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Abstract— Conditions causing gait abnormalities are very 

common and their treatment requires the detailed assessment of 

gait. Currently such assessments are carried out in gait 

laboratories and require the use of complex and expensive 

equipment. To increase availability and use at home and clinics, 

we design and develop an affordable, user friendly, wireless, 

portable automatic system to extract spatiotemporal features of 

gait that can be used indoors and outdoors. This study determines 

the concurrent validity of extracted gait features from Inertial 

Measurement Units (IMUs) against ‘gold standard’ Motion 

Capture System (MoCap) using a hybrid gait features extraction 

method. The analysis of the proposed method is based on 

minimum prominence and abrupt transition points in the IMU 

signals. It also compares the degree of agreement for mean 

spatiotemporal gait features. The concurrent data from 

synchronized IMUs and MoCap are collected from 18 subjects. We 

validate our proposed system using two experiments; 1) IMU and 

MoCap with self-selected (free) walking and 2) IMU and MoCap 

at various walking speeds. Interclass correlations, Lin’s 

concordance correlation coefficients and Pearson's correlation 

coefficients (r) are applied to determine the correlation between 

extracted gait features from IMU and MoCap measurements. 

Bland-Altman plots are also generated to evaluate any unknown 

bias between the mean extracted features. The experiments show 

that spatiotemporal features of gait extracted from IMUs are 

highly valid. Our methods facilitate gait assessment in clinics and 

at home including the possibility of self-assessment. 
 

Index Terms— Inertial Measurement Unit (IMU); 

Accelerometer; Gyroscope; Feature Extraction; Wearable 

Sensors; Gait Analysis.  

I. INTRODUCTION 

ait disorders have multifactorial causes. Intrinsic causes 

include normal ageing, age related diseases, abnormal 

posture and ambulation as well as mental health disorders such 

as depression. Gait abnormalities are therefore common in 

clinical practice. The change in gait over time is a marker of 

prognosis in patients with Parkinson’s disease, cerebrovascular 

accidents , amputees , stroke , osteoarthritis , spinal deformity, 

fractures, limb-length inequality  and cerebral palsy [1, 2]. Gait 

analysis of elderly patients is used to determine falls risk [3] 

with a view of promoting prevention [4]. Gait can also predict 
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physical and memory decline [5]. Human locomotion is 

analyzed using biometrics and biomedical engineering which 

opens several opportunities. The detection of abnormalities 

within an individual’s gait also aids in the detection of poor 

quality of life, falls and increased mortality. These can lead to 

injury, disability and increased care costs. For these reasons, 

research in gait analysis is key, and has drawn interest from 

researchers across various disciplines. 

Gait is often evaluated by physicians, therapists and 

researchers in artificial conditions using clinical tools that, 

despite validation, are often subjective and arbitrary and often 

lacking ecological validity. These tools are mostly based on 

visual observation by the therapist who then makes a subjective 

judgement based on their observations. Such tests include the 

‘get-up and go’ test, six-minute walk test, Figure of 8 Walk 

Test, The Functional Gait Assessment, Groningen Meander 

Walking Test  and Berg Balance Scale [6]. Scoring relies on 

clinical expertise, experience and judgement and abnormalities 

are identified in a dichotomous way (present or not). On the 

other hand laboratory based tests are more accurate and detailed 

and are able to analyse the various components of the gait cycle. 

Tools for assessment of gait such as 3D kinematic analysis 

using a motion capture system (based on stereo 

photogrammetry with multi numeric cameras allowing the 3D 

tracking of dedicated markers), ground reaction forces [7] and 

instrumented walkways [8] offer current “gold standards” of 

measurement in gait. These methods require technical or 

clinical staff trained to use such equipment.  They are also time 

consuming and expensive, making them of little practical use 

for day to day use in clinics. Lower cost alternatives such as 

Microsoft Kinect [9] and camera [10] are appealing, but are 

limited in their use due to small capture volume, lack of privacy 

and because they only analyze a few gait parameters. There is 

therefore a need for an affordable, user-friendly, reliable, 

portable multi-sensor based gait analysis system that can 

capture data over a long time period and one that can be used 

both in clinics and at home. There are several wearable sensors 

used to analyze gait such as accelerometers, magnetometers, 

gyroscopes, goniometers, foot pressure sensors and 
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inclinometers [11]. IMUs bring together several of these 

sensors and their use in clinical practice is increasing. They 

have several clinical applications including the monitoring of 

gait post operatively, measurement of gait symmetry, stride 

variability, analysis of gait in Parkinson’s disease, human 

walking trajectory  and falls risk characteristics  [12]. IMU 

sensors  increase the versatility and potential for new 

technological developments opening up possibilities for use at 

home and clinic.  IMU sensors offer the freedom for the 

measurements to occur at home or within the community, 

outside of healthcare settings, offering greater ecological 

validity. Although techniques for IMU based analysis are being 

refined and are available [13], few studies have explored their 

use for gait analysis at home and in clinical areas. In addition, 

these studies do not describe a fully automatic system that is 

able to collect data from multiple sensors, extract features and 

provide quantitative measures from both limbs.  

