
Case-Based Reasoning and
Evolutionary Computation Techniques for

FPGA programming

© Dominic E. Job

Dominic Edward Job

A thesis submitted in partial fulfillment of the
requirements of Napier University

for the degree of Doctor of Philosophy

School of Computing,
Napier University

1st Oct 2001

DECLARATION

I declare that the work described in this thesis has not formed part of a submission
for any other award, and that the work is entirely my own.

Signature

Dominic E. Job
1 sl October 2001

II

Notes on publications and contributions:

This information is given to clarify work done by individuals. All other significant work in
these papers was collaborative.

The first paper covering the authors work was Miller J., T. Kalganova, N. Lipnitskaya and
D. Job, (Miller et aI., 1999b). This paper introduced the idea of using an evolutionary
algorithm as a method of discovering new principles of design. It proposed that by
examining programs of gradually increasing scale that new principles of design may be
discovered. D. Job and J.F. Miller carried out this work. The work on Multivariate Logic
was carried out by was J.F. Miller, T. Kalganova and N. Lipnitskaya. D. Job carried out the
work on principle identification from evolved data and the reuse of evolved data and
identified principles.

The next three papers were by Dominic Job, Venky Shankararaman and Julian Miller (Job
et aI., 1999a). The first paper takes a closer look at the problems involved in Evolving
digital circuit programs from the point of view of software reuse. The problems of errors
and scaling are introduced with some preliminary results. The second paper (Job et aI.,
1999b), looked at the problems involved in identifying and reusing principles from
collections of evolved programs. The use of CBR technology to facilitate the solution to
this problem was examined. The last paper of 1999 (Job et aI., 1999c), looks at the
problems of constructing a Case-Base from evolved data with no obvious modules and
early work into error repair in evolved programs. Dominic Job was the primary author of
these papers. V. Shankararaman and J. Miller contributed expertise in CBR and Evolvable
Hardware, respectively.

The first paper of 2000 by J. F. Miller, D. Job, and V. K. Vassilev (Miller et aI., 2000a,
2000b) was published in two parts. Part 1 (Miller et aI., 2000a), gives and in depth view of
an evolutionary algorithm as an engine for discovering new designs. It discusses the idea
of identifying new, efficient, and generalisable principles of design. An in depth view of
evolving designs for arithmetic circuits is given and the background to support the
evolutionary approach to digital circuit design is given. The examination of conventional
digital circuit design techniques was primarily by J.F. Miller. Part 2 (Miller et aI., 2000b)
presents a two fold approach to principle identification and reuse. These two approaches
analyse the evolved data phenotypically and genotypically by processes of data-mining and
landscape analysis. D. Job researched data mining from collections of evolved data and
V.K. Vassilev examined the evolutionary process used to evolve the data, through
landscape analysis.

The next paper Vesselin K. Vassilev, Dominic Job and Julian F. Miller (Vassilev et aI.,
2000), was primarily the work of V.K. Vassilev. Using landscape analysis techniques V.K.
Vassilev showed that it was possible to estimate the size of the most efficient digital circuit
for several problems. All three authors contributed towards a method that guarantees that
the evolutionary algorithm produces a functionally correct circuit. This method is referred
to in this thesis as 'seeding with the conventional solution'. J.F. Miller wrote the original
software used to evolve digital circuit programs. D. Job subsequently made efficiency
improvements to this software, and made changes to this software to enable the 'seeding
with the conventional solution' and optimising for number of components experiments to
be carried out for this paper. D. Job carried out the experiments involving the examination
of the increase in time taken and computing power required by problems of increasing
scale. V.K. Vassilev wrote the software for landscape analysis and also carried out the
experiments to estimate the minimum possible size for each multiplier program examined.

The final paper covering material in this thesis was written by D. Job and V.
Shankararaman (Job and Shankararaman, 2000). This paper looks at the use of CBR

III

techniques to adapt evolved digital circuit programs to solve problems of increased scale.
D. Job developed this work. V. Shankararaman contributed to the writing of the paper and
expertise in CBR.

IV

Acknowledgements

I would like to thank Dr. Venky Shankararaman for many years of valuable support and
supervision, from my MSc years through to this PhD, even after leaving Napier, and for
introducing me to Case-Based Reasoning. Thanks also to Dr. Les Morss, my current
supervisor who took on the difficult task of supervisor when Venky left Napier in 1998. I
would like to thank Professor Terry Fogarty for his support during my time at Napier.
Thanks also to Professor David Benyon, my thesis chairman.

A great many thanks to Dr. Vesselin K. Vassilev and Dr. Julian F. Miller, with whom I
worked closely for several years during my PhD, who inspired, corrected, supported and
humored me with many hours of priceless discussions, incredible inventions, and relentless
hard work.

Thanks also to all of my friends at home and at Napier (If any of you read further than this)
for putting up with my vacant expressions and meaningless babbles for the past 4 years.

Thanks to Steve Corley at British Telecommunications for a great deal of patience, useful
feedback and the fun times at BT laboratories, Ipswich (now Adastral Park).

And last but not least, thanks to Mum and Dad for the unquestioning support throughout
my university years.

The author would like to thank British Telecommunications for supporting this research
work.

v

Contents:

NOTES ON PUBLICATIONS AND CONTRIBUTIONS: ... III

ACKNOWLEDGEMENTS ... V

ABSTRA CT .. VIII

1. INTRODUCTION ... 1

1.1. CONCLUSION .. 3

2. FROM SOFTWARE REUSE TO AUTOMATED FPGA PROGRAMMING 6

2.1. SOFfW ARE REUSE ... 6
2.1.1 Field Programmable Gate Arrays and programs .. 10

2.2 CONVENTIONAL LOGIC SyNTHESIS ... 11
2.3. EVOLUTIONARY COMPUTATION FOR PROGRAMMING FIELD PROGRAMMABLE GATE ARRAYS 13

2.3.1. Applications of Evolutionary Computation ... 19
2.3.2. Exploring the Space of All Representations with EC techniques 20

2.4 SUMMARy .. 24

3. CBR FOR SOFTWARE REUSE ... 25

3.1. CBR ... 28
3 .2. ADAPTATION AND CBR .. 34
3.3. CBR AND EC HYBRIDS .. 37

3.3.1. Phenotype to genotype mapping ... 40
3.3.2. Genotype to Phenotype mapping 44
3.3.3. Evaluation and selection of genotypes .. 44

3.4. CBR AND SR .. 44
3.5. SUMMARy ... 45

4. FPGAS AND DIGITAL CIRCUIT PROGRAM DESIGN ... 47

4.1. DIGITAL CIRCUIT EVOLUTION .. 47
4.1.1. Encoding a Digital Circuit as an Indexed Graph ... 47
4.1.2. Calculating the Fitness of a Genotype 50
4.1.3. The evolutionary Algorithm .. 51

4.2. PRACTICAL ASPECTS OF CiRCUIT IMPLEMENTATION .. 53
4.2.1. Evolved Data and Interesting Problems ... 53

4.3. SUMMARy ... 61

5. EVOLUTIONARY CBR FOR AUTOMATED DESIGN OF DIGITAL CIRCUIT
PROGRAMS ... 64

5.1. INTRODUCTION ... 64
5.2. DIGITAL CIRCUIT EVOLUTION AND MODULES ... 65
5.3. ERRORS IN EVOLVED SOLUTIONS .. 66
5.4. AN ANALYSIS OF THE EFFECTS OF FUNCTION CHOICE ... 67
5.5. SEEDING ... 71

5.5.1. Seeding with a conventional solution .. 72
5.5.2. Lock-Down 72

5.6. IDENTIFYING PRINCIPLES IN EVOLVING CiRCUITS .. 76
5.6.1. Fitness landscapes .. 77
5.6.2. A Problem of Scale and a possible Solution .. 78

5.7. SUMMARy ... 79

6. eBR AS A POTENTIAL SOLUTION TO THE REUSE PROBLEM 80

6.1. CBR AS A PRINCIPLE IDENTIFICATION TECHNOLOGy ... 80
6.2. AUTOMATIC CREATION OF A CASE-BASE FOR REUSE ... 83

6.2.1. Evaluation 84
6.2.2. Remove imperfect solutions ... 84
6.2.3. Removal of duplicate programs ... 84
6.2.4. Removal of redundant information ... 85

VI

6.2.5. Compression .. 86
6.2.6. Normalisation 86
6.2.7. Reduce and refine (remove inverter pairs) .. 86
6.2.8. Test evaluation 87
6.2.9. Calculate Behaviour ... 87
6.2.10. Remove Behavioural Duplicates ... 90
6.2.11. Behavioural reduction ... 91
6.2.12. Statistics .. 91

6.3. SMALLEST NUMBER OF GATES USED ... 91
6.4. Two INTO ONE PRINCIPLES .. 92
6.5. SIBLING PRINCIPLES .. 92
6.6. EXTRACT CHAINS .. 92
6.7. THE CASE AND INDEXING ... 92
6.8. SUMMARy ... 93

7. EXPERIMENTS TO IDENTIFY REUSABLE SUB-PROGRAMS 94

7.1. COMPARISON OF CIRCUITS OF DIFFERENT SIZES .. 98
7.2. EXTRACTING DIFFERENCES AND EXPANSIONS ... 102
7.3. IDENTIFYING A PRINCIPLE ... 104
7.4. ApPLYING AN EXTRACTED PRINCIPLE ... 104
7.5. THE WEE KEN EVOLVED FPGA PROGRAM REUSE SySTEM ... 107
7.6. SUMMARy ... 108

8. CONCLUSIONS ... 110

8.1. FUTURE WORK ... 113

REFERENCES .. 115

APPENDIX 1- SOFTWARE REUSE STRA TEGIES .. 122

APPENDIX 2 - EXAMPLE PHENOTYPES (CIRCUITS) .. 125

ApPENDIX 2.1 - EXAMPLE PIA FILES 130

APPENDIX 3 - EXAMPLE ADAPTATION .. 146

APPENDIX 4 - SCALED BEHAVIOURAL MA TCHES ... 150

APPENDIX 5 - THE 2-BIT ADDER WITH CARRY, '2-INTO-l' FREQUENCIES 153

APPENDIX 6 - AN EXAMPLE CASE ... 154

APPENDIX 7 - THE SBOX PROBLEM .. 157

APPENDIX 8 - A LIST OF PUBLICATIONS ARISING OUT OF THE RESEARCH 162

APPENDIX 9 - AN EXPLANATION OF THE ACRONYMS USED IN THIS THESIS 163

VII

Abstract

A problem in Software Reuse (SR) is to find a software component appropriate to a given

requirement. At present this is done by manual browsing through large libraries which is

very time consuming and therefore expensi ve. Further to this, if the component is not the

same as, but similar to a requirement, the component must be adapted to meet the

requirements. This browsing and adaptation requires a skilled user who can comprehend

library entries and foresee their application. It is expensive to train users and to produce

these documented libraries. The specialised software design domain, chosen in this thesis,

is that of Field Programmable Gate Arrays (FPGAs) programs. FPGAs are user

programmable microchips that have many applications including encryption and control.

This thesis is concerned with a specific technique for FGPA programming that uses

Evolutionary Computing (EC) techniques to synthesize FPGA programs.

Evolutionary Computing (EC) techniques are based on natural systems such as the life

cycle of living organisms or the formation of crystalline structures. They can generate

solutions to problems without the need for complete understanding of the problem. EC has

been used to create software programs, and can be used as a knowledge-lean approach for

generating libraries of software solutions. EC techniques produce solutions without

documentation. To automate SR it has been shown that it is essential to understand the

knowledge in the software library. In this thesis techniques for automatically documenting

EC produced solutions are illustrated. It is also helpful to understand the principles at work

in the reuse process. On examination of large collections of evolved programs it is shown

that these programs contain reusable modules. Further to this, it is shown that by studying

series of similar software components, principles of scale can be deduced. Case Based

Reasoning (CBR) is a problem solving method that reuses old solutions to solve new

problems and is an effective method of automatically reusing software libraries. These

techniques enable automated creation, documentation and reuse of a software library.

This thesis proposes that CBR is a feasible method for the reuse of EC designed FPGA

programs. It is shown that EC synthesised FPGA programs can be documented, reused,

and adapted to solve new problems, using automated CBR techniques.

VIII

1. Introduction

1. Introduction

This thesis proposes that Case-Based Reasoning (CBR) is a feasible method for the reuse

of Evolutionary Computing (EC) designed Field Programmable Gate Array (FPGA)

programs. It is shown that EC synthesised FPGA programs can be documented, reused,

and adapted to solve new problems automatically, using CBR techniques.

FPGA programs are a restricted form of software. An important objective of software

development is to enable greater productivity and quality in the development process. One

solution to the problem is to develop tools and techniques that reuse existing, established

software components, analyses, designs and documentation (Mili, 1995), providing a level

of automation.

A large cost in Software Reuse (SR) is the creation and maintenance of software libraries.

Automated generation of software artefacts and an automated generation of the

understanding of the potential reuse of these software artefacts are required to avoid having

engineers manually encode software artefacts and information on their potential for reuse

(Mili, 1995). Further to this, a retrieved software component may not exactly match the

desired specifications. In this situation a browsing tool alone is not sufficient and tools for

adapting the retrieved software component to meet the required specifications must be

provided. This work looks at automated generation and comprehension of software

artefacts and their automated reuse.

The aim of this research is to automatically generate a software library of FPGA programs

and to produce an automated method for FPGA program reuse. This aim involves the

development of a method for automatic extraction and application of principles that can be

used for SR. SR is a domain that is characterised by complex examples. The complex

system is that of software programs generated by the evolutionary computing technique,

Cartesian Genetic Programming (CGP). In the case study presented here the software is

intended for use on FPGAs. In this work CBR techniques have been applied to the

problems involved with SR in this field.

Using EC techniques to generate software programs for the FPGA is computationally

expensive. EC techniques grow prohibitively computationally expensive for larger FPGA

programs. The FPGA programs in this research are limited in their mechanics compared to

notion of traditional software programs, as they have no loops or states (memory). FPGA

programs are a limited form of program consisting of a feed forward network of primitive

1. Introduction

logic functions. In this thesis evolved FPGA programs are reused to create an initial Case­

Base to allow CBR techniques to create larger FPGA programs at reasonable

computational expense.

An automated method for FPGA program reuse could be achieved by automatically

identifying the principles of design that emerge from examination of large collections of

small FPGA programs, and applying these principles to create larger, more complex

programs.

The field of software reuse can be generally split into two areas of reuse. These two areas

are the reuse of software products and processes. In this thesis an examination of the reuse

of products generated by EC techniques is presented. It is shown that EC techniques can be

used to create a software library that can be reused by the use of CBR techniques, in an

automated fashion.

CBR is an alternative to rule-based and model-based reasoning and has several advantages:

it can provide answers to problems in poorly understood complex domains; it does not

require a domain model or domain rules; and it can provide an explanation of its reasoning.

The reuse of old solutions to solve new problems is the problem facing software reuse, as

many old solutions need to be identified and adapted to suit new problems. CBR can

provide selection, retrieval and adaptation of old software solutions to solve new problems.

Presented in this work is an investigation of CBR, EC and SR methods, which supports the

creation, understanding, reuse, and adaptation of software artefacts in automated software

programming.

This thesis shows the development of methods to enable the latest advances in CBR

automated adaptation techniques to be applied to the reuse of software Cases that have

been automatically generated by EC. These Cases have unstructured solutions and have no

obvious reuse or design components encoded into them. Techniques for automated

identification and application of reuse principles are presented as new techniques in

software reuse. This is a significant advance over existing applications of these techniques

to Cases with simple numerical atomic and linear solutions, or solutions that have a clear

design and understanding built into them.

The high level aim of this thesis is to show how CBR could be applied to EC Software

Reuse, its strengths and weaknesses. The ease with which these techniques can be applied

to new fields is a subject for future work. This aim intends to illustrate how the

2

1. Introduction

evolutionary process could help automate a reasoning process, introducing the idea of

evolutionary reasoning. It is of interest to determine how much effort may be required to

prepare such a system to work in a new software domain as this gives a measure of

portability and the generality of the technique.

In this thesis EC techniques are used to automate the synthesis programs for Field

Programmable Gate Arrays (FPGAs). In Chapter 2 section 2 it is shown that there is no

complete set of techniques for designing any FPGA program and that EC provides the

most general technique for FPGA program design. These programs are processed to create

a software library in the form of a Case-Base (CB). This CB is then subjected CBR

techniques to provide retrieval, understanding, principle extraction, adaptation and reuse.

Figure 1 shows how EC techniques are used to synthesise FPGA programs that are used to

construct a CB of programs that can be retrieved and adapted in an automated way to

produce programs that are too large to evolve by EC techniques alone. In this thesis a

combination of EC and CBR are used to solve these problems.

r::luti~ Evolvro FPGA

~ c:::> L...-llil_ign_S_OI_utI_·ons_
~
~

D
CllieB~of

Feedback
Constrain

Store Results ~ ~

1.1. Conclusion

~ ~
~
~

Figure 1. Reusing Evolved Designs using CBR.

This thesis shows that CBR techniques are a feasible way of reusing evolved FPGA

programs. Through the construction and analysis of a CB it is shown that evolved FPGA

programs are modular in design. It is argued in this thesis that by studying evolved designs

3

1. Introduction

of gradually increasing scale, it may be possible to identify new, efficient, and

generalisable principles of design. It is shown that by studying evolved designs of

gradually increasing scale, that it is possible to design new efficient programs through the

reuse of existing solutions.

There are several reasons for why this research area is novel. The software reuse domain

(evolved programs) is more complex than any domain that has had the technology of

automated principle extraction and application, applied to it before. Specifically the Cases

involved represent multi-attribute compound problems and solutions, where solutions can

be based upon a single or multiple Cases, and the attributes of the Cases are highly

interactive.

It is argued in this thesis that CBR is most suited to solving problems in the SR domain.

The complexity of the SR domain provides the CBR researcher with a suitable testing

ground for improving the adaptation in the CBR technique.

Chapter 2 introduces the subject areas involved in this thesis. A specific area SR, that of

FPGA programming, is described. Current research and practices in SR are reviewed. Next

the problem of knowledge acquisition is described to show the utility of EC to FPGA SR.

The background of EC is discussed in Chapter 2 where it is shown how EC can be a more

general design technique than conventional techniques. CBR is then introduced as a

technology that when combined with EC can provide a mechanism for automated FPGA

program reuse. The ideas behind combinations of EC and CBR are briefly described and

then a summary of the thesis is given.

The Chapter 3 discusses a hybrid CBR and EC approach that is intended to improve the

adaptation capabilities of the CBR technique. Ee provides a knowledge-lean search

facility that can produce solutions where CBR fails due to a lack of knowledge (Tanaka et

al.,1994).

In chapter 3, CBR is reviewed and examples of CBR and EC hybrids are given. Following

this, conventional methods of FPGA programming are reviewed and then the use of EC for

FPGA programming is reviewed. In Chapter 3 section 2, the ideas involved in CBR

adaptation are reviewed showing the connection between automated principal

identification, reuse and CBR adaptation. This is followed by an overview of CBR-EC

hybrids.

4

1. Introduction

In Chapter 4 details of EC and practical issues of FPGA programming are discussed.

Chapters 5, 6 and 7 discuss and examine EC and CBR techniques for automated FPGA

program design and reuse. Chapters 6 and 7 show advances made by this work in

combining EC and CBR techniques for FPGA programming. Finally Chapter 8 gives

conclusions and suggestions for future work.

5

2. From Software Reuse to automated FPGA programming

2. From Software Reuse to automated FPGA programming

This chapter discusses the problems in software reuse (SR) and the specialised domain of

FPGA SR and techniques and problems in designing FPGA programs are discussed.

Conventional techniques and an EC approach to FPGA program design are discussed.

2.1. Software Reuse

SR encompasses any technique that reuses software development work that has already

been done. When a high level of SR is achieved the costs of development decrease. Also,

due to new software being based on tried and tested software, the quality of the software is

high, yielding lower maintenance costs. The high quality of the software reduces testing

and debugging. SR has been the subject of much research for the past thirty years. As yet

no single SR approach has become standard due to the complexity of the problem. SR

itself has not become standard practice in software engineering (Krueger, 1992). Most

recent research work into SR has concentrated on organisational level issues, and on reuse

in High Level Languages, or application specific software generators. Both of these

techniques require the costly development of software libraries or knowledge bases to

operate (SEKE, 1999).

Mili (1995) emphasises the reuse of both products and processes and analyses the SR

problem from this perspective. Krueger (1992) examines each of these techniques through

their reusable "artefacts" and the way in which these artefacts are "abstracted, selected,

specialised and integrated".

The effectiveness of a reuse technique is judged via a rule-of-thumb that Krueger (1992)

calls cognitive distance and is "an intuitive gauge of the intellectual effort required to use

the technique". This judgement can then be compared to how much intellectual effort

would be required to build the system from scratch.

In general, from a domain point of view, the narrower the domain, the more successful the

reuse system; the more general the domain coverage the more reuse is sacrificed. Also, the

larger the most suitable artefact for reuse is, the more efficient the reuse becomes. It is

easier to reuse one large software artefact than it is to reuse many small artefacts that

require assembly.

All of the approaches to reuse benefit as the techniques mature through use and experience.

6

2. From Software Reuse to automated FPGA programming

SR encompasses many techniques. In general these techniques fall into one of the

categories give in Table 1. Each technique aims to reuse existing knowledge as much as

possible whilst minimising the amount of new work required to produce a satisfactory

solution (Krueger, 1992).

SR covers a very wide area, so this review is limited to a discussion of reusing software

artefacts themselves. This review does not cover organisational infrastructure or institution

wide reuse policies. The following review is aimed at providing an overview of current

reuse technologies from an individual or small team of software engineers' perspective.

Three major research papers on software reuse Krueger (1992), Mili (1995) and

Biggerstaff (1992) provide an extensive and exhaustive examination of the subject.

The Table 1 summarises the techniques that have been applied to the problem of software

reuse, as classified by Krueger (1992):

Krueger (1992) Mili (1995) Biggerstaff (1992)
High-Level Languages ~ ~
Design and Code Scavenging ~
Source Code Components ~ ~ ~
Software Schema ~ ~
Application Generators ~ ~ ~
Very High-Level Languages ~ ~ ~
Transformational Systems ~ ~ ~
Software Architectures ~

Table 1. Reuse technologies.

These categories are not clean-cut but give a general view of each area. Mili (1995)

emphasises the reuse of both products and processes, and analyses the SR problem from

this perspective. Krueger (1992) examines each of these techniques through their reusable

"artefacts" and the way in which these artefacts are "abstracted, selected, specialised and

integrated". Krueger compares the effort required to produce a solution using a SR

technique to the effort required to produce a completely new solution, as a measure of the

level of reuse. Biggerstaff (1992) views the subject from a scale and domain point of view,

that the narrower the domain, the more successful the reuse system, the more general the

domain coverage the more reuse is sacrificed. All of the approaches will benefit as the

techniques mature through use and experience.

Details of the categories of reuse technologies given in Table 1 are given in Appendix 1.

7

2. From Software Reuse to automated FPGA programming

There are several problems in making software reuse systems. The following points

highlight the difficulties involved in any SR system. Two main problems with SR are that

issues of scale have not been successfully resolved and that most effort has been put into

small details and correctness, not into improving productivity and quality (Mili, 1995).

• Knowledge acquisition, specification and evaluation

It is difficult to specify requirements, difficult to create complete libraries of code,

architectures, reuse knowledge and it is difficult to represent this complex

information.

• Domain generality trades-off with level of abstraction and performance

The level of abstraction dictates the effectiveness of the reuse system, as there is a

trade-off between horizontal (broad domain) versus vertical reuse, between defining

what has to be done and how it must be done, and between specification and

implementation.

• Finding reusable artefacts in good time

There is a lack of assistance in finding the relevant artefacts.

• User and machine understanding of the software reuse system present problems:

How much do users and machines need to know about the artefacts and reuse

system? There is a lack of assistance in understanding the reusable artefacts and

system, and most systems do not have a good system for describing the behaviour of

the reusable software artefacts to the user and machine.

• Integrating and adapting the reusable artefact

This problem is alleviated by reducing the need for integrating and adapting and by

providing assistance in integrating and adapting the reusable artefact.

• Debugging the reusable artefact:

Reducing the need for debugging by reusing fewer and larger artefacts, and by

assisting in debugging the adapted reusable artefact, including the reuse of previous

debugging experience.

• Acquisition of new knowledge as additional problems are solved.

8

2. From Software Reuse to automated FPGA programming

This enables the solving of increasingly more complex reasoning tasks through the

assessment and evaluation of new Cases and knowledge.

Applying SR to FPGAs

The best solution to the above problems would require a system that uses aspects of all of

the reviewed techniques. The system would be able to reuse software artefacts from the

code levels through to design levels and even analysis and debugging levels. The main

problem would be to create sufficient machine knowledge to enable this. It is difficult to

gauge when sufficient knowledge exists to achieve a high level of general SR. One

approach would be to use an evolutionary system that can improve iteratively with use and

experience of past problems. It would also be most beneficial if the system could justify

any of its actions to the programmer, and the reuse system is easy to understand for any

competent programmer.

A suitable system would use general and domain specific adaptation knowledge, and also

learn products and processes (Mili, 1995). Completion rules and adaptation rules (Wilke et

ai., 1996), are similar to the Adaptation specialists and strategies (Smyth, 1996), both of

which suggest a two tier approach to the adaptation problem.

Lastly, it is expected that software reuse systems will benefit with the experience of use

(Biggerstaff, 1992), but little research has been done into the evolutionary aspects of SR

systems as opposed to the evolution of software systems in general.

This thesis examines a specific area of SR in the programming of FPGAs. The FPGA

programs under examination are evolved using EC techniques, they are not designed by

humans using conventional techniques. To understand and reuse the evolved programs

CBR techniques will be applied to the problem. CBR is explained in detail in Chapter 3.

9

2. From Software Reuse to automated FPGA programming

2.1.1 Field Programmable Gate Arrays and programs

This thesis examines a specific area of software reuse in the programming of Field

Programmable Gate Arrays (FPGAs). An FPGA is a programmable microchip that takes as

a program a representation of a digital logic circuit. The FPGA takes on the digital circuit

configuration given to it as a program. FPGAs have the advantage over Gate Arrays in that

they do not have to be manufactured for a specific purpose. This greatly speeds up

research, development, testing and deployment of products. FPGAs can also be quickly

reprogrammed to fulfil a new specification, whereas non-programmable Gate Arrays

cannot (Xilinx, 1996).

FPGAs are used in a wide variety of applications from signal processing to security e.g. the

Sbox, used in automated teller machines for encryption when transmitting financial

information. FPGAs are also widely used for control systems such as robots and for

providing a flexible interface to other hardware devices e.g. PCI cards, PCMCIA devices

(Xilinx, 1997).

The FPGA programs under examination in this thesis are evolved using the EC technique

of CGP (Miller et al., 1999a), they are not designed by humans using conventional

techniques. In order to understand and reuse the evolved programs, CBR techniques have

been applied to the problem. CBR is explained in detail in Chapter 3.

An important application of this work is to produce a highly automated design method that

produces more efficient digital circuits than those generated by conventional techniques, in

terms of size i.e. the number of cells used on an FPGA, in design areas like signal

processing circuits (digital filters). It is shown that this can be achieved by using a

knowledge-lean technique from EC for designing the circuits and then CBR for

understanding and reusing them. The EC techniques used to evolve the FPGA programs

and the programs themselves are described in Chapter 4.

It is intended that this work will also overcome the limitations of CGP, in design areas like

signal processing (digital filter circuits). The EC techniques used to evolve the FPGA

programs and the programs themselves are described in Chapter 4.

10

2. From Software Reuse to automated FPGA programming

2.2 Conventional logic synthesis

Logic programming can be seen as a specific kind of software programming. Gate Arrays

are microchips that require a logic program to perform a function. FPGAs are a specific

type of gate array that is user programmable, and can be reused by reprogramming it with a

new program. Normally Gate arrays are programmed once and then discarded after use.

Conventional logic synthesis techniques have been used to partially create programs for

FPGAs. It is beyond the scope of this thesis to give a complete description of Boolean

algebra (Devadas et al., 1994; Lala, 1996). PLA files (PLA stands for programmable logic

array) commonly specify combinational logic functions. A PLA file is a truth table with

additional information about the numbers of inputs, outputs and products of the target

program, and uses the format shown in Table 2. A PLA file differs from a truth table in

that a PLA file need not have all outputs or inputs specified.

Inputs 3
Outputs 2
Products 8

000 00
001 01
010 01
011 10
100 01
101 10
110 10
111 11

Table 2. An example PLA file for a three variable function, the I-bit adder with carry.

In Table 2 the three inputs are A, B and Carry in. The two outputs are the sum and the

carry. The eight products are the eight different sets of binary numbers that can be

produced at the outputs (sum and carry) when each of the eight different sets of inputs are

presented at each of the inputs (A, B and Carry in).

The main aim of logic synthesis is to represent a logic function in the simplest manner

possible. There exists no complete method for synthesis of any logic function. A complete

method for synthesis could synthesise any logic function using any primitive logic

operations (AND, OR, NOT, EOR, NOR, NAND) and is not limited to synthesis of a

specific function or set of functions, or limited to a specific set of primitive logic

operations. The main reason is that the techniques suffer from exponential growth in the

effort required to solve a synthesis problem as the number of inputs increases. The next

11

2. From Software Reuse to automated FPGA programming

most common limitation is that most methods for logic synthesis can only use a limited set

of primitive logic gates to represent a given logic function leading to inefficient

representations for many problems.

Canonical and Two-level Boolean functions only use AND, OR and NOT to synthesise

logic functions, the ESPRESSO technique (Brayton et al., 1984) only applies to two-level

AND-OR representations. NAND-NAND and NOR-NOR representations allow any

Boolean logic function to be constructed using either NAND or NOR gates. Methods like

De Morgan's theorems can be used to convert NAND gates in expressions to OR gates, and

also NOR gates to AND. These limited sets of logic gates make these methods very

inefficient for some problems. In addition to this there are some functions e.g. The Achilles

Heel function (Brayton et al., 1984), parity functions and the n-bit multiplier that grow

exponentially in difficulty with the number of input variables.

Karnaugh maps are a graphical technique used to simplify logic functions. This method

can be used in conjunction with the Quine-McCluskey Algorithm, (Quine, 1952;

McCluskey, 1956) but both techniques are only practical for functions with small numbers

of input variables (Davio et al., 1983).

Multilevel Boolean Functions enable multilevel representation of a logic function that

allow factoring and decomposition into sub-functions. In general all of these classical

representations are impractical, as their size is exponentially dependent on the number of

inputs.

Binary decision diagrams (BDD) Lee (1959) and Akers (1978) suffer from the problem

that their size is dependent on the variable ordering. There have been many heuristics

devised to find a good ordering including evolutionary algorithms (Brace et al., 1990;

Friedman and Supowit, 1990; Fujita and Matsunaga, 1993; Drechsler et al .• 1996).

Many other types of decision diagrams have been proposed which can provide smaller

more efficient representations of Boolean functions. Again, like the classical methods.

representations like ordered Kronecker functional decision diagrams are limited to XOR

and OR gates (Drechsler et al., 1994a). Further to this it has been proven that certain

functions have Ordered-BDDs (OBDDs) that have exponential numbers of vertices as

functions of the number of input variables. The n-bit multiplier is an example of this

(Bryant, 1991) and also the Devadas function (Devadas, 1993).

12

2. From Software Reuse to automated FPGA programming

Depending on the design problem Exclusive-OR Logic including Reed-Muller form uses

Exclusive-OR gates to implement Boolean logic efficiently where the canonical Boolean

logic form does not. The worst case of this efficiency difference being the n-parity

functions which can be implemented with n - 1 XOR gates only but which require 2 n - 1 - 1

OR gates and a large number of AND gates. Evolutionary algorithms have also been used

to improve the Reed-Muller representations, (Miller et al., 1994; Drechsler et al., 1994b;

Sasao, 1993; Thomson and Miller, 1996).

It has been shown here that the conventional techniques of logic synthesis are limited by

the range of functions they are applicable to; the set of primitive logic operations that they

may use and by the number of input variables of the function to be synthesised. The next

section shows how EC can be used for logic synthesis, and how it overcomes several of the

limitations of the conventional techniques.

2.3. Evolutionary Computation for Programming Field Programmable Gate Arrays

Automated knowledge acquisition IS an important issue in SR as the creation and

maintenance of software libraries is expensive. It can be achieved by several methods.

Experts can compile knowledge manually, automated techniques like Natural Language

Processing (NLP) can extract knowledge from Natural Language documents and other

data-mining techniques can produce knowledge e.g. by Filtering or mapping legacy

databases to new uses. Many Artificial Intelligence techniques suffer from the 'knowledge

acquisition bottleneck' - the difficulty of gaining enough knowledge to enable these

technologies to work (Bramer et al., 1996). Some techniques like EC are described as

'Knowledge-lean' i.e. they require little knowledge to operate.

