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ABSTRACT 

The load capacity of the punched metal plate timber joints is established, in general, by 

empirical means as a result of destructive testing in accordance with relevant national 

standards. The basis of tests is tensile or compressive loading applied parallel and 

perpendicular to the grain of the timber. In general, the design-analyses of trusses are based 

on the assumption that joints behave as pins due to the concentration of fasteners in a small 

area limiting the moment arm. 

A number of testing methods and apparatus were developed to determine the behaviour of 

the punched metal plate timber joints under different types of loading (tension, compression 

and moment). A combined programme of experimental and analytical work was carried out 

to evaluate the semi-rigid characteristics of the punched metal plate timber joints with respect 

to the level of translation and rotational rigidity under short term loading. The effects of 
different parameters such as load and deformation rates, number and length of bites, 

thickness of the plates and the orientation of the plates and timber grains were considered. 

The load-displacement and moment-rotation characteristics were studied and empirical 

models were developed to simulate displacements up to failure loads. 

The study results show that the strength and stiffness of the joints can be expressed in terms 

of connector parameters. Increasing deformation rate, number of bites, length of bites, 

thickness of the plates and decreasing plate and grain orientations would increase the strength 

and stiffness of the joints. Also, the results show that the punched metal plate connections 

can possess a considerable moment capacity. 

A statistical technique was used to classify the level of importance of parameters such as 

number of bites, length of bites and grain direction on the performance of the punched metal 

plate timber joints. All the specimens were tested under both tension and compression loads 

up to failure. From the tests and analysis carried out it was found that the grain direction had 

significant effect on the performance of the joints under tensile loading and the effectiveness 

of the grain direction was less when joints were subjected to compressive loading. There was 

a strong indication that the effect of the number of bites was dominant when joints were 

subjected to compressive loading. 
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A design flowchart for punched metal plate timber joints is provided incorporating the 

research findings into a design/analysis process. 
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CHAPTER ONE 

INTRODUCTION 



1. INTRODUCTION 

1.1 Timber as a structural material 

Timber is one of the oldest known materials used in construction, it was probably the first 

construction material used by man. Timber was used extensively for buildings during the 

second-world war to fulfill the various needs of the military, which required building with 

large open floor space. Thus, long-span timber trusses were the main structural systems used. 

These structures required long timbers with large cross sections. Connection in these trusses 

were not achieved using bolts alone, timber connectors such as split rings, and shear plates 

were used, [Halloran, 1992; Quenneville and Chanson, 1994,1996; Cheng, 1991; Quenneville 

et al., 1993; Jackson and Dhir, 1988; Somayaji, 2001]. 

Timber is a cellular, brittle anisotropic material, it has different strength properties when 

loaded in different directions e. g. parallel or perpendicular to the grain and when loaded in 

tension it produces sudden brittle failure. Timber engineering today is a growth industry and 

much of this expansion has been made possible by the developments that have taken place in 

timber jointing. The revolution in house roofing has taken place with the development of the 

trussed rafter and the innovatory truss connector plates, [Mercer, 1982; Mamlouk and 

Zaniewski, 1999]. 

The behaviour of wood structures is very complex because of non- linearity, sensitivity to 

creep, biological degradation, and variability of the material and connections. Therefore, 

accurate analysis of wood structures call for an applications of sophisticated procedures, 

especially when evaluating ultimate load and deflections at over-load conditions. [The sub- 

committee on wood research, 1986]. The behaviour of wood members in a load-carrying 

system depends on the material properties of wood and on the connection between the 

members. The serviceability and the durability of a structural system depend mainly on the 

design of the joints between the elements. 
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1.2 Timber roof trusses 

Trussed rafters have been used in United Kingdom since the later half of the 1960s. They 

have been used mainly for roofs of domestic buildings but increasing use is being made of 

them for larger buildings such as schools, institutional buildings and industrial premises, 

[Mayo et al., 1983; Ransom, 1979]. 

Timber engineering today is a growth industry and, therefore, much of the recent expansion 

has been made possible by the developments that have taken place in timber trusses. 

