
Interoperable Services for Federations of
Database Systems?

Mark Roantree1, Jessie B. Kennedy2, Peter J. Barclay2

1 School of Computer Applications, Dublin City University, Dublin, Ireland.
{mark.roantree@compapp.dcu.ie}

2 School of Computing, Napier University, Edinburgh, Scotland.

Abstract. The problems associated with defining interoperable protocols
for heterogenous information systems has been the subject of researchers
for many years. While numerous solutions have been offered, the problem
remains unsolved, mainly due to the distinctive nature of each target
environment, and the uniqueness of each solution. This is not helped
by the use of proprietary common data models or the use of non-open
or non-standard technologies to provide an infrastructure and services.
In this research, services and processors were defined and implemented
using a platform of existing standards, in order to provide a more open
platform for system integration, and to enhance forward interoperability
with new systems over time.

1 Introduction

The concept of a federation of databases [24] is one in where heterogenous data-
bases (or information systems) can communicate with each other through an
interface provided by a common data model. In this research, the common data
model is the ODMG model, the standard model for object-oriented databases
since 1993 [6]. The most common architecture for these systems is as follows:
data resides in (generally heterogenous) information systems or databases; the
schema of each Information System (IS) is generally translated to an O-O for-
mat, and this new schema is called the component schema; view schemata are
defined as subsets of the component schema, and these are shared with other
systems; the view schemata are exported to a global or federated server where
they are integrated to form multiple global or federated schemata.
These requirements necessitate wrapper and view services for an ODMG

database: to provide wrapper specifications to non-ODMG information systems;
and view specifications for ODMG databases. In the case of the view speci-
fications, they must be capable of retaining as much semantic information as
possible, and thus, a view which results in a single virtual class, is not suffi-
cient. Instead, the view should resemble a subschema that retains information
regarding inheritance and relationships between classes. Furthermore, this view

? Supported by Forbairt Strategic Research Programme ST/98/014

mechanism must be powerful enough to support the restructuring of the sub-
schema specification for subsequent schema integration operations. The archi-
tecture must also include a transport service containing processors that display
different levels of genericity. The contribution of this research is to enhance
the interoperable ‘power’ of previous federated architectures by eliminating or
minimizing the use of proprietary models and support services. In doing so, we
introduce federated services for ODMG databases which provide view and wrap-
per languages, and transport services for moving metadata and data. This paper
is structured as follows: in the remainder of this section, we provide a motivation
for our research, describe the contribution offered, and discuss related work; in
§2, the integration system architecture and integration method is described; in
§3, integration services which are formed using open standards are presented;
and finally in §4, some conclusions are offered. An extended version of this paper
[20] includes details of integration operators and implementation.

1.1 Background and Motivation

Information systems integration is as relevant now as it was ten or more years
ago when federated database architectures were first proposed. However, unlike
the era when researchers first tackled the problem, issues such as interoperability,
open systems and distribution standards are more prominent. The use of Open
Systems design technologies has been recommended for a number of years in
an attempt to make future integration of previously autonomous systems, less
complex. While it must be accepted that the possibility of building systems
which are fully interoperable with all other systems is not possible, the usage
of published information technology standards enhances the type of integration
which is not always obvious at the time of systems development.
The OASIS project [16] focused on the research and implementation of a

federation of large healthcare systems. A major aspect of this research was the
definition and implementation of services based on standard technologies. This
research sought to define integration services and languages using open and mod-
ern underlying technologies. While it is necessary to ‘extend’ certain standards in
order to provide new features, we sought to keep these extensions both minimal,
and in the ‘flavor’ of the original standard. This research required the identifi-
cation of suitable software and database standards; a subsequent specification
of what was required to extend these standards to design services for federated
information systems [17]; and finally the development of a prototype suitable for
testing the practical implications of using the services provided in this research.

