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Abstract: Object detection has wide applications in intelligent systems and sensor applications.
Compared with two stage detectors, recent one stage counterparts are capable of running more
efficiently with comparable accuracy, which satisfy the requirement of real-time processing. To further
improve the accuracy of one stage single shot detector (SSD), we propose a novel Multi-Path fusion
Single Shot Detector (MPSSD). Different from other feature fusion methods, we exploit the connection
among different scale representations in a pyramid manner. We propose feature fusion module to
generate new feature pyramids based on multiscale features in SSD, and these pyramids are sent
to our pyramid aggregation module for generating final features. These enhanced features have
both localization and semantics information, thus improving the detection performance with little
computation cost. A series of experiments on three benchmark datasets PASCAL VOC2007, VOC2012,
and MS COCO demonstrate that our approach outperforms many state-of-the-art detectors both
qualitatively and quantitatively. In particular, for input images with size 512 × 512, our method
attains mean Average Precision (mAP) of 81.8% on VOC2007 test, 80.3% on VOC2012 test, and
33.1% mAP on COCO test-dev 2015.

Keywords: object detection; single shot detector; feature fusion

1. Introduction

Object detection has been a fundamental task in computer vision which aims at
localizing objects via bounding boxes and assigning a certain class to each of them. It has
been widely adopted on intelligent systems as a crucial component and applied on specific
purposes, such as pedestrian detection, face detection, and text detection [1]. Recent deep
learning based detectors [2–7] have seen great achievements compared with traditional
methods. Inspired by these works, we propose a novel efficient yet accurate deep detector.
We extend previous work [8] substantially by presenting comprehensive related work,
performing a series of additional experiments with more ablation studies, comments on
inference time, and failure cases analysis which better show the effectiveness of our method.

Most state-of-the-art object detectors fall into two categories, one-stage detectors
and two-stage ones. Two-stage methods are proposed earlier, especially for Faster R-
CNN (Regions with CNN features) [4] and R-FCN (Regions with Fully Convolutional
Networks) [7]. On the first stage, regions with high probability that contain foregrounds
are extracted as proposals. On the second stage, these proposals are sent to a network for
classification and bounding-box regression. While archiving high accuracy on benchmark
datasets, such as PASCAL VOC [9] and MS COCO [10], two-stage approaches usually run
slowly because of the high computation cost of the region proposal generation. Another
one-stage branch (e.g., Single Shot Detector (SSD) [6], You Only Look Once (YOLO) [5])
employs proposal-free pipeline, thus it needs few computation resources. These detectors
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usually adopt fully convolutional architecture and calculate class confidence and regression
results directly on predefined boxes. One-stage detectors could run efficiently with accuracy
slightly inferior to two-stage ones, thus they are favorable for sensors system due to the
crucial need of real-time inference.

The one-stage approach SSD detects objects directly from multiscale features. This
feature pyramid consists of last layers of backbone and adjacent convolutional layers.
Shallow layers within this pyramid are used to detect small scale objects and deep ones
responsible for larger objects. Although efficient, such scheme behaves badly on small
objects. Since shallow layers always learn localization information while deep layers have
more semantics information [11]. The semantics are crucial for detecting small objects, thus
exploiting shallow layers alone is not enough for small scales detection.

To address this issue, some recent works [12,13] introduce a top-down pyramid
structure. In order to pass semantics information to shallow layers, they upsample deeper
layers before combining them with lower ones. Although borrowing some semantics from
deep layers, there is only one feature pyramid engaged. We believe one single pyramid
is still not informative enough for accurate detection. Thus, we propose a multipath
model which consists of several feature pyramids in order to learn the most informative
representations. Although novel in deep object detector, the strategy of multipath is
widely applied in computer vision areas [14,15]. Inspired by Feature Fusion Single Shot
Multibox Detector (FSSD) [16], we use Feature Fusion Module (FFM) to obtain fused
features from base pyramid and obtain our multipath feature pyramids. Then we generate
our final features by sending these pyramid features to our Pyramid Aggregation Module
(PAM). At last, these informative multiscale features are fed into detection heads for final
processing. We conduct extensive experiments on challenging datasets PASCAL VOC and
MS COCO, and the results show that our algorithm is better than most stage-of-the-art
one-stage object detectors. Below are our main contributions:

• We propose a multipath fusion strategy to enhance the feature pyramid in single
shot detector;

• Our feature fusion module and pyramid aggregation module are introduced that
proves able to fuse information from base pyramid and generate our informative
pyramid efficiently;

• Extensive experiments on PASCAL VOC 2007 & 2012 and MS COCO 2015 show
our proposed Multi-Path fusion Single Shot Detector (MPSSD) can outperform other
one-stage detectors consistently.

