
1

Secure Lightweight Stream Data Outsourcing for
Internet of Things

Su Peng, Liang Zhao, Ahmed Y. Al-Dubai, Senior Member, IEEE, Albert Y. Zomaya, Fellow, IEEE, Jia
Hu, Geyong Min, and Qiang Wang

Abstract—The epoch of the Internet of Things (IoT) has come
by enabling almost everything to gather and share electronic
information. Considering the unreliable factors of public IoT,
how to outsource huge amounts of indispensable stream data
generated by the nodes to the remote storage efficiently and
securely is one of the most challenging issues. In this paper, we
propose a secure lightweight stream data outsourcing framework
for IoT based on identity and blockchain. Taking advantage
of identity-based cryptography and blockchain, for public IoT
containing untrusted communication channels, nodes, remote
storage, and even verifiers, we introduce a private mobile
network and multiple verifiers to ensure that the stream data are
stored intact and updated correctly, without the costs and risks
brought by the Public Key Infrastructures (PKI). Meanwhile,
the framework can also achieve privacy-preserving checking,
by revealing no data to the other entities besides the remote
storage, even in the blockchains. Our comprehensive analysis
and experiments demonstrate that the proposed framework is
suitable for lightweight devices and practical for IoT.

Index Terms—Internet of Things, remote data integrity check-
ing, lightweight, identity-based cryptography, blockchain

I. INTRODUCTION

THE Internet of Things (IoT) is considered as one of
the most revolutionary technology of the 21st century.

IoT is the network of physical objects that contain embedded
technology to communicate and sense or interact with their
internal states or the external environment [1]. These objects
can be heart monitor implants, farm animals with biochip
transponders, and automobiles. All the objects and devices
in IoT can transfer information without requiring human-to-
human or human-to-computer interaction. Derived from the
ubiquitous Internet technology, IoT is now experiencing an

This paper is supported in part by the Key Projects of Liaoning Provincial
Department of Education Science Foundation under Grant L201702, the Na-
tional Natural Science Foundation of China under Grant 61701322, the Young
and Middle-aged Science and Technology Innovation Talent Support Plan of
Shenyang under Grant RC190026, the Natural Science Foundation of Liaoning
Province under Grant 2020-MS-237, the Liaoning Provincial Department of
Education Science Foundation under Grants JYT19052, JYT2020109, and the
Research Start-up Fund for Fresh Talent of SAU under Grant 20YB02.

Su Peng (supeng@stumail.neu.edu.cn) and Liang Zhao (lzhao@sau.edu.cn)
are with Shenyang Aerospace University, China. Liang Zhao is the corre-
sponding author.

Ahmed Y. Al-Dubai (a.al-dubai@napier.ac.uk) is with Edinburgh Napier
University, United Kingdom.

Albert Y. Zomaya (albert.zomaya@sydney.edu.au) is with University of
Sydney, Australia.

Jia Hu (J.Hu@exeter.ac.uk) and Geyong Min (g.min@exeter.ac.uk) are with
University of Exeter, United Kingdom.

Qiang Wang (wangq0427@gmail.com) is with Northeastern University,
China.

exponential growth, to become the next major step in deliv-
ering the Internet’s promise of making the world a connected
place. However, along with the dramatic development, some
challenges of IoT arise, for instance, outsourcing the data
securely [2].

A. Secure Stream Data Outsourcing in IoT

Tremendous amount of IoT devices produce a great amount
of data every day, which play a crucial role in the modern
industries, such as smart manufacturing, healthcare, and in-
surance. Besides their immeasurable commercial value, these
massive data are indispensable for the other next generation
information technologies. For instance, training data are con-
sidered as the blood of deep learning. Furthermore, stream files
collected by sensors, microphones, and cameras account for a
large proportion of these data. However, most of the nodes in
IoT are low-powered devices. For the economic and energy-
saving purposes, the storage on these devices is usually quite
limited. Accordingly, their owners (e.g., corporations, institu-
tions, and individuals) may wish to outsource the collected
stream data to the remote storage (RS), such as the third-
party cloud or edge computing servers for further processing,
in which some security issues emerge. Although the RS may
apply general protections for the data, such means rely solely
on their reputations and skills, while the original data owners
have no control. Catastrophic data loss may occur because of
some artificial (e.g., administrator errors, malicious insiders,
and hackers’ invasions) or non-artificial (e.g., media damages,
power failures, and natural disasters) factors. For instance, on
August 31st, 2019, an Amazon AWS US-EAST-1 data center
in North Virginia experienced a power failure. After the power
was restored, some EC2 instances and EBS volumes incurred
hardware damage and the data stored on them were no longer
recoverable [3]. What is worse, the data hosted by the edge
computing servers are more vulnerable than those stored in
the data centers because of the poor environments.

B. Overview and Limitations of Current Solutions

As mentioned above, it is critical for data owners to con-
firm that their data are well maintained on the RS without
downloading them, namely, Remote Data Integrity Checking
(RDIC). The first solution concerning this problem was pro-
posed by Ateniese et al. [4] in 2007, which is called Provable
Data Possession (PDP). In PDP, the client splits the entire
data file F into blocks, i.e., F = (m1,m2, . . . ,mn), creates a
Homomorphic Verifiable Tag (HVT) ti for each block mi, then

2

uploads each mi and ti to the RS. Later, the client (or the third-
party verifier) chooses some indices randomly and asks the RS
to prove that these blocks are still intact, namely, a challenge.
Accordingly, the RS forms a proof by generating an aggregated
block Mi and an aggregated HVT Ti from the chosen blocks
{mi} and the corresponding HVTs {ti}, respectively. After
receiving the proof, the client (or the verifier) substitutes Mi

and Ti into an equation. If it holds, then the proof is valid,
which implies the integrity of all the challenged blocks. The
communication overhead of PDP is constant, independent to
the size of F , because Mi and Ti are the same sizes as mi

and ti, respectively. Meanwhile, it introduces a third-party
verifier to release the client from the complicated integrity
checking task. Following this direction, many RDIC schemes
have been proposed in different aspects, such as data recovery
[5], [6], user revocation [7]–[9], key-exposure resistance [10],
[11]. Especially, some identity-based RDIC schemes have been
proposed in recent years [9], [12]–[16], which realizes third-
party integrity checking without the Public Key Infrastructures
(PKI). However, most of the current solutions have some
shortcomings while applying to IoT, which can be stated as
follows:

1) Computational Complexity: For a secure RDIC scheme,
the smallest data unit (block or sector) must match to a unique
element in a particular group, such as a multiplicative group
in a finite field, or an elliptic curve group, whose order must
be at least 2048 bits or 160 bits. However, this size is too
small for a large file. For instance, a file of 1 GB must be
split into at least 4,194,304 units when the unit size is 2048
bits. The HVT-generation algorithms in most of the current
solutions carry out at least one large-number exponentiation
for each unit, which makes them very slow, especially for
low-powered IoT nodes holding large files. Although we can
decrease the unit number by enlarging the group size, the
computational complexity for generating each HVT increases
exponentially, hence it only makes the matter worse. Although
several schemes adopt online/offline signatures to accelerate
this part [17], [18], they require the nodes to pre-store many
offline tags (even more than the online ones), which are still
unaffordable for devices with limited storage.

2) Over-idealized Security Model: The third-party verifier
is assumed to be fully trusted, which may be too ideal.
Because RDIC is usually complicated and resource-consuming
for IoT nodes, it is reasonable for the data owner to delegate
the verification tasks to a public verifier. Hence, the similar
security issues as in the RS may also appear. However, in
most of the current solutions, the verifiers just send the results
back to the data owners without any other testimony. In the
worst case, if the verifiers conspire with the malicious RS,
the data owners cannot distinguish between the honest and
fake results. Even the verifiers are always honest, the checking
results delivered directly via the public channels may suffer
from the man-in-the-middle attacks, thus are still vulnerable
to tampering.

3) Resource-consuming Data Updates: The updates of
stream data can be summarized as three types, creating
new files, deleting existing files, and appending new data to
existing files. The other operations (e.g., modifications and

insertions) are unusual, even forbidden. However, most of
the existing solutions mainly focus on very fine-grained data
updates, including insertions, deletions, and modifications at
all the positions of the files in the block-level, which invoke
heavy computation and communication overheads by verifying
Authenticated Data Structures (ADS) (e.g., authenticated skip
lists [19] and Merkle hash trees [6], [20], [21]) for each new
block, which is unaffordable for low-powered nodes.

C. Contributions

For resolving these problems mentioned above, we propose
a secure lightweight stream data outsourcing framework for
IoT based on identity and blockchain, with the following
features:

1) Identity-based, Lightweight, and Privacy-preserving
RDIC (IDLP-RDIC): We propose an RDIC scheme, namely
IDLP-RDIC, which is suitable for resource-limited devices in
IoT, because its HVT-generation uses much less large-number
exponentiations. More precisely, the computational complexity
is nearly O(n), where n denotes the block number, no matter
how many sectors each block contains. Meanwhile, taking
advantage of the identity-based cryptography, the entities in
IDLP-RDIC can be explicitly authenticated without the PKI.
Furthermore, the integrity checking in IDLP-RDIC does not
reveal any content of the data to the other entities, which
prevent the leakage of the owner’s trade secrets and privacy.

2) Lightweight and Secure Stream Data Updates: For
stream files, our framework supports creation, deletion, and
appending in the file-level, which are combined with IDLP-
RDIC to force the RS to perform them correctly, without any
additional overheads brought by the ADS.

3) Reliable under Untrusted Environments: Our framework
is available for public IoT, which may contain untrusted
communication channels, nodes, RS, and even verifiers. Taking
advantage of the mobile computing, the private keys are
distributed only during the registrations, by a Private Mobile
Network (PMN) acting as a Public Key Generator (PKG),
which shrinks the attack surface greatly. Meanwhile, the in-
tegrity checking tasks and data updates are supervised by mul-
tiple verifiers and integrated into Identity-based Blockchains
(IDBCs), which are auditable and traceable, via the novel
consensus mechanisms namely the Proof of Verification (PoV),
without the power-consuming and high-latency mining opera-
tions.

