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An objective comparison of 
detection and segmentation 
algorithms for artefacts in clinical 
endoscopy
Sharib Ali   1,22*, Felix Zhou2,22, Barbara Braden   4, Adam Bailey4, Suhui Yang   6, 
Guanju Cheng6, Pengyi Zhang7, Xiaoqiong Li7, Maxime Kayser8, Roger D. Soberanis-Mukul   8,  
Shadi Albarqouni   8, Xiaokang Wang9, Chunqing Wang15, Seiryo Watanabe10,  
Ilkay Oksuz   11,20, Qingtian Ning17, Shufan Yang   16, Mohammad Azam Khan18, 
Xiaohong W. Gao19, Stefano Realdon5, Maxim Loshchenov13, Julia A. Schnabel11,  
James E. East   4, Georges Wagnieres12, Victor B. Loschenov13, Enrico Grisan   14,21, 
Christian Daul3, Walter Blondel3 & Jens Rittscher1

We present a comprehensive analysis of the submissions to the first edition of the Endoscopy Artefact 
Detection challenge (EAD). Using crowd-sourcing, this initiative is a step towards understanding the 
limitations of existing state-of-the-art computer vision methods applied to endoscopy and promoting 
the development of new approaches suitable for clinical translation. Endoscopy is a routine imaging 
technique for the detection, diagnosis and treatment of diseases in hollow-organs; the esophagus, 
stomach, colon, uterus and the bladder. However the nature of these organs prevent imaged tissues to 
be free of imaging artefacts such as bubbles, pixel saturation, organ specularity and debris, all of which 
pose substantial challenges for any quantitative analysis. Consequently, the potential for improved 
clinical outcomes through quantitative assessment of abnormal mucosal surface observed in endoscopy 
videos is presently not realized accurately. The EAD challenge promotes awareness of and addresses 
this key bottleneck problem by investigating methods that can accurately classify, localize and segment 
artefacts in endoscopy frames as critical prerequisite tasks. Using a diverse curated multi-institutional, 
multi-modality, multi-organ dataset of video frames, the accuracy and performance of 23 algorithms 
were objectively ranked for artefact detection and segmentation. The ability of methods to generalize 
to unseen datasets was also evaluated. The best performing methods (top 15%) propose deep learning 
strategies to reconcile variabilities in artefact appearance with respect to size, modality, occurrence 
and organ type. However, no single method outperformed across all tasks. Detailed analyses reveal the 
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shortcomings of current training strategies and highlight the need for developing new optimal metrics 
to accurately quantify the clinical applicability of methods.

Endoscopy is a routine clinical procedure used for the detection, follow-up and treatment of disease such as 
cancer and inflammation in hollow organs and body cavities; ear, nose, throat, urinary tract, oesophagus, stom-
ach and colon, which otherwise would be difficult to examine. During the endoscopic procedure an endoscope, 
a long, thin, rigid or flexible tube with a light source and a camera at its tip is inserted. In the clinical setting, 
endoscopes are typically connected to an external monitor for visualization. With the help of this display, the 
trained clinical endoscopist navigates within an organ, conducts reporting, acquires biopsies, and if necessary 
performs minimally invasive surgery. However, these processes are highly dependent upon the operator’s expe-
rience and navigation skills. Despite recent hardware improvements of clinical endoscopes allowing high defini-
tion and high frame rate image capture, the quality of endoscopic videos is still compromised. This is mostly due 
to non-optimal reflection of light, unavoidable tissue movements, large differences in organ shape and surface 
texture as well as occlusions caused by bodily fluids and debris. Most common imaging artefacts include the 
over- and under-exposure of image regions due to changes in illumination and organ topology (termed “satura-
tion” or “contrast”, respectively), blur due to unsteady hand motion of endoscopists and local organ motion, and 
specularity due to light reflection from smooth organ surfaces. The presence of fluids and bubbles also influences 
the visual interpretation of the mucosal surface1. Often, more than 60% of an endoscopy video frame and nearly 
70% of an endoscopy video sequence1 can be corrupted by a multitude of artefacts (see also Suppl. Fig. 1). These 
imaging artefacts not only present difficulty in visualizing the underlying tissues, but also severely impede quan-
titative analysis. Automated analyses of underlying pathologies often fail and lead to errorneous detections. Many 
sophisticated methods in literature used for identifying lesions such as polyp detection in bowel disease suffer 
from loss in accuracy due to the presence of image artefacts2. Tiny erosions in colitis are hard to detect and the 
presence of specularities or saturated pixels make this task even more challenging for both human specialists and 
computer guided methods. Furthermore, methods such as automatic video frame retrieval for reporting3, and 2D 
video mosaicking4 or 3D surface reconstruction5 for producing extended panoramic images for disease monitor-
ing and surgical planning require continuous video and are severely compromised by corrupted frames. Thus, it 
is undoubtedly necessary and imperative to identify and localize artefacts so that adequate video frame quality 
restoration can be applied before building any computer assisted clinical analysis techniques. Accurate artefact 
detection is therefore a critical bottleneck that must be first resolved to pave the way forward towards building 
any computer-aided endoscopy tools. In addition, artefact detection and its quantification can provide a measure 
of the endoscopic procedure quality.

Universal endoscopic artefact detection is highly challenging. This is due to (i) large variation in tissue appear-
ance under different endoscopy modalities used to aid endoscopic inspection such as white light, fluorescent 
and narrow band imaging (Supplementary Note 1), (ii) the presence of diverse image artefacts mostly caused by 
different physical phenomena (Suppl. Figs. 2, 3), (iii) the large variability in each individual artefact type with 
respect to their size, location and appearance, (iv) the frequent colocalization and overlap of small and large 
area artefacts of different nature (Suppl. Figs. 3c,d, 4), and (v) the lack of distinctive image features that distin-
guish and define each artefact. Bubbles are an exemplary example of the latter problem. Within a bubble, the 
underlying tissue is still visible (albeit possibly optically distorted) and its edges can span across a small or large 
area. Endoscopists characterize bubbles by the presence of a “protrusion” from the surface and the presence of 
specularity, global and local features which cannot easily be modelled numerically. An alternative to modelling 
is to learn the appearance statistics of artefacts using labelled images. Unfortunately, unlike natural images6,7 that 
can be readily crowd-sourced, labelled biomedical images are notoriously scarce and difficult to annotate. The 
ethical requirements and subtler image features of medical images require annotators with significant domain 
expertise. Current literature attempt to circumvent this data limitation by adapting methods pretrained on large 
natural image datasets. However, this fails due to the inability of these methods to generalize on large endos-
copy data samples. This is because the evaluated image datasets are often collected in-house with limited image 
diversity that do not fully reflect the tissue appearance and different image acquisition practices worldwide. Most 
works have been performed on short video clips, selected artefact type, single imaging modality and single organ 
datasets8–11.