The challenges arising from diagnosis and management of 

gait abnormalities and their consequences result in a national 

imperative to address this. This study adds to our previous work 

[14] that investigated gait asymmetry based on normal walking 

but without different walking speeds or determining the level of 

agreement from statistical analysis. We design and implement 

a novel hybrid validation to automatically analyze gait by 

identifying and extracting specific components of gait. We use 

IMUs and Motion Capture System (MoCap) data with 

Treadmill to increase the reliability and validity of gait features. 

Based on our proposed method, we develop a data collection 

system based on the simultaneous collection of 14 important 

gait features from both legs separately. Using a multisensory 

based IMU system, we aim for this system to be low cost to 

increase its availability and affordability. 

The main contributions of this paper are: 1) propose a novel 

hybrid adaptive gait events detection approach based on 

combining local minimal prominence characteristics and abrupt 

transition in the signals using a low-cost IMUs based gait 

analysis system, 2) ascertain the ability to extract gait features 

from the parallel use of IMU and MoCap, 3) determine the 

levels of agreement for average spatiotemporal gait features 

using the proposed approach with the criterion measure than the 

established MoCap, and 4) conduct synchronous IMUs data 

collection from both legs using our dedicated and sophisticated 

smartphone application from 18 subjects. We perform two 

experiments to validate our method; 1) IMU and MoCap with 

self-selected (free) walking and 2) IMU and MoCap at various 

walking paces. 

II. METHODS 

A. Sensor selection and data acquisition 

An IMU incorporates an accelerometer and a gyroscope that 

respectively measure acceleration and angular rotation of an 

object.  The measurement of human locomotion is very variable 

with individuals walking at different speeds. The device must 

be capable of capturing such variability and requires a high 

bandwidth that is capable of measuring low to high acceleration 

changes. To achieve our aims we look to use a commercially 

available affordable IMU sensor. It should provide wireless 

Bluetooth facility, long battery life, the ability to 

simultaneously synchronize multiple data points. Preferably 

such a sensor would have some track record of use in clinical 

settings such as rehabilitation or sports and research.  The 

equipment is required to have a long battery life to enable its 

use to measure gait parameters over a prolonged period.  In 

choosing our sensor we look towards other characteristics such 

as pressure, water and temperature resistance. 

To meet our aims and develop our processing algorithm, we 

choose the sensors with the criteria: (a) capable of providing 

interpretable information of different stages of the gait cycle; 

(b) easily available, low cost, user friendly, portable, wireless 

and with low power consumption; (c) fulfil criteria for privacy 

and patient and public acceptability; (d) the compatibility of the 

sensors should allow use on existing sensor boards or systems 

or allow easy development for integration; (e) capable of 

allowing fusion and concurrent data collection. 

Several wearable sensors are validated for use in gait analysis 

[15]. We choose the MetaWearCPro [16] sensor as it meets all 

the criteria mentioned above. It uses accelerometer and 

gyroscope collected data. The range of the accelerometer is set 

at ± 8 ms-2 and the range of the gyroscope is ± 500 degs-1, with 

sampling at a rate of 50Hz. The sensor is active when connected 

to an android device via Bluetooth but is in sleep mode when 

disconnected. Battery usage is high when active but low in sleep 

mode. An application is developed for smartphones to collect 

real time synchronous data from IMUs[14]. An HTC M9 

mobile phone is used to connect the IMUs. We previously 

identified metatarsal foot locations for optimal data collection 

and extraction [17]. Two IMU sensors are located at these 

positions for both feet with a view of collecting accelerometer 

and gyroscope data. 

B. Experimental protocol 

Two experiments are conducted with institutional ethical 

approval. Each experiment measures gait with Experiment 1 

measuring on a treadmill, Experiment 2 measuring on the 

ground free walking. Previous work demonstrates that there are 

differences in gait under these differing conditions [18]. There 

is therefore a need to ensure that the proposed algorithms can 

detect the same factors under all conditions they need to be 

used. For each experiment, each participant is provided with an 

information sheet and provided signed informed consent. 