D. Organizations

The rest of this paper is organized as follows. Section II
provides some brief reviews of the technologies from which
our framework is built. Section III proposes the IDLP-RDIC
scheme. Section IV integrates IDLP-RDIC to a comprehensive
framework to realize secure stream data outsourcing for IoT.
Section V provides security analysis of the framework. Section
VI provides detailed theoretical and experimental evaluations
of both IDLP-RDIC and the framework. Section VII concludes
this paper. Furthermore, Appendix A provides a detailed
security proof of IDLP-RDIC.

3

II. PRELIMINARIES

The building blocks of our framework include the identity-
based cryptography, the bilinear pairings, the computational
Diffie-Hellman (CDH) problem, the discrete logarithm (DL)
problem, and the blockchain.

A. Identity-based Cryptography

In a traditional public-key cryptography system, such as
RSA or ElGamal, the public key usually looks like a bunch
of unreadable characters, for it is generated from a random
private key using some mathematical operations. To identify
the public key for a certain entity, the most common way is to
retrieve the corresponding certificate from the PKI. However,
PKI brings about some other issues, such as the complicated,
or even untrusted management of certificates [22]. To remedy
these defects, identity-based cryptography systems are pro-
posed [23], [24], whose public keys are identities (e.g., names,
phone numbers, and e-mail addresses), which can be self-
authenticated without the certificates. For instance, if Alice
signs a message using an identity-based signature, Bob can
verify the message using Alice’s e-mail address instead of her
hard-to-remember public key retrieved from the PKI.

B. Bilinear Pairings

Let G and GT be two cyclic multiplicative groups with
the same prime order q and let g be a generator of G. Let
e : G × G → GT be a bilinear map [24] which satisfies the
following properties:

1) Bilinearity. For any u, v ∈ G and a, b ∈ Zq , e(ua, vb) =
e(u, v)ab.

2) Non-degeneracy. e(g, g) 6= 1.
3) Computability. For any u, v ∈ G, e(u, v) can be com-

puted efficiently.

C. Computational Diffie-Hellman (CDH) Problem

Let G be a cyclic multiplicative group with the prime order
q and let g be a generator of G. Given (g, ga, h) ∈ G3 for
randomly chosen a ∈ Zq and h ∈ G, the CDH problem on G
is to compute ha ∈ G. The CDH assumption on G is that, for
any probabilistic polynomial time algorithm, the advantage in
solving the CDH problem on G is negligible.

D. Discrete Logarithm (DL) Problem

Let G be a cyclic multiplicative group with the prime order q
and let g be a generator of G. Given (g, h) ∈ G2 for randomly
chosen h ∈ G, the DL problem on G is to compute a ∈
Zq satisfies h = ga. The DL assumption on G is that, for
any probabilistic polynomial time algorithm, the advantage in
solving the DL problem on G is negligible.

E. Blockchain

Blockchain was first introduced by Satoshi Nakamoto [25]
as the backbone technology of Bitcoin, while some recent
advances can be found in [26]–[28]. Literally, in a blockchain,
the data is recorded in blocks and chained with each other

using cryptographic hash functions. All the records in a
blockchain are immutable, i.e., no participant can change or
tamper with a record after it has been written to a blockchain,
since the hash value of each block is contained in the subse-
quent block in the chain. The records are also verifiable and
traceable via consensus mechanisms, such as Proof of Work
(PoW) and Proof of Stake (PoS). Blockchain is considered
as one significant property of the next-generation Internet, to
build a novel and reliable large-scale cooperation mode, which
has already been applied to various fields, such as finance,
supply chain, copyright, and energy. To realize authenticatable
and traceable stream data integrity checking, we set up a
consortium blockchain network, in which the nodes are pre-
registered verifiers.

III. THE PROPOSED IDLP-RDIC SCHEME

In this section, we propose a new construction of lightweight
HVT. Furthermore, inspired by the SS-2-IBS transform [29]
and the blinded linear combination [30], we build IDLP-
RDIC from the proposed HVT. IDLP-RDIC consists of six
polynomial-time algorithms which are defined as follows:

1) Setup(1κ) → (params, x,mpk, S, s). The PKG
chooses two cyclic multiplicative groups G, GT with
the same prime order q > 2κ and one bilinear map
e : G × G → GT . Let g be the generator of G. The
PKG also chooses four cryptographic hash functions
H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → G, h1 : Zq → Zq ,
h2 : GT → Zq and one pseudo-random function (PRF)
f : Zq × {0, 1}∗ ∈ Zq , sets the public parameters
params = {G, g,GT , q, e,H1, H2, h1, h2, f}. Then,
the PKG chooses a random number x ∈ Zq as the
master private key, sets the master public key mpk = gx,
chooses a sector size S (in bytes, i.e., S < (log2 q)/8)
and a sector number s, publishes mpk, params, S, and
s, whereas keeps x secret.

2) Extract(NID, s, x) → sk. The data owner forwards
his identity NID ∈ {0, 1}∗ to the PKG. The PKG
chooses two random numbers α, β ∈ Zq , computes
v = gα, {ul = gh1(β+l−1) | l = 1, . . . , s}, σ =
H1(NID ‖ v ‖ u1 ‖ . . . ‖ us)x, sets the private key
sk = (α, β, σ) and forwards it to the data owner. The
data owner can verify the correctness of sk by checking
whether:

e(σ, g)

= e(H1(NID ‖ gα ‖ gh1(β) ‖ . . . ‖ gh1(β+s−1)),

mpk).

(1)

3) HV T −Gen(NID, {FIDj}, {mjk}, s, sk)→ ({tjk},
E). Suppose that each file FIDj has been split into
nj blocks {mjk | k = 1, . . . , nj} of Ss bytes. The
data owner further splits each block into s sectors
{m̃jkl | l = 1, . . . , s} of S bytes, sets each HVT
tjk = (H2(NID ‖ FIDj ‖ k) · g

∑s
l=1 h1(β+l−1)m̃jkl)

α
,

sets the extra authentication information E =
(v, u1, . . . us, σ), then forwards ({mjk}, {tjk}, E) to the
RS.

4

4) Challenge()→ C. The verifier selects a set I of block
index tuples {(j, k)} and a random temporary key τ ∈
Zq , then forwards the challenge token C = (I, τ) to the
RS.

5) ProofGen(C, {mjk}, {tjk}, E, s) → P. According to
C = (I, τ), the RS selects another random temporary
key γ ∈ Zq , computes Γ = e(

∏s
l=1 ul, v)

γ , δ = h2(Γ)
and {ajk = fτ (NID ‖ FIDj ‖ k) | (j, k) ∈ I},
computes the aggregated block M = (M̃1, . . . , M̃s) in
which M̃l = γ+δ

∑
(j,k)∈I ajkm̃jkl and the aggregated

HVT T =
∏

(j,k)∈I tjk
ajk , then forwards the proof of

integrity P = (M,T,E,Γ) to the verifier.
6) ProofCheck(NID, {FIDj}, C, P , s, mpk) →
{VALID, INVALID}. According to P = (M,T,E,Γ),
the verifier first verifies E by checking whether:

e(σ, g) = e(H1(NID ‖ v ‖ u1 ‖ . . . ‖ us),mpk). (2)

If it does not hold, the verifier outputs INVALID.
Otherwise, the verifier computes δ = h2(Γ) and {ajk =
fτ (NID ‖ FIDj ‖ k) | (j, k) ∈ I}, then outputs
VALID or INVALID by checking whether the following
equation holds:

Γ · e(T, g)
δ

= e((
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk)
δ

·
∏s

l=1
ul
M̃l , v).

(3)

IV. THE PROPOSED FRAMEWORK

Our framework is designed based on IDLP-RDIC, including
lightweight stream data integrity checking and secure data
updates for IoT.

A. Architecture

The architecture of our framework is depicted in Fig. 1,
which can be generally divided into four parts, including the
IoT, the verifiers, the PMT, and the RS:

1) The IoT. The IoT is the origin of the stream files. The
nodes split the files into blocks and generate HVTs, then
outsource them to the RS. When the nodes intend to
check the integrity or update their files, they generate
requests and forwards them to the verifiers.

2) The Verifiers. The multiple verifiers are located on the
edge of the IoT. They receive the checking and updating
requests from the IoT nodes, generate challenges, and
send them to the RS. They also receive the proofs of
integrity from the RS, check their validity, record these
interactions into the IDBCs, then send the results to the
nodes and RS.

3) The PMN. The management organization (MO) which
operates the entire architecture deploys the PMN, which
consists of the mobile base stations and Wi-Fi hotspots,
provided by the devices like UAVs and vehicles. It plays
the role of the PKG in IDLP-RDIC, i.e., it generates a
master private key and a corresponding master public
key for the entire architecture, receives the identities
(IDs) from the entities (except the RS) during the

IoT

Verifiers

RS

ID Private KeyAuthenticated Channel

IDBC

Stream Files HVTs

Check Interactions

One-time Channel

PMN

Verifier

Fig. 1. Architecture of the framework.

registrations, then sends the corresponding private keys
along with the master public key. This is a one-time step
for each entity.

4) The RS. The RS is located on the edge of the IoT or
on the Internet. It stores the nodes’ stream files and
HVTs. After receiving the challenges from the verifiers,
it performs the updates (if there are), generates the
proofs of integrity by aggregating the challenged blocks
and the corresponding HVTs according to IDLP-RDIC.

As depicted in Fig. 1, the only trusted entity is the PMN
with the one-time channels used for delivering keys. All the
other entities are assumed to be public and may be suffered
from malicious insiders and outsiders. However, the messages
transferred via the public channels are still authenticated by
digital signatures.