We initiated the Endoscopy Artefact Detection Challenge (EAD2019) to enable a more comprehensive and 
objective benchmarking of endoscopic imaging artefact detection and segmentation algorithms by creating a 
diverse repository of annotated endoscopy video frames12,13 (Suppl. Fig. 2). EAD is a crowd-sourcing initiative 
that challenges researchers and computational experts to test and build their algorithms on a common bench-
mark clinical endoscopy dataset. To best capture the image variation in endoscopy, the assembled image frames 
were sourced from multiple organs, imaging modalities, endoscope manufacturers, and patients of different eth-
nic backgrounds (Suppl. Fig. 3a). Altogether the dataset captures seven prevalent artefact classes as identified by 
expert endoscopists13 (Suppl. Fig. 3b). The impact of posing the complex problem of artefact detection in diverse 
clinical endoscopy data through a challenge can be seen in twofold: (1) to communicate with the wider commu-
nity to best address the most fundamental limitation that impedes quantification of endoscopy data worldwide, 
and (2) to deliver improved patient monitoring with the endoscopy procedure by image artefact quantification 
and the development of enhanced computer-aided endoscopy tools.

In the EAD2019 competition, the developed methods from participants were evaluated on a web-based plat-
form with standard computer vision metrics. In this paper, we present an in-depth analysis of the EAD results 
including the performance impact due to the dataset size and artefact types. We aim to highlight the current best 
approaches for handling such a diverse endoscopy imaging dataset and to direct developers and researchers to 
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open challenges that we believe are still insufficiently addressed by current algorithms. The drawbacks of standard 
evaluation metrics to highlight the strength and weakness of individual methods are also discussed. We addi-
tionally introduce a holistic analysis of individual algorithms to identify and measure the clinical applicability of 
the developed methods in this competition. Importantly, the EAD challenge is an open-source initiative that will 
continue to remain open online for submission (https://ead2019.grand-challenge.org/). Most methods submitted 
to the EAD2019 workshop are publicly available through the challenge website.

Materials and Challenge Tasks
Dataset.  The EAD2019 dataset is the first publically available dataset aiming to capture the wide visual diver-
sity in endoscopic videos acquired in everyday clinical settings (Suppl. Fig. 2). Supplementary Note I and Suppl. 
Figs. 3, 4 provides a detailed breakdown of the dataset and its construction. Briefly, the EAD 2019 dataset iden-
tifies seven prevalent image artefact types or classes: (1) specularity, (2) saturation, (3) artefact, (4) blur, (5) con-
trast, (6) bubble and (7) instrument12, and is multi-organ, multi-modal, multi-patient and multi-ethnic, (Suppl. 
Fig. 3a). The dataset contains images from multiple patients of different ethnic origins. The defined class types 
aim to capture the most prevalent artefact types worldwide. The training dataset for detection and out-of-sample 
generalization tasks contain 2192 unique video frames with bounding box annotations and class labels from all 
7 classes. A subset collection of 475 video frames additionally have binary image mask annotations for 5 classes 
(excluding blur and contrast) for the semantic segmentation task. The test dataset with reference annotations 
(unavailable to the public) contain an additional 195, 122 and 51 video frames for detection, segmentation and 
out-of-sample generalization tasks, respectively. To capture the natural frequency and inherent multi-class fea-
tures of endoscopic artefacts, we allow labelling of artefacts in the same spatial location with multiple relevant 
class labels. This is unlike natural images6 or any other endoscopic dataset aimed at finding disease14 where class 
labels are considered mutually exclusive. The frames presented in this dataset were extracted from nearly 125 
endoscopic videos provided by collaborating institutions. The data for detection and segmentation sub-challenges 
were collected from five international institutions: John Radcliffe Hospital, Oxford, UK; ICL Cancer Institute, 
Nancy, France; Ambroise Paré Hospital of Boulogne-Billancourt, Paris, France; University Hospital Vaudois, 
Lausanne, Switzerland and the Botkin Clinical City Hospital, Moscow, Russia. Frames for out-of-sample general-
ization come provided by a sixth institute, Instituto Oncologico Veneto, Padova, Italy. During the challenge, the 
training datasets were released in two separate batches. The first batch provided the annotations for the detection 
sub-challenge, while the second batch supplemented the detection sub-challenge and provided the annotations 
for the segmentation sub-challenge. By staggering the release of the detection training dataset, participants were 
able to use either the first or second batch to test detection out-of-sample generalization. Participants had a total 
of three months to complete their submissions. The test data (excluding the reference annotations) were kept 
secret and only provided one month prior to the final workshop conference. An online system evaluated of par-
ticipants results with respect to (hidden) ground truth labels.

The EAD2019 training dataset can be downloaded at the open access Mendeley data repository. A compre-
hensive companion open-source software to assist users in data preparation and evaluation of predictions.

Challenge tasks.  To enable detailed assessment of algorithm performance, the overall artefact detection 
and classification problem was subdivided into three sub-challenges: detection, segmentation and out-of-sample 
generalization (Fig. 1 and Suppl. Fig. 1). Detection targets the coarse localization of image artefacts, identification 
of their class type and spatial location (given by the top-left and bottom-right coordinates of a rectangular bound-
ing box in Fig. 1a). Segmentation addresses pixel-wise localization of each artefact class giving the exact shape 
of artefacts within a class. Finally, out-of-sample generalization assesses the ability to apply a model trained on a 
given dataset “1” to a completely different subset of dataset “2” comprising similar images but from different data 
source (e.g., different manufacturer, different organ etc.).

Participants, Algorithms and Submission Handling
29 teams from 9 countries and 4 continents participated in EAD challenge 2019, all providing results for at least 
one of the 3 sub-challenges. 23 participants submitted detection, 16 participants segmentation and 19 partici-
pants submitted out-of-sample generalization results. Detection and out-of-sample generalization submissions 
were received by the EAD organizers as text files giving the predicted class, confidence and coordinates of the 
predicted bounding box (Fig. 1a). Submissions to the segmentation task were received as binary segmentation 
masks, one for each class (Fig. 1b). Participants were also asked to submit a technical abstract (2–4 pages) which 
was independently peer-reviewed by at least two computer vision scientists. Successful papers were compiled into 
an online proceeding(http://ceur-ws.org/Vol-2366). Table 1 summarises the technical details of the submitted 
solutions for detection, Table 2 and Table 3 presents their comparative performance evaluation while Table 4 
summarises and compares the segmentation solutions. Interestingly no dominant architecture or approach arose. 
The most popular detection solutions were based on Mask R-CNN15, RetinaNet16 and Cascade R-CNN17 and the 
most popular segmentation solutions were Mask R-CNN15 and DeepLabV318,19. See Supplementary Note IV for 
a condensed description of methods used by the top 30% participants.

Performance Evaluation Criteria
We give a brief overview of evaluation criteria. Detailed descriptions are given in Supplementary Note II.

Evaluation criteria for detection.  Intersection over union (IoU) and Jaccard index (J).  A measure that 
quantifies the area overlap between two spatial regions using the intersection-over-union between reference or 
ground-truth (denoted R) and predicted bounding boxes and segmentations (denoted S), 
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 where |·| denote the set cardinality (Suppl. Fig. 5a). The IoU is 0 for no overlap 
and 1 for perfect overlap. In the context of image segmentation the IoU is also referred to as the Jaccard index.

Mean average precision (mAP).  Measures how well a detection method is able to retrieve all reference boxes 
when predictions are ranked by decreasing confidence. We define a positive “match” between a reference and 
predicted box if IoU ≥0.25. The mAP ranges between 0 for no retrieval and 1 for perfect retrieval. The higher the 
mAP the better the detector performance. See Supplementary Note II, Suppl. Fig. 5 for the technical details and 
how the number of positive matches differ for alternative IoU thresholds.