Subjects are excluded if they have musculoskeletal conditions 

such as fracture or muscle injury, neurological illness, unable 

to exercise, major ligament injury within 3 months of the study, 

abnormal gait, recent surgery or impairment attributable to 

other causes by history or other medical diagnoses that have the 

potential of affecting the results of the study. Both experiments 

are conducted in a Gait Lab using a calibrated Qualysis [19] 

camera system. Lab based motion capture system and force 

plate are used to detect gait events [13], these studies use offline 

hand-craft feature engineering and do not describe a fully 

automatic system that is able to collect data from multiple 

sensors, extract features and provide quantitative measures 

from both limbs. This process is utilized here to demonstrate 
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the validity of our system with two reflective markers 

positioned on the lateral malleolus and 5th metatarsal on each 

leg to identify heel strike and foot angle to horizontal. 

Concurrently, two IMUs are attached to the base of the first 

metatarsal of each foot for collecting data shown in Fig. 1(a).  

1) Experiment 1 

A convenience sample of 8 young subjects (7 males and 1 

female, age 33.5 ± 5.06 years, weight 78.68 ± 16.51 kg, height 

1.73 ± 0.6 m, BMI 26.14 ± 4.30 kg/m2) are recruited. Each 

subject walks on the treadmill at different speeds (0.6, 1.0, 1.4, 

1.8, 2.0, 2.2 and 2.5 ms-1 respectively). Each subject performs 

a walk of 30 strides on the single belt treadmill (Woodway, 

model ELG). This experiment offers a more traditional 

laboratory based situation to demonstrate that the devices and 

algorithms perform well in each situation. 

2) Experiment 2 

A convenience sample of 20 young subjects (18 males, age 

27.65 ± 5.18 years, weight 64.8 ± 7.4 kg, height 1.61 ± 0.15 m, 

BMI 25 ± 3.9 kg/m2) are recruited.  Each subject walks in a 

straight line for 10 m at a self-selected (free) walking pace, they 

then turn 180° and walk back 10 m to starting position (20 m 

total walking). This experiment offers a more natural, 

ecologically valid walking situation.  

C. Adaptive gait features extraction 

1) Concurrent IMUs and MoCap data collection 

 
FIGURE 1. (a) Sensors placement in both metatarsal feet locations, (b) 3-D 

position from  MoCap, (c) Raw accelerometer and (d) Raw gyroscope  

Figure 1(b) shows 3D position output from Qualisys. The 

raw data accelerometer and gyroscope relating to subject 1 is 

presented in Figs 1(c) and 1(d). 

2) Raw data processing 

The IMU provides 3 axis acceleration from both 

accelerometer and gyroscope data. the Accelerometer measures 

user acceleration and gravitational acceleration towards earth. 

They are affected by altitude and impact, resulting in poor 

dynamic features. Gyroscope data have a low changing bias and 

are sensitive to temperature changes resulting in poor static 

features [20]. The 3-axis outputs from both sensors are 

combined to provide an absolute orientation vector as 

quaternion or Euler angles. The IMU combines the 

measurements from 3-axis accelerometer and 3-axis gyroscope 

sensors to provide an orientation vector as quaternion or Euler 

angles. The algorithm in [16] fuses the raw data performing an 

intelligent analysis to improve sensors’ output and provide 

distortion-free and refined orientation vectors. The IMU input 

data consists of two components: forward acceleration and 

downward gravitational acceleration. There are several 

quaternions able to estimate the orientation from these data and 

we choose the Madgwick technique [21]. In this way the impact 

of gravity is removed and gravitational g is converted to user 

acceleration of movement (Axyz) ms-2 by multiplying 9.81. 

 
FIGURE 2. (a) Normal human gait phases and (b) Eight events of a gait cycle 

from accelerometer signal (c) Stride events from MoCap 

3) Stride, stance, swing and step detection 

Human walking is a series of repetitive movements described 

as the gait cycle. A stride is defined as the distance between the 

point of first foot contact and the next point of contact of the 

same foot [22]. A stride is therefore made up of two steps and 

consists of stance and swing phases. Stance is characterized by 

5 and swing by 3 events. Normal human gait phases and 8 

distinct events in the gait cycle are shown in Fig. 2. 