We firstly define the notations as listed in Table I, which will
be used in the rest of this paper. Then, we make the following
assumptions:

1) Ni and Vd, V1, V2, ... extract their private keys from
the PMN by calling Extract() and the RS publishes its
public key, which is the only one public key used in the
framework except mpk. We omit these one-time steps
for simplicity.

2) All the messages are cryptographically authenticated,
i.e., if Ni sends any message Msgi to another entity,
it should also send the corresponding IDSi(Msgi),
so as the entity can authenticate Msgi by verifying
IDSi(Msgi) using NIDi. Vd, V1, V2, ... work in the
same way, whereas for the RS which is not reach-
able by the PMN, if it sends any message MsgRS
to another entity, it should also send the correspond-
ing SigRS(MsgRS), so as the entity can authenticate

5

TABLE I
NOTATIONS

Notation Description

Ni The i-th node
Vd The designated verifier
V1, V2, . . . The witness verifiers
PMN The private mobile network
RS The remote storage
MO The management organization
IDBCi The identity-based blockchain for the i-th node
NIDi The ID of the i-th node
FIDij The name of the j-th file of the i-th node
OPi,ĵ The ĵ-th operation of Ni, possible values:

{(FID,VERIFY), (FID,CREATE, n),
(FID,APPEND, n), (FID,DELETE)}

ts, ts′ The time-stamps
R The request from Ni, which equals to

(NIDi, {OPij}, ts)
IDS The identity-based signature
Sig The traditional digital signature
τ The temporary key
{m′

ijk} The new file blocks

{t′ijk} The HVTs of the new file blocks

Ei The extra authentication information
{mijk} The hosted file blocks
{tijk} The HVTs of the hosted file blocks
nij The length of FIDij (in blocks)
P ′ The proof of integrity (self-check)
P The proof of integrity
PoV The proof of verification
Result The result of the operations, possible values:

{NULL,UNREASONABLE,VALID,INVALID}

MsgRS by verifying SigRS(MsgRS) using the RS’s
public key.

3) ts or ts′ uniquely identifies a request or an acknowledg-
ment to defend replay attacks. The offset between the
time-stamp and the synchronized global time must be
smaller than a specific value.

As depicted in Fig. 2, our framework consists of seven
algorithms, which are described by Algorithm 1 to 7 as
follows:

1) REQUEST AND UPLOAD. Ni generates a list of oper-
ations, selects Vd, generates the request R, and forwards
R to Vd via the MO. Ni also generates the new file
blocks and forwards them to the RS along with the
HVTs.
Remarks:

a) Batch operations are supported, i.e., {OPi,ĵ} in R
may be multiple. However, to confirm the consis-
tency, simultaneous requests for a same node are
prevented by the MO.

b) {FIDij} and {nij} are not explicitly recorded,
but can be derived from {i, ĵ} in IDBCi. For in-
stance, after the sequence (FID1,3, CREATE, 10),
(FID1,3, APPEND, 10), and (FID1,1, DELETE),
{FID1,1, FID1,2} becomes {FID1,2, FID1,3},
and {n1,1 = 10, n1,2 = 10} becomes {n1,2 = 10,

1. {mijk'}, {tijk'}, Ei, ts, IDSi({mijk'}, {tijk'}, Ei, ts)
Ni

Vd

2. (R, IDSi(R), τ, IDSd(R, IDSi(R), τ))

7. Result, ts, IDSd(Result, ts) (via MO)

RS

V1 V2 ...
6. PoV

BlockSize

PrevHash

PoV

...

BlockSize

PrevHash

PoV

BlockSize

PrevHash

PoV

IDBCi:

IDS(Block) IDS(Block) IDS(Block)

1. R, IDSi(R) (via MO)

6. PoV

4. P, ts, SigRS(P, ts)

6. PoV 6. PoV

6. PoV

2. ts, ts', IDSd(ts, ts')

7. Result, ts, IDSd(Result, ts) (via MO)

3. P'

5

1. REQUEST_AND_UPLOAD; 2. CHALLENGE; 3. SELF-CHECK;
4. UPDATE_AND_PROVE; 5. VERIFY; 6. CONSENSUS; 7. RESPONSE

Fig. 2. Interactions of the algorithms.

Algorithm 1: REQUEST AND UPLOAD
Run by: Ni

1 Retrieve {FIDij} and {nij} from IDBCi;
2 foreach ĵ do
3 Set OPi,ĵ as one of (FIDij , VERIFY), (FIDij ,

CREATE, n), (FIDij , APPEND, n), (FIDij , DELETE);
4 if OPi,ĵ == (FIDij ,CREATE, n) or

OPi,ĵ == (FIDij ,APPEND, n) then
5 Split the new data (to be created as or appended to

FIDij) to {m′
ijk};

6 Call HV T −Gen(NIDi, F IDij , {m′
ijk}, s, ski) to get

{t′ijk} and Ei;
7 end
8 Select Vd;
9 Generate ts;

10 Set R = (NIDi, {OPij}, ts);
11 Send R and IDSi(R) to MO, MO records and forwards them

to Vd if all the previous requests from Ni are finished;
12 Send ({m′

ijk}, {t
′
ijk}, Ei, ts) and

IDSi({m′
ijk}, {t

′
ijk}, Ei, ts) to RS;

13 end

n1,3 = 20}, respectively. The initial values of
{FIDij} and {nij} are both empty.

c) The criteria for selecting Vd may be arbitrary, such
as the latency, location, computing power, or even
reputation.

2) CHALLENGE. On receiving R, Vd sends an acknowl-
edgment to Ni. If IDSi(R) and ts are valid but any
OPi,ĵ is invalid, Vd declares that Ni is dishonest, then
records the unreasonable request in IDBCi (by jumping
to Algorithm 5). Otherwise, Vd sends (R, IDSi(R)) to
the RS along with a random τ as a challenge token.
Remarks:

a) When OPi,ĵ == (FIDij , CREATE, n), OPi,ĵ is
reasonable if and only if: FIDij has not been
created, no matter whether it has been deleted, in
IDBCi or {OPi,1, . . ., OPi,ĵ−1}. (We note that
the deleted FIDs are not reusable. Otherwise, a
security issue may occur [15].)

b) When OPi,ĵ ∈ {(FIDij , VERIFY), (FIDij ,
APPEND, n), (FIDij , DELETE)}, OPi,ĵ is rea-

6

Algorithm 2: CHALLENGE
Run by: Vd

1 if IDSi(R) is valid and ts is valid then
2 Generate ts′;
3 Send the acknowledgment (ts, ts′, IDSd(ts, ts

′)) to Ni;
4 Retrieve {FIDij} and {nij} from IDBCi;
5 foreach ĵ do
6 if OPi,ĵ is unreasonable then
7 Set Result=UNREASONABLE;
8 goto Algorithm 5;
9 end

10 end
11 Select a random τ ∈ Zq ;
12 Send (R, IDSi(R), τ) and IDSd(R, IDSi(R), τ) to RS;
13 else
14 Drop R and IDSi(R), then ask for a re-transmission;
15 end

sonable if and only if: FIDij has been created,
but has not been deleted in IDBCi and {OPi,1,
. . ., OPi,ĵ−1}.

3) SELF-CHECK. On receiving the challenge token from
Vd and the new file blocks along with the HVTs from
Ni, the RS checks their validity. If all the signatures
and time-stamps are valid but any OPi,ĵ is invalid, the
RS declares that Ni and Vd are both dishonest and
conspiring with each other, then reports them to the MO.
If ({m′ijk}, {t′ijk}) does not matches I ′ (i.e., any index
(i, j) /∈ I ′), or the self-generated proof of integrity P ′ is
invalid, the RS declares that Ni is dishonest, then reports
Ni to the MO.

4) UPDATE AND PROVE. If the challenge token, the new
file blocks, and the HVTs are all valid, the RS performs
the operations. Then, it generates the proof of integrity
P , from the hosted file blocks indicated by {(FIDij ,
VERIFY)} and the new file blocks {m′ijk} altogether.
No matter how many file blocks are referred, only one
proof is generated. Then, the RS forwards P to Vd.

5) VERIFY. Vd generates PoV . If Result ==
UNREASONABLE (from Algorithm 2), Vd sets
PoV = (R, Result, IDSi(R), IDSd(Result, ts)),
otherwise Vd sets PoV = (R, τ , P , Result,
IDSi(R), IDSd(R, IDSi(R), τ), SigRS(P, ts),
IDSd(Result, ts)) (from Algorithm 4). Then, Vd
generates a new block for IDBCi and broadcasts it to
V1, V2,

6) CONSENSUS. V1, V2, ... check the new block re-
ceived from Vd. If BlockSize, PrevHash, PoV , and
IDSd(Block) are all valid, they append the new block
to their local IDBCi, then send confirmations to Vd.

7) RESPONSE. If the new block is confirmed by more than
half of the verifiers, Vd sends the result to Ni and the
RS via the MO.

V. SECURITY ANALYSIS

A. Threat Model

In our framework, the MO and PMN (with the one-time
channels) are trusted. For the other entities, we consider threats
from four different aspects as follows.