Detection score.  Participants were ranked on a final weighted mean score (scored) = 0.6 mAP + 0.4 IoU to favour 
retrieval of all artefacts.

mAP-IoU ratio check for valid submissions.  A check was placed on mAP and IoU to discourage the participants 
from artificially increasing the detection score through biasing mAP and IoU using early or late stopping during 
training. The mean IoU of valid submissions was constrained to be ± 30% of the mean mAP that is 0.7 < IoU/
mAP < 1.3.

Evaluation criteria for segmentation.  Dice similarity coefficient (DSC).  A spatial overlap measure for 
segmentation similar to IoU defined as = ∩

+
R SDSC ( , ) R S

R S
2  where |·| denotes the set cardinality and R and S is 

the reference and predicted masks respectively. DSC is 0 for no overlap and 1 for perfect overlap. It is related to 
IoU or Jaccard, = ⋅

+
DSC 2 IoU

1 IoU
.

Precision (p), recall (r) and Fβ score.  These measures evaluate the fraction of correctly predicted instances. Given 
a number of true instances #GT (ground-truth bounding boxes or pixels in image segmentation) and number of 
predicted instances #Pred by a method, precision is the fraction of predicted instances that were correctly found, 

Figure 1.  The three sub-challenges of the Endoscopy Artefact Detection (EAD) challenge. (a) The “detection” 
task is aimed at coarse localization and classification of each image artefact. Given an input image (left) a 
detection model (middle) outputs the artefact class and coordinates of the containing bounding box defined by 
the top left (x1, y1) and bottom right corners (x2, y2) of the box (right). (b) The “segmentation” task is aimed at 
finer spatial localization through the precise delineation of artefact boundaries. Given an input image (left), a 
segmentation model outputs binary images (right) denoting the presence (‘1’) or absence (‘0’) of each artefact 
class. (c) The “out-of-sample generalization” task is aimed at assessing the ability of a model (model1) trained on 
one dataset (dataset1) model1 (left) to detect artefacts in an unseen dataset (dataset2) comprising the same set 
of class labels but with different data attributes such as data modalities or instrument or acquisition center or a 
combination of factors.
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=
.

p # TP
# Pred

 where #TP denotes number of true positives and recall is the fraction of ground-truth instances that 
were correctly predicted, =r # TP

# GT
. Ideally, the best methods should have jointly high precision and recall. 

Fβ-scores gives a single score to capture this desirability through a weighted (β) harmonic means of precision and 
recall, β= + ⋅β β

⋅

⋅ +
F (1 ) p r

p r
2

( )2 .

Segmentation score.  Similar to detection, semantic segmentation accuracy was also measured with a combined 
weighted score, = . ⋅ . ⋅ + + . ⋅score 0 75 [0 5 (F J)] 0 25 Fs 1 2. Compared to DSC, Jaccard, F2 scores alone, the pro-

Team Algorithm Prep. Nature Basis-ofchoice Backbone
Data 
Aug. Pretrained

Computation

GPU
Train 
time, hr

Test 
time, s

yangsuhui Cascade R-CNN 
+FPN Norm. (0–1) Ensemble Accuracy ResNet101 Yes None 1080 Ti 47 57

zhangPY Mask-aided RCNN Norm. (0–1) Symbiosis Context
ResNet50, ResNet101 
+FPNResNet50, 
ResNet50 
+FPNResNet50

Yes None 1080 Ti 47 57

Keisecker RetinaNet Norm. (0-1) Ensemble Accuracy
ResNet50, 
ResNet-101, 
ResNet-152

Yes COCO, ImageNet1k K80 8 0.19

michaelqiyao Cascade R-CNN Norm. (0-1) Cascading Accuracy ResNet101 Yes COCO — — —

ilkayoksuz RetinaNet - Focal loss Accuracy speed ResNet-152 Yes COCO K80 26 2.00

swtnb DNN +Mask 
R-CNN +YOLOv3 Patch Symbiosis Context ResNet-101 Yes COCO — — —

akhanss RetinaNet Norm. Focal loss Accuracy speed ResNet-101 Yes ImageNet TITAN XP 3 1.00

XiaokangWang Faster RCNN Patch, scaling Feature pyramid Context FPN-ResNet50 Yes COCO 1x1070 3.5 2.40

nqt52798669 Cascade RCNN Patch Cascading Accuracy ResNet-101, DLA-60 No None 2x1080Ti — —

ShufanYang Unet-D Bg. subs. Semantic Context speed ResNet-50 No P. VOC 12 1x1080Ti 12 0.04

Table 1.  Summary of participant algorithms for multi-class artefact detection and out-of-sample 
generalization. Most methods also used non-maximum suppression (NMS, Supplementary Note III) for post-
processing to obtain the final bounding box predictions. Teams are ordered according to their ranking on the 
online leaderboard (Table 2). “—” denotes unavailable information.

Team name

Detection Generalization

mAPd IoUd scored mAPg IoUg devg

yangsuhui 0.3235 0.4172 0.361 0.3187 0.0734 0.1018

ZhangPY 0.3117 0.4051 0.3491 0.3518 0.0889 0.0984

Keisecker 0.3087 0.3997 0.3451 0.2848 0.3902 0.0696

VegZhang 0.3371 0.3517 0.3429 0.3991 0.1783 0.101

YWa 0.3842 0.2368 0.3252 0.3746 0.1481 0.0424

michaelqiyao 0.3842 0.2368 0.3252 0.3746 0.1780 0.0742

ilkayoksuz 0.2719 0.3456 0.3014 0.2974 0.0688 0.0859

swtnb 0.2901 0.318 0.3013 0.2914 0.2547 0.0854

Witt 0.3148 0.2621 0.2937 0.2897 0.1854 0.1003

akhanss 0.2581 0.333 0.288 0.2187 0.2262 0.0770

XiaokangWang 0.2621 0.3205 0.2855 0.2515 0.2058 0.0728

a545306097 0.2547 0.2719 0.2616 0.1122 0.2244 0.1298

nqt52798669 0.3068 0.1222 0.233 0.3154 0.0871 0.0515

ShufanYang 0.2208 0.1955 0.2107 0.1931 0.1365 0.0478

xiaohong1 0.2416 0.3482 0.2842 0.1764 0.2671 0.0555

Faster R-CNN (baseline) 0.2226 0.2751 0.2436 0.2172 0.1647 0.0893

Retinanet (baseline) 0.2135 0.2270 0.2189 0.2499 0.1679 0.0665

Merged (super baseline) 0.3331 0.3793 0.3516 0.3433 0.2610 0.0610

Table 2.  Team scores for artefact class detection and out-of-sample generalization. Off-the-shelf Faster R-CNN 
[20] and RetinaNet16 are reported as baselines (as labeled) for comparison. We also include the performance of 
a super classifier denoted ‘Merged’ constructed from merging the predicted bounding boxes of all participants. 
Performance evaluated using the detection or out-of-sample generalization dataset is differentiated by 
subscripts ‘d’ and ‘g’, respectively. Teams are ordered in decreasing order of scored. The better the method, the 
higher the mAP and IoU, the lower the devg. Top 5 values for each evaluation metric is shown in bold.
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posed score allows for moderate bias to be placed on recall (r) with behaviour intermediate between F1 and F2, 
(Suppl. Fig. 6).

