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Abstract. We study the size of the global attractor for a delay differential equation with

unimodal feedback. We are interested in extending and complementing a dichotomy

result by Liz and Röst, which assumed that the Schwarzian derivative of the nonlinear
feedback is negative in a certain interval. Using recent stability results for difference

equations, we obtain a stability dichotomy for the original delay differential equation
in the situation wherein the Schwarzian derivative of the nonlinear term may change

sign. We illustrate the applicability of our results with several examples.
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1 Introduction

The nonlinear delay differential equation

x′(t) = −µ
(

x(t)− f (x(t − τ))
)

, t > 0, (1.1)

with µ, τ > 0 and f : I ⊂ R → I, has been widely studied in the literature because of its

multiple applications in, for example, biology, physics or economics [1, 2, 14, 17]. In the case

of f being monotone, the dynamics are well understood, see [8, 9, 18] and references therein.

In particular, it is known that chaotic dynamics cannot occur [15]. The natural generalization

of the previous case, in which f changes monotonicity once, is more complicated and may

lead to chaotic behaviour [10].

In this paper, f is assumed to be unimodal. More specifically, we impose that the following

condition holds for f .
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(U) f : (a, b) ⊂ R → (a, b) is differentiable, with −∞ ≤ a < b ≤ +∞; satisfies that there is a

unique x∗ such that f ′(x) > 0 if a ≤ x < x∗, f ′(x∗) = 0, and f ′(x) < 0 if x∗ < x < b; and

that there exists K ∈ (x∗, b) such that f (K) = K, f (x) > x for x ∈ (a, K), and f (x) < x

for x ∈ (K, b).

Notice that if condition (U) holds, then K is the unique fixed point for the map f , i.e. f (K) = K,

and therefore the constant function x(t) = K is a positive equilibrium of the delay equa-

tion (1.1). Moreover, we empshasise that assuming that the fixed point K belongs to (x∗, b) is

not restrictive for our purpose of studying the asymptotic behaviour of equation (1.1), since

if K belongs to the interval (a, x∗), then all the solutions of the delay equation are known to

converge to K; see, for example [16].

Whenever condition (U) holds, we denote the image by f of the point where the maximum

of f is attained and the image by f of this maximum by β and α, respectively, that is,

β := f (x∗) and α := f (β). (1.2)

With the notation in (1.2), we introduce an additional assumption on f .

(L) Condition (U) holds and f ( f (x∗)) > x∗.

A well-known approach for investigating equation (1.1) comprises studying the behaviour of

the related difference equation

xn+1 = f (xn), x0 ∈ (a, b), (1.3)

see, for example, [7, 13]. Using that approach and taking advantage of the properties of

unimodal maps it is possible to show that if (L) holds, then for any solution x(t) of (1.1) with

initial condition in C([−τ, 0], (a, b)) there exists t0 > 0 such that x(t) ∈ [α, β] for t ≥ t0; and we

informally say that the interval [α, β] contains the global attractor of the equation (1.1). Thus,

if (L) holds, then the interval [α, β] contains the global attractor of (1.1) independently of the

delay τ. Moreover, complicated dynamics cannot occur for equation (1.1) since the ω-limit set

of any solution is the positive equilibrium {K} or a periodic orbit. We refer the reader to [16]

for a proof of these results in the particular case of (a, b) = (0,+∞).
The interval [α, β] might not be the sharpest, that is, it might have a proper subinterval

which contains the global attractor of (1.1). Therefore, an interesting problem stated in [16]

is to try to estimate this sharpest attracting interval—or even better to calculate it—when

condition (L) holds. Here, we deal with such a problem.

In [11], Liz and Röst consider the same problem and showed that when f satisfies (L)

and has negative Schwarzian derivative, then the sharpest interval containing the attractor of

equation (1.1) can be determined and the following dichotomy result holds.

Theorem 1.1 (Theorem 6 in [11]). Assume that condition (L) holds and, further, that f satisfies the

following condition.

(S) f is three times differentiable and (S f )(x) < 0 on the interval [α, β], where S f denotes the

Schwarzian derivative of f , defined by

(S f )(x) =
f ′′′(x)

f ′(x)
−

3

2

(

f ′′(x)

f ′(x)

)2

.

