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Abstract. A low-gain integral controller with anti-windup component is pre-
sented for exponentially stable, linear, discrete-time, infinite-dimensional con-
trol systems subject to input nonlinearities and external disturbances. We
derive a disturbance-to-state stability result which, in particular, guarantees

that the tracking error converges to zero in the absence of disturbances. The
discrete-time result is then used in the context of sampled-data low-gain inte-
gral control of stable well-posed linear infinite-dimensional systems with input

nonlinearities. The sampled-date control scheme is applied to two examples
(including sampled-data control of a heat equation on a square) which are
discussed in some detail.

1. Introduction. Low-gain integral control is a well-studied technique which guar-
antees that the output of a stable linear system converges to a prescribed constant
reference signal. It is well-known (see, for example, [7, 22]) that, for a stable finite-
dimensional linear system, by applying an integrator with sufficiently small gain
parameter and closing the feedback loop, the corresponding output converges to
any prescribed reference value, so long as the eigenvalues of the steady-state gain
matrix have positive real part. Much work has been done on the extension of low-
gain integral control to more general systems: we refer the reader to works such
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as [5, 6, 9, 10, 11, 15, 18, 19, 20, 21, 23, 24] for integral control in infinite-dimensional
settings, in the presence of input nonlinearities and in sampled-data contexts.

In much of the literature which addresses the low-gain integral control problem
in the presence of nonlinearities (see, for example, [5, 6, 9, 10, 11, 19]), attention
is restricted to single-input single-output systems. To the best of our knowledge,
the only exceptions are [15, 16] which develop low-gain integral control schemes for
multi-input multi-output linear finite-dimensional systems with input nonlinearities.
In contrast to [5, 6, 9, 10, 11, 19], the low-gain integral controllers presented in
[15, 16] include anti-windup components. We remark that integrator windup can
cause performance and/or stability degradation in integral control systems subject
to input saturation. Indeed, as [15, Example 10] shows, in the absence of any
anti-windup component, the integrator state for the multivariable low-gain integral
control scheme considered in [15, 16] may be unbounded. The theory of anti-windup
control seeks to avoid or reduce integrator windup and is a much researched area,
we only mention the references [1, 2, 12, 28] which provide a small sample of the
available literature.

In the current paper, we will extend the main result in [15] to the context of sampled-
data integral control of multivariable linear well-posed infinite-dimensional systems
with input nonlinearities. Briefly, in sampled-data control, a continuous-time sys-
tem is controlled by a discrete-time controller, via the use of sample and hold oper-
ations. This discrete-time controller may be thought of, for example, as a processor
of a digital computer. The underlying class of linear well-posed infinite-dimensional
systems is well-developed, see, for example, [26, 27, 29, 30]. Systems in this class
allow for considerable unboundedness of the control and observation operators and
they encompass many of the most commonly studied partial differential equations
(PDEs) with boundary control and observation, and a large class of functional
differential equations of retarded and neutral type with delays in the inputs and
outputs.

The main result of this paper, Theorem 3.1, provides a stability criterion for the
sampled-data feedback interconnection of an exponentially stable well-posed linear
system with input nonlinearities and a discrete-time low-gain integral controller
combined with an anti-windup component. The sampled-data control scheme un-
der consideration includes continuous as well as discrete-time external disturbances.
When these disturbances are small, Theorem 3.1 guarantees good approximate as-
ymptotic tracking, and the asymptotic tracking error goes to zero as the size of the
disturbances goes to zero.

To prove Theorem 3.1, we first extend the finite-dimensional continuous-time results
of [15] to infinite-dimensional discrete-time systems: under assumptions analogous
to those in [15, Theorem 4], we derive a stability estimate of the difference between
the output and reference signals which, in the absence of disturbances, guarantees
exponentially fast asymptotic tracking. The discrete-time result plays a pivotal role
in the main contribution of this paper, namely the development of a sampled-data
low-gain integral control scheme with anti-windup component which applies to mul-
tivariable well-posed linear infinite-dimensional systems with input nonlinearities.

The layout of the paper is as follows. Section 2 is devoted to an infinite-dimensional
discrete-time generalisation of the low-gain integral control result in [15]. In Sec-
tion 3, we use the discrete-time result to prove stability and tracking properties of
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the feedback interconnection of linear infinite-dimensional systems subject to input
nonlinearities with a natural low-gain sampled-data integral controller with anti-
windup component. Finally, in Section 4, we provide detailed discussions of two
examples. One of which considers the application of the proposed control scheme
in the presence of plant output quantization and the other illustrates the developed
sampled-data theory in the context of a heat equation on a square.

Notation. We denote the field of complex numbers by C, the field of real numbers
by R and the set of positive integers by N, and define

R+ :=
{
r ∈ R : r ≥ 0

}
and Z+ := N ∪ {0} .

We set Cα := {s ∈ C : Re (s) > α} and Eα := {ξ ∈ C : |ξ| > α} for α ∈ R and
α > 0, respectively. For z ∈ C and r > 0, we let D(z, r) denote the open disc in C

of radius r centred at z. For ease of notation, we write E := E1 and D = D(0, 1).

For Banach spaces V , V1 and V2, we denote by L(V1, V2) the set of all bounded
linear operators from V1 to V2 and, as usual, set L(V ) := L(V, V ). We denote the
spectrum of L ∈ L(V ) by σ(L) and recall that an operator L ∈ L(V ) is discrete-
time exponentially (or power) stable if ρ(L) < 1, where ρ(L) denotes the spectral
radius of L. When the context is clear, we will omit the words ‘discrete-time’ from
exponentially stable. The space of functions defined on Z+ and taking values in
V is denoted by V Z+ and the set of continuous functions R+ → V is denoted by
C(R+, V ). Frequently, we will associate with an element v ∈ V the constant function
in either V Z+ or C(R+, V ) with value v, and we will not notationally distinguish
between the element and the associated constant function.

For v ∈ V Z+ and t ∈ Z+, we set

(πtv)(s) :=

{
v(s), if s ∈ {0, 1 . . . , t}
0, otherwise.

For Hilbert spaces V and W , the product space V × W is itself a Hilbert space
when equipped with the inner product

〈(
η1
ξ1

)
,

(
η2
ξ2

)〉

V×W

:= 〈η1, η2〉V + 〈ξ1, ξ2〉W ∀ ηi ∈ V, ∀ ξi ∈W, i = 1, 2.

When V or W are Banach spaces (and not Hilbert spaces), then we equip the
product space V ×W with the norm

∥∥∥∥
(
v
w

)∥∥∥∥
V×W

= ‖v‖V + ‖w‖W ∀ v ∈ V, w ∈W ,

although any equivalent norm on V ×W could be chosen. For ease of presentation,
we will typically suppress the space where the norms are taken for clarity.

In the following, let V be a Banach space. The Hardy space given by

H∞(V ) :=
{
h : E → V : h is holomorphic and bounded

}
,

is a Banach space when endowed with the norm

‖h‖H∞ := sup
ξ∈E

‖h(ξ)‖V ∀ h ∈ H∞(V ) .

For α ∈ R, we define the exponentially weighted L2-space L2
α(R+, V ) by

L2
α(R+, V ) :=

{
w ∈ L2

loc(R+, V ) : e−αw ∈ L2(R+, V )
}
,
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with norm ‖w‖L2
α
:= ‖e−αw‖L2 and where, for β ∈ R, eβ(t) := eβt, for all t ∈ R+.

For α ∈ R, we define the Hardy space

H2(Cα, V ) :=
{
h : Cα → V : h is holomorphic and

sup
x>α

(∫ ∞

−∞

‖h(x+ iy)‖2V dy
)
<∞

}
.

For u : T → V and v ∈ V , where T = Z+ or T = R+, we say that u(t)
converges exponentially to v as t → ∞ in T if there exists δ > 0 such that
lim supt→∞, t∈T

(
eδt‖u(t)− v‖V

)
<∞.

Finally, if u ∈ L1
loc(R+, V ) (which means in particular that u is an equivalence class

of functions, the difference of any two of which is equal to zero almost everywhere)
and v ∈ V , then we say that u(t) converges to v as t→ ∞ if, for every ε > 0, there
exists tε ≥ 0 such that

meas {t ≥ tε : ‖u(t)− v‖ > ε} = 0, where meas=Lebesgue measure.

It is easy to see that this is equivalent to saying that there exists a representative
ũ of the equivalence class u such that ũ(t) → v as t→ ∞ in the usual sense.

2. Low-gain integral control in discrete-time. In this section we derive a low-
gain integral control result for infinite-dimensional, discrete-time linear systems
with input nonlinearities and external disturbances. We proceed to outline the
mathematical formulation. Let X and V be complex Banach spaces and let Y and
U be complex Hilbert spaces. We consider the discrete-time system of difference
equations given by

x+ = Ax+Bφ(u) +Bev, x(0) = x0 ∈ X,

y = Cx+Dφ(u) +Dev .

}
(2.1)

Here x+ denotes the image of x under the left shift operator, that is, x+(t) = x(t+1)
for all t ∈ Z+. Further,

(A,B,Be, C,D,De) ∈ L := L(X)×L(U,X)×L(V,X)×L(X,Y )×L(U, Y )×L(V, Y ) ,

and u ∈ UZ+ , v ∈ V Z+ , φ : U → U and A is assumed to be exponentially stable. As
usual, we shall denote the transfer function of (2.1) (from φ(u) to y) by G, that is,
G(z) = C(zI−A)−1B+D. For ease of notation, we set Σ := (A,B,Be, C,D,De) ∈
L.

We highlight that the formulation (2.1) encompasses systems of the form

x+ = Ax+Bφ(u) + v1, x(0) = x0 ∈ X,

y = Cx+Dφ(u) + v2,

where v1 ∈ XZ+ and v2 ∈ Y Z+ . Indeed, the above is a special case of (2.1) with
V = X × Y ,

Be = (I, 0), De = (0, I) and v =

(
v1
v2

)
.

As usual, the variables v, u, x and y in (2.1) denote a disturbance signal, a control
signal, the state and output, respectively, and the function φ represents an input
nonlinearity. The control goal is that the output y asymptotically tracks a constant
reference vector r ∈ Y . We shall propose a low-gain integral controller to determine
u in (2.1) so that the closed-loop system is disturbance-to-error stable. In particular,
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when v = 0, the low-gain control law will guarantee that the error y(t)−r converges
to 0 exponentially as t→ ∞.