Evaluation criteria for the out-of-sample generalization.  We define out-of-sample generalization of 
artefact detection as the ability of an algorithm to achieve similar performance when applied to a different imag-
ing dataset that may differ in imaging modality and acquisition protocol but contain the same set of imaging 
artefact classes. To assess this, participants applied their trained methods to data collected from a sixth institution 
whose images were neither included in the training nor test data of the detection and segmentation tasks. 
Assuming that participants applied the same trained weights, the out-of-sample generalization ability was esti-
mated as the mean deviation between the mAP score of the detection and out-of-sample generalization test 
datasets of each class i for deviation greater than a tolerance of . ∗{0 1 mAP }i

d .

∑=
N

dev 1 dev
(1)i

i
g g

=






| − | ≤ .

| − | | − | > .
dev

0, for mAP mAP /mAP 0 1

mAP mAP , for mAP mAP /mAP 0 1 (2)

i
i i i

i i i i ig
d g d

d g d g d

The deviation score devg can be either positive or negative, however, the absolute difference should be very 
small (ideally, devg = 0). The best algorithm should have high mAPg and high mAPd but a very low devg (→0). 
This is because the methods should be robust to perform equally well in both seen and unseen datasets. In Eq. (1), 

=dev 0i
g  is empirically assigned to an acceptable level of mAP fluctuations (≤0.1) while larger deviations are 

penalized with the estimated mAP difference score.
The participants were ranked using the weighted ranking score for out-of-sample generalization as 

= ⋅ + ⋅score 1/3 Rank(dev ) 2/3 Rank(mAP )g g g  where Rank(mAPg) denotes the rank of a participant when 
sorted by mAPg in ascending order.

Evaluation criteria for clinical relevance.  Not assessed as part of the challenge, we additionally evaluated 
the clinical translation relevance assessments to identify the clinical applicability of the submitted methods. The 
factors that are critical for clinical relevance are based on (i) accuracy, (ii) consistency of prediction, and (iii) 
computational efficiency. The consistency of performance is evaluated by considering the standard deviation of 
various metrics normalized by the mean score. We consider a method to be significant if the standard deviation is 
low across all artefact classes. Detailed evaluation criteria of this analysis are described in Supplementary Note II.

Results
Detection performance.  In total 23/29 teams submitted to the detection challenge task of which 15 teams 
also submitted out-of-sample generalization results and had valid mAP-IoU ratio checks for detection (see 
Section Performance Evaluation Criteria above). Table 1 summarizes the main aspects of each approach, includ-
ing the deep learning architecture, processing time, required computation resource, and motivation of design 
choices. All methods are built upon deep learning advances as discussed in Supplementary Note III. The vast 
majority of methods aim to improve accuracy by combining the predictions from multiple trained networks 
based on popular state-of-the-art baseline architectures such as Mask R-CNN15 or cascade R-CNN17. We refer to 
these methods as “Ensemble”, i.e., final results are combined from multiple networks trained on the same task, or 
“symbiosis”, i.e., exploiting mutually beneficial features learnt from different tasks. The remaining methods are 
either focussed on improving the capture of contextual information across spatial scales to better apprehend the 

Team name

Class specific detection

Blur Contrast Specularity Saturation IA Bubbles Instrument

mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU

yangsuhui 0.28 0.45 0.44 0.29 0.48 0.30 0.48 0.33 0.32 0.32 0.06 0.77* 0.26 0.46

ZhangPY 0.33 0.41 0.41 0.41 0.35 0.34 0.45 0.38 0.20 0.40 0.20 0.27 0.24 0.62

Keisecker 0.31 0.50 0.40 0.38 0.36 0.29 0.38 0.43 0.23 0.37 0.18 0.26 0.30 0.56

michaelqiyao 0.37 0.22 0.47 0.25 0.48 0.22 0.52 0.29 0.31 0.26 0.24 0.08 0.30 0.33

ilkayoksuz 0.25 0.33 0.32 0.34 0.27 0.30 0.35 0.36 0.24 0.38 0.19 0.25 0.29 0.45

swtnb 0.34 0.23 0.44 0.21 0.28 0.27 0.32 0.36 0.23 0.33 0.17 0.30 0.25 0.52

Faster R-CNN 0.17 0.35 0.33 0.21 0.21 0.37 0.33 0.15 0.15 0.19 0.11 0.10 0.21 0.45

Retinanet 0.21 0.20 0.32 0.25 0.12 0.17 0.39 0.32 0.12 0.24 0.18 0.15 0.16 0.27

Merged 0.32 0.37 0.45 0.37 0.37 0.31 0.43 0.41 0.26 0.39 0.23 0.30 0.27 0.51

Table 3.  Class specific mAP and IoU scores for artefact detection for top 30% participants. Off-the-shelf Faster 
R-CNN20, RetinaNet16 and a super detector, ‘Merged’ constructed by merging all consensus detections among 
participants are reported as baselines for comparison. Teams are presented in decreasing order of detection 
score, (scored). The better the method, the higher the mAP and IoU.
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spatial statistics of individual artefact types, for example, by maintaining spatial prediction ("ShufanYang") or 
concentrate on increasing the number of size-aware training and prediction strategies (XiaokangWang","swtnb" 
as shown in Table 1 and detailed in Supplementary Note IV). We refer to these methods as “Context” aware detec-
tion methods. In general, the use of fewer networks with single-stage prediction (e.g. RetinaNet16) resulted in the 
shortest inference time.

We trained an in-house Faster R-CNN20 and RetinaNet16 baseline networks pre-initialized with ImageNet 
weights (Supplementary Note II) in order to determine the significance of the submitted results compared to the 
existing neural networks. Algorithms with performance better than these baseline methods can be recognized as 
contributors towards technical advancement above current established state-of-the-art computer vision detection 
methods. In addition, we created a super detector by keeping the detected bounding boxes that overlap with the 
majority of submissions to test if the combined predictions from all these methods (ensembled technique) yield 
improvements and to assess complementarity between participant methods (Suppl. Figs. 7, 8, and Suppl. Note II). 
As expected almost all teams reported mean global scores higher than both of our baseline detection methods. 
Top-ranked “yangsuhui” also scored higher than the “Merged” super detector (Fig. 2a, Table 2). However, the mean 
detection score (scored) does not reflect large variation in the performance across individual artefact classes. For 
all submissions, saturation, contrast and specularity classes exhibit consistently better performance and artefact 
and bubbles consistently worse performance relative to the reported global mean scored, (Fig. 2b–d). Interestingly, 
the worst performing classes (artefact and bubbles) did not necessarily have the fewest number of annotated boxes 
but both were small in area with large overlaps with boxes of other classes (Suppl. Fig. 4). The Jonckheere-Terpstra 
test21,22 (Supplementary Note II) statistically validates this observation. We found insufficient evidence of depend-
ence between scored and artefact class when sorted by increasing number of training annotation boxes (even when 
artefact and bubbles classes were excluded, p-value > 0.0612, Fig. 2b) but evidence of positive dependence between 
scored and artefact class when sorted by mean artefact size (p-value < 0.0079, Fig. 2c).

