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Abstract
The major transition to eusociality required the evolution of a switch to canalize develop-

ment into either a reproductive or a helper, the nature of which is currently unknown. Follow-

ing predictions from the ‘theory of facilitated variation’, we identify sex differentiation

pathways as promising candidates because of their pre-adaptation to regulating develop-

ment of complex phenotypes. We show that conserved core genes, including the juvenile

hormone-sensitive master sex differentiation gene doublesex (dsx) and a krüppel homolog
2 (kr-h2) with putative regulatory function, exhibit both sex and morph-specific expression

across life stages in the ant Cardiocondyla obscurior. We hypothesize that genes in the sex

differentiation cascade evolved perception of alternative input signals for caste differentia-

tion (i.e. environmental or genetic cues), and that their inherent switch-like and epistatic

behavior facilitated signal transfer to downstream targets, thus allowing them to control dif-

ferential development into morphological castes.

Author Summary

Division of labor into reproductive queens and helper workers in the societies of ants, bees
and wasps is achieved by phenotypic plasticity, which allows individuals to embark on dis-
crete developmental trajectories in response to variable signals. These signals can be
genetic, epigenetic or environmental, thereby resembling the extreme variation in signals
for sex determination across multicellular animals. We show that common developmental
pathways downstream of these input signals, including the conserved sex differentiation
gene doublesex, regulate sex and caste-specific phenotypic differentiation in the ant species
Cardiocondyla obscurior. Many different mechanisms of gene regulation have been impli-
cated in controlling caste-specific development in social insects but these all depend on a
higher-level genetic switch. We propose that highly conserved hub genes such as dsx,
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which can translate variable input signals into large transcription differences using inter-
mediate-level regulators, are tightly linked with the repeated evolutionary transition to
eusociality and caste polyphenism.

Introduction
The mechanisms underlying the evolution of phenotypic novelty are hotly debated [1–4]. A
fundamental question is how small genetic or epigenetic changes can produce a set of simulta-
neous, complementary phenotypic changes required to generate new adaptive trait combina-
tions. A key prediction of the ‘theory of facilitated variation’ [5] is that regulation acts on
evolutionarily conserved switch mechanisms, which then modulate expression of target loci
controlling development. This process may facilitate large and complex evolutionary steps
because it brings together new combinations of inputs (internal or external stimuli) and out-
puts (phenotypes) but does not rely on evolution of genes involved in the processes per se.
Importantly, the reliance of this mode of evolution on conserved genetic and developmental
processes increases the likelihood that the outputs will be functionally integrated and thus non-
lethal, similar to the ‘two-legged goat effect’, a striking example of phenotypic accommodation
in which developmental robustness allows the animal to ‘adapt’ to a previously unselected
bipedal lifestyle [6].

Evolution by facilitated variation may be especially important to the origin of developmental
polyphenisms in which organisms develop into two or more discrete forms, since polyphen-
isms typically result from plastic activity of regulatory genes. Additionally, it is likely that regu-
latory mechanisms controlling one set of polyphenism are pre-adapted to evolve control over
newly evolving polyphenisms, for two reasons. Firstly, such mechanisms’ pre-existing sensitivi-
ties to variable cues make it more likely that they will evolve the ability to perceive alternative
gradients of novel cues, relative to constitutively expressed genes. Secondly, their downstream
target genes already show inter-individual variability in expression, and the organism will thus
already have evolved alternative responses to this variability.

Gerhart and Kirschner [5] made predictions about the properties of the “core components”
which they hypothesize to be the principal drivers of evolutionary novelty, namely that these
components should display both robustness and adaptability, as well as exploratory behavior,
state-dependent expression and regulatory compartmentation. The sex differentiation path-
ways exhibit all these properties, making them prime candidates for facilitating the evolution
of new forms of polyphenism. Some components of the sex differentiation pathway (such as
the doublesex-mab3 (DM) gene family; [7–9]) are evolutionarily ancient and conserved across
diverse metazoa, and thus could potentially be involved in generating novel polyphenism in
multiple distantly related taxa. In insects, the sequence of sex determination has been called
hourglass-shaped [10], with highly variable input signals and downstream targets, but a small
set of conserved core regulatory genes including transformer (tra) and doublesex (dsx). double-
sex is alternatively spliced depending on the presence of an active TRA protein, and its sex-spe-
cific isoforms act as transcription factors causing sex-specific gene expression and
development through their differential effects on multiple downstream targets [11,12].