Given Σ ∈ L, we say that r ∈ Y is feasible (with respect to (2.1)) if the set

Ur :=
{
w ∈ U : G(1)φ(w) = r

}
,

is non-empty, and we say that a subset R ⊆ Y is feasible (with respect to (2.1)) if
every r ∈ R is feasible. For Σ ∈ L, feasible R ⊆ Y , r ∈ R and ur ∈ Ur, consider
the control law

u+ = u+ gK(r − y)− gΓ(u− φ(u)− ur + φ(ur)) + w, u(0) = u0 ∈ U, (2.2)

where g > 0, K ∈ L(Y,U) and Γ ∈ L(U) are design parameters and w ∈ UZ+

is a disturbance. The signal w could model a measurement disturbance d, that is,
instead of y, the disturbed output y+d is fed into the control law, in which case w is
of the form w = −gKd. Further, w could also be used to model errors which occur
when the control law is implemented digitally. We highlight that if Γ = 0 or φ = id
is the identity function, then (2.2) becomes ‘standard’ integral control (subject
to the disturbance w). The term gΓ(u − φ(u) − ur + φ(ur)), the so-called anti-

windup component, seeks to mitigate against integrator windup [1] when the input
nonlinearity φ is a saturation function, in which case φ usually has a ‘linear regime’,
meaning that there exists a neighbourhood U0 of zero such that φ|U0

= id. In this
scenario, if ur ∈ U0 ∩ Ur, then φ(ur) = ur (and U0 ∩ Ur = {G(1)−1r}, provided
that G(1) is invertible), and so, the difference −ur + φ(ur) is zero, implying that
knowledge of ur is not required to implement the control law (2.2). Furthermore, if
ur ∈ U0∩Ur, then the contribution of the anti-windup component is zero as long as
u remains in U0 and, when u is outside of U0, the anti-windup action helps to drive
u towards U0. As mentioned in the introduction, integrator windup often leads
to undesirable outcomes in the context of PI control, including destabilisation: for
example, in a finite-dimensional continuous-time context, [15, Example 10] shows
that, in the absence of any anti-windup action, the integrator state of a multivariable
low-gain integral control scheme with input saturation may diverge to infinity. We
refer the reader to [12] and [28] for tutorials concerning anti-windup control.

The feedback interconnection of (2.1) and (2.2) yields the closed-loop system

x+ = Ax+Bφ(u) +Bev, x(0) = x0 ∈ X,

y = Cx+Dφ(u) +Dev,

u+ = u+ gK(r − y)− gΓ(u− φ(u)− ur + φ(ur)) + w, u(0) = u0 ∈ U.





(2.3)

We shall show in Theorem 2.1 that the above feedback interconnection is well-posed,
meaning here that for all (x0, u0) ∈ X × U , and all (v, w) ∈ V Z+ × UZ+ , there is a
unique solution of (2.3), that is, a pair (u, x) ∈ UZ+ ×XZ+ satisfying (2.3).

The following theorem is the main result of this section and provides a disturbance-
to-state estimate for the low-gain integral control feedback system (2.3).

Theorem 2.1. Let Σ ∈ L, K ∈ L(Y,U), Γ ∈ L(U) and R ⊆ Y , where A and I −Γ
are exponentially stable and R is feasible. Assume that there exists L > 0 such that

‖φ(ξ + ζ)− φ(ζ)‖U ≤ L‖ξ‖U ∀ ξ ∈ U, ∀ ζ ∈
⋃

r∈R

Ur , (2.4)

and

sup
ξ∈E

‖(ξI − (I − Γ))−1‖ · ‖Γ−KG(1)‖ < 1/L . (2.5)
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The following statements hold.

(1) For all g > 0, all (x0, u0) ∈ X × U , and all (v, w) ∈ V Z+ × UZ+ , there exists

a unique solution (u, x) ∈ UZ+ ×XZ+ of (2.3).
(2) There exists g∗ ∈ (0, 1] such that for all g ∈ (0, g∗), there exist constants c, d >

0 and θ ∈ (0, 1) such that for all r ∈ R, ur ∈ Ur and all (x0, u0) ∈ X×U , and

all (v, w) ∈ V Z+ × UZ+ , the solution (u, x) ∈ UZ+ × XZ+ of (2.3) satisfies,

for all t ∈ N,∥∥∥∥
(
x(t)− (I −A)−1Bφ(ur)

u(t)− ur

)∥∥∥∥ ≤ c

(
θt
∥∥∥∥
(
x0 − (I −A)−1Bφ(ur)

u0 − ur

)∥∥∥∥

+

∥∥∥∥πt−1

(
v
w

)∥∥∥∥
ℓ∞

)
(2.6)

and the corresponding output y of (2.3) satisfies, for all t ∈ Z+,

‖y(t)− r‖ ≤ d

(
θt
∥∥∥∥
(
x0 − (I −A)−1Bφ(ur)

u0 − ur

)∥∥∥∥+
∥∥∥∥πt

(
v
w

)∥∥∥∥
ℓ∞

)
. (2.7)

Before proving Theorem 2.1, we provide some commentary. The reader is referred
to [15, Remark 7] for a related discussion in the finite-dimensional, continuous-time
setting.

Remark 2.2. (i) We note that Theorem 2.1 guarantees that, under zero forcing,
u(t) → ur, x(t) → (I − A)−1Bφ(ur) and y(t) → r as t → ∞, and, in each
case, the convergence is exponential.

(ii) Assumption (2.4) is evidently satisfied if φ is globally Lipschitz with Lipschitz
constant L. Moreover, if there exist distinct u1, u2 ∈ U such that φ(u1) = u1
and φ(u2) = u2, then an immediate consequence of (2.4) is that L ≥ 1.

(iii) The assumptions of Theorem 2.1 imply that any ur ∈ Ur which satisfies
ur = φ(ur) is in fact unique. To see this, suppose that wr ∈ Ur also satisfies
wr = φ(wr). From (2.4) we see that

‖ur − wr‖U = ‖φ(ur)− φ(wr)‖U ≤ L‖ur − wr‖U .
We conclude that either ur = wr, or that L ≥ 1. In the latter case, (2.5)
yields that

‖Γ−KG(1)‖ < 1

supξ∈E ‖(ξI − (I − Γ))−1‖ .

Invoking [13, Lemma 2.1] and the exponential stability of I−Γ, it follows that

σ(I −KG(1)) = σ ((I − Γ) + (Γ−KG(1))) ⊆ D ,

which in turn implies that KG(1) is invertible. Finally, by definition of
ur, wr ∈ Ur,

KG(1)ur = KG(1)φ(ur) = r = KG(1)φ(wr) = KG(1)wr ,

and so ur = wr.
(iv) Note that, for λ ∈ C,

λI −KG(1) = −
(
(1− λ)I − (I −KG(1))

)
,

meaning λ ∈ σ(KG(1)) if, and only if, 1 − λ ∈ σ(I − KG(1)). In the case
that L ≥ 1, we argued in item (iii) that the condition (2.5) implies that
σ(I−KG(1)) ⊆ D. Hence, the conditions L ≥ 1 and (2.5) together imply that
σ(KG(1)) ⊆ C0, the usual spectral condition for low-gain integral control.
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(v) Theorem 2.1 remains true if the spaces V , U , X, and Y are real, provided
that the estimate (2.5) holds for the canonical extensions of Γ and KG(1) to
the complexifications U c and Y c of U and Y , respectively. In the situation
wherein U = R

m and Y = R
p for somem, p ∈ N, if L ≥ 1, then part (iii) shows

that rkG(1) = m is a necessary condition for the assumptions of Theorem 2.1
to hold.

(vi) The condition (2.5) is trivially satisfied for any L > 0 if we choose K as a
left inverse of G(1) and Γ = I. Such a choice naturally requires knowledge
of G(1) to be implemented, although the condition (2.5) carries robustness
with respect to uncertainty in G(1). We note that with the choice Γ = I,
the supremum on the left-hand side of (2.5) equals 1 and thus, (2.5) holds,
provided that steady-state gain information is available which is sufficient for
the design of an integrator gain K satisfying ‖I −KG(1)‖ < 1/L.

(vii) Observe that the choice Γ = 0 does not satisfy the hypotheses of Theorem 2.1,
as I − Γ is required to be exponentially stable. When Γ = 0, then (2.2) for
feasible r ∈ Y reduces to “pure” integral control, leading to the closed-loop
system

x+ = Ax+Bφ(u), x(0) = x0 ∈ X,

y = Cx+Dφ(u),

u+ = u+ gK(r − y), u(0) = u0 ∈ U,





(2.8)

where, for simplicity, we have assumed that v = 0 and w = 0. It can be
shown that, if σ(KG(1)) ⊆ C0, KG(1) is self-adjoint, and φ satisfies (2.4)
with L = 1, then there exists g∗ > 0 such that, for all (x0, u0) ∈ X × U
and all g ∈ (0, g∗), it follows that the output y of (2.8) satisfies y(t) → r as
t → ∞. However, the assumption that KG(1) is self-adjoint is highly non-
robust to uncertainty, and essentially restricts the result to the single-input
single-output case, that is, Y = U = R or C. If KG(1) is not self-adjoint,
then the anti-windup component in (2.3) is crucial for the stability of the
closed-loop system as [15, Example 10] shows. ♦

The proof of Theorem 2.1 requires the following lemma, which is a discrete-time,
infinite-dimensional version of [15, Lemma 6], extended to the case of potentially
non-zero feedthrough.

Lemma 2.3. Let Σ ∈ L, K ∈ L(Y,U), Γ ∈ L(U) and assume that A and I −Γ are

exponentially stable. For g > 0, we define

Ã :=

(
A 0

−gKC I − gΓ

)
, B̃ :=

(
B

g(Γ−KD)

)
, C̃ :=

(
0 I

)
, (2.9)

and let G̃ denote the transfer function of (Ã, B̃, C̃), that is, G̃(ξ) = C̃(ξI− Ã)−1B̃.

The following statements hold.

(1) For each g ∈ (0, 1], Ã is exponentially stable.

(2) For all ε > 0, there exists g∗ ∈ (0, 1] such that, for all g ∈ (0, g∗),

‖G̃‖H∞ ≤ ε+ sup
ξ∈E

‖(ξI − (I − Γ))−1‖ · ‖Γ−KG(1)‖ . (2.10)

Proof. To prove statement (1), fix g ∈ (0, 1]. From the block triangular structure

of Ã, it follows that σ(Ã) ⊆ σ(A) ∪ σ(I − gΓ). Since σ(A) ⊆ D, our aim is thus to
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prove that σ(I − gΓ) ⊆ D. For which purpose, first note that for λ ∈ C,

λI − (I − gΓ) = (λ− 1)I + gΓ = g

((
λ− 1

g
+ 1

)
I − (I − Γ)

)
,

which in turn yields that λ ∈ σ(I − gΓ) if, and only if, ((λ− 1)/g + 1) ∈ σ(I − Γ).
By combining this with the fact that I − Γ is exponentially stable, we see that if
λ ∈ σ(I−gΓ), then (λ−1)/g+1 ∈ D, which in turn implies that (λ−1)/g ∈ D(−1, 1).
For such a λ, it is easily checked that since g ≤ 1, λ−1 ∈ D(−1, 1) and hence λ ∈ D.

We have thus shown that σ(I − gΓ) ⊆ D, hence yielding that Ã is exponentially
stable for each g ∈ (0, 1].

For statement (2), fix ε > 0 and note that, for all ξ ∈ E and g ∈ (0, 1], a routine
calculation gives

G̃(ξ) =
(
0 I

)(ξI −A 0
gKC ξI − (I − gΓ)

)−1(
B

g(Γ−KD)

)

= g(ξI − (I − gΓ))−1(Γ−KG(ξ)) .