Strikingly, a more detailed analysis of the class-specific performance, captured by mAP and IoU scores 
(Fig. 2d), reveals that higher scored did not imply jointly higher mAP and IoU scores (Fig. 2a). There was a strong 
evidence of the trade-off between mAP and IoU (c.f. top 6 participants, Fig. 2d, Table 3) because of the imple-
mented mAP-IoU ratio check. Furthermore, all teams suffer from significant class-specific performance variabil-
ity with large error bars (Fig. 2d). Applying non-parametric Friedman-Nemenyi analysis of variance and post-hoc 
analysis to assess statistically significant difference in ranked performances6,23. The top-ranked by scored teams, 
“yangsuhui”, “ZhangPY” and “VegZhang” demonstrate consistent improvement (scored) over bottom ranked 
“nqt52798669”, “ShufanYang” and both baselines across artefact classes, (Fig. 2d,e, Supplementary Note II). 
However these teams were not equally good with respect to mAP and IoU metrics where notable shuffling of 
team ranks could be observed, for example with “michaelqiyao”, (Suppl. Fig. 9). By taking only consensus detec-
tions, the “Merged” detector maintains low variation across artefact classes and demonstrates jointly high rank 
performance across all metrics. Notably boxes used by the “Merged” detector does not all come from top-ranked 
teams as might be expected but rather a mixture of 7 high and low-ranked teams; 1st yangsuhui, 5th YWa, 8th 
swtnb, 9th Witt, 11th XiaokangWang, 12th xiaohong1 and 14th nqt52798669. The same teams that contributed 
the most prevalence in the detection ‘test’ dataset also contributed the most in the ‘out-of-sample generalization’ 
dataset. Teams had low contribution if an alternative method produced the same consensus box predictions but 
with higher confidence. Our results therefore strongly suggest unexploited complementarity between individual 

Team Method Nature Backbone

Evaluation metric

DSC Jaccard Overlap F2-score PPV Recall s-score

yangsuhui DeepLabV3+ Ensemble ResNet-101 + 
MobileNetv2 0.6810 0.6416 0.6612 0.6779 0.8789 0.7148 0.6654

swtnb Mask R-CNN+YOLOv3 Symbiosis ResNet-101 0.6496 0.6041 0.6269 0.6585 0.7515 0.7594 0.6348

YWa — — — 0.6392 0.6021 0.6206 0.6243 0.9039 0.6602 0.6216

VegZhang — — — 0.6141 0.5831 0.6185 0.6185 0.8386 0.6839 0.6036

michaelqiyao PSPNet Pyramid pooling ResNet-34 0.6141 0.5787 0.5964 0.6171 0.8164 0.6987 0.6016

Ig920810 — — — 0.6079 0.5684 0.5882 0.5972 0.8189 0.6802 0.5904

Weiminson — — — 0.6011 0.5631 0.5821 0.5839 0.8375 0.6598 0.5825

ZhangPY Mask-aided R-CNN Symbiosis ResNet-101 0.5719 0.5397 0.5558 0.5701 0.7719 0.6581 0.5594

nqt52798669 Cascaded R-CNN +DLA Ensemble ResNet-101 + 
DLA60 0.5414 0.4998 0.506 0.5331 0.6290 0.6887 0.5237

ShuganYang U-Net-D Semantic ResNet-50 0.4119 0.3797 0.3958 0.3998 0.6407 0.6360 0.3968

Baseline U-Net Semantic FCN 0.5490 0.5030 0.5260 0.5580 0.6691 0.7488 0.5340

Super Baseline Merged Semantic — 0.6782 0.6356 0.6569 0.6703 0.8747 0.7178 0.6603

Table 4.  Methods and team scores for the semantic segmentation of artefacts. Teams are ordered by decreasing 
s-score. Off-the-shelf U-Net24 is reported as a baseline (as labeled) for comparison. We also include the 
performance of a super segmentation denoted “Merged” constructed by keeping the consensus predicted 
segmentations from all teams. The most popular architectures were variations of the popular two-stage Mask 
R-CNN15 network (swtnb, ZhangPY). The deep encoder-decoder DeepLabV3 + 19 of yangsuhui obtained the 
highest s-score. However, YWa scored the highest values for PPV. ‘—’ denotes missing information.
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Figure 2.  Detection performance of EAD participants on the test dataset. (a) Plot of mean IoU vs mAP, 
(see also Table 2). Each point represents a team plotted with decreasing marker size with decreasing order 
of detection score, scored. Points that lie along the same black dashed lines have the same scored but show a 
different trade-off between mAP and IoU. The red line highlight the best performing teams (to the right). 
Box-plot of test detection score, scored for individual artefact classes sorted by increasing % of training boxes, 
(b) and by the normalized box area (area after box width and height have been normalized by the respective 
image width and height) for all images in the training dataset, (c) White and black horizontal lines indicate the 
mean and median of boxes. Whiskers are plotted at 1.5 × inter-quartile range of upper and lower quartiles. (d) 
Error bars and swarm plots of IoU (top), mAP (middle) and the final detection score, (scored, bottom) for each 
team and baseline methods. Teams are arranged by decreasing scored. Error bars show ± 1 standard deviation 
relative to the mean score across artefact classes. For better visualization, points are adjusted such that they do 
not overlap in the x-axis. Filled square and diamond markers mark teams whose average ranked performance 
is significantly different to respective Faster R-CNN and Retinanet methods following Friedman Bonferroni-
Dunn post-hoc testing with p < 0.05. (e) Average rank performance of individual methods considering artefact 
classes independently with detection scores. Solid black lines join methods with no significant rank difference 
with Friedman Nemenyi post-hoc analysis and p < 0.05. Color bars (b,c) and color points (d) constituting 
of red, green, blue, violet, orange, yellow and brown represent specularity, artefact, saturation, blur, contrast, 
bubbles, and instrument classes, respectively.
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training approaches. Interestingly, this can be visually observed in Suppl. Fig. 10 and is suggestive of potential 
unique differences in the training strategies used by teams that differentially exploit different clinical aspects of 
endoscopic artefacts; Cascade R-CNN with targeted class balancing of 1st yangsuhui, targeted artefact size by 
combining prediction from Mask R-CNN and YOLOv3 of 8th swtnb, size specific bounding box augmentation 
approach of 11th XiaokangWang and image patch-based deep learning approach of 12th xiaohong1.

Visual inspection of detection produced by selected top- and bottom- ranking teams additionally suggest most 
methods successfully localise artefact containing regions but higher ranking methods tend to better classify and 
to resolve spatial overlap between bounding boxes. Thus, we conducted a class confusion matrix analysis, (Suppl. 
Fig. 11, Supplementary Note II). Our results suggest the occurrence of spatial overlap between bounding boxes 
(Suppl. Fig. 4) decreases the performance of the classifier. When two or more artefact classes are “confused” and 
compared, neural network predictions tended to favour the class with more training annotations and occupies a 
larger spatial area. This respectively reflects the data-driven nature of neural network architectures and the pref-
erence of non-maximum suppression postprocessing to retain larger regions. For example, across all methods, 
artefact is confused with specularity, bubbles is confused with both artefact and specularity but as specularity 
has more annotations it has the best performance. Similarly, there is confusion of instrument with saturation, 
artefact and specularity due to the metallic or plastic surface of endscopic instruments. Here the larger size of 
instrument relative to imaging artefact facilitates better detection performance with higher IoU versus specularity 
but the relatively smaller number of instrument training occurrences produces worse mAP (Fig. 2b–d). These 
observations appear shared across compared baseline, 6 top-ranking and 3 bottom-ranking methods which all 
show a similar global confusion matrix pattern (Suppl. Fig. 11a). Consistently 25–30% of all boxes are misclas-
sified (Suppl. Fig. 11b). Surprisingly the best classifiers were not all top-ranked scored methods. Instead the best 
classifying methods “ZhangPY” (2nd, Mask R-CNN), “Keisecker (3rd, ensemble Retinanet), “ilkayoksuz” (7th, 
Retinanet, 5-fold validation) and “XiaokangWang” (11th, size-specific augmentation) utilised effective strategies 
to more accurately estimate box size and location (Fig. 2d, Suppl. Fig. 9) and generate the most number of correct 
predictions for the total number of predicted boxes, (Suppl. Fig. 12). It is to be noted that these methods were not 
all two-stage detectors.

