Life course longitudinal growth and risk of knee osteoarthritis at age 53 years: evidence from the 1946 British birth cohort study

Katherine A. Staines, Rebecca Hardy, Hasmik J. Samvelyan, Kate A. Ward, Rachel Cooper

S1063-4584(20)31229-2 DOI: https://doi.org/10.1016/j.joca.2020.12.012

Reference: **YJOCA 4762** 

PII:

To appear in: Osteoarthritis and Cartilage

Received Date: 7 September 2020 Revised Date: 1 December 2020 Accepted Date: 21 December 2020

Please cite this article as: Staines KA, Hardy R, Samvelyan HJ, Ward KA, Cooper R, Life course longitudinal growth and risk of knee osteoarthritis at age 53 years: evidence from the 1946 British birth cohort study, Osteoarthritis and Cartilage, https://doi.org/10.1016/i.joca.2020.12.012.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.



- 1 Life course longitudinal growth and risk of knee osteoarthritis at age 53 years: evidence
- 2 from the 1946 British birth cohort study
- 3 Katherine A. Staines<sup>1,2</sup>., Rebecca Hardy<sup>3</sup>., Hasmik J. Samvelyan<sup>1</sup>., Kate A. Ward<sup>4</sup>., Rachel
- 4 Cooper<sup>5</sup>
- 5 1 School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
- 6 2 School of Applied Sciences, Edinburgh Napier University, Edinburgh UK
- 7 3 Cohort and Longitudinal Studies Enhancement Resources (CLOSER), UCL Institute of
- 8 Education, London, UK
- 9 4 MRC Lifecourse Epidemiology, Human Development and Health, University of
- 10 Southampton, Southampton, UK
- 5 Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine
- 12 Research Centre, Manchester Metropolitan University, Manchester, UK.
- 13 Katherine Staines: k.staines@brighton.ac.uk
- 14 Rebecca Hardy: rebecca.hardy@ucl.ac.uk
- 15 Hasmik Samvelyan: h.samvelyan@brighton.ac.uk
- 16 Kate Ward: kw@mrc.soton.ac.uk
- 17 Rachel Cooper: R.Cooper@mmu.ac.uk

18

- 19 Corresponding author: Katherine A. Staines; School of Pharmacy and Biomolecular
- 20 Sciences, University of Brighton, Brighton, BN2 4GJ; k.staines@brighton.ac.uk; 01273
- 21 642094
- 22 **Running headline:** Life course growth and knee osteoarthritis

| 24 | Abstract                                                                                         |
|----|--------------------------------------------------------------------------------------------------|
| 25 | Objective                                                                                        |
| 26 | To examine the relationship between height gain across childhood and adolescence with knee       |
| 27 | osteoarthritis in the MRC National Survey of Health and Development (NSHD).                      |
| 28 | Materials and methods                                                                            |
| 29 | Data are from 3035 male and female participants of the NSHD. Height was measured at ages         |
| 30 | 2, 4, 6, 7, 11 and 15 years, and self-reported at ages 20 years. Associations between (i) height |
| 31 | at each age (ii) height gain during specific life periods (iii) Super-Imposition by Translation  |
| 32 | And Rotation (SITAR) growth curve variables of height size, tempo and velocity, and knee         |
| 33 | osteoarthritis at 53 years were tested.                                                          |
| 34 | Results                                                                                          |
| 35 | In sex-adjusted models, estimated associations between taller height and decreased odds of       |
| 36 | knee osteoarthritis at age 53 years were small at all ages - the largest associations were an OR |
| 37 | of knee osteoarthritis of 0.9 per 5cm increase in height at age 4, (95% CI 0.7-1.1) and an OR    |
| 38 | of 0.9 per 5cm increase in height, (95% CI 0.8-1.0) at age 6. No associations were found         |
| 39 | between height gain during specific life periods or the SITAR growth curve variables and         |
| 40 | odds of knee osteoarthritis.                                                                     |
| 41 | Conclusions                                                                                      |
| 42 | There was limited evidence to suggest that taller height in childhood is associated with         |
| 43 | decreased odds of knee osteoarthritis at age 53 years in this cohort. This work enhances our     |
| 44 | understanding of osteoarthritis predisposition and the contribution of life course height to     |
| 45 | this.                                                                                            |