Rule-induction systems, like ID3, suffer from scaling-up to large numbers of rules.

Techniques such as the expanding window method reduce the scaling problem in ID3 but

cannot be guaranteed to continuously produce good decision trees. They also suffer from

the 'knowledge acquisition bottleneck', as they require carefully constructed training sets.

Other approaches e.g. PRISM (Cendrowska, 1987) generates rules instead of decision

trees, but still suffer from the above problems. Further problems with Induction methods

are that they can be over-fitted, or applied to irrelevant attributes and noise in the data can

lead to difficulties in selecting one decision against another (Bramer et al., 1996).

EC can be used as an automated knowledge acquisition technique. EC has several

advantages in Data Mining when compared to rule-based induction approaches. EC

13

2. From Software Reuse to automated FPGA programming

techniques produce a wider range of results, as they are not restricted by a search strategy,

they are naturally parallel and require less user interaction. However, EC does not

currently have the ability to directly exploit domain knowledge. EC can produce multiple

answers for one data set and EC requires a lot of computing power (Bramer et al., 1996).

As EC techniques are power hungry they are limited by the available computing power.

CBR has been used to enable EC to exploit domain knowledge, enhancing the performance

of EC (Louis et al., 1992).

Quantum theory provides an explanation for the diversity in the range of results produced

by EC Quantum theory is now accepted and it is no longer a question of correctness, but a

question of why the theory is correct - John Wheeler (McEvoy et al., 1996). The theory

contends that everything in our universe is the result of random processes at the quantum

level. The far reaching consequences of the theory can be seen as it explains e.g. the

periodic table, the stability of DNA and the operation of lasers and microchips. So this

diversity and sophistication emerges from randomness, creating a diverse environment.

Even if quantum theory is upturned as theories often are, it is clear that the effects of

random events can be traced back to the limits of what is understood about the universe

today. The mutation operator explained in Chapter 3 section 3, central to the EC technique

used in this thesis, is also a random process, in addition to this operator the concept of

'survival of the fittest' is also used in EC

EC is based on biological systems and has three important components:

• A phenotype which represents a living individual organism in a biological system or a

solution for a problem,

• A genotype, which is an encoding of the information (e.g. a Case in a Case-Base) which

is used to produce the phenotype,

• A fitness function which is used to ascertain the quality of each individual.

EC techniques have been successfully used for knowledge-lean data mining (Maher et ai.,

1996). For this reason EC techniques can be used to generate knowledge where the human

expertise is not available. EC is therefore suitable for partially automating the reasoning

process.

One method of programming a FPGA is to use EC The conventional methods are limited

automatic methods for designing digital circuits. The only fully automatic method (Quine -

14

2. From Software Reuse to automated FPGA programming

McCluskey algorithm) can only use AND, OR and NOT gates as the components for the

circuit, and this can lead to very inefficient designs, as for example it is inefficient to build

an EOR (Exclusive OR) gate from AND, OR and NOT gates.

The symbols used to represent logic gates are given in Figure 2. The truth tables defining

the function of the logic gates are given in Tables 3 and 4.

=D-
OR AND XOR MUX

Figure 2. Binary circuit symbols used to represent logic gates in circuit diagrams. Note that

the small circles that can appear on some of the inputs and outputs of these gates in figures

throughout this thesis indicate inversion (logical NOT).

A B AORB A B AANDB A B AXORB
0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1
1 1 1 1 1 1 1 1 0

(a) (b) (c)

Table 3. Truth tables defining the logical operation of (a) OR, (b) AND, (c) XOR in

Figure 2.

A B C MUXe.g.
AANDNOTCORB ANDC

0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 0
0 1 1 1
1 1 1 1

Table 4. A truth table defining the logical operation of a MUX (Figure 2). The MUX

effectively acts as a switch, the C input being used to select either A or B as an output.

These limitations mean that digital circuits which require gates other than AND, OR and

NOT, must be designed by hand. EC is an alternative automatic method of designing

15

2. From Software Reuse to automated FPGA programming

digital circuits. Further to this EC is capable of producing circuits that are more efficient

FPGA programs in terms of the number of two input gates used, than the best human­

designed equivalent. An example of this efficiency is discussed in section 4.2.1.3.

It is important to note that a CBR-EC hybrid could be capable of producing many different

kinds of programs, not just FPGA programs, this versatility is discussed in section 3.2 of

this chapter.

What has become apparent in the field of EC being used for design purposes is that design

principles, not previously known by human digital circuit designers, are being evolved by

Ee. Also, design principles that were previously known to human digital circuit designers

have been evolved. An example is the 2-bit ripple-carry adder (Figure 3), where two I-bit

carry adder circuits are ripple-chained together. The ripple-chain is so named as many I bit

carry adders can be connected together in a chain to produce an n-bit carry adder, where n

is also the number of carry adder units required. The carry from the first I bit adder

'ripples' to the next. This process continues until the last Ibit adder unit in the chain. This

ripple-chain principle of connecting two or more identical simple circuits together to solve

a large problem has also been observed in the evolved design for a 2-bit cellular multiplier.

ADD ADD

Figure 3. 2-bit ripple-carry adder.

The first problem with evolving digital circuits is the problem of scale. The examples used

in this thesis (see Appendix 2 for example PLA files) involve a small number of input and

output bits as larger numbers of bits require much larger circuits, and this gives an

exponential growth in the number of computations required to evolve a correct circuit.

Four sizes of carry-adder, from I-bit to 4-bit, were designed to show the effect that

increasing the number of input variables has on computational cost, for the EC method

discussed in detail in Chapter 4. Table 5 gives the average number of generations required

to evolve 100% functionally correct Carry-Adder units for Carry Adders of increasing

16

2. From Software Reuse to automated FPGA programming

scale. As the scale increases the number of computations required for one generation

increases as the size of the program also increases. The 4-bit Carry-Adder takes

approximately 10 times longer than a 3-bit Carry-Adder for each generation. So it is

necessary to extract the evolutionary principals from collections of the best FPGA program

solutions produced by a EC, to enable the CBR design of much larger circuits using much

larger numbers inputs and outputs. The complexity of the problem also effects the size of

the required circuit. The Sbox problem (Chapter 1 section 3) has a relatively small number

of input and output bits (PLA file) but the circuit required to solve the problem appears to

be many times the size of a multiplier circuit of a similar sized PLA file (see Appendix 2).

Carry-Adder Scale A verage number of generations
I-bit < 50 (sample 500)
2-bit 321,393 (sample 500)
3-bit 1,953,056 (sample 500)
4-bit 5,153,533 (small sample)

Table 5. An Example of the Scaling Problem in Carry-Adders. As the scale increases the

average number of generations required to achieve a 100% solution increases.

In Chapter 2 section 3.2 it is shown that an evolutionary algorithm provides a mechanism

for a process referred to in this thesis as assemble-and-test, and is an engine for

discovering new designs. These designs are often radically different from those produced

by top-down, human, rule-based approaches. Here these ideas are tested in the context of

designing digital circuits, particularly arithmetic circuits. It is shown in Chapters 6 and 7

that, by studying evolved designs of gradually increasing scale it is possible to discern

new, efficient, and generalisable principles of design.

The concept of the evolutionary algorithm to gradually improve the quality of a design has

been adopted in the field of Evolvable Hardware (Sipper et al., 1997) where the task is to

build an electronic circuit. Here the circuits are encoded in genotypes which can be simply

translated into circuits or phenotypes. They are then tested in a computer simulation or in

physical hardware. Note: the biological terminology used in the field of evolutionary

computation serves as useful terminology and as a reminder of the ideas that it is based

upon. Evolvable hardware research can be divided into two main categories: intrinsic

evolution and extrinsic evolution. Intrinsic evolution refers to an evolutionary process in

which each phenotype is built in electronic hardware and tested. Extrinsic evolution

simulates a hardware model in software.

17

2. From Software Reuse to automated FPGA programming

Each of these categories can be further sub-divided into analogue, digital or mixed

analogue-digital domains. Intrinsic evolution in the analogue domain has recently become

possible because of the availability of reconfigurable analogue devices (Motorola, 1997;

Grundy, 1994). Researchers have begun to explore the possibilities for automatic design

that reconfigurable analogue devices can facilitate (Murakawa et al., 1998; Flockton and

Sheehan, 1998; Zebulum et al., 1998; Stoica et al., 1998; Zebulum et al., 1999; Stoica et

al., 1999; Flockton and Sheehan, 1999).

Thompson (1997) used a reconfigurable digital platform, the Xilinx 6216 FPGA. In his

research Thompson produced a timer circuit that used fewer components than conventional

design mechanisms stated as the minimum. Thompson discovered that this evolved design

exploited the physical properties of the specific individual Xilinx 6216 FPGA that it had

evolved on. Further to this Thompson showed that this design was not portable to every

other Xilinx 6216, only to some, due to uncontrollable and minute physical differences

between 6216s of 'identical' human design. And so it was seen that the evolutionary

algorithm could produce circuit designs further outside the conventional design space than

previously expected, that are more efficient than those produced by conventional

techniques (Thompson et al., 1999).

Koza (1994) has pioneered the extrinsic evolution of analogue electronic circuits. By using

evolutionary algorithms (genetic programming, specifically) combined with the SPICE

simulator Koza has automatically generated circuits which are competitive with those of

human designers. Systems like the SPICE simulator require expert training to use,

otherwise the simulator produces results that do not closely represent the behaviour of the

a real physical circuit (Zebulum et al., 1998).

Thompson (1997) and Kajitani et al. (1998) have pioneered intrinsic evolution for purely

digital systems. However most researchers are content with extrinsic evolution (Miller et

al., 1997; Iba, 1997). An advantage of extrinsic digital evolution is that non platform­

specific representations of circuits can be created which are then portable to many

platforms. Extrinsic digital evolution overcomes the problem of chip-specific designs

encountered by Thompson (1997). Extrinsic evolution also permits relaxing and

constraining of the simulator parameters, which facilitates the study of the effect of

specific parameters on the evolutionary process.

This thesis is only concerned with the extrinsic evolution of digital combinational (non­

sequential) circuits. The thesis specifically examines arithmetic digital functions.

18

2. From Software Reuse to automated FPGA programming

Arithmetic functions were chosen (addition and multiplication) for several reasons:

1) They are modular in conventional construction.

2) There are well-established conventional methods of building them.

3) They are fundamental building blocks of many digital devices, and as digital filters.

Even-parity functions have been studied in addition to arithmetic functions and together

are sufficient to explore the efficiency of the techniques and the novelty of new designs.

Even-parity functions were chosen for two reasons:

1) It is well established that these functions are difficult to find by random search when the

operators are constrained to the following set: {AND, NAND, OR, NOR} (Koza, 1992).

2) They have been used extensively to test the effectiveness of various algorithms (Poli,

1999).

Together they afford a study of The Fundamental Question (TFQ):

"By evolving a series of sub-systems of increasing size, is it possible to extract the general

principle and hence discover new principles?"

It is argued that the general principle of scalable design can be automatically identified in

the case of designing arithmetic circuits.

An example of such discoverable and scalable principles can seen in the way that the

principle of the ripple-carry adder follows as a consequence of examining the best evolved

designs for the one and two-bit adders with carry.

2.3.1. Applications of Evolutionary Computation

The application of EC to FPGA programming is examined in detail in Chapter 4. A full

review of EC is beyond the scope of this thesis. EC techniques have been used for design

and optimisation in fields including airfoil design, scheduling, nuclear reactor reload

design, retail dealership relocation and oil production scheduling (Schoenauer, 1998). In

this thesis a specific field of Genetic Programming (GP) (a branch of EC), Cartesian GP, is

examined.

19

2. From Software Reuse to automated FPGA programming

2.3.2. Exploring the Space of AU Representations with EC techniques

This section shows how the use of an evolutionary algorithm implementing assemble-and­

test could be used to explore over a much larger area of design space than that possible

using a top-down rule-based design algorithm. Figure 4 shows a particular case of this for

the problem of fmding efficient representations of Boolean functions and it illustrates one

of the fundamental concepts of this thesis.

The space of all
truth tables of

n or less variables

The space of all
representations

n or less variables

Applying

Applying

Figure 4. How" assemble-and-test " reaches the space of all representations. Canonical

boolean space only covers logically correct representations with NOT, AND, OR as can

Reed-Muller, but with XOR instead of OR

The analysis in Figure 4 was developed in Miller et al., (2000a) to show how" assemble­

and-test " reaches the unknown regions of the space of all representations. Conventional

logic design begins with a precise specification in the form of a truth table, PLA file,

binary decision diagram, symbolic expression etc. The expression is manipulated by

applying canonical Boolean rules (AND, NOT, OR) or Reed-Muller algebraic rules (AND

20

2. From Software Reuse to automated FPGA programming

NOT XOR). It is not possible to escape from the space of logically correct representations.

The methods though powerful in that they can handle large numbers of input variables are

not adaptable to new logical building blocks and require a great deal of analytical work to

produce small optimisations in the representation. Assembling a function from a number of

component parts begins in the space of all representations and maps it into the space of all

designs. The evolutionary algorithm then gradually pulls the specification of the circuit

towards the target truth table (shown as a small dark ellipse). Thus the algorithm works in

a much larger space of functions many of which do not represent the desired function. It is

one of the contentions of this thesis that this is the only way to discover radically new

designs.

It has been shown that by the process of assemble-and-test that Ee can automatically

produce novel and efficient designs. The use of assemble-and-test for producing novel

designs is now commonplace in the practice of Evolvable Hardware (Sipper et al., 1997;

Thompson et al., 1999). As these evolved designs can come from a much larger design

space than conventional rule-based methods can cover, the diversity of the resultant design

solutions is greater and they are therefore much more difficult to interpret.

21

2. From Software Reuse to automated FPGA programming

Big box
of parts

Space of all designs

Small box
of parts

Figure 5. Conventional design versus evolutionary design with assemble-and-test.

It is argued that traditional design techniques take a top-down approach beginning with a

precise specification and through the application of complex rules and principles the

design is implemented. The top-down design approach is very different from the

mechanisms that produced the stars, elements and life on earth. In nature an extraordinary

diversity and sophistication in living creatures can be seen. There is evidently a natural

mechanism that produces these complex designs.

For complex organisms, e.g. for humans, a process of natural selection comes into play.

Natural selection provides the environment that allows such organisms to evolve.

Evolutionary computation is based on our understanding of this process. In evolutionary

computation the design starts as a set of instructions encoded in a manner based on what is

known of real DNA. In nature, DNA is translated into the assembly of building blocks

upon which life forms are based. In EC DNA or chromosomes, are translated into the

22

2. From Software Reuse to automated FPGA programming

phenotype by applying a model of the problem. Whether or not the organism remains in

existence and evolves further is dependent on the environment it lives in. As organisms

evolved so larger numbers of building blocks were assembled together into more complex

organisms. These organisms continue to exist if they can survive in their environment. The

environment effectively tests the organism design. EC uses a fitness function to directly

test a chromosome or organism. The chromosomes that are poor in fitness are discarded

from the evolutionary process in favour of those chromosomes of higher fitness.

This evolution in an environment process is referred to as assemble-and-test. The idea of

assemble-and-test fed back into itself produces Evolutionary Computation. Figure 5

illustrates this concept in the general space of designs. The top-down rule-based space of

designs is shown in grey as a small sub-region in the much larger space of all possible

designs. When humans discover a new design method this space can be widened to cover

more of the general space. Top-down rule-based design will always give solutions in a sub­

region of the general design space as this approach is inherently blind to alternative

solutions e.g. they will usually give the same answer for any given data set regardless of

whether or not there are other potentially better solutions.

The fact that conventional human design methods follow specific systems of rules and

principles also limits the choice of building blocks that can be used in any of the

conventional techniques. As these systems of rules and principles do not exist in natural

evolution, evolutionary computation techniques can use any of the building blocks

available.

23

2. From Software Reuse to automated FPGA programming

2.4 Summary

Software reuse aims to minimise the effort required to create a new solution by reusing

existing knowledge. FPGAs are programmable microchips that require programs that

represent digital logic circuits. Conventional techniques for creating FPGA programs are

limited in the size of the programs that they can create and by the logical components and

rules that they can use to synthesise an FPGA program. EC is an alternative method of

synthesising an FPGA program that is not restricted in the logical components it can use or

by any system of rules.

EC is capable of synthesising FPGA program designs that cannot be synthesised by any

other method. EC can explore the space of all designs, which includes the design spaces of

the conventional techniques.

By combining EC and CBR it may be possible to create larger FPGA programs than those

that can be synthesised with EC alone. Further to this, it is proposed that it may be possible

to discern new, efficient and generalisable principles of design by studying evolved

designs of gradually increasing scale for specific problem classes e.g. arithmetic

multiplication.

24

3. CBR for Software reuse

3. CBR for Software reuse

Software Reuse (SR) is a domain where knowledge is represented by software artefacts

and expert experience. These software artefacts make a good basis on which to make Cases

for a Case-Base. Expert experience can be captured by a CBR-SR system as the system is

used, thereby learning from use. Software reuse requires methods to find, retrieve, adapt

and retain existing artefacts to solve new problems (Krueger, 1992; Mili, 1995;

Biggerstaff, 1992). CBR provides methods to find, retrieve, adapt and retain Cases.

Additionally CBR is suited to domains where the domain theory is weak i.e. there are

usually no explicit or best methodes) of solving any given software problem and large

amounts of domain experiences exist e.g. software artefacts (Krueger, 1992; Mili, 1995;

Biggerstaff, 1992).

CBR cannot however solve a problem if it does not have any suitable Cases in its Case­

Base. Evolutionary Computation is a knowledge-lean problem solving technique that can

be used to evolve solutions with little knowledge about solving any given problem.

This Chapter discusses how CBR can solve problems in Software Reuse. Next, an example

of the CBR methodology is given. The example is followed by a discussion of hybrid

CBR-EC techniques to show how EC can be used to solve problems in CBR and vice

versa.

A review of current CBR literature has shown that CBR does not appear to have been

applied to a domain with the complexities of FPGA Software Reuse with automated

adaptation. CBR provides many of the facilities required by SR, and CBR mechanisms

themselves are similar to those used in SR.

The following points illustrate the application of CBR to SR:

• CBR is good in a domain where there is plenty of experience representing the domain

even if the domain theory is weak.

• CBR is a technique that can retrieve, specialise and learn with use.

25

3. CBR for Software reuse

Gibbs et ai. (1990) compares reuse of past experience and continuously evolving effort in

the legal field to the requirements of software development and maintenance. Case-Based

Reasoning is an AI technique that uses past experience and captures new experience and so

continuously learns as it is used. This comparison is made as two of CBR's primary

components are retrieval of past knowledge and specialisation of this knowledge to solve a

new problem. This means that CBR can provide a tool that can solve two of the major

problems in software reuse, finding reusable artefacts and specialising those artefacts .

• CBR facilitates knowledge acquisition

Another problem in software reuse is that of knowledge acquisition. In CBR knowledge is

stored as Cases, in a form a human would relate the knowledge to another human. This

aids the problem of user understanding of the CBR system. The CBR system is an

evolutionary one, facilitating knowledge acquisition as the system improves through use.

This also facilitates maintenance and debugging. Knowledge acquisition is also superior in

CBR over other AI techniques as it is easier to produce Cases in experience-rich domains

that lack theories, than it is to formalise rules, for example Gibbs et ai. (1990) .

• CBR supports specification, maintenance and debugging

CBR has also been used extensively to support the descriptions of new problems, and can

therefore be used to support the production of software requirements that allow the reuse

of software artefacts (Maguire et ai., 1995). CBR has been used successfully in the

retrieval of software components through the system CAROL, a Case Assisted Object

Library reuse system (Maguire et ai., 1995). Many Help-desk applications have also

successfully used CBR, which demonstrates CBR's applicability to the debugging

problem.

• CBR is scaleable through and across multiple domains and improves with use

The problem of scale and domain coverage can also be greatly alleviated by using CBR as

many different types of knowledge have been represented and used in CBR (Gibbs et al.,

1990). For example, MEDIC, a lung disease diagnosis system, CHEF, (Kolodner, 1993) a

recipe creator, CLAVIER system used to generate autoclave layouts, and the legal domain

where new Cases are developed from previous ones (Giraud-Carrier, 1996), Much work

has been put into using large numbers of Cases, indexing and retrieval methods are simple

26

3. CBR for Software reuse

to implement in a parallel or distributed fashion. It has also been shown that much of the

CBR processing can be moved away from the user-time and Cases can be pre-processed to

prepare them for use beforehand (Leake, 1996) .

• CBR can use previous experience to solve new problems

Hierarchical CBR, which supports representations of Cases at various levels of abstraction,

has shown success in the combination of Cases to provide a solution (Smyth, 1996), and so

the integration and adaptation problem in software reuse can also be tackled .

• Problems that CBR cannot solve in SR

CBR is limited by the knowledge in the case-base. If the case-base contains no knowledge

pertaining to a problem, it cannot solve that problem. This problem is where the facilities

of EC can be applied. EC techniques can produce a solution to a problem without specific

knowledge of the domain that it is searching for a solution. EC techniques achieve this by

guessing solutions, testing them to see how good they are and then recombining these

solutions and re-testing until a satisfactory solution is found.

27

3. CBR for Software reuse

3.1. CBR

~ Matching

Learning

Figure 6. The basic CBR process.

The basic Case-Based Reasoning process shown in Figure 6 begins with a Problem

description. The user describes their new problem, which could be a free text description

or a complex design incorporating textual and diagrammatic specifications or

partial/complete filling in of a template/form. For example, cases can be simple attribute­

value pairs such as:

Attribute
Food
Weight
Cooking time
Tern erature

Value
Turkey
4kg
????
????

A problem Case would have one or more attribute(s) without value(s), such as temperature

or cooking time.

In CBR terminology, a Case usually denotes a problem situation. A Case is a previously

experienced situation, which has been characterised and stored in a way that it can be

reused in the solving of future problems. An unsolved Case is the description of a new

problem to be solved. Case-based reasoning is a cyclic and integrated process of solving a

problem, learning from this experience, solving a new problem, and so on (Barletta, 1991;

Kolodner, 1996; Richter, 1998).

Problem solving is not necessarily the finding of a concrete solution to an application

problem, it may be any problem put forth by the user. For example, to justify or criticise a

solution proposed by the user, to interpret a problem situation, to generate a set of possible

28

3. CBR for Software reuse

solutions, or generate expectations in observable data are also problem solving situations

(Barletta, 1991; Kolodner, 1996; Richter, 1998).

Next, Matching (Figure 6), is the process of comparison of the problem Case with existing

Cases in the Case Base. This can be simple, word counting, numerical value matching, or

complex matching based on e.g. 00 structure. Techniques like Hierarchical Case Base

Reasoning (HCBR) (Smyth, 1996) are designed to facilitate indexing and retrieval by

organising the Cases into a hierarchy where specific Cases are indexed under more general

Cases. This means a general match can quickly be found and then further specialised Cases

are found under the general match.

Any Case-Based Reasoning system is dependent on the structure and content of its

collection of Cases, known as its Case-Base. As CBR problem solving is achieved by

retrieving previous Cases, the search and matching processes must be accurate and time

effective. As new solutions are generated they must be retained to support the learning

process, and so the integration of a new Case into the Case-Base must also be effective and

time efficient (Barletta, 1991; Kolodner, 1996; Richter, 1998).

It is clear that the primary problems in CBR are: the problem of deciding what to put in a

Case; finding an appropriate structure for describing Case contents; and deciding how the

Case memory should be indexed for effective retrieval and reuse. An additional possibility

involves the problem of integrating general domain knowledge into the Case-Base

(Barletta, 1991; Kolodner, 1996; Richter, 1998).

The next stage of CBR (Figure 6), Retrieving, involves selecting the Cases that you have

matched to the problem Case. Two example Retrieval methods are Standard retrieval that

simply selects the closest match and Adaptation Guided Retrieval (AGR) (Smyth, 1996).

AGR finds existing Cases in the Case-Base that can be best adapted to solve the problem,

rather than simply retrieving the closest Case to the problem Case.

A new problem is solved by finding a similar past Case, and reusing it in the new problem

situation. This can involve Adapting (Figure 6), the retrieved Case(s) using knowledge of

the domain and knowledge from other Cases. Adaptation can be for example: Substitution,

which in tum can be Simple, where the substituted component is independent of Case

under adaptation or Complex, where the substituted component is dependant on context

and Case under adaptation; Model guided, where a structured system is used to adapt; or

29

3. CBR for Software reuse

adaptation can be performed using domain knowledge that could be for example, Rules or

Cases (Barletta, 1991; Kolodner, 1996; Richter, 1998).

The last stage in the basic CBR model is Learning (Figure 6). Learning involves storing

the new problem-solution pair (Case) in the Case-Base. Two major advantages of CBR are

that a new Case can be added without concern for existing Cases and that CBR systems

can evolve with use, in the workplace.

The Solution (Figure 6), may be a single specific solution with explanation, if necessary

an interpretation of a problem situation or a set of possible solutions, or a list of

expectations in some observable data. The Solution is only stored if the new Case has new

information that does not already exist in the Case-Base.

Maintenance of the Case Base is necessary to remove old or unusable material, e.g. the

removal of duplicate Cases, or the removal of errors or out of date Cases. Maintenance also

involves the addition of new Cases, perhaps from another CBR system and the rebuilding

of indexes or storage structures e.g. examining the history of the systems use to spot

problem areas, such as bottlenecks and areas with insufficient Cases (Barletta, 1991;

Kolodner, 1996; Richter, 1998).

There are two main types of CBR systems, problem solving and problem interpretation.

Problem solving is used in design and planning where a solution is derived from retrieving

approximately matching Cases and adapting them to the new problem. Problem

interpretation is used, for example, in legal and diagnosis fields where new problems or

situations are explained and illuminated using closely matching Cases of previous

experiences (Barletta, 1991; Kolodner, 1996; Richter, 1998).

An example of problem solving with Cases in a Case-Base for solutions to cooking

problems follows. This example is adapted from an example of Case-Based Reasoning rule

extraction given by Hanney (1996).

30

3. CBR for Software reuse

The food cooking problem.

Attribute Value Attribute
Case Id A Case Id
Food Turkey Food
Weight 2 Weight
Cooking time 1 Cooking time
Temperature 200 Temperature
Form Whole Form

Attribute Value Attribute
Case Id C Case Id
Food Salmon Food
Weight 3 Weight
Cooking time 2 Cooking time
Temperature 250 Temperature
Form Steaks Form

Rule generation could be implemented as follows:

First find Cases that are almost identical:

» A and B, C and D

Comparison of Case A with Case B gives rule Rl:

» If Weight changes from 3 to 2

» Then reduce Cooking time by 1

Comparison of Case C with Case D gives rule R2:

» If Form changes from Whole to Steaks

» Then reduce Temperature by 50

Value
B

Turkey
3
2

200
Whole

Value
D

Salmon
3
2

300
Whole

Given a new food to evaluate Cooking time and Temperature for:

Attribute Value
Case Id X
Food Salmon
Weight 2
Cooking time ?
Temperature ?
Form Steaks

Matching: Match this problem Case X to existing Cases and rank them in order (Nearest

Neighbour matching).

Case A

CaseB

CaseC

CaseD

1 - A match with Attribute Weight = 2

O-No match

2 - A match with Attribute Food = Salmon, Form = Steaks

1 - A match with Attribute Food = Salmon

31

3. CBR for Software reuse

Retrieval: Case C is the closest match, this gives an estimated cooking time of 2 and an

estimated temperature of 250.

Adaptation: A rule exists that can cope with a weight change from 3 to 2, Rl:

If weight changes from 3 to 2 Then reduce Cooking time by 1

As Case X has a weight of 2 and Case C has a weight of 3 apply Rl to adapt Case C's

cooking time of 2 to a cooking time of 1. This value (1) could be derived from a more

complex formula, for example a formula that is scaled or proportional to the weight change

could mean that we half the Cooking time as the Cooking time has halved in the matching

cases, giving a Cooking time of 1. For simplicity more complex methods are not discussed

further in this example.

Domain knowledge could be added in the form of rules e.g. If it is known that Beef

generally cooks faster than Turkey, then add the rule R3 to the system:

If Food changes from Beef to Turkey Then increase cooking time by 1

Learning: Now there is a new Case, Case X that could be added to the Case-Base.

However this Case contains no new information that was not already in the Case-Base so it

would not be an advantage to add it to the Case-Base.

Before this particular Case is discarded it is necessary to confirm that the estimated

cooking time and temperature are good estimates. For example, if this food is cooked for

the estimated time of 1, but during cooking it required an extra time of 0.5, then Case X is

updated to reflect this. In this event Case X would be added to the Case Base as it now

contains new information

Then a new rule could be generated, R4:

If Food changes from Turkey to Salmon Then increase cooking time by 0.5

CBR can also make use of Cases of failed examples. An unsuccessful cooking experience

could be used to avoid repeating the same mistake.

32

3. CBR for Software reuse

These rules are not guaranteed to be applicable in every situation. These rules are based on

the differences between two very similar Cases, not on every Case that may contain

information on a particular rule. These rules rely on their context to an extent, therefore it

is important that they are derived from Cases that closely match the problem Case, to

increase the likelihood that the rule will be applicable. The idea of principle identification

and reuse extends the idea of generating rules from Cases, explored in Chapter 5.

CBR differs from other Artificial Intelligence-Machine Learning technologies in several

ways. It does not rely solely on general knowledge of a problem domain, or making

associations along generalised relationships between problem descriptors and conclusions.

CBR is able to utilise the specific knowledge of previously experienced, concrete problem

situations (Cases). And lastly, a new problem is solved by finding a similar past Case, and

reusing it in the new problem situation (Barletta, 1991; Kolodner, 1996; Richter, 1998).

Some of the organisations using CBR include: the US government for automated text

analysis; IDM for customer support e.g. Help Desks; VISA International for quality

assurance; British Telecom for design and fault diagnosis; British Airways for aircraft

design & maintenance; NASA for process planning e.g. Autoclave layout plans for high

performance aircraft parts, and for decision support. Many Companies provide or use CBR

software, services and commercially available CBR tools. These companies include:

AknoSoft; Cognitive Systems Inc; Inference Corporation; Tecinno; Daimler-Benz; BMW.

A review of CBR-SR literature shows that there is a close relationship between the

applications that CBR has been used for and the Software Reuse problem. The following

points cover most of the significant areas pertinent to the EC - CBR software reuse

problem:

• CBR can be used as an adaptive reuse system in poorly understood domains, see

CLAVIER in Kolodner (1993).

• A successful software reuse system must be able to evolve and learn from use. CBR

evolves and learns from use (Mili, 1995).

• CBR is suitable for performing adaptation in complex systems with high variance in

problems e.g. software reuse (Krueger, 1992).

33

3. CBR for Software reuse

• Cases are easier to create than e.g. rule bases, and provide better justification than rules,

alleviating the Knowledge acquisition problem.

• Knowledge of failed solution attempts can be instructive. Failures can be learned to

enable the CBR system to avoid them in the future (Kolodner, 1993).

• Knowledge should be represented at several levels in CBR and SR (Mili, 1995). Several

researchers have achieved results by splitting knowledge into two main types: Domain

specific adaptation knowledge e.g. Specialists (Smyth, 1996), specialisation (Bergmann et

al., 1996), rules (Leake, 1993) and General adaptation knowledge e.g. Strategies (Smyth,

1996; Leake, 1993), Generalisation (Bergmann et al., 1996). Further knowledge that may

be included is knowledge of software engineering techniques, an extension of Strategies

(Smyth, 1996).

An important approach to CBR adaptation that appears to be arising from present research

is to reduce the amount of adaptation that is done. This is achieved through approaches like

Adaptation Guided Retrieval (Smyth, 1996). These approaches reduce the number of steps

taken to adapt a Case. This means that fewer possibilities for introducing errors or failures

occurring, increasing the probability of a successful solution being produced.

Learning is the best way to successfully deal with adaptation as it enhances the quality and

flexibility of the process (Fuchs et al., 1996). This is particularly true for more complex

domains where it is difficult to assess the scope of the knowledge coverage, and therefore

learning is essential as it facilitates knowledge acquisition.

3.2. Adaptation and CBR

The recent work on CBR adaptation, relevant to this project, has been carried out by

Hanney (1996), Smyth (1996) and Giraud-Carrier (1996). Hanney (1996) presents two

algorithms, the first for automatically learning adaptation rules from Cases and the second

for automatically applying these adaptation rules to new problems. Giraud-Carrier (1996)

and Hanney (1996) have both achieved automated rule extraction and adaptation in simple

domains. To date the algorithms in Hanney (1996) have not been applied to a domain as

complex as software reuse proposed in this project. Smyth (1996) has achieved adaptation

in structured software, but has not automated adaptation rule extraction and application.

This is an area of focus of this Ph.D. Hanney (1996) has applied the above mentioned

34

3. CBR for Software reuse

algorithms to Cases with numerical atomic solutions and achieved good results. This thesis

shows how these ideas can work with complex structured solutions.