Finally, we analyzed per image performance using F1-score in Suppl. Fig. 13a. Rather than there being certain 
image subsets that were easier for particular teams as might be hypothesized from the complementarity in bound-
ing box predictions, we observed that all teams in general found the same images to be hard (almost no artefacts 
were detected) or easy (almost all artefacts detected), (Suppl. Fig. 13b). The top 24 ‘easy’ and ‘hard’ images (Suppl. 
Fig. 13c) provide a concise visual overview of the limitations of current neural network methods which are biased 
towards large well-defined objects and cannot handle spatial overlap involving small objects irrespective of the 
amount of available training annotation. Typically the ‘easy’ images belong to single class and possess artefacts 
with well-defined image boundaries and minimal overlap. Conversely the ‘hard’ images consisted of multi-class 
artefacts and spatially overlapped boxes with ambiguous artefact classes. This limitation for current detection 
is likely due to the use of IoU for determining a positive match between predicted and reference boxes both in 
training and non-maximum suppression (NMS) post-processing. Despite the higher frequency of spatial overlap 
involving smaller artefacts, the spatial overlap between larger artefacts have much higher IoU, (Suppl. Fig. 4c). 
At the same time, small objects are more susceptible to small errors, but due to their size this can eventually lead 
to a null IoU. Consequently, small objects are more likely to produce reduced training signals and be suppressed 
during NMS.

Out-of-sample detection generalization performance.  The deviation between reported mAP on the 
detection test and the out-of-generalization dataset obtained from a separate sixth institute was used to analyse 
the out-of-sample generalization performance. Submissions for the same 15 teams we analysed for detection 
performance (Table 2, Fig. 3). It is encouraging to note that we observed a strong, significant linear correlation 
(Pearson’s R = 0.896) between global detection (mAPd) and generalization (mAPg) mAP for all teams independ-
ent of rank. The correlation between the mAPd and mAPg scores also was also observed across teams for each 
artefact class though not always linearly. Blur, contrast and bubbles were the classes that tested non-significant for 
linear correlation, (Fig. 3a). Further evidence was provided by a flat deviation score, (devg,Supplementary Note II) 
with respect to mAPg across all teams, (Fig. 3b). Finally paired t-test showed non-significant difference in mean 
mAP between detection and generalization in all classes except for artefact, (Fig. 3c).

Semantic segmentation performance.  Table 4 summarizes participated team methods and scores with 
teams sorted in descending order of final semantic score (s-score; see Supplementary Note II). Similar to the 
detection task, all submitted methods build upon deep learning advances discussed in Supplementary Note III. 
However, we observed a large variation in performances. Here, we established a baseline by training an in-house 
U-Net network24. In addition, we also created ‘super’ segmentations by retaining the consensus segmentations 
across all participants (for details please refer to Suppl. Note II, Suppl. Fig. 14) to test if an ensemble of predictions 
yield improvements. This approach also reveals the extent of complementarity between participants. Overall, the 
ensemble method of “yangsuhui” (0.6654) and detection enhanced segmentation of “swtnb” (0.6348) achieved 
the best s-scores. Notably, both methods try to better capture the underlying data variation by combining feature 
maps obtained from different backbones. Spatial pyramid pooling of features by “michaelqiyao” in PSPNet25 to 
better capture the varying sizes of individual region-of-interest (ROIs) of artefact classes (Suppl. Fig. 3c,d) in the 
EAD2019 dataset was also an effective strategy for single stage neural networks. Alternative strategies such as 
cascaded mask R-CNN and mask aided R-CNN appear to fare worse. Despite the overwhelming popularity of 
U-Net24 for semantic segmentation in biomedical imaging, our baseline U-Net and the UNet-D of “ShufanYang” 
using ResNet50 backbone were the worst performing, ~15–30% lower than the top method of “yangsuhui”.
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Visual observation of predicted segmentation masks indicate that the four top ranked methods are capable 
of capturing most salient imaging artefacts. However, similar to the detection task, it can be observed in Fig. 4a,c 
that there is significant variability in performances across individual classes and difficulty to handle class overlaps. 
Overall the smaller the mean connected area of an artefact, the worse the segmentation peromrance measured 
by the s-score. Saturation and instrument classes were the best performing whilst artefact and specularity were 
the worst performing classes, (Fig. 4b). While the segmentations of bubbles did cause difficulties, the accuracy 
of segmenting bubbles compares with the segmentation accuracy of the classes saturation and instrument. The 
presence of connected regions of specularity and artefacts that enforce them to form more irregular shapes is one 
plausible explanation. Irregularly shaped regions cannot be handled by standard convolution kernels that impose 
a regular sampling grid26. Alternative metrics, Jaccard, DSC, overlap and F2 all show similar results, (Suppl. 
Fig. 16). Remarkably, the observed class-specific performance variation is shared by all individual teams with 
the exception of “nqt52798669”, (Fig. 4c). The method submitted by “nqt52798669” is the notable exception. The 
strategy of maximally exploitingg feature map combination from different neural network layers corresponding 
to different object size through deep layer aggregation27 is unique in this approach. While this explains the very 
small error bar, it fails to explain its low performance (2nd last). The method of yangsuhui consistently ranked 
first across the majority of metrics, s-score, Dice coefficient and Jaccard (Fig. 4c, Suppl. Fig. 15a,b). However it 
statistically only performed better than the bottom two methods (see 4d). Quantitatively, “yangsuhui” was even 
better than the consensus produced “Merged” segmentation (2nd best) whose segmentations were shared equally 
by “yangsuhui” and “swtnb”(Fig. 4d, Suppl. Fig. 14c, Suppl. Fig. 15a,b).

Aside from good overlap, it is also important to maximize the number of positive predictions and mini-
mize the number of false positives. We observe a positive correlation between the proportion of positive 