Key words: osteoarthritis, SITAR, growth, life course, birth cohort

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

### Introduction

Joint health is reliant upon the preservation of the articular cartilage and, its degradation is one of the main hallmarks of the degenerative joint disease osteoarthritis. Osteoarthritis, characterised by articular cartilage loss, subchondral bone thickening and osteophyte formation, is a major health care burden throughout the world. It is estimated that worldwide at least 10% of men and 18% of women aged over 60 years have symptomatic osteoarthritis. Osteoarthritis causes much pain and disability, and yet its underlying molecular mechanisms are not fully understood. Indeed, even the precipitating pathology remains a matter of debate and we are still unable to identify those at most risk of developing the disease. Our previous work in a spontaneous murine model of ageing-related osteoarthritis, the STR/Ort mouse, revealed accelerated long bone growth, increased growth plate chondrocyte differentiation, and widespread abnormal expression of chondrocyte markers in osteoarthritisprone mice.[1] Furthermore, we revealed enriched growth plate bridging, indicative of advanced and thus premature growth plate closure, in these mice.[1] Together this suggested that osteoarthritis development is associated with an accelerated growth phenotype and advanced pubertal onset. Consistent with this finding, canine hip dysplasia (a hereditary predisposition to degenerative osteoarthritis) is more common in certain breeds, in particular larger breeds which tend to grow more rapidly.[2] However, associations between lifetime linear growth, i.e. height gain during specific life periods up to the attainment of adult height, and knee osteoarthritis development in human populations have, to our knowledge, not yet been studied. Previous epidemiological analyses of the Hertfordshire Cohort Study and the Medical Research Council National Survey of Health and Development (MRC NSHD) have found associations between low birth weight and high body mass index across life and increased risk of

- developing osteoarthritis.[3,4] This therefore suggests that life course size may predispose to
- osteoarthritis later in life.
- Herein, we use one of these studies, the MRC NSHD, to examine the relationship between
- childhood and adolescent height growth and knee osteoarthritis at 53 years. Our aims were to:
- 76 (1) test associations between height at different ages in early life and knee osteoarthritis in
- adulthood; (2) assess how patterns of height growth during childhood and adolescence are
- associated with knee osteoarthritis.

### Method

- 80 Study sample
- The MRC NSHD is a birth cohort study, which includes a nationally representative sample of
- 82 2815 men and 2547 women born in England, Scotland, and Wales during 1 week in March
- 83 1946. The cohort has been followed prospectively across life with outcome data for these
- analyses drawn from a data collection in 1999, when participants were 53 years old.[5] At
- 85 53, 3035 participants (1472 men, 1563 women) participated, the majority (n=2989) were
- 86 interviewed and examined in their own homes by research nurses with others completing a
- 87 postal questionnaire (n=46). The responding sample at age 53 is in most respects
- 88 representative of the national population of a similar age.[6] The data collection at age 53
- 89 years received ethical approval from the North Thames Multi-centre Research Ethics
- 90 Committee, and written informed consent was given by all respondents.
- 91 *Outcome knee osteoarthritis*
- 92 During the home visit at age 53 years, trained nurses conducted clinical examinations of
- 93 study participants' knees.[3] Based on these examinations, the American College of
- 94 Rheumatology criteria for the clinical diagnosis of idiopathic knee osteoarthritis were used to
- 95 identify those with knee pain in either knee on most days for at least 1 month in the last year

96 prior to the examination in 1999, and at least two of the following: stiffness, crepitus, bony 97 tenderness and bony enlargement.[7] 98 Height variables 99 Height was measured by nurses using standardised protocols at ages 2, 4, 7, 11, and 15 years, and self-reported at age 20. Individual patterns of height growth during puberty were 100 estimated using the SuperImposition by Translation and Rotation (SITAR) model of growth 101 curve analysis, as previously described by Cole et al.[9,10] The SITAR model estimates the 102 103 mean growth curve and three individual-specific parameters: size (reflecting differences in 104 mean height), tempo (reflecting differences in the timing of the pubertal growth spurt) and velocity (reflecting differences in the duration of the growth spurt), each expressed relative to 105 the mean curve. 106 107 **Covariates** Factors that may potentially confound the main associations of interest were selected a priori 108 109 based on previous findings in the literature.[3] These were birth weight, father's occupational class in childhood (categorised as non-manual vs manual) and sporting ability at 13 years 110 111 (categorised as above average, average, or below average according to teacher reports of their 112 sporting ability). [11] [12] Weight was measured by nurses using standardised protocols at ages 2, 4, 7, 11, and 15 years, and self-reported at age 20. 113 Statistical analysis 114 115 To address the two main aims, we used logistic regression models to test associations 116 between: (1) height at each age (aim 1); (2) conditional changes in height during specific life periods (early childhood: 2–4 years; late childhood: 4-7 years; childhood to adolescence: 7– 117 118 15 years; adolescence to young adulthood: 15–20 years) (aim 2) and; (3) each SITAR height variable (aim 2) and odds ratios (ORs) of knee osteoarthritis. In models to address aim 2, we 119

generated conditional changes in height by regressing each height measure on the earlier height measure for each sex and calculating the residuals.[13] The residuals were standardized (to have mean 0 and SD of 1) to ensure their comparability and these were included as the main independent variables. In initial models, we formally tested for interactions between sex and each main independent variable and where no evidence of interaction was found based on statistical significance (P<0.05), models were fitted with men and women combined and adjusted for sex. We also tested for deviations from linearity by including quadratic terms, but there was no evidence of this. In each set of models we first adjusted for sex (where there was no evidence of interaction), before then also adjusting for early life factors (birth weight + sporting ability at 13 years + father's occupational class in childhood). In our final model, we adjusted for weight at each age for aim 1, conditional weight gain (aim 2) and the SITAR weight variables (aim 2) to assess the contribution of weight during growth. To maximise statistical power, each set of models were run on the sample with valid data for the outcome, the specified independent variable and the covariates for that analysis. Data were analysed using Stata statistical software (version SE 14.2).