Conventionally, connecting the joints in these timber trusses are made by the use of bolts, 

split rings or shear plates. The revolution in house roofing has taken place with the 

development of the trussed rafter and the innovatory truss connector plates, [Mercer, 1982]. 

The invention of the punched metal plate fasteners ( PMPF's ) in the USA in mid 1950's 

brought about the ability to make strong / stiff in-plane connections which were as strong as 

the timber members being joined. The benefits of the prefabrication and material efficiency 

led to rapid penetration into the domestic roof market, [Whale, 1991 ]. 

The traditional use of nail plates has been in the fabrication of roof trusses and so successful 

has it been that an industry has developed based on that application. This industry is well 

established worldwide and features sophisticated analysis and design computer packages and 

highly automated fabrication processes. The output of these process is a reliable precision 

product of high uniform quality, [William, 1994]. 

1.3 Timber connections 

Assembling of building structure with timber members involves great amount of joining and 

connecting, this assemblage is typically achieved by use of various types of connecting 

devices, called fasteners which vary with regard to the form of the connected members. Joints 

often are the weakest link in timber structures. A joint is an assembly of two or more 

structural elements which transfer shear, axial (compression or tension) loads and moments 

from one member to another. There are several joint types used for timber structures, most of 
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them mechanical, which allow on-site installation regardless of environmental conditions. 

The serviceability and the durability of timber structures depend mainly on the design of the 

joints between the elements. The selection of fasteners is not only controlled by the loading 

and the load-carrying capacity condition but also includes some construction consideration 

such as aesthetics, the cost efficiency of the structure and the fabrication process. The 

erection method and the preference of the designer or the architect are also involved. The 

simpler the joint and the fewer the fasteners, the better is the structural results, [Natterer, 

1992; Racher, 1995a]. 

Joints are often the most critical components of any engineered structure and can govern the 

overall strength, serviceability, durability, and fire resistance, [Smith and Foliente, 2002]. All 

the engineering design spent on getting the right truss member sizes and spans may be for 

naught, because if the buildings are subjected to extreme loads, the joints could fail and the 

building will be severely damaged. This can happen due to less concern about the design of 

connections. On the other hand, the opposite might happen. Having too stiff and very strong 

joints might lead to the fact that timber members would fail to hold due to their brittiness. 

Unlike steel, timber failure is inherently brittle and can lead to catastrophic system failure. 

Although it is not a regular habit, it is quite possible to design ductile connections, [Madsen, 

1998; Rodd, 1998]. Therefore, a balance must be considered between the behaviour of both 

the members and the joints when designing for such structures. This leads to the importance 

of doing detailed study of joint connectors. 

The traditional mechanical fasteners are divided into two groups depending on how they 

transfer the forces between the connected members. The main group corresponds to the 

dowel type fasteners. Here, the load transfer involves both the bending behaviour of the 

dowel and the bearing and shear stresses in the timber along the shank of the dowel. Staples, 

nails, screws, bolts and dowels belong to this group. The second type includes fasteners such 

as split-rings, shear-plates, and punched metal plates in which the load transmission is 

primarily achieved by a large bearing area at the surface of the members, [Racher, 1995; 

Kermani, 1999]. 
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1.3.1 The Punched Metal Plate Timber Fasteners 

The punched metal plate timber fasteners ( PMPTFs ) are now available in a wide variety of 

sizes and types from several different manufacturers in the United Kingdom as well as other 

countries. They are manufactured from pre-galvanised mild steel or stainless steel strips. A 

punched metal plate fastener is defined in prEN1075 " Timber structures - test methods - 
joints made of punched metal plate fasteners" as a fastener made of metal plate of nominal 

thickness not less than 0.9mm and not more than 2.5mm, having integral projections punched 

out in one direction and bent perpendicular to the base of the metal plate, being used to join 

two or more pieces of timber of the same thickness in the same plane. 