An example based on Case-Based rule extraction methods devised in Hanney (1996) was

given in Chapter 3 section 1.

Using ideas similar to the algorithms given by Hanney (1996), it may be possible to find

principles of FPGA program design that can be extracted from sets of example adaptations

from the field of FPGA programming. It is shown in Chapters 5, 6 and 7 that the scaling

problem might be overcome using the combinations of EC and CBR techniques. The aim

here is to select the most generally applicable of the extracted principles and to produce a

mechanism for handling the complexity of the task. The primary method for handling the

complexity seen in current research is to use multiple levels of abstraction over the

knowledge being used, and to decompose and recompose the problem Cases (Louis, 1993;

Smyth 1996). This involves creating and using abstract representations for the code

artefacts themselves as well as using general and specific adaptation principles.

It has been shown that where possible, domain knowledge should be used to create initial

rules and Cases, where this knowledge is simple to encode as Cases (Hanney, 1996). This

is partly the case in FPGAs and digital circuit design, as domain knowledge is weak and it

has been shown that existing rules and methods are not as useful as EC. Therefore it is of

interest to determine the mechanisms by which EC produces solutions.

This thesis investigates the following questions:

• How much human intervention is necessary, what advantages does this technology have?

• How Scaleable is the approach?

• How portable (to other domains) is the approach?

• Do EC techniques improve the performance or technology?

CBR-SR involves all types of classification knowledge, target elaboration knowledge, role

substitution knowledge, sub-goaling knowledge and goal interaction knowledge (Hanney,

1996).

Measuring how the size of the CB affects rule production is an important exercise to

determine if rules can be generated, and then to reduce the case-base. If this can be done

35

3. eBR for Software reuse

then this could facilitate adaptation in domains where only a small number of Cases are

available, if these rules are domain independent enough to be applicable to the new

domain (Hanney, 1996).

Hanney (1996) aims to reduce the CB size and recalculating the rules from the reduced

CB. If the principles are portable to many domains this could drastically reduce the

knowledge elicitation bottleneck for implementing new domains. A number of Cases

versus number of rules experiment can be done to determine how many rules are general

to software reuse and how many rules can be reused. If there are a small number of rules

for a large number of cases then the knowledge acquisition bottleneck is reduced for new

domains with few Cases.

Hanney (1996) shows the correlation between the number of Cases and the error rate, but

recalculates the rule base for the new reduced CB each time, and does not measure the

effect of keeping the same rule base, which is important for re-scaling to a large scale

system. As a point of efficiency a Case may be removed from the CB if it provides no

additional information. Once rules have been extracted it may be useful to examine which

Cases contribute to the CB and rule base to refine the domain coverage.

It has been shown that adaptation seems to have a far stronger relationship to Case Base

size than retrieval does (Hanney, 1996). This finding may be domain specific.

Another possible exercise is to determine what rules can be created from exact matching

features in highly similar Cases, e.g. where the independent rules have been extracted,

what dependency information is there? This is already handled partly by the fact that Cases

are matched in the first place i.e. their context is similar. Context can be imposed by

adding to a rule that it can only be applied if the subject Case for adaptation matches the

context (the bits that made the original Cases that the rules were extracted from similar or

matched).

Hanney (1996) says that in the property domain the rule set can be reduced without

significant drop in accuracy, because combinations of rules can be used to solve target

problems where no single rule exists. Hanney (1996) uses two different methods of

selecting Cases from which to generate rules and concludes that generalisation does not

improve adaptation accuracy in the test domains.

The experimental approach of Hanney (1996) is as follows:

36

3. CBR for Software reuse

• Rule generalisation (not abstraction)

• Different methods of selecting Case pairs for comparison

• Rules with short antecedents versus long antecedents

• Case based size versus prediction accuracy

• Methods of adaptation rule learning

• Guidelines for the method of adaptation rule learning

In this thesis the experimental approach examines principle identification, a more general

version of rule extraction, and methods of comparing case pairs.

EC techniques often produce solutions that do not have obvious components. As they do

not have a mechanism for exploiting domain knowledge, they require additional

mechanisms to produce an automated reasoning method. One technology that uses domain

knowledge is Case-Based Reasoning (CBR). CBR has the advantage that it can use domain

knowledge in the form of problem-solution pairs, called Cases; no additional domain

knowledge e.g. rules, models are required, so EC results can be fed directly into a CBR

system without user interaction. This simple knowledge capture mechanism produces a

highly automated process.

CBR is a problem solving method that reuses old solutions to solve new problems. CBR is

an alternative to rule-based and model-based reasoning as rules or models do not need to

be explicitly defined. CBR has several advantages: it can provide answers to problems in

poorly understood complex domains; it does not require a domain model, domain rules, or

general domain knowledge; and it can provide an explanation of its reasoning.

The main advantage CBR has over other techniques is that its knowledge is represented by

Cases that represent specific experiences of experts working in any given domain. This

means that expert knowledge can be entered almost directly into the Case-Base, no rules or

models are required. Further to this new Cases can be added to the Case-Base simply,

without the need for updating of the existing data in the Case-Base. So knowledge

acquisition, updating and maintenance are simpler than other techniques.

3.3. CBR and EC Hybrids

CBR-EC hybrids are systems that combine CBR and EC methods to solve problems, either

technology being used to support the other. Existing CBR-EC hybrid systems are reviewed

37

3. CBR for Software reuse

to examine the ways in which these technologies have been combined and applied. The

most significant work in this area is that of knowledge-lean techniques. This enables the

generation of knowledge where little or no knowledge exists for the target domain.

This section examines systems that combine CBR and EC to solve problems in each

technology. Some of the following techniques can be applied to software reuse by

increasing the capabilities of CBR technology using Ee.

There are several possible combinations of CBR and Ee. Firstly CBR can be used to

initialise the EC population before the execution of the EC (Figure 7). In this procedure

CBR is used to select potentially useful data to create a starting population for EC instead

of the EC using the conventional technique of random initialisation of the starting

population (Maher et ai., 1996, Tanaka et ai., 1994). CBR selects a cases from its case­

base that provide the best solutions to the EC problem by evaluation the EC fitness

function (problem to be solved) and these cases become the starting population for the Ee.

Problem Solution
description

\

I I Initialise Case-Based Evolutionary .. Matching ..
Reasoning ... Population Computation

Cases -

Figure 7. Use of CBR for initialising an EC population based on a problem description.

Louis (1993) combines CBR with EC for digital circuit design. In Louis (1993) CBR is

used to monitor the EC during the EC process, and extract and re-inject potentially useful

genetic information (Figure 8). This method keeps track of the successes and failures of

these injections of material into the EC population, and the context in which these

occurred. This information is then used to improve the accuracy of the extraction and re­

injection process, thereby improving the performance of the Ee.

38

3. CBR for Software reuse

Case-Based
Reasoning

Evolutionary Computation

Inject and

Extract

Figure 8. CBR interacts with the population of the EC during evolution.

In Figure 8 cases or individuals can be injected or extracted from and to the Case-Base to

improve the EC population. Individuals from a population intended to solve a single

problem can then be stored for use on different problems. This reuse can be implemented

by an inject-and-test mechanism so that the effectiveness of injecting a given individual

into a population for a particular problem can be stored as part of that individuals' Case.

The system can then learn when it is best to inject which Cases as individuals into the

population for a new problem. This form of hybrid has been investigated by Louis (1993).

A solution to the problem of knowledge acquisition is to use a 'knowledge-lean' method of

solution generation, e.g. the use of EC Algorithms for the sub-task of adaptation (Maher et

al., 1996), (see Figure 9). EC algorithms require less knowledge than other AI approaches

(see Chapter 1 section 4) to produce an acceptable result. Maher et al. (1996) uses a simple

EC Algorithm to provide this solution.

Matching

Learning Retrieving

Evolve to adapt Jr--l~

Figure 9. Using EC as a knowledge lean method of achieving adaptation in CBR.

39

3. CBR for Software reuse

EC techniques are 'knowledge lean' because they can produce new solutions from small

bits of solutions without the need for knowledge of how to generate a solution in that

particular domain. The only knowledge that is required is that of the fitness function,

which gives the evolving population a target to compete for.

To use EC for engineering design problems the representation of the object to be designed

(phenotype) must be converted into a genotype representation. The traditional EC

operators of crossover and mutation can then manipulate this genotype representation. The

result of this is a population of individuals that represent solutions to design problems.

Each of these individuals then becomes the basis of a Case in the CBR system. The Case

design is discussed in Chapter 6. In this way Cases in a Case Base Reasoning system can

be represented as individuals in an evolving population. The EC process proceeds as in

Figure 8.

Another hybrid approach is to use EC to create a Case-Base for CBR. Figure 10. gives an

example of how CBR could be integrated with EC in this way. This last hybrid is the

approach taken in this thesis. In this approach EC is used as a knowledge-lean technique to

provide CBR with a Case-Base, similar to the use of EC as a knowledge-lean adaptation

mechanism as seen in Maher et al. (1996).

I Problem I

J Evolutionary Evolved Initial Case-Based ----1 Solution I Computation Population ... Case-Base ... Reasoning

J~

.... Feedback ,
"'" mformatIOn

Figure 10. EC is used to generate an initial Case-Base for CBR.

In Figure 10 Information gained from the CBR process can be fed back into the EC to

improve its capabilities. For example, an analysis of the initial case-base could show that

the evolved solutions are modular, and these modules could then be used by EC to reduce

the processing time required to design solutions.

3.3.1. Phenotype to genotype mapping

40

3. CBR for Software reuse

The following example of a phenotype to genotype mapping is based on the representation

used in Miller et al. (1998a). The phenotype in this example is a digital logic circuit

(Figure 11). This phenotype implements the truth table given in Table 6 and is represented

in a Case by the genotype shown in Table 7. This representation is a simplification of that

used in this thesis.

The digital circuit in Figure 11 is an example of the phenotype of an FPGA program

created by BC:

3
P3

8
0 Al
2 PI

A2 P4
2 BI

0 Al P2

3 B2

Figure 11. An evolved 2-bit multiplier (a Phenotype) (Miller et al., 1998a).

The unusual features shown in Figure 11 are examples of why the evolved solutions are

difficult to understand. In the conventional 2-bit multiplier PI would is not used as an

input to P3 and P2 is not used as an input to P4. These features illustrate some

unconventional design properties.

Inputs Outputs Input Output
Binary Binary Decimal Decimal
0000 0000 OxO 0

: : : :
1111 1001 3x3 9

Table 6. lllustrated truth table used for evaluation of potential solutions.

The genotype representation of the phenotype shown in Figure 11 is obtained as follows.

The genotype (Table 7) is an ordered array of cells, each containing 3 integers, followed by

cells with a single integer that represent output connections (Table 7). The structure of an

individual cell is represented as a series of three integers. The first two integers in each cell

represent the cell inputs and the third represents the cell function, see Table 7. Truth tables

represent the functionality of a program, (see the shaded area of Table 6). Here, the third

41

3. CBR for Software reuse

integers in Table 7 (in bold), can be seen inside the gates in Figure 11. This number

represents the gate types: -logical A AND B, A AND NOT B and A XOR B, (6, 7 and 10

respectively). The shaded cells in Table 7 represent the cell numbers from which outputs

PI-P4 (Figure 11) are taken.

The phenotype in Example one is represented by the genotype in Table 7:

1 - 3 - 6 0-2-6 1-2-6 0-3 - 6
4-5-7 6 - 7 -10 6-9-7 5

9 8 10

Table 7. Genotype for an evolved 2-bit multiplier, an example of a program for a FPGA

(Miller et al., 1997).

This ordered array of cells in Table 7. is indexed left to right, top to bottom, the inputs

from the truth table are numbered as indices 0 to 3 (as there are 4 inputs, see Figure 11).

So, this genotype in Table 7. has cells with indices 4 to 15 (see the numbers outside each

gate in Figure 11), where cells 11 to 14 (Shaded) represent output connections and cell 15

is unused. These output connections are represented by PI to P4 respectively, in Figure 11.

Table 8 illustrates the meaning of the gate types used in Table 7. The above genotype is a

slight simplification of that used by Miller et al. (1998a) as the gates in this circuit only

have two inputs, not three as in Miller's representation, so the third input in each cell is

irrelevant in this case, and has been removed from this example.

Representation Logical statement
6 aANDb
7 a AND NOT b
10 a Exclusive-OR b

Table 8. Example Adapted from Miller et al. (1997).

The numbers 6,7 and 10 are fixed for each logical gate type and are assigned their values

from a simple table giving a number for each operator. These numbers are taken from a

larger set of logical statements available in Miller's representation.

Many evolutionary computation techniques implement two operators, crossover and

mutation. Each of these operators is used to change genotypes, in order that they might

improve in some desired quality.

42

3. CBR for Software reuse

Crossover is a matter of taking two genotypes, selecting one or more crossover points, and

swapping over the resulting sections of the genotypes to create a new genotype. Here is a

simplified example using two cells:

11 I 3 I 6 I
"Crossover point

and

With a single crossover point, produce two more genotypes:

And

Mutation

Mutation is a simple operation, an element is chosen at random and that element is

changed to a randomly chosen number from the allowed set of numbers, e.g. the following

cell (The first cell in the genotype in Table 7).

mutated could become:

So the original cell representing an AND gate (the number 6) connected to inputs 1 and 3

(see the top-left gate in Figure 11) has now been mutated to an AND gate with inputs 2 and

3. The mutation could equally have been the second input or the function itself, e.g. the

AND gate (the number 6) could be mutated to an 'a AND NOT b' (gate number 7, Table

8).

Crossover and mutation are used to randomly change the cells of the genotype. In this way

the functionality of the FPGA program can be changed. The new genotype is then

evaluated (see section 3.3.3) to determine whether or not it has improved.

Miller's representation, algorithm and the constraints involved in the operation of the EC

technique employed are discussed further in Chapter 4.

43

3. CBR for Software reuse

3.3.2. Genotype to Phenotype mapping

Genotype to Phenotype mapping is the same as the above but in the opposite direction, so a

program (phenotype) is created from the genotype e.g. the genotype in Table 7. would be

used to create the example program in Figure 11.

3.3.3. Evaluation and selection of genotypes

There are several ways in which evaluation of the genotype can be achieved. The simplest

method is to compare the phenotype solution to the required solution. In the FPGAs the

functionality of the phenotype solution is compared to a truth table, e.g. a truth table

representing 4-bit multiplication (see appendix 2.1), allowing different circuits (different

structure and behaviour) to be compared. The functionality, behaviour and structure are

explained in Chapter 6.

In the case of FPGAs an attempt is made to evolve a circuit that has the same functionality

as the conventional solution, but one that is much more efficient, either in size, speed or

both. The genotype shown above in Table 7, is an example of a software program used to

program an FPGA.

There may be more than one evaluation criterion. In addition to functional correctness,

size, speed and cost may also be of interest. Additional evaluation criteria can be applied

during the evolutionary process or after the first evaluation criterion of functionality has

been met. A discussion of these additional costs is presented in section 4.2.1.5.

A genotype is selected if it is evaluated to be better or equivalent to the genotype before

mutation and crossover. The selected genotype can then be subjected to mutation and

crossover, potentially improving it further. The processes of crossover, mutation,

evaluation and selection are repeated until a solution is achieved. Chapter 4 further

explains in detail how standard EC ideas are applied to the problem of logic design in this

thesis.

3.4. CBR and SR

The SR domain is complex, as there are potentially an infinite number of software

problems and solutions. Approaches to SR range from application specific generators to

general programming languages e.g. Pascal, C++, KL-1. These reuse systems themselves

44

3. CBR for Software reuse

can vary greatly in their underlying model e.g. sequential, parallel. The complexity of the

SR domain means that it is difficult to build a model of the domain. This is where CBR,

specifically representing knowledge as Cases wins over other Knowledge Based (KB)

techniques. This is also where EC can be used, as it is possible that not all of the

knowledge required to solve any problem will be in the Case-Base, a knowledge lean

approach to the problem is required. EC has been successfully applied to CBR systems to

facilitate knowledge acquisition in this manner (Maher et ai., 1996; Tanaka et ai., 1994;

Lenart et ai., 1994).

A goal of this work is automated CBR adaptation. Hanney (1996) and Kolodner (1993)

give taxonomies of adaptation transformations and adaptation methods, as discussed in

Chapter 3 section 2. These taxonomies are general although not every application uses

every adaptation technique, many do not perform any adaptation. The forefront of

adaptation is in being able to automatically extract rules from Cases, and apply them to

new Cases. Hanney (1996) gives two algorithms to achieve this, but they are simple and do

not cover the more intricate aspects of adaptation. Table 9 shows the areas of importance

to this project and which research has covered these areas.

Researcher System Adaptation Hierarchical Software Automated Complexity
Name Name Case-Base reuse rule of Case

structures extraction
&
application

Hanney ..J ..J Simple
Smyth Deja Vu ..J ..J ..J Structured
Wilkie INRECA ..J ..J 00

Structures
Giraud- FLARE ..J ..J Nominal
Carrier and linear
Fuchs ..J Avoidance
Fox Leake ROBBIE ..J Simple
Bergmann PARIS ..J ..J Limited

Table 9. CBR-SR and CBR adaptation techniques research.

These categories are not clean-cut but give a general view of each area.

3.5. Summary

A hybrid CBR-EC system gives an opportunity to develop a new method of designing

digital circuits. EC is necessary, as the existing methods for digital circuit design are

45

3. CBR for Software reuse

insufficient. CBR techniques of matching, retrieving, adapting and learning are required in

conjunction with EC techniques, as EC alone cannot produce large digital circuits due to

the limits of computational power. CBR can overcome this EC limitation by extracting and

applying the principles involved in the EC solutions. CBR is able to repair solutions to a

given problem using parts of other solutions that are better, or perfect.

Hunt (1995) has observed that solutions that have the same quality can be very different in

structure, behaviour, and/or functionality. This provides a good source of knowledge for

CBR principle extraction.

This study of CBR applied to EC-produced software programs for the FPGA shows that

CBR can be used to solve the problems of understanding, scaling and optimising solutions

using all of the information gained from many individuals in the population.

In Chapter 4 the encoding of a digital circuit into a genotype and the characteristics of the

evolutionary algorithm are given. This evolutionary algorithm designs fully functional

circuits. This evolved data is discussed in Chapter 4. Chapter 5 discusses the techniques of

landscape analysis developed by Vassilev et al. (1997a1b, 1999a/b, and 2000) that show

the principles by which an effective evolutionary search may be conducted. Vassilev's

examination of the evolutionary search illustrates the processes involved.

The process of discerning design principles from the evolved data can be seen as a form of

data mining and is an examination of the products of the evolutionary process. This

examination can make recommendations about useful components and sub-structures that

feed back into the evolutionary algorithm and so improve the evolvability of the circuits in

question and enhance our ability to understand the new designs. Further to this it is shown

how this data mining can overcome the scaling problem in an automated manner.

Chapter 4 shows how much human intervention is required in EC, namely the definition of

the PLA file, the target geometry and a parameter to tell the evolutionary algorithm when

to stop. Chapter 4 shows that EC techniques alone can out perform the conventional

techniques and also cope with different classes of problems within the domain of FPGA

programming. Chapter 5 examines the scalability of the evolutionary algorithm alone,

showing limitations in the method.

46

4. FPGAs and digital circuit program design

4. FPGAs and digital circuit program design

This chapter discusses an EC technique for digital circuit program design. It shows how

EC can be used for designing FPGA programs and then discusses the practical aspects of

program implementation.

4.1. Digital Circuit Evolution

The Section 4.1.1 shows how a FPGA program can be represented as a graph for Cartesian

Genetic Programming (CGP). Then an evaluation method is given followed by a

description of the CGP algorithm.

4.1.1. Encoding a Digital Circuit as an Indexed Graph

The encoding of a digital combinational circuit into a genotype, which is presented in this

thesis, is based on earlier models that can be found in Miller et ai. (1997); Miller and

Thomson (1998b); Miller and Thomson (1998a). A digital logic circuit is encoded as a

more general graph based computational model called CGP (Miller, 1999a). CGP is a

graph-based form of genetic programming. Other graph based genetic programming forms

are Parallel Distributed GP (PDGP) proposed by Poli (1997) and Parallel Algorithm

Discovery and Orchestration (PADO) (Teller and Veloso, 1995). CGP represents a data­

flow graph (Banzhaf et ai., 1998).

In CGP a digital electronic circuit is encoded as an instance of a program in which

functional nodes are connected together to perform any given computational task on binary

data. A CGP program is a rectangular array of nodes. These nodes each represent an

operation on the data at its inputs or on the outputs of other nodes. Each node may

implement any convenient programming construct (e.g. if, switch, OR, x etc.).

The genotype is a linear string of integers and is characterised by three parameters: the

number of columns, the number of rows, and levels-back. The first two are the dimensions

of the rectangular array and the last is a parameter that controls the internal connectivity. It

determines how many columns of cells to the left of a particular cell may have their

outputs connected to the inputs of that cell. This parameter is also applied to the program

outputs. The cells and outputs are maximally connectable when the number of rows is one

47

4. FPGAs and digital circuit program design

and levels-back is equal to the number of columns. Minimal connectivity occurs when the

number of columns is one and levels-back is 1.

In this thesis a particular form of CGP is adopted in which all cells are assumed to have

three inputs and one output and all cell connections are feed-forward. In general CGP the

cells may have multiple inputs and outputs and the numbers of these would be encoded

into the genotype for the cell. Also in general, primary outputs could be treated as clocked

inputs thus allowing the CGP programs to possess internal states. The genotype and the

mapping process of genotype to phenotype are illustrated in Figure 12 (a and b).

inputs

1 @ G G
---, r outputs

_I 1
-I C rrf" _I 1 ___ J

@ @ @
---,

_I 1
-I C rrf" _I 2 ___ J

@ @ @
---,

_I 1
-I C rrf" _I 3 ___ J

----- at ----_.
---, ---, ---, ---,

_I 1 _I 1 _I 1 _I 1
-I C r -I C r -I C r -I C", _I n1 _I n2 _I n3 _I n ___ J ___ J ___ J ___ J

J

cells ~ Internal connections

(a)

cells --""1,~-----:r.f ---------------~

A

~ logic function

I
I
I outputs

L...===== input connections
(b)

Figure 12. The genotype-phenotype mapping: (a) an n x m geometry of logic cells with nj

inputs and no outputs, and (b) the genotype structure of the array.

48

4. FPGAs and digital circuit program design

Letter Function Letter Function
0 0 10 aEORb
1 1 11 aEORNOTb
2 a 12 aORb
3 b 13 aORNOTb
4 NOTa 14 NOTaORb
5 NOTb 15 NOTaORNOTb
6 aANDb 16 a AND NOT c OR b AND c
7 a AND NOT b 17 a AND NOTc OR NOT bAND c
8 NOTaANDb 18 NOT a AND NOTc OR b AND c
9 NOT a AND NOT b 19 NOT a AND NOT c OR NOT bAND c

Table 10. Available cell functions.

Functions 16 to 19 in Table 10 are all binary multiplexers with various inputs inverted. The

multiplexer (MUX) implements a simple IF-THEN statement (Le. IF c = 0 THEN a ELSE

b). It is important to note that multiplexers can be considered to be atomic both formally

and from an implementation point of view. They are atomic in that they are universal logic

modules (Chen and Hurst, 1982) so that they can be used to represent any logic function.

They are atomic in that some modern FPGAs now use a multiplexer based architecture so

that all two input gates are synthesised with multiplexers. The specific FPGA that is used

as a reference in this thesis, the Xilinx XC6216, uses a multiplexer based architecture and

supports only the cell functions given in Table 10. It should be noted that several functions

include inverters within the same cell, see functions 7, 8, 9, 11, 13, 14, 15 and the

multiplexers 16 to 19.

The genotype is a list of connections and cell functions shown in Figure 12 b. In general

the connections can be thought of as addresses in data, thus provided the function set is

appropriate for a particular data type, the genotype is data independent.

It can be seen in Table 10 that only functions 16 to 19 use all three inputs and that some

functions are actually constants with an output independent of the inputs (letters 0 and 1).

Thus the genotype can contain completely redundant genes. This type of redundancy is

referred to as input redundancy. Cells may also not have their outputs connected in the

operating circuit between the primary inputs and outputs; these collections of genes (3

connections, 1 function) are also redundant. This is called cell redundancy. Another form

of redundancy called functional redundancy is more typical of genetic programming. This

is where a number of cells implement a function that can be implemented using fewer

cells. A specific instance of this kind of redundancy is behavioural redundancy, where two

or more cells implement identical behaviour.

49

4. FPGAs and digital circuit program design

It is important to emphasize that cell outputs may be re-used and when a program is used

to evolve the genotypes the amount of re-use of sub-calculations is determined entirely

automatically.

4.1.2. Calculating the Fitness of a Genotype

All functions are specified by a truth table. The fitness of a genotype is the number of

correct output bits. Thus for the one-bit adder with carry seen in Figure 13 there are 8 input

cases and 4 output cases, each output case having 2 bits, this gives 16 output bits, shown in

Table 11 (Cout and S in shade). A fully correct circuit would have fitness 16. In practice

the fitness of a circuit is calculated using 32-bit arithmetic. Thus the binary data is handled

as 32-bit unsigned integers and all the operations defined in Table 10 are 32-bit operations.

A truth table with 3 input variables is then represented as a single line (Poli, 1999). For

example the truth table of the I-bit adder with carry e.g. Table 11 is represented as Inputs:

170224 240 Outputs: 232 150.

1-----------
1

A

B

~------------~c:> s

Figure 13. One-bit adder with carry.

A B Cin Cout S (sum)
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1 0 1
I 0 1 1 0
0 1 1 1 0
1 1 1 1 1

Table 11. Truth table for a I-bit carry adder.

50

4. FPGAs and digital circuit program design

Each column of a Truth table for the required function is divided into 32-bit sections,

which are then represented by 32-bit integers. In Table 11 there are only 8 bits in each

column, so each column is one 32-bit integer. For example, the first bit in column A

becomes the least significant bit in the 32-bit binary number, the last bit being the most

significant bit. In this case column A is now represented by a 32-bit number (170 decimal),

where only the first 8-bits of the 32-bit number are used. Then for example the AND

operation using 32-bit operands would be 170 AND 224 the result of which is then

compared to the required output 232, effectively evaluating 32 binary input - output

combinations simultaneously.

Additional fitness functions can be added to further refine the evolutionary design. For

example, to reduce the size of the program the number of gates in each program can be

counted and a score based on the number of gates used could be combined with the main

fitness function that favours functional correctness.

This size scoring fitness function is used in this work to optimise the size of programs with

respect to the number of gates used. Once 100% functional correctness has been evolved

the number of gates in the evolving program is used to give an additional score to the score

for 100% functional correctness. During evolution with this additional fitness function

many of the attempts to improve (mutate) a program fail, producing a less than 100%

functional solution. In this case the failed programs are discarded. Only programs that

remain 100% functionally correct after a mutation receive an additional score for their size.

This ensures that smaller programs achieve a higher fitness score and so the sizes of the

programs are minimised.

4.1.3. The evolutionary Algorithm

The evolutionary algorithm, developed by Miller, used to produce all of the evolved circuit

designs in this thesis is a simple form of (1 + A)-ES evolutionary strategy (Schwefel, 1981;

Back et ai., 1991), in this work A is 4. (1 +A) represents the size of the population in the ES

strategy and A can be any integer from 0 upwards. Experiments that were reported in

Miller (1999a) indicated the efficiency of this approach. The algorithm is as follows:

Step 1 Randomly initialises a population of genotypes *.
Step 2 Evaluate fitness of genotypes. Stop if criterion reached.

Step 3 Copy a fittest genotype into new population.

51

4. FPGAs and digital circuit program design

Step 4 Fill remaining places in population by mutated versions of fittest genotype *.

Step 5 Replace old population by new and return to step2.

* Subject to constraints that ensure the feed-forward nature of circuits and levels-back

connectivity.

The mutation rate was defined as a percentage of the genes in a single genotype that were

to be randomly mutated *. It was necessary to adjust the mutation rate if the genotype

length was too small, to prevent zero mutation. In this work a mutation rate which resulted

in 3 genes being changed in each genotype was found to be suitable. A suitable population

size was found previously by experiment using a two-bit multiplier circuit. The

experimental parameters were as follows:

• Number of rows - 1

• Number of columns - 10

• Levels-back - 10

• Mutation rate - 8% (3 genes)

• Number of generations - up to 150,000

• Gates used - 6, 7, 10 (Table 10.).

When the number of rows is 1 and the number of columns equals the 'levels-back' the

FPGA program is minimally constrained with respect to the connectivity between gates

and between program inputs and outputs and gates. This means that any gate can use any

program input or gate that precedes it in the genotype as an input, and can connect it's

output to the input of any gate that follows it in the genotype, or a program output. In

contrast, if the number of rows was equal to 2 and the number of columns equal to 5 then

no gate could connect directly to another gate in the same row. If the 'levels-back' was

equal to 1 then no gate could connect to another gate or program input/output, that was

more that 1 column from that gate, e.g. a gate in column 5 could only have gates in column

4 as potential inputs. These constraints exist to allow FPGA programs to be designed to fit

into specific areas of an FPGA. The need for constraints is discussed in Section 4.2.

The minimum number of evaluations required to obtain a 0.99 probability of successfully

obtaining a 100% functionally perfect solution (fitness equal to 64 in this case) was

calculated by Miller et al. (2000a). Millers results, obtained for the 2-bit multiplier, show

that the optimal population size was 4 and minimum number of evaluations was 81,608.

This number of evaluations (81,608) was the number of evaluations required to give a 0.99

52

4. FPGAs and digital circuit program design

probability of successfully obtaining a perfect solution. This is a measure that gives the

minimum amount of computational effort that is required to ensure a probability of 0.99

that a 100% functionally perfect solution will be achieved (Koza, 1992). A probability of 1

means that a 100% functionally perfect solution is guaranteed, whereas a probability of

0.99 almost guarantees a 100% functionally perfect solution. A probability of 1 can never

be achieved as evolutionary algorithms depend on random processes. Further measures of

evolvability are given in Vassilev et al. (2000).

4.2. Practical Aspects of Circuit Implementation

One of the objectives of this thesis is to aim to evolve as novel and efficient digital logic

circuits as possible. The table of logic functions Table 10 that has been used is modelled on

the resources that are available on modem FPGA platforms. The experiments described

have assumed that there are no practical constraints imposed by wiring. In practise the

routing of connections between components is a significant factor in the successful

implementation of a circuit (See Section 4.2.1.5.). Other representations of digital circuits

in which the routing is explicitly taken into account have been devised (Miller and

Thomson 1998b, 1998a). To improve the potential routability of circuits evolved using the

techniques described here one can adjust the levels-back parameter so that it takes much

lower values. The complete investigation of the influence of this on circuit routability is a

subject for further work. It was shown by Miller and Thomson (l998b, 1998a) that the

dominant factor in the evolvability of the circuits is the amount of functional resources that

are available, however increasing this tends to produce less efficient circuits. Conventional

logic synthesis techniques minimise the symbolic representation of a circuit and then carry

out technology mapping. This is a process of trying to rewrite the symbolic logic into a

form that can be implemented with whatever gates are available on the chosen platform.

To do this efficiently is a non-trivial exercise. Such a process is unnecessary when

evolving a circuit using the gates available on the device.

4.2.1. Evolved Data and Interesting Problems

It is clear that the number of input combinations in a truth table grows exponentially with

the number of inputs. Thus it is not practical to evolve very large truth tables (> 25 input

variables). Conventional logic synthesis techniques (See Section 2.2) can handle hundreds

of input variables. Thus the question arises: what is the point of evolving solution

programs for truth tables by assemble-and-test? The answer is that interesting functions

could be evolved. These interesting functions may be more efficient, using fewer

53

4. FPGAs and digital circuit program design

components or by being faster than their conventional equivalents. These are useful

functions which can be series of functions of increasing scale but similar function. These

functions can be reused to build larger circuits. Classic examples of this are arithmetic

functions, namely, binary adders and multipliers. These smaller functions can then be

combined to create larger circuits (e.g. digital filters).

Another useful application of the use of evolution for digital circuit design is that of re­

engineering. Often in industrial situations, existing solutions have to be replaced by new

solutions that take into account small changes in the specification of the problem. In this

case only a small area of the solution requires re-design, something that EC can probably

achieve more efficiently using reuse techniques such as Lockdown discussed in Section

5.2, and CBR discussed in Chapter 6. Conventional methods often require that the old

solutions are completely re-engineered (Scherr, 2000). This manual re-engineering is a

very inefficient approach that becomes more difficult as the differences increase between

the original hardware platform and the new hardware platform.

One further useful application stems from the fact that EC techniques can also carry out the

technology-mapping phase of digital circuit programs. In an industrial situation programs

are developed to fit onto a specific hardware platform. As technology progresses new

hardware platforms replace the old ones and the existing programs do not map onto the

new platforms. Conventional techniques require that a completely new program is

developed from scratch and then mapped to the new hardware platform (Scherr, 2000).