2. Related Work

We present the related work by dividing it into three parts. We will first describe the
deep learning based object detector, followed by an introduction of single shot detector
branch. Finally, we will discuss the feature enhancement in deep detectors.

2.1. Deep Object Detector

Traditional object detection methods always rely on hand-crafted features [17–21].
Histogram of Oriented Gradients (HOG) [18] is a representative feature descriptor which
can be calculated on densely uniformed cells. Deformable Part-based Model (DPM) is
an improved version of HOG which follows the “divide and conquer” scheme to detect
an image on different parts during inference [21]. Traditional methods are limited by the
hand-crafted features and less efficient computation resources. Recently, thanks to the
great achievements of deep convolutional neural networks on computer vision [22–29],
many deep learning based detectors are proposed with superior performance compared
with conventional methods. R-CNN [2] introduces the idea of region proposals, which
are regions with high probabilities to include objects. They extract these proposals at first
and send them to CNN for further prediction. This two-stage scheme becomes popular
due to its superiority over conventional hand-crafted methods on both accuracy and speed.
Fast R-CNN [3] accelerates the training of R-CNN through a novel multitask loss to train
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the classification and bounding box regression simultaneously. To alleviate the heavy
computation cost of proposals generation process in these algorithms, faster R-CNN [4]
designs a learning-based region proposal network (RPN) to generate proposals efficiently.
R-FCN [7] adopt fully-convolutional networks, and they propose the position sensitive
RoI Pooling (PSRoI) to replace the RoI Pooling in faster R-CNN to further improving the
accuracy and efficiency. To solve the extreme foreground-background classes imbalance in
training, focal loss [30] as an variant of the standard cross entropy loss is proposed to learn
more hard examples during training.

2.2. Single Shot Detector

Apart from region proposal based detectors, another branch termed as one stage de-
tectors abandons the procedure of proposals extraction in order to achieve faster inference.
Among these methods, YOLO [5] probably presents the first one-stage detector which
applies successfully classification and bounding box regression directly on each predefined
image grid. The drop of proposal generation results in a very high speed, but the accuracy
is relatively low. YOLO’s improved versions [31,32] have focused more on this problem,
especially for small objects detection.

Another one-stage detector is called SSD [6] that exploits a multiscale fashion to
predict objects with various scales, and this improves the performance of one-stage detector
significantly. We adopt SSD as our base model since it satisfies the trade-off between speed
and accuracy. At first, adopting VGG16 as backbone, SSD modifies the last fully connected
layers into convolutional version. For an input image with size 300 × 300, they extract
layers conv4_3 with size 38 × 38 and conv_fc7 19 × 19 from backbone. Then, they add
several convolution layers conv8_2, conv9_2, conv10_2 and conv11_2 to extract features
with size 10 × 10, 5 × 5, 3 × 3 and 1 × 1 respectively. The extracted features establish
the detection pyramid in SSD, and each feature is responsible for detecting a particular
scale. The shallow layer, i.e., conv4_3, is to detect relative small objects in the image, while
the deep layer, i.e., conv9_2, is used to detect large objects. On each feature, they design a
number of defined boxes and each box is assumed to include foregrounds. The adjacent
head block of each feature is to predict the offsets and classification confidences for these
boxes. Finally, a postprocessing called non-maximum suppression (NMS) is used to refine
these predicted results.

2.3. Deep Feature Enhancement

The quality of feature representations is important for object detection. In order to
improve the accuracy of deep detectors, many recent works study how to build more
informative features. Feature Pyramid Network (FPN) [12] adopts the top-down feature
pyramid design to add lower level features with higher ones. This straightforward design
passes higher level semantics to lower levels, thus improving the detection performance
especially on small objects. Deconvolutional Single Shot Detector (DSSD) [13] applies the
same strategy into vanilla SSD architecture and archieves better performance, but their
deconvolution design would hurt the high-efficient property of the original SSD. Hyper-
Net [33] and ION [34] combine the hierarchical features into one layer before the prediction,
aiming for building the most representative feature which enjoys both local and global
information. In terms of feature enhancement in one-stage detectors, inspired by FPN, Stair-
Net [35] improves the nearest neighbor upsampling with a newly introduced top-down
feature combining module and attains even better results. RFBNet [36] proposes a novel
Receptive Field Block (RFB) with groups of dilated convolution design, and this module is
able to build high-quality representatives through enlarging the receptive field of input
features. Some other SSD based methods try to enhance the base features through fusion
of different layers with their novel fusion modules [16,37,38]. In this paper, we propose a
new multipath fusion strategy to generate multilevel feature pyramids. We illustrate that
our SSD based object detector could outperform many counterparts both qualitatively and
quantitatively on three benchmark datasets.
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3. Methodology