Punched metal plate fasteners are suited to factory prefabrication and are able to transfer 

member forces with smaller connection areas than are possible with hand-nailed plates. They 

are widely used for light-framed timber trussed rafters and also for in-plane joints in other 

components. Such components are handled with care since the joints are flexible out-of plane 

and can be damaged during erection. Guidance on handling is contained in BS5268 Part 3 

and in prEN 1059. Load is transferred in punched metal plate fasteners from the timber 

member into plate teeth, then from the teeth into steel plate and across the joint interface, 

then back down into the teeth in the other member. Joints are designed and fabricated with 

pairs of plates on opposite faces of the member, [TRADA, 1996]. 

The strength and stiffness of the punched metal plate timber joints depends on several 

parameters, some of which are related to timber properties such as (wood species, geometry 

of wood, moisture contents, and wood density). Other parameters are related to the plate 

properties such as (plate size, plate thickness, number of bites, length of bites and plate 
direction). Also loading properties such as load rate, deformation rate, direction of load, type 

of load, duration of load may influence the strength/stiffness characteristics of a timber 

structure, [Quaile and Keenan 1979; Lau 1977,1987; Suddarth et al. 1979; Wigh 1977; 

Wilson 1978; Kirk et al. 19891. 
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In the UK, there are mainly four system owners, namely, in alphabetic order, Gang-Nail, 

MiTek, Trusswal / Twinaplate and Wolf. The largest proportion of the UK market is supplied 
by MiTek and Gang-Nail. MiTek owns both the Hydro-Air and Bevplate trade names, 
Trusswal and Twinaplate have recently merged. The system owners supply the Firms they 
license with connector plates, computer software and general advice on manufacturing 

methods, [Bellamy, 1994]. 

1.4 Timber design codes 

In the United Kingdom timber design is currently going through a major period of change as 

a result of the introduction of EC5 and BS5268: Part 1, both limit state design codes rather 

than the permissible stress approach used by BS 5268: Part 2. In anticipation of the 
introduction of the new codes the Timber Research and Development Association (TRADA) 

conducted a review of design practice for timber joints and established research data that was 

needed to support joint design to the new EC5 design code. The review highlighted the 

general lack of joint embedment response data available which is needed to facilitate joint 

design to EC5 [Larsen, 1992; Claisse and Davis, 1998]. 

Joints have proved to be the biggest stumbling block in design and therefore, have been the 

subject of many and varied researches. One reason is that the behaviour of the joints is not 
fully understood. 

The load capacity of the punched metal plate is established, in general, by empirical means as 

result of destructive testing in accordance with relevant national standards. The basis of tests 
is tensile or compressive loading applied parallel and perpendicular to the grain of the timber. 

Most national codes do not even detail information on shear tests. In general the design- 

analyses of trusses are based on the assumption that joints behave as pins due to the 

concentration of fasteners in a small area limiting the moment arm. At present time 

connections are assumed either rigid or pinned. In either of these two conditions, the forces 

obtained are unreliable and do not represent the actual structural behaviour. Design under 

either of the two assumptions are also inefficient and lead to over design or under design 

members. The actual behaviour of many connections is a partially rigid condition. 
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This research concentrates on the behaviour of punched metal plate timber connections under 

different types of loads. Moreover, study of the characteristics of these plates would lead to 

better understanding of their behaviour when tested accordingly. Also, empirical models are 

always desired to facilitate the stiffness and strength prediction of the connected joints. 

1.5 Research objectives 

The overall objective of this research programme was to investigate the behaviour of the 

punched metal plate timber connections, and to examine some of the main factors affecting 

connection performance. The objectives of this research programme were as follows. 

1- To review all research effort on the subject to date. 

2- To develop simple repeatable test methods and apparatus for testing the punched metal 

plate timber joints, subjected to tension, compression and moment forces. 

3- To characterize factors that influences the load-carrying capacity and performance of the 

punched metal plate timber fasteners and to classify the level of importance of these 

factors. 

4- To evaluate the semi-rigid characteristics of the connections and the influence of 

connection rigidities on the structural behaviour and performance of truss/frame systems. 

5- To assess the influence of change in deformation and loading rates on the strength and 

stiffness of punched metal plate timber connections. 

6- To develop empirical models that simulate the moment anchorage capacity, the load- 

deformation and moment-rotation characteristics of punched metal plate timber 

connections in timber structures. 
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7- To provide a design flowchart for the punched metal plate timber joints and to fulfil the 

short-comings in the design codes. 