The two social insect ‘castes’—queens and workers—differ radically from one another in
their developmental environment (e.g. nutritional environment) resulting in differences in
size, fecundity, behavior and physiology. Ultimately, the evolution of caste polyphenism thus
required concerted evolution of environmental input signals and corresponding developmental
responses [13]. Eusociality has evolved at least twice within the Hymenoptera [14], but we
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presently lack a well-evidenced theory of the genetic mechanisms that allowed caste-specific
gene expression to originate. There is increasing evidence that the evolution of polyphenism in
ants, bees and wasps was achieved primarily through evolution of regulatory genes, rather than
gene content or composition [15–17], but the core components involved are largely unknown.
Here, we propose that conserved parts of the sex differentiation cascade, including the tran-
scription factor doublesex, evolved sensitivity to new environmental input signals (e.g. nutri-
tional signals), thereby triggering caste-specific gene expression that sends larvae on divergent
developmental trajectories. To test this hypothesis, we identified dsx and its female- and male-
specific isoforms, and measured their expression across life stages in the four discrete morphs
(queens, workers, winged males and wingless males) of the ant Cardiocondyla obscurior. We
find that dsx sex-specific isoforms are expressed both sex-specifically and morph-specifically in
larvae, pupae and adults. Moreover, ninety other conserved genes with sex-biased expression
showed morph-specific expression patterns during larval development, suggesting that co-
option of the genes regulating sex differentiation via sex-specific alternative splicing was
involved in the origin of morphologically distinct castes.

Results

Verification of haplodiploidy
Queens and workers produced from inter-population crosses were heterozygous for diagnostic
microsatellite markers, whereas emerging winged and wingless males as well as one sex mosaic
individual expressing both male and female characters exclusively carried the maternal alleles
(S1 Table). Although single locus complementary sex determination is unlikely because the
species regularly engages in inbreeding [18], C. obscurior appears to use standard haplodiploid
sexual reproduction.

Identification of the functional doublesex paralog of C. obscurior
The C. obscurior genome [19] has four paralogs containing the DM domain of doublesex (dsx)
(pfam00751; Cobs_01393, Cobs_07724, Cobs_09254 and Cobs_18158), representing the ances-
tral state in holometabolous insects [20]. Sex-specific splice forms are only known from one
paralog per species (e.g., in Apis [21] and Nasonia [20]), and the function of the others is
unclear. In C. obscurior, only Cobs_01393 was differentially expressed in male and female larval
RNAseq data (S2 Table). Moreover, Cobs_01393 had the highest sequence homology to func-
tional dsx in other insects (S1 Fig). Finally, we found that Cobs_01393 was located within ~79
kb of prospero; microsynteny of prospero and dsx is conserved across the Hymenoptera [20].
We thus conclude that Cobs_01393 is the functional paralog of dsx.

Sex- and morph-specific expression of dsx isoforms
We identified the full-length sequence and sex-specific isoforms of the functional paralog of dsx
using 3’ rapid amplification of cDNA ends (RACE) (S2 Fig). The first four exons are identical in
both isoforms. The DM domain (pfam00751) is located in exon 2 and the dsx dimerization
domain (pfam08828) in exon 4. The female-typical isoform dsxF contains one exon specific to
dsxF, whereas the male-typical isoform dsxM excludes that exon but includes two others that are
absent in dsxF (Fig 1A and S3 Table). This splicing pattern, with a shortened female transcript,
has been inferred for the fire ant Solenopsis invicta [22], and matches dsx sex-specific isoforms
inDrosophila melanogaster and Apis mellifera, but notNasonia vitripennis [20]. While the sex-
signaling function of dsx is conserved across highly divergent lineages, recent evidence shows
that dsx sequence evolves rapidly [23–25], causing substantial inter-specific variation in dsx
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splicing patterns. A higher level of divergence in dsx compared to other DM domain-containing
proteins in our phylogenetic analysis confirms this result (S1 Fig).

We designed primers that spanned the exon boundary of the DM domain-containing exon
(to measure the overall expression of both isoforms), as well as primers specific to both iso-
forms for use in RT-qPCR. We found significantly higher expression of the DM domain in
adult males (pooling winged males and wingless “ergatoid”males; WM and EM) compared to
females (pooling queens and workers; WO and QU) (nEM = 8, nWM = 8, nWO = 10, nQU = 10;
Welch two sample t-test: t25.7 = -8.7, p<0.001, Fig 1B). Expression of the DM-domain was sim-
ilar in queens and workers (t-test with Benjamini-Hochberg (BH) correction: p = 0.672), but
higher in winged males compared to wingless males (p = 0.009).