Before introducing our novel architecture and modules, we revisit one-stage detec-
tor SSD and its variant FSSD. We elaborate our methodology in detail and then offer
interpretations accordingly.

3.1. Deep Feature Pyramid

Single shot multibox object detector often extracts features from one backbone network
and adds several convolution layers to obtain feature pyramid. We denote the feature of the
lth layer is xl ∈ RH×W×C (where H, W, and C refer to height, width, channel respectively).
The feature pyramid in SSD for multiscale detection is defined as:

XDetection = {xk, xk+1, ..., xL}, (1)

where xl is used to predict objects within a certain range of scale. Specifically, the shallowest
feature xk responsible for detecting small objects within inputs, and larger objects are de-
tected in deeper layers. However, as the feature goes deeper, the more semantics it contains,
which could provide global information. Shallow features missing this global guidance
would lead to misdetection. Thus, SSD has poor accuracy on relatively small objects.

To resolve this problem, many investigations focus on building more informative
representations. For instance, the straightforward way is adding higher level semantics
to low level local features [13]. However, this strategy may need much heavy computa-
tion owning to the complicated element-wise operations between adjacent features. An
efficient method is proposed by FSSD [16] to fuse low level and high level information.
They concatenate several features and generate the following pyramid the same as SSD.
The whole process can be shown as below:

XDetection = {x′k, x
′
k+1, ..., x

′
L}, (2)

and each level feature is computed by:

x
′
l = F({xk, xk+1, ..., xk+n}), (3)

where F indicates the operation of feature fusion and pyramid generation, and the number
of base feature from SSD to be fused is (n + 1). We can find in (3) only base features from k
to k + n are used to generate final feature pyramid, while the rest of the base features with
rich semantics are discarded. We argue that these features can also be used to generate
final pyramid through a dedicated transformation. Thus, we design a multipath routine
to maximize the usage of base features. Firstly, we generate several groups of features
on base pyramid through feature fusion modules. Then, we pass these pyramids into
our aggregation module for final fusion. The detection results are predicted on the final
enhanced pyramid:

XDetection = {x′′k , x
′′
k+1, ..., x

′′
L}, (4)

and each feature is expressed by:

x
′′
L = A({F1({xk, xk+1, ..., xk+1+n})}, ...,

{FM({xk+M−1, xk+M, ..., xk+M+n})}),
(5)

where M is the number of pyramid paths. We apply several feature fusion modules, which
is represented by Fm and pyramid aggregation module indicated by A. More details about
these two modules can be found in Sections 3.3 and 3.4.

The generated final feature pyramid is rich in both localization and semantic infor-
mation at each level. For instance, the last layer of this pyramid is fused from same size
features in each path, and these features are enhanced through nonlinear transformations
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of different level base features. Our fusion strategy could generate features rich in local
and global clues and it is lightweight to be inserted in vanilla SSD model.

3.2. MPSSD Architecture

As shown in Figure 1, our architecture is based on single-stage design in vanilla SSD.
The backbone network we use is VGG16. Same as that in SSD, we replace last fc6 and
fc7 layers with convolution layers for a fully convolutional fashion. Other base features
are generated from the following several convolution layers. These base features are then
sent to two modules for enhancement. The enhanced feature pyramid with both local
and global information is connected with detection heads for prediction. We illustrate the
modules in the following sections.

          Image

FFMs

PAM

.

.

.

.

.

.

.

.

.

SSD base feature pyramid

Final feature pyramid

Detection 
head

Multi-path 
feature 
pyramid

Figure 1. Our model pipeline. From top to bottom, each part indicates: Single Shot Detector (SSD) base feature pyra-
mid, multipath feature pyramids generated through Feature Fusion Modules, final feature pyramid out from pyramid
aggregation module.