Then exactly one of the following holds:
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1. f ′(K) ≥ −1 and the global attractor of (1.1) for all values of the delay τ is {K}.

2. f ′(K) < −1 and the sharpest invariant and attracting interval containing the global attractor

of (1.1) for all values of the delay τ is [ᾱ, β̄], where {ᾱ, β̄} is the unique nontrivial 2-cycle (i.e.,

ᾱ = f (β̄) and β̄ = f (ᾱ)) of the map f in [α, β].

Remark 1.2. We note that Theorem 1.1 as stated above is, in fact, a slightly generalized version

of Theorem 6 in [11], which follows from the ideas in [11]. Specifically, the result by Liz and

Röst is stated for the particular case in which a = 0 and b = +∞. Moreover, their condition (U)

imposes f ′′(x) > 0 on (0, x∗), but this is just to guarantee that f has a unique positive fixed

point. We note that under the conditions in [11], f : [0,+∞) → [0,+∞) is continuous and

satisfies f (0) = 0 and f (x) > 0 for x > 0, hence, the restriction to the open interval (0,+∞)

that we consider in Theorem 1.1 is well defined. Finally, note that the initial condition in [11]

is a nonzero and nonnegative real function on [−τ, 0] and consequently all the solutions are

strictly positive for t > 0, as remarked there. Hence, there is no loss of generality in assuming

the initial condition to be strictly positive as we do here.

As the authors of [11] highlighted, the function f appearing in important examples of

equation (1.1), including the Mackey-Glass and Nicholson’s blowflies models [6, 12], does

have negative Schwarzian derivative. Nevertheless, it is not hard to find situations where (S)

does not hold and, therefore, Theorem 1.1 is not applicable. Hence, it is interesting to look for

results extending and complementing Theorem 1.1.

In order to obtain such results, without the assumption that f has negative Schwarzian

derivative, we instead take advantage of a consequence of (L), namely, that f|(α,β) is strictly

decreasing. In this case, the recent method presented in [4, 5] for studying the dynamics of

difference equations is applicable, and we employ it to establish a dichotomy result for (1.1)

by studying (1.3). Proposition 2.6 is the key technical ingredient for the difference equations

we consider, and our main result is Theorem 3.2. The latter result has the same conclusions of

Theorem 1.1, but different hypotheses.

Interestingly, the proof of Proposition 2.6 uses the second inequality in the Hermite-

Hadamard inequality for a strictly convex function h : [a, b] → R,

h

(

a + b

2

)

<
1

b − a

∫ b

a
h(x)dx <

h(a) + h(b)

2
, (1.4)

to show that certain function, intimately linked to the dynamics of the difference equation, is

strictly increasing. Whereas, for guaranteeing that such a function has a strict global minimum

— enough for obtaining the first conclusion in Theorem 1.1 — one needs to invoke the first

inequality in (1.4).

In recognition of the current special volume, Professor Webb is a world-expert on the use

of topological tools in the study of nonlinear problems. Indirectly, fixed point index theory

applied to the study of differential equations plays a role in this paper. Indeed, this is one

of the tools used by Mallet-Paret and Nussbaum in [13] to prove the existence of slowly

oscillating periodic solutions. The properties of those slowly oscillating periodic solutions

underpin [11, Proposition 5], which we invoke in the proof of our main result.

The rest of the paper is organized as follows. The next section contains the preliminaries:

notation and some stability results for difference equations. Section 3 contains our main

results. Finally, last section of the paper includes some examples to illustrate these main

results and compare them with Theorem 1.1.
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2 Preliminaries

2.1 Notation

As usual N and R denote the positive integers (natural numbers) and real numbers, respec-

tively. Furthermore, R+ :=
{

r ∈ R : r ≥ 0
}

.

Let I ⊂ R be an interval (bounded or unbounded) and f a continuous map from I to itself.

We denote

f (0) := id, f (n+1) = f ◦ f (n), n ≥ 1, n ∈ N ,

with id denoting the identity map; i.e., id(x) = x for all x ∈ I.