We then compared expression of dsxF and dsxM across all four morphs in pupae (nEM = 10,
nWM = 10, nWO = 9, nQU = 10) and adults (nEM = 7, nWM = 7, nWO = 7, nQU = 7; Fig 1C and
1D). We found morph-specific signatures of expression in both life stages for dsxF (ANOVA:
pupae: F(3,35) = 42.33, p<0.001; adults: F(3,24) = 3.75, p = 0.024) as well as for dsxM (Kruskal
Wallis rank sum test with df = 3: pupae: X2 = 30.2, p<0.001; adults: X2 = 22.6, p<0.001).
Worker pupae showed significantly higher dsxF expression than queen pupae (pairwise t-test
with BH correction: p = 0.013) and worker pupae and adults showed significantly lower dsxM

expression than queen pupae and adults, respectively (Wilcoxon Tests with BH correction:
pupae: p = 0.012; adults: p = 0.0014). Neither dsxF nor dsxM expression differed significantly
between the two male morphs (dsxF: pairwise t-test with BH correction: pupae: p = 0.480,

Fig 1. Sex- andmorph-specific expression of dsx isoforms in the antCardiocondyla obscurior. (A) Schematic illustration of the sex-specific doublesex
isoforms dsxF and dsxM. Numbers show sizes of exons and introns in bp. Arrows indicate approximate positions of primers (green: targeting both isoforms,
red/blue: specific for dsxF/dsxM, respectively; green-exon2: dsx4_for4, green-exon3: dsx4_rev1, green-exon4: 4for, red: F5rev, blue: M5rev). (B-D)
Normalized gene expression of dsxmeasured by qPCR in wingless (“ergatoid”) males (EM), winged males (WM), workers (WO) and queens (QU). (B)
Expression of the DM domain-encoding exon in adults is higher in males than in females, and higher in winged than in wingless males. (C) dsxF is
significantly higher expressed in female than in male pupae, whereas dsxM is significantly higher expressed in males than in females (D). Worker pupae
express significantly more dsxF than queen pupae, and adult workers express significantly less dsxM than adult queens (C+D). Letters indicate significant
differences. Sample sizes are given in parentheses, boxplots show the median, interquartile ranges (IQR) and 1.5 IQR.

doi:10.1371/journal.pgen.1005952.g001
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adults: p = 0.277; dsxM: pairwise Wilcoxon tests with BH correction: pupae: p = 0.481, adults:
p = 0.805). However, overall expression of both isoforms was higher in winged compared to
wingless males (Fig 1B). Our finding that dsx is differentially expressed and alternatively
spliced across morphs in pupae and adults suggests that dsxmight play a role in controlling
polyphenic development.

Tissue specificity of dsx splicing in sex mosaics confirms function
To confirm that expression of dsx isoforms corresponds with phenotypic tissue differentiation,
we used qPCR to analyze dsxM and dsxF expression in male and female-typical tissues dissected
from aberrant “sex mosaic” individuals that express both male and female characters. C.
obscurior sex mosaics are typically laterally separated into female and male halves, indicating
that intersexuality is caused by single, early developmental aberrations such as anomalous fer-
tilization events, loss of sex locus expression or inheritance of maternal effects [26–28]. The
expression of dsxF and dsxM was male-typical in male tissue and female-typical in female tissue
for all individuals except one, which had similar levels of dsxM in both tissue types (S3 Fig). As
in previous studies [29,30], we only observed individuals possessing queen and winged male
traits, or worker and wingless male traits; other trait combinations were absent (S4 Table),
implying that common mechanisms control morph differentiation in males and females.

Co-option of sex-specific isoforms in larval morph differentiation
We analyzed published RNAseq data [31] from individual early 3rd instar larvae (QU, EM,
WM,WO; n = 7 each) on an exon-level with DEXSeq [32]. We found morph-biased expression
in each of the seven dsx exons, and confirmed sex-specific expression of the DM domain, dsxF,
and dsxM in the early 3rd larval stage (S4 Fig and S5 Table). Overall, dsx expression was higher
in males than in females, and higher in wingless morphs compared to winged morphs
(EM>WM,WO> QU).

We hypothesized that other genes with sex-specific alternative splicing have been similarly
co-opted for morph differentiation. Using a conservative false discovery rate of 0.005, DEX-
Seq analysis identified 179 exons of 91 genes with sex-biased expression (S6 Table). Dsx exon
5 (= dsxF) is ranked 5th among the top 10 differentially expressed exons and exons 6 and
7 (= dsxM) are the two most significant differentially expressed exons across all samples. To
test for co-option of this set of exons into morph differentiation, we performed a hierarchical
clustering analysis based on log-transformed exon counts. Queens and workers, as well as
winged and wingless males, were clearly separated by the set of sex-biased exons, with the
exception of two male samples that clustered with the wrong male morph (bootstrap node
support: QU/WO = 75, WM/EM = 68) (Figs 2, S5 and S6 for bootstrap support for all nodes).
Because terminal switch points for morph differentiation in male and female larvae may dif-
fer [31], misclassification of two male samples (WM34 & EM29) in hierarchical clustering
may reflect higher plasticity in males compared to females at this particular developmental
stage. Accordingly, in C. obscurior 3rd instar larvae, more genes are differentially expressed
between queens and workers than between winged and wingless males [31].