In Fig. 2(a), the cycle starts at the point when the heel of the 

leading foot first touches the ground. The leg decelerates as the 

forward velocity decreases to zero. The foot is stationary as the 

body weight is supported on that foot till the terminal stance 

phase. At the pre-swing event the toe of the lead foot is being 

(a) 
(b) 

(c) (d) 

(c) 

(b) 

1 2 4 6 

7 

8 5 
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lifted off the ground. The point when the foot is completely off 

the ground is the start of the swing phase. In the initial swing 

event forward acceleration starts along a horizontal axis 

reaching a peak followed by a deceleration to the terminal 

swing event when the foot touches the ground again. These 8 

events are identifiable from an IMU (Fig 2(b)). They were 

previously identified from accelerometer [23] and gyroscope 

[24] signals separately. The signals are comparable to our 

signal. The signal obtained shown in Fig. 2(b) identifies the 

separate gait events shown in Fig. 2(a).  

From Fig. 2(b), we can see that the lead foot is stationary at 

the start and end of the gait cycle.  Events 1-4 are identified in 

the signal as a horizontal line with zero velocity. As the foot 

moves from the end of the stance phase through the swing 

events we can see the corresponding signal from the gyroscope 

and accelerometer. The mid swing event which is the point of 

highest acceleration is identified by marker 7 and is followed 

by a deceleration identified by marker 8.  This point 7 is a useful 

marker for identifying a stride.  

We propose a hybrid adaptive gait phase detection approach 

based on the characteristics of different events. The approach 

of detecting stride, stance, swing and steps are described below. 

STEP 1) Filtering: Axyz is smoothed using a low-pass 1st 

order Butterworth filter with a sampling rate of fs = 50 Hz, and 

a cut off frequency fc = 5 Hz.  

This smoothness is accomplished at the cost of diminished 

steepness of some peaks meaning that different frequency 

components of this signal are delayed by different lengths of 

time, causing distortion [25]. Therefore, we first filter the 

signal, then time reverse the signal and last filter it again with 

the same filter to linearize the phase [25]. The phase response 

is corrected when the signal is passed through the filter for the 

second time. A zero phase delay filter is applied for avoiding 

the phase distortion after the digital low-pass filter [26] to 

obtain ATxyz (filtfilt in MATLAB). 

STEP 2) Stride detection: The stride phase is detected by 

identifying the local maximal and minimal prominences 

characteristics from accelerometer signal that correspond to a 

single stride phase shown in Fig. 2(b). We use maximal and 

minimal prominences described in [27], but we use a different 

detection method to identify them correctly. In our technique, 

we identify the two minimal prominences (Fig. 2(b) markers 1 

and 8) and then proceed to identify the maximum peak (Fig. 

2(b) marker 7) factoring out additional peaks (e.g. Fig. 2(b) 

marker 4) that may occur during the particular phase of the gait 

cycle.  The apex of the peak is a measure of its height as well 

as how much the position in relation to other apexes. Three 

steps are required to measure the prominence of a peak. A 

marker is first positioned on the peak.  

One technique of marking the peaks is to make use of the 

characteristic that the first derivative of a peak has a downward-

going zero-crossing at the peak maximum. Second, an extended 

line from the horizontal axis is drawn to the left and right side 

until it crosses the signal or reaches the left or right end of the 

signal. Third, the maximum perpendicular distance from the 

peak to the horizontal line is calculated. The maximum 

prominence of the peak is identified by following these steps. 

 
FIGURE 3. Finding the maximum prominence of the peak 

An example of mentioned three steps is shown in Fig. 3. 

Allocate each peak to a marker labelled by 1 to 3 (peak) and 

mark the troughs by a to c. Draw an extension line from the 

horizontal axis to right and left side until the line from marker 

a reaches the left end point. Estimate the maximum 

perpendicular distance between the marker a and the endpoint. 

Identify the minimal prominence of the peak using the similar 

procedure. This method is used to find the minimal prominence 

and applied to ATxyz signal for detecting initial contact (IC) and 

terminal swing (TC). The result is shown in Fig. 4. 

STEP 3) Swing detection: After identifying each stride from 

the ATxyz, choose a section as the length of which is the 

difference between a pair of consecutive strides (IC to TC). Pass 

the window through a low-pass filter (step 1) for smoothing. In 

the window locate the swing phase around middle. Identify the 

minimal peak prominence which is the stance and swing (SS) 

(marker 5 and 6 in Fig. 2(b)) from each window using Step 2.  

STEP 4) Stance detection: identify strides and swing once. 

Estimate the stance phase from the starting of stride IC to the 

swing location SS from each stride window. The results of 

detecting stride, swing and stance events is shown in Fig. 4. 