We let Cn(J, I) denote the space of functions ξ : J → I with n continuous derivatives and, to

simplify the notation, Cn((a, b), R) is denoted by Cn(a, b) := Cn((a, b), R) when no confusion

is possible. We do not explicitly indicate the domains of the identity and constant functions.

They are assumed to be the largest sets for which the corresponding expressions make sense.

We say that x(t; ξ) is a solution of the differential equation (1.1) with f ∈ C(R) and initial

condition ξ ∈ C([−τ, 0], R) if x(·; ξ) ∈ C([−τ,+∞), R), x(· ; ξ)|(0,+∞) ∈ C1(0,+∞), it satisfies

the differential equation (1.1) for t > 0 and x(s; ξ) = ξ(s) for s ∈ [−τ, 0]. The method of steps,

e.g., see [17], shows that there exists a unique solution of the differential equation (1.1) for any

f ∈ C(R) and initial condition ξ ∈ C([−τ, 0], R). Moreover, if f ∈ C(I, I) and ξ ∈ C([−τ, 0], I),
then the invariance principle (see [7, Theorem 2.1]) guarantees that the unique solution of (1.1)

satisfies x(t; ξ) ∈ I for all t ∈ [−τ,+∞).

2.2 Stability of difference equations

In this section, we study stability properties of the difference equation

yn+1 = yn + g(yn), y0 ∈ dom g , (2.1)

with g ∈ G, where

G :=
⋃

−∞≤a<b≤∞

G(a, b) ,

and

G(a, b) :=
{

g ∈ C1(a, b) : a < id+g < b, g′ < 0, 0 ∈ g
(

(a, b)
)}

.

Here g
(

(a, b)
)

denotes the image of (a, b) under g. It is clear that for each g ∈ G∗ the difference

equation (2.1) is well defined and there exists a unique yg ∈ (a, b) such that g(yg) = 0. In

particular, yg is a unique equilbrium of (2.1). We use the usual definitions of stability, local

asymptotic stability and global asymptotic stability for the equilibrium yg of the difference

equation (2.1). From now on, G.A.S. stands for globally asymptotically stable and L.A.S. for

locally asymptotically stable. We state what we understand by a global repeller.

Definition 2.1. We say that yg is a a global repeller for the difference equation (2.1) if the

sequence ((id+g)(n)(y))n has no accumulation points in (a, b) for any y ∈ (a, b) \ yg.

Next, we define a function to study the stability properties of the equilibrium of (2.1),

which was introduced in [5].

Definition 2.2. For each g ∈ G, set bg := min{− inf g, sup g}. The function σg : (−bg, bg) →
(0,+∞) is defined by

σg(u) =

{

g−1(−u)−g−1(u)
u if u 6= 0 ,

−2
g′(yg)

if u = 0 .
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The following remark will be very useful in this section.

Remark 2.3. Since (g−1)′ is continuous, σg satisfies

σg(u) =
1

u

∫ u

−u
−
(

g−1
)′
(s)ds ∀ u ∈ (0, bg).

The function σg is continuous, even and positive. Moreover, y ∈ dom g \ yg satisfies

(id+g)(2)(y) = y if, and only if, u = g−1(y) ∈ dom σg satisfies σ(u) = σ(−u) = 1, see [5]. In

other words, the nontrivial period-2 solutions of (2.1) correspond to the symmetric intersec-

tions of the graph of σg with the the graph of the constant function with value 1.

Our next result shows that the stability properties of yg are intimately linked to the relative

position of the function σg with respect to the constant function with value 1.

Theorem 2.4. Let g ∈ G. The following statements hold for the unique equilibrium yg of (2.1):

a) yg is L.A.S. if σg(0) > 1, and it is unstable if σg(0) < 1.

b) yg is G.A.S. if, and only if, σg(u) > 1 for all u ∈ (−bg, bg) \ {0}.

c) If σg(u) ≥ 1 for all u in a neighbourhood of u = 0, then yg is stable.

d) If σg(u) < 1 for all u in a punctured neighbourhood of u = 0, then yg is unstable.

e) yg is a global repeller if, and only if, σg(u) < 1 for all u ∈ (−bg, bg) \ {0}.

f) If σg(u) > 1 for all u in a punctured neighbourhood of u = 0, then yg is L.A.S.