3.3. Feature Fusion Module

In order to better integrate various features with different scales, FSSD engages an
efficient fusion method. Inspired by the success, we also exploit this module so as to
generate our novel multipath feature pyramids. The structure is shown in Figure 2. For an
input image of size 300 × 300, we choose layers from conv_fc7, conv6_2 and conv7_2 to
fuse. Since these features are in different sizes (size of conv_fc7 is 19 × 19, conv6_2 is
10 × 10, conv7_2 is 5 × 5), smaller features conv6_2 and conv7_2 are upsampled to the
same size of conv_fc7 before fusion. We also utilize 1× 1 convolution before upsampling to
reduce the channels into a particular number, and different channel numbers are set in our
FFMs. Next, we concatenate these same size features in channel dimension. The feature



Sensors 2021, 21, 1360 6 of 16

pyramid is then generate through several 3 × 3 conv + Rectified Linear Unit (ReLU) layers.
For multipath pyramids, we repeat this process several times.

fc
7 6_2

7_2

fuse

1x1 conv 1x1 conv

upsample

1x1 conv

upsample

Base features

New features

19

19

10

10

5

5

Figure 2. Design of feature fusion module. Top are base features. Three features are selected to
be fused. These features are computed through 1 × 1 conv and upsampled into same scale and
channel. Following by concatenation to form the aggregation feature. Bottom shows the generated
new features from the aggregation.

3.4. Pyramid Aggregation Module

We devise a novel pyramid aggregation module to transform multipath pyramid
from feature fusion modules into final detection pyramid. This module is illustrated in the
bottom of Figure 1.

The whole process can be divided into two steps. Firstly, we aim to arrange these fea-
tures into a single pyramid for further detection, thus same scale features are concatenated
along the channel dimension. It is noticeable that each path pyramid has a different num-
ber of features. On the second step, we adopt attention block in Squeeze-and-Excitation
Networks (SENet) [39] to enhance the concatenated features. This attention block is im-
plemented through squeeze and excitation steps. We show its procedure in the following.
Firstly on squeeze step, the global average pooling is used to generate z ∈ RC for input
X ∈ RH×W×C:

zc =
1

H ×W

H

∑
i=1

W

∑
j=1

Xc(i, j). (6)

Then, the excitation step generates the attention activation feature s by

s = Fex(z, W) = σ(W2δ(W1z)), (7)
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where σ and δ refer to ReLU and sigmoid operation respectively, W1 ∈ RC
′×C and W2 ∈

RC×C
′
, we adopt C

′
= 1

16 C in our experiments. The last stage outputs the result X̃ ∈
RH×W×C by

X̃c = Fscale(X, sc) = sc · Xc. (8)

4. Results and Discussion

We conduct extensive experiments on three benchmarks PASCAL VOC2007, PASCAL
VOC2012, and MS COCO. As for the evaluation metrics, in VOC, predicted boxes that
have Intersection over Union (IoU) with the ground truth higher than 0.5 are defined as
positive results. In COCO, the metrics are split into different parts based on different
Intersection over Union (IoU) settings. Our implementation is based on Pytorch 0.4.0.
Backbone network VGG16 is pretrained on ImageNet [40] with modification into fully
convolutional version. As for the training settings, we keep them mostly the same as
the settings in SSD for fair comparison. On the other hand, we adopt the network initial
method from [41].

4.1. Dataset

We applied two popular datasets, PASCAL VOC and MS COCO, during training and
testing. The PASCAL VOC dataset contains images collected from the Internet. The 2007
and 2012 versions are two most used in object detection. They are categorized into 20 classes
since 2007 based on four groups: person, animal, vehicle, and indoor. MS COCO is a newly
established dataset for object detection, segmentation, and captioning. Compared with
VOC, MS COCO adopts annotations not only for the bounding box, but for each object it
is labeled with instance segmentation for more precise localization. This dataset is more
challenging and with more than 200,000 images categorized into 80 classes, and there are
more labeled objects per image compared with PASCAL VOC. Table 1 shows the detailed
statistics of these datasets. For intuitive observations, we also show some examples from
these two datasets in Figure 3.

Figure 3. Some object detection examples in Pascal VOC (upper) and MS COCO (lower).

Table 1. Dataset statistics of PASCAL Visual Object Classes (VOC) & Microsoft Common Objects in COntext (MS COCO).