FIGURE 4. Detection of stride, stance and swing events using proposed 

approach 

STEP 5) Step detection: Characterize a step by the sequential 

events starting at the point of first contact of the lead foot and 

the first contact of the other foot. Therefore, the step is the 
difference between IC of one leg to SS of the opposite leg 

shown in Fig. 5. 

 
FIGURE 5. Result of step event detection using proposed approach 

STEP 6) Velocity and distance estimation: Figure 1(a) shows 

that the Ax is aligned along the foot axis of the IMU sensor, the 

Az points downwards so that it is aligned with gravity and the 

Ay is aligned at right angles to both Ax and Az. The raw data 
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from the sensor (Fig. 1(c)) show that the accelerometer signal 

at the initial level is not aligned to zero which means that the 

sensors are not located perfectly upright with the earth frame in 

the foot locations due to the initial gravity part of y and z. The 

sensors do not need to be perfectly upright in this study, which 

in any case is not user-friendly and nearly impossible. The 

compensation is considered resulted from the discrepancy 

between the sensor frame, the foot frame and the earth frame. 

The orientation of the IMU is estimated using Madgwick 

quaternion technique [21] and then gravity component is 

removed. We subsequently use the trapezoidal double integral 

approach [25] to use the accelerometer and gyroscope data to 

calculate the distance travelled by the subject. In the initial 

integration we identify the velocity and in the second 

integration we calculate the distance. A high-pass filter is 

applied to the data for removing the direct component from the 

acceleration and minimizing the integration drift [14]. As the 

stance phase is stationary, the velocity is set to zero. Stepwise 

graphical representation of each process is shown in the 

supporting document. 

STEP 7) Strides from MoCap: The MCS data collected from 

Qualisys is preprocessed for markers tracking using Qualisys 

Track Manager software and stored in a C3D file. Identify each 

stride distance from the x-axis of MoCap data. Initially use a 

high-pass filter to remove the direct component from the signal. 

Each stride starts with the first abrupt transition point IC and 

the TS is located at the last abrupt transition point. The abrupt 

transition point is detected by minimizing a cost function over 

all possible numbers and locations of change points in time 

series data based on statistics using findchangepts function in 

MATLAB [28]. The root mean square level statistics is used 

and the maximum number of changes to be searched is set to 

three. The result is shown in Fig. 6. 

 
FIGURE 6. Result of strides detection from MoCap using proposed approach 

4) Summary 

For both experiments, the reflective markers’ 3D positions 

are collected using the MoCap system from right and left legs. 

The total distance, total time, speed and stride (number, length, 

and time) are estimated using the position signals along the 3D 

coordinates information. The MoCap therefore provides 

positional data output and the IMU collects accelerometer and 

gyroscope data that is converted to displacement referred to as 

distance (Section 2(c) step 7). In this way the output from both 

can be calculated and compared.  

By combining the data from IMU and MoCap, we obtain 

values of 14 spatiotemporal features of gait. These features are 

obtained from each of the lower limbs in Fig. 7. The features 

obtained are: number of strides; distance (m); velocity (ms-1); 

time (s); stride time (s), length (m), velocity (ms-1); swing time 

(s), length (m) and velocity (ms-1); step time (s), length (m), 

velocity (ms-1); stance and swing time (s).  From MoCap, we 

obtain 10 spatiotemporal gait features from both legs. These are 

number of strides, total distance (m), total time (s), velocity (ms-

1), stride time (s), stride length (m), stride velocity (ms-1), step 

time (s), step length (m), and step velocity (ms-1). Figure 7 

shows our concurrent gait features extraction method and these 

step visualizations are shown in the supporting document. 

 
FIGURE 7. The process diagram of the automatic features extraction from 

IMUs, and MoCap through Treadmill 

D. Statistical analysis 

The validation study is conducted where the gait features 

extracted from IMU against gait features extracted from 

MoCap. Treadmill and MoCap are considered to be either gold 

or clinical standards. Treadmill provides the speed information 

and the stride number, stride length, stride time, total distance, 

total time, and speed are calculated from MoCap data. The 

Shapiro-Wilk test is applied to the collected gait features 

confirmation the normality in data. Accuracy between IMU and 

MoCap is calculated for different features using equation (1).  

%100100 









−
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   (1) 

The absolute agreement level  between the IMU extracted 

gait features and the MoCap gait features are analyzed with 

Interclass correlations (ICC) by ICC(2,1) [29] for consistency 

(two-way mixed). To validate IMU features and MoCap we use 

Lin’s concordance correlation coefficients (LCC) [30]. This test 

provides an index of how well results of a new test correlate 

with gold standard tests by capturing subtle deviations in 

agreement between captured data and reference criteria. The 

strength of the linear association between extracted IMU 

features and MoCap is measured using Pearson’s correlation 

coefficient (r). r is a poor indicator of validity as it only shows 

whether measurements can be fixed with calibration and does 
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not account for absolute agreement. For example, if the PCC of 

a variable is high, to get absolute agreement an offset can be 

applied [31]. 