1.2 Related Work

In terms of architecture and processors, this research is based upon the standard
presented in [24], and is thus, similar to federated architectures such as that em-
ployed in the AQUA project [11], which contains services similar to those offered
here. Apart from AQUA’s use of a proprietary data model, the key difference
is that most of the effort in AQUA was employed in building an architecture

to support global transactions (eg. federated schema updates) whereas in our
research we concentrate on the power of the view mechanism. There are some
subtle architectural differences in that the AQUA model supports a form of
encapsulation whereas the ODMG does not1. Although this certainly provides
security, it has the drawback in that some client software and all view services
must be built (compiled and linked) with the data access functions in order to
retrieve data and display views. When our Display Service receives a request
to materialize a view, a general query is passed to local information systems to
retrieve information, and subsequent Object Query Language (OQL) queries are
used to filter and format the data.
In terms of object-oriented view services, most concentrate on supporting a

single information server, and have no need for the integration operators required
in a federated architecture. Although view mechanisms such as [22][7][25] do
provide a means of defining virtual schemata (rather than virtual classes), they
use proprietary object models (which hinder interoperability) and do not include
valuable restructuring operators such as those described in [10]. Similarly in [8]
[15], they do not supply restructuring operations, although in these cases, they
do employ the standard object database model [6].

Although this research has chosen to employ the ODMG database model as
standard on which to base higher level (federated) operations, and thus, as the
pivotal design model for the architecture, it is accepted that the standard is still
evolving, and in some cases it needs to address design issues which contains po-
tential problems for database engineers. For example, there are issues concerning
the semantics of the model, the adoption of an SQL-type query language, and its
‘views’ on encapsulation [27]; in a deeper analysis of its Object Query Language,
there are concerns for the support of compositionality, guaranteed access to all
portions of an object’ state (due to lack of identification support for arrays of
structures); and examples of unsafe query side effects [26]; and in [1] there are
numerous examples including the persistence model, parametric polymorphism
and reflection. These are important issues which have been highlighted by re-
searchers, and have not all been addressed in the latest version of the standard
[5]. However, we must limit the scope of our research to the provision of fed-
eration extensions, and trust that these base model concerns are addressed in
subsequent revisions of the standard.

2 System Architecture

The system architecture is based on an earlier architecture [24] (now regarded as
the standard federated architecture) which employed a series of layers to facili-
tate the integration of two or more heterogenous information systems. It employs
the ODMG model as the common model for sharing and exchanging data be-
tween participating systems. Early research into federated database systems [23]
indicated that object models are best candidates as common models, and we

1 In ODMG the keyword private is ignored during class definition.

extend this requirement by stating that the use of proprietary object models
should be avoided as it hinders interoperability. Specifically, we differ from the
standard devised in [24] in a number of key areas.

— Firstly, we propose the ODMG model as the common model. Theoretically,
this provides a uniform interface to which other federations can interact
with federated and local schemata in our architecture. The standard API
for the schema repository also provides a uniform interface for constructing,
querying, and manipulating view schemata, a necessary feature for query
transformation and optimization. Since the ODMG model provides an access
gateway for the this architecture, the external layer in the original architec-
ture [24] is not required.

— Secondly, we introduce a transport layer to manage the movement of data
between local information servers and the federated kernel. This provides a
controlled mechanism for moving view definitions to the federated kernel,
and ultimately the movement of data (if requested).

— Thirdly, we have replaced the accessing processors with an object manager
with a set of very specific functions. Each of these layers is discussed in detail
shortly.

local schem a
(local m odel)

com ponent schem a
(OD M G)

Local Layer

Com ponent Layer

Export Layer

Federated Layer

CR UD
P rocessor

export
schem a
(OD M G)

export
schem a
(O DM G)

Filtering
P rocessor

Integration
Processor

federated schem a
(OD M G)

Transport Layer

local schem a
(local m odel)

com ponent schem a
(O DM G)

C RU D
Processor

export
schem a
(O DM G)

export
schem a
(O DM G)

Filtering
Processor

Federated Database Kerne l

Local Database Server Loca l D atabase Server

CO RBA processor XM L processor
O DM G OIF processor O DM G vendor processor

Fig. 1. Integration Architecture in the ODMG Federation.