We write G̃ = H1 +H2, where, for all ξ ∈ E and g ∈ (0, 1],

H1(ξ) := g(ξI − (I − gΓ))−1K(G(1)−G(ξ)) ,

H2(ξ) := −g(ξI − (I − gΓ))−1(KG(1)− Γ) .

We highlight that H1,H2 ∈ H∞(L(U)) for all g ∈ (0, 1]. We claim that there exists
g∗ ∈ (0, 1] such that

‖H1‖H∞ ≤ ε ∀ g ∈ (0, g∗) , (2.11)

and that

‖H2‖H∞ ≤ sup
ξ∈E

‖(ξI − (I − Γ))−1‖ · ‖Γ−KG(1)‖ ∀ g ∈ (0, 1] . (2.12)

The desired estimate (2.10) follows from the conjunction of (2.11) and (2.12). We
record that

(ξ − 1)/g + 1 ∈ E ∀ ξ ∈ E, ∀ g ∈ (0, 1] , (2.13)

which follows from the estimates
∣∣∣∣
ξ − 1

g
+ 1

∣∣∣∣ ≥
∣∣∣∣
ξ − 1

g
+

1

g

∣∣∣∣−
∣∣∣∣
1

g
− 1

∣∣∣∣ >
1

g
− 1

g
+ 1 as ξ/g ∈ E1/g

= 1 ∀ ξ ∈ E, ∀ g ∈ (0, 1] .

Consequently, from the exponential stability of I − Γ

sup
ξ∈E

∥∥∥
((ξ − 1

g
+ 1
)
I − (I − Γ)

)−1∥∥∥ =M1 <∞ ∀ g ∈ (0, 1] . (2.14)

To establish (2.11) we express H1 as

H1(ξ) = g
(
I +

g

ξ − 1
Γ
)−1

K
G(1)−G(ξ)

ξ − 1
∀ ξ ∈ E, ∀ g ∈ (0, 1] . (2.15)

We claim that there exists M > 0 such that
∥∥∥
(
I +

g

ξ − 1
Γ
)−1∥∥∥ ≤M ∀ ξ ∈ E, ∀ g ∈ (0, 1] . (2.16)
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To show this, fix ρ > 1 and let g ∈ (0, 1] and ξ ∈ E. If |ξ − 1| ≤ ρ‖Γ‖g, then,
from (2.14),

∥∥∥
(
I +

g

ξ − 1
Γ
)−1∥∥∥ =

|ξ − 1|
g

∥∥∥
((ξ − 1

g
+ 1
)
I − (I − Γ)

)−1∥∥∥

≤ ρ‖Γ‖M1 .

If instead |ξ − 1| ≥ ρ‖Γ‖g, then
∥∥∥

g

ξ − 1
Γ
∥∥∥ = g

‖Γ‖
|ξ − 1| ≤

1

ρ
< 1 ,

whence, estimating the convergent Neumann series gives
∥∥∥
(
I +

g

ξ − 1
Γ
)−1∥∥∥ =

∥∥∥
(
I −

(
− g

ξ − 1
Γ
))−1∥∥∥ =

∥∥∥
∑

k∈Z+

(
− g

ξ − 1
Γ
)k∥∥∥

≤
∑

k∈Z+

∥∥∥
g

ξ − 1
Γ
∥∥∥
k

≤ ρ

ρ− 1
=:M2 .

Taking M := max{ρ‖Γ‖M1,M2} gives (2.16). Combining (2.15) and (2.16) yields
that

‖H1(ξ)‖ ≤ gM‖J‖H∞ ∀ ξ ∈ E, ∀ g ∈ (0, 1], (2.17)

where

J(ξ) :=

{
KG(ξ)−G(1)

ξ−1 , if ξ 6= 1

KG′(1), if ξ = 1.

The bound (2.11) now follows from (2.17) by taking g∗ := min{1, ε/(M‖J‖H∞)}.
To establish (2.12), we note that

‖H2(ξ)‖ ≤
∥∥∥
(ξ − 1

g
I + Γ

)−1∥∥∥ · ‖Γ−KG(1)‖

=
∥∥∥
((ξ − 1

g
+ 1
)
I − (I − Γ)

)−1∥∥∥ · ‖Γ−KG(1)‖

≤ sup
λ∈E

‖(λI − (I − Γ))−1‖ · ‖Γ−KG(1)‖ ∀ ξ ∈ E, ∀ g ∈ (0, 1] , (2.18)

where we have used (2.13) to obtain the final inequality. The estimate (2.12) follows
from (2.18).

We are now in position to prove Theorem 2.1.

Proof of Theorem 2.1. Let r ∈ R, ur ∈ Ur, x0 ∈ X, u0 ∈ U , g > 0 and (v, w) ∈
V Z+ × UZ+ be given. Let Ã, B̃ and C̃ be given by (2.9), define

φur (ζ) := φ(ζ + ur)− φ(ur) ∀ ζ ∈ U ,

and consider the Lur’e system of difference equations

z+ = Ãz + B̃ξ +

(
I 0 0
0 −gK I

)

Bev
Dev
w


 , z(0) = z0 ,

ξ = φur

(
C̃z
)
.





(2.19)
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It is clear that a unique solution to (2.19) exists. Furthermore, a routine calculation
shows that z is a solution to (2.19) if, and only if,

z =

(
x̃
ũ

)
:=

(
x− (I −A)−1Bφ(ur)

u− ur

)
, (2.20)

where (u, x) is a solution of (2.3). Hence unique solutions of (2.3) exist, proving
statement (1).

To prove statement (2), we realize that the estimate (2.6) follows from an application
of [13, Statement (ii) of Theorem 3.2] to (2.19) and (2.20). We proceed to verify that
the hypotheses of [13, Theorem 3.2] hold. To this end, we note that inequality (2.5)
implies the existence of an ε > 0 such that

ε+ sup
ξ∈E

‖(ξI − (I − Γ))−1‖ · ‖Γ−KG(1)‖ < 1/L. (2.21)

Moreover, by invoking Lemma 2.3, we obtain the existence of g∗ ∈ (0, 1] (indepen-
dent of u, w, v, x, y, r and ur) such that, for all g ∈ (0, g∗), the transfer function

G̃ of (Ã, B̃, C̃) satisfies (2.10). This, along with (2.21), implies that

‖G̃‖H∞ < 1/L ∀ g ∈ (0, g∗).

Finally, since φur satisfies

‖φur (ξ)‖U ≤ L‖ξ‖U ∀ ξ ∈ U ,

by (2.4), we see that the hypotheses of [13, Theorem 3.2] are satisfied.

The estimate (2.7) follows from (2.6) and the bounds

‖y(t)− r‖ ≤ ‖C‖‖x(t)− (I −A)−1Bφ(ur)‖+ ‖D‖‖φ(u(t))− φ(ur)‖+ ‖Dev(t)‖
≤ ‖C‖‖x(t)− (I −A)−1Bφ(ur)‖+ L‖D‖‖u(t)− ur‖

+ ‖Dev(t)‖ ∀ t ∈ Z+ ,

completing the proof.

3. Sampled-data integral control. In this section, we apply Theorem 2.1 in
the context of sampled-data low-gain integral control of well-posed linear systems.
We will be brief in our setup, since there is much literature concerning these sys-
tems. Indeed, we refer the reader to the references [26, 27, 29, 30] for more details.
Throughout, we consider an L2-well-posed system with state space X, input space
U × Ue, output space Y (all Hilbert spaces), generating operators (A, (B,Be), C),
and transfer function (H,He). Control inputs will act through B, whilst external
disturbances will act through Be.

By definition, A is the generator of a strongly continuous semigroup T on X,
(B,Be) ∈ L(U × Ue, X−1) and C ∈ L(X1, Y ), where X1 is the domain of A en-
dowed with the graph norm ‖x‖1 := ‖x‖+ ‖Ax‖, and X−1 is the completion of X
with respect to the norm ‖x‖−1 := ‖(βI − A)−1x‖, where β is in the resolvent set
of A. We recall here that the choice of β is unimportant, since a different choice
leads to equivalent norms. It is clear that X1 ⊂ X ⊂ X−1 and that the canonical
injections are dense. It is well-known that the semigroup T restricts to a strongly
continuous semigroup on X1 and extends to a strongly continuous semigroup on
X−1, with the exponential growth constants being the same on all three spaces
X1, X and X−1. It is also true that the generator of the restricted semigroup is a
restriction of A, and the generator of the extended semigroup is an extension of A
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(to X). We shall use the same symbols, T and A, for the restriction and extension
of the semigroups and their generators, respectively.

The operators (B,Be) and C are admissible control and observations operator,
respectively, that is, for every t ≥ 0, there exist bt ≥ 0 and ct ≥ such that

∥∥∥∥
∫ t

0

T(t− s)(B,Be)v(s) ds

∥∥∥∥ ≤ bt‖v‖L2 ∀ v ∈ L2([0, t], U × Ue),

and ∫ t

0

‖CT(t)ξ‖2dt ≤ ct‖ξ‖2 ∀ ξ ∈ X1.

We define the Λ-extension of C as

CΛξ := lim
λ→∞

Cλ(λI −A)−1ξ ∀ ξ ∈ dom(CΛ),

where dom(CΛ) is the set of all ξ ∈ X such that the above limit exists. We note
that X1 ⊆ dom(CΛ). Moreover, for all ξ ∈ X, it follows that T(t)ξ ∈ dom(CΛ) for
almost all t ≥ 0, and CΛTξ ∈ L2

α(R+, Y ) for all α > ω(T), where ω(T) denotes the
exponential growth constant of T, viz.

ω(T) := lim
t→∞

1

t
ln ‖T(t)‖ .

The transfer function (H,He) is a bounded holomorphic function Cα → L(U ×
Ue, Y ) for every α > ω(T). Finally, throughout we assume that ω(T) < 0, that is
to say that T is exponentially stable.

For given φ : U → U globally Lipschitz, we shall consider the continuous-time
system of the form

ẋ = Ax+Bφ(w) +Bev1, x(0) = x0 ∈ X,

y = CΛ

(
x+A−1(Bφ(w) +Bev1)

)
+H(0)φ(w) +He(0)v1,

}
(3.1)

where w ∈ L2
loc(R+, U) is the control input and v1 ∈ L2

loc(R+, Ue) denotes a dis-
turbance. We interpret the differential equation in (3.1) in the larger space X−1.
If the well-posed system is regular, then the output equation (3.1) reduces to the
more familar form y = CΛx+Dφ(w) +Dev1, where (D,De) ∈ L(U × Ue, Y ) is the
feedthrough operator.