135 Sensitivity analyses

To assess the potential impact of having to exclude those participants lost to follow-up before age 53 years and with missing data, comparisons were made between those included and those excluded from the main analyses. In addition, the sex-adjusted analyses were rerun in the maximum available samples including all available participants rather than being restricted to the sample with valid data on all measures. To assess the influence of potential secondary osteoarthritis on our findings the main analyses were repeated after excluding those participants with knee osteoarthritis who had reported ever seeing a doctor about an injury to the knee in which osteoarthritis was diagnosed. Finally, sex stratified analyses were run.

| 145 | Results                                                                                       |
|-----|-----------------------------------------------------------------------------------------------|
| 146 | Cohort characteristics                                                                        |
| 147 | A total of 1437 men and 1478 women had complete data on the SITAR parameters of height        |
| 148 | and knee osteoarthritis. Descriptive statistics are described in Table 1. In this sample, the |
| 149 | percentage of individuals with knee osteoarthritis at 53 years of age was higher in women     |
| 150 | (13.1%) than in men (7.3%).                                                                   |
| 151 | Life course height and knee osteoarthritis                                                    |
| 152 | In sex-adjusted models, estimated associations between taller height and decreased odds of    |
| 153 | knee osteoarthritis at age 53 years were small at all ages. For example, the largest          |
| 154 | associations were an OR of knee osteoarthritis of 0.9 per 5cm increase in height at age 4,    |
| 155 | (95% CI 0.7 to 1.1 (Model 1; Table 2) and an OR of 0.9 per 5cm increase in height, (95% CI    |
| 156 | 0.8 to 1.0) at age 6 (Table 2). With adjustment for early life confounding factors (Model 2)  |
| 157 | and weight (Model 3), these estimates decreased further (Table 2).                            |
| 158 | Height growth and knee osteoarthritis                                                         |
| 159 | No associations were found between height gains during any of the four periods assessed and   |
| 160 | odds of knee osteoarthritis at 53 years (Table 3). There was also no evidence of associations |
| 161 | between height size, tempo or velocity (SITAR variables) and knee osteoarthritis at 53 years  |
| 162 | in models adjusted for sex and early life confounding factors (Models 1 & 2; Table 4).        |
| 163 | Increased SITAR height size and height tempo were marginally associated with lower odds       |
| 164 | of knee osteoarthritis at 53 years after additional adjustment SITAR weight size (Table 4).   |
| 165 | Sensitivity analyses                                                                          |
| 166 | Comparison of the characteristics of those individuals with complete data, vs those excluded  |
| 167 | are described in Tables S1.1 & S1.2. We found that higher proportions of those included were  |
| 168 | female (50.7% vs 49.3%; p<0.001; Tables S1.1 & S1.2). No significant differences were         |

observed in height between ages 2 – 15 years but at age 20, those included reported shorter heights (169.5 cm vs 171.0 cm) and lower weights (64.0 kg vs 65.5 kg) than those excluded (Table S1.1). When sex adjusted models were rerun on the maximum available samples including all available participants (Tables S2.1 – S2.3), there were no substantive differences in findings. When we excluded those participants with potential secondary knee osteoarthritis from our analyses, there were no substantive differences in associations between height (Table S3.1), conditional height gain (Table S3.2), or SITAR variables (Table S3.3) and primary knee osteoarthritis at 53 years, compared with the main findings presented. Sex-stratified analyses confirmed that there were consistent patterns of association in men and women (Tables S4.1 – 4.3).

### **Discussion**

In this nationally representative British birth cohort study, associations between greater height at ages 4 and 6 years and marginally lower odds knee osteoarthritis at age 53 were observed in sex-adjusted models, but these were attenuated after adjustment for early life factors. No associations were observed between height changes during early childhood, late childhood, childhood to adolescence or adolescence to young adulthood or SITAR parameters and knee osteoarthritis.