The architecture in figure 1 comprises five layers and four processor types
for the integration of non-ODMG information systems. ODMG databases begin
at the second layer (component layer) and undergo three integration processes.

Any number of local systems may be integrated to form a federated schema,
with integration using a binary ladder strategy as described in [3]. This means
that processors permit two schemata to be (firstly defined and then) integrated
to form a first pass of the federated schema. Subsequent transported (local)
schemata can then be added, one at a time, to make the final version of the
federated schema. Although figure 1 shows only one federated schema (and thus
one federation), any number of these global schemata may be constructed, fa-
cilitating the operation of multiple concurrent federations of data. The roles of
the system processors in schema integration are now described in more detail.

2.1 CRUD Object Manager Processor

An object manager is required to interact between the bottom two layers in the
architecture. This provides Creation, Retrieval, Updating and Deletion (CRUD)
of objects in the local information system, and is thus labelled, the CRUD proces-
sor. Not all information systems will be capable of providing all four features, but
one must permit the retrieval process for a minimum level of participation. The
CRUD processor can be seen as one local application which runs concurrently
with all remaining local applications. Modern systems such as Oracle or Informix
should support the creation, updating and deletion of local objects, subject to
the local rules of transaction management. However, some legacy systems may
not be able to guarantee write operations, and may thus participate in read-only
federations. For those systems which can support write operations, it is incorrect
to assume that this provides an obvious support for global transactions such as
those supported in traditional distributed database systems. Each federation will
require its own unique analysis to determine if global transactions are possible,
and then a purpose-built transaction protocol to guarantee integrity of data.
Such protocols are outside the scope of an abstract architecture such as ours,
but typical examples are provided in [11] and [14].

This step in the integration process requires further services, some of which
are external to this research. For example, an ODMG representation of the local
data model must be compiled. It is generally accepted that this process can never
be fully automated although for some conversions (relational to object-oriented),
automated processes can perform much of this task. Our research assumes that
this task has been completed, and that the input for our architecture is an
ODMG component schema, or in practical terms, an ODMG database (known
as the component database) with a schema defined, but with no physical data.
The CRUD processor requires a mapping language to ‘bind’ the local database
schema with the ODMG representation in order that it may extract data from,
or update data inside, the local information system. This mapping language
is part of the wrapper service described in the following section on integration
services.

2.2 Filtering Processor

Between the component and export layers, a filtering processor is used to define
local filters or view schemata. This processor requires an ODMG view mechanism
to define what are termed export schemata in [24]. The view mechanism itself is
outlined in the following section and described fully in [19]. The requirements of
this architecture illustrate three main differences with existing federated archi-
tectures. Firstly, it requires a view mechanism based on the ODMG standard in
order to improve interoperability. Secondly, view definitions must be stored in
the schema repository as specified in the ODMG 2.0 [6] and ODMG 3.0 [5] stan-
dards. Providing a common interface exists for retrieving and processing view
definitions, the Object Query Language can be used to extract views for export,
and subsequently play a part in displaying or materializing views. Finally, an
object view should not simply be a class, but a subset of the database schema.
This requirement states that a view should retain details of abstraction (in the
form of inheritance information), associations between objects (in the form of
ODMG bi-directional relationships), and behavior, as the schema integration
process requires as much semantic information as possible.

2.3 Transport Processor

The Transport Processor is used to move data between local ISs (at the export
layer) and the federated database kernel (at the federated layer). In practical
terms metadata is moved when export schemata are extracted from local ISs
and transferred to the federated kernel; query data is passed from the federated
kernel to local ISs; and when requested, data is moved to the federated kernel,
or to local ISs which may request data. The Transport Layer contains differ-
ent implementations of transport processors depending on the required function
and the constituent parts which comprise the federation. In figure 1 there are
four possible transport processors identified. Each processor type from the sim-
plest (thin application) through to more complex processors (CORBA), is now
explained briefly.