Algorithm 3: SELF-CHECK
Run by: RS

1 if IDSd(R, IDSi(R), τ) is valid and ts is valid then
2 if IDS({m′

ijk}, {t
′
ijk}, Ei, ts) is valid and ts matches R

then
3 if all OPi,ĵ are reasonable then
4 Set I′ = {};
5 foreach ĵ do
6 if OPi,ĵ ∈ {(FIDij , CREATE, n), (FIDij ,

APPEND, n)} then
7 for k = 1 to nij do
8 Set I′ = I′ ∪ (j, k);
9 end

10 end
11 end
12 if ({m′

ijk}, {t
′
ijk}) matches I′ then

13 Retrieve the hosted {FIDij} and {nij};
14 Select a random τ ′ ∈ Zq ;
15 Set C′ = (I′, τ ′);
16 Call ProofGen(C′, {m′

ijk}, {t
′
ijk}, Ei, s) to

get P ′;
17 if ProofCheck(NIDi, {FIDij}, C′, P ′, s,
18 mpk)==INVALID then
19 Report Ni to MO by submitting R,

IDSi(R), ({m′
ijk}, {t

′
ijk}, Ei, ts), and

IDSi({m′
ijk}, {t

′
ijk}, Ei, ts);

20 else
21 goto Algorithm 4;
22 end
23 else
24 Report Ni to MO by submitting R, IDSi(R),

({m′
ijk}, {t

′
ijk}, Ei, ts), and

IDS({m′
ijk}, {t

′
ijk}, Ei, ts);

25 end
26 else
27 Report both Ni and Vd to MO by submitting

(R, IDSi(R), τ) and IDSd(R, IDSi(R), τ);
28 end
29 else
30 Drop ({m′

ijk}, {t
′
ijk}, Ei, ts) and

IDSi({m′
ijk}, {t

′
ijk}, Ei, ts), then ask for a

re-transmission;
31 end
32 else
33 Drop (R, IDSi(R), τ) and IDSd(R, IDSi(R), τ), then ask

for a re-transmission;
34 end

1) The untrusted RS may conceal data errors by forging
proofs of integrity to deceive the verifiers. In addition,
it may not perform the updates correctly.

2) The untrusted verifiers may be unavailable (due to
connections lost or even crashed down) or dishonest (if
invalid challenge tokens is submitted to the RS or forge
checking results to deceive the nodes). In addition, they
are curious about the nodes’ data.

3) The malicious nodes may deliberately submit invalid
HVTs and perform unreasonable operations to the RS,
then accuse the RS of damaging their data.

4) The external adversaries may defer and tamper with the
communications between the entities.

For the adversarial capabilities, we make the following
assumptions:

1) The RS is always available, i.e., it always responds to
the other entities within a reasonable period of time. In
addition, the RS is trusted in data privacy, i.e., it has no

7

Algorithm 4: UPDATE AND PROVE
Run by: RS

1 Sets I = {};
2 foreach ĵ do
3 if OPi,ĵ == (FIDij ,VERIFY) then
4 for k = 1 to nij do
5 Set I = I ∪ (j, k);
6 end
7 end
8 if OPi,ĵ == (FIDij ,CREATE, n) then
9 Stores FIDij and nij ;

10 for k = 1 to nij do
11 Store m′

ijk as mijk;
12 Store t′ijk as tijk;
13 Set I = I ∪ (j, k);
14 end
15 end
16 if OPi,ĵ == (FIDij ,APPEND, n) then
17 Set nij = nij + n; for k = nij + 1 to nij + n do
18 Store m′

ijk as mijk;
19 Store t′ijk as tijk;
20 Set I = I ∪ (j, k);
21 end
22 end
23 if OPi,ĵ == (FIDij ,DELETE) then
24 for k = 1 to nij do
25 Delete the hosted {mijk} and {tijk};
26 end
27 Delete the hosted nij and FIDij ;
28 end
29 end
30 Set C = (I, τ);
31 Call ProofGen(C, {mijk}, {tijk}, Ei, s) to get P ;
32 Send (P, ts) and SigRS(P, ts) to Vd;

incentive to reveal the data because of the commercial
interests.

2) More than half the verifiers are available and honest. The
designated verifier who has performed its duty honestly
will receive rewards from the MO.

3) The external adversaries cannot delay the communica-
tions indefinitely. The re-transmissions of timeout can
ensure that all the messages reach their destinations
within a reasonable period of time.

B. Security Properties

Under the threat model presented above, our framework is
reliable, according to the following security properties.

1) In IDLP-RDIC, with ensured by the hardness of the
CDH problem and DL problem, the RS who convinced
the verifiers actually stores all the challenged blocks,
i.e., there is a polynomial-time algorithm to retrieve
all the challenged blocks from the RS. Meanwhile, the
proof of integrity is masked by a random element during
each verification. Hence, the verifiers cannot derive
any content of the nodes’ data. These properties are
summarized as completeness, soundness, and privacy-
preserving, which will be rigorously proved in Appendix
A.

2) With ensured by the soundness of IDLP-RDIC, if the
RS has damaged, deleted, or just incorrectly updated
the data, it cannot generate a valid proof of integrity
(Algorithm 4). Any invalid proof will be detected by

Algorithm 5: VERIFY
Run by: Vd

1 if Result==UNREASONABLE or (SigCS(P, ts) is valid and ts is
valid) then

2 if Result==UNREASONABLE then
3 Generate IDSd(Result, ts);
4 Set PoV = (R,Result, IDSi(R), IDSd(Result, ts));
5 else
6 Set I = {};
7 foreach ĵ do
8 if OPi,ĵ == (FIDij ,VERIFY) then
9 for k = 1 to nij do

10 Set I = I ∪ (j, k);
11 end
12 end
13 if OPi,ĵ == (FIDij ,CREATE, n) then
14 Add FIDij to {FIDij};
15 for k = 1 to nij do
16 Set I = I ∪ (j, k);
17 end
18 end
19 if OPi,ĵ == (FIDij ,APPEND, n) then
20 for k = nij + 1 to nij + n do
21 Set I = I ∪ (j, k);
22 end
23 end
24 end
25 Set C = (I, τ);
26 Set Result =

ProofCheck(NIDi, {FIDij}, C, P, s,mpk) ∈
{VALID, INVALID};

27 Generate IDSd(Result, ts);
28 Set PoV = (R, τ , P , Result, IDSi(R),

IDSd(R, IDSi(R), τ), SigRS(P, ts),
IDSd(Result, ts));

29 end
30 Generate a new block

(BlockSize, PrevHash, PoV, IDSd(Block));
31 Append the new block to Vd’s local blockchain;
32 Broadcast the new block to V1, V2, ...;
33 else
34 Drop (P, ts) and SigRS(P, ts), then ask for a re-transmission;
35 end

the verifiers and recorded in the IDBCs as bad credit
(Algorithm 5).

3) To win the rewards, a reasonable verifier who has
accepted the task from a node will perform his duty
honestly. Even if the designated verifier submits an
invalid challenge token to the RS or lies about the result,
the task could not be recorded in the IDBCs (Algorithm
6). After a period of time, if the node cannot query
the result, it will report the designated verifier to the
MO by submitting the acknowledgment along with the
signature.

4) Any unreasonable operation (such as creating a file
using an existing FID, appending to or deleting a
file using an uncreated or deleted FID) submitted by
a malicious node will be detected by the designated
verifier (Algorithm 2) and recorded in the IDBCs as bad
credit (Algorithm 5). Any invalid HVT uploaded by a
malicious node will be detected by the RS, who will
report the node to the MO, by submitting the invalid
HVTs along with the signature (Algorithm 3). Even
if the node conspires with the designated verifier, the
unreasonable operations and invalid challenge tokens

8

Algorithm 6: CONSENSUS
Run by: V1, V2, . . .

1 Check BlockSize, PrevHash, and IDSd(Block);
2 Check IDSi(R), IDSd(Result, ts), and ts;
3 if Result ∈ {VALID, INVALID} then
4 Check IDSd(R, IDSi(R), τ);
5 Check SigRS(P, ts);
6 Retrieve {FIDij} and {nij} from IDBCi;
7 Set I = {};
8 foreach ĵ do
9 if OPi,ĵ == (FIDij ,VERIFY) then

10 for k = 1 to nij do
11 Set I = I ∪ (j, k);
12 end
13 end
14 if OPi,ĵ == (FIDij ,CREATE, n) then
15 Add FIDij to {FIDij};
16 for k = 1 to nij do
17 Set I = I ∪ (j, k);
18 end
19 end
20 if OPi,ĵ == (FIDij ,APPEND, n) then
21 for k = nij + 1 to nij + n do
22 Set I = I ∪ (j, k);
23 end
24 end
25 end
26 Set C = (I, τ);
27 Check if

Result == ProofCheck(NIDi, {FIDij}, C, P, s,mpk);
28 end
29 if all valid then
30 Append the new block to their local blockchain;
31 Response the confirmation to Vd;
32 else
33 Drop the new block and ask for a re-transmission;
34 end

Algorithm 7: RESPONSE
Run by: Vd

1 Wait for the responses from V1, V2, ..., re-transmit PoV if
necessary;

2 if the new block is confirmed by more than half the verifiers then
3 Send (Result, ts) and IDSd(Result, ts) to MO, MO records

and forwards them to Ni and RS;
4 end

will be also detected by the RS, who will report both the
node and designated verifier to the MO, by submitting
both the invalid request and challenge token along with
the signatures (Algorithm 3).

5) The public channels are all cryptographically authenti-
cated. Any message without a valid signature or time-
stamp will be dropped and re-transmitted, so that the
external adversaries cannot tamper with the communi-
cations.

VI. EVALUATION

A. Theoretical Evaluation

1) Computation Costs: We compare the computation costs
of IDLP-RDIC with two dynamic RDIC schemes (Wang et
al.’s scheme [20] and MuR-DPA [21]) and three identity-based
RDIC schemes (ID-DPDP [12], ID-RDIC [13], and Shen et
al.’s scheme [15]). To be fair, we do not consider any extra cost

invoked by a special feature (e.g., multi-replica verification
in MuR-DPA or sensitive data hiding in Shen’s scheme). We
summarize the comparisons in Table II. |F | and |F ′| denote
the sizes of the entire file and the challenged part of the
entire file, respectively; S denotes the sector size; s denotes
the sector number; Exp and ExpT denote the time costs of
single exponentiation on G and GT , respectively; Hash and
HashT denote the time costs of single hash to G and GT ,
respectively; Pair denotes the time cost of single bilinear
pairing, Sig denotes the time cost of generating or verifying a
signature. Comparing to Exp, ExpT , Hash, HashT , Pair,
and Sig, the other operations such as multiplications on G,
GT and Zq , additions on Zq , and hashes to Zq are negligible.
To show why so is, we run these operations separately for
1000 times on a Raspberry Pi 4 and an NVIDIA Jetson Nano,
then summarize the time costs in Table III.