Proof. The proof of statements a)–d) can be found in [5]. Similar ideas can be used to prove

statements e) and f). Indeed, the reader just needs to reverse the inequalities in the proof of b)

and to invoke [5, Proposition 4.d] to obtain the proof of e); whereas reversing the inequalities

in d) and invoking [5, Proposition 3.a] gives the proof of f).

Our next result illustrates how Theorem 2.4 can be used to obtain sufficient conditions for

the (in)stability of the equilibrium yg of the difference equation (2.1).

Proposition 2.5. Let g ∈ G. The following statements hold.

a) If g′(y) < −2 for all y ∈ (a, b)\{yg}, then yg is a global repeller for (2.1).

b) If g′(y) > −2 for all y ∈ (a, b)\{yg}, then yg is G.A.S. for (2.1).

Proof. To prove statement a), we argue that

σg(u) < 1 ∀ u ∈ (0, bg) , (2.2)

and invoke statement e) of Theorem 2.4, combined with the property that σg is an even func-

tion.

For which purpose, recalling that

(

g−1
)′
(u) =

1

g′(g−1(u))
∀ u ∈ (−bg, bg) ,

our hypothesis on g in statement a) implies that

−
(

g−1
)′
(u) <

1

2
∀ u ∈ (−bg, bg)\{0} .
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Therefore, recalling Remark 2.3,

σg(u) =
1

u

∫ u

−u
−
(

g−1
)′
(s)ds < 1 ∀ u ∈ (0, bg) ,

and so (2.2) holds.

The proof of statement b) is similar, and argue that

σg(u) > 1 ∀ u ∈ (0, bg) ,

which, when combined with statement b) of Theorem 2.4, proves the claim.

Proposition 2.6. Let g ∈ G. The following statements hold.

a) If
(

g−1
)′

is strictly convex or strictly concave, then the difference equation (2.1) has at most one

nontrivial period-2 solution.

b) If
(

g−1
)′

is strictly convex and g′(yg) ≤ −2, then yg is a global repeller for (2.1).

c) If
(

g−1
)′

is strictly concave and g′(yg) ≥ −2, then yg is G.A.S. for (2.1).

Noting that

(g−1)′′′(u) =
3(g′′(y))2 − g′(y)g′′′(y)

(g′(y))5
∀ u = g(y), y ∈ (a, b) ,

a sufficient condition for strict convexity (concavity) of
(

g−1
)′

in the case that g ∈ C3(dom g)

is that

3(g′′)2 − g′g′′′ (2.3)

is negative (positive).

Proof of Proposition 2.6. We claim that if g−1 is strictly convex (concave), then the function σg

is strictly decreasing (increasing) on the interval (0, bg). Assuming this, strict monotonicity

of σg implies that there is at most one solution of 1 = σg(u) in (0, bg), and so invoking the

properties of σg recalled after Definition 2.2, we conclude that (2.1) has at most one nontrivial

period-2 solution, proving statement a).

Thus, if
(

g−1
)′

is strictly convex, then Remark 2.3 and an application of the second

Hermite-Hadamard inequality in (1.4) yields

u
d

du
σg(u) = u

d

du

(

−1

u

∫ u

−u
(g−1)′(s)ds

)

=
1

u

∫ u

−u
(g−1)′(s)ds −

(

(g−1)′(−u) + (g−1)′(u)
)

< 0 ∀ u ∈ (0, bg) ,

that is, σ′
g < 0 and so σg is strictly decreasing on (0, bg).

Analogously, if (g−1)′ is strictly concave, then −(g−1)′ is strictly convex and so

−u
d

du
σg(u) = u

d

du

(

−1

u

∫ u

−u
−(g−1)′(s)ds

)

=
1

u

∫ u

−u
−(g−1)′(s)ds −

(

− (g−1)′(−u) +−(g−1)′(u)
)

< 0 ∀ u ∈ (0, bg) .
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that is, σ′
g > 0. We conclude that σg is strictly increasing on (0, bg). The proof of statement a)

is complete.

