 

metric, referred to as the Edge Point Metric (EPM), that measures the performance of a detector within the 

context of vision system's operation. In this a minimum quality specification is determined for detectors 

considered for use within a vision system. An autonomous navigation system is used to demonstrate the EPM 

assessment method. The metric employs a new ground-truth comparison algorithm that classifies the detector 

results as true segmentation, distorted segmentation and segmentation errors. The EPM evaluates the 

performance of the detector through a scaled summation of the segmentation errors. Receiver Operator 

Characteristic curves are used to choose optimal detector parameters. Results from an optimised detector are 

used to compare the operation of the EPM, Pratt and Kitchen Rosenfeld metrics. 

1 Introduction 

We present a new metric for the quantitative evaluation of edge detectors. This metric is referred to as the 

Edge Point Metric (EPM). Existing metrics [1-6,7] provide a figure of merit that ranges from zero to unity. A 

perfect detector is assigned a unity rating, but the significance of a zero rating is not well defined. In the EPM 

figure of merit the zero condition is set to Förstner's minimum quality specification [8], thus a detector can 

be assessed within the context of the requirements of a vision system [9]. In our research the EPM metric was 

used to assess the suitability of edge detectors for use within the vision system illustrated in Figure 1. This 

system was designed to implement the wall following task required for autonomous indoor navigation 

[10,11]. The critical floor to wall boundaries are identified through the use of Beveridge's Local Search 

Algorithm that match extracted image lines with a geometric model [12]. Uncertainty assessment determined 

that the maximum omission rate of edge points within the extracted lines should not exceed 1: 6 pixels. 

Analysis of representative room and corridor images established that it was necessary to attain this omission 

rate with a step edge profile Signal to Noise Ratio (SNR) of 6dB or less. 
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Figure 1 Vision Based Navigation System 

Förstner [8] expressed the edge detector quality requirement through equation (1). In this equation qo 

represents the edge detector's minimum quality specification. Parameter r represents the result given by the 

algorithm a tested using data d and tuning parameters t. The measured quality value q(r) is assumed to 

increase with improving quality, q(r) is evaluated and q, is specified for each quality attribute of the detector. 

9(rld, a, t)a9e (1) 

In our analysis of edge detectors, for use in the vision based navigation system, the test data was provided by 

a synthetic image from which graphically drawn hairline outlines were used to give a ground truth image. 

Gaussian noise with a zero mean was then added to the synthetic image to produce a set of ten test images 

where the SNR varied from 22dB to 2.3dB. 

The EPM figure of merit detailed in Section 2 provides a metric representation of Förstner's minimum 

quality specification [8]. The figure of merit is evaluated from a scaled linear summation of the probabilities 

of false positive and false negative returns generated by the tested detector. The scaling of the summation is 

set to register a merit value of zero or less when the detectors results are equal to or worse than the systems 

minimum quality specification. The false negative probability P(FN) is defined as the probability of a false 

negative occurring within the set of valid edge point sites. The false positive probability P(FP) is defined as 

the probability of a false positive occurring within the set of valid non-edge point sites [7]. The sets of valid 

and non-valid edge point sites and the false return occupancy of these sets are determined through the 

application of heuristics contained within a Detector to Ground-truth Comparison algorithm (DGC), that was 

developed for use with the EPM method. Furthermore the DGC algorithm provides for the assessment of the 

detectors susceptibility to line broadening and the displacement of detected edge points [7]. In Section 3 

Receiver Operator Characteristic (ROC) curves are used to select optimal edge strength thresholds for the 

SUSAN [13] and Sobel detectors. In Section 4 edge point results generated by the optimised SUSAN 

detector are used to compare the operation of the EPM with the Pratt and Kitchen Rosenfeld metrics [1,4]. 



2 Edge Point Metric 

2.1 Detector to Ground-truth Comparison (DGC) Algorithm 

Edge point detectors allocate edge points through a series of discrete kernel based operations. These 

operations can give rise to systematic displacements of the detected edge points and cause line broadening. 

We viewed these displacement and broadening effects as short-form distortions within the segmentation 

results. In the context of the Figure 1 vision system, localised segmentation distortions of 1 or 2 pixels do not 

limit the performance of the system. The reported metrics [2,4,6,7] in their figure of merit evaluations 

attribute a relatively low significance to short-form segmentation distortions. 