It is evident that the HVT-generation of IDLP-RDIC is
the fastest because it requires only 2F

Ss exponentiation op-
erations on G, i.e., for the same file size, the larger the
sector number and the sector size, the faster the speed. For
the proof-generation and proof-check phases, IDLP-RDIC is
slightly slower than those of ID-DPDP and MuR-DPA, but the
differences are constant.

2) Communication Costs: We compare the communication
costs of IDLP-RDIC with the schemes mentioned above. We
do not consider any extra cost invoked by a special feature
either. The communication costs of these schemes are mainly
from the proof-generation phases, as shown in Table IV. |G|,
|Zq|, and |GT | denote the sizes of an element in G, Zq ,
and GT , respectively; |Sig| denotes the size of a signature;
s denotes the sector number.

We can see that all of these schemes achieve the fundamen-
tal property of RDIC, i.e., the proof of integrity is independent
to the size of the challenged data. Although larger than the
other schemes, the communication cost of IDLP-RDIC is still
constant for a fixed s, regardless of the data size.

3) Blockchain Properties: We compare the blockchain
properties of our framework with four related blockchain-
based systems from seven aspects, (a) blockchain type: public,
consortium, or private; (b) maximum tolerance: the maximum
proportion of faulty nodes which the blockchain tolerates;
(c) Byzantine fault-tolerance: whether the blockchain tol-
erates Byzantine faults; (d) privacy-preserving, whether the
blockchain leaks the sensitive personal data; (e) no mining:
whether the consensus mechanism does not require mining
operations; (f) communication complexity: the bandwidth cost
for achieving consensus; (g) no PKI: whether the consensus
mechanism does not require PKI. We summarize the compar-
isons in Table V.

We can see that our framework realizes Byzantine fault
tolerance without mining or PKI, because all the information
embedded in a block is simultaneously signed by the nodes,
the designated verifier, and the RS, along with a unique time-
stamp. For these signatures, the blocks can be generated and
verified publicly and efficiently, without any extra cost invoked
by a traditional consensus mechanism, such as PoW or PBFT.

9

TABLE II
COMPARISON OF COMPUTATION COSTS

Scheme HVT-generation Proof-generation Proof-check

Wang et al. [20] 2|F |
S
Exp+

|F |
S
Hash

|F ′|
S
Exp (

|F ′|
S

+ 1)Exp+
|F ′|
S
Hash+ 2Pair

IP-DPDP [12] (
|F |
S

+
|F |
Ss

)Exp+
|F |
Ss
Hash

|F ′|
Ss

Exp (
|F ′|
Ss

+ s)Exp+
|F ′|
Ss

Hash+ 2Pair

MuR-DPA [21] (
|F |
S

+
|F |
Ss

)Exp+
|F |
Ss
Hash

|F ′|
Ss

Exp (
|F ′|
Ss

+ s)Exp+
|F ′|
Ss

Hash+ 2Pair

ID-RDIC [13] (
|F |
S

+1)Exp+
|F |
S
Hash+1Sig

|F ′|
S
Exp+1ExpT +1HashT (

|F ′|
S

+ 1)Exp+
|F ′|
S
Hash+ 1Pair + 1Sig

Shen et al. [15] 2|F |
S
Exp+

|F |
S
Hash+ 1Sig

|F ′|
S
Exp (

|F ′|
S

+ 1)Exp+
|F ′|
S
Hash+ 4Pair + 1Sig

IDLP-RDIC 2|F |
Ss

Exp+
|F |
Ss

Hash
|F ′|
Ss

Exp+ 1Pair + 1ExpT (
|F ′|
Ss

+s+1)Exp+
|F ′|
Ss

Hash+2Pair+1ExpT+1Sig

TABLE III
COMPARISON OF TIME COSTS OF DIFFERENT OPERATIONS

Operation (1000 Times)
Time cost (ms)
Raspberry
Pi 4

NVIDIA
Jetson Nano

Hash to G (Hash) 11300.56 8919.44
Pairing (Pair) 6270.13 3531.85
Exponentiation on G (Exp) 4885.11 3952.40
Hash to GT (HashT) 1020.94 568.03
Exponentiation on GT (ExpT) 710.57 425.43
Multiplication on G 21.36 17.77
Multiplication on GT 4.63 2.75
Hash to Zq 1.13 0.96
Multiplication on Zq 0.22 0.15
Addition on Zq 0.04 0.04

TABLE IV
COMPARISON OF COMMUNICATION COSTS OF PROOF-GENERATION

Scheme Cost

Wang et al. [20] 1|G|+ 1|Zq |
IP-DPDP [12] 1|G|+ s|Zq |
MuR-DPA [21] 1|G|+ s|Zq |
ID-RDIC [13] 1|G|+ 1|GT |+ 1|Sig|
Shen et al. [15] 1|G|+ 1|Zq |
IDLP-RDIC (s+3)|G|+s|Zq |+1|GT |

B. Experimental Performance

1) Environment: For the hardware environment, we simu-
late two IoT nodes using a Raspberry Pi 4 and an NVIDIA
Jetson Nano, respectively. Raspberry Pi is a very cheap SBC
(single board computer), which provides a set of GPIO (gen-
eral purpose input/output) pins to control electronic compo-
nents for IoT. NVIDIA Jetson Nano is also an SBC, which
is designed for small, power-efficient AI systems and embed-
ded IoT applications. Both of them are lightweight devices
equipped with ARM CPUs. We simulate one PMN, one RS,
and three verifiers on five virtual machines (VM) separately,
provided by VMware Workstation which is running on a server
equipped with an Intel Xeon Silver 4114 CPU and 32 GB
DDR4 memory.

For the network parameters, according to some recent
reports on modern 5G networks [34], [35], we set the peak
incoming/outgoing data rate of each VM to 1 Gb/s. We also
set the incoming/outgoing latency for the verifiers to 15 ms,

0

200

400

600

800

1000

1200

1400

128 256 384 512 640 768 896 1024

Ti
m

e
co

st
 (s

ec
on

d)

File size (KB)

MuR-DPA (Raspberry Pi 4) ID-RDIC (Raspberry Pi 4)

IDLP-RDIC (Raspberry Pi 4) MuR-DPA (NVIDIA Jetson Nano)

ID-RDIC (NVIDIA Jetson Nano) IDLP-RDIC (NVIDIA Jetson Nano)

Fig. 3. Comparisons for time costs for HVT-generation.

while 30 ms for the RS, for it is usually located remotely.
Then, we connect the Raspberry Pi and NVIDIA Jetson Nano
to the simulated network via an 802.11ac Wi-Fi router. The
measured performance is summarized in Table VI.

For the software environment, we install Raspbian Buster,
Ubuntu 18.04, Windows 10, and Debian 10 on the Raspberry
Pi 4, the NVIDIA Jetson Nano, the server, and the VMs,
respectively. We use a Type A elliptic curve with 160-bit group
order provided by PBC Library [36] as the bilinear pairing,
use SHA-256 provided by OpenSSL [37] as the cryptographic
hash function, use Cha-Cheon’s scheme [38] as the IDS, and
use BLS signature [24] as the traditional digital signature,
respectively.

2) Results: We firstly compare the time costs of
IDLP-RDIC with MuR-DPA and ID-RDIC for the most
computational-expensive HVT-generation phases, on the Rasp-
berry Pi and NVIDIA Jetson Nano respectively, in Fig. 3.
Because both MuR-DPA and ID-RDIC are not suitable for
lightweight devices, we select a relatively smaller dataset
(various from 128 KB to 1 MB), otherwise they will be
extremely slow. (For a 1 GB file on a Raspberry Pi 4, it takes
MuR-DPA and ID-RDIC about 100 hours and more than 300
hours, respectively.) Limited by the group order (160 bits), the
smallest data unit must be less than 20 bytes. For MuR-DPA
and IDLP-RDIC, we set the sector size to 16 bytes and the
block size to 64 sectors (1024 bytes). For ID-RDIC, we set
the block size to 16 bytes, because a block cannot be further
divided. All the results represent the means of 10 trails.

In addition, we would like to provide the computation and

10

TABLE V
COMPARISON OF BLOCKCHAIN PROPERTIES

Framework Blockchain Type Maximum
Tolerance

Byzantine
Fault-tolerance

Privacy-preserving No Mining Communication
Complexity

No PKI

Bitcoin [25] Public 50% Yes No No O(N)a Yesb

DeepCoin [31] Consortium 33% Yes Yes Yes O(N2) No
Dwivedi et al. [32] Consortium 50% Yes Yes Yes O(N) No
Derhab et al. [33] Private 50% Noc No Yes O(N) No
Ours Consortium 50% Yes Yes Yes O(N) Yes

a N denotes the number of participants.
b The public keys are embedded into the blocks.
c The participants are assumed to be trusted.

TABLE VI
NETWORK PARAMETERS

Route Bandwidth
(Mb/s)a

Latency
(ms)b

Raspberry Pi to Verifier 636 33.8
Raspberry Pi to RS 367 65.8
NVIDIA Jetson Nano to Verifier 662 32.5
NVIDIA Jetson Nano to RS 373 65.6
Verifier to Verifier 339 62.7
Verifier to RS 238 93.8

a Measured by iPerf (TCP mode).
b Measured by Ping.

communication costs of our framework. Fig. 4 illustrates the
time costs of different phases. Here, the verification phase
means, the designated verifier checks the proof of integrity
and broadcasts the PoV to the other verifiers, the other verifiers
check the PoV, and the IDBC network reaches consensus. Fig.
5 illustrates the bandwidth costs for transferring the HVTs,
proofs of integrity, and new blocks (for the IDBCs) during
each simulation. In these cases, the Raspberry Pi 4 or NVIDIA
Jetson Nano generates HVTs for much larger files (various
from 128 MB to 1 GB) and uploads them to the RS. Then,
the verifiers check their integrity. We set the sector size to 16
bytes and the block size to 65,536 sectors (1 MB). For each
block size, we repeat the simulation for 10 times and all the
results represent the mean values. We do not analyze the costs
of updates here, because they just equal to the costs of creating
the files which are comprised of the updated blocks.