To identify the sex-biased exons that most strongly affect separation between sexes and
morphs, we performed a principal component analysis (PCA) of the 179 normalized exon
counts. PC 1 separated sexes (29.9% explained variation), PC 2 (15.3%) and PC 4 (6.8%) sepa-
rated female and male morphs, respectively (Fig 3; linear discriminant analysis using Wilk’s
test on PCs 1, 2 and 4; factor sex: F(1,28) = 95.81, p< 0.001; factor morph: F(3,28) = 27.70,
p< 0.001), while PC 3 (7.7%) did not separate between sexes or morphs (linear discriminant
analysis using Wilk’s test on PC 3; factor sex: F(1,28) = 0.06, p = 0.80; factor morph: F(3,28) =
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1.81, p = 0.17). From the 179 exons, we identified those with the strongest influence on sex
(PC 1), female morph (PC 2), and male morph (PC 4) by extracting the exon loadings that fell
in either the 10% or 90% quantiles for each PC (S6 Table). Using these lists, we identified dsx
(replicating the RT-qPCR results) and seven other genes that showed both sex-specific and
morph-specific alternative splicing, of which kr-h2 has a putative transcription factor function

Fig 2. Heat map representing hierarchical clustering of normalized counts for sex-biased exons across the four morphs of the antCardiocondyla
obscurior. Females are clustered into the two castes: workers (WO, pink) and queens (QU, orange). Males also cluster into the two morphs: winged males
(WM, dark blue) and wingless males (EM, light blue), with the exception of two samples (WM34, EM29). In the heat map, yellow indicates low expression and
blue indicates high expression. Columns represent exons that exhibit sex-biased expression. As revealed by principal component analysis (PCA), exons
whose loadings fell into the 10% or 90% quantile on PC 1 and either PC 2 (separating female morphs) or PC 4 (separating male morphs) are indicated in red
and blue, respectively. dsx exons are highlighted in black (top: exon 7, middle: exon 6, bottom: exon 5). Numbers in the sample-tree show bootstrap values.

doi:10.1371/journal.pgen.1005952.g002
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(Table 1). All eight genes are conserved across the Insecta, and a Gene Ontology (GO) term
enrichment analysis with topGO [33] suggests that they serve basic metabolic and other core
functions (S7 Table).

Discussion

The role of dsx in mediating development
Our study suggests provides evidence that the sex differentiation pathway has been co-opted to
control morph-specific development, as we predicted from the theory of facilitated variation.
The major candidate gene dsx was alternatively spliced in males and females, and differentially
expressed between queens and workers and between winged and wingless males. We indepen-
dently replicated these results using qRT-PCR and RNAseq data from different individuals and
life stages. Strikingly, we found that exons showing sex-biased expression were also differen-
tially expressed between morphs, suggesting that dsx and other sex-biased genes mediate poly-
phenism within each of the sexes. The RNAseq analysis conservatively identified eight genes
that have sex-specific and morph-specific alternative splicing; all of these genes were evolution-
arily conserved and had GO terms associated with basic cellular functions. While dsx encodes
sex-specific transcription factors and co-ordinates expression of a large number of downstream
genes [34], except for a putative role of kr-h2 (see below) the other genes exhibit no transcrip-
tion factor function. We confirmed that the sex-specific isoforms of dsx correlated with tissue
type by analyzing male and female-typical tissue dissected from aberrant sex mosaic individu-
als. Finally, we reaffirmed that sex mosaics are always either hybrids of a queen and a winged
male, or a worker and a wingless male, implying common morph differentiation control mech-
anisms in both sexes, especially regarding winglessness.

Interestingly, dsx has been shown to be a central hub gene involved in generating evolution-
ary novelty and polyphenism in other taxa. In a butterfly, genetic variation in dsx is associated
with a heritable female-limited wing color/shape polymorphism, suggesting that dsx has been

Fig 3. Principal component analysis (PCA) of 179 sex-biased exons in the antCardicondyla obscurior. PC 1 separates the sexes (A+B), whereas PC
2 separates workers (WO, pink) and queens (QU, orange) (A) and PC 4 separates winged males (WM, dark blue) and wingless males (EM, light blue) (B).
Triangles show group centroids.

doi:10.1371/journal.pgen.1005952.g003

Co-option of Sex Differentiation Pathways for Morph Differentiation

PLOS Genetics | DOI:10.1371/journal.pgen.1005952 March 31, 2016 7 / 16



co-opted to control a novel, female-limited trait as well as maintaining its function in sex differ-
entiation [24]. In the genus Drosophila, new localizations of dsx are thought to have facilitated
the evolution of a novel male-limited trait (the sex combs), highlighting how the preexisting
sex determination system was co-opted to produce a new polyphenism [35]. In the dung beetle
Onthophagus taurus, RNAi experiments suggested that variation in dsx splicing mediates the
difference in the presence of horns between males and females, and also controls a nutritionally
dependent, male-limited polyphenism between large-horned and small-horned males [36]. A
subsequent study of another horned beetle showed that different dsx isoforms control the sen-
sitivity of the mandibles to juvenile hormone (JH), such that male mandibles are stimulated to
grow by JH while those of females are not [37]. Thus it appears that dsx first evolved to mediate
male-limited expression of horns by elevating the sensitivity of male horn tissue to JH [37] and
perhaps also the IGF signaling pathway [38], and was then secondarily co-opted to control a
nutrition-sensitive, male-limited polyphenism. The beetle dsx data are thus highly congruent
with the theory of facilitated variation: the male polyphenism evolved using pre-existing
genetic switches and developmental mechanisms to link a novel combination of stimuli and
outputs (here, larval nutrition and horn phenotype).