We calculate the means, standard devastation (SD)s and 95% 

confidence interval (CI) for both MoCap and IMU systems. 

Bland-Altman (B&A) plots are generated to visually interpret 

heteroscedasticity by plotting the difference between the two 

systems against the mean of both the systems for each subject 

[32]. T-tests are also used to identify differences in IMU gait 

extracted features and MoCap measurements. 

III. EXPERIMENTAL RESULTS 

A. Experiment 1: Results 

In experiment 1, data from MoCap and IMU are collected 

concurrently. The treadmill speed is set to 0.6, 1.0, 1.4, 1.8, 2.0, 

2.2 and 2.5 ms-1 and each subject walks 30 strides on the 

treadmill at each speed. 3360 strides are collected from all 

subjects (8 subjects x 30 strides x 7 speeds x 2 legs). The 

collected data is analyzed to estimate the accuracy of total 

travelled distance and the total time of each subjects. The 

analysis is performed for stride to stride basis. The accuracy of 

IMU gait extracted features time, distance, and speed show very 

high, indicating that the measurements are significant 

comparing with MoCap. The accuracy between IMU and 

MoCap measurements are presented in Table I.  
TABLE I 

IMU GAIT EXTRACTED FEATURES ACCURACY WITH MOCAP & TREADMILL

 

The accuracy of walking time shows good in comparison 

with the distance as it is recorded directly from the signal. 

Distance and speed are obtained from accelerometer. Therefore, 

the distance and speed accuracy show lower comparing with the 

accuracy of time. The relative accuracy of IMUs is ranged 

between 85.48% - 99.96% for travelled distance and 99.49%-

99.97% for time. It shows that 85.48% is the lowest accuracy in 

distance travelled from the right leg of subject 8. The speed of 

0.6 ms-1 is very low in comparison with normal human walking 

and hence, subjects adjust their gait due to the speed. However, 

the accuracy of different speeds shows high. A paired t–test is 

performed between the IMU estimated distance (μ = 26.33, σ = 

10.19) and the MoCap distance (μ = 25.72, σ = 9.57) where the 

correlation r = 0.993 and p=0.76. These results indicate no 

significant difference in the measurements.  

Table V shows the agreement levels using ICC(2,1), LCC 

and r between IMU and MoCap. The results show high (from 

0.71 to 1) agreement for distance and time extracted from IMU 

and MoCap at different speeds for both legs of all subjects. The 

mean, SD and 95% CI are provided in the supporting document. 

TABLE II 

VALIDITY OF THE IMU GAIT FEATURES AGAINST MOCAP WITH TREADMILL 

 
The B&A plots are generated for subject 1 shown in Fig. 8. 

The B&A plots for all subjects are provided in the supporting 

document. Figure 8 demonstrates the validity of the extracted 

gait features measured with the IMU compared to the MoCap 

using a treadmill at a speed of 0.6 ms-1. The x is the average of 

the 2 measurements and the y is the difference between the two 

systems. The middle line passing through the zero axis 

represents the difference on average for the total sample. Upper 

and lower lines represent the 95% limits of agreement. Figure 8 

shows that the difference of the two estimations is zero and the 

most of the differences lie in between the 95% limits of 

agreement. 

 
AD=Average Distance(m), AT=Average Time(s) 

FIGURE 8. B&A plots for validity of distance & time measured for right & 

left legs with IMU & MoCap with treadmill=0.6 ms-1 from subject 1. 

B. Experiment 2: Results 

The accuracy between the IMU and the MoCap extracted gait 

features is presented in Table III. In experiment 2, the average 

accuracy of the distance travelled is 97.99% (95% CI ±1.41), 

the average accuracy of time shows 99.01% (95% CI ±0.26), 

the average accuracy of speed 97.39% (95% CI ±1.44). The 

estimated speed on average is 1.53 ms-1 and this agrees with 

expected human walking speed averaging 1.5-2.5 ms-1 [33]. 

There is no significant difference between IMU estimated 

distance (μ=7.49, σ=0.39) and MoCap distance (μ=7.67, 

σ=0.26); t-test p=0.94 there is a strong correlation between the 

two; Pearson correlation coefficient (r=0.81). 