The EPM method utilises the DGC algorithm to detect the presence of displacement or line broadening pixels 

within the detector results and hence can distinguish between true segmentation results, segmentation 

distortions and segmentation errors. An overview of the hierarchical structure of the DGC algorithm is given 

in Figure 2. For a given Intensity profile (I(x, y)) the DGC algorithm takes two input image sets. An Edge Point 

set (EP(, y)) generated by the application of an edge detector to the intensity profile, and a Ground Truth set 

(GT(, ) that marks the valid edge points in the intensity profile. In each set an edge point is marked by a '1' 

and a non-edge point is marked by a '0'. The DGC algorithm employs three heuristic phases to classify each 

pixel within the edge map into one of seven states. These states are: True Positive (TP), True Negative (TN). 

False Positive (FP), False Negative (FN), Displaced Positive (DP), Displaced Negative (DN) and Wide 

Positive (WP). The DP, DN, and WP states account for the segmentation distortions within the detectors 

results, the FP and FN states account for the segmentation errors and the TP and TN states account for the 

true segmentation results. 

Phase I 

Phase 2 

Phase 3 

Figure 2 DGC Algorithm Decision Hierarchy 



In Phase 1 the DGC algorithm processes the EP() and GTE ,) image sets using the heuristic given by Table 1 

to generate an interim image Map](,, ) populated by TP, TN, FP, FN states. In the second and third phases of 

the DGC algorithm spatial heuristics, that employ 5x5 convolution kernel illustrated in Figure 3(a), locate 

displacement and line broadening states within the FP and FN results. The centre pixel of this kernel is 

termed pixel Central (pC). The results of the spatial heuristic tests are loaded into the pC location. 

EP(, 1, y) GT(,,, y) Mapl(x, y) 
1 1 TP 

0 0 TN 

0 1 FN 

1 0 FP 

Table 1 Phase 1 Heuristic Assignment 

pl4 p13 p12 p11 p10 

p15 p3 p2 pl p9 

pl6 P4 pC p0 p8 

Pl7 PS p6 P7 p23 
1p18 

p19 p20 p21 p22 

p2 

P4 PC PO 

p6 

1 1t 
j 

(a) ro> 
Figure 3 (a) Full DGC convolution kernel, (b) kernel for 4-connected single displacement heuristic 

In Phase 2 of the DGC algorithm the Map]., ) image is processed using heuristics that discriminate DP states 

in the FP returns and the DN states in the FN returns. Single displacements are tested for in 45° intervals 

around pC and double displacements are tested for in 90° intervals around pC [7]. Phase 2 of the DGC 

algorithm creates a Map2(,, y) image that is populated by TP, TN, FP, FN, DP, DN states; the TP, TN states are 

unchanged from the Map1 (; y) image. The tests for a single displacement at 0°, 90°, 180°, 270°, in Phase 2 are 

given by equation (2) for DP reassignment, and by equation (3) for DN reassignment. The pixels used in 

these heuristics are noted in the four-connected kernel of Figure 3(b). 
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if (pC " FP} nd 
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The kernels used to test for a single diagonal displacement at 45°, 135°, 225° and 315° are illustrated in Figure 

4. We determined that in order for a diagonal displacement to be assigned it is necessary to test for the 

occurrence of two adjacent pixel shifts on the test diagonal. This double displacement criteria associates the 

diagonal reassignments with a systematic detector response. The heuristics that checks for a double pixel 

shift on the 45° diagonal are given by equation (4) for DP reassignment, and by equation (5) for DN 

reassignment. The component terms of equations (4) and (5) are rotated in 90° increments to give the three 

additional sets of heuristics that check for the diagonal displacements of 135°, 225° and 315°. 

(a) (b) (c) (d) 

Figure 4 Phase 2 diagonal displacement kernels, (a) 45° heuristic, (b) 135° heuristic, (c) 225° heuristic, (d) 

315° heuristic 
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The kernels used to test for a double displacement at 00,90°, 180° and 270° are illustrated in Figure 5. Similar 

to the diagonal displacement assignment it is necessary for two adjacent pixel shifts to occur in the test 



direction. Additionally the double displacement heuristics test for a 7N separation of the displaced pixels. 