Name Train Images Validation Images Test Images Category Total Annotated Objects

VOC 2007 [9] 2501 2510 4952 20 9963
VOC 2012 [9] 5717 5823 10,991 20 11,530

MS COCO 2015 [10] 82,783 41,620 125,436 80 2,500,000
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4.2. PASCAL VOC 2007

All the experiments on PASCAL VOC apply the popular split, which uses the union
of VOC2007 trainval and VOC2012 trainval as the training data, and VOC2007 test which
contains 4952 images for testing. For training on inputs with scale 300× 300, the batch size
is set at 24 on single NVIDIA 1080Ti GPU. The initial learning rate is 4× 10−3. The learning
rate decreases to 4× 10−4 at 150 epoch and to 4× 10−5 at 200 epoch. We finish our training
on 250 epoch.

Table 2 shows the results on VOC2007. Our model outperforms vanilla SSD signifi-
cantly. As for 300 × 300 inputs, by embedding our algorithm into SSD, the mAP (mean
Average Precision) improves from 77.5% to 80.3%, while increases from 79.5% to 81.8%
on 512 × 512 inputs. We also archive better performance compared with DSSD with
ResNet101 [22] as backbone. We find FSSD with similar fusion strategy but with less
features is inferior to our method. Based on the mAP, we archive 1.5% higher on 300 × 300
and 0.9% higher on 512 × 512, and this show our multipath design is effective. Compared
with top-down design, such as StairNet, the 1.5 point higher accuracy proves our architec-
ture helps to learn more powerful features. Our method also reaches better performance
compared with these two-stage algorithms.

4.3. PASCAL VOC 2012

We adopt the same training setting as that in our VOC2007 experiments to evaluate
our model on dataset VOC2012 test, which contains 10,991 images in total. From Table 3,
our method achieved the same results as the evaluation on VOC2007 dataset. For both
input resolutions, our model improves significantly from the SSD baseline. Compared
with other single-stage methods, our MPSSD reached the best performance under the
same training settings. It is noteworthy that FSSD obtained better results via adopting
additional training dataset (MS COCO). These results again show the advantages of our
proposed method.

4.4. MS COCO

We also conduct experiments on a more challenging dataset, MS COCO, for further
evaluation. For the training and validation split, we adopt trainval35k for training, minival
for validation, and test-dev 2015 for testing. For input on 300 × 300, our batch size is 16 on
single NVIDIA 1080Ti GPU. The learning rate is initialized at at 2× 10−3 with schedule
decay on epoch 90 and 120 by the factor of 10. The training ends at 150 epoch.

Shown in Table 4, the evaluation metrics are acquired through official server on
CodaLab. For 300 × 300 input images, our model outperforms SSD in a large margin,
mAP improves from 25.1% to 27.5%. Compared with FSSD, our model obtains 0.4% higher
accuracy, which shows our effectiveness. For 512 × 512 input images, our model archives
33.1% accuracy, which is 4.3% and 1.3% higher than SSD and FSSD, respectively. Our
method is only 0.1% inferior to DSSD513, and we believe this mainly because they adopt a
more powerful backbone ResNet101. Specifically, we can find ours works best on small
scale detection among these algorithms.
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Table 2. PASCAL VOC 2007 test results. Faster R-CNN (Regions with CNN features), HyperNet, Inside-Outside Net (ION) and R-FCN (Regions with Fully Convolutional Networks)
adopted inputs with minimum size 600, while StariNet kept with 300 × 300. Data from [8].

Method Backbone mAP (%) Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person

Faster [4] VGG16 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7
Faster [4] ResNet101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4

HyperNet [33] VGG16 76.3 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1
ION [34] VGG16 76.5 79.2 79.2 77.4 69.8 55.7 85.2 84.2 89.8 57.5 78.5 73.8 87.8 85.9 81.3 75.3

R-FCN [7] ResNet101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2

SSD300 [6] VGG16 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 83.9 79.4
DSSD321 [13] ResNet101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7
StairNet [35] VGG16 78.8 81.3 85.4 77.8 72.1 59.2 86.4 86.8 87.5 62.7 85.7 76.0 84.1 88.4 86.1 78.8
FSSD300 [16] VGG16 78.8 - - - - - - - - - - - - - - -

Ours300 VGG16 80.3 83.5 86.7 79.0 74.4 59.9 87.4 87.4 86.5 64.9 88.1 77.9 86.6 88.0 87.2 80.9