A major strength of our study is the availability of multiple prospectively ascertained measurements of height throughout childhood and adolescence in the NSHD, together with the already derived SITAR variables and measures of knee osteoarthritis in a relatively large sample of people in midlife.[9] This provided a unique opportunity to investigate the associations between life course longitudinal growth and knee osteoarthritis at 53 years of age. Here we used two approaches to model growth and understand its relation to knee osteoarthritis in later life. Firstly, we used a conditional change approach to enable us to determine whether there are specific sensitive period/s of growth which may be associated

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

with knee osteoarthritis. This can be interpreted as the change in height size above or below that expected given earlier height, and thus is useful in identifying accelerated or restricted growth.[14] We next chose the SITAR growth curve model since it was previously shown to effectively summarise pubertal growth based on three parameters of size, velocity and tempo.[9,10] A limitation of this approach is the use of multiple models which increases the chance of a type I error. Also, as in any longitudinal study, it is important to consider loss to follow-up over time and the impact of this on research findings. Despite losses to follow-up between birth and age 53 years, which may have introduced bias, comparisons with census data suggest that the respondent sample at age 53 were still representative of the general population born in the UK at a similar time in most respects.[24] Our previous work explored associations between growth dynamics and osteoarthritis onset in a spontaneous murine model of osteoarthritis, the STR/Ort mouse.[1] We revealed accelerated long bone growth, aberrant expression of growth plate markers and enriched growth plate bridging, indicative of advanced and thus premature growth cessation, in these osteoarthritis-prone mice.[1] Together this suggested that these accelerated growth dynamics in young osteoarthritis-prone mice may underpin their osteoarthritis onset. However, whether these observations are unique to osteoarthritis in the STR/Ort mouse or are characteristic of human osteoarthritis in general had yet to be established. This study suggests that in the NSHD, associations between greater gains in height, indicative of accelerated growth, are not associated with increased odds of knee osteoarthritis. Rather, the modest associations found suggest the opposite. It is however important to note that this was examined in midlife when the cohort are still relatively young, and osteoarthritis prevalence (7.3% in men; 13.1% in women) is lower than that seen currently in primary care at this age. It would therefore be of interest to further examine these potential associations in older individuals.

| Primary osteoarthritis is described as naturally occurring or ageing-related osteoarthritis,    |
|-------------------------------------------------------------------------------------------------|
| while secondary osteoarthritis is associated with other causes including trauma. Our previous   |
| findings in the STR/Ort mouse examined primary murine osteoarthritis [1] and therefore to       |
| examine the influence of secondary knee osteoarthritis on the patterns of height growth in the  |
| NSHD, we ran a sensitivity analysis in which we excluded individuals who had reported           |
| consulting a Doctor about a knee injury. However, whilst we found no substantive                |
| differences in findings, this highlights the need to examine the risk of osteoarthritis in aged |
| individuals where primary knee osteoarthritis is more prevalent.                                |
| Our study extends a previous study examining this British birth cohort in which prolonged       |
| exposure to high BMI through adulthood increased risk of development of knee osteoarthritis     |
| at age 53.[3] This is consistent with our sensitivity analyses in which adjustment for weight   |
| strengthened the associations between SITAR height size and odds of knee osteoarthritis.        |
| Wills et al., also found that BMI increases from childhood to adolescence (7-15 years) were     |
| positively associated with knee osteoarthritis, however this was in women only.[3] In our       |
| analyses, we found no evidence of differences in association by sex. We did find that in our    |
| cohort with complete data, women had a higher prevalence of knee osteoarthritis, similar to     |
| that reported previously in the NSHD, and in primary care.[3,15] Wills et al., concluded that   |
| the excessive weight during this period may result in altered mechanical loading to the knee    |
| joint. Similarly, it is likely that periods of accelerated growth will also impact on the       |
| biomechanics of the joint. The shape of the hip joint is largely determined in childhood, and   |
| previous studies have identified that in the NSHD, this is associated with (i) age of onset of  |
| walking in infancy [16] (ii) higher BMI at all ages and greater gains in BMI [17] and (iii)     |
| height, weight, BMI and BMD at ages 60-64 years.[18] Similarly, in the Avon Longitudinal        |
| Study of Parents and Children (ALSPAC) cohort, hip shape in perimenopausal women is             |
| associated with hip osteoarthritis susceptibility loci and may contribute to hip osteoarthritis |

| later in life.[19] Recent evidence in the ALSPAC cohort has also identified pubertal timing,      |
|---------------------------------------------------------------------------------------------------|
| as reflected by height tempo, to be associated with hip shape.[20] Further, in the UK             |
| Biobank, early menarche is associated with higher risk for osteoarthritis.[21] However these      |
| associations were not observed in this study.                                                     |
| In conclusion, in this relatively large population-based cohort study, there was limited          |
| evidence to suggest that height in childhood is associated with odds of knee osteoarthritis at    |
| age 53 years. Further, there were no associations with height gain during specific periods of     |
| growth, or with the SITAR height growth variables. This work enhances our understanding of        |
| osteoarthritis predisposition and the contribution of life course height to this.                 |
| Acknowledgements                                                                                  |
| The authors thank all the participants of the MRC National Survey of Health and                   |
| Development and all staff involved in data collection and data entry. The authors would also      |
| like to thank Dr Alex Ireland (Manchester Metropolitan University, UK) for his insightful         |
| discussions during the preparation of this manuscript.                                            |
| Data used in this publication are available to bona fide researchers upon request to the NSHD     |
| Data Sharing Committee via a standard application procedure. Further details can be found         |
| at http://www.nshd.mrc.ac.uk/data. doi: 10.5522/NSHD/Q101                                         |
| Author contributions                                                                              |
| All authors contributed to the conception and design of the study, or acquisition of data, or     |
| analysis and interpretation of data; drafting the article or revising it critically for important |
| intellectual content and the final approval of the version to be submitted. KS                    |
|                                                                                                   |
| (k.staines@brighton.ac.uk) takes responsibility for the integrity of the work as a whole, from    |
|                                                                                                   |