This again is inefficient whereas EC techniques could reuse existing programs and adapt

them to the new platforms.

As Digital circuit evolution suffers from exponential growth in complexity as the number

of inputs increases, research has also been undertaken to reduce the complexity of the

problem and to improve the efficiency of the evolutionary search. These ideas are

presented in Section 5.6.2.

If a particularly efficient adder or multiplier can be evolved this could be used as a

building block for adders of any size. However there is another interesting reason to try to

evolve arithmetic functions. A series of examples with increasing numbers of inputs could

be evolved and then it may be possible to deduce the general design principle. If this is

possible then by using this principle it may be possible to obtain new designs for arithmetic

functions of any number of input variables. It is these principles that are employed in the

54

4. FPGAs and digital circuit program design

design of large arithmetic circuits. It is interesting to contrast conventional with evolved

designs as the modularity of the evolved circuits can be examined.

A number of key questions emerge:

1. Can more efficient designs for arithmetic functions be found by evolution?

2. Can general principles be extracted?

3. How modular are the evolved circuits?

Next, evolved circuits for one and two-bit adders with carry, and two and three-bit

multipliers are shown. The even four-parity function was also studied as parity functions

have received much attention from the genetic programming community and it is an

interesting function to study as its fitness landscape changes dramatically with the choice

of gates used to build it.

In a simplistic view, term 'fitness landscape' refers to the idea that genotypes can be seen

as points on a landscape from the point of view of its fitness. In this simplistic view the

highly fit genotypes are points on mountain peaks and the low fitness genotypes are points

in the valleys of the landscape.

4.2.1.1. One-bit Adder with Carry

Some FPGA manufacturers are adopting novel designs that have been evolved, e.g. the

one-bit adder with carry Figure 13 (Miller et al., 1997).

Any size of carry adder can be built with cascaded one-bit carry adders. This one-bit carry

adder and the ability to cascade it, is an example of a general principle. It was seen in the

paper by Miller et al. (2000a) that an evolved two-bit adder with carry is in fact the

conventional two-bit adder with carry, through comparison of the evolved two-bit adder

with the evolved one-bit adder with carry. In this way it was shown that it has been

possible to re-discover the well-known principle of the ripple-carry adder Figure 3. Thus,

in principle, an adder of any size could be constructed.

4.2.1.2. Two-bit Multiplier

Two-bit and three bit multipliers are shown here as examples of how and why evolved

circuits can be 20% more efficient, in terms of the FPGA cells given in Table 10, than

those designed by conventional techniques. The two-bit multiplier takes two two-bit

55

4. FPGAs and digital circuit program design

numbers and multiplies them to produce a four-bit number. The three-bit multiplier takes

two three-bit numbers and multiplies them to produce a six-bit number. These can be

implemented in block form by the 2-bit cellular multiplier shown in Figure 14. The AND

gates carry out elementary one-bit multiplication and two one-bit adders with carry are

required to calculate the product bits. The 2-bit cellular multiplier is cellular because it is

composed of cells, two I-bit adders in this case. One-bit adders with a carry-in of zero can

be reduced and one of the AND gates connecting to output P 3 can be eliminated and thus

the final most efficient conventional circuit is obtained. It requires seven two-input gates.

A1 ADD Sum

Cout
Cin

80

0
Sum ADD

8 1 Caut

0

Figure 14. Two-bit cellular multiplier.

Some interesting circuits were evolved in Miller et al. (2000a). One circuit of particular

interest, shown in Figure 15 a, uses only a single XOR gate yet still carries out two

elementary additions. It re-uses sub-calculations in an unusual way. To create the second

highest product (P 2) it re-uses the lowest product (P 0) and to create the highest product

bit (P 3) it re-uses the second lowest product (P 1). The whole circuit sub-divides into two

unconnected parts. The circuit is elegant but also counterintuitive which is more apparent

when comparing it with the conventional two-bit multiplier Figure 15 b. It is clear that it is

modeling multiplication in an unusual way. The choice of gates that are used to evolve

circuits can have a dramatic effect on the ease of evolution. The effects of gate choice are

reported in Section 5.4.

P1

P2

P3

56

4. FPGAs and digital circuit program design

A1 P3

P1

AO

(a),

A1 P3
.,

P3

8 1 P2

(b)

Figure 15. Most efficient (a) evolved and (b) conventional two-bit multipliers.

57

4. FPGAs and digital circuit program design

4.2.1.3. Three-bit multiplier

The conventional three-bit multiplier is again modeled using the familiar process of long

multiplication and is built as a cellular array of adders with the nine elementary products

being implemented with AND gates.

The evolved circuit uses only 21 gates (Figure 16). This is again 20% more efficient in

gate usage than the best conventional alternative (see Figure 17) but is 30% better than the

conventional as MUX gates are counted as elementary for the FPGA cells in Table 10. The

circuit is difficult to understand and on sight it is not obvious whether it consists of

identifiable sub-modules which are useful in building larger systems. It departs radically

from conventional principles in that it does not directly synthesise the nine elementary

products of the inputs.

B1C=>--H~-----+--;\

Figure 16. Evolved 3-bit multiplier (21 gates - 14 two-input gates and 7 MUX).

58

4. FPGAs and digital circuit program design

B2

B1 c::> P3

A1

c::> P2
Bo

Ao c::> P1

Po

Figure 17. Most efficient conventional 3-bit multiplier using 30 two-input gates (26 gates

including 2 MUX).

4.2.1.4. Even Four-parity

The even-parity functions are difficult to evolve when using the logic gates AND, NAND,

OR, NOR. The even-parity function returns a 1 if there are an even number of' Is' input to

the function. Even-parity functions are difficult to evolve because even-parity functions are

most easily implemented using XNOR gates and it is difficult to synthesise XNOR

function using this set. The most efficient implementation of even four-parity requires 3

XNOR gates (see Figure 18 a and b). This is an example of how gate choice can

dramatically effect circuit evolution.

59

4. FPGAs and digital circuit program design

z

(a)
1- - - - - - - - - - - --I
1 1

!~L>-!
------------------------, I •

~-----------:

------------------- ______ 1 >--~r__>z

(b)

Figure 18. Two representations of the four-bit parity function with (a) gate XNOR and (b)

gates AND, OR and NOR.

4.2.1.5. Application to hardware platform

If conventional logic synthesis techniques are used to create a program this program must

then be mapped onto a specific hardware platform. This is a non-trivial exercise. Whilst

the Cartesian Genetic programs presented here are general and platform independent, CGP

is capable of producing platform specific programs, without the need for a separate process

for mapping a design to the space available on a specific hardware platform. To make CGP

60

4. FPGAs and digital circuit program design

specific to a platform the fitness function requires additional cost criteria. The hardware

platform would impose specific costs (Davio et ai., 1983) e.g.

• Routing: the physical layout of an FPGA constrains the available interconnectivity of

cells.

• Gate times: each type of gate requires a specific amount of time to function.

• Delay criterion: Gate times lead to propagation delays. Clocking ensures that gate times

are accounted for, but it can effectively make every gate as slow as the slowest.

In addition to costs that depend on the physical platform, there are financial costs:

• Wire costs: Wires may have to be used to connect two gates together over areas of the

platform, using additional materials and silicon area.

• Gate costs: the number of gates used and the number of inputs to each gate.

• Total silicon area, not just the number of devices in the area.

• Additional Costs: Development, Maintenance and Testing.

The cost functions that are used may also depend on design criteria in addition to the target

platforms physical constraints, e.g. speed, size, and fault tolerance. If speed is important

then it could be necessary to minimise number of gates in series.

4.3. Summary

It was shown in this chapter that a feed-forward digital circuit can be encoded as an

indexed graph. The function of the target circuit is encoded as a PLA file with which the

evolutionary algorithm calculates the fitness of a genotype. The algorithm developed by

Miller (l999a) was given and the human inputs (experimental parameters) to the algorithm

that are required in addition to the PLA file were discussed.

The evolutionary process of design is very time consuming and circuits larger than the

four-bit multiplier require unreasonable amounts of computing power at present. Some

61

4. FPGAs and digital circuit program design

evolved designs were 20% more efficient than the best conventional design for an FPGA,

see Appendix 2 (The 4x3 - bit multiplier circuit evolved from the conventional design.)

The challenge here is to evolve large enough circuits to enable the design principles to be

identified through comparison of larger circuits to smaller circuits of the same problem

class e.g. multiplication. Also larger circuits have greater potential for reuse within the

circuit and so efficiency may increase with size. Further to this, if the evolved circuits are

modular in nature then the larger circuits should contain a greater number of larger more

efficient building blocks, making their identification simpler. The specific problem with

designing larger digital circuits using evolutionary techniques is that as the number of

inputs grows the time taken for fitness evaluation increases exponentially.

In this thesis one of two different aspects of this problem was examined.

One aspect examines the nature of the digital circuit fitness landscapes and attempts to

understand the structure of these landscapes in terms of their smoothness, ruggedness and

neutrality (Vassilev et al., 2000). It has been shown how these landscape characteristics

should effect the evolutionary search and this has led to improvements in the efficiency of

the evolutionary search itself.

The second aspect, the subject of this thesis, which examines the nature of the phenotypes

themselves and attempts to discover useful sub-structures and methods that can be reused

to create larger circuits. This also facilitates understanding of the novel and efficient

designs through derived explanations of how to design larger circuits by reuse of smaller

circuits.

These two investigations are an important part of the cycle of evolutionary discovery

discussed further in Chapter 8 and illustrated in Figure 37.

The techniques of landscape analysis developed by Vassilev et al. (l997b, 2(00) are used

in finding principles that should lead to a better understanding of the nature of the problem

of evolving digital circuits, and hence, effective evolutionary search. The process of

discerning design rules and principles from the evolved data can be seen as a form of data

mining, thus enabling recommendations to be made about useful components and sub­

structures that can also be fed back into the evolutionary algorithm and hence improve the

evolvability of the circuits. How this in turn enhances our ability to understand the nature

62

4. FPGAs and digital circuit program design

of new designs is discussed in Section 7.5. How design principles could be identified and

reused to solve the scaling problem using CBR, is the subject of the next section.

63

s. Evolutionary CBR for Automated Design of digital circuit programs.

5. Evolutionary eBR for Automated Design of digital circuit programs.

It is argued that it might be possible to identify and reuse new, efficient, and generalisable

principles of design by studying evolved program designs of gradually increasing scale. In

this chapter this theory is explored in the field of digital arithmetic circuit programs. The

design knowledge that is discovered can be reused to improve the evolutionary algorithms

search capabilities and hence increase the likelihood of identifying new principles. These

principles could explain how to build systems that are too large to evolve without using

larger modules in place of the current atomic logic gates. The knowledge discovery

process is realised through the combination of EC with Case-Based Reasoning (CBR).

Arithmetic circuits evolved using the EC described in the prevIOus Chapter 4, are

examined specifically because conventional design approaches exploit the modular nature

of the arithmetic functions to build increasingly large functions from smaller building

blocks. If these building blocks also occur in the evolved designs then it might be possible

to identify them and their potential uses to build functions of any size. Further to this, by

examining functions of increasing size, and comparing them it may be possible to identify

a general design principle.

Firstly, in Section 5.1 the research set-up is described, then an explanation of the

modularity of digital circuit program evolution is followed by details of an attempt at error

correction in flawed evolved programs. The effects of function choice on evolvability are

then given, showing how the modular analysis can be fed back into the evolutionary

process. Further techniques for enhancing the capabilities of the evolutionary technique are

then given. Next an overview of the problem of identifying principles in evolved circuits is

given followed by a description of how CBR can be used to solve these problems and the

experiments carried out to illustrate these techniques are described.

5.1. Introduction

A population of FPGA programs is evolved using EC, to meet a given functional

specification, which is used to assess the quality of the programs being evolved. This

functional specification is represented by a truth table in the form of a pIa file (see Table

2), allowing exact calculation of functional correctness (some problems e.g. signal

processing, have no precise functional specification since they involve the conversion of

analogue signals to digital signals). Researchers have been successfully evolving

electronic circuit programs by adopting constrained or unconstrained methods.

64

5. Evolutionary CBR for Automated Design of digital circuit programs.

Constrained methods either temporarily ignore the need for robustness, or constrain the

available choice of sub-programs and interconnection topologies. Unconstrained methods

give evolution maximum freedom to exploit the full repertoire of behaviours that the

device can produce (Miller and Thomson, 1998a; Thompson, 1996).

A common problem with evolving digital circuits is that of errors. The EC method does

not always produce perfect solutions, and even if it does, perfect solutions are difficult to

understand. As the size of the programs increases, the EC produces a lower percentage of

perfect solutions. For a limited class of tasks, FPGAs do not require perfect solutions, e.g.

a Digital Signal Processor may process Analogue signals, so there is no precise input

specification. However, other tasks do require perfect solutions, e.g. in addition programs,

a 'best' solution produced by EC may require repair, and the information required to do

this may exist in another of the EC solutions.

The remainder of this thesis describes on-going attempts at overcoming the above

problems with evolving circuit programs by effective integration of EC and CBR

techniques. This research aims to adapt and reuse genetically evolved FPGA programs,

and the sub-programs within these programs, to create larger programs at a reasonable

computational expense.

5.2. Digital Circuit Evolution and modules

The evolved circuit designs are produced by Cartesian Genetic Programming with

truncation selection and mutation. The latter is defined as a percentage of the genes in a

single genotype which are to be randomly mutated. The population consists of 1 + A

genotypes where A is usually about 4. Initially the elements of the population are chosen at

random (see Section 4.1). To update the population, the operator for mutation is applied to

the fittest genotype, and thus an offspring is generated. The offspring together with the

parent constitute the new population. This mechanism of population update has some

similarities to that employed in other evolutionary techniques such as (1 + A) Evolution

Strategy (Schwefel, 1981; Back et al., 1991) and the Breeder Genetic algorithm

(Muhlenbein and Schlierkamp-Voosen, 1993). This algorithm has enabled the automatic

discovery of highly efficient circuits that are unusual in construction. The one-bit adder

that was used as an example, Figure 19, was evolved and it required two gates less than the

conventional design. The MUX gate occurs in an unfamiliar configuration, implying that

these gates are very useful building blocks for the construction of adder circuits.

65

5. Evolutionary CBR for Automated Design of digital circuit programs.

Interestingly, this one-bit adder automatically emerged as a building block in an evolved

two-bit adder. This suggested that it would be worth while attempting to evolve larger and

more complex circuits, such as the two-bit and three-bit multipliers. Indeed it was found

that some of the evolved three-bit multipliers were 20% more efficient than the most

efficient conventional design.

A

B

Figure 19. Evolved one-bit adder with carry.

5.3. Errors in evolved solutions
..

The prospect of error repair was investigated. This was done with the intention of

developing a method to repair the best of the faulty solutions that resulted when the

problem was too large and complex for cap to handle. In the case of multiplier circuit

programs repair was possible in the 3x3-bit multiplier class when a perfect solution was

known. By replacing the faulty areas of a non-100% fit program, with the relevant areas

from a 100% program, a faulty solution could be fixed. This was done to see how difficult

it was to repair faulty solutions. This approach worked but resulted in inefficient solutions.

Faults tended to be the same in each program. This is because specific outputs are

significantly more difficult to synthesise than any other part of the solution. This means

that it was unlikely that a fix for one faulty solution could be found in another faulty

solution, so it followed that creating one perfect program from two faulty programs was

not a solution to the scaling problem in multiplier circuits.

If a fix for a faulty solution was evolved especially to fix a specific fault, the small error fix

tended to result in an increase in the size of the program by approximately 50%. This is

again due to the faults tending to be in the most difficult to synthesise areas of the

program. This may not be the same for all problem classes e.g. adders, filters.

Repair involved retrieving the best of the faulty programs from the Case-Base and

repairing it with the evolved fix to create a perfect solution. The result is shown for a 100%

correct 3-bit multiplier program (Table 12).

66

5. Evolutionary CBR for Automated Design of digital circuit programs.

Table 12. The genotype for a repaired evolved 3-bit multiplier program.

In Table 12 the dark shaded cells represent the new cells of the repair and the light shaded

cells represent existing cells reused by the repair. The white cells are cells from the

original program that were unchanged. In this genotype each cell contains three integers.

The first two of these integers represent the input connections and the third integer 6, 7, or

10 represents the function type AND, AND NOT and Exclusive-OR, respectively. The

cells containing one integer only represent output connections. An explanation of the

genotype representation was given in chapters 3 and 4. The cells in the table are indexed 6

to 32, starting at the top left (index 6), numbered from left to right and top to bottom. The

output cells (containing single integers) to not have index numbers. Index numbers 0 to 5

represent the indices for the inputs to the program.

5.4. An Analysis of the effects of Function choice

An examination of how the functions made available to the Cartesian Genetic

Programming technique affect the evolutionary process was carried out. Expert

recommended choices of gates were 6, 7 and 10. These were chosen because of their use in

the conventional design, and because they simplify understanding of the evolved circuits.

They were compared to selections of allowed gates. These selections were made based on

the frequency occurrence of each gate. The frequencies of gates were counted over large

collections of solutions, in this case, solutions for the two-bit carry adder. The frequencies

of gates were not calculated simply from the number of times each atomic gate appeared in

the solutions. Instead, the modularity of the evolved designs was allowed to influence the

calculation. To capture this influence frequencies were counted from the number of times

each gate appeared in a 2-into-l principles e.g. Figures 31, 32 and 33. 2-into-l principle is

a general description of one of the simplest modules. 2-into-l principles are simply two

gates of any type connected into one other gate of any type. (2-into-l principles are

67

5. Evolutionary CBR for Automated Design of digital circuit programs.

discussed in detail in Section 6.4 and Chapter 7). These selections (Table l3.) were made

as testing all possible combinations of allowed functions is unfeasible.

Set number Allowed functions
1 (Expert recommended functions) 6,7,10
2 1O,11,l3
3 6,1O,11,l3
4 6,8,10,11,13
5 6,8,1O,11,l3,14
6 6,8,9,10,11,13,14
7 6,7,8,9,1O,11,l3,14
8 6,7,8,9,10,11,12,13,14,15

Table l3. Allowed functions in each test. Functions selected were based on the functions

appearance in a frequency count of 2-into-l principles for the 2-bit Carry Adder with

allowed functions 6 to 15 inclusive.

There were several tests:

The first test was to examine the effect of allowed functions on the number of 100%

solutions generated. As the number of different functions made available to the CGP

increased it became easier to achieve a 100% solution, and so more 100% solutions are

achieved (see Figure 20). This effect reached a plateau if 4 (sets 3 to 8) or more functions

were allowed from the complete list of functions given in Table l3. This result simply

illustrates the fact that some circuits are difficult to synthesise with certain allowed gates,

as explained in Section 2.2 on conventional circuit design. A significant effect observed

here was that the expert recommended set (set 1) of allowed gate choices gave rise to a

large number of behaviourally duplicate 100% solutions. Approximately 50% were

duplicates, compared to set 2 that gave approximately 10% duplicates (see Figure 21).

68

5. Evolutionary eBR for Automated Design of digital circuit programs.

400

350 - - ,- -

1/1 300 c - - - - r--- -
0
:;::;
::J 250
"0

- r--- - - r-- -

1/1
";!1. 200 0 r--- r--- - - r--- - r--- -
0
0 - 150 r--- r--- - - - - r-- -
0

0 100 z r--- r--- - c--- - - r--- -

50 '-- r--- - '--- - - r--- -

0

2 3 4 5 6 7 8

Set Number

Figure 20. Graph of the number of 100% correct solutions produced by each set in Table

13.

400

1/1 350
c
0

:;::; 300 ::J
"0
1/1 250 ";!1.

0
0
0 200
CLI
::J
C" 150 ·c
::J - 100
0

0
50 z

0

2 3 4 5 6 7 8

Set Number

Figure 21. Graph of the number of unique 100% correct solutions produced by each set in

Table 13. Unique solutions are those solutions left after behavioural duplicates have been

removed.

In the other tests it was discovered that set 2 was out performed by set 1 in the average

fitness of all solutions produced (see Figure 22), and set 1 also required fewer generations

(see Figure 24), but sets 3 to 8 out performed sets 2 and 1. Sets 3 to 8 gave a slightly higher

average fitness by approximately 1%. Sets 2 to 8 gave rise to far fewer behavioural

duplicates. In general the number of generations required to achieve 100% solutions

decreases as the number of allowed gates increased.

69

5. Evolutionary CBR for Automated Design of digital circuit programs.

Set 1 (the expert recommended set of allowed functions) was chosen for its use in the

conventional design and to ease understanding of the resulting circuit. The only significant

results were that Set 1 produced many more duplicate solutions than sets 2 to 8 (see Figure

23), and that it was expected that the number of behavioural duplicates would decrease as

the number of allowed functions increases, due to the greater number of possible

combinations. However this is not the case. This is possibly because the amount of

duplication created by sets 2 to 8 (See Figure 23) is not high enough to show this effect.

So, overall, Set 1 favours the study of digital arithmetic circuits, as they are easier to

understand and compare to conventional designs and it also gives rise to a smaller range of

solutions. These results suggest that Set 1 produces a smaller search space; further

examination is required to determine such a result.

99
1/1 c 98.5 0

:;::;
::J

98 "0
1/1
GI 97.5 ::J
tT
'c 97
::J

'0 96.5
1/1
1/1
GI 96 .5
;;::

95.5 GI
til
t! 95
~

"' 94.5

2 3 4 5 6 7 8

Set Number

Figure 22. Graph of the average fitness of the number of unique 100% correct solutions,

produced by each set in Table 13.

70

5. Evolutionary CBR for Automated Design of digital circuit programs.

180

III 160
III -ca 140 .!:!
c.. 120 ::J
'tJ
ii 100 ...
::J
0 80 .s;
ca

.s::. 60 .8 - 40 0

ci z 20

0

2 3 4 5 6 7 8

Set Number

Figure 23. Graph of the number of 100% correct solutions that were behavioural

duplicates, produced by each set in Table 13.

III
450,000

::J
cr 400,000 'i:
::J - 350,000
0
III

300,000 I:
0

III :;:::;
ca I: 250,000 ... 0
III :;:::;
I: ::J 200,000 III '0 01 - III

~ I---

r- I--- f-- I--- - - - ,--- ~

f- I--- I--- I--- - - - I--- -

0

ci
150,000 r- I--- I--- I--- - - - I--- -

I: 100,000 III
r- I--- I--- I--- - - - I--- -

01
ca 50,000 ...
III

f- I-- I-- I-- I--- I-- I-- I-- f-

>
cC 0 r-

2 3 4 5 6 7 8

Set Number

Figure 24. The average number of generations used by unique solutions, using each set in

Table 13.

5.5. Seeding

Seeding is an approach to CGP where instead of using a randomly initialised population at

the beginning of the execution of the CGP, a predetermined program is given and the CGP

attempts to improve upon this existing program. This seed program can be a partial

solution e.g. known optimal program parts for the given problem, or it could be a complete

71

5. Evolutionary CBR for Automated Design of digital circuit programs.

program of similar but not identical function. A particularly interesting method of seed

selection is to seed the CGP with a known conventional solution to the given problem.

5.5.1. Seeding with a conventional solution

An effective way of obtaining the optimum solution for a circuit is to use a solution created

using conventional techniques to seed the genotypes for the CGP. To generate an optimal

circuit for a given problem, e.g. 3x3 multiplication, the CGP can be seeded with a

conventional design for a 3x3-bit multiplier. This means that the CGP does not have to

evolve a solution from scratch and can simply optimise the conventional solution.

Solutions produced by this technique cannot be differentiated from purely evolved

solutions.

The CGP technique could be used to re-map an existing solution for a current hardware

platform to a new hardware platform. An existing solution could also be optimised for size

or speed.

The conventional seed technique allows CGP to examine the entire search space (Figure

4). In this thesis the only limitation to the search is that only improvements in size improve

the fitness (Since the conventional seed is 100% functionally correct). In this way the

space of 100% correct solutions that contains the conventional solution can be specifically

searched, looking for more optimal circuits. Evolving large circuits from scratch rapidly

becomes impossible as their size increases, so this is one effective method of obtaining

evolved solutions of increasing size with which the study of the principles of scale can be

further explored.

A 4-bit multiplier has been evolved from the conventional design. It consists of 57 two­

input logic gates and is 10.93% more efficient (in terms of the number of two input gates

used, see the FGPA cells in Table 10) than the most efficient known conventional design

(64 two-input logic gates). This evolved design can be seen in Figure A 2.5.

In some cases it is known that some parts of a seed solution cannot be optimised further.

For this reason it is much more efficient if the CGP is not permitted to attempt to optimise

these parts of the seed. One technique to prevent this is 'Lock-down'.

5.5.2. Lock-Down

72

5. Evolutionary CBR for Automated Design of digital circuit programs.

It is possible to reduce the amount of work done by CGP by fixing the position, inputs and

fitness of cells of the genotype to a configuration that is known in advance to be optimal.

This is referred to as 'lockdown' and avoids CGP wasting valuable processing time.

Lockdown is a technique that improves efficiency and is used in addition to seeding. With

Lockdown, one or more of the cells of the seed chromosome are 'locked down' or fixed, so

that the CGP does not attempt to mutate these cells. This means that these cells never

change during the execution of the CGP. This speeds up the processes of the CGP as time

is not spent selecting these cells for mutation or on rejecting a chromosome where one of

these cells has be detrimentally mutated producing a less fit chromosome (Miller et ai.,

1997).

The lockdown technique is very effective as larger circuits have larger areas that have

obvious lockdown potential. A technique similar to lockdown was first shown by Miller et

al. (1997). Miller pre-calculated the truth table into a form where the products of inputs

were already assumed. This pre-calculation of the behaviour of the locked cells can further

speed up the process. In this case the evaluation function does not have to recalculate the

behaviour of the locked cells. This leads to a significant speedup. This specific method

(Miller et al., 1997) cannot be applied to the general seeding technique, as it requires that

the cells to be locked down start with the first cell in the program and are in a contiguous

unbroken block. However, this is convenient, as the cells that are most obvious candidates

for lockdown are those at the beginning of the program. In the case of multiplier problems

these cells are nearly always AND gates giving the products of inputs. It can be observed

from the statistics on input triples that this is nearly always the case in evolved solutions

and conventional solutions. Further to this it is apparent, in the case of multiplier programs

that PO and PI do not have more optimal representations than those shown in Figure 15 b

do, and so these too can be locked-down.

To examine the effects of lockdown an experiment was conducted. Firstly, one hundred

4x3-bit multipliers were evolved from scratch (Table 14.) and secondly, one hundred 4x3-

bit multipliers were evolved using lockdown of ten cells (Table 15.). The ten cells locked­

down in the seed used here were taken from an evolved 3x3-bit multiplier. They were the

nine AND gates connected to program inputs and one additional cell required for

producing output PI. An evolved 3x3-bit multiplier was used to obtain the seed for this

experiment to show the potential for reusing existing evolved material to overcome the

scaling problem.

73

5. Evolutionary CBR for Automated Design of digital circuit programs.

It can be seen in Tables 14 & 15 that lockdown increases the number of 100% functional

solutions. Lockdown also gives more optimal solutions (with respect to the number of two­

input logic gates used). A locked-down program on average uses 38 cells whereas without

lockdown the average number of cells used is 43 in this case. The number of 'generations'

is defined to be the number of generations taken by an evolving solution to get to a given

functionality-based fitness score, until 100% functionality is achieved, then increases in the

fitness score reflect reductions in the number of cells used. The number of generations

required to reach 100% functionality remains almost unchanged, but evolving using

lockdown wastes no generations evolving or changing the already optimal 'locked down'

cells. This means that it takes fewer generations to evolve a 100% functionally correct

program so a greater number of generations can be spent optimising the size of the

program. More generations are reported by 'all solutions' without lockdown as it takes a

greater number of generations to converge towards a 100% solution.

100 chromosomes (structural) reduced to 100 chromosomes

There were 0 structural duplicates

There are 9 100% fit chromosomes

The average fitness is: 99.2556% standard deviation: 0.447214

The average number of all solution generations is 24,780,863 with a standard deviation of 5,305

The average number of 100% solution generations is 25,681,579 standard deviation of 21 ,555

100 chromosomes (behavioural) reduced to 100 chromosomes

There were 0 behavioural duplicates

There are 9 100% fit chromosomes

The average fitness is: 99.2556% standard deviation: 0.447214

The average number of all solution generations is 24,780,863 with a standard deviation of 5,305

The average number of 100% solution generations is 25,681,579 standard deviation of 21,555

The smallest number of gates used was 42 by chromosome #24

Table 14. Statistics for 100 4x3-bit mUltipliers evolved without using Lockdown.

74

5. Evolutionary CBR for Automated Design of digital circuit programs.

100 chromosomes (structural) reduced to 100 chromosomes

There were 0 structural duplicates

There are 23 100% fit chromosomes

The average fitness is: 99.625% standard deviation: 0.2

The average number of all solution generations is 23,346,202 with a standard deviation of 5,321

The average number of 100% solution generations is 25,487,594 with a standard deviation of 1,558

100 chromosomes (behavioural) reduced to 100 chromosomes

There were 0 behavioural duplicates

There are 23 100% fit chromosomes

The average fitness is: 99.625% standard deviation: 0.2

The average number of all solution generations is 23,346,202 with a standard deviation of 5,321

The average number of 100% solution generations is 25,487,594 with a standard deviation of 1,558

The smallest number of gates used was 37 by chromosome #25

Table 15. Statistics for 100 4x3-bit multipliers evolved usmg Lockdown.

The increase in computing power required to evolve multipliers of increasing scale can be

seen in Figure 25. Figure 26 shows the number of generations required to evolve multiplier

circuits of increasing scale.

14

13

12

11

10

,--. 9
OIl

"8 8 0

~ 7
'-'
II)

6 8
E= 5

4

3

2

0
2x2 3x2 3x3

Multiplier
4x3 4x4

Figure 25. Time taken by a Pentium 200MHz computer to perform lO,OOO generations

with a population of five elements for various multiplier circuits.

75

5. Evolutionary CBR for Automated Design of digital circuit programs.

OIl
C

I e+09

I e+08

le+07

le+06

.$2 100000
El
~ 10000

1000

100

10

2x2 3x2 3x3 4x3
M ultipli er

4x4

Figure 26. Number of generations required to evolve multiplier circuits of increasing scale.

Lock-Down is also useful for producing pairs of increasingly large circuits that can be

matched. Seeding the CGP with the smaller of the two required circuits and locking-down

the complete circuit ensures that the resulting larger circuit contains the smaller circuit.

This enables the evolution of expansions for the multiplier circuits.

However, locking down a complete small circuit (e.g. a 2x2-bit multiplier) to use as a seed

for a larger circuit (e.g. 3x2-bit multiplier) results in very inefficient results for the larger

circuit. This is because parts of the smaller circuit need to be replaced by sub-circuits with

additional functionality in order to produce efficient results. This is explained in detail in

Chapter 7.

5.6. Identifying Principles in Evolving Circuits

The study of evolutionary design of digital circuits involves the examination of products

and the processes. The processes can be considered as a search on a fitness landscape. The

next section gives a brief outline of the current research into the processes involved in

circuit evolution landscapes, and the following sections give a detailed analysis of the

products produced by this process.

76

5. Evolutionary CBR for Automated Design of digital circuit programs.

5.6.1. Fitness landscapes

Miller et al. (2000b) showed that circuit evolution landscapes are quite different from

many recently studied landscapes. The notion of a fitness landscape is an important

concept in evolutionary computation. The metaphor is taken from biology and it expresses

the idea that Evolution can be considered as a population flow on a surface in which the

altitude of a point qualifies how well the corresponding organism is adapted to an

environment. In addition to this Miller et al. (20oob) examined the role of neutrality and

the importance of its role in the evolutionary search was progressed. The difference

originates in the structure of the genotypes which are defined by internal connections,

functions and outputs, not just one alphabet, but three (Miller et al., 2000b; Vassilev et al.,

2000). This gives rise to complicated relationships between the genes within the genotype

which makes the study of the landscapes much more convoluted.

In Vassilev et al. (1999a and 1999b) a model for studying the structure of circuit evolution

landscapes was introduced. The model is employed to investigate the structure of circuit

evolution landscapes in terms of the interplay between smoothness, ruggedness and

neutrality. The smoothness and ruggedness are related to the fitness differences between

neighbouring points whereas the neutrality refers to the flat landscape areas (Stadler, 1996;

Reidys and Stadler, 1998). The study of the characteristics of these landscapes is an

important concern in digital circuit Evolution both for their scalability and in the

importance of choosing appropriate sets of logic functions used in the assembly of the

digital circuits. The research (Vassilev et al., 1999a and 1999b, 2000) concentrates on

landscapes associated with five digital circuits, a two-bit multiplier (Figure 15 a), two

three-bit multipliers (Figures 16 and 17), and two four-bit parity functions which are

evolved by evolutionary algorithms. The interplay of the landscape smoothness,

ruggedness and neutrality is studied by an information analysis based on that given by

Vassilev (l997b). It is shown that the digital circuit Evolution landscapes are characterised

by vast and sharply differentiated landscape plateaux. It is also shown that the continuity of

these landscapes depends on the scale and the set of logic functions used in the assembly

of digital circuits.