3) Discussion: We would like to discuss the aforemen-
tioned results. Fig. 3 demonstrates that the HVT-generation
of IDLP-RDIC is much faster than those of MuR-DPA and
ID-RDIC. For a certain block size, the time cost of our HVT-
generation is nearly independent of the sector number, i.e., it
can be significantly decreased by increasing the sector number
of each block, while MuR-DPA and ID-RDIC do not benefit
from this method.

Fig. 4 further demonstrates the high computational effi-
ciency of our framework. For a 1 GB file, the HVT-generation
takes about 126 seconds (8.1 MB/s) on the Raspberry Pi 4
and 123 seconds (8.3 MB/s) on the NVIDIA Jetson Nano,
respectively, where the proof-generation takes about 89 sec-
onds (11.5 MB/s) on a VM running on an Intel Xeon Silver
4114. It means that even for a 1080p video encoded in

0

20

40

60

80

100

120

140

128 256 384 512 640 768 896 1024

Ti
m

e
co

st
 (s

ec
on

d)
File size (MB)

HVT-generation (Raspberry Pi 4)

HVT-generation (NVIDIA Jetson Nano)

Proof-generation

Verification

Fig. 4. Time costs of our framework for different phases.

0

1024

2048

3072

4096

5120

6144

128 256 384 512 640 768 896 1024

Ba
nd

w
id

th
 c

os
t (

KB
)

File size (MB)

HVTs Proof of integrity New block

Fig. 5. Bandwidth costs of our framework for different parts.

BluRay H.264 (about 4.58 MB/s), our framework can still
work on-the-fly. After the file is uploaded, the subsequent
verification task (from the designated verifier checking the
proof of integrity to the IDBC network reaching consensus)
takes about 81 seconds, which is also acceptable for a non-
real-time procedure. Moreover, our solution does not rely on
the complicated certificate managements. We also remark that
the time cost of verification increases slowly along with the
file size.

Fig. 5 shows the communication performance of our frame-

11

work. For a 1 GB file, the total HVTs generated by the IoT
node (whether the Raspberry Pi 4 or NVIDIA Jetson Nano)
are only 65 KB; both the proof of integrity generated by the
RS and the new block generated by the designated verifier are
about 5.3 MB. In fact, for a certain sector number, the size of
the proof is constant, and the size of the new block is nearly
constant, which is affordable for a consortium blockchain
network with fast channels. (Although the set {OPi,ĵ} is
variable, it only makes up a tiny proportion.)

In summary, the experimental results indicate that our
framework is suitable for an actual IoT environment.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a secure lightweight stream data out-
sourcing framework for IoT. It eliminates the complicated or
even untrusted PKI, by introducing a private mobile network
to distribute the private keys via the one-time channels. It is
reliable under untrusted channels, nodes, RS, and even veri-
fiers, with ensured by the identity-based signatures, multiple
verifiers, and blockchains. It also protects the owners’ privacy,
by revealing no information of the data content to any other
entities besides the RS. Our simulations implicates that the
framework is efficient for lightweight devices using ARM
CPUs, thus it is suitable for an actual IoT.

The blockchain applied in our framework is not fully
decentralized, for there must be a trusted MO to deploy the
PMN. Building a secure and fully decentralized blockchain
based data outsourcing framework may be a challenging issue,
as well as an interesting future direction.

APPENDIX A
SECURITY PROOFS OF IDLP-RDIC

In this appendix, we prove the security properties of
IDLP-RDIC, including completeness, soundness, and privacy-
preserving.

A. Completeness

The completeness of IDLP-RDIC is guaranteed by Theorem
1.

Theorem 1 (Completeness): IDLP-RDIC satisfies the fol-
lowing properties:

1) When the PKG sends a correct sk to the data owner, sk
can pass the verification of the data owner.

2) When the RS properly stores the data user owner’s file,
the proof P it generates can pass the verification of the
verifier.

Proof:
1) Given a private key sk = (α, β, σ), we have that:

e(σ, g)

= e(H1(NID ‖ v ‖ u1 ‖ . . . ‖ us)x, g)

= e(H1(NID ‖ gα ‖ gh1(β) ‖ . . . ‖ gh1(β+s−1)),

mpk).

Then, the equation (1) holds. Therefore, sk passes the
verification.

2) Given a correct proof P = (M,T,Ei,Γ), firstly, we
have that:

e(σ, g) = e(H1(NID ‖ v ‖ u1 ‖ . . . ‖ us)x, g)

= e(H1(NID ‖ v ‖ u1 ‖ . . . ‖ us),mpk).

Then, the equation (2) holds. Secondly, we have that:

Γ · e(T, g)
δ

= e(
∏s

l=1
ul, v)

γ
· e(

∏
(j,k)∈I

tjk
ajk , g)

δ

= e(
∏s

l=1
ul, v)

γ

· e(
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk

·
∏

(j,k)∈I
g
∑s

l=1 h1(β+l−1)ajkm̃jkl , v)δ

= e(
∏s

l=1
ul, v)

γ

· e(
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk

·
∏s

l=1
ul

∑
(j,k)∈I ajkm̃jkl , v)δ

= e(
∏s

l=1
ul
γ , v)

· e((
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk)
δ

·
∏s

l=1
ul
δ
∑

(j,k)∈I ajkm̃jkl , v)

= e((
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk)
δ

·
∏s

l=1
ul
γ+δ

∑
(j,k)∈I ajkm̃jkl , v)

= e((
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk)
δ

·
∏s

l=1
ul
M̃l , v).

Then, the equation (3) holds. Therefore, P passes the
verification.

This completes the proof of Theorem 1.

B. Soundness

Before the proof of the soundness, we first present the secu-
rity model of IDLP-RDIC, i.e., the soundness game (Definition
1).

Definition 1 (Soundness Game): In IDLP-RDIC, for any
probabilistic polynomial adversary A (malicious RS) and a
challenger C (PKG, data owner, and verifier), the soundness
game between A and C is described as follows:

1) C runs Setup to obtain some public parameters params,
a master private key x, a corresponding master public
key mpk, a sector size S, and a sector number s, then
forwards params, mpk, S, and s to A, whereas keeps
x secret.

2) A can make sort of HV T − Gen queries to C for
polynomial times adaptively, i.e., A can query the HVT
tjk for any NID, any file name FIDj , and any block
mjk. C computes the corresponding tjk and forwards
tjk with the extra authentication information E to A.
We note that A is forbidden from making queries on the
same NID, the same FIDj , and the same k with the

12

different {mjk}. Furthermore, in A’s view, each HVT
is generated under a private key α using u1, . . . , us
(i.e., tjk = (H2(NID ‖ FIDj ‖ k) ·

∏s
l=1 ul

m̃jkl)
α)

and can be verified using a public key v = gα, which v
and u1, . . . , us are all provided in E by the data owner
rather than the PKG. (A never interacts with, or even
cannot reach to PKG in IDLP-RDIC.) Therefore, we can
safely forbid A from making any queries on the actual
α and β.

3) For any NID, any set {FIDj}, and any set {mjk}
on which A has made HV T − Gen queries, A can
undertake executions of ProofGen. In these executions,
C plays the part of the verifier V and A plays the part
of the prover P . When an execution completes, A is
provided with the output of C. These executions can
be arbitrarily interleaved with each other and with the
queries mentioned above.

4) Eventually, A decides to be challenged on a certain
NID∗, a certain set {FIDj}, and a certain set {mjk}
with the indices {(j, k)} = I∗, that A has made
HV T − Gen queries on all of them. A outputs the
description of a cheating prover P∗. P∗ is ε-admissible
if it convincingly answers ε fraction of verification
challenges, i.e., if Pr[V(NID∗, {FIDj}, {mjk}) �
P∗ = VALID] ≥ ε with (j, k) ∈ I∗. The probability
here is over the coins of A and C. A wins the game
if he can successfully output an ε-admissible P∗ when
1− ε is negligible. We say IDLP-RDIC is sound if there
exists an efficient extraction algorithm Extr such that,
for every adversary A, whenever A, playing the game
defined above, outputs an ε-admissible P∗ on NID∗,
{FIDj}, and {mjk} with (j, k) ∈ I∗ when 1 − ε
is negligible, Extr recovers the blocks {mjk} from
P∗, i.e., Extr(NID∗, {FIDj},P∗) = {mjk} with
(j, k) ∈ I∗, except possibly with negligible probability.

Then, we prove that IDLP-RDIC under this model in
Theorem 2.

Theorem 2 (Soundness): If the CDH problem is hard in G,
IDLP-RDIC is sound under Definition 1 in the random oracle
model.

Proof: We prove this theorem as a series of games with
interleaved analysis, inspired by [5].

Game 0. Game 0 is simply the soundness game defined in
Definition 1.

Game 1. Game 1 is the same as Game 0, with one differ-
ence. C keeps a list of his responses to HV T −Gen queries
made by A, and observes each response for ProofGen
executed by A. If in any of these responses A is successful
(i.e., V outputs VALID), but A’s aggregated HVT T ′ 6=∏

(j,k)∈I tjk
aik , C declares failure and aborts.

Analysis. First, we can see that σ in E is actually a BLS
signature [24] on NID ‖ v ‖ u1 ‖ . . . ‖ us using the
private key x and the equation (2) is the verification of σ
using the public key mpk. According to the unforgeability
of the BLS signature, we can safely assume that u1, . . . , us,
and v used by A in the interactions and those in E have the
same value, which is generated by C using NID, otherwise V
outputs INVALID, except possibly with negligible probability.