Under the hypotheses in statement b), that (2.2) holds is clear upon noting that σg(0) =

−2/g′(yg) ≤ 1 and that we have just shown in proof of statement a) that σg is strictly in-

creasing on the interval (0, bg). Invoking statement e) of Theorem 2.4 completes the proof of

statement b).

Reasoning analogous to that used in the proof of statement b) proves statement c), and so

we omit the details.

Remark 2.7. (i) If
(

g−1
)′

is strictly convex, then using the first Hermite-Hadamard inequal-

ity in (1.4) gives

σg(u) =
−1

u

∫ u

−u
(g−1)′(s)ds < −2(g−1)′(0) =

−2

g′(yg)
= σg(0) ∀ u ∈ (0, bg) ,

and, consequently, σg attains a global maximum at 0. Hence, statement b) in Proposi-

tion 2.6 may be proven by statement e) of Theorem 2.4 directly together with the first

inequality in the Hermite-Hadamard inequality, instead of the second inequality as was

done above. A similar comment is valid for statement c) of Proposition 2.6.

(ii) Assume that bg = +∞. Since

(

g−1
)′
(u) =

1

g′(g−1(u))
< 0 ∀ u ∈ (−∞,+∞) ,

as g is strictly decreasing, it follows that −
(

g−1
)′
(u) > 0. In particular, if

(

g−1
)′

is

convex in R, then −
(

g−1
)′

is concave and positive in R, and hence must be constant.

Therefore,
(

g−1
)′

cannot be strictly convex. This implies that (2.3) cannot be negative.

In light of the above, when bg = +∞, statement b) of Proposition 2.6 cannot be applied.

We finish the section by showing how Theorem 2.4 and Proposition 2.6 can be used to

study a particular type of positive difference equation via topological conjugacy. We define

C :=
⋃

−∞≤a<b≤∞

C(a, b) and C+ :=
⋃

0≤a<b≤∞

C+(a, b),

with C+(J) = {d ∈ C(J) : d > 0}, and define T : C+ → C by T(d) = ln ◦ d ◦ exp. Clearly, T is

bijective, with inverse T−1 : C → C+ given by T−1(g) = exp ◦ g ◦ ln. Define

D := T
−1(G) =

⋃

0≤a<b≤∞

D(a, b) ,

with

D(a, b) :=
{

d ∈ C1(a, b) : a < id · d < b, d′ < 0, 1 ∈ d
(

(a, b)
)}

,

and consider the difference equation

xn+1 = xnd(xn), x0 ∈ dom d , (2.4)

where d ∈ D. Note that for each d ∈ D there exists a unique xd ∈ dom d such that d(xd) = 1,

and consequently xd is an equilibrium of (2.4).

A routine calculation shows that x = (xn) is a solution of (2.1) if, and only if, z = ex is

a solution of (2.4), where g and d are related by d = T−1(g). Therefore, stability properties

of (2.4) may be studied by applying Theorem 2.4 and Proposition 2.6 to the transformed

version (2.4).
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3 Sharpest interval containing the attractor

We will make use of the following result (see [7, Theorems 2.2 and 2.3]).

Lemma 3.1. If there exists an interval I0 ⊂ I such that

inf I0 ≤ lim inf
n→+∞

f (n)(x) ≤ lim sup
n→+∞

f (n)(x) ≤ sup I0 ∀ x ∈ I ,

then the solutions of (1.1) satisfy

inf I0 ≤ lim inf
t→+∞

x(t, ξ) ≤ lim sup
t→+∞

x(t, ξ) ≤ sup I0 ∀ τ > 0, ∀ ξ ∈ C([−τ, 0], I) .

In particular, if K is G.A.S. for the difference equation (1.3), then

lim
t→+∞

x(t; ξ) = K ∀ τ > 0, ∀ ξ ∈ C([−τ, 0], I) .

The following theorem is the main result of this paper. It provides a partial answer to

the problem of finding the sharpest attracting interval for the delay-differential equation (1.1)

under condition (L) by establishing a dichotomy, in the flavour of that of Theorem 1.1.

Theorem 3.2. Assume that (L) holds, that f is three times differentiable and satisfies

3( f ′′)2 − ( f ′ − 1) f ′′′ > 0 , (3.1)

on the interval (α, β). Then exactly one of the following holds:

1. f ′(K) ≥ −1 and the global attractor of (1.1) for all values of the delay τ is {K}.