It is beyond the scope of this thesis to give a complete description of this examination of

fitness landscapes. Further details can be found in Vassilev et al. (2000); Miller et al.

(2000b).

77

5. Evolutionary CBR for Automated Design of digital circuit programs.

5.6.2. A Problem of Scale and a possible Solution

In the design process it has long been accepted that the best way to solve a problem is to

decompose the problem into several simpler sub-problems and solve these sub-problems.

One difficulty with evolving digital circuit programs is that it is computationally

expensive, particularly for larger programs. Since more complex functions and larger

numbers of inputs require exponentially larger circuits to produce a solution there is a limit

to the size and complexity of a circuit program that can be evolved. This is referred to as

the scaling problem.

Chapters 6 and 7 describe efforts to overcome the scaling problem. The approach attempts

to decompose the solution programs produced by the evolutionary algorithm. This involves

extracting meaningful sub-programs, or design principles, from the evolved solutions, and

using them to try to solve the scaling problem and also to help in understanding the way

the evolved solutions work.

Principle extraction and reuse is achieved by integration of Evolutionary Computation and

CBR techniques. This section discusses the features of evolved programs that will facilitate

creation of a Case-Base that will allow for adaptation and reuse of evolved Binary

Cartesian Genetic programs, and the sub-programs within these programs, to create larger

programs at a reasonable computational expense.

It has been shown in Section 4.2.2 that arithmetic adder and multiplier circuits are modular

in construction and so are useful functions to study and refine techniques of principle

extraction. Modularity by definition allows very large systems to be constructed by

connecting modules together. It is clear that as multiplication is a process of repeated

addition, multiplication circuits can be built by using AND gates to perform elementary

one-bit multiplication and then binary full-adders connected in an arrangement called a

cellular array. When biologically inspired algorithms such as evolutionary algorithms are

allowed to design the building blocks and assemble the parts an amazing number of

potentially new designs may be created. The fundamental question (TFQ) stated in Section

2.3, in one instance was positively answered by Miller et al. (1997) where it was shown

that the principle of the ripple-carry adder could be inferred by studying evolved designs

for one-bit and two-bit adders. This process of data-mining from evolved solutions

potentially allows a complete cycle of principle extraction (Figure 2). The extracted

principles by making recommendations as to useful components and sub-structures may

feed back into the evolutionary algorithm.

78

5. Evolutionary CBR for Automated Design of digital circuit programs.

These essential sub-structures when collected together and subjected to analysis might lead

to the discovery of a new principle. Chapter 7 discusses a "finger printing" technique

applicable to the genotype discussed previously that reveals the type and frequency of

embedded sub-structures. Initial examination of the principle extraction problem showed

that by using this finger printing technique it was possible to find known human principles,

and additionally find hitherto unknown principles.

5.7. Summary

It was proposed in this chapter that through a combination of EC and CBR that it may be

possible to extract generalisable principles of design from evolved solutions and use them

to overcome the limitations of EC. The problems involved in repairing failed evolved

solutions were discussed, showing why repair may not be a practical solution to the scaling

problem. An analysis of the effects of function choice made available to the EC was given,

showing that the expert recommended set of allowed functions favours the study of digital

arithmetic circuits.

Three methods, seeding, seeding with the conventional solution and lock-down were seen

to reduce the scaling problem shown in Figures 25 and 26. A potential solution to the

scaling problem through the combination of EC and CBR was then discussed.

Chapter 6 covers a potential solution to the problems in the reuse of evolved circuit

programs. The methods that are used to process the evolved programs to create a Case­

Base are described in Section 6.2. Chapter 7 describes how CBR is a suitable technique for

the automatic identification of principles. In chapter 7 results of the experiments and their

analyses are presented.

79

6. CBR as a potential solution to the reuse problem

6. CBR as a potential solution to the reuse problem

This chapter examines the initial problems involved in reusing FPGA programs that have

been evolved using CGP. Large collections of FPGA programs have been evolved, each

collection being a collection of FPGA programs that solve a specific problem e.g. the 3x3-

bit multiplication problem, the 3-bit carry adder problem. The reuse of these collections of

solutions to solve new and larger problems is not a trivial task. A significant problem here

is the refinement and understanding of the unrefined and undocumented CGP generated

FPGA programs. This chapter shows how the unrefined data can be refined and

documented in an automated way, to build a useful Case-Base.

A Case-Base is built to enable the implementation of a CBR system. This chapter shows

that CBR can be used as a 'principle' identification technology. The notion of 'a principle'

is defined in this research as being any knowledge that is generally applicable to at least

one design problem, such as the 2-bit carry adder problem. Two examples of principles

would be: the I-bit carry adder that can be ripple-chained to produce a 2-bit carry adder

(Figure 3); and the '2-into-l' example (Figure 28), a common building module seen in

evolved multiplier circuits, discussed in the next section.

6.1. CBR as a Principle Identification Technology

One potentially suitable solution to the scaling problem is to find a way to reuse evolved

Cartesian Genetic Programming programs using CBR. CBR is an artificial intelligence

technique that is designed to reuse past experiences to solve new problems. It can provide

answers to problems in poorly understood complex domains; it does not require a domain

model or rules; and it can provide an explanation of its own reasoning.

CBR can provide selection, retrieval and adaptation of old software solutions to solve new

problems and it has been successfully used as a reuse system for retrieving and adapting

software artefacts (Maguire et ai., 1995; Smyth, 1996). Case-Based reasoning has already

been successfully applied to the understanding of evolutionary produced designs (Hunt,

1995; Maher et ai., 1996). This suggests that CBR could be used for understanding,

retrieving and adapting evolutionary designs, to solve new problems. CBR also provides a

scalable approach, and can be used to create designs larger than the designs that make up

its source material (its Case-Base). CBR provides data mining, indexing, matching,

80

6. CBR as a potential solution to the reuse problem

retrieval and adaptation, and these techniques should assist the process of principle

identification and application.

CBR can partly address the problem of scaling up evolved digital circuit programs. The

scaling problem might be overcome by effective reuse of principles contained in the

evolved programs. Identifying these principles is however a very complex task. CBR relies

upon Cases that have known structure, e.g. attribute value pairs. Since evolved programs

lack any "understanding" incorporated in their structure, all knowledge beyond their

functionality must be identified before a useful Case-Base can be built. These principles

might be able to be recombined and adapted to create new designs for new scaled-up

problems.

Evolutionary algorithms have been successfully used as a "knowledge lean" method to

generate knowledge for a Case-Base in earlier research (Hunt, 1995). This thesis differs

significantly from previous work as the phenotypes (programs in this work), used in

previous evolutionary algorithms, have had clearly defined components that make

generation of a Case Base simple. It was shown that an evolutionary algorithm is the only

general method for producing efficient solutions.

This evolutionary design approach raises several questions:

1. What knowledge exists within the evolved programs that may be of use?

2. How can this knowledge be automatically identified and utilised?

3. How can this knowledge be reused?

To answer these questions the following approach was taken. In human designs small

programs are designed, and then linked together to make larger programs. For this reason

collections of evolved programs were examined to see if such principle sub-programs

could be identified (small reusable program blocks) with methods for assembling them

into larger programs. This facilitates understanding of how the evolved programs work. In

general these principles may consist of small sub-programs that have been extensively

used throughout a large number of programs of different functionality, and the methods for

assembling them into larger programs. An example of an identified sub-program that is

used in a larger program is shown in Figure 27.

81

6. CBR as a potential solution to the reuse problem

I----------------~

3 1 4 'i
~~------~I~ :

--.... 8:
1

1
1

Sub-program

1 P
: '_~ 0

1-----------------1 Unusual reuse features

o

Figure 27. A novel sub-program and two unusual features of reuse in the evolved two-bit

multiplier. The labels from 0 to 10 refer to the connection points in the corresponding CGP

program.

Each principle contains knowledge pertaining to a particular sub-program. Collections of

principles form the Cases in the Case-Base. Case-Based retrieval is then used to retrieve

appropriate principles based on specified requirements. Suitable adaptation techniques

such as those developed by Hanney (1996), Giraud-Carrier (1996) could be applied to

build larger and more complex programs that are too computationally expensive to be

evolved. Since the required functionality of programs can be specified as a truth table, the

sub-programs that make up the complete design obtained by Case-Based Reasoning can be

tested automatically.

An example of an identified sub-program that can be reused to create larger programs is

shown in Figure 28. It can be seen in Figure 27 that gates 6, 7 and 9 are the same sub­

program as the "2 into 1 example" shown in Figure 28, that has been used to form part of

the larger program.

82

6. CBR as a potential solution to the reuse problem

Sibling example~ __________ _
r---, 1

1

, D--fc:> P2
1 ____________ 1

... , ,
J

I

2 into 1 example

Figure 28. Two examples of sub-program format shown here in the conventional 2-bit

multiplier. The pIa file for the 2-bit multiplier is given in the appendix.

Repair of faulty solutions can be achieved by Case-Based substitution. The parts of the

solution program where error(s) have occurred are identified and replaced with error free

substitutes from other Cases that do not display the errors. In a similar manner CBR may

be used to optimise the evolved programs produced for specific purposes, e.g. routing,

speed, size.

6.2. Automatic Creation of a Case-Base for Reuse

In this research, BCG programs were evolved from randomised starting populations and

then processed to create a Case-Base. The best solution from each run of the CGP is added

to the raw Case-Base. These raw programs are then processed to make a useful Case-Base.

The following experiments do not examine the evolutionary technique itself, but

investigate the solutions produced by the technique. The pre-processing is achieved in

several stages.

The preliminary stages involve refinement of the data to make the applications of CBR

functions like matching and retrieval viable. These stages are: evaluation; removal of

imperfect solutions; removal of duplicates; removal of redundant information;

compression; normalisation; reduction and refinement rules; test evaluation; calculation of

83

6. eBR as a potential solution to the reuse problem

behaviour; removal of behavioural duplicates; statistical measurements to aid user

understanding. A detailed description of each stage follows.

6.2.1. Evaluation

The first stage, evaluation is the same as the fitness function used by the CGP used to

evolve the circuits (Section 4.1.2.).

6.2.2. Remove imperfect solutions

Chromosomes (Cases) with less than 100% fitness are deleted for several reasons. The

main reason is to speed up the subsequent processing. It is also possible that they are of no

value to the problem solving process as they always contain less useful information than a

perfect solution. This is made apparent when examining repair of these imperfect solutions

as shown in Section 5.3. Imperfect solutions could be useful in Cases where no perfect

solutions have been found for a given problem, as they may represent partial solutions, and

could be combined with each other or with seeding and lockdown techniques to provide a

perfect solution.

In the case of multiplier programs it can be seen on analysis of the 'output chains', Section

6.6, that one output is significantly more difficult to synthesise than all of the other

outputs. This makes it probable that most, if not all, flawed solutions contain a flaw in the

same output chain, in similar areas. This would mean that all flawed solutions have the

same or similar flaw and could not therefore be used in combination to create a flawless

program. This may not be the case for other problem classes, e.g. the Sbox problem (see

Appendix 2).

Imperfect solutions may contain interesting information about the evolution of digital

circuits but a complete analysis of them would require an extensive amount of research too

great to cover in this thesis.

6.2.3. Removal of duplicate programs

The CGP runs can produce structurally identical programs. These duplicates are removed

to speed up the pre-processing and the CBR cycle. Although duplicates are of no use to the

CBR cycle, it may be useful to know the frequency of occurrence of each structure found.

84

6. CBR as a potential solution to the reuse problem

This information can be useful when examining the search space. The frequency data

could also be useful to guide the CBR system into 'easier' territory, the hypothesis being

that structures that are common are easier for the CGP to find and therefore may be easier

to adapt, as the required adaptation may be easier to find. This notion of 'Fishing in a well­

stocked pond', is a subject for future work. In order to compare the structures of the EC

produced programs they must be processed to ensure that structurally identical programs

have identical chromosomes (genotypes). To ensure this conformance several processes

are required. Redundant cells are emptied, then the remaining cells are compressed and

normalised. The empty cells left at the end of the chromosomes after these processes are

not removed. This facilitates matching of chromosomes, as they are the same size, even

when the programs they describe are different sizes. These processes are shown in Figure

29 and explained in greater detail next. These steps simplify comparison of programs.

Program chromosOIre created by EC:

Redundant
Cell
Removal 1 X 1 X X 1 1

Compression 1 / ~
_II

Nonnalise 1 1 1 1

X

Key:
• Used cell
o Unused cell
X Deleted cell

Figure 29. Refining the chromosomes.

6.2.4. Removal of redundant information

This stage involves the removal of redundant information left over from the evolutionary

process. Here redundant cells that are not connected to the rest of the program are

removed. This is followed by compression and normalisation of the remaining programs to

facilitate the CBR functions of matching, retrieval and adaptation.

85

6. CBR as a potential solution to the reuse problem

6.2.5. Compression

Compression involves removal of the spaces left in the genotype after redundant

information has been removed, see Figure 29. This is done to increase the likelihood that

chromosomes describing identical phenotypes will have identical chromosomes. This

facilitates the removal of duplicates and the matching processes. For this same reason the

chromosomes are also normalised, described next.

6.2.6. Normalisation

Normalisation reorders differently ordered cells within a genotype with the same function

into a standard form. Example:

Given the cell:

19 18 16

As 6 represents the AND function, it is obvious that the two inputs 9 and 8 can be

reordered as:

CGP could produce either of these cells, but they are identical in their function.

Some functions e.g. 'a AND NOT b' (function 7) cannot have their inputs rearranged in

this manner unless the cells referred to by the indices, 8 and 9 in this case, are themselves

swapped over in their index positions.

6.2.7. Reduce and refine (remove inverter pairs)

It is possible for further reductions to be made. Firstly a cell may have identical inputs e.g.

the cell:

In this case the cell can be completely removed from the program and the connections of

the relevant cells can be reconnected directly to cell 8.

Next, inverter pairs may occur. This could happen, for example, when a NAND- (NOT a

AND NOT B) gate is the second input to a type 7 gate (a AND NOT b). In this instance the

NOTs cancel out and the NAND gate can be replaced with an AND gate, and the type 7

86

6. CBR as a potential solution to the reuse problem

gate replaced with a type 6 gate (a AND b). This can only be done if no other cells

reference the NAND gate as an input, unless that cell itself has an inversion on the relevant

input, and then that inverter can also be removed. A full list of rules governing the removal

of inverter pairs is given in Table 16.

If the function is Then
11 and input A is from type 15 change 15 to 6 and 11 to 10
11 and input A is from type 9 change 9 to 12 and 11 to 10
7 and input B is from t,YQe 11 change 11 to 10 and 7 to 6
7 and input B is from type 9 change to 12 and 7 to 6
7 and input B is from type 15 change 15 to 6 and 7 to 6
14 and input B is from type 11 change 14 to 12 and 11 to 10
14 and input B is from type 9 change 14 to 12 and 9 to 12
14 and input B is from type 15 change 14 to 12 and 15 to 6

Table 16. The table of rules used to remove inverter pairs. These changes are only applied

if the fitness of the subject program is not affected. The numbers refer to the function types

given in Table 10.

6.2.8. Test evaluation

The primary evaluation procedure used by the CBR is a modified extension to the

evaluation procedure used by the CGP. The modification is that this evaluation uses I-bit

arithmetic, not the 32-bit approach explained in Section 4.1.2. The extensions are the

calculation of behaviour and the recording of errors found. The error recording procedure

uses the I-bit instead of 32-bit approach to simplify error recording. When using the 32-bit

approach the information regarding the position of the errors within the 32-bit word is not

immediately available.

6.2.9. Calculate Behaviour

The behaviour of a BCG program is represented by the binary outputs of every cell for the

given function. In Table 17 the structure (genotype) can be seen for an example of a 3x2-

bit multiplier, and the function and behaviour of this circuit can be seen in Table 18.

87

6. CBR as a potential solution to the reuse problem

0416 2326 2416 1366 0366 1456
8767 5110lO 11567 5806 6lO0lO 8 13 13 lO
9162 lO 000 -1 000 -1 000 -1 000 -1 000-1

000 -1 000 -1 14 17 12 15
7

Table 17. Structural knowledge in a program Case for a 13 gate 3x2-bit multiplier, evolved

using gates 6, 7 and lO (see Table 10.). This representation follows that shown in Figure 7,

but also shows the additional 3rd input used in Miller's representation. Note that even

though the 3rd inputs are shown, none of the gate types used in this example use the third

input, as only the MUX cell type (see Table lO) uses three inputs. As there are three inputs

for each of these cells, the fourth number in each cell represents the gate type.

88

6. CBR as a potential solution to the reuse problem

Inputs Behaviour of genotype from Outputs
a2 al aO bl bO cell index 5 to cell index 24 p4p3 p2 pi pO
00000 00000000000000000000 00000
00001 00000000000000000000 00000
00010 00000000000000000000 00000
00011 00000000000000000000 00000
00100 00000000000000000000 00000
00101 00 I 00000000000000000 00001
00110 0100000000 I 000000000 00010
00111 0110000000 I 000000000 00011
01000 00000000000000000000 00000
01001 00000 I 0000 I 000000000 00010
01010 00010011100000000000 00100
01011 00010111101000000000 00110
01100 00000000000000000000 00000
01101 00100100001000000000 00011
01110 01010011101000000000 00110
01111 01110100000110000000 01001
10000 00000000000000000000 00000
10001 1000000 I 000000000000 00100
10010 0000 I 0000000 I 0000000 01000
10011 1000 I 00 I 0000 I 0000000 01100
10100 0000000000000000000 00000
10101 1010000 I 000000000000 00101
10110 0100 I 00000 I 0 I 0000000 01010
10111 11101001001010000000 01111
11000 OOOOOOOOOOOOOOO 00000
11001 10000 I 0 I 00 I 000000000 00110
11010 00011011100010000000 01100
11011 10011110011100000000 10010
11100 00000000000000000000 00000
11101 10100101001000000000 00111
11110 01011011101010000000 01l1O
11111 11111101010100000000 10101

Table 18. Binary representation of inputs outputs and behaviour for the 3x2-bit multiplier

program shown in Table 17. The behaviour column beneath cell index 5 gives the

behaviour for the first cell in the genotype in Table 17.

Due to the difficulty in interpreting large binary tables like that shown in Table 18, the

columns are compressed into 8-bit base 10 integers, see Table 19. Each row in the 8-bit

compressed representation represents a column of 4x8 bits from the binary representation.

The first six rows (in the 8-bit compressed representation) represent the inputs to the

program, and the last six rows are the outputs of the program. The rows in-between

represent the output or Behaviour of each cell in the program.

32-bit or 16-bit compression could be used instead of 8-bit compression, but these

representations are not as easy to interpret as base ten 8-bit integers. This facilitates human

understanding of the behaviour, and gives a speed up in processing over the binary case, as

explained in Section 4.12.

89

6. eBR as a potential solution to the reuse problem

Inputs
a2 0 0 255 255
a1 0 255 0 255
aO 240 240 240 240
b1 204 204 204 204
bO 170 170 170 170

Cell Behaviour
No.
5 0 0 170 170
6 192 192 192 192
7 160 160 160 160
8 0 204 0 204
9 0 0 204 204
0 0 170 0 170
11 0 76 0 76
12 0 76 170 230
13 0 76 0 68
14 0 0 0 136
15 192 106 192 106
16 0 128 0 136
17 0 128 204 68
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 0 0 0 0

Outputs
p4 0 0 0 136
p3 0 128 204 68
~2 0 76 170 230
pi 192 106 192 106
pO 160 160 160 160

Table 19. 8-bit compressed base 10 integer representation of behaviour shown in binary in

Table 18. Each column in the binary representation is compressed into 8 bit integers shown

in the rows above.

6.2.10. Remove Behavioural Duplicates

This stage of processing removes programs that have identical behaviour. If two programs

are said to be behavioural duplicates it means that there is a one to one correspondence

between behaviour rows (in the 8-bit view), although the rows may be in a different order.

The behavioural match is a more powerful matching function than the structural match as

it can find identical behaviours where structures are different. This because behaviours

capture the context in which structures are used i.e. the binary states of a structure for a

given set of inputs.

90

6. eBR as a potential solution to the reuse problem

6.2.11. Behavioural reduction

This stage examines the behaviour of the circuit to see if any two gates in the same

program have the same behaviour, and then deletes the surplus one. This is made unlikely

with the additional fitness function given in Section 4.1.2 that optimises the size of the

circuit. The additional fitness function makes duplicate behaviour contribute to a poorer

fitness value.

6.2.12. Statistics

The statistical measures (see Figure 30) can be invoked at any point during the pre­

processing and CBR cycle to show the changes in the information in the Case-Base made

by the different processing algorithms. The basic measures are: the number of perfect

solutions in a test sample; the average number of generations required to produce a) all

perfect solutions b) all solutions, and their standard deviations; the average fitness and

standard deviation.

500 programs (structural) reduced to 500 programs

There were 0 structural duplicates

There are 435 100% fit programs

The average fitness is: 99.915% standard deviation: 0.0632455

The average number of all solution generations is 102973 with a standard deviation of 1713

The average number of 100% solution generations is 113912 with a standard deviation of 2071

500 programs (behavioural) reduced to 152 programs

There were 348 behavioural duplicates

There are 129 100% fit programs

The average fitness is: 99.8931 % standard deviation: 0.114708

The average number of all solution generations is 106920 with a standard deviation of 4009

The average number of 100% solution generations is 120910 with a standard deviation of 5057

The smallest number of gates used was 13 by program #0

Figure 30. An example of basic measurements made on a Case-Base of 500 3x2-bit

multipliers.

6.3. Smallest number of gates used

This stage simply counts the number of gates used by each circuit and can deliver a top-ten

of smallest circuits in a Case-Base. This is done on a first found basis, e.g. if there are

91

6. CBR as a potential solution to the reuse problem

more than 10 equivalent sizes the first found are reported, see Figure 30 above. This is

useful for locating individual programs for inspection.

6.4. Two into One Principles

The frequencies of specific instances of the two into one principle, counted over

collections of solutions to problems, show modularity and common structures. These have

been divided into two main types, input 2-into-l and internal 2-into-l. Input 2-into-l are

those 2-into-l principles that consist of two inputs to the program and one gate. Internal 2-

into-l principles are those that consist of two gates feeding into 1 gate, as shown in Figures

31 & 28.

6.5. Sibling principles

'Sibling principle' is the name given to two gates that share the same inputs, (see example

in Figure 28).

6.6. Extract chains

Chains are the sub-programs that show the parts of the program that are responsible for an

individual output only. These are useful for showing which outputs are most difficult to

synthesise. This information could lead to a more effective evolutionary search being

defined for a specific problem or problem class.

6.7. The Case and indexing

A program Case consists of function; structure; behaviour; fitness; frequency of occurrence

(of the individual circuit), the number of gates used, and the number of generations taken

when the last improvement occurred. A full example of a Case is given in Appendix 6.

The programs in the Case-Base can be indexed by any of their attributes. This facilitates

experimentation. The primary indices are the program function and fitness. There are

additional indices that could be defined e.g. length (max. number of gates in series), depth

(max. number of gates in parallel), These additional indices would be useful for optimising

various costs e.g. speed, surface area used etc, see Section 4.2.1.5. An example of a Case is

given in Appendix 6 - an example Case.

92

6. CBR as a potential solution to the reuse problem

The indexing mechanism used to index cases in the case-base is a case-based index

(Kolodner, 1993). In this thesis each program is part of a Case in the Case-Base. Each Case

stores its own information pertaining to its similarity to all other Cases. This information

relates to the following four indexes. The functional index uses the function type that each

program was designed for e.g. 3x2-bit multiplier. The structural index uses the structure of

the programs themselves e.g. see Table 17. The behavioural index uses the behaviour of

each program e.g. see example Table 19. Matching of Cases is achieved using the Nearest

Neighbour Matching function that gives the ranking of Cases (Kolodner, 1993). In this

way the index needs only be calculated once, and additional Cases can be indexed in linear

time proportional to the number of Cases in the base. Adaptation Guided Retrieval (AGR)

(Smyth, B., 1996) is used when retrieving candidate Cases for adaptation. Using AGR

means that the Case that can best be adapted to produce a solution is retrieved. In

conventional retrieval the Case that most closely matches the problem definition is

retrieved, regardless of what adaptation knowledge is available. In the approach presented

in this thesis AGR is used to retrieve a Case that can be adapted by existing adaptation

knowledge, to produce a solution.

6.8. Summary

In this chapter CBR was discussed as a principle identification technology. CBR can partly

address the problems of scale through identification, reuse and adaptation of existing

evolved solutions to solve new problems. The notion of the 'principle' or small reusable

program block, and some of unusual features of evolved solutions were discussed.

Next the automatic creation of a case-base was shown. Through the processes of

evaluation, deletion of imperfect solutions and duplicate programs, removal of redundant

information, compression, normalisation and refinement the evolved solutions are prepared

for the case-base. Next, the behaviour of the programs is calculated and statistics of the

case-base are derived. The 'two-into-one' and 'sibling' principles are then counted. The

case structure and indexing mechanism were discussed.

Chapter 7 discusses experiments that were done to identify reusable principles, showing

that the evolved solutions are modular in nature and that it is possible to extract and reuse

information contained in the evolved solutions.

93

7. Experiments to Identify Reusable Sub-programs

7. Experiments to Identify Reusable Sub-programs

This Chapter examines methods for identifying sub-programs that can be reused to build

larger programs that may be more efficient than any conventionally designed alternative.

In these experiments two types of arithmetic multipliers were examined: the 3x2-bit

multiplier (3 bits by 2 bits) and the three-bit multiplier. Trying to extract principles by

studying two and three-bit multipliers is a difficult problem because the 3x3-bit multiplier

is considerably more complicated. The 3x2-bit multiplier provides a useful bridge between

these two circuits and thus may assist attempts to find scalable principles of construction.

Experiments were carried out to produce 50 perfect solutions for both the 3x2 and three-bit

mUltipliers. The maximum number of cells allowed was equal to the number required in

the most efficient conventional designs. In the case of the 3x2-bit multiplier 15 two-input

gates are needed, while the three-bit multiplier requires 30. Two different sets of gates

were used. The experimental set-up was as follows:

Three-bit multiplier population size 5, mutation 3 genes on average, gates 6; 7; 10,

geometry 1 x 30, levels-back 30.

Three-bit multiplier population size 5, mutation 3 genes on average, gates 6 - 15, geometry

1 x 30, levels-back 30.

3x2-bit multiplier population size 5, mutation 3 genes on average, gates 6 - 15, geometry 1

x 15, levels-back 15.

MUX gates were not allowed in these experiments as they do not generally occur in the

conventional circuits and also they make the comparison to the conventional circuits much

more difficult.

All of the programs examined were processed to make a basic Case-Base as outlined in

Section 6.2. These experiments firstly involved an examination of sub-programs that are

directly connected to inputs and secondly the examination of those that are not. Figure 31

shows the connections between the gates in the 2-in to-l SUb-programs. When the

frequencies of the 2-into-l sub-programs in a program are calculated a "fingerprint" for

that program is defined. Fingerprints of evolved programs differ from those of human

designed programs. These differences are shown in Figures 32, 33 and 34. One identified

94

7. Experiments to Identify Reusable Sub-programs

sub-program is shown in Figure 28 (2-in to-I example). Sub-programs like the "sibling

example", also shown in Figure 28, are the subject of future work.

Figure 31. The 2-into-1 sub-program layout.

The results of the experiment showed that the input sub-programs (the inputs are connected

to the primary program inputs) closely followed the human design. In the programs studied

the products of pairs of inputs are calculated. These products (the AND-gates on the left­

hand side of the Figures that are directly connected to the inputs) can be seen in the

examples of the two-bit multiplier for the evolutionary design and the human design shown

in Figures 15 a and 15 b, respectively.

The evolutionary designs are markedly different from the conventional designs in the way

that they reuse parts of the circuit, for example, the unusual reuse of a product of two low

significant bits directly in the output of a high significance product. These unusual features

are shown in Figure 27. It can be seen that the output P 0 is reused to generate P 2, whereas

in Figure 28 (the conventional human design) P 0 is not used in any other part of the

circuit.

Figure 32 shows the frequencies of 2-in to-I sub-programs, that are not connected directly

to inputs, for 50 three-bit multiplier circuits, with expert recommendations for available

gate functions 6, 7, and 10 that were intended to promote elegant solutions. The 'Sub­

program type' numbers each of the 2-into-1 sub-program instances in order with the

highest frequency first. The first six bars represent sub-programs: 6-6-10,6-10-10,6-10-6,

6-6-6,6-6-7, and 6-7-10. The first bar in Figure 32 is the frequency of sub-program "2-in

to-I example" in Figure 28 and it is used significantly more than the other sub-programs.

The fifth bar in Figure 32 is the frequency of the sub-program shown in Figure 27. The

sub-programs represented by the first four bars in Figure 32 are common in conventional

designs. The sub-program shown in Figure 27 is novel and is not used in the conventional

human design. It is clear that much of the evolutionary two-bit multiplier can be reused to

build a three-bit multiplier. This implies that the larger solutions tend to contain the same

sub-programs as the smaller solutions.

95

7. Experiments to Identify Reusable Sub-programs

Figure 33 shows the frequencies of the 2-in to-l sub-programs, that are not connected

directly to inputs, for 50 three-bit multiplier circuits using gates 6 to 15. In this experiment

no assumptions were made about suitable gate functions. It was hoped that the experiment

would reveal the fundamental building blocks of the multiplier circuits. There were 309

different 2-in to-l sub-program types. The six most frequent sub-programs were 6-6-10, 6-

15-11, 15-15-10, 6-6-7, 15-6-11, and 15-6-13. It can be seen that the dominant sub­

program is once again 6-6-10. This confirms that the conventional structures are most

common. It is noteworthy that the gate function 15 occurs very often. This was unexpected

as the use of a NAND gate is not familiar in conventional multiplier design.

3 5 7 9 11 13 15 17 19 21 23 25 27
Sub-program type

Figure 32. The frequencies of 2-in to-1 sub-programs, that are not connected directly to

inputs, counted for fifty three-bit multiplier circuits with expert recommendations for

available gate functions 6, 7, and 10. The six most frequent sub-programs are listed.

The graphs in Figures 32, 33 and 34 show how common or rare the different sub-programs

are. The 'sub-program type' in each of the figures is simply an identification number.

96

7. Experiments to Identify Reusable Sub-programs

26

24 1) 6-6-10

22 2) 6-15-11

20
3) 15-15-10
4) 6-6-7

18 5) 15-6-11

16 6) 15-6-13
>.
u c 14 11)
;:J

~ 12
~

10

8

6

4

2

29 57 85 113 141 169 197 225 253 281 309
Sub-program type

Figure 33. The frequencies of 2-in to-l sub-programs, that are not connected directly to

inputs, for 50 three-bit mUltiplier circuits without expert recommendations for gate

functions, using gate types 6 to 15. The six most frequent sub-programs are listed.

30

27 1) 6-6-10
2) 6-15-7

24 3) 6-6-7
4) 6-15-11

21 5) 15-15-10
6) 6-6-6

>. 18
u c
11)

15 ;:J

g'
d: 12

9

6

3

0
1 12 23 34 45 56 67 78 89 100 111 122

Sub-program type

97

7. Experiments to Identify Reusable Sub-programs

Figure 34. The frequencies of 2-in to-l sub-programs, that are not connected directly to

inputs, for 50 3x2-bit multiplier circuits without expert recommendations for gate

functions 6 to 15. The six most frequent sub-programs are listed.

In Figure 34 a total of 124 sub-programs were identified. The first six were 6-6-10, 6-15-7,

6-6-7,6-15-11, 15-15-10, and 6-6-6. It should be noted that taken in isolation some of the

sub-programs are equivalent. For instance, 6-6-10 and 15-15-10 could be considered to be

logically identical however it may be that some of the internal connections are reused in

another part of the circuit. Once again, the figure shows that 6-6-10 is dominant. At this

stage it is not known which sub-programs are responsible for the efficiency of these

designs. For instance, the sub-program 6-6-7 is here the third most frequently occurring

and the fifth and the fourth in the previous two experiments, respectively.

It has been seen that all multipliers largely use the same type of sub-programs. This shows

that they could potentially be reused by a CBR system to design multiplier programs with

more than three-bit multiplication.

Preliminary experiments showed that the results were dependent on decisions made in

evolving the programs using the EC. These decisions include the geometry of the FPGA

program, the gates made available to the EC and the human knowledge used in specifying

the requirements. Initial experiments allowed a wide variety of gates to be used by the EC.

The CBR system showed that the EC only required a limited set of these gates for

optimum performance.