Pre- and posttranscriptional genetic tools are not yet well established in ants but there is cir-
cumstantial evidence for similar links between dsx and JH in C. obscurior. A previous experi-
ment showed that JH is involved in the development of larvae of both sexes into winged
morphs [39], and the present study found differences in dsx splicing and expression between

Table 1. Eight candidate genes that showed evidence of both sex-specific (sex) andmorph-specific (M, F) alternative splicing resulting from a prin-
ciple component analysis of genes with sex-biased expression. Reciprocal blastp confirms orthology to D.melanogaster genes.

Gene ID Alternative
splicing

D. melanogaster gene
name

BLASTP evalue/
Query/Ident

GO terms (biological process)

Cobs_01393 Exon 5,6: M doublesex (dsx) Manually
corrected gene
model

Regulation of transcription, DNA-templated, sex differentiation

Exon 7: Sex+M

Cobs_03321 Exon 1,2: F mitochondrial trifunctional
protein α (Mtpalpha)

0 / 98% / 65% Limonene catabolic process, beta-alanine metabolic process,
benzoate metabolic process, tryptophan metabolic process,
isoleucine catabolic process

Exon 4,5: Sex

Cobs_08682 Exon 1: F cyclin-dependent kinase 4
(Cdk4)

3e-102 / 55% /
51%

Protein phosphorylation, cell division, serine family amino acid
metabolic process

Exon 3: Sex+M

Cobs_04840 Exon 12,13:
Sex

condensin subunit (Cap-
D2)

0 / 72% / 30% Cell division, mitotic nuclear division, oxidation-reduction process

Exon 19,20: M

Cobs_05728 Exon 12, 13: M ribosomal protein L5
(RpL5)

2e-165 / 30% /
76%

Translation, ribosome biogenesis, mismatch repair

Exon 15,16:
Sex

Cobs_12024 Exon 3: Sex Unnamed (CG4822) 2e-152 / 67% /
41%

ATP catabolic process

Exon 6,9,10:F

Cobs_14042 Exon 1: Sex Kruppel homolog 2 (Kr-h2) 5e-74 / 90% /
48%

unknown

Exon 3,4: F

Cobs_15702 Exon 2,6: Sex abnormal spindle (asp) 1e-150 / 59% /
36%

Kinetochore organization, centrosome localization, cystoblast
division, actin filament reorganization involved in cell cycle

doi:10.1371/journal.pgen.1005952.t001
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winged and wingless morphs. Thus, we speculate that the isoforms of dsxmay mediate the
responsiveness of developing tissues to JH, as hypothesized for beetles [37]. Significant differ-
ences in feminizer expression between queens and workers in the stingless beeMelipona [40],
an upstream signal of dsx in bees [41], likewise suggests co-option of sex differentiation genes
into caste differentiation in bees. There are no homologues of csd and feminizer in ants, because
csd evolved in the Apis lineage by duplication of feminizer [42]. In ants, the closest homologue
to feminizer is transformer. In C. obscurior, we could not detect morph-specific expression of
the two transformer paralogues (tra1: Cobs_03145 and tra2: Cobs_18309), although they were
expressed in a sex-specific manner.

In addition to dsx, we found a second sex-biased transcript with putative regulatory func-
tion. This ortholog to kr-h2 was alternatively spliced in queen and worker larvae, rendering the
Kruppel homolog family a promising candidate for modulating plastic responses to the environ-
ment. kr-h2 has structural similarity to the JH-inducible transcription factor kr-h1 [43], which
is involved in the initiation of metamorphosis in other insects [44,45]. kr-h2-induced differ-
ences in developmental timing may explain why metamorphosis is delayed in queens com-
pared to workers [39], and further points to a link between sex-specific transcription, function
in transcriptional regulation, sensitivity to JH, and evolutionary co-option into within-sex
polyphenism.