Let τ > 0 denote the sampling period. The (zero-order) hold operator H is defined
as

(Hu)(t) := u(k) ∀ t ∈ [kτ, (k + 1)τ), ∀ u ∈ UZ+ ,

which maps UZ+ into the set of U -valued step-functions (of step length τ) defined
on [0,∞). Furthermore, we let a ∈ L2([0, τ ],R) be such that

(i)

∫ τ

0

a(t) dt = 1 and (ii)

∫ τ

0

a(t)T(t)xdt ∈ X1 ∀ x ∈ X. (3.2)

We comment that (ii) holds if a is piecewise absolutely continuous, which follows
from integration by parts and the fact that

∫ s

0
T(t) xdt = A−1(T(s) − I)x is a

continuous X1-valued function of s for every x ∈ X. A trivial example of a function
a satisfying (3.2) is the constant function a(t) = 1/τ for all t ∈ [0, τ ].
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For a ∈ L2([0, τ ],R) satisfying (3.2), the (generalised) sampling operator
S : L2

loc(R+, Y ) → Y Z+ is defined by

(Sy)(k) :=
∫ τ

0

a(t)y(kτ + t) dt ∀ y ∈ L2
loc(R+, Y ), ∀ k ∈ Z+ .

We say that r ∈ Y is feasible (with respect to (3.1)), if the set

Ur :=
{
w ∈ U : H(0)φ(w) = r

}
,

is non-empty. A subset R ⊆ Y is said to be feasible (with respect to (3.1)) if every
r ∈ R is feasible.

Given feasible R ⊆ Y , r ∈ R and ur ∈ Ur, consider the discrete-time integral
control law

u+ = u+ gK(r − Sy)− gΓ(u− φ(u)− ur + φ(ur)) + v2, u(0) = u0 ∈ U , (3.3)

where y is the output of (3.1), and g > 0, K ∈ L(Y,U) and Γ ∈ L(U) are design
parameters. The signal v2 ∈ UZ+ is a disturbance.

The feedback interconnection of (3.1) and the control law (3.3) via w = Hu, yields
the closed-loop system

ẋ = Ax+Bφ(Hu) +Bev1, x(0) = x0 ∈ X, (3.4a)

y = CΛ

(
x+A−1(Bφ(Hu) +Bev1)

)
+H(0)φ(Hu) +He(0)v1, (3.4b)

u+ = u+ gK(r − Sy)− gΓ(u− φ(u)− ur + φ(ur)) + v2, u(0) = u0 ∈ U. (3.4c)

For given v1 ∈ L2
loc(R+, Ue), v2 ∈ UZ+ , x0 ∈ X and u0 ∈ U , we say that (x, y, u) ∈

C(R+, X)× L2
loc(R+, Y )× UZ+ is a solution of (3.4) if

x(t) = T(t)x0 +

∫ t

0

T(t− s) (Bφ((Hu)(s)) +Bev1(s)) ds ∀ t ≥ 0,

and (3.4b) and (3.4c) are satisfied. It is a routine exercise to show that there exists
a unique solution of (3.4)

In the following, we let H and He denote the input-output operators associated
with H and He, respectively. These are causal operators defined on L2

loc(R+, U)
and L2

loc(R+, Ue), respectively, with values in L2
loc(R+, Y ), and they map L2

α(R+, U)
and L2

α(R+, Ue), respectively, boundedly into L2
α(R+, Y ) for any α > ω(T). We say

that H has a measure impulse response if U = C
m, Y = C

p and there exists a
C

p×m-valued Borel measure on R+ such that

(Hv)(t) = (µ ∗ v)(t) :=
∫ t

0

µ(ds)v(t− s) ∀ t ≥ 0, ∀ v ∈ L2
loc(R+,C

m) .

We now present the main theorem of this section, a stability result for the sampled-
data low-gain integral control system (3.4). The strategy for the proof is to extract
a discrete-time system from (3.4) which describes the evolution at the sampling
points and which allows an application of Theorem 2.1, and then to show that the
inter-sampling dynamics are well behaved.

Theorem 3.1. Let ω(T) < 0, K ∈ L(Y,U), Γ ∈ L(U) and let R ⊆ Y be feasi-

ble. Assume that I − Γ is discrete-time exponentially stable, φ is globally Lipschitz

continuous with Lipschitz constant L > 0 and

sup
ξ∈E

‖(ξI − (I − Γ))−1‖ · ‖Γ−KH(0)‖ < 1/L . (3.5)



SAMPLED-DATA INTEGRAL CONTROL 13

Then there exists g∗ ∈ (0, 1] such that, for all g ∈ (0, g∗), there exist constants

c1, c2, c3, γ > 0, α < 0 and θ ∈ (0, 1) such that for all r ∈ R, ur ∈ Ur, all

(x0, u0) ∈ X × U and all v1 ∈ L∞(R+, Ue), v2 ∈ ℓ∞(Z+, U), the solution (x, y, u)
of (3.4) has the following properties.

(1) The output and state variables, y, u and x, respectively satisfy

∥∥u(k)− ur
∥∥+

∥∥(Sy)(k)− r
∥∥ ≤ c1

(
θk
∥∥∥
(
x0 +A−1Bφ(ur)

u0 − ur

)∥∥∥+
∥∥v1
∥∥
L∞(0,kτ)

+
∥∥πk−1v2

∥∥
ℓ∞

)
, ∀ k ∈ N , (3.6)

and

‖x(kτ + t) +A−1Bφ(ur)‖ ≤ c2

(
e−γ(kτ+t)

∥∥∥
(
x0 +A−1Bφ(ur)

u0 − ur

)∥∥∥+
∥∥πkv2

∥∥
ℓ∞

+
∥∥v1
∥∥
L∞(0,kτ+t)

)
∀ k ∈ Z+, ∀ t ∈ [0, τ) . (3.7)

(2) If H has measure impulse response and

He ∈ L(L∞(R+, Ue), L
∞(R+, Y )), (3.8)

then there exists q ∈ L2
α(R+,R+) such that

‖y(kτ + t)− r‖ ≤ q(t) + c3
(
‖v1‖L∞(0,kτ+t) + ‖πkv2‖ℓ∞

)

∀ k ∈ Z+, for a.e. t ∈ [0, τ) . (3.9)

Moreover, under the additional assumption that there exists t0 ≥ 0 such that

T(t0)(Ax
0 +Bφ(ur)) ∈ X , (3.10)

the output y satisfies

lim sup
t→∞

‖y(t)− r‖ ≤ c3
(
‖v1‖L∞(0,∞) + ‖v2‖ℓ∞

)
. (3.11)

(3) If v1 = 0 and v2 = 0, then u(k) → ur as k → ∞ and x(t) → −A−1Bφ(ur)
as t → ∞ exponentially and r − y ∈ L2

α(R+, Y ); furthermore, if addition-

ally (3.10) and

lim
t→∞

(Hf)(t) = 0 ∀ f ∈ L2(R+, U) with lim
t→∞

f(t) = 0 , (3.12)

hold, then y(t) → r as t→ ∞.

Remark 3.2. (i) We note that the conclusions of Theorem 3.1 hold for any
sampling period τ > 0. Although not performed exhaustively, our numerical
simulations suggest that performance (for instance speed of convergence) is
slower when τ is larger, which seems reasonable intuitively.

(ii) If He has measure impulse response, then (3.8) is satisfied. Condition (3.12)
holds if H has measure impulse response (see [17, Lemma 6.2.4]).

(iii) Note that if r − y ∈ L2
α(R+, Y ) for some α < 0, then, for any δ > 0,

lim
θ→∞

meas {t ≥ θ : e−αt‖y(t)− r‖ ≥ δ} = 0, where meas=Lebesgue measure,

that is, y tracks r exponentially fast in measure.
(iv) The smoothness condition x0 + A−1Bφ(ur) ∈ X1 is sufficient for (3.10) to

hold. Furthermore, analyticity of the semigroup T(t) guarantees that (3.10)
is satisfied for every t0 > 0, x0 ∈ X, r ∈ R and ur ∈ Ur. ♦

The remainder of this section is dedicated to proving Theorem 3.1.



14 MAX E. GILMORE, CHRIS GUIVER AND HARTMUT LOGEMANN

Proof of Theorem 3.1. (1) The first aim is to extract a discrete-time system from (3.4)
to which Theorem 2.1 may be applied. For which purpose, define

Mx :=

∫ τ

0

a(t)T(t)x dt ∀ x ∈ X .

Then, Mx ∈ X1 for all x ∈ X by property (ii) in (3.2). It is straightforward to
show that M is closed, and hence M ∈ L(X,X1) by the closed-graph theorem.
Furthermore, set

Aτ := T(τ), Bτ :=

∫ τ

0

T(s)Bds, Cτ := CM, Dτ := CMA−1B +H(0) . (3.13)

Clearly Aτ ∈ L(X), and it easy to show that Aτ is (discrete-time) exponentially
stable, since T is an exponentially stable semigroup. Further, Bτ satisfies

Bτ = (T(τ)− I)A−1B ∈ L(U,X) ,

and rearranging the above gives

(I −Aτ )
−1Bτ = −A−1B . (3.14)

By the boundedness of M , it follows that Cτ ∈ L(X,Y ) and Dτ ∈ L(U, Y ). We
denote the transfer function of the discrete-time system given by (Aτ , Bτ , Cτ , Dτ )
by Gτ .

Let r ∈ R, ur ∈ Ur, (x0, u0) ∈ X × U and v1 ∈ L∞(R+, Ue), v2 ∈ ℓ∞(Z+, U) be
given, and let (x, y, u) denote the solution of (3.4). We claim that ξ and ζ given by

ξ(k) := x(kτ) and ζ(k) := (Sy)(k) ∀ k ∈ Z+ , (3.15a)

satisfy the discrete-time system

ξ+ = Aτ ξ +Bτφ(u) + η1,

ζ = Cτ ξ +Dτφ(u) + η2,

}
(3.15b)

with

η1(k) :=

∫ τ

0

T(τ − s)Bev1(s+ τk) ds ∀ k ∈ Z+ , (3.15c)

and

η2(k) :=

∫ τ

0

a(t)CΛ

(∫ t

0

T(t− s)Bev1(s+ kτ))ds+A−1Bev1(kτ + t)

)
dt

+

∫ τ

0

a(t)He(0)v1(kτ + t)dt ∀ k ∈ Z+. (3.15d)

Further, recall that u in (3.15b) is given by

u+ = u+ gK(r − ζ)− gΓ(u− φ(u)− ur + φ(ur)) + v2 . (3.16)

We seek to apply Theorem 2.1 to the feedback interconnection of (3.15) and (3.16).
We proceed in steps.

Step 1. Extracting a discrete-time system. We show that ξ and ζ in (3.15a)
do indeed satisfy (3.15b) with η1 and η2 as in (3.15c) and (3.15d), respectively.
Straightforward modifications of [18, Propositon 3.1] to incorporate v1 give the
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difference equation for ξ. As for the output equation of (3.15b), let us first note
that, for all k ∈ Z+ and t ∈ [0, τ),

y(kτ + t) = CΛ

(
x(kτ + t) +A−1Bφ(u(k)) +A−1Bev1(kτ + t)

)
+H(0)φ(u(k))

+He(0)v1(kτ + t)

= CΛ

(
T(t)x(kτ) +

∫ kτ+t

kτ

T(kτ + t− s)(Bφ(u(k)) +Bev1(s))ds

+ A−1Bφ(u(k)) +A−1Bev1(kτ + t)

)
+H(0)φ(u(k))

+He(0)v1(kτ + t) .