SSD512 [6] VGG16 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5
DSSD513 [13] ResNet101 80.0 92.1 86.6 80.3 68.7 58.2 84.3 85.0 94.6 63.3 85.9 65.6 93.0 88.5 87.8 86.4
FSSD512 [16] VGG16 80.9 - - - - - - - - - - - - - - -

Ours512 VGG16 81.8 87.9 88.4 81.7 76.7 65.1 88.5 88.8 87.9 66.9 89.0 76.9 86.1 89.9 87.4 84.6
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Table 3. PASCAL VOC 2012 test results from official evaluation server. For training data: “07+12”:
union of VOC2007 trainval and VOC2012 trainval; “07++12”: union of VOC2007 trainval and test
and VOC2012 trainval; “07+12+S” union of VOC2007 trainval and VOC2012 trainval, plus SBD
segmentation labels [42]; “07++12+COCO”: union of “07++12” and COCO trainval35k.

Method Backbone Data mAP (%)

Faster [4] VGG16 07++12 70.4
Faster [4] ResNet101 07++12 73.8

HyperNet [33] VGG16 07++12 71.4
ION [34] VGG16 07+12+S 76.4

R-FCN [7] ResNet101 07++12 77.6

SSD300 [6] VGG16 07++12 72.4
DSSD321 [13] ResNet101 07++12 76.3
StairNet [35] VGG16 07++12 76.4
FSSD300 [16] VGG16 07++12++COCO 82.0

Ours300 VGG16 07++12 77.7

SSD512 [6] VGG16 07++12 74.9
DSSD513 [13] ResNet101 07++12 80.0
FSSD512 [16] VGG16 07++12++COCO 84.2

Ours512 VGG16 07++12 80.3

Table 4. MS COCO test-dev2015 results. Note: The “+++” includes box refinement, context, and multiscale testing. Data
from [8].

Method Backbone Data Split
Avg. Precision, IoU: Avg. Precision, Area

0.5:0.95 0.5 0.75 S M L

Faster [4] VGG16 trainval 21.9 42.7 - - - -
Faster+++ [22] ResNet101 trainval 34.9 55.7 - - - -

ION [34] VGG16 train 23.6 43.2 23.6 6.4 24.1 38.3
R-FCN [7] ResNet101 trainval 29.2 51.5 - 10.3 32.4 43.3

SSD300 [6] VGG16 trainval35k 25.1 43.1 25.8 6.6 25.9 41.4
DSSD321 [13] ResNet101 trainval35k 28.0 46.1 29.2 7.4 28.1 47.6
FSSD300 [16] VGG16 trainval35k 27.1 47.7 27.8 8.7 29.2 42.2

Ours300 VGG16 trainval35k 27.5 47.8 28.5 10.2 30.2 41.0

SSD512 [6] VGG16 trainval35k 28.8 48.5 30.3 10.9 31.8 43.5
DSSD513 [13] ResNet101 trainval35k 33.2 53.3 35.2 13.0 35.4 51.1
FSSD512 [16] VGG16 trainval35k 31.8 52.8 33.5 14.2 35.1 45.0

Ours512 VGG16 trainval35k 33.1 53.8 35.1 17.1 36.0 45.7

4.5. Inference Time Analysis

We take into consideration the inference time of our algorithms because of the real-time
requirement of sensor system. To compare fairly, for 4952 images in VOC 2007 test with size
300 × 300, we average their total inference time without considering the postprocessing
(NMS) step. All the results are evaluated on one NVIDIA 1080Ti GPU with batch size set at
1, and these methods are trained under the same settings.

We analyze how our newly introduced modules affect the inference speed. The results
are shown in Figure 4. Compared with vanilla SSD, our methods could reach a much
higher accuracy with little sacrifice of inference time. In addition, in contrast to FSSD, our
multiple design of FFMs and Pyramid Aggregation Module (PAM) would not spend too
much computation with better performance. We also compared one-stage baseline Faster
RCNN, and our method could again achieve higher accuracy with much less time cost.
Since other one-stage methods are based on Faster RCNN baseline, we do not make the
comparisons for simplicity. Finally, we test how the number of Feature Fusion Module
(FFM) affects the detect time. From Figure 4, we find that one more FFM could reduce the
inference speed a little, and thus it is essential to select the optimal parameters.
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Figure 4. Comparison on detect time of each image. In the figure, 3FFMs indicates the model which
adopts 3 feature fusion modules, while 4FFMs applies 4 feature fusion modules.