An extended evo-devo framework for social insect polyphenism
We believe that the hypothesis advanced here, i.e. co-option of sex differentiation pathways
into social insect caste polyphenism, is complementary to a previous theory regarding the
proximate mechanisms underlying the origin of eusociality, termed the reproductive ground-
plan hypothesis (RGPH). Based on the ovarian ground plan hypothesis [46], the RGPH posits
that eusociality arose via changes in the regulation of pre-existing gene sets relating to repro-
ductive physiology and behavior, for example when genes involved in nest provisioning and
brood care began to be expressed in unmated, non-reproductive individuals [47]. Research on
the RGPH has stressed the importance of genes with nutrition-sensitive expression in delimit-
ing the queen and worker “genetic toolkits”, in light of evidence that caste fate is nutrition-sen-
sitive [48], that diet preference, reproduction and behavior are pleiotropically linked [49], and
that some nutrition-related genes such as IRS and TOR influence caste fate [50]. Juvenile hor-
mone, which is involved in regulatory feedback loops with some nutrition-related gene net-
works, has also been linked to caste differences [48,50]—including in our study species C.
obscurior [31,39]—as well as to within-caste polymorphisms (e.g.[51]). Our hypothesis and the
RGPH both argue that regulatory evolution caused conserved genes to acquire caste-specific
expression. Our hypothesis is distinct in that it explicitly proposes that this regulatory evolu-
tion takes place in sex differentiation genes, but leaves the targets of these genes unspecified. By
contrast, the RPGHmakes predictions about which gene networks produce caste-biased phe-
notypes (e.g. ovary development, [52]), but makes no prediction regarding the identity of the
regulatory sequences controlling these networks. Thus, the hypotheses do not overlap, and
both may be correct. Analyses of potential regulatory links between the pathways presented
here and those implicated with the RGPH will reveal to what extent they are connected.

Conclusion
Co-option of conserved genes involved primarily with sex differentiation in novel contexts
allows functionally integrated gene networks to produce discrete phenotypes. Together with
the horned beetle data reviewed above, our study suggests that core components of the sex dif-
ferentiation pathway such as dsx can produce evolutionary novelty by acting as a switch for
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nutrition and JH-sensitive growth and development. Although many mechanisms of gene reg-
ulation have been implicated in controlling caste-specific development in social insects (e.g.
methylation [53], transcription factors [31], small RNAs acting post-transcription [17], RNA
editing [54] or structural chromatin modification [55]), all of these depend on some higher-
level genetic switch to trigger differential activity. We propose that highly conserved hub genes
such as dsx, which can translate variable input signals into large transcription differences using
intermediate-level regulators, were the most basic mechanism responsible for the repeated evo-
lutionary transition to eusociality and caste polyphenism.

Material and Methods

Verification of haplodiploid genetic sex determination
Crosses between five queens of a C. obscurior population from Japan (JP) and five wingless
males of a C. obscurior population from Brazil (BR) were set up by placing sexual pupae
together with some brood and ~20 workers in plaster-filled Petri dishes. Nests were checked
twice a week, provided with water, honey and pieces of dead insects and kept at constant condi-
tions (12h 28°C light, 12h 23°C dark). We sampled emerging F1 hybrid QU, WO, EM and
WM pupae and extracted DNA from the 10 parental and 71 F1 individuals (23 EM, 3 WM, 22
QU, 22 WO, 1 GY = gynandromorph, for sample sizes per family see S1 Table). Each individ-
ual was analyzed at three variable microsatellite loci (Cobs_1.1, Cobs_8.3, Cobs_8.4; for primer
sequences see S8 Table). PCRs were performed using the BIO-X-ACT Short Mix (Bioline) and
microsatellite analyses were carried out on an ABI PRISM (Applied Biosystems).

Verification of functional dsx and its sex-specific isoforms in C. obscurior
To find the functional dsx ortholog of C. obscurior, we identified DM domain-containing pro-
teins of Drosophila melanogaster, Nasonia vitripennis, Apis mellifera, Pogonomyrmex barbatus,
Acromyrmex echinatior and C. obscurior by BLASTp and tBLASTn analyses (S9 Table) and
aligned them with MUSCLE [56]. We extracted the DM domain region from the manually cor-
rected alignment (S7 Fig) and built a phylogenetic tree in MEGA [57], applying a WAG+G+I
phylogenetic model and bootstrap resampling with 1,000 replicates (S1 Fig).

We reanalyzed previously published RNAseq data of larvae [31]. After removing adapter
sequences with cutadapt and performing quality filtration with Trimmomatic, the reads were
mapped against the reference genome with tophat2 (v2.0.8) and bowtie2 (v2.1.0) in sensitive
mode. We generated count tables with HTseq based on the Cobs1.4 official gene set and used
DESeq2 [58] to assess sex-specific expression of the four dsx paralogs following size factor
normalization.