The aim of the experiments in the second investigation was to examine the evolved

programs and show that these share some common sub-programs that can be used to build

larger programs. Two different sub-programs were identified: those that are directly

connected to inputs, and those for which this is not the case. The frequencies of

occurrences of these two types can differ significantly. It is necessary to examine very

specific types of sub-programs to avoid the combinatorial explosion of enumerating all

possible SUb-programs.

7.1. Comparison of circuits of different sizes

This experiment involves the scaled matching of programs of different sizes, from the

same class e.g. multiplication. When a match has been found between two programs of

different sizes the difference between the programs is identified.

98

7. Experiments to Identify Reusable Sub-programs

This identification of difference could be repeated for subsequently increasing sizes of

program pairs. Then these differences would be examined to see if a general principle

could be discerned in the increasingly large adaptations.

To compare programs of different sizes the behaviour of a larger program is examined to

see if the smaller program's behaviour exists as part of the larger program i.e. the

behaviour of the larger program includes all of the behaviour of the smaller program.

When two such programs are found, the identified difference between the two programs is

the adaptation that needs to be applied to a program of the smaller size to make it

equivalent to the larger one.

The smaller program is easier to evolve and after adaptation it is equivalent to the larger

program, therefore greatly reducing the time required to produce one of the larger

programs. If the extensions themselves could be extended then automatic scaling could be

achieved. If automatic scaling could be achieved a general principle for scaling that class

could possibly be derived.

Two experiments were conducted:

• The first experiment derives an adaptation (extension) from a 3x2-bit multiplier and a

3x3-bit multiplier (two solutions of the same class and a contiguous scale increase). This

adaptation is referred to as adaptation 1. Two solutions were retrieved from the case-base

that met the requirement that all of the behaviour of the smaller program (3x2) was part of

the behaviour of the larger program (3x3). This is referred to as a 'scaled behavioural

match'. An adaptation is then defined as being the sub-programs that must be added to the

3x2-bit multiplier solution to make it behaviourally equivalent to the 3x3-bit multiplier

program. Then adaptation 1 (Appendix 3) was applied to the same 3x2-bit multiplier to

show that the adaptation contains all of the necessary information to adapt a 3x2-bit

multiplier to a 3x3-bit multiplier.

• The aim of the second experiment was to show that adaptation 1 could be applied to a

3x2-bit multiplier that was not a scaled behavioural match with the 3x3-bit mUltiplier from

which adaptation 1 was derived, to obtain a new 3x3-bit multiplier.

Example: How to compare two circuits of different sizes:

99

7. Experiments to Identify Reusable Sub-programs

The smaller circuit's truth table (See the 3x2-bit multiplier in Table 20.) is half the size (in

terms of the length of the rows) of the next larger circuit's truth table (See the 3x3-bit

multiplier in Table 21).

On examination of the behaviours of these two sizes of programs it can be seen in Tables

20 and 21 (shaded areas) that the 3x2, if it were a scaled behavioural match to a 3x3,

would have a match for each of its behaviour rows in the first half of the behaviour rows of

the 3x3. The second halves of the 3x3 behaviour rows mayor may not match. The rows

that do match are referred to as symmetric and asymmetric. A 'symmetric' behaviour row

is a row in the larger of the two programs that is identical about the center point of the

behaviour column (see Table 21 index 11). An 'asymmetric' behaviour row is one where

the second half of the row is not identical to the first half, but the first half does match with

a behaviour row in the smaller program (see Table 21 index 17). Those that don't match

are referred to as 'new' (see Table 21 index 10). The term 'new' means that this behaviour

did not exist or partially exist (asymmetric) in the original3x2 program. For example a 3x2

matches the following 3x3. The letters on the left-hand side in Table 21 are annotations

made by the matching process (s = symmetric, n = new, a = asymmetric). The 3x3 has one

more input than the 3x2, shown in Table 21 as '3x3 only'.

This behavioural matching process also shows how to adapt the smaller program. The

symmetrical matched rows should be preserved in the subject of the adaptation (a new

3x2). The rows in the smaller program that match an asymmetric row in the larger one can

be deleted, in the subject of adaptation, as they will be replaced by new cells that give the

new asymmetric behaviour. Symmetric and asymmetric are identified by and necessary for

the matching process. Rows that exist only in the 3x3 behaviour are new and have to be

inserted by the adaptation.

If a Case-Base of 3x2-bit multipliers is matched against a Case-Base of 3x3-bit multipliers

several scaled behavioural matches are found (see Appendix 4). For example a 3x2

matches the following 3x3. The letters on the left-hand side are annotations made by the

matching process (s = symmetric, n = new, a = asymmetric).

100

7. Experiments to Identify Reusable Sub-programs

Index Behaviour (converted from binary
into 8 cells of 8-bit integers)

0 0 0 255 255
1 0 255 0 255
2 240 240 240 240
3 204 204 204 204
4 170 170 170 170

Table 20. An annotated behaviour table for a 3x2-bit multiplier. The FPGA program that

produced the behaviour in this table can be seen in Table 17.

In Tables 20 and 21, each behaviour box gives an 8-bit integer in decimal, each row in

Table 20 contains 4 such boxes and each row in Table 21 contains 8. Each row represents

the behaviour of one cell or gate in the program. 8-bit base ten integers are used instead of

binary as a visual aid. The indices in brackets e.g. (00) to (0 4) or (0 5) show the cells that

are used for outputs from the program. The shaded areas in each table represent the

behaviour of the 3x2-bit multiplier. The fIrst parts of each table (20 and 21) show the

inputs to the mUltiplier programs and are considered to be a special part of the behaviour.

The inputs have been separated from the behaviour of the program itself for clarity.

101

7. Experiments to Identify Reusable Sub-programs

Index Behaviour (converted from binary into 8 cells of 8-bit integers)
0 0 0 255 255 0 0 255 255
I 0 255 0 255 0 255 0 255
2 240 240 240 240 240 240 240 240
3 (3x3 only) 0 0 0 0 255 255 255 255
4 204 204 204 204 204 204 204 204
5 170 170 170 170 170 170 170 170

Table 21. An annotated behaviour table for a 3x3-bit multiplier.

It can be seen that the shaded behaviour rows of the 3x2-bit multiplier shown in Table 20

have matching behaviour rows in the 3x3-bit multiplier (shown in Table 21). The 3x3-bit

multiplier (Table 21) has some behaviour rows, e.g. rows 13 and 14 that both behave in the

same way as row 7 in the 3x2-bit multiplier (Table 20), but it row 14 is different to row 13

in the second half of its behaviour row. Row 14 is asymmetric where as row 13 is

symmetric around the center for the row.

7.2. Extracting differences and expansions

By extracting the differences of two different sized circuits of the same class the

knowledge of how to adapt a smaller circuit into a larger is derived.

To do this the annotated Table 21 is used. The transformation is built by identifying each

gate type and its behavioural context. This is referred to as a Behavioural Context Triple

(BCT), an example follows (see Figure 35). This is in keeping with the concept of the 2-

102

7. Experiments to Identify Reusable Sub-programs

into-1 principle, presented earlier. This BCT is an 'in context' 2 into 1 principle (see

Figure 31).

Starting at the top of the behaviour table (after the input lines) in Table 21, the first line of

program behaviour is at index 6. The annotation here is's' for symmetric, so this line

already exists in the 3x2 circuit and is not a difference between the two programs. The

corresponding line in the 3x2 that is to be adapted, is preserved. Next at index 7, the

annotation is 'n' for new, so this line is a difference between the two circuits and must be

added to the adaptation. Looking at the genotype containing this cell, the second cell in

Figure A3.1, it can be seen that the two inputs to this cell are inputs of indices 1 and 3. To

create a Behaviour Context Triple (BCT) the behaviour of each of these inputs is taken,

then the function type of the cell and the behaviour of the output (New output) of the cell is

recorded. The BCTs are the components of an adaptation.

Input Behaviour
1 0 1 255 10 1 255 10 1 255 10 1 255
3 0 10 10 10 1 255 1 255 1 255 1 255

Figure 35. A Behavioural Context Triple (BCT), showing two behavioural inputs, a

function and a Behavioural output.

This recording process is repeated for all asymmetric and new cells. This process gives a

collection of BCTs that constitute an adaptation that can be used to adapt a 3x2-bit

multiplier to a 3x3-bit mUltiplier.

In order to adapt a 3x2-bit mUltiplier to a 3x3-bit multiplier it is necessary to renumber the

cells of the program to take the extra input into account. This is a simple task as this

program is the same as the original program and it does not use the additional input. For

this reason it should be noted that the 'unused input' 3x2 is symmetrical in its behavioural

rows when expanded to use the 3x3-bit multiplier truth table. It is necessary to expand the

3x2 to the 3x3 truth table in order to apply the adaptation to it.

These BCTs, together forming an adaptation, can now be applied to another 3x2-bit

multiplier program. This is done by matching the required input behaviours of each BCT in

the adaptation, that are not available as outputs from other BCTs in the adaptation, to

existing behaviours in the new 3x2-bit multiplier to be adapted to a 3x3-bit multiplier. This

is how Adaptation Guided Retrieval is realised. Each BCT is applied to the 3x2 under

103

7. Experiments to Identify Reusable Sub-programs

adaptation in the order that they were derived (starting at the first cell in the genotype). The

outputs of each BCT become part of the behaviour of the partially adapted 3x2-bit

multiplier as each new cell is added, thereby producing a new program adapted from a

3x2-bit multiplier using the adaptation.

The adaptation could also be applied to any program containing the necessary behaviour of

the 3x2, e.g. a signal processing program where an old program needs to be scaled-up or

re-engineered to meet a new specification.

A full example is given in Appendix 3. This example shows the extracted adaptation

applied to the 3x2 that the transformation was partly derived from. This was done to show

that all of the necessary information was contained in the transformation.

The next example in Section 7.4 shows the adaptation applied to a different 3x2 program

that was not a behavioural match for the 3x3 or the 3x2 from which the adaptation was

derived. The Adaptation shown in Table 24, was successful showing that the adaptation

can be applied to other programs.

Note: The observation that some cells of the 3x2 have to be replaced in the 3x3 shows that

it is not appropriate to 'lockdown' (Section 5.5.2) an entire 3x2 to speed up the evolution

of a 3x3. This would result in an inefficient solution.

7.3. Identifying a principle

By identifying the differences of extracted differences from circuits of increasing size a

principle for scaling up circuits in a given class could be derived. An alternative to this

could be to generate a schema hierarchy as given by Louis (1993) where the top schema on

each tree is the most general description of a given cluster of differences. Schemas become

increasingly specialised the lower in the hierarchy they appear until each schema

represents a specific Case in the Case-Base. An investigation of the potential of this

schema approach to principle extraction and scaling is the subject of future work.

7.4. Applying an extracted principle.

This stage uses the extracted principle to expand an existing evolved solution to a circuit

with a greater number of inputs.

104

7. Experiments to Identify Reusable Sub-programs

0416 2326 2416 1366 0366 1456
8767 51101O 115 6 7 5806 610010 8131310
916210 000-1 000 -1 000 -1 000 -1 000-1

000-1 000 -1 14 17 12 15
7

A reproduction of Table 17, shown for clarity.

Take the 3x2-bit multiplier from the example in Table 17. and renumber the cells to take

the extra input into account:

0506 2406 2506 1406 0406 1506
9807 612010 12607 6906 71101O 914010
10 170 10 000-1 000-1 000 -1 000 -1 000 -1
000-1 000 -1 0 15 18 13
16 8

Table 22. The 3x2-bit multiplier from the behaviour example Table 19. with indices

renumbered to take the extra input of the target 3x3-bit multiplier into account. The third

inputs in each cell have been set to zero, as all of the gates in this example are two input

gates. A new output is added and set to zero, to take the extra output of the target 3x3-bit

multiplier into account.

The numbers with underscores are the input connections of each cell that have been

increased by 1 to make room for the new input. As the 3x3 has one more output than the

3x2, an additional output is also added (p5) in Table 23 with a default index setting of O.

The rows marked pO to p4 are the outputs of the original 3x2 and correspond directly to the

output indices (15, 18, 13, 16, 8) given in the above structure. Then using the 3x3-bit

multiplier PLA instead of the 3x2-bit multiplier PLA the following behaviour is produced:

Index Behaviour
0 (Jl5 -default) 0 0 255 255 0 0 255 255
I 0 255 0 255 0 255 0 255
2 240 240 240 240 240 240 240 240
3 3x30nly 0 0 0 0 255 255 255 255
4 204 204 204 204 204 204 204 204
5 170 170 170 170 170 170 170 170

6 s 0 0 170 170 0 0 170 170
7 s 192 192 192 192 192 192 192 192
8 s (pO) 160 160 160 160 160 160 160 160
9 s 0 204 0 204 0 204 0 204
10 s 0 0 204 204 0 0 204 204
II s 0 170 0 170 0 170 0 170
12 s 0 76 0 76 0 76 0 76
13 s {P2) 0 76 170 230 0 76 170 230
14 s 0 76 0 68 0 76 0 68
15 s (p4) 0 0 0 136 0 0 0 136
16 s (pi) 192 106 192 106 192 106 192 106
17 s 0 128 0 136 0 128 0 136
18 s (p3) 0 128 204 68 0 128 204 68
19 Redundant 0 0 0 0 0 0 0 0

105

7. Experiments to Identify Reusable Sub-programs

20 Redundant 0 0 0 0 0 0 0 0
21 Redundant 0 0 0 0 0 0 0 0
22 Redundant 0 0 0 0 0 0 0 0
23 Redundant 0 0 0 0 0 0 0 0
24 Redundant 0 0 0 0 0 0 0 0
25 Redundant 0 0 0 0 0 0 0 0

Table 23. The behaviour for a 3x2-bit multiplier with an extra input required by a 3x3-bit

multiplier. This prepares the 3x2 for expansion to the 3x3. The rows marked as

'Redundant' are not used in the program. Table 22.

It can be seen that the 3x2 is symmetrical about the mid-points of its behavioural rows

when expanded to use the 3x3 PLA file. This is expected as this program is the same as the

original 3x2 program and it does not use the additional input. It is necessary to expand the

3x2 to the 3x3 PLA file in order to apply an expansion to it.

Next the adaptation is applied to this prepared 3x2. The relevant behaviour required by

each BCf in the adaptation is found in turn. As the inputs to each BeT are found the gate

or cell for that BCf is inserted into the expanding 3x2 program. This produces the 3x3-bit

mUltiplier program (genotype) shown in Table 24. The circuit (phenotype) is shown in

Figure 36.

Table 24. The new 3x3-bit multiplier after adaptation from the 3x2-bit multiplier from the

behaviour example Table 19. The white cells have not been changed during adaptation.

The light shaded cells represent new cells inserted by the adaptation. The dark shaded cells

represent cells that have been replaced by the adaptation.

106

7. Experiments to Identify Reusable Sub-programs

~--~~Po

r;::::============}f!>------1~ ::
rt===========~~ p~

Figure 36. An example of a 3x2-bit multiplier that has been adapted (scaled up) to a 3x3-

bit multiplier program.

Figure 36 shows an example of an adapted program. The gates containing no letter are

unchanged from the original 3x2-bit multiplier. The gates containing an 'a' are the

asymmetric gates that have the behaviour of the 3x2-bit multiplier, but had to be replaced

to give the full functionality required for the 3x3-bit multiplier. The gates containing 'n'

are gates that are new in this adapted program.

7.5. The Wee Ken evolved FPGA program reuse system

The CGP-CBR software system that supports this research, known as 'Wee Ken', has been

implemented. Wee Ken was implemented in C++ using the Borland 4.5 C++ compiler in

Windows 95. The CBR components of Wee Ken are original code by the author. The CGP

software used in this thesis to evolve the FPGA programs was adapted from the original C

code developed by J. F. Miller. Wee Ken must be supplied with truth tables and parameters

defining the target architectures of the digital circuit programs. In Wee Ken, all other

functionality, including adaptation, is automated.

107

7. Experiments to Identify Reusable Sub-programs

7.6. Summary

This work has shown that it is possible to automatically extract and apply principles of

design in the complex domain of Binary Cartesian Genetic programming. These principles

contain knowledge pertaining to structured sub-programs, and give an understanding of the

evolved programs. Previous work in this area has been in domains where the solutions

produced by evolutionary algorithms had definite components that can be easily made into

a Case-Base (Maher et ai., 1996).

The work presented here addresses the difficult task of identifying components for Case

building in a domain where these components are not obvious. The techniques developed

are seen to produce digital circuits in the form of gate array programs that may be more

efficient than their equivalent human design. The techniques developed also show how to

adapt programs produced by EC, and how to learn the principles involved in EC generated

digital circuit program designs, and apply them to new problems.

Further analysis will involve examining different types of sub-program format from that

shown in Figure 31, for example the "sibling example" in Figure 28. Interpretation

becomes more difficult using a larger number of function choices, and it has been shown

that the CBR system can automatically identify sub-programs that were known to human

designers, and also identify novel sub-programs. This allows the CBR system to

automatically suggest limited function types for the algorithms used in evolving new

programs to improve performance. It may also be possible to use the CBR system to

automatically seed the evolutionary algorithm, a technique proved by Maher et ai. (1996).

Their approach uses evolution to adapt an existing solution to a new problem. This

approach could be used to re-engineer small changes to existing programs, possibly using a

technique similar to Lockdown (See Section 5.5.2).

In the experiments reported here the maximum number of cells available to the CGP with

which to evolve a program was equal to the number required to build the conventional

circuit. It is already known that the larger the maximum number of gates allowed to

construct the circuit the easier it becomes to evolve (Miller et ai., 1998a). This could imply

that in these experiments the more conventional sub-programs are likely to dominate.

Further experiments where the maximum number of cells available is less than the

conventional should reveal whether or not conventional sub-programs also appear in more

efficient evolved programs.

108

7. Experiments to Identify Reusable Sub-programs

From the point of software reuse, this work shows that it is possible to achieve a high level

of automation of software reuse in Binary Cartesian Genetic programming where precise

requirements can be specified, and behaviour can be completely analysed. Future work

could also examine the portability of the proposed approach to other software engineering

problems.

Experiments of a similar nature to those described in this section have been carried out on

two-bit adders (See Appendix 5). The analysis showed once again that there were some

sub-programs that were much more frequent than the majority of the sub-programs. In

these experiments recommendations for atomic components were made to promote elegant

solutions. These recommendations were compared to those suggested by the frequency

analysis of the sub-programs and to those suggested by the frequencies of the atomic gates.

The experiments showed that the expert recommendations gave rise to high numbers of

duplicate solutions in the sets. Further to this the sub-program recommended atomic gate

selections gave rise to fewer duplicate solutions and a slightly higher average fitness in

each set. The average number of generations required to produce a solution remained close

to that of the expert recommendation based set. The expert based results and the Case-Base

based results were compared to results based on the frequencies of the atomic gates. The

recommendations suggested by the frequencies of the atomic gates gave lower numbers of

perfect solutions, larger numbers of duplicate solutions and a lower average fitness. This

suggests that the solutions with the highest fitness tend to be modular in nature. It is

expected that larger problems in the same class will show greater differences between the

techniques. It is also possible that these results may not hold for all problem classes, as

some problem classes are not currently known to have modular solutions.

109

8. Conclusions

8. Conclusions

It has been shown that there are problems in software reuse. These problems are the creation

and documentation of software libraries, and the identification and adaptation of software

artefacts in these libraries to solve new problems.

It was seen that BC techniques could be used to create software for a library in an automated

fashion. By developing a Case-Base it was shown how these libraries could be automatically

documented. Through the use of CBR techniques it was shown that artefacts in these

automatically generated software libraries could be automatically identified and adapted to

solve new problems.

The modularity of the evolved programs was shown, and the mechanism by which these

modules could be assembled to create larger programs was illustrated with the conventional

techniques of logic synthesis.

It was proposed that by examining examples of increasing scale from a given problem class

that principles of scale for that problem class could be identified. Methods for identifying

suitable material for deriving such principles have been shown, with additional methods for

extracting and applying this knowledge.

The main research problem was how to apply automatic identification, refinement and

application of substitution rules to Cases with non-flat, structured problems and solutions.

This involved research into developing the latest methods in CBR adaptation techniques, to

apply these techniques to Cases with unstructured solutions, which was a significant advance

over the application of techniques like these to Cases with simple numerical atomic solutions.

The main contribution of this thesis was in the area of automatic extraction and application of

principles in the complex domain of software reuse in FPGA programming. This means

applying and enhancing the ideas given by Hanney (1996), and by Smyth (1996) to structured

CBR Cases with complex interacting components with no obvious modules.

The BC techniques shown were able to produce digital circuits in the form of FPGA programs

that were more efficient than their equivalent human design, in a design area where there is

very limited design knowledge.

110

8. Conclusions

The techniques developed show how to refine programs produced by EC, and how to learn

principles involved in digital circuit design, and apply them to new problems.

It was argued here in this thesis that a much larger space of possible designs can be explored

by employing an evolutionary algorithm together with a process of assembling and test. This

has been demonstrated in the case of digital circuit program design, in particular, arithmetic

circuits.

This thesis has examined some fundamental questions concerning the role of evolutionary

algorithms as a novel methodology for design. It has tried to indicate a possible answer to the

question: Can new principles of design be discovered by using a simulation of some of the

processes of evolution? This leads on to the further question: In which type of design

problems is it most likely that new principles might be discovered? Clearly since the search

space of all possible designs is enormously enlarged compared with traditional rule-based

methods, an extremely fast fitness function and a large amount of computation effort are

required. It should be anticipated that tens of millions, even billions, of genotypes would have

to be examined. Digital circuit design is an ideal candidate for novel principle extraction. The

fitness function simply uses the bit wise operations that CPUs were designed for. For

example, on a 450MHz PC one can evaluate 50,000 designs for a three-bit multiplier per

second (in a 1 x 30 geometry). In spite of the extraordinary speed of fitness evaluation it is

time consuming to evolve correct three-bit multiplier circuits. About 50 million genotypes

need to be examined to achieve a high probability of success. Thus it becomes essential to

understand more about the nature of the fitness landscapes. This work has been undertaken in

Miller et al. (2000b) and Vassilev et al. (2000). Even with a computer that could deliver large

numbers of correct designs the problem of data mining the evolved circuits to extract

principles still exists. It is not feasible for an expert to study and compare hundreds of

unconventional designs. An automated approach to this problem, using techniques of CBR,

was shown.

In Section 2.4 it was shown how an evolutionary algorithm together with a process of

assembling and testing could be used to produce novel and efficient designs for digital

arithmetic circuits. One of the central ideas was to look at the possibilities of identifying new

principles which would allow the construction of efficient multiplier circuits of arbitrary size

by studying evolved examples of two and three-bit multipliers. In one sense this problem is

ideal for artificial evolution. Firstly, this is because the evaluation process for a genotype

representing a circuit is extremely fast as it relies on precisely those simple bit-level

operations that modem CPUs were designed for. Secondly, the binary nature of the evolved

III

8. Conclusions

circuits makes them relatively simple to understand. There are two ways in which it might be

possible through artificial Evolution to try to build efficient large systems. One is to try to

discover a general scalable principle of design. The second is to try to produce as efficient and

large building blocks as possible. The work in this thesis develops an automated way of

extracting sub-principles in evolved circuits. This was achieved through examination of the

products of CGP. The second aspect concerns the process of CGP and the nature of the

fitness landscapes associated with these digital circuits, examined by Miller et al. (2000b),

and by Vassilev et al. (2000). An examination of the relationship between these two aspects

shown in Figure 37, process and products, is the subject of future work. It is hoped that this

will show when evolutionary techniques should be used and when CBR techniques could be

applied.

Identifying Principles

I
in Evolving Circuits

I (Landscape Analysis)

Evolutionary
~ Evolved Data

Algorithm

L Identifying Principles ~ in Evolved Circuits

(Data Mining)

Figure 37. The principle extraction loop.

The structure of fitness landscapes has been studied in terms of their smoothness, ruggedness

and neutrality by Vassilev (1997b), and by Vassilev et al. (2000). This has been done using an

information analysis on a time series that is obtained by sampling the fitness values on a

random walk. A major impediment in studying the structure of circuit Evolution landscapes is

that they originate from two completely different alphabets responsible for the gate

functionality and the connectivity of the evolved digital circuits. It was shown that it might be

better to consider these landscapes as a product of three subs paces associated with the gate

functionality, internal and output connectivity of the gate array. Hence, the genotypes sub­

divide into three chromosomes with different characteristics. It has been shown that the

landscapes have vast neutral areas with sharply differentiated plateaux and these in turn are

112

8. Conclusions

related to the scale the objective function. The landscapes were found to become more

continuous with increasing scale (Vassilev, 1997b; Vassilev et at., 2000).

Even with a computer that could deliver large numbers of correct designs an expert would

have the problem of examining all of the evolved circuits to extract principles. It has been

shown that it is possible to automatically identify and apply the evolutionary design principles

contained within the phenotypes. This greatly reduces the knowledge acquisition bottleneck, a

primary factor in the creation of a Case-Base in any CBR system (Hanney, 1996). In previous

work where evolutionary algorithms were used in conjunction with CBR the genotypes have

had clearly identified modules (Maher et at., 1996), making the construction of the Case-Base

simple. It was shown here that by examining the frequency of occurrence of small sub-circuits

(2-in to-I) that a sort of program "fingerprint" could be constructed. This not only confirms

the familiar conventional principles but also reveals novel sub-circuits that are good building

blocks in the evolved circuits. It was shown that the principles identified in small-scale

multipliers (two-bit) match those identified in two larger scale multipliers, the two-and-a-half­

bit multiplier and the three-bit multiplier. This suggests that there are principles in these

multiplier circuits that may hold true for all sizes of multipliers and as such may be used to

create larger scale multipliers that are beyond the reach of current evolutionary processing

power.

Another important factor is that modular construction bypasses the necessity for testing of the

truth table for the whole circuit, only the modules need be tested. For example the ripple carry

adder principle shows that any number of one bit carry adder units may be chained together to

produce a perfectly functional larger carry adder, like the conventional sixteen-bit carry adder.

This reduces the problem of exhaustive testing of very large circuits. This identification of

principles facilitates experts in understanding the nature of the evolutionary designed

solutions. It is possible that a new carry adder principle may be discovered that produces more

efficient carry adders. These processes enable the creation of a Case-Base, the foundation for

a reasoning system that could be used to solve the scaling problem. This leads the way to the

automation of the reasoning techniques of CBR.

8.1. Future Work

There is still a long way to go in this field. It is of interest to investigate why particular

principal modules are evolved. These modules could be easier to evolve as they are more

flexible e.g. more easily modified for multiple uses (more general).

113

8. Conclusions

Current results obtained were based on simple gate array circuit programs. Future work

entails using the above techniques in the creation of programs that are too large to evolve. It

is also of interest to examine the potentials for applying these techniques to programs with

higher level functions, e.g. assembly language with states and loops.

Future work could examine the frequencies of the BCTs themselves, giving the modularity of

the programs from a behavioural (in context) point of view. New test problems could be

defined which will potentially allow simpler generalisable principles to be identified. These

problems could be for example, a 4x2-bit multiplier that could then be compared to a 4x3-bit

multiplier and 3x3, 3x2-bit multiplier.

Future work of interest could be to induce rules as given by Hanney (1996) by finding closely

matching programs, of the same class, with small differences in fitness, and defining a rule of

the form 'IF this change is made THEN this increase in fitness is achieved'. These rules could

then be applied to programs of larger sizes to examine the possibility that some of these rules

might be scale independent principles.

Future work will attempt to generalise identified differences from circuits of increasing size in

order that a principle for scaling up circuits in a given class could be derived. Further analysis

will involve examining adaptations generated by pairs of programs from different classes that

have similar components, e.g. multipliers, signal processors and carry adders. It may also be

possible to use EC to adapt large program solutions created by CBR, i.e. using the CBR

system to seed the EC, a technique demonstrated by Hunt (1995) and demonstrated in the

'Lockdown' process in Section 5.5.2. This is using EC for the CBR sub-task of adaptation,

supported by Maher et al. (1996).

114

References

References

Akers, S. B. (1978). Binary decision diagrams. IEEE Transactions on Computers C-27, 509-
516.

Back, T., Hoffmeister, F. and Schwefel, H. P. (1991). A survey of evolutionary strategies. In:
Belew, R and Booker, L. (eds.), Proceedings of the 4th International Conference on Genetic
Algorithms, pp. 2-9. San Francisco, CA: Morgan Kaufmann.

Banzhaf, W., Nordin, P., Keller, R E. and Francone, F. D. (1998). Genetic Programming: An
Introduction. San Francisco, CA: Morgan Kaufmann.

Barletta, R (1991). An Introduction to case-based reasoning. AI Expert.

Bergmann, R and Wolfgang, W., (1996). PARIS: Flexible Plan Adaptation by Abstraction
and Refinement. Centre for Learning Systems and Applications, University of Kaiserslautern,
P.O. Box 3049, D-67653 Kaiserslautern, Germany.

Biggerstaff, T.J. (1992). An Assessment and Analysis of Software Reuse. Advances In

Computers, Vol. 34.

Brace, K. S., Rudell, R L. and Bryant, R E. (1990). Efficient implementation of a BDD
package. In: Proceedings of 27th A CM/IEEE Design Automation Conference, pp. 40-45.

Bramer, M., Liu W., Thompson, S., Dattani, 1., (1996). Knowledge Discovery and
Datamining. Tutorial at Expert Systems 1996. 16th Annual Conference of the British
Computer Society Specialist Group on Expert Systems.

Brayton, R K., Hachtel, G. D., McMullen, C. T. and Sangiovanni-Vincentelli, A. L. (1984).
Logic Minimization Algorithms for VLSI Synthesis. MA: Kluwer Academic Publishers.

Bryant, R (1991). On the complexity of VLSI implementations and graph representations of
boolean functions with application to integer multiplication. IEEE Transactions on Computers
40,205-213.

Cendrowska, J. (1987). PRISM: An algorithm for Inducing modular rules. International
Journal of Man-Machine Studies, 27, 349-370.

Chen, X. and Hurst, S. L. (1982). A comparison of universal-logic-module realisations and
their application in the synthesis of combinatorial and sequential logic networks. IEEE
Transactions on Computers C-31, 140-147.

Davio, M., Deschamps J.P. and Thayse A. (1983). Digital systems with algorithm
implementation. Wiley.

Devadas, S. (1993). Comparing two-level and ordered binary decision diagram
representations of logic functions. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 12, 722-723.

Devadas, S., Ghosh, A. and Keutzer, K. (1994). Logic Synthesis. New York: McGraw-Hill
Inc.

Drechsler, R, Gockel, N. and Becker, B. (1996). Learning heuristics for OBDD minimisation
by evolutionary algorithms. In: Parallel Problem Solving from Nature IV, vol. 1141 of
Lecture Notes in Computer Science, pp. 730-739. Heidelberg: Springer.

115

References

Drechsler, R., Sarabi, A., Theobald, M., Becker, B. and Perkowski, M. A. (1994a). efficient
representation and manipulation of switching functions based on Ordered Kronecker
Functional Decision Diagrams. In: Proceedings of the Design Automation Conference, pp.
415-419.

Drechsler, R., Theobald, M. and Becker, B. (1994b). Fast OFDD based minimisation of fixed
polarity reed-muller expressions. In: Proceedings of the European Design Automation
Conference, pp. 2-7.

Flockton, S. and Sheehan, K. (1999). A system for intrinsic Evolution of linear and non-linear
filters. In: Stoica, A., Keymeulen, D. and Lohn, J. (eds.), Proceedings of the 1st NASAIDoD
Workshop on Evolvable Hardware, pp. 93-100. Los Alamitos, CA: IEEE Computer Society.

Flockton, S. J. and Sheehan, K. (1998). Intrinsic circuit Evolution using programmable
analogue arrays. In: Sipper, M., Mange, D. and Perez-Uribe, A. (eds.), Proceedings of the 2nd
International Conference on Evolvable Systems: From Biology to Hardware, vol. 1478 of
Lecture Notes in Computer Science, pp. 144-153. Heidelberg: Springer-Verlag.

Friedman, S. J. and Supowit, K. J. (1990). Finding the optimal variable ordering for binary
decision diagrams. IEEE Transactions on Computers C-39, 710-713.

Fuchs, B., Mille, A., Chiron, B., (1996), Using Explanations to guide Adaptation. ECAI 96.

Fujita, M. and Matsunaga, Y. (1993). Variable ordering of binary decision diagrams for
multilevel logic minimization. Fujitsu Scientific and Technical Journal 29, 137-145. 23

Gibbs S., Tsichritzis D., Casais E., (1990). Class Management For Software Communities.
Communications of the ACM, Vol.33, No.9.

Giraud-Carrier, C. (1996). Flare: Induction with prior knowledge. In: Proceedings of Expert
Systems 1996, vol. XIII of Research and Development in Expert Systems, pp. 173-181. SGES
Publications.

Grundy, D. L. (1994). A computational approach to VLSI analog design. Journal of VLSI
Signal Processing 8 (1), 53-60.