# **Role of funding source**

| 267 | The                                                                                          | authors would like to acknowledge the Medical Research Council for funding to KS          |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| 268 | (MR/R022240/1). The funding source was not involved in the study design, collection          |                                                                                           |  |  |  |  |
| 269 | analysis and interpretation of data; in the writing of the manuscript; or in the decision to |                                                                                           |  |  |  |  |
| 270 | submit the manuscript for publication.                                                       |                                                                                           |  |  |  |  |
| 271 | Con                                                                                          | flict of interest                                                                         |  |  |  |  |
| 272 | Ther                                                                                         | re are no conflicts of interest.                                                          |  |  |  |  |
| 273 | Refe                                                                                         | erences                                                                                   |  |  |  |  |
| 274 | 1                                                                                            | Staines KA, Madi K, Mirczuk SM, et al. Endochondral Growth Defect and                     |  |  |  |  |
| 275 |                                                                                              | Deployment of Transient Chondrocyte Behaviors Underlie Osteoarthritis Onset in a          |  |  |  |  |
| 276 |                                                                                              | Natural Murine Model. Arthritis Rheumatol 2016;68:880–91. doi:10.1002/art.39508           |  |  |  |  |
| 277 | 2                                                                                            | Comhaire FH, Snaps F. Comparison of two canine registry databases on the prevalence       |  |  |  |  |
| 278 |                                                                                              | of hip dysplasia by breed and the relationship of dysplasia with body weight and          |  |  |  |  |
| 279 |                                                                                              | height. Am J Vet Res 2008;69:330–3. doi:10.2460/ajvr.69.3.330                             |  |  |  |  |
| 280 | 3                                                                                            | Wills AK, Black S, Cooper R, et al. Life course body mass index and risk of knee          |  |  |  |  |
| 281 |                                                                                              | osteoarthritis at the age of 53 years: Evidence from the 1946 British birth cohort study. |  |  |  |  |
| 282 |                                                                                              | Ann Rheum Dis 2012; <b>71</b> :655–60. doi:10.1136/ard.2011.154021                        |  |  |  |  |
| 283 | 4                                                                                            | Clynes MA, Parsons C, Edwards MH, et al. Further evidence of the developmental            |  |  |  |  |
| 284 |                                                                                              | origins of osteoarthritis: Results from the Hertfordshire Cohort Study. J Dev Orig        |  |  |  |  |
| 285 |                                                                                              | Health Dis 2014; <b>5</b> :453–8. doi:10.1017/S2040174414000373                           |  |  |  |  |
| 286 | 5                                                                                            | Kuh D, Pierce M, Adams J, et al. Cohort Profile: Updating the cohort profile for the      |  |  |  |  |
| 287 |                                                                                              | MRC National Survey of Health and Development: a new clinic-based data collection         |  |  |  |  |
| 288 |                                                                                              | for ageing research. <i>Int J Epidemiol</i> 2011; <b>40</b> :e1–9. doi:10.1093/ije/dyq231 |  |  |  |  |
| 289 | 6                                                                                            | Wadsworth M, Butterworth S, RH-S science &, et al. The life course prospective            |  |  |  |  |
| 290 |                                                                                              | design: an example of benefits and problems associated with study longevity. Elsevier     |  |  |  |  |