We applied RACE (Rapid Amplification of cDNA Ends) for identification of dsx isoforms.
Total RNA was extracted from three females (QU adult, QU pupa, WO pupa) and three wing-
less males (one pupa, two adults) using the peqGOLDMicroSpin Total RNA Kit (peqlab).
Transcription to cDNA was performed with the AffinityScript Multiple Temperature cDNA
Synthesis Kit (Agilent Technologies), using the 3’ RACE Adapter GCGAGCACAGAATTAA
TACGACTCACTATAGGTTTTTTTTTTTTVN. 3’ RACE was performed in a nested PCR
using two gene-specific 3’ primers (dsx4_for4, Co_dsx_p3_for, for primer sequences see S8
Table) and the 5’ primer provided in the First Choice RLM-RACE Kit (Ambion). PCRs were
performed using the BIO-X-ACT Short Mix (Bioline) with the following protocol: 94°C (3
min), followed by 35 cycles 94°C (30 sec), 60°C (30 sec), 72°C (2 min) and a final elongation of
72°C (7 min). The products were purified with the NucleoSpin Gel and PCR Clean-up
(Macherey-Nagel) and Sanger sequenced at LGC Berlin.
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Expression of dsx and its isoforms in morphs and sex mosaics with real-
time quantitative PCR (qPCR)
Total RNA was extracted from adults (8 EM, 8 WM, 10 QU, 10 WO) using the RNeasy Plus
Mini Kit (Qiagen) and transcribed to cDNA using the AffinityScript Multiple Temperature
cDNA Synthesis Kit (Agilent Technologies). Expression of the DM domain was quantified by
qPCR using the primer pair dsx4_for4/dsx4_rev1 and normalized with two housekeeping
genes (RPS2_new, RPL32; see S8 Table for primer sequences).

We further used qPCR to measure isoform-specific dsx expression (dsxM and dsxF) in pupae
and adults of all four morphs, and in tissue from four sex mosaic pupae. We dissected the head
and thoraces of the sex mosaics (for morphological descriptions see S4 Table) laterally into
male and female halves and stored male and female tissue parts separately in RNAlater-ICE
(Ambion), resulting in one female and one male sample per individual. We extracted total
RNA from 9–10 pupae and seven adults of each of the four morphs, and from the sex mosaic
tissue using the peqGOLDMicroSpin Total RNA Kit (peqlab) including a DNA digestion step
with the peqGOLD DNase I Digest Kit (peqlab). After cDNA synthesis with iScript cDNA Syn-
thesis Kit (Bio-Rad) we quantified gene expression of dsxF and dsxM using isoform specific,
intron-spanning primers (dsxF: 4for/F5rev, dsxM: 4for/M5rev; see Fig 1A for position of prim-
ers) and two housekeeping genes (RPS2_new, Y45F10D_JO1). All qPCR reactions were per-
formed in triplicates (repeatability was uniformly high, so we took the mean of the three
replicates prior to analysis). Data analysis was carried out according to [59], using the geomet-
ric mean of the two housekeeping genes for normalization.

Testing whether sex-biased exons differ between same-sex morphs
We analyzed published RNAseq data [31] from 3rd star instar larval QU, WO, WM and EM
(n = 7 each) and assessed differential exon-specific expression with DEXSeq [32]. Raw reads
were trimmed and passed through quality filtration as described in [31] and mapped to the ref-
erence genome Cobs1.4 [19] using STAR [60]. We corrected the dsx and tra gene model using
the RACE results for dsx, and split the tra gene model into two paralogs (tra1 and tra2), as
observed in other ants [42,61,62]. For all other genes we used gene models of the Cobs1.4 offi-
cial gene set. We followed the default workflow of DEXSeq and tested for differential exon
usage between males and females based on a false discovery rate of 0.005. In the resulting 179
sex-specific exons, we tested for morph-specific exon profiles using hierarchical clustering
(implemented by the R function hclust using the ward.D2 method [63]) of pairwise Manhattan
distances between log-transformed normalized exon counts. We assessed the support for each
node in the cluster analysis using bootstrap resampling with 10,000 replicates using the pvclust
package in R 3.1.2.

Identifying genes with sex- and morph-specific exons
We conducted a PCA with normalized exons counts. We visually identified principal compo-
nents that best separated between sexes (PC 1), female morphs (PC 2) and male morphs (PC 4)
and confirmed that these components suffice to separate among sexes and morphs with linear
discriminant analysis and subsequent Wilk’s tests in R 3.1.2. Based on loadings of exons on
each component, we identified exons that fell in either 10% or 90% quantiles (S6 Table) as
those with the strongest influence on PC 1, PC 2 and PC 4. From this list, we extracted only
those genes that contained multiple exons with strong influence on both sex (PC 1) and morph
(PC 2 and/or PC 4). This yielded a list of eight candidate genes showing alternative splicing
between sexes as well as morphs (Table 1).
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(JP+BR). Sample sizes are given in parenthesis.
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S2 Table. Gene expression of the four DM-containing genes of Cardiocondyla obscurior.
We used previously published RNAseq data and analyzed expression in females vs. males with
DESeq2. Only Cobs_01393 is differentially expressed between the sexes.
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S3 Table. Gene structure of Cardiocondyla obscurior doublesex. Positions are based on
genome version Cobs1.4.
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S4 Table. Morphological description of Cardiocondyla obscurior sex-mosaics sampled dur-
ing the course of this study. Sex mosaics are classified as ergatandromorph (E, intersex worker
(WO) / ergatoid male (EM)) or gynandromorph (G, intersex queen (QU) / winged male
(WM)). Descriptions mainly focus on head morphology, in which differences are most promi-
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(DOCX)