By using a change of variables, this becomes, for all k ∈ Z+ and t ∈ [0, τ),

y(kτ + t) = CΛ

(
T(t)x(kτ) +

∫ t

0

T(t− s)
(
Bφ(u(k)) +Bev1(s+ kτ)

)
ds

+ A−1Bφ(u(k)) +A−1Bev1(kτ + t)

)
+H(0)φ(u(k))

+He(0)v1(kτ + t) .

Since
∫ t

0

T(t− s)Bφ(u(k))ds = A−1(T(t)− I)Bφ(u(k)) ∀ k ∈ Z+, ∀ t ∈ [0, τ) ,

we see that, for all k ∈ Z+ and t ∈ [0, τ),

y(kτ + t) = CΛ

(
T(t)x(kτ) + T(t)A−1Bφ(u(k)) +

∫ t

0

T(t− s)Bev1(s+ kτ)ds

+ A−1Bev1(kτ + t)

)
+H(0)φ(u(k)) +He(0)v1(kτ + t) .

Consequently, for all k ∈ Z+,

ζ(k) =

∫ τ

0

a(t)CΛ

(
T(t)x(kτ) + T(t)A−1Bφ(u(k)) +

∫ t

0

T(t− s)Bev1(s+ kτ)ds

+ A−1Bev1(kτ + t)

)
dt+

∫ τ

0

a(t)
(
H(0)φ(u(k)) +He(0)v1(kτ + t)

)
dt .

Recalling that, for all ξ ∈ X, T(t)ξ ∈ dom(CΛ) for almost all t ≥ 0, we see that, for
all k ∈ Z+,

ζ(k) =

∫ τ

0

a(t)CΛT(t)(x(kτ) +A−1Bφ(u(k)))dt

+

∫ τ

0

a(t)CΛ

(∫ t

0

T(t− s)Bev1(s+ kτ))ds+A−1Bev1(kτ + t)

)
dt

+

∫ τ

0

a(t)
(
H(0)φ(u(k)) +He(0)v1(kτ + t)

)
dt .
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Invoking (3.2), (3.13) and (3.15d), we obtain that, for all k ∈ Z+,

ζ(k) = CMx(kτ) + CMA−1Bφ(u(k)) +H(0)φ(u(k)) + η2(k)

= Cτ ξ(k) +Dτφ(u(k)) + η2(k) .

We have now shown that (3.15b) holds.

Step 2. Estimating the discrete-time forcing terms η1 and η2. By the
admissibility of Be, there exists κ > 0 such that

∥∥∥
∫ t

0

T(t− s)Bev1(kτ + s) ds
∥∥∥ ≤ κ‖v1‖L2([kτ,kτ+t]) ≤ κ

√
τ‖v1‖L∞([kτ,kτ+t])

∀ k ∈ Z+, ∀ t ∈ [0, τ) . (3.17)

Whence,

‖πk−1η1‖ℓ∞ ≤ κ
√
τ‖v1‖L∞([0,kτ ]) ∀ k ∈ N . (3.18)

We now seek to prove the existence of d > 0 such that

‖πk−1η2‖ℓ∞ ≤ d‖v1‖L∞([0,kτ ]) ∀ k ∈ N . (3.19)

To this end, by writing

we(t) := CΛ

(∫ t

0

T(t− s)Bev1(s+ kτ))ds+A−1Bev1(kτ + t)

)
+He(0)v1(kτ + t),

we see that we is the output of an exponentially stable well-posed system with zero
initial condition and input v1(kτ + · ). Hence, there exists d1 > 0 such that

‖we‖L2([0,τ ]) ≤ d1‖v1‖L2([kτ,(k+1)τ ]) ≤ d1
√
τ‖v1‖L∞([kτ,(k+1)τ ]).

By use of Hölder’s inequality, we then obtain from (3.15d) that, for all k ∈ Z+,

‖η2(k)‖ ≤ ‖a‖L2([0,τ ])‖we‖L2([0,τ ]) ≤ d‖v1‖L∞([kτ,(k+1)τ ]),

where d := d1
√
τ‖a‖L2([0,τ ]) > 0. It is thus evident that (3.19) holds.

Step 3. Invoking Theorem 2.1. An application of [18, Propositon 3.1] yields
that Gτ (1) = H(0). Thus, r ∈ Y is feasible with respect to (3.1) if, and only
if, it is feasible with respect to (3.15b). Moreover, from (3.5), (2.5) is satisfied in
the context of (3.15). Therefore, in light of steps 1 and 2 above, an application of
statement (2) of Theorem 2.1 to (3.15) and (3.16) yields the existence of g∗ ∈ (0, 1]
such that, for all g ∈ (0, g∗), there exist c1 > 0 and θ ∈ (0, 1) such that

∥∥∥∥∥∥



ξ(k)− (I −Aτ )

−1Bτφ(u
r)

u(k)− ur

(Sy)(k)− r




∥∥∥∥∥∥
≤ c1

(
θk
∥∥∥∥
(
x0 − (I −Aτ )

−1Bτφ(u
r)

u0 − ur

)∥∥∥∥

+
∥∥∥πk−1

(
η1
η2

)∥∥∥
ℓ∞

)
∀ k ∈ N . (3.20)

In light of (3.14), (3.18) and (3.19) (and the definition of the norm on product
spaces), the estimate (3.6) follows.
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Step 4. Deriving (3.7). We note that, for each k ∈ N and t ∈ [0, τ),

x(kτ + t) = T(t)x(kτ) +

∫ t+kτ

kτ

T(t+ kτ − s)(Bφ(u(k)) +Bev1(s)) ds

= T(t)x(kτ) +

∫ t

0

T(s)Bφ(u(k)) ds+

∫ t

0

T(t− s)Bev1(kτ + s) ds

= T(t)x(kτ) + (T(t)− I)A−1Bφ(u(k))

+

∫ t

0

T(t− s)Bev1(kτ + s) ds . (3.21)

Therefore, taking norms in (3.21) and invoking (3.17), we see that

‖x(kτ + t) +A−1Bφ(ur)‖ ≤ ‖T(t)‖‖x(kτ) +A−1Bφ(u(k))‖
+ ‖A−1B(φ(ur)− φ(u(k)))‖+ κ

√
τ‖v1‖L∞([kτ,kτ+t])

∀ k ∈ Z+, ∀ t ∈ [0, τ) . (3.22)

Define the positive constants

ν1 := sup
t∈[0,τ ]

‖T(t)‖ <∞ and ν2 := ‖A−1B‖ <∞ . (3.23)

The Lipschitz property of φ together with (3.22) and (3.23) leads to

‖x(kτ + t) +A−1Bφ(ur)‖ ≤ ν1‖x(kτ) +A−1Bφ(ur)‖+ ν2L(1 + ν1)‖u(k)− ur‖
+ κ

√
τ‖v1‖L∞([kτ,kτ+t])

∀ k ∈ Z+, ∀ t ∈ [0, τ) . (3.24)

Setting γ := −(ln θ)/τ > 0 and ν3 := eγτ , we have that

θk = ν3e
−γ(k+1)τ ≤ ν3e

−γ(kτ+t) ∀ k ∈ Z+, ∀ t ∈ [0, τ) . (3.25)

Combining (3.20) with (3.14), (3.24) and (3.25) gives (3.7), as required.

(2) Set

f(t) := CΛT(t)x
0 +H(φ(ur))−H(0)φ(ur),

where we view φ(ur) as the constant function with value φ(ur). The Laplace trans-
form of H(φ(ur))−H(0)φ(ur) is given by (H(s)−H(0))φ(ur)/s. As this function is
in H2(Cβ , Y ) for every β > ω(T), the Payley-Wiener theorem [27, Theorem 10.3.4]
then guarantees that

H(φ(ur))−H(0)φ(ur) ∈ L2
β(R+, Y ) ∀β > ω(T),

and so f ∈ L2
β(R+, Y ) for all β > ω(T). As r = H(0)φ(ur), the error y − r can be

written in the form

y − r = f +H(H(φ(u))− φ(ur)) +Hev1. (3.26)

Assume now that H has a measure impulse response and that (3.8) holds. Denoting
the measure impulse response of H by µ and the total variation of µ by |µ|, we have
that

∥∥(H(H(φ(u))− φ(ur))
)
(t)
∥∥ ≤ L(|µ| ∗ ‖H(u)− ur‖)(t) ∀ t ≥ 0,
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where we recall that L is the Lipschitz constant of φ. Consequently, it follows from
statement (1) that

∥∥(H(H(φ(u))− φ(ur))
)
(kτ + t)

∥∥ ≤ c1L(|µ| ∗ q0)(kτ + t)

+ |µ|(R+)(‖v1‖L∞ + ‖v2‖ℓ∞)

∀ k ∈ Z+, ∀ t ∈ [0, τ), (3.27)

where

q0(kτ + t) := θk
∥∥∥
(
x0 +A−1Bφ(ur)

u0 − ur

)∥∥∥ ∀ k ∈ Z+, ∀ t ∈ [0, τ).

Noting that q0 ∈ L2
α0
(R+,R), where α0 := (ln θ)/τ < 0, and choosing 0 > α >

max(ω(T), α0), we conclude that |µ|∗q0 ∈ L2
α(R+,R), and so, the function q defined

by

q(t) := ‖f(t)‖+ c1L(|µ| ∗ q0)(t) ∀ t ≥ 0 ,

is in L2
α(R+,R). It follows from (3.26) and (3.27) that there exists c3 > 0 such

that (3.9) holds.

Let us now assume that (3.10) is satisfied. It is clear from (3.9) that, to estab-
lish (3.11), it is sufficient to show that q(t) → 0 as t→ ∞. Since

lim
t→∞

(|µ| ∗ q0)(t) = 0,

we need to show that f(t) → 0 as t→ ∞. The Laplace transform f̂ of f is given by

f̂(s) = C(sI −A)−1x0 +
1

s
(H(s)−H(0))φ(ur) ∀ s ∈ Cω(T) . (3.28)

By [27, Theorem 4.6.7]

1

s
(H(s)−H(0))φ(ur) = C(sI −A)−1A−1Bφ(ur) ∀ s ∈ Cω(T) ,

and thus, it follows from (3.28) that

f̂(s) = C(sI −A)−1A−1(Ax0 +Bφ(ur)) ∀s ∈ Cω(T) .

Consequently,

f(t) = CΛT(t)A
−1(Ax0 +Bφ(ur))

= CA−1
T(t− t0)T(t0)(Ax0 +Bφ(ur)) ∀ t ≥ t0 ,

and the exponential stability of T implies that limt→∞ f(t) = 0.