The TN separation test ensures that noise related edges that track normal to the true image outlines are 

registered as segmentation errors. The heuristics that check for double displacement in the 0° direction are 

given by equation (6) for DP reassignment, and by equation (7) for DN reassignment. The component terms 

of equations (6) and (7) are rotated at 90° intervals to give the three additional sets of heuristics that check for 

the displacements of 90°, 180° and 270°. 

(a) (b) (c) (d) 

Figure 5 Phase 2 double displacement kernels, (a) 0° heuristic, (b) 90° heuristic, (c) 180° heuristic, (d) 

270° heuristic 
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In Phase 3 of the DGC algorithm the FP returns of Map2(, ) are tested to see if they can be designated as 

width modulation pixels. In this Phase an FP return that increases the width of the detected line is reallocated 

to the WP state. In Phase 3 the DGC algorithm uses a single heuristic test. The convolution kernel for this test 

is illustrated in Figure 6. This heuristic applies the eight-connected test of equation (8), to check for line 

broadening pixels. The TP, TN, DP, FN and DN returns in Map2() are not changed by the operation of this 

heuristic, these plus the FP and WP results from the third heuristic phase are loaded into Map3(. ). 
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2.2 DGC Operation 

The operation of the DGC algorithm is illustrated in Figure 7, where the dashed line that crosses the 5x6 

pixel-grid, marks the hairline separation of the two regions of differing intensity. The pixels with bold 

outlines mark the ground-truth pixels for this intensity discontinuity. The grey filled pixels in Figures 7(a), 

(b) and (c) give example detector results with systematic shifts, line broadening and false returns. The DGC 

allocation of states is given by the labels assigned to the Figure 7 pixels. The TN assignment labels have been 

omitted. 
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Figure 7 DGC Algorithm example results, (a) systematic shift, (b) line broadening, (c) false returns. 

In Figure 7(a) the detector's results are shifted to the left of the ground-truth pixels. Single and double shifted 

pixels are reassigned to the DP and DN states. Figure 7(b) illustrates results from a detector that generates 



line-broadening pixels. The FP and FN returns in Figure 7(c) indicate errors in the image segmentation. 

These segmentation errors contribute to a reduction in the usefulness of the edge detector. In contrast the 

detector results of Figure 7(a) and (b) have no FN or FP returns remaining after the reallocation phases, and 

these give complete segmentations that contain distortions of the ground truth results. The quality of these 

complete segmentations may be assessed against the degree of displacement and line broadening. 

In the assessment of a detector for use in the autonomous problem outlined in Figure 1, the limited 

displacements registered as DP results by the DGC algorithm do not materially effect the facility of the 

vision system to locate and follow the floor to wall boundaries. The WP results generated by the DGC 

algorithm were removed from the detector results through the use of a thinning algorithm. The EPM figure of 

merit evaluation for the autonomous navigation system of Figure 1 was based upon the FN and FP return 

probabilities taken from the DGC results. 

2.3 EPM Figure of Merit 

Analysis of edge detector results established that the extraction of valid line segments was limited through 

the clustering of FN and FP returns. It was found that the FP returns would cluster to form false line 

segments and the FNreturns clustered to form extended breaks in the detected outlines. The FP returns have 

the facility to connect with eight adjacent pixels whereas the FN returns are normally limited to connecting 

with two adjacent pixels. Thus under clustering the FP returns are four times more likely to link and form an 

error segment than the FNreturns. 