2. f ′(K) < −1 and the sharpest invariant and attracting interval containing the global attractor

of (1.1) for all values of the delay τ is [ᾱ, β̄], where {ᾱ, β̄} is the unique nontrivial 2-cycle of the

map f in [α, β].

Proof. Using condition (L), it is not hard, but tedious since several cases need to be considered,

to see that for any x0 ∈ I there exists n ∈ N such that f (n)(x0) ∈ (α, β), and f ([α, β]) ⊂ [α, β).

Define g := f − id. We claim that g belongs to G(α, β). To see this, note that g is strictly

decreasing in [α, β] since f is. Also, note that

g(x) + x = f (x) ∈ (α, β) ∀ x ∈ (α, β)

and, since f ([α, β]) ⊂ [α, β),

f (β) − β < 0 < f (α)− α,

so 0 ∈ g
(

(α, β)
)

, and we have that g ∈ G(α, β).

Assume first that f ′(K) ≥ −1. Using that for any x0 ∈ I there exists n ∈ N such that

f (n)(x0) ∈ (α, β) and invoking the second part of Lemma 3.1, it is enough to show that K is

G.A.S. for the difference equation (2.1). And this follows from the second part of Proposi-

tion 2.6 after noting that g′(K) ≥ −2, because f ′(K) ≥ −1, and that the function in (2.3) is

positive, because (3.1) holds.

Assume now that f ′(K) < −1. Since f ([α, β]) ⊂ [α, β), by a celebrated result of Coppel [3],

f has at least one nontrivial 2-cycle {ᾱ, β̄} with [ᾱ, β̄] ( [α, β]. Moreover, by Proposition 2.6, it

is the unique nontrivial 2-cycle contained in [α, β].
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Next, invoking [11, Lemma 2], [ᾱ, β̄] is an attracting and forward invariant interval for

the map f . Therefore, by Lemma 3.1, the interval [ᾱ, β̄] contains the global attractor of (1.1).

Finally, using [11, Proposition 5] we see that any closed subinterval of [ᾱ, β̄] does not contain

the global attractor of (1.1) for all τ > 0 because we can find slowly oscillating periodic

solutions of (1.1) taking values as close as desired to ᾱ and β̄.

It is interesting to note that the previous result is based on rewriting the difference equa-

tion (1.3) in the form (2.1). In Theorem 3.2, we have used the natural choice g = f − id.

However, this transformation is not the unique and any topologically conjugate difference

equation of (1.1) belonging to model (2.1) will give a different condition on f for the validity

of the dichotomy. In particular, if f is positive and x 7→ f (x)/x is decreasing, then we obtain

the following result from the topological conjugacy described at the end of Section 2.

Proposition 3.3. Assume that (L) holds, that d(x) := f (x)/x is three times differentiable with d′ < 0,

and that

3(g′′)2 − g′g′′′ > 0 ,

on the interval (ln α, ln β), where g := ln ◦d ◦ exp. Then the conclusions of Theorem 3.2 hold.

4 Examples

This section provides several examples demonstrating the applicability of Theorem 3.2 and

Proposition 3.3. The first example shows that Theorem 3.2 can be applied in situations where

Theorem 1.1 can not.

Example 4.1. Consider equation (1.1) with f : (0, 1) → (0, 1) given by

f (x) =
19

20
x(1 − x)(5 − 4x + 2x3). (4.1)

The graph of f is plotted in Panel A in Figure 4.1. Using Sturm’s Theorem, it is easy to see

that neither f nor f − 1 have any real roots in the open interval (0, 1). Moreover, f (1/2) =

247/320 ∈ (0, 1). Hence, f is well-defined. On the other hand, f ′(x) = − 19
20(10x4 − 8x3 −

12x2 + 18x − 5) and so f ′(0) = 19
4 > 1. Moreover, invoking again Sturm’s Theorem, f ′ has

exactly one real root x∗ (which one can calculate explicitly since f ′ is a polynomial of degree