— ODMG Vendor. The extraction of view schemata from local ISs to the
federated kernel where all parties use the same vendor implementation of
ODMG database represents the simplest form of transport processor. This
extraction process can migrate a collection of meta-objects (the view defin-
ition) between ODMG databases using a basic connection between two ho-
mogenous databases. Since only (ODMG standard) meta-objects are moved,
there are no issues with regard to the importing of unknown (user-defined)
types. View meta-objects are discussed in [18].

— ODMG OIF. In theory, the previous processor should suffice, even where
different ODMG vendor databases are used across similar platforms. How-
ever, the heterogenous nature of different ODMG implementations means
that a processor is required to connect to target ODMG systems, convert
the source ODMG objects into a standard transportation format (known

as the Object Interchange Format), transport them, and convert from the
OIF format back to the ODMG representation in the target system. Each
processor will require a ‘thin’ adaptor for connecting to, reading from, and
writing to each vendor implementation.

— XML. One of the problems with the previous processor is that it requires
a significant amount of proprietary software code and is not really suited to
multi-platform federations. Furthermore, the processor is confined solely to
moving data between ODMG systems in a rigid and predefined fashion. A
processor which can achieve the same function, but can also be used for more
complex negotiations between object stores (see [4]) can be implemented us-
ing the eXtensible Markup Language (XML). Each ODMG vendor supplies
an adaptor or driver which converts their ODMG objects to and from an
XML representation. Different negotiation protocols can be used [4] depend-
ing on the nature of (transport) transaction.

— CORBA. In many cases it will be necessary to transport2 behavior between
the participating ODMG systems, and between the local systems and the fed-
erated kernel. None of the previous processors can manage this requirement
as the design structure of ODMG databases and applications means that
data is stored in the (shareable) database, and behaviour is implemented
and stored in (proprietary) client applications. Consequently, a ‘generic’ ap-
plication such as a data transport processor cannot access behaviour which
is not stored in source databases. The Object Management Group’s CORBA
technology [13] can be used to extend ODMG databases to make their be-
haviour shareable to the transport processor.

2.4 Integration Processor

The role of this processor is to integrate imported local schemata to form feder-
ated schemata. It uses the View Service to define global or federated schemata
on top of imported schemata using different forms of joining operations. These
integration operations require a view mechanism with the rich set of operators
originally specified in [10]. Thus, the same view mechanism discussed earlier
must also incorporate complex restructuring operators.
Each of the processors described in this section requires key services to bind

appropriate layers in the architecture. For example, the CRUD processor is de-
pendent on a wrapper language to bind its ODMG schema representation with
the schema of the local participating information system. In the following sec-
tion, the integration services which support these processors are described.

3 Integration Services

In the previous section we outlined the integration processors employed in this
architecture. An outside service (outside the scope of this research) is used to
2 The term transport is used in a broad sense. In reality, what is required is the sharing
of behaviour, as it belongs to a class definition and not to the object instances which
are moved between information systems.

construct an ODMG representation of each local database schema. One output
from this process will be an Object Definition Language (ODL) schema specifi-
cation. When this specification is passed through the ODMG databases services
(see ODL Database Process in figure 2), the database will contain a schema
definition (in the form of metaclass instances). This is the standard schema de-
finition step for ODMG databases and to understand the structure and type of
metaclasses, please refer to [9]. To design and implement the services required
in this architecture it was necessary to extend the ODMG metamodel (and its
implementation, the schema repository interface) to include the concept of vir-
tual types and virtual subschemata. Only a brief discussion of the repository
extensions will follow shortly, but they are described in detail in [19][21].

user-defined
object instances

ODMG-defined
metadata types

(describe database schema)

Extension metadata types
(describe view schemata

& object wrappers

Database Schema Repository Schema

Local IS

Database ODL
Process

Wrapper
Service

Model Transformation
Process

ODL
file

wrapper
definition

View
Service

view
definition

Fig. 2. Service Deployment and Operations in the ODMG Federated Database Archi-
tecture.