1.6 Contents of the thesis 

This thesis consists of 9 chapters. Chapter 1 gives an introduction to the thesis; general 
background to the subject and research objectives. 

Chapter 2 details a review of the general research work carried out on timber joint structures. 

Particular attention was made to the structural behaviour of the punched metal plate timber 

connections. 

Chapter 3 describes the details of the laboratory work and testing needed to be carried out in 

order to investigate the behaviour of the punched metal plate timber joints. This chapter 
includes testing program and methodology of tests on joints subjected to tension, 

compression and moment loads. Also, it describes the different parameters that were tested. 

Chapter 4 describes a series of tests carried out on timber joints made with punched metal 

plate timber fasteners in which the load was applied parallel to the grain of the timber. The 

specimens were loaded to failure both in tension and compression, in order to determine the 

influences of deformation and loading rates on the behaviour of the joints. Empirical models 
describing the stiffness of the joint when load is applied at different deformation rates are 

presented. 

Chapter 5 provides details of the experimental work investigating load-displacement 

characteristics of the joints subjected to tensile loads, in which the effects of different 

parameters such as number of bites, length of bites, plate thickness and grain directions were 

considered. Empirical models were established to calculate the stiffness of the joints based on 
load-displacement relationships. These models have been compared with the experimental 

results. 
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Chapter 6 is similar to the previous chapter in terms of structure. However, this time joints 

were subjected to compression loads instead of tensile loads. 

Chapter 7 investigates factors influencing the behaviour of the punched metal plate timber 

joints, a statistical technique was used to classify the level of importance of these factors on 

the performance of the joints. In addition, this chapter presents a comparison of the stiffness 

of the joints in relation to the grain direction between the empirical models developed in 

chapter 5 and 6 and the procedure described by previous research. Also, this chapter 

describes the effects of the teeth directions on the performance of the joints. 

Chapter 8 describes details of the experimental work investigating the moment-rotation 

characteristics of the joints, using punched metal plates with different parameters such as 

number of bites, length of bites, plate thickness and grain directions. Empirical models that 

calculate the rotational stiffness based on moment-rotation relationships were developed. The 

models vary according to grain direction or plate parameters involved in the equation. Also, 

an empirical model that calculates the moment anchorage stress of the plate was developed. 

These models have been compared with the experimental results. 

Chapter 9 outlines a summary of the conclusions and recommendations for future research. 

9 



CHAPTER TWO 

LITERATURE REVIEW 



2. LITERATURE REVIEW 

2.1 INTRODUCTION 

The load transfer mechanisms in timber trusses and the semi-rigid characteristics of the 

timber connections have appeared in the literature in the past. The semi-rigid behaviour of 

the punched metal plate timber joints depend on several parameters, some of which are the 

wood species, geometry, moisture contents, and the interlayer gap in the joint members. In 

this chapter, an overview of the research work carried out on the structural behaviour of 

punched metal plate timber joints is made. Various factors affecting the behaviour of the 

timber joints, in particular punched metal plate timber joints are discussed. Commonly used 

mechanical joints and use of a high performance jointing system are detailed in section 2.2. 

In section 2.3, a description of the uses, design, and manufacture of trussed rafters are 
investigated, as well as their behaviour and structural characteristics. The background related 

to the development of the mechanical timber joints codes such as Eurocode 5 and the British 

standard BS 5268 is given in section 2.4. The future development, recommended design 

procedure, and review of design practice are also discussed in this section. The analysis of 

anchorage moment capacity of mechanical timber joints is presented in section 2.5. The load- 

displacement characteristics of timber joints as appeared in the literature are discussed in 

section 2.6. The overall behaviour of the load and moment capacity of the mechanical timber 

joints is presented in section 2.7. Reviews of the efforts on the strength and stiffness 

behaviour of timber joints are described in section 2.8. Section 2.9 summarises the duration 

and rate of loading effects under short and long duration loading. Section 2.10 describes the 

research efforts on the effects of the number of nails and size of the joints. Section 2.11 

details the grain direction effects on the performance of the joints. Finally, a brief summary 

of this chapter is given in section 2.12. 