Table IV shows ICC(2,1), LCC and Pearson’s correlations 

(r). Table V shows IMU gait extracted features information on 

average for both legs conducted in experiment 2 for 20 young 

subjects. Stride and step numbers achieve 100% accuracy. The 

stride length for both legs are identical and the leg difference is 

low. In the normal gait cycle the stance phase lasts 60% and the 

swing phase 40% of the cycle [14]. Table V shows that the 

closest 60:40 split is found for average stride, stance and swing. 
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TABLE III 

IMU GAIT EXTRACTED FEATURES ACCURACY WITH MOCAP (D=DISTANCE, 

T=TIME) 

 
 

TABLE IV 

VALIDITY OF THE IMU GAIT FEATURES AGAINST MOCAP (D=DISTANCE, 

T=TIME, R (PEARSON'S CORRELATION COEFFICIENT)) 

 

TABLE V 

GAIT FEATURES INFORMATION FROM YOUNG SUBJECTS (* ACTUAL VALUE 

= RECORDED USING DIGITAL TAPE, ** ESTIMATED VALUE = USING IMU GAIT 

EXTRACTED FEATURES MEASUREMENTS) 

 

C. Comparison with other methods 

The results using the proposed algorithm can be compared 

with the previous methods. A wide range of algorithms are 

reported using peak threshold, window size and/or zero-

crossing [34-37] techniques to detect gait events from 

accelerometer or gyroscope signals due to their simplicity and 

low computational demands. These approaches are amongst the 

most popular and are usually extended with special 

enhancements in order to improve robustness. One 

disadvantage of these algorithms is that any motion with a 

similar periodicity of walking will trigger for a false stride 

event. Researchers [34-39] use a particular threshold value to 

detect a peak of acceleration corresponding to the marker 7 (See 

Fig. 2(a)). The peak of this acceleration can vary due to various 

factors such as intrinsic factors including age, muscle 

weakness, walking style or left to right differences; extrinsic 

factors such as shoes or walking surface [40]. In addition, the 

gait cycle is characterized by more than one peak of varying 

acceleration. If the sensing threshold of the IMU is set too low, 

it will detect all these peaks as strides. To illustrate this, using 

the peak threshold method [37], healthy subject 4 shows the 

detection rate of 109.4% and 271.2% in the gait abnormality 

group. The fact that the detection rate is more than 100% 

indicates multiple detection of the same event. Another 

important point is that when a subject walks with a different 

speed, there is poor acceleration and it is crucial to detect the 

gait cycle. For this reason first strike is  not considered for gait 

analysis [41]. A window based threshold calculation [42] is 

used to obtain an acceptable level of accuracy. If the window 

size is not appropriate, step detection accuracy will degrade 

because the threshold calculated from a larger window may not 

be able to effectively handle the variation [43].  

Our study shows that the gait events detection based on 

prominence characteristics has a higher accuracy. Our proposed 

stride and step detection technique achieves 100% accuracy 

compared to an accuracy ranging from 109.4% to 271.2% [37]. 

There are machine learning [44] and pattern recognition 

approaches [45] that require more data and we will explore in 

the future. 

IV. DISCUSSION 

The results of two experiments demonstrate that our hybrid 

adaptive gait phase detection method (Section II.C.3) can detect 

the various phases of a gait cycle. The process diagram of the 

automatic parallel features extraction from both IMUs and 

MoCap through Treadmill is shown in Fig. 7. The accuracy of 

the extracted gait features from IMUs are very high compared 

to MoCap, as a ‘gold standard’. Three separate (Interclass, 

Lin’s and Pearsons) analysis demonstrate high correlations 

between the features extracted from IMUs compared to MoCap. 

In addition to that, B&A plots show that the difference between 

the two measurements of features extracted is negligible and 

most of the differences lies in between the 95% limits of 

agreement. A dedicated mobile phone application is used for 

collecting accelerometer and gyroscope synchronous data from 

IMUs and the raw data are shown in Fig. 1(c) and 1(d) 

improving the usability in real-time. Our method provides a 

comprehensive spatiotemporal gait information.  

In Experiment 1, different speeds are set using a treadmill 
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that allow each subject to walk in different pace. On a treadmill 

gait there is less variability than over ground [46]. This allows 

us to correct for instrumentation error from measurement error 

arising from the natural biological variation in walking patterns. 

There is very good correlation between MoCap and our IMU 

based system for all parameters. The contribution for intra-

individual variability performance is minimized as each subject 

walked in different speeds. The gait features extracted from 

IMU and MoCap indicate that the error in the instrumentation 

is acceptable for most of the gait variables. The accuracy of our 

system is comparable with that of MoCap. 