| 291 | 7  | Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and             |
|-----|----|--------------------------------------------------------------------------------------------------|
| 292 |    | reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and        |
| 293 |    | Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis                 |
| 294 |    | Rheum 1986; <b>29</b> :1039–49.                                                                  |
| 295 | 8  | Kuh D, Bassey EJ, Butterworth S, et al. Grip strength, postural control, and functional          |
| 296 |    | leg power in a representative cohort of British men and women: associations with                 |
| 297 |    | physical activity, health status, and socioeconomic conditions. J Gerontol A Biol Sci            |
| 298 |    | Med Sci 2005; <b>60</b> :224–31.                                                                 |
| 299 | 9  | Cole T, Kuh D, Johnson W, et al. Using Super-Imposition by Translation And                       |
| 300 |    | Rotation (SITAR) to relate pubertal growth to bone health in later life: the Medical             |
| 301 |    | Research Council (MRC) National Survey of Health and Development. Int J                          |
| 302 |    | Epidemiol 2016; <b>45</b> :dyw134. doi:10.1093/ije/dyw134                                        |
| 303 | 10 | Cole TJ, Donaldson MDC, Ben-Shlomo Y. SITAR—a useful instrument for growth                       |
| 304 |    | curve analysis. <i>Int J Epidemiol</i> 2010; <b>39</b> :1558–66. doi:10.1093/ije/dyq115          |
| 305 | 11 | Galobardes B, Shaw M, Lawlor DA, et al. Indicators of socioeconomic position (part               |
| 306 |    | 2). J Epidemiol Community Heal 2006; <b>60</b> :95–101. doi:10.1136/jech.2004.028092             |
| 307 | 12 | Kuh DJ, Cooper C. Physical activity at 36 years: patterns and childhood predictors in a          |
| 308 |    | longitudinal study. J Epidemiol Community Health 1992;46:114–9.                                  |
| 309 | 13 | Wills AK, Hardy RJ, Black S, et al. Trajectories of overweight and body mass index in            |
| 310 |    | adulthood and blood pressure at age 53: The 1946 British birth cohort study. $J$                 |
| 311 |    | Hypertens 2010; <b>28</b> :679–86. doi:10.1097/HJH.0b013e328335de7b                              |
| 312 | 14 | Hardy R, Ghosh AK, Deanfield J, et al. Birthweight, childhood growth and left                    |
| 313 |    | ventricular structure at age 60–64 years in a British birth cohort study. <i>Int J Epidemiol</i> |
| 314 |    | 2016; <b>45</b> :1091–102. doi:10.1093/ije/dyw150                                                |

| 315 | 15 | Bedson J, Jordan K, Croft P. The prevalence and history of knee osteoarthritis in      |
|-----|----|----------------------------------------------------------------------------------------|
| 316 |    | general practice: A case-control study. Fam Pract 2005;22:103-8.                       |
| 317 |    | doi:10.1093/fampra/cmh700                                                              |
| 318 | 16 | Ireland A, Saunders FR, Muthuri SG, et al. Age at Onset of Walking in Infancy Is       |
| 319 |    | Associated With Hip Shape in Early Old Age. J Bone Miner Res 2019;34:455–63.           |
| 320 |    | doi:10.1002/jbmr.3627                                                                  |
| 321 | 17 | Muthuri SG, Saunders FR, Hardy RJ, et al. Associations between body mass index         |
| 322 |    | across adult life and hip shapes at age 60 to 64: Evidence from the 1946 British birth |
| 323 |    | cohort. Bone 2017; <b>105</b> :115–21. doi:10.1016/j.bone.2017.08.017                  |
| 324 | 18 | Pavlova A V., Saunders FR, Muthuri SG, et al. Statistical shape modelling of hip and   |
| 325 |    | lumbar spine morphology and their relationship in the MRC National Survey of Health    |
| 326 |    | and Development. J Anat 2017; <b>231</b> :248–59. doi:10.1111/joa.12631                |
| 327 | 19 | Baird DA, Paternoster L, Gregory JS, et al. Investigation of the Relationship Between  |
| 328 |    | Susceptibility Loci for Hip Osteoarthritis and Dual X-Ray Absorptiometry-Derived       |
| 329 |    | Hip Shape in a Population-Based Cohort of Perimenopausal Women. Arthritis              |
| 330 |    | Rheumatol 2018; <b>70</b> :1984–93. doi:10.1002/art.40584                              |
| 331 | 20 | Frysz M, Gregory JS, Aspden RM, et al. The effect of pubertal timing, as reflected by  |
| 332 |    | height tempo, on proximal femur shape: Findings from a population-based study in       |
| 333 |    | adolescents. Bone 2020;131. doi:10.1016/j.bone.2019.115179                             |
| 334 | 21 | Day FR, Elks CE, Murray A, et al. Puberty timing associated with diabetes,             |
| 335 |    | cardiovascular disease and also diverse health outcomes in men and women: The UK       |
| 336 |    | Biobank study. Sci Rep 2015;5:1–12. doi:10.1038/srep11208                              |
| 337 | 22 | Hardy R, Kuh D, Whincup PH, et al. Age at puberty and adult blood pressure and         |
| 338 |    | body size in a British birth cohort study. J Hypertens 2006;24:59-66.                  |