Hanney, K. (1996). Learning Adaptation Rules From Cases. Technical report, Department of
Computer Science, Trinity College, University of Dublin, Ireland. MSc thesis.

Hunt, J. (1995). Evolutionary Case Base Design. Progress in Case-Based Reasoning First UK
workshop. Berlin Springer Verlag.

Iba, H., Iwata, M. and Higuchi, T. (1997). Machine learning approach to gate-level Evolvable
Hardware. In: Higuchi, T. and Iwata, M. (eds.), Proceedings of the 1st International
Conference on Evolvable Systems: From Biology to Hardware, vol. 1259 of Lecture Notes in
Computer Science, pp. 327-343. Heidelberg: Springer-Verlag.

Job, D. and Shankararaman V. (2000). Evolutionary Computation with Case-Based
Reasoning. In Lees B. and Shankararaman V. (eds.), Proceedings of the 5th UK Workshop on
Case-Based Reasoning. To appear in Expert.

Job, D., Shankararaman V. and Miller, J.F. (1999a). Hybrid AI Techniques for Software
Design. The 11th International Conference on Software Engineering and Knowledge

116

References

Engineering. pp. 315-319. Printed by Knowledge Systems Institute Graduate School, Skokie
Illinois.

Job, D., Shankararaman V. and Miller, J.P. (1999b). Hybrid AI Techniques for Automated
Software Reuse. International Conference on Case-Based Reasoning. Technical Report of the
Centre for Learning Systems and Applications (LSA) of the University of Kaiserslautern.

Job, D., Shankararaman V. and Miller, lP. (1999c). Combining CBR and GA for Designing
FPGAs. Proceedings of the 3rd International Conference on Computational Intelligence and
Multimedia Applications.

Job, D., Shankararaman V. and Cordingley, B. (1996) Using Natural Language Processing in
Case-Based Reasoning Systems. Research and Development in Expert Systems XIII.P 173-
181. Proceedings of Expert Systems 1996, the Sixteenth Annual Technical Conference of the
British Computer Society Specialist Group on Expert Systems, Cambridge, December 1996.
SGES Publications 1996. ISBN 1 899621 13 X.

Kajitani, I., Hushino, T., Nishikawa, D., Yokoi, H., Nakaya, S., Yamauchi, T., Inuo, T.,
Kajihara, N., Iwata, M., Keymeulen, D. and Higuchi, T. (1998). A gate-level EHW chip:
Implementing GA operations and reconfigurable hardware on a single LSI. In: Sipper, M.,
Mange, D. and Perez-Uribe, A. (eds.), Proceedings of the 2nd International Conference on
Evolvable Systems: From Biology to Hardware, vol. 1478 of Lecture Notes in Computer
Science, pp. 1-12. Heidelberg: Springer-Verlag.

Kolodner, J.L., & Leake, D.B. (1996). A Tutorial Introduction to Case-Based Reasoning. In,
Case-Based Reasoning: Experiences, Lessons, & Future Directions. AAAI Pressffhe MIT
Press, Menlo Park, California, US.

Kolodner, l (1993). Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann.

Koza, l R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

Koza, l R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Krueger C.W., 1992. Software Reuse. ACM Computing Surveys, Vol. 24, No.2, June 1992.

Lala, P. K. (1996). Practical Digital Logic Design and Testing. NJ: Prentice Hall. Lee, C. Y.
(1959). Representations of switching circuits by binary decision programs. Bell Systems
Technical Journal 38, 985-999.

Leake, B., (1993) Learning Adaptation Strategies by Introspective Reasoning about Memory
Search. Computer Science Department, Indiana University, Bloomington, IN 47405, U.S.A.

Leake, D., ed., (1996), Case-Based Reasoning: Experiences, Lessons and Future Directions.
Menlo Park: AAAI Press.

Lee, C. Y., (1959) Representations of switching circuits by binary descision diagrams. Bell
Systems Technical Journal vol. 38 pp. 985-999.

Lenart, M. and Pasztor, A. (1994). How much knowledge is needed? Co-Evolutionary
Design. 7th International Conference on Industrial Engineering Applications of Artificial
Intelligence. Gordon and Breach, Switzerland.

117

References

Louis S. J. (1993). Genetic algorithms as a computational tool for design. Doctor of
Philosophy, Department of Computer Science, Indiana University.

Louis, S. McGraw, G. and Wyckoff, R. (1992). Automating Explanation of Genetic
Algorithm Results (two paradigms collide). 5th Florida Intelligence Symposium. USA Florida
AI Research Society. P201-5.

McEvoy, J.P. and Zarate, O. (1996). Quantum theory for Beginners. Icon books Ltd.

Maguire, P., Shankararaman, V., Szegfue, R. and Morss, L. (1995). Application of case­
based reasoning to software reuse. In: Watson, I. (ed.), Progress in Case-Based Reasoning,
Lecture Notes in Artificial Intelligence, pp. 165-174. Berlin: Springer- Verlag.

Maher, M. L. and de Silva Garza, A. G. (1996). The adaptation of structural systems designs
using genetic algorithms. In: Information Processing in Civil and Structural Engineering
Design, pp. 189-196. CIVIL-COMP Press.

McCluskey, E. (1956). Minimization of boolean functions. Bell System Technical Journal 35,
1417-1444.

Mili, H. (1995). Reusing Software: Issues and Research Directions. IEEE Transactions on
Software Engineering, Vol. 21, No.6, JUNE 1995

Miller, J. F., Job, D. and Vassilev, V. K. (2oo0a). Principles in the evolutionary design of
digital circuits, Part I. Journal of Genetic Programming and Evolvable Machines 1 (1).

Miller, J. F., Job, D. and Vassilev, V. K. (2oo0b). Principles in the evolutionary design of
digital circuits, part II. J. Genetic Programming and Evolvable Machines 1 (2).

Miller, J. F. (1999a). An empirical study of the efficiency of learning boolean functions using
a Cartesian genetic programming approach. In: Banzhaf, W., Daida, J., Eiben, A. E., Garzon,
M., Honavar, V., Jakiela, M. and Smith, R. E. (eds.), Proceedings of the 1st Genetic and
evolutionary Computation Conference, vol. 2, pp. 927-936. San Francisco, CA: Morgan
Kaufmann.

Miller J., T. Kalganova, N. Lipnitskaya and D. Job. (1999b). The Genetic Algorithm as a
Discovery Engine: Strange Circuits and New Principles. Proc. of the AISB Symposium on
Creative Evolutionary Systems (CES'99). Edinburgh, UK.

Miller, J. F. and Thomson, P. (1998a). Aspects of digital evolution: Evolvability and
architecture. In: Eiben, A. E., Back, T., Schoenauer, M. and Schwefel, H.-P. (eds.), Parallel
Problem Solving from Nature V, vol. 1498 of Lecture Notes in Computer Science, pp. 927-
936. Berlin: Springer.

Miller, J. F. and Thomson, P. (1998b). Aspects of digital evolution: Geometry and learning.
In: Sipper, M., Mange, D. and Perez-Uribe, A. (eds.), Proceedings of the 2nd International
Conference on Evolvable Systems: From Biology to Hardware, vol. 1478 of Lecture Notes in
Computer Science, pp. 25-35. Heidelberg: Springer-Verlag.

Miller, J. F., Thomson, P. and Fogarty, T. (1997). Designing electronic circuits using
evolutionary algorithms. arithmetic circuits: A case study. In: Quagliarella, D., Periaux, J.,
Poloni, C. and Winter, G. (eds.), Genetic Algorithms and Evolution Strategies in Engineering
and Computer Science, pp. 105-131. Chechester, UK: Wiley.

118

References

Miller, J. F., Luchian, H., Bradbeer, P. V. G. and Barclay, P. J. (1994). Using a genetic
algorithm for optimising fixed polarity reed-muller expansions of boolean functions.
International Journal of Electronics 76, 601-609. 24

Motorola (1997). Motorola Semiconductor Technical Data: Advance Information Field
Programmable Analog Array 20-cell Version MP AA020. Motorola Inc.

Muhlenbein, H. and Schlierkamp-Voosen, D. (1993). The science of breeding and its
application to the Breeder Genetic Algorithm (BGA). evolutionary Computation 1 (4), 335-
360.

Murakawa, M., Yoshizawa, S., Adachi, T., Suzuki, S., Takasuka, K., Iwata, M. and Higuchi,
T. (1998). Analogue EHW chip for intermediate frequency filters. In: Sipper, M., Mange, D.
and Perez-Uribe, A. (eds.), Proceedings of the 2nd International Conference on Evolvable
Systems: From Biology to Hardware, vol. 1478 of Lecture Notes in Computer Science, pp.
134-143. Heidelberg: Springer-Verlag.

Poli, R. (1997). Evolution of graph-like programs with parallel distributed genetic
programming. In: Back, T. (ed.), Proceedings of the 7th International Conference on Genetic
Algorithms, pp. 346-353. San Francisco, CA: Morgan Kaufmann.

Poli, R. (1999). Sub-machine-code GP: New results and extensions. In: Poli, R., Nordin, P.,
Langdon, W. B. and Fogarty, T. (eds.), Proceedings of the 2nd European Workshop on
Genetic Programming, vol. 1598 of Lecture Notes in Computer Science, pp. 65-82.
Heidelberg: Springer-Verlag.

Poli, R., Page, J. and Langdon, W. B. (1999). Smooth uniform crossover, sub-machine code
GP and demes: A recipe for solving high-order boolean parity problems. In: Banzhaf, W.,
Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M. and Smith, R. E. (eds.),
Proceedings of the 1st Genetic and evolutionary Computation Conference, vol. 2, pp. 1162-
1169. San Francisco, CA: Morgan Kaufmann.

Reidys, C. M. and Stadler, P. F. (1998). Neutrality in Fitness Landscapes. Tech. Rep. 98-10-
089, Santa Fe Institute. Submitted to Appl. Math. & Comput.

Richter, M. (1998). Introduction - the basic concepts of CBR. Case-Based Reasoning
Technology: from foundations to applications.

Quine, W. (1952). The problem of simplifying truth functions. American Mathematical
Monthly 59, 521-53l.

Sasao, T. (1993). Logic Synthesis and Optimization. MA: Kluwer Academic Publishers.

Scherr, W. (2000). Personal communication from Wolfgang Scherr. Senior Engineer, Mixed
Signal Design Support. Infineon Technologies AG. Microelectronic Design Centers, Austria
GmbH. P.O. Box 173, A-9500 Villach.

Schoenauer, M. (1998). Applications of Evolutionary Algorithms. Lecture notes ofthe Evonet
Summer school on Evolutionary Computation. (ESSEC '98). Edited by Venturini, G. and
Eiben, A.E. E31, University of Tours, France.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Chichester, UK: John
Wiley & Sons.

119

References

SEKE, (1999). The 11th International Conference on Software Engineering & Knowledge
Engineering. Knowledge Systems Institute Graduate School (KSI), Skokie Illinois.

Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Perez-Uribe, A. and Stauffer, A. (1997).
A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE
Transactions on evolutionary Computation 1 (1),83-97.

Smyth, B. (1996). Case Based Design. Ph.D. thesis, Department of Computer Science, Trinity
College, University of Dublin, Ireland.

Stadler, P. F. (1996). Landscapes and their correlation functions. Journal of Mathematic al
Chemistry 20, 1-45. Stadler, P. F. and Grunter, W. (1993). Anisotropy in fitness landscapes.
Journal of Theoretical Biology 165,373-388.28

Stoica, A., Fukunaga, A., Hayworth, K. and Salazar-Lazaro, C. (1998). Evolvable Hardware
for space applications. In: Sipper, M., Mange, D. and Perez-Uribe, A. (eds.), Proceedings of
the 2nd International Conference on Evolvable Systems: From Biology to Hardware, vol.
1478 of Lecture Notes in Computer Science, pp. 166-173. Heidelberg: Springer-Verlag.

Stoic a, A., Keymeulen, D., Tawel, R., Salazar-Lazaro, C. and Li, W. (1999). Evolutionary
experiments with a fine-grained reconfigurable architecture for analog and digital cmos
circuits. In: Stoica, A., Keymeulen, D. and Lohn, J. (eds.), Proceedings of the 1st NasaJDoD
Workshop on Evolvable Hardware, pp. 76-84. Los Alamitos, CA: IEEE Computer Society.

Tanaka M. and Hira T. (1994). Genetic Case-Base for conceptual Structural Design. Japan­
U.S.A. symposium on flexible automation. SCI.

Teller, A. and Veloso, M. (1995). PADO: Learning tree structured algorithms for
orchestration into an object recognition system. Tech. Rep. CMU-CS-95-lDl, Department of
Computer Science, Carnegie Mellon University, Pittsburgh, P A.

Thompson, A. (1996). Silicon Evolution. In Koza (Eds.), Genetic Programming 1996:
Proceedings of the lSI Annual Conference on Genetic Programming (GP96), pp. 444-452.
MIT Press.

Thompson, A. (1997). An evolved circuit, intrinsic in silicon, entwined with physics. In:
Higuchi, T. and Iwata, M. (eds.), Proceedings of the 1st International Conference on
Evolvable Systems: From Biology to Hardware, vol. 1259 of Lecture Notes in Computer
Science, pp. 390-405. Heidelberg: Springer-Verlag.

Thompson, A., Layzell, P. and Zebulum, R. S. (1999). Explorations in design space:
Unconventional electronics design through artificial evolution. IEEE Transactions on
evolutionary Computation 3 (3), 167-196.

Thomson, P. and Miller, J. F. (1996). Symbolic method for simplifying and-exor
representations of boolean functions using a binary decision technique and a genetic
algorithm. lEE Proceedings in Computers and Digital Techniques 143, 151-155.

Vassilev, V.K., Job, D. and Miller, J.F. (2000). Towards the Automatic Design of more
efficient digital circuits. The Second NASAlDoD Workshop on Evolvable Hardware.

Vassilev, V. K. (1997a). Information analysis of fitness landscapes. In: Husbands, P. and
Harvey, I. (eds.), Proceedings of the 4th European Conference on Artificial Life, pp. 116-124.
Cambridge, MA: MIT Press.

120

References

Vassilev, V. K (1997b). An information measure of landscapes. In: Back, T. (ed.),
Proceedings of the 7th International Conference on Genetic Algorithms, pp. 49-56. San
Francisco, CA: Morgan Kaufmann.

Vassilev, V. K, Fogarty, T. C. and Miller, J. F. (2000). Information characteristics and the
structure of landscapes. Evolutionary Computation 8 (1), 31-60.

Vassilev, V. K, Miller, J. F. and Fogarty, T. C. (1999a). Digital circuit Evolution and fitness
landscapes. In: Proceedings of the Congress on evolutionary Computation, vol. 2, pp. 1299-
1306. Piscata way, NJ: IEEE Press.

Vassilev, V. K, Miller, J. F. and Fogarty, T. C. (1999b). On the nature of two-bit multiplier
landscapes. In: Stoica, A, Keymeulen, D. and Lohn, J. (eds.), Proceedings of the 1st
NASAlDoD Workshop on Evolvable Hardware, pp. 36-45. Los Alamitos, CA: IEEE
Computer Society.

Wilke, W., Bergmann, R, (1996). INRECA: Induction and Reasoning from Cases. Centre for
Learning Systems and Applications, University of Kaiserslautern, P.O. Box 3049, D-67653
Kaiserslautern, Germany.

Wright, S. (1932). The roles of mutation, in breeding, crossbreeding and selection in
evolution. In: Jones, D. F. (ed.), Proceedings of the 6th International Conference on Genetics,
vol. 1, pp. 356-366. 29

Xilinx (1997). AppLINX CD-ROM - Xilinx application notes, data sheets, and other product
information. Xilinx Ltd, Benchmark House, 203 Brooklands Rd., Weybridge, Surrey
KT130RH. UK.

Xilinx (1996). The Programmable Logic Data Book. Xilinx Ltd, Benchmark House, 203
Brooklands Rd., Weybridge, Surrey KT130RH. UK

Zebulum, R S., Pacheco, M. A and Vellasco, M. (1998). Analog circuits Evolution in
extrinsic and intrinsic modes. In: Sipper, M., Mange, D. and Perez-Uribe, A (eds.),
Proceedings of the 2nd International Conference on Evolvable Systems: From Biology to
Hardware, vol. 1478 of Lecture Notes in Computer Science, pp. 154-165. Heidelberg:
Springer-Verlag.

Zebulum, R S., Pacheco, M. A and Vellasco, M. (1999). Artificial Evolution on active
filters: A case study. In: Stoica, A., Keymeulen, D. and Lohn, J. (eds.), Proceedings of the 1st
NASAlDoD Workshop on Evolvable Hardware, pp. 66-75. Los Alamitos, CA: IEEE
Computer Society.

121

Appendix 1 - Software Reuse strategies

Appendix 1 - Software Reuse strategies

High-Level Languages (HLL's) (Krueger, 1992; Biggerstaff, 1992)

In HLL's simple abstractions are used to represent multiple lines of assembly language code
(see example below). The simple abstractions are easy to remember and to use them often
only a few parameters need be specified. This technique is known to speed up software
development approximately five times, and has been adopted in many areas of the software
engineering community. The only drawback with this kind of system is that a large amount of
analysis and design are required to create a system. This is due to the abstraction being only a
level up from assembly language programming.

The high level language statement:

IF X == 0 THEN <Statement(s»
ELSE <Statement(s»

Replaces the following assembly language:

10: LOADA 100
11: JMPZRO 20
12: ADDA 110
13: ADDAI 111

20: SUBA 110
21: SUBAI 111

An example of a High-Level Language statement and equivalent assembly language.

The assembly language statements themselves are a similar level of abstraction above micro­
code as HLL statements are above assembly language statements. Each assembly language
statement represents a number of micro-code statements.

Design and Code Scavenging (Krueger, 1992)

Design and Code Scavenging involves reusing high-level language code fragments and is
therefore a level of abstraction higher than high-level languages themselves. The reuse of the
code fragments does require understanding of the code fragments and the code must be
adapted to the new requirements manually. This can lead to highly successful reuse if large
code fragments are found easily and require little adaptation. This technique is also potentially
dangerous as it could take more time to find, understand, adapt and debug a scavenged piece
of code than it would have taken to write the code fragment from scratch. (Mili, 1995) makes
the important point that studies have shown that many users are able to successfully adapt and
reuse components with only a rough understanding of the components workings.

Source Code Components (Krueger, 1992; Biggerstaff 1992; Mili, 1995)

Source Code Components are ready to use building blocks. These blocks are specifically
designed for reuse, and vary greatly between domains. This means that no adaptation or
debugging is required, the programmer need only locate and integrate the block of code. The
programmer still requires an understanding of what the block does and how it works. This
method works well in specific areas, but it is considered to be difficult to create a general set
of source code components. If any editing of the component is required then adaptation and

122

Appendix 1 - Software Reuse strategies

debugging is required and the benefits are lost. It is noted here that Object Oriented
languages, through the inheritance mechanism, afford a direct relationship with the software
reuse notions of abstraction (super class) and specialisation (subclass).

Software Schemas (Krueger, 1992; Mili, 1995)

Software Schemas are a level above source code components in that they extend the
components to include reuse techniques (specification, parameterisation, classification and
verification). This technique has achieved success in domain specific areas, the prominent
feature being the controlled parameterisation, so the programmer does not require great
understanding of the component. This technique fails when scaling up to cover wider
domains. Most domains are difficult to build into this technique and some components are
difficult to describe, increasing the need for the programmer to understand the components'
code.

Application Generators (AG's) (Krueger, 1992; Biggerstaff 1992; Mili, 1995)

Application Generators are like a programming language compiler but highly automated and
highly domain specific. Within their domain Application Generators are extremely effective
and are excellent for particular problems. However they are difficult to build and there are too
few of them available to give any wider domain coverage.

The abstractions used in Application generators are very high level, come directly from the
Applications' domain and can be mapped directly into executable code. This technique
requires little programming knowledge as most of the development is automated.

Very High-Level Languages (Krueger, 1992; Biggerstaff 1992; Mili, 1995)

Very High-Level Languages are an extension of High-Level Languages. The extension
enables the programmer to generate code from an abstract specification. They are more
general in domain than Application Generators but sacrifice the power that they have in order
to achieve this. The VHLLs do use higher levels of abstractions than HLLs and a particular
VHLL can be best suited to certain applications however, the level of abstraction can be
difficult to use and this technique can also produce low performance code.

Transformational Systems (Krueger, 1992; Biggerstaff 1992; Mili, 1995)

Transformational Systems use a two-stage approach to development. Firstly the semantic
behaviour of the program is described, and then the developers apply transformations to this
specification to produce a program. These systems use rule-based expert knowledge to apply
the transformations. These systems are general purpose and the level of abstraction is higher
than that of VHLL's as the generated code is more efficient due to human guidance. This
human guidance does entail understanding of the system and the program but these systems
are expected to improve in time.

There are few transformational systems in use. The most recent research has been into their
usefulness for systems maintenance, where they are known to sustain the quality of the
software under maintenance.

Software Architectures (Krueger, 1992)

Software Architectures are an attempt to reuse large parts of designs and implementations.
This technique looks at the subsystems and their interactions rather than reuse of algorithms
and data structures. The architectural abstractions come directly from application domains and
can be automatically mapped in to executable implementations. This is similar to having

123

Appendix 1 - Software Reuse strategies

mUltiple application generators in a schema type reuse system. These systems can be used to
generate complete software systems or components of software systems. The major drawback
in this type of system is that many architectures are required for general domain coverage, and
they are difficult to create.

These systems can be categorised into two main approaches to software reuse. Either they
reduce the amount of work required to specify the system from the initial idea, or they reduce
the effort required to produce executable code, once the specification is complete.

124

Appendix 2 - Example phenotypes (circuits)

Appendix 2 - Example phenotypes (circuits)

Figure A2.1 An evolved 2x2-bit multiplier

125

Appendix 2 - Example phenotypes (circuits)

~------------r-------C=> Pz

~--------------------------~c:> P1

~~-----------------------------------~C:> Po

Figure A2.2 An evolved 3x2bit multiplier circuit.

126

Appendix 2 - Example phenotypes (circuits)

~------------------------~-7P2

~--------------------------------------~~P,

~*---~=>Po

Figure A2.3 An evolved 3x3-bit multiplier.

127

Appendix 2 - Example phenotypes (circuits)

~------------------~C>~

B, c::>--tt-4H.
~~------------------------------------~~

~--~~

.80 =-----+-l ~--~~

Figure A2.4 An evolved 4x3-bit multiplier.

128

Appendix 2 - Example phenotypes (circuits)

A3~~~·· r-----------------------------------,-------------~

6,

80 =--=1=]

;r--------= P,

>--------------------------~=~

F-----------------------------------~~

~--~~

~~--~~

r+--~~

Figure A2.5 An evolved 4x4-bit multiplier.

129

Appendix 2 - Example phenotypes (circuits)

Appendix 2.1 - Example PLAfiles.

PLA files:

inputs 6
outputs 1
products 64
000000 1
000001 0
000010 0
000011 1
000100 1
000101 0
000110 0
000111 0
001000 0
001001 1
001010 1
001011 0
001100 1
001101 1
001110 1
001111 0
010000 0
010001 1
010010 1
010011 0
010100 0
010101 1
010110 1
010111 1
011000 0
011001 1
011010 1
011011 0
011100 0
011101 0
011110 0
011111 1
100000 0
100001 1
100010 0
100011 1
100100 1
100101 1
100110 1
100111 0
101000 1
101001 0
101010 0
101011 1
101100 0

130

Appendix 2 - Example phenotypes (circuits)

101101 0
101110 1
101111 0
110000 1
110001 0
110010 1
110011 1
110100 1
110101 0
110110 0
110111 1
111000 0
111001 1
111010 1
111011 0
111100 0
111101 0
111110 0
111111 1

131

Appendix 2 - Example phenotypes (circuits)

Table A2.1 SBox 10 PLA

inputs 3
outputs 2
products 8
000 00
001 01
010 01
011 10
100 01
101 10
110 10
111 11
Table A2.2 The one bit carry adder.

132

Appendix 2 - Example phenotypes (circuits)

inputs 5
outputs 3
products 32
00000 000
00001 001
00010 001
00011 010
00100 010
00101 011
00110 011
00111 100
01000 001
01001 010
01010 010
01011 011
01100 011
01101 100
01110 100
01111 101
10000 010
10001 011
10010 011
10011 100
10100 100
10101 101
10110 101
10111 110
11000 011
11001 100
11010 100
11011 101
11100 101
11101 110
11110 110
11111 111

133

Appendix 2 - Example phenotypes (circuits)

Table A2.3 The 2-bit carry adder.

inputs 4
outputs 4
products 16
0000 0000
0001 0000
0010 0000
0011 0000
0100 0000
0101 0001
0110 0010
0111 0011
1000 0000
1001 0010
1010 0100
1011 0110
1100 0000
1101 0011
1110 0110
1111 1001
Table A2.4 The 2x2-bit multiplier.

134

Appendix 2 - Example phenotypes (circuits)

inputs 5
outputs 5
products 32
00000 00000
00001 00000
00010 00000
00011 00000
00100 00000
00101 00001
00110 00010
00111 00011
01000 00000
01001 00010
01010 00100
01011 00110
01100 00000
01101 00011
01110 00110
01111 01001
10000 00000
10001 00100
10010 01000
10011 01100
10100 00000
10101 00101
10110 01010
10111 01111
11000 00000
11001 00110
11010 01100
11011 10010
11100 00000
11101 00111
11110 01110
11111 10101
Table A2.5 The 2x3-bit multiplier

135

Appendix 2 - Example phenotypes (circuits)

inputs 6
outputs 6
products 64
000000 000000
000001 000000
000010 000000
000011 000000
000100 000000
000101 000000
000110 000000
000111 000000
001000 000000
001001 000001
001010 000010
001011 000011
001100 000100
001101 000101
001110 000110
001111 000111
010000 000000
010001 000010
010010 000100
010011 000110
010100 001000
010101 001010
010110 001100
010111 001110
011000 000000
011001 000011
011010 000110
011011 001001
011100 001100
011101 001111
011110 010010
011111 010101
100000 ()()()()()()

100001 000100
100010 001000
100011 001100
100100 010000
100101 010100
100110 011000
100111 011100
101000 000000
101001 000101
101010 001010
101011 001111
101100 010100
101101 011001
101110 011110
101111 100011
110000 000000

136

Appendix 2 - Example phenotypes (circuits)

110001 000110
110010 001100
110011 010010
110100 011000
110101 011110
110110 100100
110111 101010
111000 000000
111001 000111
111010 001110
111011 010101
111100 011100
111101 100011
111110 101010
111111 110001
Table A2.6 The 3x3-bit multiplier.

137

Appendix 2 - Example phenotypes (circuits)

inputs 7
outputs 7
products 128
0000000 0000000
0000001 0000000
0000010 0000000
0000011 0000000
0000100 0000000
0000101 0000000
0000110 0000000
0000111 0000000
0001000 0000000
0001001 0000001
0001010 0000010
0001011 0000011
0001100 0000100
0001101 0000101
0001110 0000110
0001111 0000111
0010000 0000000
0010001 0000010
0010010 0000100
0010011 0000110
0010100 0001000
0010101 0001010
0010110 0001100
0010111 0001110
0011000 0000000
0011001 0000011
0011010 0000110
0011011 0001001
0011100 0001100
0011101 0001111
0011110 0010010
0011111 0010101
0100000 0000000
0100001 0000100
0100010 0001000
0100011 0001100
0100100 0010000
0100101 0010100
0100110 0011000
0100111 0011100
0101000 0000000
0101001 0000101
0101010 0001010
0101011 0001111
0101100 0010100
0101101 0011001
0101110 0011110
0101111 0100011
0110000 00000oo

138

Appendix 2 - Example phenotypes (circuits)

0110001 0000110
0110010 0001100
0110011 0010010
0110100 0011000
0110101 0011110
0110110 0100100
0110111 0101010
0111000 0000000
0111001 0000111
0111010 0001110
0111011 0010101
0111100 0011100
0111101 0100011
0111110 0101010
0111111 0110001
1000000 0000000
1000001 0001000
1000010 0010000
1000011 0011000
1000100 0100000
1000101 0101000
1000110 0110000
1000111 0111000
1001000 0000000
1001001 0001001
1001010 00 10010
1001011 0011011
1001100 0100100
1001101 0101101
1001110 0110110
1001111 0111111
1010000 00000oo
1010001 0001010
1010010 0010100
1010011 0011110
1010100 0101000
1010101 0110010
1010110 0111100
1010111 1000110
1011000 00000oo
1011001 0001011
1011010 0010110
1011011 0100001
1011100 0101100
1011101 0110111
1011110 1000010
1011111 1001101
1100000 00000oo
1100001 0001100
1100010 0011000
1100011 0100100
11 00 1 00 0110000
1100101 0111100

139

Appendix 2 - Example phenotypes (circuits)

1100110 1001000
1100111 1010100
1101000 0000000
1101001 0001101
1101010 0011010
1101011 0100111
1101100 0110100
1101101 1000001
1101110 1001110
1101111 1011011
1110000 0000000
1110001 0001110
1110010 0011100
1110011 0101010
1110100 0111000
1110101 1000110
1110110 1010100
1110111 1100010
1111000 0000000
1111001 0001111
1111010 0011110
1111011 0101101
1111100 0111100
1111101 1001011
1111110 1011010
1111111 1101001
Table A2.7 The 4x3-blt multiplier

140

Appendix 2 - Example phenotypes (circuits)

inputs 8
outputs 8
products 256
00000000 00000000
00000001 00000000
00000010 00000000
00000011 OOOOOOOO
00000100 00000000
00000101 00000000
00000110 00000000
00000111 00000000
00001000 00000000
00001001 00000000
00001010 00000000
00001011 00000000
00001100 00000000
00001101 00000000
00001110 00000000
00001111 OOOOOOOO
00010000 ()()()()()()OO
00010001 ()()()()()()O 1
00010010 00000010
00010011 00000011
00010100 00000100
00010101 00000101
00010110 00000110
00010111 00000111
00011000 00001000
00011001 00001001
00011010 00001010
00011011 00001011
00011100 00001100
00011101 00001101
00011110 00001110
00011111 00001111
00100000 00000000
00100001 00000010
00100010 00000100
00100011 00000110
00100100 ()()()() 1 000
00100101 ()()()() 10 10
00100110 ()()()() 1100
00100111 ()()()() 1110
00101000 00010000
00101001 00010010
00101010 00010100
00101011 00010110
00101100 00011000
00101101 00011010
00101110 00011100
00101111 00011110
00 11 ()()()() 00000000

141

Appendix 2 - Example phenotypes (circuits)

00110001 00000011
00110010 00000110
00110011 00001001
00110100 00001100
00110101 00001111
00110110 00010010
00110111 00010101
00111000 00011000
00111001 00011011
00111010 00011110
00111011 00100001
00111100 00100100
00111101 00100111
00111110 00101010
00111111 00101101
01000000 00000000
01000001 00000100
01000010 00001000
01000011 00001100
01000100 00010000
01000101 00010100
01000110 00011000
01000111 00011100
01001000 00100000
01001001 00100100
01001010 00101000
01001011 00101100
01001100 00110000
01001101 00110100
01001110 00111000
01001111 00111100
01010000 00000000
01010001 00000101
01010010 00001010
01010011 00001111
01010100 00010100
01010101 00011001
01010110 00011110
01010111 00100011
01011000 00101000
01011001 00101101
01011010 00110010
01011011 00110111
01011100 00111100
01011101 01000001
01011110 01000110
01011111 01001011
01100000 00000000
01100001 00000110
01100010 00001100
01100011 00010010
01100100 00011000
01100101 00011110

142

Appendix 2 - Example phenotypes (circuits)

01100110 00100100
01100111 00101010
01101000 00110000
01101001 00110110
01101010 00111100
01101011 01000010
01101100 01001000
01101101 01001110
01101110 01010100
01101111 01011010
01110000 00000000
01110001 00000111
01110010 00001110
01110011 00010101
01110100 00011100
01110101 00100011
01110110 00101010
01110111 00110001
01111000 00111000
01111001 00111111
01111010 01000110
01111011 01001101
01111100 01010100
01111101 01011011
01111110 01100010
01111111 01101001
10000000 OOOOOOOO
10000001 00001000
10000010 00010000
10000011 00011000
10000100 00100000
10000101 00101000
10000110 00110000
10000111 00111000
10001000 01000000
10001001 01001000
10001010 01010000
10001011 01011000
10001100 01100000
10001101 01101000
10001110 01110000
10001111 01111000
10010000 OOOOOOOO
10010001 00001001
10010010 00010010
10010011 00011011
10010100 00100100
10010101 00101101
10010110 00110110
10010111 00111111
10011000 01001000
10011001 01010001
10011010 01011010

143

Appendix 2 - Example phenotypes (circuits)

10011011 01100011
10011100 01101100
10011101 01110101
10011110 01111110
10011111 10000111
10100000 00000000
10100001 00001010
10100010 00010100
10100011 00011110
10100100 00101000
10100101 00110010
10100110 00111100
10100111 01000110
10101000 01010000
10101001 01011010
10101010 01100100
10101011 01101110
10101100 01111000
10101101 10000010
10101110 10001100
10101111 10010110
10110000 OOOOOOOO
10110001 00001011
10110010 00010110
10110011 00100001
10110100 00101100
10110101 00110111
10110110 01000010
10110111 01001101
10111000 01011000
10111001 01100011
10111010 01101110
10111011 01111001
10111100 10000100
10111101 10001111
10111110 10011010
10111111 10100101
11000000 00000000
11000001 00001100
11000010 00011000
11000011 00100100
11000100 00110000
11000101 00111100
11000110 01001000
11000111 01010100
11001000 01100000
11001001 01101100
11001010 01111000
11001011 10000100
11001100 10010000
11001101 10011100
11001110 10101000
11001111 10110100

144

Appendix 2 - Example phenotypes (circuits)

11010000 OOOOOOOO
11010001 00001101
11010010 00011010
11010011 00100111
11010100 00110100
11010101 01000001
11010110 01001110
11010111 01011011
11011000 01101000
11011001 01110101
11011010 10000010
11011011 10001111
11011100 10011100
11011101 10101001
11011110 10110110
11011111 11000011
11100000 00000000
11100001 00001110
11100010 00011100
11100011 00101010
11100100 00111000
11100101 01000110
11100110 01010100
11100111 01100010
11101000 01110000
11101001 01111110
11101010 10001100
11101011 10011010
11101100 10101000
11101101 10110110
11101110 11000100
11101111 11010010
11110000 00000000
11110001 00001111
11110010 00011110
11110011 00101101
11110100 00111100
11110101 01001011
11110110 01011010
11110111 01101001
11111000 01111000
11111001 10000111
11111010 10010110
11111011 10100101
11111100 10110100
11111101 11000011
11111110 11010010
11111111 11100001
Table A2.8 The 4x4-bit multiplier.