4) in the interval (0, 1). At x∗ ≈ 0.3966 the function f attains a local maximum because

f (0+) = f (1−) = 0. Solving the equation f (x) = x, we find that f has a unique solution

K ∈ (0, 1), which again can be explicitly calculated, with K ≈ 0.6441; and so x∗ < K. Thus, f

satisfies the unimodal condition (U) with a = 0 and b = 1. Observe in Panel A in Figure 4.1

that condition (L) holds for f because x∗ < α = f ( f (x∗)).
Panel B in Figure 4.1 illustrates that Theorem 1.1 cannot be used to study the behaviour of

equation (1.1) with f given by (4.1). Indeed, we observe that the condition (S) is violated, i.e.,

the Schwarzian derivative, S f , is not negative in the interval [α, β]. In contrast, the function

3( f ′′)2 − ( f ′ − 1) f ′′′ has positive sign (again this is easily verified using Sturm’s Theorem in

the interval [0, 1], which contains the interval [α, β]). Thus, f satisfies the assumptions of

Theorem 3.2.

Since f ′(K) ≈ −1.1390, invoking Theorem 3.2 we conclude that the sharpest invariant and

attracting interval containing the attractor of equation (1.1) for all values of the delay τ is

determined by the unique nontrivial 2-cycle {ᾱ, β̄} of f in the interval [α, β]. Numerically, we

find that ᾱ ≈ 0.4269 and β̄ ≈ 0.8013.
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1.0 B

b

βα
b

sign(3( f ′′)2−( f ′−1) f ′′′)
2

sign(S f )
10

f

Figure 4.1: Panel A shows the graph of f (x) = 19
20 x(1 − x)(5 − 4x + 2x3). Observe that con-

dition (U) holds. Also note that f ( f (x∗)) > x∗ and condition (L) holds. Panel B shows,

in the interval [α, β], the graphs of scaled versions of the sign function composed with, re-

spectively, the Schwarzian derivate of f and 3( f ′′)2 − ( f ′ − 1) f ′′′. Observe that the sign of

3( f ′′)2 − ( f ′ − 1) f ′′′ remains positive, meanwhile S f changes sign in the interval [α, β].

In Figure 4.2, we plot three solutions of equation (1.1) with f as in (4.1), µ = 1, τ = 25 and

different constant initial conditions. Observe that all the solutions asymptotically take values

in the interval determined by the 2-cycle {ᾱ, β̄} as the result predicts. Moreover, observe that

as t → ∞ the solutions oscillate in a range that it is close to the length of the interval [ᾱ, β̄]. ♦

The next example shows that Proposition 3.3 can be applied in situations where the as-

sumptions in Theorem 1.1, and in Theorem 3.2, do not hold.

Example 4.2. Consider equation (1.1) with f : (0, 1) → (0, 1) given by

f (x) =
3

10
x

(

1 −
1

10
ln(x)

)15

. (4.2)
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β̄
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t

b

b
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Figure 4.2: The figure shows three different solutions of equation 1.1 with µ = 1, τ = 25

and f as in (4.1). The initial condition is a constant function ξ ∈ C([−τ, 0], R), namely, in the

blue curve ξ = 0.2, the red curve ξ = 0.9, and the black curve ξ = 0.5. The pink region is

determined by the 2-cycle ᾱ, β̄. Observe how the three solutions are asymptotically trapped in

this region.

Differentiating, we have

f ′(x) =
3

10

(

1 −
ln (x)

10

)15

−
9

20

(

1 −
ln (x)

10

)14

= −
3(ln (x)− 10)14 (ln (x) + 5)

1016
.

Therefore, f has a critical point at x∗ = e−5 ∈ (0, 1). Moreover,

f ′′(x) = −
9(ln (x)− 10)13 (ln (x) + 4)

2 · 1015x
,

and so f ′′(x∗) < 0. Noting that f (0+) = 0 and f (1−) = 3/10, we conclude that f is well-

defined and unimodal in the interval (0, 1). Now, note that f is convex in the interval (0, e−4)

and limx→0+ f (x)/x = +∞. Consequently, f has a unique fixed point K in the interval (0, 1)
and it satisfies x∗ < K. This shows that (U) hold for (4.2)

Next, we obtain that

β = f (x∗) =
43046721e−5

327680
≈ 0.8852 ,

and

α = f ( f (x∗)) =
129140163e−5

3276800

(

1 −
1

10
ln

(

43046721e−5

327680

))15

≈ 0.3185 .