| 339 |      | doi:10.1097/01.hjh.0000198033.14848.93                                                            |
|-----|------|---------------------------------------------------------------------------------------------------|
| 340 | 23   | Kuh D, Muthuri SG, Moore A, et al. Pubertal timing and bone phenotype in early old                |
| 341 |      | age: findings from a British birth cohort study. <i>Int J Epidemiol</i> 2016; <b>45</b> :1113–24. |
| 342 |      | doi:10.1093/ije/dyw131                                                                            |
| 343 | 24 W | adsworth MEJ, Butterworth SL, Hardy R, et al. The life course design: an example of               |
| 344 |      | benefits and problems associated with study longevity. Social Science &                           |
| 345 |      | Medicine. 2003; <b>57</b> :2193–2205. doi: 10.1016/s0277-9536(03)00083-2.                         |
| 346 |      |                                                                                                   |
| 347 |      |                                                                                                   |
| 348 |      |                                                                                                   |
| 349 |      |                                                                                                   |
| 350 |      |                                                                                                   |
| 351 |      |                                                                                                   |
| 352 |      |                                                                                                   |
| 353 |      |                                                                                                   |
| 354 |      |                                                                                                   |
| 355 |      |                                                                                                   |
| 356 |      |                                                                                                   |
| 357 |      |                                                                                                   |
| 358 |      |                                                                                                   |
| 359 |      |                                                                                                   |
| 360 |      |                                                                                                   |

### **Tables**

|                      |                 | Men  |        |      | Women    |        |      |
|----------------------|-----------------|------|--------|------|----------|--------|------|
|                      |                 | N    | Mean   | SD   | n        | Mean   | SD   |
| Height 2 year        | ars (cm)        | 1211 | 85.91  | 5.24 | 1197     | 84.72  | 4.57 |
| Height 4 year        | ars (cm)        | 1288 | 103.51 | 5.10 | 1307     | 102.84 | 5.05 |
| Height 6 year        | ars (cm)        | 1238 | 114.46 | 5.25 | 1255     | 113.74 | 5.26 |
| Height 7 year        | ars (cm)        | 1249 | 120.35 | 5.65 | 1303     | 119.65 | 5.50 |
| Height 11 ye         | ears (cm)       | 1230 | 140.62 | 6.73 | 1257     | 141.16 | 6.94 |
| Height 15 ye         | ears (cm)       | 1135 | 162.04 | 8.86 | 1156     | 158.65 | 6.22 |
| Height 20 ye         | ears (cm)       | 1155 | 176.76 | 6.72 | 1231     | 162.62 | 6.24 |
| Weight 2 ye          | ars (kg)        | 1225 | 13.22  | 1.46 | 1244     | 12.61  | 1.49 |
| Weight 4 ye          | ars (kg)        | 1313 | 17.50  | 2.12 | 1338     | 17.00  | 2.16 |
| Weight 6 ye          | ars (kg)        | 1232 | 20.87  | 2.54 | 1267     | 20.34  | 2.61 |
| Weight 7 ye          | ars (kg)        | 1203 | 23.05  | 2.95 | 1257     | 22.56  | 3.17 |
| Weight 11 ye         | ears (kg)       | 1221 | 34.28  | 5.96 | 1247     | 34.98  | 6.81 |
| Weight 15 ye         | ears (kg)       | 1135 | 51.74  | 9.36 | 1151     | 51.84  | 8.28 |
| Weight 20 ye         | ears (kg)       | 1155 | 70.59  | 9.27 | 1229     | 57.81  | 8.19 |
| Birthweigh           | nt (kg)         | 1432 | 3.46   | 0.53 | 1473     | 3.32   | 0.48 |
|                      |                 |      |        |      |          |        |      |
|                      | 4               | N    | %      |      | n        | %      |      |
| Knee osteoarthriti   | is at 53 years: | 105  | 7.31   |      | 193      | 13.06  |      |
| Consuling ability of | Above average   | 235  | 18.98  |      | 220      | 17.31  |      |
| Sporting ability at  | Average         | 793  | 64.05  |      | 902      | 70.97  |      |
| 13 years:            | Below average   | 210  | 16.96  |      | 149      | 11.72  |      |
| Father's             | Manual          | 605  | 43.71  |      | 600      | 42.43  |      |
| occupational class   | Non-manual      | 779  | 56.29  |      | 814      | 57.57  |      |
| in childhood:        |                 |      | ADC M. |      | C II 1.1 |        |      |

**Table 1:** Characteristics of the sample from the MRC National Survey of Health and Development with complete data on the SITAR height parameters and the outcome, knee osteoarthritis.