In evaluating correlations, ICCs are often believed to be more 

reliable than Person's r and Spearman's rho test. Results need to 

be carefully interpreted as an elevated ICC does not necessarily 

imply excellent reliability, especially in circumstances where 

there is a wide variety of readings within the same subject. To 

tackle this, an absolute measure of reliability such as the 

coefficient variation or agreement limitations [47] is often used. 

The coefficient of variation is not influenced by the existence 

of a heterogeneous sample so that if the coefficient of variation 

is big, a test having an elevated ICC may not be accurate. The 

determination of appropriate limitations of the coefficient of 

variation is determined based on the level of agreement that the 

investigator aims to accomplish when comparing group or 

intervention results. Measurements using LCCs needs less 

assumptions than using ICC and subtle distinctions are 

identified between our measured variables and reference 

criteria. We also use the correlation coefficients (r) of Pearson 

to assess the power of the linear connection between the 

measurements of IMU and MoCap. Such correlations do not 

show complete agreement but merely indicate whether 

measurements can be corrected with recalibration and are 

therefore bad validity markers [31]. For IMU gait extracted and 

MoCap measurements, B&A plots are produced to visually 

show any systematic errors in our IMU measurements. Our 

results show that the average reading for features extracted from 

both legs is 0 indicating that there is no bias in extracting results 

using the two methods. 

This study however has a number of limitations. A total of 

28 young subjects are recruited for this study where they have 

no gait abnormality. The calibration of the IMU is an essential 

part for extracting gait features. Gait varies from person to 

person and any algorithm should calibrate for such variability. 

We factor in such calibration but individual characteristics such 

as heel strikes or up and down body movements while walking 

can also influence the results. IMU use may also lead to errors 

of drift, stability and repeatability. Although the accuracy of 

IMUs is improved such measurement errors are unavoidable 

with current technology especially when using micro-electro-

mechanical (MEMS) sensors. We take measures to reduce 

errors as much as possible by fitting sensors tightly. We detect 

the zero-velocity in the non-stationary period of stance phase to 

reduce the integration drift. The IMU used has the intelligence 

to calibrate itself. However, our study can be considered a proof 

of concept that validates the proposed method for extracting 

automatic gait features. In the future accuracy can be improved 

by focusing on MEMS sensor error modelling and 

accommodation [48]. Other probable area of error can arise 

from friction from the relative movement of the sensors against 

clothing or footwear. However, in our experiment we compare 

our results to what is currently considered as “gold standard” 

MoCap and Treadmill which show high accuracy making the 

effect of those errors acceptable. 

Coincidentally a gender bias is present with most subjects 

being male. The study’s aim is to validate gait features collected 

from IMU against MoCap and not to study the differences in 

gait between the genders. This bias is therefore unlikely to 

impact the value of our results and what we are trying to 

achieve. Our subjects are also of healthy young age. Our study 

aims at determining whether our method is effective at slow-

high gait speeds. Having older adults is not required for this 

purpose as the treadmill speed could be adjusted. In future 

research we aim to study the effects of age on such correlations 

and will recruit older patients with different gait patterns. 

V. CONCLUSION AND FUTURE WORK 

For the validation of our proposed system we conduct two 

experiments. The important findings in these experiments 

confirm that the proposed hybrid method provides acceptable 

results comparing with the ‘gold standard’ MoCap system. It is 

also found that gait extracted features from IMU are highly 

valid for spatiotemporal gait variables. The estimated ICC, 

LCC and r values from the IMU system compare well to the 

MoCap and treadmill measurements. These finding have 

significant implications in developing technologies to use IMUs 

for the evaluation of gait. This has significant potential to 

broaden the availability of gait assessment in clinical practice. 

This study develops novel opportunities for use based on 

currently available technology. This relates to the current state 

of the art by opening up new possibilities to assess gait out of 

hospitals and gait laboratories into out-patients’ areas, homes 

and sporting environments. Using it over a period of time can 

be beneficial for the follow-up of patients undergoing 

treatments to monitor progress. We have shown that our system 

can work in slow walking speeds as well as faster ones. This 

also opens up possibilities for use in elderly patients where such 

an automatic system needs to have sufficient sensitivity to 

detect gait features at low speeds. In future work we plan to 

explore the possible use of our technology to identify abnormal 

gait patterns in elderly patients with a view of facilitating 

diagnosis and monitoring treatment and rehabilitation. 
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