There are two key services which are discussed in the following sections: the
Wrapper Service which stores wrapper definitions and the View Service which
stores view schemata, both in the form of ODMG meta-objects in the extended
schema repository. In figure 2 the operations and services which take place at
the local information server are illustrated. The broken line indicates opera-
tions which are not part of this research. Specifically, the Model Transformation
Process is performed manually with the help of CASE tools, and generates both
a set of mappings between local and ODMG entities, and an Object Definition
Language (ODL) specification of the component (ODMG) schema. Both the
mappings and ODL file are used as inputs to the Wrapper Service. A descrip-
tion of the View and Wrapper services is now provided, with the help of the
service deployment diagram in figure 2.

3.1 Wrapper Service

Essentially, the Wrapper Service comprises a specification language for mapping
ODMG to non-ODMG entities, and a language parser combined with a storage
mechanism. A full description of the language can be found in [21], with a brief
example provided here. Briefly, a wrapper may contain any number of entities
specified in the form of a class; a class has a name and is comprised of attributes
and relationships; and a class may have relationships with other classes. In other
words, the wrapper language permits an ODMG-style specification3. Due to its
close association with the ODMG model, the wrapper specification language is
known as ODLw, the Object Definition Language for Wrappers.
The wrapper language parser processes the wrapper specification and the

result is the construction and storage of a collection of meta-objects in the schema
repository extension. The Display Service utilizes this metadata when generating
view results.

3.2 View Service

Similar to the Wrapper Service, the View Service comprises a specification lan-
guage for defining local and global views, and a language parser combined with
a storage mechanism. The view language, ODLv (Object Definition Language for
Views) is more complex than ODLw due to the nature of the operations involved.
The purpose of the language is to define subschemata which contain as much
semantic information as possible, and to provide an operator set which supports
the integration of subschemata. In figure 2 the view definition (an ODLv file) is
processed by the View Service and stored as a collection of metaclass instances.
A standard interface to the schema repository is crucial to both the view and
display services. Both services represent a form of generic4 application which
must operate on any ODMG database. In ODMG version 2.0 the schema reposi-
tory interface standard was published which theoretically5 provides a mechanism
for developing generic applications which can generate dynamic queries or con-
struct view classes using existing base classes. During the design of ODLv it was
necessary to extend this specification to include the concept of virtual types.
These extensions maintained the structure and naming scheme of the original
repository interface for the purpose of interoperability. The full extensions are
described in [21], with a brief account available in [18].
Although the view language itself is described in [19], we will now provide a

brief overview in order to demonstrate how schema segments can contain more
semantic information than simple class views, and how these subschemata can

3 The difference is that the wrapper language does not specify behaviour as it is unclear
how a function which has been re-implemented in ODMG can map to, or execute a
function in a remote database. This forms part of on-going research.

4 A generic application is assumed to be one which has no prior knowledge of the
structure of the database.

5 Unfortunately, ODMG vendors continue to use proprietary interfaces to schema
repositories which provide an obstacle to interoperability among databases.

be integrated. A view comprises one or more sub-schemata called view segments.
A view segment comprises a collection of connected classes, where connections
form either hierarchical or association relationships. At the class level, classes
may drop or gain attributes or relationships, and at the schema level, classes may
drop or gain both hierarchical or association relationships. These operations are
typical of local view definitions, but may also take place during the specification
of federated view definitions.
In addition to these basic operations, there are also a series of integration

operators which are generally used at the federated level, but may also be used
for local view definitions. The operators can be divided into two broad cate-
gories: view restructuring and view integration operators. The syntax, grammar
and working examples are provided in [21] as space restrictions prevent a more
detailed discussion here.

3.3 Display Service

The Display Service generates extents for all classes in the view. Each view
segment must have a single OQL-style query defined for a pivotal view class,
that is used to generate extents for all classes in the segment. Consider the
view sample in figure 3 which has three distinct segments: the first is a list of
consultants together with patient and duty information; the second is a list of
nurses and details of the wards in which they work; and the final segment is a
list of all patient visit details called episodes, which are specialized as in-patient
and out-patient records. The pivotal classes are Consultant, Nurse and Episode
respectively.

Person

Duties

Episode

In-Patient Out-Patient

Person

WardNurse

ConsultantPatient

Fig. 3. Sample healthcare view schema.