The EPM figure merit evaluated by equation (9) is given by a linear summation of the P(FP) and P(FN) 

probabilities. The S, scaling factor is set to '6' to reflect the maximum frequency of allowed missed edge 

pixels, given as 1: 6 in Section 1. The S2 scaling factor is set to `4' to equalise the relative effects of the two 

types of error probability under clustering. The linear summation of equation (9) registers zero or less when 

the less when the probability values for P(FN) and P(FP) are 0.167 and 0.042 respectively. The probabilities 

P(FP) and P(F)V) are calculated from the DGC results as given in equations (10) and (11). The TP, TN, FP, 

FN, DP and DN totals are found by accumulating the number of pixels in each of these states in the Map3(., y) 
image. If there are no FN or FP segmentation errors in the detectors results then the EPM figure of merit 



given by equation (9) will be unity. The incorporation of the minimum quality specification [8] into the 

figure of merit evaluation allows the unity to zero range of the metric to register the degree of conformity of 

the tested detector with the system's requirements. Contextual assessment can be made through the use of 

representative captured images for which ground-truth sets exist or through synthetic images in which the 

SNR is varied across the system's operational range. In the case of representative image evaluation the tested 

detector must register an EPM value greater than zero to conform to the system requirements. In the case of a 

synthetic image tests the detector must register an EPM value greater than zero at all SNR's above the 

specified SNR limit for the system. 

EPM: 1-S, (P(FN)+S=P(FP)) (9) 

FNrotal (10) P(FN) ° Moral + FNtotal + DPtotal 

P(FP) - 
FPtofal (j l 

TNtotal + FPtotal + DNtotal 

The importance of the DGC algorithm is illustrated in the evaluation of the false return probabilities. The DN 

returns are removed from the Map1(=y) FN results, because under the heuristic tests they have been allocated 

as uncovered TP's with a local DP match. In the Map3() image the number of valid edge point sites is then 

given by the sum of the TP, FN and DP totals, and this sum provides the normalisation of the P(FN) 

evaluation. The FP returns that have been identified by the DGC heuristics as DP or WP, are removed from 

the Map1() FP results and the number of possible non-edge pixels in the Map3(, ) image is given by the 

sum of the TN, FP and DN totals. This sum of the valid non-edge point sites provides the normalisation of 

the P(FP) evaluation. The WP returns extend the space occupied by the valid edge points, but they do not 

increase the number of valid edge points thus the WP total is excluded from the P(FN) and P(FP) 

calculations. 

The metrics reported by [2,6,7] incorporate the susceptibility of the tested detector to edge point 

displacement and line broadening into their figure of merit calculations. In the DGC results the 

susceptibilities of the detector to displacement and broadening are given as the probability evaluations of 

equations (12) and (13). The displacement susceptibility is given by the probability P(DP), defined as the 



probability of a DP return occurring within the set of valid edge point sites. The broadening susceptibility is 

given by the probability P(WP), defined as the probability of a WP return occurring within the union of the 

valid edge point and wide positive sets. If the system specification requires the inclusion of these effects, then 

it is necessary to specify the maximum allowed frequencies of displaced edge points and broadening edge 

points to extend the linear summation of equation (9). 

P(DP) - 
DProtal (12) 

TPtotal + FNtotal+ DProral 

P(WP) - 
WProtal (13) 

TPtotal +FNtotal + DPtotal +WPtotal 

3 ROC curves. 

Receiver Operator Characteristic (ROC) curves provide an effective means of analysing the response of a 

detector with respect to tuning parameters and thus allow for the selection of optimal parameters for a given 

application [14]. Figures 8(a) and 8(b) give examples of ROC P(FN): P(FP) curves that facilitate the 

selection of the edge strength parameter for the Sobel and SUSAN detectors. The log: log format of the Figure 

8 curves ensures that the low probability ranges which are important to the function of the edge detector are 

adequately displayed. It is the norm in ROC curves to plot P(TP): P(FP), however we replace P(TP) with 

P(FN), equivalent to (1-P(TP)), to give an inversion of the ROC characteristic. This inversion allows for the 

plotting of the EPM zero condition onto the ROC graph and thus contextual assessments can be made within 

the optimisation process. 
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Figure 8(a) ROC Curves SUSAN Detector Edge Strength 
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Figure 8(a) plots the P(FP) and the P(FP) results given by equations (10) and (11) for the SUSAN detector 

on test images with SNR's of 5.38dB, 4.22dB and 3.19dB, while the edge strength threshold varied from '3' 

to '10' grey levels. The test edge strength values are inset on the SNR plots. Figure 8(b) plots the P(FP) and 

the P(FP) for the Sobel detector on test images with SNR's of 16.3dB, 12.7dB and 10.2dB, while the edge 

strength threshold varied from `4' to '13' grey levels. The ROC curves of Figure 8 incorporate the EPM zero 

condition that sets the minimum quality specification for the detector [8]. The unbroken trace that meets the 

P(FN) axis at 0.167 and the P(FP) axis at 0.042 denotes the systems minimum quality specification. A 

detector result that occurs within the area enclosed by the minimum quality specification and the P(FN) and 

P(FP) axis is then known to comply with the vision system specifications. 