145

Appendix 3 - Example Adaptation

Appendix 3 - Example Adaptation

Th 3 3 b· 1 . 1· (f #95) e x - It mu tIplIer re .
2546 13 16 0306 6876 4966 0526
2336 1446 913210 0406 14607 11 1214 10
71406 16 17 157 14193 10 81806 16 17 16 10 1596
2466 7 15010 2025 196 10 21 19 10 8261610 2821 177

2324710 20252410 000 -1 000 -1 000 -1 000 -1
27 29 31 22 30 6

Figure A3.1

Is found to be a behavioural match with:

Th 3 2 b· 1 . r (f #30) e x - It mu tIplIer re.
0416 2326 2416 1366 0366 1456
8767 511010 11567 5806 610010 8131310

916210 000 -1 000 -1 000 -1 000 -1 000 -1
000 -1 000 -1 14 17 12 15

7
Figure A3.2

Then an adaptation is identified:
#1
o 255 0 255 0 255 0 255 AND o 0 0 0 0 255 0 255
o 0 0 0 255 255 255 255

#2
o 0 255 255 0 0 255 255 AND o 0 0 0 0 0 255 255
o 0 0 0 255 255 255 255

#3
160 160 160 160 160 160 160 160 AND 000000 160 160
#2

#4
204 204 204 204 204 204 204 204 AND 000000 128 128
#3

#5
240 240 240 240 240 240 240 240 AND o 0 0 0 240 240 240 240
o 0 0 0 255 255 255 255

#6
#3 EOR 020402040204 160 108
o 204 0 204 0 204 0 204

#7
o 0 170 170 0 0 170 170 EOR o 0 170 170 240 240 90 90
#5

#8

I!! I AND I 0 0 0 0 0 204 0 108

146

Appendix 3 - Example Adaptation

#9

IL~,,-,;_6_0_7_6_0_7_6_0_7_6 _____ ---.J1 AND NOT I 0760680 1204

#10

IL~~6 __________ ---.JIEOR
I 0 1280 1360 192 160 104

#11

IL:_~ __________ ---.JIAND
I 0 0 0 0 0 0 0 108

#12
o 76 0 76 0 76 0 76 EOR 0761702302401889022
#7

#13
#1 EOR 00204204025520451
o 0 204 204 0 0 204 204

#14

IL:~~~~ _________ ----.JI AND
I 000 1360 192 128 32

#15

I L#_4 __________ ---.JIEoR #11
I 0 000 0 0 128 236

#16

I L#_2 __________ ---.JIEOR
10001360192127223

#14

#17

LI :_~_~ _________ ---.JI AND NOT I 000 1360 192 127 147

#18

IL:_~~~ _____________ ~IEOR I 0 128204 68 0 63 10891

Outputs: #s:15. 17. 18. 12. original. original

Then #30 (the 3x2-bit multiplier) is renumbered to take an extra input:

(#30) - extra mput:
0506 2406 2506 1406 0406 1506
9807 612010 12607 6906 711010 914010
1017010 000 -1 000 -1 000 -1 000 -1 000 -1
000-1 000 -1 0 15 18 13
16 8

Next cells that are no longer needed (deletions and substitutions) are replaced by the first
BeTs:

(#30)- substitutions:
10506 12406 12506 11406 10406 11506

147

Appendix 3 - Example Adaptation

9807 612010 2306 614010 12 1507 6906
711010 916010 10 190 10 000 -1 000 -1 000 -1
000-1 000-1 000 -1 000 -1 0 17
20 13 18 8

Then the geometry of the 3x2-bit multiplier (lx22) is expanded to that of the target 3x3-bit
mUltiplier (lx26) and then rest of the BeTs are added:

#30 d d -a ~te :
0506 2406 2506 1406 0406 1506
9807 1306 0306 81406 711010 41506
2306 159010 618010 13 1906 122007 1922010
142106 1220010 1310010 232606 1724010 1427010
292407 2326010 28 30 31 25
16 8

148

Appendix 3 - Example Adaptation

Adaptation example 2

#56
2436 0306 0466 1356 7806 8577
1466 10937 2326 710210 681010 1113910
1215910 000-1 000 -1 000 -1 000 -1 000 -1
000-1 000 -1 9 17 14 16
5

#56 d d ~ - expan e or extra mput:
2506 0406 0506 1466 8906 9607
1506 111007 2406 811010 79010 12 14010
13 16010 000-1 000-1 000 -1 000 -1 000 -1
000-1 000 -1 0 10 18 15
17 6

#56 d d d d d . h d -expan e an a ~te usmg tea a~tatlOn ~ven:
2506 0406 0506 1466 8906 9607
1506 111007 2406 811010 79010 1214010
13 16010 1306 0306 2306 213010 197010
20606 249010 24306 192506 272006 2628010
11 2207 1122010 3025010 322306 3223010 3325010
352807 29 36 34 31 17
6

149

Appendix 4 - Scaled behavioural matches

Appendix 4 - Scaled behavioural matches

A list of scaled behavioural matches found between a 3x2-bit multiplier Case-Base and a 3x3-
bit multiplier Case-Base.

Case-base 1 Case-base 2
2x3-bit multipliers 3x3-bit multiQliers
16 136
30 86
30 95
36 18
56 102
56 125

Table A4.1. 3x2-bit multipliers that have a 3x3-bit multiplier scaled behavioural match.

#16
Ct' 14 t on ams ga es
2336 1306 0306 2426 1486 0476
5956 611510 7936 59410 111367 7 15 1410
13 16 13 10 10121310 000-1 000 -1 000 -1 000 -1
000-1 000 -1 13 17 18 14
8

#136
C 27 ontams gates
1346 0456 0546 2356 8926 1486
2516 1576 0396 671110 111296 2456
1615 147 13 178 10 10 159 10 1116210 891610 10 21 8 10
1423176 1820810 2425 167 11 22 13 6 1427910 2122510
2420277 283047 2527410 000 -1 000 -1 000 -1
26 31 32 29 19 12

#30
C 13 ontams gates
0416 2326 2416 1366 0366 1456
8767 511010 11567 5806 610010 8131310
916210 000-1 000 -1 000 -1 000 -1 000-1
000-1 000 -1 14 17 12 15
7

#86
Ct' 26 t on ams ga es
0406 0366 0566 1556 1446 1386
23116 25106 101377 611110 1214210 8 128 10
24126 16 1777 3 19 166 10 17206 201537 7 13 167
10 197 10 724 186 8 16 16 10 1524310 2223310 9182010
21282610 2225210 000 -1 000 -1 000 -1 000-1
31 30 27 26 29 13

#30
Contains 13 gates

10416 12326 12416 11366 10366 11456

150

Appendix 4 - Scaled behavioural matches

8767 511010 11567 5806 610010 8 13 13 10
916210 000 -1 000 -1 000-1 000-1 000 -1
000-1 000-1 14 17 12 15
7

#95
C ° 26 ontams gates
2546 1316 0306 6876 4966 0526
2336 1446 913210 0406 14607 11121410
71406 1617157 14193 10 81806 1617 16 10 1596
2466 7 15010 2025 196 10211910 8261610 2821 177
2324710 20252410 000 -1 000 -1 000-1 000 -1
27 29 31 22 30 6

#36
C 14 ontams gates
2406 0346 0446 2376 1436 89010
8946 1386 6907 116117 71226 7 12 10 10
13 1415 10 11163 10 000 -1 000-1 000 -1 000 -1
000-1 000 -1 15 17 18 10
5

#18
C t ° 27 onams gates
0356 1426 15 16 1306 0566 0476
2366 7 129 10 101326 9111310 2546 1213 147
1415710 6787 2486 820196 820410 14 15 21 6
19232010 10 13 410 62467 2125210 2125106 1828410
1729 19 10 293077 24312810 000-1 000 -1 000 -1
26 32 30 27 22 16

#56
C to 13 t on ams ga es
2436 0306 0466 1356 7806 8577
1466 10 937 2326 710210 681010 1113910
1215910 000 -1 000-1 000 -1 000 -1 000 -1
000 -1 000 -1 9 17 14 16
5

#102
C 26 ontams gates
2306 0446 1526 2436 0376 0536
611110 61146 1466 89410 13 15 156 13 141610
2516 1356 1214116 10 14 146 14 18 11 7 10161710
7 175 10 20232210 221287 122223 10 2426510 1621 10 10
252667 19282010 000 -1 000 -1 000 -1 000 -1
29 30 31 27 15 18

151

Appendix 4 - Scaled behavioural matches

#56
C t' 13 t on ams ga es
2436 0306 0466 1356 7806 8577
1466 10 937 2326 710210 681010 1113910
1215910 000-1 000 -1 000 -1 000 -1 000-1
000-1 000 -1 9 17 14 16
5

#125
C 26 ontams gates
2306 0526 67310 2586 1376 2456
1586 0336 9 13 126 1436 04146 81596
1415 1610 159 157 1317510 13 18 186 10 163 10 8 19 15 10
1112310 142221 7 2125107 18221 10 1923276 2125 13 10
202627 27282410 000-1 000 -1 000 -1 000-1
29 30 31 23 24 9

152

Appendix 5 - The 2-bit adder with carry, '2-into-l ' frequencies

Appendix 5 - The 2-bit adder with carry, '2-into-1' frequencies

20~---------------------------------.-~-.-~~~~~"

>­u
c: 15
Q)
:::J

! 10
LL

5

o

2-into-1 sub-program type

Figure A5.1 Frequencies of '2-into-l ' sub-programs for the 2-bit adder with carry, from a set
of 500 chromosomes. Geometry: 1 row x 10 columns, gates allowed: 6-15.

Gate1 Gate2 Gate3 Frequency
1 11 10 13 21
2 10 10 6 21
3 11 10 11 19
4 11 10 8 19
5 10 11 14 17
6 11 11 9 17
7 10 10 7 16
8 11 11 13 15
9 11 11 12 14
10 12 14 6 14
11 10 11 7 14
12 10 11 11 14
13 11 10 10 14
14 10 11 12 14

Figure A5.2 the top 14 '2-into-l' sub-programs for the 2-bit adder with carry, shown in
Figure A5.1.

153

Appendix 6 - An example Case

Appendix 6 - An example Case

Index Behaviour (converted from binar into 8 cells of 8-bit integers)
0 0 0 255 255 0 0 255 255
1 0 255 0 255 0 255 0 255
2 240 240 240 240 240 240 240 240
3 0 0 0 0 255 255 255 255
4 204 204 204 204 204 204 204 204
5 170 170 170 170 170 170 170 170

Table A6.1 An annotated example of the Inputs (Behaviour) in a Case.

6 (00) 160 160 160 160 160 160 160 160
7 0 0 0 0 0 255 0 255
8 0 0 0 0 0 0 255 255
9 0 0 0 0 0 0 160 160
10 0 0 0 0 0 0 128 128
11 0 0 170 170 0 0 170 170
12 0 0 0 0 240 240 240 240
13 0 204 0 204 0 204 0 204
14 0 204 0 204 0 204 160 108
15 0 0 204 204 0 0 204 204
16 0 76 0 76 0 76 0 76
17 0 0 170 170 240 240 90 90
18 0 0 0 0 0 204 0 108
19 0 76 0 68 0 12 0 4
20 0 128 0 136 0 192 160 104
21 0 0 0 0 0 0 0 108
22 (0 2) 0 76 170 230 240 188 90 22
23 0 170 0 170 0 170 0 170
24 192 192 192 192 192 192 192 192
25 0 0 204 204 0 255 204 51
26 0 0 0 136 0 192 128 32
27 (05) 0 0 0 0 0 0 128 236
28 0 0 0 136 0 192 127 223
29 (04) 0 0 0 136 0 192 127 147
30 (0 1) 192 106 192 106 192 106 192 106
31 (03) 0 128 204 68 0 63 108 91

Table A6.2 An annotated example of the Behaviour in a Case.

2546 13 16 0306 6876 4966 0526
2336 1446 913210 0406 14607 111214 10
71406 1617 157 14193 10 81806 1617 16 10 1596
2466 7 15010 2025 196 10 21 19 10 8261610 2821 177
2324710 20252410 000-1 000-1 000 -1 000-1
27 29 31 22 30 6

Table A6.3 An example of a Structure in a Case.

154

Appendix 6 - An example Case

Fitness 384 (100% functional) + 4 (Redundant cells e.g. 30-26=4)
Frequency 4 (Number of times this program occurred)
Generation 6434526
Number of rows 1
Number of columns 30
Number of gates 26

Table A6.4 An example of the other attributes and values in a Case.

155

Appendix 6 - An example Case

Gate 1 Gate 2 Gate 3 Frequency
100 105 6 1
102 103 10 1
6 105 10 1
100 104 6 1
103 100 6 1
6 6 7 2
6 6 10 2
...

Table A6.5 An example of the sub-programs in a Case. This is a 'finger-print' for the Case
Values of 100 and over represent inputs to the program, values less than 100 represent gate
types, of the 2-into-l sub-programs.

156

Appendix 7 - The SBox problem

Appendix 7 - The SBox problem

An investigation into evolving the SBox encryption circuits. This investigation by Dominic Job
was based on work in Miller, J. F. and Thomson, P. 1998 a and b.

In considering new architectures for digital circuit evolution, there are two key issues (Miller,
J. F. and Thomson, P. 1998a and b):

(a) Functionality of cells - where evolution selects the logical functionality of a particular
cell, and determines whether or not that cell should possess functionality.

(b) Routing - where the routes that provide the interconnection between functional cells are
evolved into non-functional cells (or functional cells which are partially used as routes).

The routeability of circuits is an important practical issue that is aptly demonstrated by the
SBOX combinational design problem. This is a circuit used in data encryption. Traditional
synthesis techniques are not able to produce a design which will place and route on to the
Xilinx 6216 within the geometric bounding-box currently desired by engineers. This shows
the importance of designing in such a way as to incorporate both issues of functionality of
circuits and also the manner in which they route on target devices (Miller, J. F. and Thomson,
P. 1998a and b).

Each Sbox has 6 inputs, 4 outputs and 64 lines in the truth table. In each experiment an
Evolutionary Strategy was used with a population size of 5 over 10,000,000 generations, with
elitism and a mutation rate of 1.5%. Two multiplexers were the available functions: ((A &
-C) I (B & C)), ((A & -C) I (-B & C)) as these two functions are known to be capable of
producing the required functionality. In the three experiments below for the Sboxl, Sbox2
and Sbox3 problems, the allowed geometry was increased from 8x12 for the first experiment
to 8x16 in the second and lastly 8x32 in the third. This was done to attempt to get a 100%
perfect solution to one of the problems, as the high fitness values e.g. 99.22% with 50%
perfection suggest that 100% perfect solutions are attainable. The structure of the
chromosomes given is explained in the reference texts (Miller, 1. F. and Thomson, P. 1998a
and b).

Experiment 1: Sboxl

The first experiment was to attempt to place and route the Sboxl problem in an 8x12
horizontal cell area on a Xilinx 6216 FPGA with 'levels back' = 12 (the number of columns
across which a connection can be made to an earlier column in the cell area). The 8x12 area
requires 100 genes in the chromosome. The results are given in table 1 below, and the best
chromosome is then given.

rrhe result was achieved at generation: lPercentage fitness Percentage perfect*

~520338 196.88 0.00

~481415 198.05 0.00

~411700 196.09 0.00

17839230 197.27 0.00

8126761 194.92 0.00

12618692 198.44 0.00

8223080 196.48 0.00

~785943 198.44 ~O.OO
~303018 197.27 0.00

*Percentage perfect is the percentage of the truth table that is perfectly calculated from top to
bottom without breaks, reported at 25% intervals.

157

Appendix 7 - The SBox problem

Table 1. The Sboxl problem in an 8x12 horizontal cell area.

Best chromosome from experiment 1:

At generation 9785943 the following result was achieved

55017 103 17 23317 5 1317 15416 21417
31217 24017 12 l3 3 16 98016 68 1217 691017
6103 16 34516 0011 17 l3l3517 10 l3 19 17 2015 10 16
4 183 16 3161117 18 11 17 16 1791917 1424 17 16221 16

15181217 2829 15 17 282827 17 2611717 422217 24182617
2122316 252823 16 352611 17 303233 16 3332017 2341217
l3 2911 16 203335 16 31121017 203017 384327 16 452943 17
1018717 4031116 23333616 9374017 4432317 3934917
6432616 37474216 6262816 9414516 0833 17 48225216
3231816 2331 1417 33532917 435023 16 5434316 232858 16
354761 16 355441 16 53495 16 56501017 64 1633 16 l3 47 4216
12393016 272525 16 45 16917 62265617 37143117 50672416
361259 16 10 59 27 16 72 70 35 16 70711917 23546817 48562217
75 185616 754328 16 2846617 28229 16 53612016 17531217
68764017 43302817 49397316 55051 17 971 62 16 77 7185 17
13763 17 94129 16 5951516 425985 16 71164516 16832117

77 55 68 99

Experiment 2: Sbox2

The second experiment was to attempt to place and route the Sbox2 function in an 8x16
horizontal cell area on a Xilinx 6216 FPGA with 'levels back' = 16. The 8x16 area requires
l32 genes in the chromosome. The results are given in table 2 below, and the best
chromosome is then given.

rrhe result was achieved at generation: !Percentage fitness Percentage perfect*
3134822 ~7.27 0.00
8841161 98.05 50.00

~539456 98.44 50.00

1433786 98.44 50.00
8010889 98.44 50.00
b179232 ~6.88 0.00
4305603 98.05 0.00

17723414 ~6.09 0.00
1454634 98.44 50.00
~548762 98.44 50.00
8267265 ~4.92 0.00

17318510 97.66 0.00

~107938 98.05 50.00
~830277 98.44 50.00
2631902 98.44 50.00
3552944 ~7.66 0.00
8672225 ~6.09 0.00

158

Appendix 7 - The SBox problem

13205873 198.44 150.00
*Percentage perfect is the percentage of the truth table that is perfectly calculated from top to
bottom without breaks, reported at 25% intervals.

Table 2. The Sbox2 problem in an 8x 16 horizontal cell area.

Best chromosome from experiment 2:

At generation 3205873 the following result was achieved

20516 25017 04516 55417 121 17 22317
10217 03016 1310917 58917 1 10 117 47717
151017 32117 1110817 6117 16 7 12017 102017
7 1418 17 1928 16 041117 11121416 11917 1825 17
2713616 1265 16 17141217 232621 16 252129 16 182 15 17
10 252416 2027 12 16 36253517 36363117 35 121116 152234 17
34223217 026716 162237 16 61928 16 37403217 40392916
33339 16 933 116 34252017 273227 16 42443016 10 93416
4045 11 16 9251917 730 18 17 30304817 5252417 17 15416
50272617 47471317 45201317 391928 16 2 1632 17 735 13 16
8104316 5159216 302331 16 82041 16 325643 16 473215 16
60615216 2536617 31176417 572745 17 38165817 5644516
28284917 754341 16 56964 16 5645717 69584816 55423417
32297016 24545917 8526 14 17 76421916 5529 18 16 7563 15 17
50235217 74507417 28795416 6161417 33748717 83166417
657017 5164 5617 7233217 73216016 88393917 7667 19 16
90908817 4382017 219075 17 832943 17 46345 16 69969416
66255617 66882116 2773 16 5664 105 17 50997917 14523 16
100495016 10 1009217 8410245 17 2072 15 17 58476917 39552517
901085117 73229816 43792016 505010617 192863 16 83 1175416
53 115 1117 748217 122356017 65761217 412234 17 7632017
117565816 8610895 16 5893 12589

Experiment 3: Sbox3

The third experiment was to attempt to place and route the Sbox3 function in an 8x32
horizontal cell area on a Xilinx 6216 FPGA with 'levels back' = 32. The 8x32 area requires
260 genes in the chromosome. The results are given in table 3 below, and the best
chromosome is then given.

The result was achieved at generation: Percentage fitness Percentage perfect*
4107590 99.22 50.00
9147835 98.05 0.00
2597586 96.09 0.00
5974820 99.22 50.00
1732460 99.22 50.00
*Percentage perfect is the percentage of the truth table that is perfectly calculated from top to
bottom without breaks, reported at 25% intervals.

159

Appendix 7 - The SBox problem

Table 3. The Sbox3 problem in an 8x32 horizontal cell area.

Best chromosome from experiment 3:

At generation 4107590 the following result was achieved:

53 117 30017 02516 54216 50517
45217 50216 22117 445 16 98716
19716 411 1116 3 10 5 17 9 125 17 22517
33117 145 16 17 551317 14181617 10 182116
11 68 16 1 17 15 17 2158 17 17 12 1 16 2011717
6132717 22272916 1017117 282827 17 6 17 14 16
2341217 262625 17 3513116 24232916 1220016
28 14016 4633 16 1976 17 11 23 2217 13 418 16
10 4118 16 3678 16 40243017 3041 19 16 2840616
7453617 314012 16 34617 16 25185317 13124517
12121116 33484216 48 12116 3424917 27292816
34738 16 40361217 3584416 2854 18 17 24454416
8013 16 273523 16 36382117 61444916 361946 17
335419 16 56646817 242057 17 504325 17 5435817
4237 17 172737 16 12216016 54695617 44575916
603865 16 3737 12 17 45 17 12 17 63107416 17526 16
18313816 195357 16 364878 16 36173016 357336 16
8132216 66517916 41668416 547567 17 84461116
444269 17 663865 16 10 29 6616 23762917 39297217
45194116 76 1377 17 74748216 636723 17 34946417
4887217 5932 116 10188 17 17 194193 16 46421916
60767617 3723917 16671017 6586817 33503217
80266616 55408217 54 1055 17 88874616 103747717
4929317 9387217 21 1096116 349785 16 1061081517
5332417 1116863 17 57 1162416 7966417 547911616
75011116 31 103 103 16 92928017 101362417 99 1252116
302612416 131109117 10114216 55 13 105 16 131168617
11821717 113 1212116 3359317 991319617 11281 108 16
92133 12117 553727 17 544413817 48 127 136 16 789 131 17
854645 16 361189817 32373617 95 1068016 1441411216
152468 16 14350137 17 421154817 15184116 90522017
8625 1617 129996416 11 1032417 581206016 148649616
211115416 150832216 37 15657 16 105 134 140 17 698325 16
57254617 31 77 16 17 138 125 153 17 5015675 16 8 1605416
1289012216 104 1165 17 1436831 16 11244216 02595 17
1 16012416 16528 153 17 1411615417 164 78 6916 9614613917
1801175617 1511768816 167 145 1117 58 1493816 1111837716
64 18464 17 41 13018 16 180157 15 16 27 1189 17 145 112416
1279817617 27 185 187 17 93 183 14016 01875017 77 124 19116
298018017 1807012916 81121 10 16 107 173 115 16 58127817
11164 187 16 154 182 137 16 61196 182 17 2273 127 17 1516220217
4718212817 1122 102 17 13 1184116 121346616 12018117
21 140 181 16 159113 1817 3750149 16 43 15615 17 211 107 13 16
1321444417 1071204917 2076975 17 20923167 16 8613 21217
96144 183 16 1072092317 94 106 10116 1951527217 486914617
21223 15017 3919321217 221337517 1538211 16 7 186 144 16

160

Appendix 7 - The SBox problem

150209516 167 1809217 207 151 105 17 5915017517 148213 15 17
10214421417 15683 12416 2 106 18116 92156227 17 154219 12117
16242617 2012861 16 1796921616 9713616916 11045916
35844017 244 169 180 17 55297416 158457 16 432822617
39 112 106 17 180204 155 17 63 14020417 5 177 185 17 7920020917
652141317 252200146240

161

Appendix 8 - A list of publications arising out of the research

Appendix 8 - A list of publications arising out of the research

Evolutionary Computation with Case-Based Reasoning
Dominic Job and Venky Shankararaman. (Selected papers from the UK CBR 2000 Workshop) in
Expert Update. Summer 2001, Vol 4, No 2. SGES. ISSN 1465-4091.

Towards the Automatic Design of more efficient digital circuits
Vessiln K. Vassilev, Dominic Job and Julian F. Miller 2000. The Second NASAlDoD Workshop on
Evolvable Hardware

Principles in the Evolutionary Design of Digital Circuits -- Part I
J. F. Miller, D. Job, and V. K. Vassilev 2000. Journal of Genetic Programming and Evolvable
Machines, Vol. 1, No.1, (pp. 8-35)

Principles in the Evolutionary Design of Digital Circuits -- Part II
J. F. Miller, D. Job, and V. K. Vassilev 2000. Journal of Genetic Programming and Evolvable
Machines, Vol. 1, No.2, (pp. 259-288)

Hybrid AI Techniques for Software Design
Dominic Job, Venky Shankararaman and Julian Miller 1999. The lith International Conference on
Software Engineering and Knowledge Engineering. Printed by Knowledge Systems Institute Graduate
School, Skokie Illinois.

The Genetic Algorithm as a Discovery Engine: Strange Circuits and New Principles.
Miller J., T. Kalganova, N. Lipnitskaya and D. Job (1999) Proc. of the AISB Symposium on Creative
Evolutionary Systems (CES'99). Edinburgh, UK.

Hybrid AI Techniques for Automated Software Reuse
D. Job, V. Shankararaman and J. Miller 1999. International Conference on Case-Based Reasoning.
Technical Report of the Centre for Learning Systems and Applications (LSA) of the University of
Kaiserslautern.

Combining CBR and GA for Designing FPGAs
D. Job, V. Shankararaman and J. Miller 1999. Proceedings of the 3rd International Conference on
Computational Intelligence and Multimedia Applications.

162

Appendix 9 - An explanation of the acronyms used in this thesis

Appendix 9 - An explanation of the acronyms used in this thesis

FPGA - Field Programmable Gate Array

FPGA programs are a limited form of program consisting of a feed forward network of

primitive logic functions.

This thesis examines a specific area of software reuse in the programming of Field

Programmable Gate Arrays (FPGAs). An FPGA is a programmable microchip that takes as a

program a representation of a digital logic circuit. The FPGA takes on the digital circuit

configuration given to it as a program. FPGAs have the advantage over Gate Arrays in that

they do not have to be manufactured for a specific purpose. . FPGAs can also be quickly

reprogrammed to fulfil a new specification, whereas non-programmable Gate Arrays cannot

(Xilinx, 1996).

Logic programming can be seen as a specific kind of software programming. Gate Arrays are

microchips that require a Logic program to perform a function. Field programmable Gate

Arrays (FPGAs) are a specific type of gate array that is user programmable, and can be reused

by reprogramming it with a new program. Normal Gate arrays are programmed once and then

discarded after use.

CBR - Case-Based Reasoning

CBR is a problem solving method that reuses old solutions to solve new problems

CB - Case-Base

A collection of problem-solution pairs, used in CBR

HCBR - Hierarchical Case Base Reasoning

Hierarchical Case Base Reasoning (HCBR) (Smyth, 1996) are designed to facilitate indexing

and retrieval by organising the Cases into a hierarchy where specific Cases are indexed under

more general Cases.

A form of CBR where the CB can been seen as a hierarchy of cases where the cases are more

general higher up the hierarchy. The lowest cases are problem-solution pairs, the higher a case

is the more general it is. This facilitates matching and reasoning as the distance between cases

can be measured by the number of nodes of the hierarchy tree that have to be ascended to find

a common case.

AGR - Adaptation Guided Retrieval

163

Appendix 9 - An explanation of the acronyms used in this thesis

AGR finds existing Cases in the Case-Base that can be best adapted to solve the problem,

rather than simply retrieving the closest Case to the problem Case

EC - Evolutionary Computation

Computational techniques based on theories or natural evolution and natural systems, for

example Darwinian theory and ant colonies.

CGP - Cartesian Genetic Programming

A digital logic circuit is encoded as a more general graph based computational model called

CGP (Miller, 1999a). CGP is a graph-based form of genetic programming. Other graph based

genetic programming forms are Parallel Distributed GP (PDGP) proposed by Poli (1997) and

Parallel Algorithm Discovery and Orchestration (PADO) (Teller and Veloso, 1995). CGP

represents a data-flow graph (Banzhaf et al., 1998).

NLP - Natural Language Processing

Fully automated computing techniques and methods for interpreting and making useful

inferences (understanding) about natural language e.g. the interpretation of English, or French

by a computer.

Natural Language Processing (NLP) can extract knowledge from Natural Language

documents and other data-mining techniques can produce knowledge e.g. by Filtering or

mapping legacy databases to new uses

SR - Software Reuse

Software reuse (SR) encompasses many techniques. In general these techniques fall into one

of the categories give in Table 2.1. Each technique aims to reuse existing knowledge as much

as possible whilst minimising the amount of new work required to produce a satisfactory

solution (Krueger, 1992).

PLA - Programmable logic array

PLA files (PLA stands for programmable logic array) commonly specify combinational logic

functions. A PLA file is a truth table with additional information about the numbers of inputs,

outputs and products of the target program, and has the format shown in Table 2.2. A PLA

file differs from a Truth Table in that a PLA file need not have all outputs or inputs specified.

TT - Truth Table

Binary table of inputs and outputs for a digital function.

164

Appendix 9 - An explanation of the acronyms used in this thesis

TFQ - The Fundamental Question

"Can we by evolving a series of sub-systems of increasing size, extract the general principle

and hence discover new principles?"

BCT - Behavioural Context Triple

Like a two input logic gate (AND, OR, XOR etc) but including 'context' where the context of

a gate is defined as the binary inputs and outputs for the specific gate in a specific circuit with

a specific function such as multiplication.

165

	image001
	image002
	image003
	image004
	image005
	image006
	image007
	image008
	image009
	image010
	image011
	image012
	image013
	image014
	image015
	image016
	image017
	image018
	image019
	image020
	image021
	image022
	image023
	image024
	image025
	image026
	image027
	image028
	image029
	image030
	image031
	image032
	image033
	image034
	image035
	image036
	image037
	image038
	image039
	image040
	image041
	image042
	image043
	image044
	image045
	image046
	image047
	image048
	image049
	image050
	image051
	image052
	image053
	image054
	image055
	image056
	image057
	image058
	image059
	image060
	image061
	image062
	image063
	image064
	image065
	image066
	image067
	image068
	image069
	image070
	image071
	image072
	image073
	image074
	image075
	image076
	image077
	image078
	image079
	image080
	image081
	image082
	image083
	image084
	image085
	image086
	image087
	image088
	image089
	image090
	image091
	image092
	image093
	image094
	image095
	image096
	image097
	image098
	image099
	image100
	image101
	image102
	image103
	image104
	image105
	image106
	image107
	image108
	image109
	image110
	image111
	image112
	image113
	image114
	image115
	image116
	image117
	image118
	image119
	image120
	image121
	image122
	image123
	image124
	image125
	image126
	image127
	image128
	image129
	image130
	image131
	image132
	image133
	image134
	image135
	image136
	image137
	image138
	image139
	image140
	image141
	image142
	image143
	image144
	image145
	image146
	image147
	image148
	image149
	image150
	image151
	image152
	image153
	image154
	image155
	image156
	image157
	image158
	image159
	image160
	image161
	image162
	image163
	image164
	image165
	image166
	image167
	image168
	image169
	image170
	image171
	image172
	image173