Recalling that x∗ = e−5, we have that condition (L) holds. In this case, neither Theorem 1.1

nor Theorem 3.2 can be used because the Schwarzian derivative and the function 3( f ′′)2 −
( f ′ − 1) f ′′′ do not satisfy the sign restrictions in the interval [α, β], cf. Figure 4.3.

Nevertheless, Proposition 3.3 holds. We need to verify that

d(x) =
f (x)

x
=

3

10

(

1 −
1

10
ln(x)

)15

is decreasing, which is trivial, and g(x) = ln ◦d ◦ exp satisfies 3(g′′)2 − g′g′′′ > 0 in the interval

[ln α, ln β]. Deriving, we obtain

3(g′′(x))2 − g′(x)g′′′(x) =
225

(x − 10)4
, (4.3)



12 D. Franco, C. Guiver, H. Logemann and J. Perán

0.5 1.0

0.5

1.0

f
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sign(S f )
5

Figure 4.3: Graphs of the function f (x) = 3
10 x(1 − 1

10 ln(x))15 (red curve), and the graphs of

scaled versions of the sign function composed with, respectively, the Schwarzian derivate of

f (blue curve) and 3( f ′′)2 − ( f ′ − 1) f ′′′ (green curve). Observe that at the fixed point K, S f is

positive and 3( f ′′)2 − ( f ′ − 1) f ′′′ is negative. Since x∗ ∈ [α, β], the assumptions of Theorem 1.1

and Theorem 3.2 are not satisfied.

and 3(g′′(x))2 − g′(x)g′′′(x) is positive in the interval [ln α, ln β].
Computing the derivative of f at its fixed point K, we obtain that this derivative is greater

than −1 (approx. −0.3843). By Proposition 3.3 for any initial condition ξ ∈ C([−τ, 0], (0, 1))
the solutions of (1.1) tend to K as t tends to +∞, with independence of the size of the delay

τ > 0 and the value of µ > 0 as Figure 4.4 illustrates. ♦

Probably, the most famous representatives of equation (1.1) are the Nicholson’s blowflies

equation and the Mackey-Glass equation. In the Nicholson’s blowflies equation f is given by

f (x) =
1

µ
xe−x, (4.4)

whereas in the Mackey-Glass equation f is given by

f (x) =
1

µ

ax

1 + xb
, a > 0, b ≥ 1. (4.5)

Both (4.4) and (4.5) have negative Schwarzian derivative, and therefore Theorem 1.1 can be

used to study them. This was illustrated in [11, Section 3] with a couple of examples. We notice

that Proposition 3.3 can be used to obtain the same conclusions as in those examples. Indeed,

d(x) = f (x)/x is decreasing both for (4.4) and (4.5). Therefore, to invoke Proposition 3.3 we

need to check that g(x) = ln ◦d ◦ exp satisfies 3(g′′)2 − g′g′′′ > 0 in the interval (ln α, ln β).

The following examples show that the inequality holds not only in the interval (ln α, ln β) but

in the whole R.

Example 4.3. Nicholson’s blowflies equation. In this case, g(x) = ln(1/µ)− ex and trivially

3(g′′)2 − g′g′′′ = 2e2x
> 0 . ♦
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0.5
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Figure 4.4: The figure shows three solutions of equation 1.1 with µ = 1 and f as in (4.2). The

initial condition is a constant function ξ ∈ C([−τ, 0], R), namely, ξ = 0.2, but the delay τ is

different. For the blue curve we fixed τ = 20, for the black curve τ = 50, and for the red curve

τ = 100. Observe how independently of τ the three solutions tend to K.

Example 4.4. The Mackey-Glass equation. In this case, g(x) = ln(a/µ)− ln(1 + ebx) and after

some straightforward calculations we obtain that

3(g′′)2(x)− g′(x)g′′′(x) =
b4e2bx(2 + ebx)

(1 + ebx)4
> 0 . ♦
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