S5 Table. Results of statistical tests for normalized count data of expression of doublesex
exons in RNAseq data. RNAseq data was used to generate per exon count tables for the cor-
rected dsx gene model for 3rd instar larvae which were analyzed with Kruskal-Wallis rank sum
tests and pairwise Wilcoxon-Test with Benjamini-Hochberg correction.
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S6 Table. Loadings of 179 exons on the first four principal components. Bold numbers indi-
cate loadings that fell in the 10% or 90% quantiles for PC1, PC2 & PC4. The 179 sex-biased
exons were extracted with DEXseq using a false discovery rate of 0.005.
(DOCX)

S7 Table. Gene Ontology (GO) terms for candidate genes associated with female or male
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S8 Table. Sequences and targets of primers used in this study, based on genome version
Cobs1.4. Primers used for 3’ Rapid amplification of cDNA ends (RACE), in real-time quantita-
titive PCR (qPCR) as housekeepers (HK) or targets (T), or for microsatellite analyses (MS).
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S9 Table. Overview of DM domain-containing proteins used for phylogenetic tree recon-
struction. Apis mellifera (Amel), Nasonia vitripennis (Nvit), Cardiocondyla obscurior (Cobs),
Acromyrmex echinatior (Aech) and Pogonomyrmex barbatus (Pbar) predicted proteins were
accessed by BLASTp and tBLASTn analyses on http://hymenopteragenome.org/. Drosophila
melanogaster (Dmel) proteins were accessed on http://flybase.org/blast/.
(DOCX)
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S1 Fig. Phylogenetic tree based on amino acid sequence of the DM domain. Four DM
domain-containing paralogous genes each of Drosophila melanogaster (Dmel), Apis mellifera
(Amel), Nasonia vitripennis (Nvit), Acromyrmex echinatior (Aech), Pogonomyrmex barbatus
(Pbar) and Cardiocondyla obscurior (Cobs) were used. S9 Table contains the complementary
sequences. For phylogenetic tree reconstruction we used MEGA, and applied a WAG+G+I
phylogenetic model and bootstrap resampling with 1,000 replicates. Numbers show bootstrap
support values.
(DOCX)

S2 Fig. Gel image of sex-specific doublesex splicing variants in Cardiocondyla obscurior.
Variants were amplified using 3’ RACE (2–4: dsxF in females, 6–8: dsxM in males).
(DOCX)

S3 Fig. Tissue-specific expression of doublesex isoforms in sex mosaics of the ant Cardio-
condyla obscurior. (A) dsxF expression is higher in female (red triangles) than male halves
(blue squares) of each individual, whereas dsxM expression is higher in male than female halves,
with one exception (#10) (B).
(DOCX)

S4 Fig. Normalized read counts of doublesex exons. RNAseq data of larvae of all four morphs
(EM = wingless, ergatoid males, WM = winged males, WO = workers, QU = queens, N = 7
each) were analyzed using DEXseq. Female castes show significant differences in expression of
exons 3 and 7, male morphs show significant differences in all exons except exon 5. Letters
indicate test statistics of pairwise Wilcoxon Tests with Benjamini-Hochberg correction for
multiple testing (see S5 Table).
(DOCX)

S5 Fig. Cluster dendrogram of larvae based on expression of 179 sex-specific exons. Red val-
ues show bootstrap probabilities (bp); blue values show approximately unbiased p-values (au)
from pvclust. Workers (WO) and queens (QU) are well separated, whereas one winged male
(WM) clusters within the wingless, ergatoid males (EM) and one wingless male clusters within
the winged males.
(DOCX)

S6 Fig. Cluster dendrogram of 179 sex-specifically expressed exons. Red values show boot-
strap probabilities (bp); blue values show approximately unbiased p-values (au) from pvclust.
(DOCX)

S7 Fig. Alignment of the amino acid sequences of the DM domain (pfam00751). DM
domain-containing proteins of Drosophila melanogaster (Dmel), Apis mellifera (Amel), Naso-
nia vitripennis (Nvit), Acromyrmex echinatior (Aech), Pogonomyrmex barbatus (Pbar) and
Cardiocondyla obscurior (Cobs) were aligned with MUSCLE.
(DOCX)

S1 Data. Contains excel files with raw Cq values, 2−ΔΔCq calculation and final R input tabs
for dsx DM domain and isoform specific qPCR and for analysis of gynandromorphs.
(ZIP)
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