4.6. Qualitative Evaluation

In this part, we show some qualitative results on VOC 2007 test. Seen from each
example in Figure 5, the result of SSD is in the upper row and ours is in the lower row.
Boxes with classification confidences higher than 0.6 are chosen and each category is labeled
on the top of box.

For the first example, the potted plant with low illumination is misdetected in SSD,
while our model could handle this illumination variance and detect it successfully. The sec-
ond example shows our model works better on detecting small objects, such as cows with
this image. The following three examples indicate our model outperforms baseline on
occlusion objects detection. For the last example, the sofa is neglected by SSD, while it
is detected by our model. This proves our learned semantics help to infer objects under
certain environment.

4.7. Ablation Study on Feature Fusion Modules

To show the effectiveness of our module, we conduct experiments on different settings
of feature fusion modules. We conduct all the experiments on VOC 2007 test with 300 × 300
inputs but we should bear in mind that a similar conclusion can also be made in the
other datasets.
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(a) example 1 (b) example 2 (c) example 3

(d) example 4 (e) example 5 (f) example 6

Figure 5. Some detection results from VOC 2007 test. Upper: SSD. Lower: Ours. See more details in Section 4.6. Adapted
from [8].

We run experiments with different numbers of FFMs and different choices of channel
numbers. As seen from Table 5, the results on the first column come from vanilla SSD.
Through adding FFMs, we could find the accuracy improves a lot progressively. The model
with three FFMs and with channel equals to 128 on third FFM reaches the highest accuracy,
and we choose this as our final model.
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Table 5. Ablation study on VOC 2007 test. In the table, ffm3_c indicates the channel number of third
feature fusion module.

1 FFM X
2 FFMs X
4 FFMs X

3 FFMs with ffm3_c = 256 X
3 FFMs with ffm3_c = 128 (final model) X

mAP(%) 77.5 79.0 79.7 80.1 79.8 80.3

4.8. Failure Cases Analysis

In this part, we analyze the shortcomings of our method. Figure 6 shows some
examples with misdetection or incorrect classification from COCO 2015 test. In Figure 6a,
the wine glass held by the man is not detected, and we conjecture that the failure is due
to the object being tilted with a certain degree, which is not the same as its normal state.
On the contrary, the wine glass held by the woman vertically is well-recognized. This case
has shown that our model is unable to detect objects with abnormal positions. In Figure 6b,
the top keyboard is classified into laptop incorrectly. Although the object “laptop” consists
of “keyboard” and “screen”, this incorrect classification is probably because the model is
incapable of learning the distinguishable features of these two objects. Finally, in Figure 6c,
the green signpost behind the man with yellow coat is misdetected. Since this object is in
abnormal aspect ratio (tall and slender), this kind of shape is hard to be recognized mainly
because of the weakness of anchor design scheme. We adopt vanilla SSD anchor design
which may not be able to cover objects with arbitrary shape, especially for objects with
large aspect ratio.

(a) (b) (c)

Figure 6. Some failure cases. The results (a–c) are all from MS COCO 2015 test.

4.9. Future Work

We consider three aspects for the future improvements. First, to improve the accuracy
of our current model, we believe further optimizing of feature pyramid could reach a
more accurate detection. Precisely speaking, the current method builds a fixed number of
pyramids, which may only optimize on low resolution inputs, i.e., 300 × 300. With rapid
improvements on camera devices, high resolution detection is highly required and thus we
need to redesign an optimal strategy. Second, to speed up the inference time of our model,
we could focus on alleviating the tedious computation on detection head. The predictions
on defined boxes are redundant due to the original design in SSD, and this hurts the
speed a great deal. Finally, we will extend the proposed model in various other domains
of intelligent systems and sensor applications. As a one-shot detector both efficiently
and accurately, the proposed multipath fusion strategy based algorithm could find its
applications extensively.
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5. Conclusions

We devise a novel SSD based one stage detector. Different from prior methods,
we propose a multipath fusion strategy to fully utilize the local and global information
from different layers. In order to aggregate this information, we first use feature fusion
modules to generate feature pyramids, followed by pyramid aggregation module to fuse
and enhance relative features. The generated pyramid is suitable for detection in multiscale
manner with rich information. Quantitative and qualitative experiments on PASCAL
VOC and MS COCO show our MPSSD outperforms vanilla SSD significantly. While
for other single stage counterparts, our method archives comparable results without
hurting efficiency.
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