Assume that the extent queries are:

— select C from Consultant where C.Speciality = ‘blood disorders’;

— select N from Nurse where N.shift = ‘nights’;

— select E from Episode where E.date = ‘10.10.99’;

In the first schema segment, the extent for the Consultant class will be de-
termined directly by the pivotal query; the extent for the Patient class will be
selected as those patients who are treated by Consultants who have a speciality
in ‘blood disorders’; the extent for the Person class will be the union of the two
previous extents; and finally the extent for the Duty class will contain only Duty
objects for Consultants with a speciality in ‘blood disorders’.
In the second schema segment the extent for the Nurse class will contain

only nurses who work the ‘night shift’; the extent for the Person class will be
identical6; and the extent for the Ward class will contain only those wards in
which night-shift nurses work.
In the third schema segment, the extents for the In-Patient and Out-Patient

classes will contain only those In-Patient Episodes and Out-Patient Epsiodes for
‘10.10.99’ respectively; and the extent for Episodes will be the union of the two
previous extents.

4 Conclusions and Future Research

In this paper we described our efforts to employ modern standards such as the
ODMG database model, CORBA, ODBC and XML to build services to support
the integration of heterogenous information systems. In a larger version of this
paper [20], implementation details are provided.

— Participating information systems must provide an ODL representation of
that segment of the schema they wish to share.

— The architecture supplies a wrapper specification language to bind the ODMG
to local schema representation and through the CRUD processor, extract
data from local ISs and present the results as ODMG objects.

— An ODMG-style view language creates virtual subschemata.
— Heterogenous processors can move view schemata (and data if requested)
between local and federated servers.

— A rich set of operators are present which can manipulate ODMG view
schemata.

— A display system has been specified to query and display views.

All of the above have been implemented in a generic fashion so that they
can operate with any ODMG database which supports the schema repository
interface standard, and has incorporated the schema extensions specified in our
earlier research. All of the services described in this publication can be down-
loaded from the OASIS web site[12], together with instructions for building a

6 In ODMG databases each Nurse object requires the construction of a {Person,
Nurse} pair, where both have the same identifier.

federation of legacy systems with ODBC interfaces. The project is now at a re-
view stage with the focus on improving the current prototype system. Current
research is threefold:

— While previous tests have used all features (and operators) specified in the
view language, it is felt that as views are (continually) defined on existing
views, some combinations of operators may have performance implications.
This element of research is focused on emulating the full datasets in six
healthcare information systems, generating an exhaustive list of combination
views, and identifying problematic view types.

— Since behavior of ODMG classes is not stored in databases, it is impossible to
include it in view specifications. However, we have proposed some extensions
to the implementation of ODMG databases where behavior resides at the
server and not in client software. While this work is ongoing, a description
of the revised ODMG architecture, together with a method for sharing has
been completed.

— Finally, although our CRUD processors can provide updates, there is no
global transaction manager (such as that supported in AQUA) specified.
Current efforts involve the classification of participating systems to deter-
mine the types of transactions (read-only and different levels of write trans-
actions) which can be supported.

Issues concerning legacy system migration, interoperability among heteroge-
nous software systems, and information sharing are common among software
architects and engineers. Where possible, solutions must be based upon agreed
standards, with a clear description of all extensions in order that today’s inte-
gration solutions do not provide tomorrow’s interoperability problems.

Acknowledgments. This research was carried out jointly between the Interopera-
ble Systems Group (ISG) at Dublin City University, and the Object Systems
Group at Napier University in Edinburgh. The authors wish to acknowledge
the support of Robert Byrne, Dalen Kambur and Damir Becarevic in the
ISG.

References

1. Alagić S. The ODMG Model: Does it make sense? Proceedings of OOPSLA ’97,
1997.

2. ANTLR Reference Manual. http://www.antlr.org/doc/ 1999.
3. Batini C., Lenzerini M. and Navathe S. A comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys, 18:4, December 1986.