| Height (per 5cm) | n    | Model | Odds ratio | 95%  | 6 CI |
|------------------|------|-------|------------|------|------|
|                  | 1986 | 1     | 0.96       | 0.82 | 1.12 |
| 2 years          |      | 2     | 0.98       | 0.84 | 1.14 |
|                  |      | 3     | 1.01       | 0.85 | 1.20 |
|                  | 2211 | 1     | 0.85       | 0.74 | 0.98 |
| 4 years          |      | 2     | 0.87       | 0.75 | 1.01 |
|                  |      | 3     | 0.88       | 0.74 | 1.04 |
|                  | 2116 | 1     | 0.89       | 0.78 | 1.02 |
| 6 years          |      | 2     | 0.91       | 0.79 | 1.05 |
|                  |      | 3     | 0.88       | 0.72 | 1.08 |
|                  | 2085 | 1     | 0.98       | 0.88 | 1.09 |
| 7 years          |      | 2     | 1.01       | 0.91 | 1.12 |
|                  |      | 3     | 1.02       | 0.89 | 1.18 |
| 11 years         | 2259 | 1     | 0.99       | 0.97 | 1.01 |

|          |      | 2 | 1.00 | 0.98 | 1.02 |
|----------|------|---|------|------|------|
|          |      | 3 | 0.99 | 0.96 | 1.01 |
|          | 2102 | 1 | 0.96 | 0.87 | 1.06 |
| 15 years |      | 2 | 0.98 | 0.89 | 1.09 |
|          |      | 3 | 0.90 | 0.79 | 1.02 |
|          | 2082 | 1 | 0.93 | 0.83 | 1.04 |
| 20 years |      | 2 | 0.95 | 0.85 | 1.07 |
|          |      | 3 | 0.88 | 0.77 | 1.00 |

**Table 2:** Associations between height (per 5cm) at different ages throughout childhood, adolescence and young adulthood and odds ratios of knee osteoarthritis at age 53 years. Each set of models were run on the sample with valid data for knee osteoarthritis, height at the specific age and the confounders. Logistic regression Model 1: adjusted for sex; Model 2: further adjusted for birth weight, sporting ability and Father's occupational class in childhood; Model 3: further adjusted for weight at each age. Sex interactions: 2 years -p=0.7; 4 years -p=0.7; 6 years -p=1.0; 7 years -p=0.8; 11 years -p=0.7; 15 years -0.8; 20 years -p=0.09.

| 37 | 72 |
|----|----|
| 37 | 73 |

| Conditional change | n    | Model | Odds ratio | 95% CI |      |
|--------------------|------|-------|------------|--------|------|
| 2 - 4 years        | 1876 | 1     | 0.91       | 0.78   | 1.07 |
|                    |      | 2     | 0.94       | 0.80   | 1.10 |
|                    |      | 3     | 0.91       | 0.77   | 1.08 |
| 4 - 7 years        | 1689 | 1     | 0.94       | 0.80   | 1.10 |
|                    |      | 2     | 0.95       | 0.81   | 1.11 |
|                    |      | 3     | 0.95       | 0.80   | 1.13 |
| 7 - 15 years       | 1710 | 1     | 1.09       | 0.93   | 1.30 |
|                    |      | 2     | 1.09       | 0.93   | 1.28 |
|                    |      | 3     | 0.99       | 0.83   | 1.18 |
| 15 - 20 years      | 1611 | 1     | 1.05       | 0.89   | 1.23 |
|                    |      | 2     | 1.05       | 0.90   | 1.24 |
|                    |      | 3     | 0.99       | 0.84   | 1.17 |

**Table 3:** Associations of conditional height gain (per standard deviation) during different periods of growth (early childhood: 2–4 years; late childhood: 4-7 years; childhood to adolescence: 7–15 years; adolescence to young adulthood: 15–20 years) with knee osteoarthritis at 53 years. Each set of models were run on the sample with valid data for knee osteoarthritis, conditional height gain during each life period, and the confounders. Logistic regression Model 1: adjusted for sex; Model 2: further adjusted for birth weight, sporting ability and Father's occupational class in childhood; Model 3: further adjusted for weight at each age. Sex interactions: 2-4 years – p=0.2; 4-7 years – p=0.6; 7-15 years – p=0.3; 15-20 years – p=0.1.

| SITAR variable (n=2470) | Model | Odds ratio | 95%  | CI   |
|-------------------------|-------|------------|------|------|
| Size (cm)               | 1     | 0.98       | 0.96 | 1.01 |
|                         | 2     | 0.99       | 0.97 | 1.01 |
|                         | 3     | 0.96       | 0.93 | 0.99 |
| Tempo (%)               | 1     | 1.00       | 0.98 | 1.02 |
|                         | 2     | 0.99       | 0.98 | 1.01 |
|                         | 3     | 0.97       | 0.95 | 0.99 |
| Velocity (%)            | 1     | 1.00       | 0.99 | 1.01 |

| 2 | 1.00 | 0.99 | 1.02 |
|---|------|------|------|
| 3 | 0.99 | 0.98 | 1.01 |

 **Table 4:** Associations between each parameter of the SITAR model of growth curve analysis (height size, tempo and velocity) and odds of knee osteoarthritis. Each set of models were run on the sample with valid data for knee osteoarthritis, each SITAR variable and the confounders. Logistic regression Model 1: adjusted for sex; Model 2: further adjusted for birth weight, sporting ability and Father's occupational class in childhood; Model 3: further adjusted for weight at each age. Sex interactions: size - p = 0.5; tempo -p = 0.8; velocity -p = 0.8.