(3) Assume that v1 = 0 and v2 = 0. It is clear from statement (1) that u(k) → ur

as k → ∞ and x(t) → −A−1Bφ(ur) as t → ∞ and that the convergences are
exponentially fast. To show that y − r ∈ L2

α(R+, Y ), we note that, by (3.26),

y − r = f +H(H(φ(u))− φ(ur)). (3.29)

Set ρ := eατ and note that
∫

∞

0

‖e−αt(H(φ(u))(t)− φ(ur))‖2 dt =
∫ τ

0

e−2αt dt

∞∑

k=0

e−2αkτ‖φ(u(k))− φ(ur)‖2

=
1

2|α| (e
−2ατ − 1)

∞∑

k=0

ρ−2k‖φ(u(k))− φ(ur)‖2

<∞ , (3.30)
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where the convergence of the infinite series follows from (3.6) and the fact that ρ > θ.
Consequently, H(φ(u)) − φ(ur)) ∈ L2

α(R+, Y ). We know that f ∈ L2
α(R+, Y ) and

therefore, invoking (3.29), we conclude that y − r ∈ L2
α(R+, Y ).

Finally assume that (3.10) and (3.12) hold. We know from the proof of statement (2)
that f(t) → 0 as t → ∞. By (3.30), H(φ(u)) − φ(ur) is in L2(R+, U) and, by
statement (1), limt→∞(H(φ(u))(t) = φ(ur), and thus, invoking (3.12), H(H(φ(u))−
φ(ur))(t) → 0 as t→ ∞. It folows now from that y(t) → r as t→ ∞.

4. Examples. We conclude with two examples. The first considers an application
of Theorem 3.1 to a system with output quantization, and in the second example
we apply Theorem 3.1 to to a heat equation on a square domain.

Example 4.1. For δ > 0, the quantization function qδ : R → R is defined by

qδ (δk + ξ) := δk ∀ k ∈ Z, ∀ ξ ∈ [−δ/2, δ/2) .

The graph of qδ is plotted in Figure 4.1.

−2δ −δ 0 δ 2δ

−2δ

−δ

0

δ

2δ

ξ

qδ(ξ)

Figure 4.1. Quantization function qδ.

We consider the sampled-data system (3.4) with K ∈ L(Y,U), Γ ∈ L(U), g > 0
and r ∈ R ⊆ Y , where R is feasible. Let E ⊂ Y be an orthonormal basis of Y and
let η = (ηe)e∈E ∈ ℓ2(E) be positive, that is, ηe > 0 for every e ∈ E. If Y is not
separable, then E is uncountable, in which case ℓ2(E) is defined to be the space
of all functions ξ : E → R such that ξ(e) 6= 0 for at most countably many e ∈ E
and

∑
e∈E |ξ(e)|2 < ∞. Obviously, if Y is of finite dimension p, then ℓ2(E) can

identified with R
p. Given ζ ∈ Y , we have that

|qηe
(〈ζ, e〉)| ≤ |〈ζ, e〉|+ ηe/2 ∀ e ∈ E,

and so the function e 7→ qηe
(〈ζ, e〉) is in ℓ2(E). Consequently, the quantization

operator Qη : Y → Y given by

Qη(ζ) :=
∑

e∈E

qηe
(〈ζ, e〉)e ∀ ζ ∈ Y ,

is well defined. We will study the situation in which only the quantized version
Qη(y) is available for feedback, but not y itself. That is, the feedback system under
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consideration is given by

ẋ = Ax+Bφ(Hu) +Bev1, x(0) = x0 ∈ X, (4.1a)

y = CΛ

(
x+A−1(Bφ(Hu) +Bev1)

)
+H(0)φ(Hu) +He(0)v1, (4.1b)

u+ = u+ gK(r − S(Qη ◦ y))− gΓ(u− φ(u)− ur + φ(ur)) + v2,

u(0) = u0 ∈ U. (4.1c)

As

‖(Sy)(k)− (S(Qη ◦ y))(k)‖ ≤ ‖a‖L2

√
τ‖η‖ℓ2/2 ∀ k ∈ Z+,

where ‖η‖ℓ2 :=
(∑

e∈E |ξ(e)|2
)1/2

, it is clear that we can write (4.1c) in the form

u+ = u+ gK(r−Sy)− gΓ(u−φ(u)−ur +φ(ur))+ v2+w, u(0) = u0 ∈ U, (4.2)

where w ∈ UZ+ satisfies ‖w‖ℓ∞ ≤ g‖K‖‖a‖L2

√
τ‖η‖ℓ2/2.

Assuming that (3.5) holds, then the conclusions of statement (1) of Theorem 3.1
apply to the sampled-data system given by (4.1a), (4.1b) and (4.2). If addition-
ally, H has measure impulse response, v1 = 0, v2 = 0 and (3.10) holds, then, by
statement (2) of Theorem 3.12, there exists c > 0 such that

lim sup
t→∞

‖y(t)− r‖ ≤ c‖η‖ℓ2 .

Hence, the smaller ‖η‖ℓ2 (the size of the quantization parameter), the more accurate
the tracking behaviour of the sampled-date system. ♦

Example 4.2. We consider sampled-data low-gain integral control in the presence
of input saturation for a controlled and observed heat equation on a square domain
with disturbances. Let Ω := (0, 1)× (0, 1) ⊆ R

2 denote the unit square. We define
the sections of the boundary

∂Ω1 :=
{
(ξ1, ξ2) ∈ R

2 : 0 < ξ1 < 1, ξ2 = 0
}
,

∂Ω2 :=
{
(ξ1, ξ2) ∈ R

2 : 0 < ξ1 < 1, ξ2 = 1
}
,

∂Ω3 :=
{
(ξ1, ξ2) ∈ R

2 : ξ1 = 0, 0 < ξ2 < 1
}
,

∂Ω4 :=
{
(ξ1, ξ2) ∈ R

2 : ξ1 = 1, 0 < ξ2 < 1
}
,

the bottom, top, left and right sides, respectively, see Figure 4.2.

ξ1

ξ2

0

Ω∂Ω3

∂Ω2

∂Ω4

∂Ω1

Figure 4.2. Square domain Ω ⊆ R
2.

2 Since we are assuming that v1 = 0, the condition (3.8) is irrelevant and does not need to be
imposed.
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The plant inputs u1 and u2 are boundary controls applied on ∂Ω1 and ∂Ω2, respec-
tively, and the boundaries ∂Ω3 and ∂Ω4 are maintained at a constant temperature,
leading to

∂z

∂t
= ∆z in (0,∞)× Ω, (4.3a)

z = z0 on {0} × Ω, (4.3b)

z = 0 on (0,∞)× ∂Ωi, for i ∈ {3, 4} , (4.3c)

∂z

∂n
= qi on (0,∞)× ∂Ωi, for i ∈ {1, 2} , (4.3d)

where z = z(t, ξ) and

• z0 is the initial condition;
• ∆ denotes the Laplacian;
• ∂z

∂n = ∇z · n is the outward normal derivative of z;
• qi = ui + vi is the sum of the plant input ui and disturbance vi.

The plant outputs y1 and y2 are the averaged temperature over the two boundary
sections ∂Ω1 and ∂Ω2, respectively, that is,

yi(t) =

∫

∂Ωi

z(t, ξ) dξ for t > 0 and i ∈ {1, 2} . (4.3e)

We claim that (4.3) gives rise to a L2 well-posed linear system on the state-space
X = L2(Ω) with input and disturbance space U = Ue = R

2, B = Be, and output
space Y = R

2. The details are somewhat technical, require some material from the
theory of PDEs, and are not required to illustrate our results, which is the purpose
of the present example. Therefore, we have chosen to relegate the details to the
Appendix.

The semigroup associated with (4.3) is exponentially stable and analytic, so
that (3.10) holds for every t0 > 0, x0 ∈ X and every feasible r. Furthermore, the re-
sulting well-posed linear system has an L1 impulse response, and so properties (3.8)
and (3.12) hold as well.

Since B = Be, the transfer functions from input to output H in (4.3), and from
disturbance to output He in (4.3) are equal. Thus, the transfer function of (4.3)
can be identified with H. In the Appendix we show that

H(0) =

(
c d
d c

)
, (4.4)

for certain constants c > d > 0. In particular, H(0) is invertible.

For the purpose of output regulation by sampled-data low-gain integral control in
the presence of input saturation, we fix

a(t) =
1

τ
∀ t ∈ [0, τ ], K := H(0)−1 and Γ := I . (4.5)

The choice of a in (4.5) leads to the sampled output Sy given by

(Sy)(k) = 1

τ

∫ τ

0

y(t+ kτ) dt, ∀ k ∈ N, where y =

(
y1
y2

)
.

The choice of K and Γ in (4.5) ensures that the condition (3.5) holds for any L > 0,
and hence for any globally Lipschitz saturation term φ. Therefore, the conclusions
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of Theorem 3.1 apply to (3.4) with plant given by (4.3) and controller data as
specified in (4.5).

For a numerical simulation, we discretise (4.3) in space with a finite-difference ap-
proximation, the details of which are given in the Appendix. Common to all our
simulations are the data

g = 0.1, z0(ξ) = sin(πξ1) ∀ ξ =
(
ξ1
ξ2

)
∈ cl Ω , (4.6)

where cl Ω denotes the closure of Ω. For fixed a < b, define ψ(· ; a, b) : R → R by
ψ(w ; a, b) = max{a,min{w, b}}. We consider two saturation functions φ = φi for
i = 1, 2 given by

φ1(w) =

(
ψ(w1 ;−1, 4)
ψ(w2 ;−1, 2)

)
and φ2(w) =

(
ψ(w1 ;−1, 4)
ψ(w2 ;−2, 3)

)
∀ w =

(
w1

w2

)
∈ R

2 .

(4.7)
The sets {

H(0)φi(w) : w ∈ R
2
}

i = 1, 2 ,

are the largest sets of feasible references for (4.3) and (4.4) with φ = φi, and are
plotted in Figure 4.3. The reference

r :=

(
1

1/2

)
, (4.8)

is clearly feasible in both cases.

-0.5 0 0.5 1 1.5

-0.5

0

0.5

1

r1

r
2

Figure 4.3. Feasible sets of reference vectors r =
(
r1 r2

)T
for

φ1 (darker grey) and φ2 (lighter gray) regions. The reference r
in (4.8) is marked with a cross.

We will use the notation

v :=

(
v1
v2

)
, u :=

(
u1
u2

)
and y :=

(
y1
y2

)
.