Because the correct response satisfies the equation (3), we
have:

Γ · e(T, g)
δ

= e((
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk)
δ
·
∏s

l=1
ul
M̃l , v).

If T ′ 6= T , we have:

Γ · e(T ′, g)
δ

= e((
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk)
δ
·
∏s

l=1
ul
M̃ ′l , v),

and at least one M̃ ′l 6= M̃l (otherwise T ′ = T), therefore, if we
define ∆M̃l = M̃ ′l−M̃l, at least one ∆M̃l 6= 0. We now show
that if A causes C to abort with nonnegligible probability we
can construct a simulator S that solves the CDH problem. S
is given as inputs values g, gα, h ∈ G, its goal is to output hα.
S behaves like C in Game 0, with the following differences:

1) In the responses to the HV T − Gen queries, S sets
v = gα, randomly chooses {(ζl, ηl) | l = 1, . . . , s}, sets
{ul = gζlhηl | l = 1, . . . , s}, sets σ = H1(NID ‖
v ‖ u1 ‖ . . . ‖ us)

x, randomly chooses r
(NID)
jk ,

programs the random oracle H2 as H2(NID ‖ FIDj ‖
k) = gr

(NID)
jk /(g

∑s
l=1 ζlm̃jklh

∑s
l=1 ηlm̃jkl). Now S can

compute:

tjk = (H2(NID ‖ FIDj ‖ k) ·
∏s

l=1
ul
m̃jkl)

α

= (gr
(NID)
jk /(g

∑s
l=1 ζlm̃jklh

∑s
l=1 ηlm̃jkl)

·
∏s

l=1
(gζlhηl)

m̃jkl
)α

= (gr
(NID)
jk /(g

∑s
l=1 ζlm̃jklh

∑s
l=1 ηlm̃jkl)

· (g
∑s

l=1 ζlm̃jklh
∑s

l=1 ηlm̃jkl))α

= (gr
(NID)
jk)

α

= vr
(NID)
jk .

We note that guaranteed by the cryptographical hash
function h1, A cannot distinguish ul from a random
element without knowing β.

2) S continues interacting with A until the condition speci-
fied in Game 1 occurs. Dividing the verification equation
for the forged T ′ and the expected T , we have:

e(T ′/T, g)
δ

= e(
∏s

l=1
ul

∆M̃l , v)

= e(
∏s

l=1
(gζlhηl)

∆M̃l
, v)

= e(
∏s

l=1
(vζl(hα)

ηl)
∆M̃l

, g)

= e(v
∑s

l=1 ζl∆M̃l(hα)
∑s

l=1 ηl∆M̃l , g).

We can see that we have found the
solution the CDH problem hα =

(T ′
δ · T−δ · v−

∑s
l=1 ζl∆M̃l)

(
∑s

l=1 ηl∆M̃l)
−1

unless∑s
l=1 ηl∆M̃l = 0. However, we have already known

that at least one ∆M̃ 6= 0 and ηl are randomly chosen,
so

∑s
l=1 ηl∆M̃l = 0 only with probability 1/q, which

is negligible.

13

Thus, the difference between A’s probabilities of success in
Game 0 and Game 1 is negligible.

Game 2. Game 2 is the same as Game 1, with one differ-
ence. C keeps a list of his responses to HV T −Gen queries
made by A, and observes each response for ProofGen
executed by A. If in any of these responses A is successful
(i.e., V outputs VALID), but at least one of A’s aggregated
block sectors M̃ ′l 6= γ+δ

∑
(j,k)∈I ajkm̃jkl, C declares failure

and aborts.
Analysis. We now show that if A causes C to abort with

nonnegligible probability we can construct a simulator S that
solves the DL problem. S is given as inputs values g, h ∈ G,
its goal is to output θ which h = gθ. S behaves like C in
Game 1, with the following differences:

1) In the responses to the HV T − Gen queries, S ran-
domly chooses α ∈ Zq , sets v = gα, randomly
chooses {(ζl, ηl) | l = 1, . . . , s}, sets {ul = gζlhηl |
l = 1, . . . , s}, sets σ = H1(NID ‖ v ‖ u1 ‖
. . . ‖ us)

x, randomly chooses r
(NID)
jk , programs the

random oracle H2 as H2(NID ‖ FIDj ‖ k) =

gr
(NID)
jk /(g

∑s
l=1 ζlm̃jklh

∑s
l=1 ηlm̃jkl). We note that α is

randomly chosen in Game 2.
2) S continues interacting with A until the condition spec-

ified in Game 2 occurs. The correct response satisfies
the equation (3), and from the change made in Game 1
we know that T ′ = T , therefore we have:

e((
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk)
δ

·
∏s

l=1
ul
M̃l , v)

= Γ · e(T, g)
δ

= Γ · e(T ′, g)
δ

= e((
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk)
δ

·
∏s

l=1
ul
M̃ ′l , v).

Then, we have
∏s
l=1 ul

M̃l =
∏s
l=1 ul

M̃ ′l , therefore:

1 =
∏s

l=1
ul

∆M̃l

=
∏s

l=1
(gζlhηl)

∆M̃l

= g
∑s

l=1 ζl∆M̃lh
∑s

l=1 ηl∆M̃l .

We can see that we have found the solution the DL
problem θ = −

∑s
l=1 ζl∆M̃l · (

∑s
l=1 ηl∆M̃l)

−1
, unless∑s

l=1 ηl∆M̃l = 0. But we have already known that at
least one M̃ ′l 6= γ+δ

∑
(j,k)∈I ajkm̃jkl = M̃l, therefore

at least one ∆M̃l 6= 0. Because ηl are randomly chosen,
so

∑s
l=1 ηl∆M̃l = 0 with probability 1/q, which is

negligible.
Thus, the difference between A’s probabilities of success in

Game 1 and Game 2 is negligible.
Wrapping up. In Game 2, A is constrained from answering

any verification query with values other than those that would
have been computed by C. We have already known that if
the CDH problem is hard (implies the DL problem is hard)

in G, there is only a negligible difference in the success
probability of A in Game 2 compared to Game 0, where A is
not constrained in this manner. Finally, if we select different
coefficients ajk (by setting different τ) on the same set of
indices I = (j, k), the same NID, the same set of {FIDj},
and the same set of {mjk}, then execute #I times different
challenges, we can compute all {m̃ijkl} by solving s linear
equation groups, except possibly with negligible probability.

This completes the proof of Theorem 2.

C. Privacy-preserving

The privacy-preserving of IDLP-RDIC is guaranteed by
Theorem 3.

Theorem 3 (Privacy-preserving): In IDLP-RDIC, if the
CDH problem is hard in G, the verifier cannot derive any
information about the values of {m̃ijkl} from the proof of
integrity P = (M,T,E,Γ) and even the PoV = (R, τ ,
P , Result, IDSi(R), IDSd(R, IDSi(R), τ), SigRS(P, ts),
IDSd(Result, ts)) in the IDBCs.

Proof: The only two parts related to {m̃ijkl} in P and
PoV are M and T . Now we prove that the verifier cannot
derive any information about the values of {m̃ijkl} from M
or T .

One the one hand, because γ is randomly chosen for
each ProofGen, δ

∑
(j,k)∈I ajkm̃jkl is blinded by γ using

a one-time-pad encryption. Even if the verifier knows Γ =
e(
∏s
l=1 ul, v)

γ and e(
∏s
l=1 ul, v), γ is still hidden by the

hardness of the DL problem. Thus, the verifier cannot derive
any information about the values of {m̃ijkl} from M .

One the other hand, from:

T

=
∏

(j,k)∈I
((H2(NID ‖ FIDj ‖ k) ·

∏s

l=1
ul
m̃jkl)

α
)
ajk

= (
∏

(j,k)∈I
H2(NID ‖ FIDj ‖ k)

ajk)
α

· (
∏

(j,k)∈I

∏s

l=1
ul
ajkm̃jkl)

α

we can see that (
∏

(j,k)∈I
∏s
l=1 ul

ajkm̃jkl)
α is blinded by

(
∏

(j,k)∈I H2(NID ‖ FIDj ‖ k)
ajk)

α. However, the only
way to compute (

∏
(j,k)∈I H2(NID ‖ FIDj ‖ k)

ajk)
α

for the verifier is to use g, gα, and∏
(j,k)∈I H2(NID ‖ FIDj ‖ k)

ajk , which is a CDH
problem. Thus, the verifier cannot derive any information
about the values of {m̃ijkl} from T .

This completes the proof of Theorem 3.

REFERENCES

[1] Gartner. Internet of Things (IoT). [Online]. Available: https://www.
gartner.com/en/information-technology/glossary/internet-of-things.
Accessed on: Aug. 20, 2020.

[2] M. Lippett. Fixing the biggest IoT issue – Data security.
[Online]. Available: https://www.infosecurity-magazine.com/opinions/
fixing-biggest-iot-data. Accessed on: Aug. 20, 2020.

[3] L. Abrams. (2019, Sept.) Amazon AWS outage shows
data in the cloud is not always safe. [Online]. Avail-
able: https://www.bleepingcomputer.com/news/technology/
amazon-aws-outage-shows-data-in-the-cloud-is-not-always-safe.
Accessed on: Aug. 20, 2020.

14

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proc.
14th ACM Conference on Computer and Communications Security - CCS,
2007, pp. 598–609.

[5] H. Shacham and B. Waters, “Compact proofs of retrievability,” J. Cryptol.,
vol. 26, 2013, pp. 442–483.

[6] B. Sengupta and S. Ruj, “Efficient proofs of retrievability with public
verifiability for dynamic cloud storage,” IEEE Trans. Cloud Comput.,
vol. 8, no. 1, pp. 138–151, Jan./Mar. 2020.

[7] B. Wang, B. Li, and H. Li, “Panda: Public auditing for shared data with
efficient user revocation in the cloud,” IEEE Trans. Serv. Comput., vol.
8, no. 1, pp. 92–106, Jan./Feb. 2015.