4. Byrne R. and Roantree M. An Object Transport Architecture for ODMG Data-
bases. Proceedings of the 34th International HICSS Conference, IEEE Press, 2001.

5. Cattel R. et. al. (eds.) (2000). The Object Data Standard: ODMG 3.0, Morgan
Kaufmann.

6. Cattell R. and Barry D. (eds), The Object Database Standard: ODMG 2.0. Morgan
Kaufmann, 1997.

7. Dos Santos C., Abiteboul S. and Delobel C. Virtual schemas and bases. Advances
in Database Technology (EDBT94), pp. 81-94, Springer, 1994.

8. Dobrovnik M. and Eder J. Adding View Support to ODMG-93. Advances in Data-
bases and Information Systems: Proceedings of the International Workshop of the
Moscow ACM SIGMOD Chapter, ACM Press, 1994.

9. Jordan D. C++ Object Databases: Programming with the ODMG Standard. Addi-
son Wesley, 1998.

10. Motro A. Superviews: Visual Integration of Multiple Databases. IEEE Transac-
tions on Software Engineering, 13:7, 1987.

11. Nodine M. and Zdonik S. The Impact of Transaction Management in Object-
Oriented Multidatabase Views. In Bukres O. and Elmagarmid A. (eds.), Object-
Oriented Multidatabase Systems, pp 57-104, 1996.

12. OASIS Web Site. http://www.compapp.dcu.ie/˜oasis/. 2000.
13. Orfali R. and Harkey D. (1998) Client/Server Programming with Java and

CORBA, Wiley.
14. Pitoura E., Bukhres O. and Elmagarmid A. Object Orientation in Multidatabase

Systems, ACM Computing Surveys, 27:2, pp 141-195, 1995.
15. Radeke E. Extending ODMG for Federated Database Systems, Proceedings of

DEXA 1996.
16. Roantree M., Murphy J. and Hasselbring W. The OASIS Multidatabase Prototype.

ACM Sigmod Record, 28:1, March 1999.
17. Roantree M., Kennedy J., and Barclay P. Providing views and closure for the

ODMG object model. Information and Software Technology, 41:15, Elsevier Sci-
ence, 1999.

18. Roantree M., Kennedy J., and Barclay P. Using a Metadata Software Layer in
Information Systems Integration. To appear in 13th Conference on Advanced In-
formation Systems Engineering (CAiSE 2001), June 2001.

19. Roantree M., Kennedy J., and Barclay P. Constructing View Schemata Using an
Extended Object Definition Language. To appear in 6th International IFCIS Con-
ference on Cooperative Information Systems (CoopIS 2001), Italy, 2001.

20. Roantree M., Kennedy J., and Barclay P. Interoperable Services for Federations of
Database Systems. OASIS Technical Report OAS-10, November 2000.

21. Roantree M. Constructing View Schemata Using an Extended Object Definition
Language (PhD Thesis). Napier University, November 2000.

22. Rundensteiner E. Multiview: A Methodology for Supporting Multiple Views in
Object-Oriented Databases. Proceedings on the 18th International Conference on
Very Large Databases (VLDB’92), pp 187-198, 1992.

23. Saltor F., Castellanos M. and Garcia-Solaco M. Suitability of Data models as
Canonical Models for Federated Databases. ACM SIGMOD Record, 20:4, 1991.

24. Sheth A. and Larson J. Federated Database Systems for Managing Distributed,
Heterogenous, and Autonomous Databases. ACM Computing Surveys, 22:3, pp
183-236, ACM Press, 1990.

25. Scholl M., Schek H. and Tresch M. Object Algebra and Views for Multi-
Objectbases. In Distributed Object Management, Özsu, Dayel & Valdiurez (eds),
pp. 353-374, Morgan Kaufmann, 1994.

26. Subieta K. Object-Oriented Standards: Can ODMG OQL be extended to a Pro-
gramming Language? Proceedings of the International Symposium on Cooperative
Database Systems for Advanced Applications, pp. 546-555, Japan, 1996.

27. Subieta K. Remarks on the ODMG Standard. Technical Report. Kyoto University,
March 1996.