For the simulation plotted in Figure 4.4, we choose

u(0) = 0, τ ∈ {0.25, 0.5} and φ = φ1 . (4.9)

The simulations shown in Figure 4.4 illustrate the convergence of the sampled-data
system when no disturbance is present, that is, when v = 0. Moreover, in this
example, we see that the saturation bounds are not reached (meaning φ1(u(t)) =
u(t) for all t ∈ Z+). As expected, the convergence appears faster when the sampling-
period τ is smaller.
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For the simulation presented in Figure 4.5, the data in (4.9) are replaced by

u(0) =

(
6
−4

)
, τ = 0.4 and φ = φ2 . (4.10)

Additionally, as nonzero forcing we choose

v = 0.1

(
sin(t)

sin(3t/4) + sin(
√
2t)

)
∀ t ≥ 0 . (4.11)

The choice of initial integrator state u(0) in the saturation region of φ is deliberate
and is to illustrate the saturation effects. Two simulations are shown with forcing
terms v and 3v. Not surprisingly, the tracking error seems to increase as ‖v‖L∞

increases. ♦
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Figure 4.4. Model data as in (4.5), (4.6), (4.8) and (4.9). (a)
Initial temperature profile z0. (b) Temperature profile of solution
z at time t = 20. (c) Outputs. (d) Held inputs. In panels (c) and
(d), the solid and dashed lines correspond to τ = 0.25 and τ = 0.5,
respectively. The dotted lines in panel (c) are the components of
the reference.
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Figure 4.5. Model data as in (4.5), (4.6), (4.8), (4.10) and (4.11).
(a) Outputs. (b) Held inputs. In panels (a) and (b), the solid and
dashed lines correspond to the external forcing v and 3v, respec-
tively. The dotted lines in panel (a) are the components of the
reference.

Appendix

Further details for Example 4.2. We provide further details for Example 4.2
not given in the main text. We first describe the theoretical setting, and then our
numerical approximation.

Theoretical setting

The following arguments are somewhat similar to those in [3]. There the authors
assume that the boundary ∂Ω has a smoothness called piecewise C2, which (despite
the name) is not the case here. To describe the model requires some standard
material from the theory of PDEs. We make use of notation and results from [14],
and from the theory of well-posed linear systems [27]. First note that Ω := (0, 1)×
(0, 1) ⊆ R

2 clearly has a so-called curvilinear polygonal boundary [14, Definition
1.4.5.1]. We let Hs(Ω) for s ∈ R denote the usual (fractional) Sobolev space. For
open Γ ⊆ R and a given function z : Γ → R, we let z̃ denote the extension of z to
all R by zero. Thus for s > 0, we let

H̃s(Γ) :=
{
z ∈ Hs(Γ) : z̃ ∈ Hs(R)

}
.

Further, C∞

c (cl Ω) (denoted byD(Ω) in [14]) denotes the set of infinitely-differentiable
functions R2 → R with compact support, restricted to cl Ω. Next, let γi : H

1(Ω) →
H

1
2 (∂Ωi) denote the usual trace operators, which are continuous extensions of γi

defined on C∞

c (cl Ω) given by

γiz = z|∂Ωi
∀ i ∈ {1, 2, 3, 4} ,

see [14, Theorem 1.5.2.1]. Let

E := {z ∈ H1(Ω) : ∆z ∈ L2(Ω)} , (A.1)

which is a Banach space with the norm

‖z‖E := ‖z‖H1(Ω) + ‖∆z‖L2(Ω) ∀ z ∈ E .

Furthermore, by [14, Theorem 1.5.3.10], the Neumann trace γj
∂
∂n defined on C∞

c (cl Ω)

has a continuous extension E → (H̃
1
2 (∂Ωj))

∗. The following Green’s identity for Ω
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holds

∫

Ω

(∆u)v dξ = −
∫

Ω

〈∇u,∇v〉 dξ +
4∑

j=1

∫

∂Ω

(
γj
∂u

∂n

)
γjvdσ

∀ u ∈ H2(Ω), ∀ v ∈ H1(Ω) , (A.2)

and also for all u ∈ E, and all v ∈ H1(Ω) such that γiv ∈ H̃
1
2 (∂Ωi) for all

i = 1, 2, 3, 4. These claims are [14, Lemma 1.5.3.8] and [14, Theorem 1.5.3.11],

respectively. Note that H̃
1
2 (∂Ωi) contains the image under γi of {v ∈ H1(Ω) :

γkv = 0, k 6= i}, see [14, p. 61].

Noting that the constant function with value one, denoted by 1, satisfies 1 ∈
L2(∂Ωi) →֒ H−

1
2 (∂Ωi), and that the L2(∂Ωi) inner product is the duality prod-

uct between H−
1
2 (∂Ωi) and H

1
2 (∂Ωi), we obtain the estimates

∣∣∣∣
∫

∂Ωi

γi(w)

∣∣∣∣ =
∣∣〈1, γi(w)〉L2(∂Ωi)

∣∣ ≤ ‖1‖
H−

1
2 (∂Ωi)

‖γi(w)‖
H

1
2 (∂Ωi)

≤ m0‖w‖H1(Ω) ∀ w ∈ H1(Ω), ∀ i ∈ {1, 2, 3, 4} , (A.3)

for some m0 > 0.

Next, we define

H1
Γ0
(Ω) :=

{
z ∈ H1(Ω) : γ3z = 0, γ4z = 0

}
.

We shall make extensive use of the Poincaré-type estimate [29, Theorem 13.6.9],
namely, that there exists δ > 0 such that

δ‖z‖L2(Ω) ≤ ‖∇z‖L2(Ω) ∀ z ∈ H1
Γ0
(Ω) . (A.4)

Therefore, H1
Γ0
(Ω) is a Hilbert space when equipped with the inner product

〈z1, z2〉H1
Γ0

(Ω) := 〈∇z1,∇z2〉L2(Ω) ∀ z1, z2 ∈ H1
Γ0
(Ω) ,

and ‖ · ‖H1
Γ0

(Ω) and ‖ · ‖H1(Ω) are equivalent norms on H1
Γ0
(Ω). We proceed to

describe the generators A, B and C of Σ. Recall that X = L2(Ω). Define A by

A : X ⊇ D(A) → X, Az = ∆z ,

with domain

D(A) :=
{
z ∈ H1

Γ0
(Ω) : ∆z ∈ X} ∩ ker

(
γ1

∂

∂n

)
∩ ker

(
γ2

∂

∂n

)
.

Note that
{
z ∈ H1

Γ0
(Ω) : ∆z ∈ X} ⊆ E given by (A.1), and the Neumann

trace is continuous on E, so D(A) is well-defined. We claim that A generates an
analytic and exponentially stable contraction semigroup. The following is loosely
based on [29, Section 3.6] which considers the Dirichlet Laplacian. First note that
A is symmetric as, by Green’s identity (A.2) (with second set of hypotheses on z1
and z2)

〈z1, Az2〉X = −〈∇z1,∇z2〉X = 〈Az1, z2〉X ∀ z1, z2 ∈ D(A) . (A.5)
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Second, A is surjective since, for every f ∈ L2(Ω), there exists a unique solution
z ∈ D(A) to the elliptic problem

∆z = f

γiz = 0 i ∈ {3, 4},

γj
∂z

∂n
= 0 j ∈ {1, 2} ,





see [14, Lemma 4.4.3.1]. Consequently, A is self-adjoint by [29, Proposition 3.2.4].
Taking z = z1 = z2 in (A.5) gives that A is dissipative and so, by the Lumer-Phillips
Theorem, A generates a strongly continuous contraction semigroup, denoted T.
By [25, Theorem 13.31 (a)], we have that σ(A) ⊆ (−∞, 0] and since X is a Hilbert
space and A is self-adjoint, analyticity of T follows from, for example, [8, Corollary
II. 4.7].

For exponential stability, fix z0 ∈ X. Taking z1 = z2 = T(t)z0 ∈ D(A) for t > 0
in (A.5) gives

〈T(t)z0, AT(t)z0〉X = −‖∇T(t)z0‖2X ≤ −δ2‖T(t)z0‖2X ∀ t > 0 ,

by (A.4) again. Therefore, since z := z1 = z2 is classically differentiable, the above
reads

d

dt

1

2
‖z(t)‖2X = −‖∇z(t)‖2X ≤ −δ2‖z(t)‖2X ∀ t > 0 .

Rearranging and integrating gives
∫

R+

‖T(t)z0‖2X dt ≤ 1

2δ2
‖z0‖2 ∀ z0 ∈ X .

Hence, exponential stability of T follows by Datko’s Theorem.

For the sequel we shall require that −A is positive, as

〈z, (−A)z〉X = ‖∇z‖2X ≥ δ2‖z‖2X ∀ z ∈ D(A) ,

by (A.4). Consequently, (−A) has a square root, denoted (−A) 1
2 .

We define the control operator B : U → (H1
Γ0
(Ω))∗ by

B =
(
B1 B2

)
where 〈Bju,w〉X = u

∫

∂Ωj

γj(w) ∀ w ∈ H1
Γ0
(Ω), ∀ u ∈ C ,

which is bounded by (A.3), and set Be := B. Similarly, we define the observation
operator C : H1

Γ0
(Ω) → Y by

C =

(
C1

C2

)
where Cjw :=

∫

∂Ωj

γj(w) ∀ w ∈ H1
Γ0
(Ω), ∀ j ∈ {1, 2} ,

which again is bounded by (A.3).

Given X = L2(Ω), recall the usual interpolation and extrapolation spaces X1 and
X−1, respectively, (see the start of Section 3 or [27, Section 3.6]). For λ ≥ 0, we
also require the fractional powers (λI − A)γ , where γ ∈ [−1, 1], and the associated
fractional spaces Xγ for γ ∈ [−1, 1], described in [27, Section 3.9]. Since A generates
an exponentially stable semigroup, for simplicity we consider λ = 0.

We claim that, for all ε ∈ (0, 1/4),

C ∈ L(X1/4+ε, Y ) and B ∈ L(U,X−(1/4+ε)) . (A.6)
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Since B = C∗, the second claim in (A.6) follows from the first. Assuming (A.6),
it follows from [27, Theorem 5.7.3, statement (ii)] (with, using the notation of that
result γ = 0) that (A,B,C) generates a L2 well-posed linear system on (Y,X,U).
That the impulse response belongs to L1 follows from the same result.

To establish (A.6), fix ε ∈ (0, 1/4), j ∈ {1, 2}, and set θ := 1/4 + ε. It is sufficient
to show that

Cj(−A)−θ : X → C is bounded , (A.7)

that is

|Cj(−A)−θz| . ‖z‖X ∀ z ∈ X .

Here the symbol . means less than or equal to, up to a multiplicative constant
which is independent of the other variables appearing. Its use is intended to clarify
the exposition by reducing the number of constants which appear in estimates.

Since (−A)θ is an isometryXθ → X (cf. [27, p.149]), we have that (−A)θw =: z ∈ X
for all w ∈ Xθ. Whence, if (A.7) holds, then

|Cjw| . ‖(−A)θw‖X = ‖w‖Xθ
∀ w ∈ Xθ ,

and so (A.6) holds.

We proceed to establish (A.7). Fix z ∈ X = L2(Ω). Defining x := (sI − A)−1z ∈
X1 = D(A) for all s ≥ 0, we have that −Ax+ sx = z. Taking the inner product in
X of the previous equality with x and using (A.5) gives

‖∇x‖2X + s‖x‖2X = 〈z, x〉X ,

so that, by the inequality (A.4)

‖x‖2H1(Ω) . ‖∇x‖2X ≤ ‖∇x‖2X + s‖x‖2X ≤ ‖z‖X · ‖x‖X ≤ ‖z‖X · ‖x‖H1(Ω) .