Figure 3.  Out-of-sample generalization of participant detection methods. (a) Plot of detection (mAPd) and 
generalization (mAPg) mAP values per team: Overall (gray) and per artefact class (colored, legend is provided 
on the top). The black dashed line represents the ideal identity line. R denotes Pearson’s R correlation. P denotes 
the p-value of the null hypothesis being that the slope of the least-squares linear line is zero. (b) Plot of deviation 
score (scored) and generalization mAP, (mAPg) per team. Team markers in panel (a,b) are plotted large to small 
with decreasing detection score. scored. (c) Paired bar plots of mean team detection and generalization mAP 
scores are denoted by ‘d’ and ‘g’, respectively, for each artefact class. Error bars show ± 1 standard deviation 
of team scores relative to the overall team mean score shown by each bar. Paired t-test was used to test for 
difference in mean, n.s. - no significance, *p < 0.05, **p < 0.01. In all panels, the same color scheme is used to 
color individual artefact classes. Color points in (a) and color bars in (c) constituting of red, green, blue, violet, 
orange, yellow and brown colors represent for specularity, artefact, saturation, blur, contrast, bubbles, and 
instrument classes, respectively. Similarly, gray colored points in (a,b) are used to represent overall performance 
of each team. Also, star, diamond and square are used to represent baseline methods in comparison.
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Figure 4.  Artefact semantic segmentation performance. (a) Segmentation masks predicted by top ranked 
methods (black border) for a representative image from the test set. Ground truth (GT) mask (top-left and blue 
bordered) and baseline methods (middle and bottom left, green bordered) are shown for comparison. (b) Box 
plot of s-score and artefact class over all teams. Classes are plotted in increasing order of region-of-interest area. 
Whiskers are plotted at 1.5 × inter-quartile range of upper and lower quartiles. Outliers are plotted as black 
points. c. Error and swarm plots of s-score. Teams are ordered by decreasing mean s-scores. Error bars show 
± one standard deviation of class-specific scores relative to the global mean score for each team. Red dashed 
line plots the s-score if blank segmentation masks were predicted. ‘*’ denotes statistical difference (p < 0.05) in 
ranked performance relative to the U-Net baseline following Friedman with Bonferroni-Dunn posthoc testing. 
(d) Average s-score rank performance of individual methods considering artefact classes independently. Solid 
black lines join methods with no significant rank difference following Friedman Nemenyi post-hoc analysis 
with p < 0.05. Colored annotation regions in (a), color bars in (b) and color points in (c) constituting of red, 
green, blue, violet, orange, yellow and brown represent specularity, artefact, saturation, blur, contrast, bubbles, 
and instrument classes, respectively.
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pixel-wise segmentation (PPV or precision, see Supplementary Note II) and the s-score (Pearson’s R = 0.84, 
p-value < 0.0025). While the ranking with respect to these different measures differs, it is still correlated 
(Spearman’s R = 0.67, p-value < 0.033). Third ranked “YWa” by s-score is now first ranked with PPV = 0.904, 
>2% higher than “yangsuhui” (first ranked by s-score), (Suppl. Fig. 15e, Table 4). In addition, despite lower in 
s-score, the artefact class is better than specularity under PPV (Suppl. Fig. 16e). Recall shows similar results, even 
though positive correlation with s-score is less strong (Pearson’s R = 0.64, p-value < 0.0456) and correlated, differ-
ent ranking (Spearman’s R = 0.70, p-value < 0.025). Second ranked “swtnb” is now best ranked which may explain 
its prevalence in the “Merged” segmentation. Notably the variation in the recall of individual classes (except spec-
ularity) across all methods is low and stable compared to other measures, (Suppl. Fig. 16). This suggests partici-
pant methods primarily improved only the per pixel accuracy of predicted regions but that the predicted regions 
are likely only the same regions for all methods. The actual number of distinct ground-truth regions that could 
be recalled did not necessarily increase across methods. For example, no method could predict the presence of 
bubbles in Fig. 4a and all aggregated team predictions could not predict the full saturated region, (Suppl. Fig. 10a). 
This is supported by the fact that all teams, in general, found the same images ‘easy’ or ‘hard’ to segment (Suppl. 
Fig. 17). As with detection ‘easy’ images were typically single class, larger connected regions of regular geometry 
and minimal overlap between classes. Meanwhile ‘hard’ images have highly spatially overlapping classes, cover 
regions of discontinuous image intensity and exhibit regions of different small and large sizes. Taken together, 
we found the top-ranking neural network methods were able to segment artefacts, however, the performances 
are highly variable across classes. They are most effective for artefacts of large area and regular convex polygonal 
geometries. It must be cautioned that current evaluation metrics are imperfect. Due to the natural pixel imbalance 
with more background (0 values) than foreground pixels (values with 1) in binary class masks, null prediction 
will result in an s-score of 0.5289 which is comparable to our U-Net baseline when plotted as a red dashed line in 
Fig. 4c. By extension this inherent pixel imbalance problem is subsequently often overlooked in training neural 
networks for segmentation.

Clinical applicability of methods.  The critical factors for clinical application are (i) accuracy, (ii) consist-
ency of performance, and (iii) computational efficiency. Whilst accuracy is important and has been the primary 
consideration in academic publications, we argue that performance consistency is equally important in clinical 
applications. For example, given the diagnostic implications of two algorithms, one that produces consistent pre-
dictions with an acceptable mean accuracy across multiple clinical setups is preferred over the one that has higher 
accuracy but only for a few fixed clinical setups. Of lesser importance but of significant practical consideration 
is computational efficiency. The method requiring least computational memory and power is more economical. 
Further, fast execution enables real-time applications. To objectively evaluate each of the three criteria we con-
ducted detailed clinical applicability analyses by aggregating rankings from multiple metrics (see Supplementary 
Note II, Tables 5, 6) used in detection and segmentation performance dissections. The final applicability ranking 

Team

Accuracy Consistency Computational Efficiency

Clin.
RankmAP IoU

Conf. Acc. mAP- IoU-

Gen.

Cons. Back- Mult.

GPU

Test Eff.

Score Rank std. std. Rank bone Net Time Rank

yangsuhui 5 5 15 9 16 14 7 14 5 1 5 8 5 11

ZhangPY 7 1 5 2 9 8 5 7 8 8 8 8 9 4

Keisecker 8 2 2 1 4 7 7 5 7 6 3 4 6 2

VegZhang 3 8 7 4 5 13 4 6 13* 13* 14* 13* 11 5

YWa 2 6 11 5 12 1 1 2 13* 13* 14* 13* 11 3

michaelqiyao 1 16 10 10 6 10 2 4 13* 13* 14* 13* 11 6

ilkayosuz 9 4 4 3 1 2 6 1 13* 1 3 6 7 1

XiaokangWang 12 11 1 7 8 12 10 11 4 1 5 7 4 8

swtnb 10 7 6 6 7 9 7 8 13* 13* 14 13* 11 7

Witt 4 12 9 8 10 5 12 9 13* 13* 14 13* 11 9

akhanss 11 9 8 11 11 6 14 12 5 13* 9 5 8 13

xianohong1 16 3 12 13 13 3 15 13 13* 13* 14* 13* 11 14

a545306097 15 10 13 14 15 4 17 15 13* 13* 14* 13* 11 16

nqt52798669 6 17 17 16 2 11 3 3 6 1 10 13* 10 10

ShufanYang 17 14 16 17 17 15 12 16 1 1 6 1 2 17

Faster R-CNN 14 15 3 12 14 16 16 17 1 1 1 3 3 15

RetinaNet 12 13 14 15 3 17 10 10 1 1 1 2 1 11

Table 5.  Clinical applicability ranking of the participants detection methods with appraisal for their accuracy, 
consistency and computational efficiency. The final clinical relevance rank is also presented. Baseline Faster 
R-CNN and RetinaNet methods are also included. The lower the rank the better is the performance. *Conf. 
Score: confusion matrix score, Acc. Rank: accuracy ranking, mAP-std.: standard deviation/mean mAP ratio, 
Gen.: out-of-sample generalization, Cons. Rank: consistency ranking, Mult. Net.: use of multiple trained 
networks, Eff. Rank: computational efficiency ranking, Clin. Rank: overall clinical relevance ranking *imputed 
ranks.
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was produced from a weighted average of accuracy, consistency, and efficiency rankings with weights 0.4, 0.5, 
and 0.1, respectively. In Table 5, the detection method of “ilkayoksuz” is clinically top-ranked despite the 5th posi-
tion by scored whilst “yangsuhui” method is only 11th (similar to our baseline “RetinaNet”). It is to be noted that 
“yangsuhui” is ranked 1st on the challenge leaderboard. Among all algorithms, RetinaNet variants (“ilkayoksuz”, 
“Keisecker”) score highest for all factors followed by Mask R-CNN variants (“ZhangPY”, “swtnb”).