The SUSAN detector complies with the vision system specification at SNR's as low as 4dB. If the SUSAN 

edge strength tuning parameter is set to '6' then the error margin is maximised. In the Sobel detector the error 

margin is maximised by setting the edge strength parameter to '10'. At SNR's of 10dB or less the Sobel 

detector fails to comply with the vision system edge point specification. In Section 1, it was stated that the 

detector was required to meet the minimum quality specification at a SNR of 6dB or less. Thus the Sobel 

detector was unsuitable for use in the researched autonomous navigation problem. The ROC assessment can 

be repeated for the optimisation of other detector tuning parameters. These parameters include the low pass 



spatial filters used to pre-process the image intensity profiles and the hysteresis limits for edge following 

procedures. 

4 Metric Results and Comparisons 

In order for the comparisons to be drawn between the EPM, Pratt and Kitchen Rosenfeld metrics the 

synthetic test image was populated with vertical bars, this was to comply with the limitations of the Kitchen 

Rosenfeld metric. The performance results generated by the metrics are illustrated in Figure 9 for the SUSAN 

detector with the threshold strength set to W. At high SNR levels all metrics register near unity results 

indicating a good detector performance. At an SNR of 8dB the metrics roll-off, the EPM value intersects the 

metric axis at 3.5dB. Thus the EPM assessment method establishes that the SUSAN detector complies with 

the specifications for the autonomous vision system. In contrast the Pratt and Kitchen-Rosenfeld metrics do 

not carry any information in respect of a systems specification. 
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Figure 9 SUSAN Metric Results for the Vertical Bar Test Images 

The EPM probability P(WP) was found to vary from a minimum of 0.002 at a SNR of 22dB to a maximum 

of 0.09 at 2.3dB. The SUSAN detector has an integral edge thinning function that gives rise to this low level 

of width modulation. The EPM probability P(DP) was found to register 0.5 ±0.1 across the test range in the 

SUSAN detector results. This displacement probability indicates that 1-in-2 edge points are displaced in the 

detector results. These systematic displacement are limited to a maximum edge point shift of two pixels. For 

the autonomous navigation system that was the subject of our research the systematic displacement and line 
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broadening effects do not limit the system performance, thus it was appropriate to exclude these from the 

detector's merit value evaluation. 

5 Conclusion 

It was recognised by Förstner [8] that as a result of variation in system requirements the detector's minimum 

quality specification needs to be determined separately for each vision system. In the EPM metric we provide 

a frame work for the generation of this minimum quality specification. This method is dependent upon a 

ground-truth set existing for the systems test data. The DGC algorithm compared the detector and ground- 

truth results to classify the detector results true segmentation, distorted segmentation and segmentation 

errors. Four performance probabilities were identified within the detector's results. These were the 

probabilities of a false positive, a false negative, a displaced positive and a broadening positive result. The 

detector was then given a merit value based on a scaled linear summation of selected performance 

probabilities. This merit value ranged from unity to zero for a detector that complied with the system's 

specification. The scaling of this summation reflected the host system's allowed maximum frequency of 

occurrence of the selected performance measures. 

The EPM figure of merit used in the development of the Figure 1 autonomous navigation system was given 

by a scaled summation of the probabilities of false positive and a false negative occurring within the 

detector's results. The scaling factors were set to give a figure of merit of zero when the frequency of 

occurrence of a false positive reached 1: 24, or when the frequency of occurrence of a false negative reached 

1: 6. It was demonstrated that the zero merit rating could be incorporated into ROC curves to facilitate the 

choice of optimal detector parameters. It was shown that the EPM figure of merit would agree with the Pratt 

and Kitchen-Rosenfeld [1,4] metrics, as their figures of merit follow the same general curves for a given set 

of detector results. 
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