Therefore, cancelling ‖x‖H1(Ω) 6= 0 from both sides of the inequality above gives

‖(sI −A)−1z‖H1(Ω) ≤ ‖z‖X ∀ s ∈ (0, 1) . (A.8)

(Note that (A.8) trivially holds if ‖x‖H1(Ω) = 0.) Combining the continuous em-

bedding H1(Ω) →֒ H
1
2 (Ω) with (A.8) yields

‖(sI −A)−1z‖
H

1
2 (Ω)

. ‖(sI −A)−1z‖H1(Ω) ≤ ‖z‖X ∀ s ∈ (0, 1) . (A.9)

Since A generates an exponentially stable analytic semigroup, we have the resolvent
estimate

‖(sI −A)−1z‖L2(Ω) = ‖(sI −A)−1z‖X .
1

s
‖z‖X ∀ s > 0 , (A.10)

from, for example, [27, Theorem 3.10.6]. Again with x := (sI − A)−1z ∈ D(A) for
all s ≥ 0, it follows from (A.5) and the inequality (A.4) that

‖x‖2H1(Ω) . ‖∇x‖2X = 〈(−A)x, x〉X = ‖(−A) 1
2x‖2L2(Ω) ,

that is

‖(sI −A)−1z‖H1(Ω) . ‖(−A) 1
2 (sI −A)−1z‖X

.
1 + (s+ η)

1
2

s+ η
‖z‖X .

1

s
1
2

‖z‖X ∀ s ≥ 1 . (A.11)

The second inequality above is an application of [27, Lemma 3.10.9] (with, using
the notation of that result: γ = 0, λ = s, γ′ = −η > 0, for some small η > 0, and
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α = 1/2). Here it is crucial that (−A) 1
2 is both the square root of −A, and the

fractional operator in the sense of [27, Sections 3.9–3.10].

Since Ω has Lipschitz boundary it follows from, for example [4, Corollary 4.7],

that H
1
2 (Ω) is the interpolation space between L2(Ω) and H1(Ω) (up to equivalent

norms), and so the interpolation inequality

‖x‖
H

1
2 (Ω)

. ‖x‖
1
2

L2(Ω) · ‖x‖
1
2

H1(Ω) ∀ x ∈ H1(Ω) ,

holds. Thus, combining (A.10) and (A.11) gives

‖(sI −A)−1z‖
H

1
2 (Ω)

. ‖(sI −A)−1z‖
1
2

L2(Ω) · ‖(sI −A)−1z‖
1
2

H1(Ω)

≤ 1

s
3
4

‖z‖L2(Ω) ∀ s ≥ 1 . (A.12)

From the expression for (−A)−θ from [27, Lemma 3.9.9], namely,

(−A)−θ =
sin(θπ)

π

∫
∞

0

s−θ(sI −A)−1 ds ,

and the bounds (A.9) and (A.12), we estimate that

‖(−A)−θz‖
H

1
2 (Ω)

.

∫
∞

0

s−θ‖(sI −A)−1z‖
H

1
2 (Ω)

ds

.
(∫ 1

0

s−θ ds+

∫
∞

1

s−(θ+ 3
4
) ds
)
‖z‖X

. ‖z‖X , (A.13)

where both integrals are finite since θ = 1/4 + ε with ε ∈ (0, 1/4).

Finally, recalling that the Dirichlet trace γj is continuous H
1
2 (Ω) → L2(∂Ωj), we

invoke (A.13) to estimate that

|Cj(−A)−θz| =
∣∣∣
∫

∂Ωj

γj
(
(−A)−θz

)∣∣∣ . ‖γj
(
(−A)−θz

)
‖L2(∂Ωj) . ‖(−A)−θz‖

H
1
2 (Ω)

. ‖z‖X ,

as required.

We next establish the expression (4.4) for H(0), which we do by solving by separa-
tion of variables the elliptic problem

∆z = 0 on Ω ,

z = 0 on ∂Ωi, for i = 3, 4 ,

∂z

∂n
= ui on ∂Ωi, for i = 1, 2 ,





(A.14)

associated with (4.3) for fixed ui ∈ R.

For i = 1, 2, we let zi denote the solution of

∆zi = 0 on Ω, zi = 0 on ∂Ω3 ∪ ∂Ω4,
∂zi
∂n

= 0 on ∂Ω3−i,
∂zi
∂n

= ui on ∂Ωi ,

so that by superposition the solution of (A.14) is given by z1+z2. For the following
calculation, it is useful to note that

∫ 1

0

sin(πkξ1) dξ1 =
2

πk

{
0 k even,

1 k odd,

}
=

2

πk
χ(k) ∀ k ∈ N ,
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where χ : N → {0, 1} is given by χ(m) = 0 if m is even, and χ(m) = 1 if m is odd.
Routine calculations give that

z1(ξ1, ξ2) =
∑

k∈N

ak sin(πkξ1) cosh(πk(ξ2 − 1)) ∀ ξ ∈ Ω ,

where ak are the Fourier coefficients

ak =
−u1

πk sinh(−kπ)2
∫ 1

0

sin(πkξ1) dξ1 = 4
u1

(πk)2 sinh(kπ)
χ(k) ∀ k ∈ N . (A.15)

Similarly, routine calculations give that

z2(ξ1, ξ2) =
∑

k∈N

bk sin(πkξ1) cosh(πkξ2) ∀ ξ ∈ Ω ,

where bk are the Fourier coefficients

bk =
u2

πk sinh(kπ)
2

∫ 1

0

sin(πkξ1) dξ1 = 4
u2

(πk)2 sinh(kπ)
χ(k) ∀ k ∈ N . (A.16)

Thus

z = z1+z2 =
∑

k∈N

sin(πkξ1)
(
ak cosh(πk(ξ2−1))+ bk cosh(πkξ2)

)
∀ ξ ∈ Ω , (A.17)

solves (A.14). In light of (A.15), (A.16) and (A.17), the steady-state outputs yj
of (4.3) are given by

y1 =

∫ 1

0

z(ξ1, 0) dξ1 =
∑

k∈N

2

πk
χ(k)

(
ak cosh(−πk) + bk

)

=
∑

k∈N

8

sinh(πk)(πk)3
χ(k)

(
cosh(πk)u1 + u2

)
. (A.18)

Similarly,

y2 =

∫ 1

0

z(ξ1, 1) dξ1 =
∑

k∈N

2

πk
χ(k)

(
ak + bk cosh(πk)

)

=
∑

k∈N

8

sinh(πk)(πk)3
χ(k)

(
u1 + cosh(πk)u2

)
. (A.19)

Define the series

c :=
∑

k∈N

8 cosh(πk)

sinh(πk)(πk)3
χ(k) and d :=

∑

k∈N

8

sinh(πk)(πk)3
χ(k) ,

which converge absolutely, and satisfy c > d > 0. Since y = H(0)u, an inspection
of (A.18) and (A.19) yields (4.4).

Numerical approximation

For notational convenience in this section, we define N := {1, 2, . . . , N} for N ∈ N.
For the numerical simulations, let N ∈ N, N ≥ 2, and define ζi := (i − 1)/N for
i ∈ N + 1. We partition cl Ω into (N + 1)2 equally-spaced points (ζi, ζj) and set
h := 1/N > 0. For given u ∈ L2

loc(R+;R
2) and z0 ∈ L2(Ω), we approximate the
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solution z of (4.3) by Tij(t) = z(t, (ζi, ζj)) for t ≥ 0 and i, j ∈ N + 1. Approximat-
ing the Laplacian by centered finite-differences, we obtain the following differential
equations for Tij , for i, j ∈ {2, . . . , N},

Ṫij =
(Tij−1 − 2Tij + Tij+1)

h2
+

(Ti−1j − 2Tij + Ti+1j)

h2
,

Ti1 = TiN = 0 ,

Ṫ1j =
(T1j−1 − 2T1j + T1j+1)

h2
+

(2hu1 − 2T1j + 2T2j)

h2
,

ṪN+1j =
(TN+1j−1 − 2TN+1j + TN+1j+1)

h2
+

(2TNj − 2TN+1j + 2hu2)

h2
,

with initial condition

Tij(0) = z0(ζi, ζj) ∀ i, j ∈ N + 1 .

Letting the (i, j)-th entry of T ∈ R
(N+1)×N−1 equal Tij+1, the above differential

equations may be written in matrix form

Ṫ = ALT + TAR +B1u1 +B2u2 . (A.20)

The matrices AL ∈ R
(N+1)×(N+1), AR ∈ R

(N−1)×(N−1), B1, B2 ∈ R
(N+1)×N−1

in (A.20) are given by

(AL)ij = N2





2 (i, j) ∈ {(1, 2), (N + 1, N)}
− 2 i = j

1 i 6∈ {1, N + 1}, j = i± 1

0 else,

(AR)ij = N2





1 (i, j) ∈ {(2, 1), (N − 2, N − 1)}
− 2 i = j

1 j 6∈ {1, N − 1}, i = j ± 1

0 else,

and

(B1)ij =

{
2N i = 1, j ∈ N − 1

0 else
and (B2)ij =

{
2N i = N + 1, j ∈ N − 1

0 else.

The vec operation denotes columnwise stacking of columns, from left to right, of a
matrix into a vector. Taking vec of both sides of (A.20), and using standard vec
properties, gives

vec
(
Ṫ
)
= vec (ALT + TAR +B1u1 +B2u2)

=
(
IN−2 ⊗AL +AR ⊗ IN

)
vec (T ) + vec (B1)u1 + vec (B2)u2

= A vec (T ) +Bu , (A.21a)

where ⊗ denotes the Kronecker product, and

A := IN−2 ⊗AL +AR ⊗ IN , B :=
(
vec (B1) vec (B2)

)
.
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Further, by the trapezoidal rule,

y1(t) =

∫ 1

0

z(t, (p, 0)) dp ≈
N∑

j=1

z(t, (ζj , 0)) + z(t, (ζj+1, 0))

2N

=

N∑

j=2

1

N
T1j(t) = C1vec (T (t)) =: Y1(t), ∀ t ≥ 0 , (A.21b)

where C1 ∈ R
N(N−1) is given by

(C1)i :=





1

N
i = 1 + k(N + 1), k ∈ {0, 1, . . . , N − 2}

0 else.

Similarly,

y2(t) =

∫ 1

0

z(t, (p, 1)) dp ≈
N∑

j=2

1

N
TN+1j(t) = C2vec (T (t)) =: Y2(t), ∀ t ≥ 0 ,

(A.21c)
where C2 ∈ R

N(N−1) is given by

(C2)i :=





1

N
i = (k − 1)(N + 1), k ∈ {2 . . . , N}

0 else.

The controlled and observed linear system (A.21) is a finite-dimensional approxi-
mation of the controlled and observed PDE (4.3) used in our numerical simulations.
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