In Table 6, clinical applicability metric revealed that 6th ranked “Ig920810” on the segmentation leaderboard 
has the best performance consistency and ranked 2nd in the overall clinical applicability ranking whilst “yangsu-
hui” is still ranked 1st. Both “swtnb” and “ZhangPY” used a symbiosis paradigm based on mask R-CNN, however, 
the combination of mask R-CNN, YOLOv3 and targeted pre-processing used by “swtnb” yielded more accu-
rate results. Also, despite the popularity of U-Net for segmentation in the medical image analysis community, 
the U-Net-based model of “ShufanYang” was ranked only second last in our clinical applicability analysis. In 
short, our analysis highlights an ultimate requirement of considering diverse metrics that can capture all critically 
important aspects for effective clinical translation of these algorithms.

Discussion
Critical dissections of the submitted methods to the EAD2019 challenge reveal that the application of transfer 
learning and targeted training strategies such as ensemble technique of “Keisecker” in detection and “yangsuhui” 
in segmentation yielded in an improved performance compared to the direct application of the state-of-the-art 
neural networks. However, as suggested in Fig. 2, detection performances critically depend upon the size of an 
individual artefact class and the extent of spatial overlap irrespective of the amount of training data. Hypothesis-I: 
the detection performance is inhibited by the use of a single IoU cut-off for determining a positive match between 
predicted and reference boxes, irrespective of artefact size which also underscores the effect of spatial overlap.

For out-of-sample generalization, all proposed methods showed potential of delivering similar detection per-
formance on out-of-sample data except for the results on the ‘artefact’ class where the incapability of methods 
generalizing on large appearance variation observed in artefact is clearly demonstrated despite the presence of 
large number of training annotations (2nd most annotated class, Suppl. Fig. 3). This suggests that large variability 
in the appearance of artefacts (both intra- and inter-class) present in endoscopy frames is hard-to-generalize 
which implicates to the fact that training a neural network architecture effectively on endoscopy data for frame 
artefact detection will require a tremendous amount of samples per artefact class.

For semantic segmentation, results depended upon both artefact sizes and the amount of ground truth labels 
(foreground masks). Table 4 suggests that improvements in segmentation is mostly due to reduction in number 
of false positive classifications, i.e., increased precision, whilst only marginal changes in recall suggests that there 
is a no improvement in false negative classification, i.e., there are regions which are constantly missed by all 
methods. This can be due to methods failing to capture annotator variance and shape and appearance variability. 
Hypothesis-II: the segmentation performance of all methods fail to generalize class imbalance and suffer from an 
implicit bias to predict ‘0’ due to small areas of artefacts and overabundance of background pixels in binary masks.

As such, we suggest significant performance gains might be achieved through the implementation of size 
independent loss functions and metrics that optimally target the spatial overlap between multi-class objects, 
e.g., use of size-specific multiple IoU thresholds for detection. For segmentation, we suggest the use of deform-
able convolution strategies26 optimized for artefact geometry and incorporating sampling strategies and metrics 
that can better handle the data imbalance problem such as using uncertainty weighted losses28. We also suggest 
that participants could benefit from exploring pre-sharpening of frames or pre-extraction of attention maps as 

Team

Accuracy Consistency Computational Efficiency

s-score PPV Recall
Acc. 
Rank

s-score 
std.

PPV 
std.

Recall 
std.

Cons. 
Rank Backbone

Mult. 
Net GPU

Eff. 
Rank

Clin. 
Rank

yangsuhui 1 2 2 1 2 4 3 2 5 9.5 3 9 1

swtnb 2 7 1 2 5 10 1 6 4 1.0 6 3 3

YWa 3 1 9 5 4 2 5 3 4.25 1.0 14 6 3

VegZhang 4 4 4 3 8 6 10 9 4.25 1.0 14 6 8

michaelqiyao 4 5 3 3 7 5 9 7 1.00 1.0 5 1 5

Ig920810 6 6 8 7 3 3 2 1 4.25 1.0 14 6 2

Weiminson 7 3 6 6 6 1 7 5 4.25 1.0 8 4 6

ZhangPy 9 8 7 9 10 9 8 10 3.00 1.0 14 5 10

nqt52798669 8 9 5 8 1 7 4 4 5.00 9.5 9 10 7

ShufanYang 10 10 11 10 9 8 6 8 2.00 1.0 3 2 9

U-Net 11 11 10 11 11 8 6 8 1 1 1 2 10

Table 6.  Clinical applicability ranking of the participants segmentation methods with consideration of their 
accuracy, consistency and computational efficiency. UNet is also included in the comparison as the baseline 
method. The lower the rank the better is the performance. *PPV: positive predictive value, Acc. Rank: accuracy 
ranking, s-score std.: standard deviation/mean s-score ratio, PPV. std.: standard deviation/mean PPV ratio, 
Recall std: standard deviation/mean recall ratio, Cons. Rank: consistency ranking, Mult. Net.: use of multiple 
trained networks, Eff. Rank: computational efficiency ranking, Clin. Rank: overall clinical relevance ranking. 
*imputed ranks.
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pre-processing steps to improve performance or build-in attention maps to model scale within the network. Most 
importantly, our detailed analysis shows that the competition-winning solutions overfit on selected challenge 
metrics that are often not optimal for practical deployment, particularly in biomedical applications that demand 
a balance of accuracy, consistency of performance and computational efficiency. We advocate for more holistic 
ranking procedures which can yield more significant insights for improved technological development that facil-
itates clinical translation.

As observed in Suppl. Fig. 11, instrument and artefact classes have large collocalization. It might be beneficial 
in pre- or post-processing to take into account the colocalization of multiple classes to circumvent class imbalance 
problem, e.g., through finer stratification within artefact classes. However, such context-aware targeted processing 
of detections were not explored by participants. Nevertheless, the results presented in the EAD2019 challenge 
surpasses the state-of-the-art methods in both detection and segmentation. Given the complexity of the compiled 
data in EAD2019 challenge, most methods developed during this challenge has significant strength in clinical 
usability. It is worth noting that a good trade-off between the mAP and IoU was obtained by the top 15% of the 
EAD2019 challenge methods. Additionally, an overlap accuracy of over 60% for segmentation method which is 
nearly 20% more than U-Net architecture widely used in medical imaging field.

Accurate detection, localization and delineation of artefacts can enable efficient end-to-end pipelines for 
endoscopy quality assessment. This can be used in clinics for training of novice endoscopists and for accessing 
mucosal surface that has been actually covered during an endoscopic procedure. Additionally, incorporating 
the detection and segmentation pipeline to reduce the false detection of diseases, such as polyps that are often 
mistaken with pixel saturation problem in endoscopy videos is another application. It has been shown that iden-
tifying and recovering of partially corrupted frames based on detection of artefacts can help restore endoscopic 
images that can increase the robustness of any post analysis computer vision methods1.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information files. EAD dataset: https://doi.org/10.17632/c7fjbxcgj9.2. Accompanying software tools is also 
available for the dataset: https://sharibox.github.io/EAD2019/.
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