[8] A. Fu, S. Yu, Y. Zhang, H. Wang, and C. Huang, “NPP: A New
Privacy-Aware Public Auditing Scheme for Cloud Data Sharing with
Group Users,” IEEE Trans. Big Data, to be published, doi: 10.1109/TB-
DATA.2017.2701347.

[9] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, “Enabling efficient user
revocation in identity-based cloud storage auditing for shared big data,”
IEEE Trans. Depend. Sec. Comput., vol. 17, no. 3, pp. 608–619, May/June
2020.

[10] J. Yu, K. Ren, C. Wang, and V. Varadharajan, “Enabling cloud stor-
age auditing with key-exposure resistance,” IEEE Trans. Inf. Forensics
Security, vol. 10, no. 6, pp. 1167–1179, Jun. 2015.

[11] J. Yu and H. Wang, “Strong key-exposure resilient auditing for secure
cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 8, pp.
1931–1940, Aug. 2017.

[12] H. Wang, “Identity-based distributed provable data possession in mul-
ticloud storage,” IEEE Trans. Serv. Comput., vol. 8, no. 2, pp. 328–340,
Mar./Apr. 2015.

[13] Y. Yu, M. Au, X. Huang, W. Susilo, Y. Dai, and G. Min, “Identity-based
remote data integrity checking with perfect data privacy preserving for
cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 4, pp.
767–778, Apr. 2017.

[14] Y. Li, Y. Yu, G. Min, W. Susilo, J. Ni, and K.-K. R. Choo, “Fuzzy
identity-based data integrity auditing for reliable cloud storage systems,”
IEEE Trans. Dependable Secure Comput., vol. 16, no. 1, pp. 72–83,
Jan./Feb. 2019.

[15] W. Shen, J. Qin, J. Yu, R. Hao, and J. Hu, “Enabling identity-based
integrity auditing and data sharing with sensitive information hiding for
secure cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 14, no.
2, pp. 331–346, Feb. 2019.

[16] H. Wang, D. He, J. Yu, and Z. Wang, “Incentive and unconditionally
anonymous identity-based public provable data possession,” IEEE Trans.
Serv. Comput., vol. 12, no. 5, pp. 824–835, Sept./Oct. 2019.

[17] J. Li, L. Zhang, J. K. Liu, H. Qian, and Z. Dong, “Privacy-preserving
public auditing protocol for low-performance end device in cloud,” IEEE
Trans. Inf. Forensics Security, vol. 11, no. 11, pp. 2572–2583, Nov. 2016.

[18] Y. Wang, Q. Wu, B. Qin, S. Tang, and W. Susilo, “Online/offline
provable data possession,” IEEE Trans. Inf. Forensics Security, vol. 12,
no. 5, pp. 1182–1194, May 2017.

[19] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. 16th ACM Conference on Computer
and Communications Security - CCS, 2009, pp. 213–222.

[20] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, 2011, pp. 847–859.

[21] C. Liu, R. Ranjan, C. Yang, X. Zhang, L. Wang, and J. Chen, “MuR-
DPA: Top-down levelled multi-replica Merkle hash tree based secure
public auditing for dynamic big data storage on Cloud,” IEEE Trans.
Comput., vol. 64, no. 9, pp. 2609–2622, Sept. 2015.

[22] P. Nohe. (2018, Sept.) What is a rogue certificate? How do you
prevent them? [Online]. Available: https://www.thesslstore.com/blog/
what-is-a-rogue-certificate. Accessed on: Aug. 20, 2020.

[23] A. Shamir. “Identity-based cryptosystems and signature schemes,” in
Proc. CRYPTO 84, 1984, pp. 47–53.

[24] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
Weil pairing,” In Proc. 7th International Conference on the Theory and
Application of Cryptology and Information Security - ASIACRYPT, 2001,
pp. 514–532.

[25] S. Nakamoto. (2008, Oct.) Bitcoin: A peer-to-peer electronic cash
system. [Online]. Available: https://bitcoin.org/bitcoin.pdf. Accessed on:
Aug. 20, 2020.

[26] A. Kaci and A. Rachedi, “PoolCoin: Toward a distributed trust model
for miners’ reputation management in blockchain,” in Proc. IEEE 17th
Annual Consumer Communications & Networking Conference - CCNC,
2020.

[27] Y. Yahiatene, A. Rachedi, M. A. Riahla, D. E. Menacer, and F. Nait-
Abdesselam, “A blockchain-based framework to secure vehicular social
networks,” Transactions on Emerging Telecommunications Technologies,
vol. 30, no. 8, e3650, 2019.

[28] A. Kaci and A. Rachedi. “Toward a machine learning and software
defined network approaches to manage miners’ reputation in blockchain,”
Journal of Network and Systems Management, vol. 28, pp. 478–501, 2020.

[29] D. Galindo, J. Herranz, and E. Kiltz, “On the generic construction
of identity-based signatures with additional properties,” in Proc. 12th
International Conference on the Theory and Application of Cryptology
and Information Security - ASIACRYPT, 2006. pp. 178–193.

[30] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public
auditing for secure cloud storage,” IEEE Trans. Compu., vol. 62, no. 2,
pp. 362–375, Feb. 2013.

[31] M. A. Ferrag and L. Maglaras, “DeepCoin: A novel deep learning and
blockchain-based energy exchange framework for smart grids,” IEEE
Trans. Eng. Manag., vol. 67, no. 4, pp. 1285–1297, Nov. 2020.

[32] A. D. Dwivedi, G. Srivastava, S. Dhar, and R. Singh, “A decentralized
privacy-preserving healthcare blockchain for IoT,” Sensors, vol. 19, no.
326, 2019.

[33] A. Derhab, M. Guerroumi, A. Gumaei, L. Maglaras, M. A. Ferrag, M.
Mukherjee, and F. A. Khan, “Blockchain and random subspace learning-
based IDS for SDN-enabled industrial IoT security,” Sensors, vol. 19, no.
3119, 2019.

[34] Verizon. (2020, Feb.) 5G speed: How fast is 5G? [Online].
Available: https://www.verizon.com/about/our-company/5g/
5g-speed-how-fast-is-5g. Accessed on: Aug. 20, 2020.

[35] Verizon. (2020, Feb.) What is the Latency of 5G? [Online]. Avail-
able: https://www.verizon.com/about/our-company/5g/5g-latency. Ac-
cessed on: Aug. 20, 2020.

[36] B. Lynn. (2007, June) The pairing-based cryptography library (PBC).
[Online]. Available: https://crypto.stanford.edu/pbc. Accessed on: Aug.
20, 2020.

[37] OpenSSL Software Foundation. (1999) OpenSSL: Cryptography and
SSL/TLS toolkit. [Online]. Available: https://www.openssl.org. Accessed
on: Aug. 20, 2020.

[38] J. C. Cha and J. H. Cheon, “An identity-based signature from gap Diffie-
Hellman groups,” In Proc. 6th International Workshop on Practice and
Theory in Public Key Cryptography - PKC, 2003, pp. 18–30.

Su Peng is a lecturer at Shenyang Aerospace Univer-
sity, China. He received his Ph.D. degree in Com-
puter Application Technology from the School of
Computer Science and Engineering at Northeastern
University, China, in 2019. His research interests
include cryptography and blockchain.

Liang Zhao is an associate professor at Shenyang
Aerospace University, China. He received his Ph.D.
degree in Computing from the School of Computing
at Edinburgh Napier University, United Kingdom,
in 2011. Before joining Shenyang Aerospace Uni-
versity, he worked as an associate senior researcher
in Hitachi (China) Research and Development Cor-
poration from 2012 to 2014. His research interests
include VANETs, SDN and MEC.

15

Ahmed Y. Al-Dubai is a professor of Networking
and Communication Algorithms in the School of
Computing at Edinburgh Napier University, United
Kingdom. He received the Ph.D. degree in Comput-
ing from the University of Glasgow, United King-
dom, in 2004. His research interests include Com-
munication Algorithms, Mobile Communication, In-
ternet of Things, and Future Internet. He received
several international awards. He is a senior member
of IEEE.

Albert Y. Zomaya is a chair professor and director
of the Center for Distributed and High Performance
Computing at the University of Sydney, Australia.
He has published more than 600 scientific papers
and is an author, co-author, or editor of more than
20 books. He is the Editor-in-Chief of IEEE Transac-
tions on Sustainable Computing and ACM Comput-
ing Surveys and serves as an Associate Editor for
several leading journals. He is a Fellow of IEEE,
AAAS, IET, and member of Academia European.

Jia Hu received the B.Eng. and M.Eng. degrees in
electronic engineering from the Huazhong Univer-
sity of Science and Technology, China, in 2006 and
2004, respectively, and the Ph.D. degree in computer
science from the University of Bradford, U.K., in
2010. He is currently a Senior Lecturer of computer
science with the University of Exeter. His research
interests include mobile and ubiquitous computing,
resource optimization, applied machine learning, and
network security.

Geyong Min is a professor of High-performance
Computing and Networking in the Department of
Mathematics and Computer Science within the Col-
lege of Engineering, Mathematics and Physical Sci-
ences at the University of Exeter, United Kingdom.
He received his Ph.D. degree in computing science
from the University of Glasgow, United Kingdom, in
2003, and his B.Sc. degree in computer science from
Huazhong University of Science and Technology,
China, in 1995. His research interests include future
Internet, computer networks, wireless communica-

tions, multimedia systems, information security, high-performance computing,
ubiquitous computing, modeling, and performance engineering.

Qiang Wang received his B.S. degree of Infor-
mation Security and the M.S. degree of Software
Engineering from Northeastern University, China,
in 2014 and 2016, respectively. He is currently
working toward the Ph.D. degree in Software Col-
lege, Northeastern University, China. His research
interests include verifiable computation and secure
multi-party computation.