2.2 CONNECTION SYSTEMS 

Timber connectors have been in use for over a century and more than 60 different types were 

patented in Europe and the United States prior to 1930. The first connector patented in the 

United States was in 1889 and it was a toothed metal plate [Thomas, 1982 ; Faherty, 1995]. 

Development of timber connectors occurred more rapidly in Europe, primarily the result of 

the need to use wood for many new tasks related to world war I. Development in the United 

States occurred during the thirties and was greatly accelerated as the result of the need for 

many structures during world war II where over one billion square feet of new structures 

were built in the first six months of 1942. Many of these structures used a trussed roof system 

and the members of the truss were joined by timber connectors, such as split rings [Faherty, 

1995]. 

The use of a high performance jointing system has the potential to achieve substantial 

reductions in the volume of timber used in conventional structures such as roof trusses. A 

number of different jointing systems exist for large timber structures ranging from laterally 

loaded dowel-types to a range of timber connectors and those employing structural adhesives 

[Claisse and Davis, 1998]. 

The use of timber in the construction industry has been hampered by the weakness of the 

jointing system used. It is clear that, as the structural capabilities of modem timber products 

become more widely realised, high performance connection systems must be available to 

facilitate the exploitation of these materials. The use of traditional connections such as bolts 

and nails in conjunction with steel plates in an exposed fashion can result in very unsightly, 

bulky and inefficient connections in larger structures. The type of fastener used with a timber 

connector in a joint has an effect on the capacity of the joint. When a lag screw is used in 

place of a bolt, a reduction in the design value may be appropriate. This is dependent on the 

specific gravity of the wood and the diameters of penetration of the lag screw into the 

member holding the point of the lag screw. As the length of penetration of the lag screw 

decreases below a certain length, the stiffness of the joint decreases. 
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Timber joints can be categorized as those made with dowel-type fasteners, and surface 

connections [Madsen, 19981. The traditional mechanical fasteners are divided into two 

groups depending on how they transfer the forces between the connected members. The main 

group corresponds to the dowel type fasteners. Here, the load transfer involves both the 

bending behaviour of the dowel, bearing, and shear stresses in the timber along the shank of 

the dowel. Staples, nails, screws, bolts and dowels belong to this group. The second type 

includes fasteners such as split-rings, shear-plates, and punched metal plates in which the 

load transmission is primarily achieved by a large bearing area at the surface of the members 

[Racher, 1995a]. Examples of mechanical fasteners are shown in figure 2.1. 
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Nail plate connector Punched metal plate connectors 

Figure 2.1 Examples of mechanical timber fasteners. 
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Very little research is currently underway in the area of member to member timber 

connection systems, particularly those which offer moment resistance. Some proprietary 

research is of critical importance if timber is to continue to expand its uses in the moderate to 

heavy timber construction industry. 

Thomas (1982) discussed commonly used mechanical fixings for structural timber joints such 

as nailed joints, stapled joints, screwed joints, coach screwed joints, bolted joints, steel 

dowels, toothed plate connectors, and split-ring connectors. He outlined some aspects of 

interaction that the mechanical fasteners have with timber, which provided information on 

the basic formula (SI units) used in the structural timber code (CP112 : Part 2) and (BS 5268 

. 
Part 2). 

Racher (1995a) presented the most common mechanical fasteners used in timber structures 

and described fasteners basic properties and their load-carrying capacity. Then, general 

guidance and recommendations relating to the layout and the design of timber connections 

are given. 

Bainbridge and Mettem (1997 and 1998) presented a review of methods which can be 

employed for the formation of concealed moment-resisting connections in timber structures. 

The review considers technologies and connection systems which are commercially available 

and also those under development. It is concluded that the wide range of structural timber 

connection systems can be categorised into five generic types : concealed bonded-in rods, 

concealed bonded-in plates, adhesive bonded surface contact joints, timber connectors within 

lapped joints and dowel-type connections. In Figure 2.2 a variety of concealed connection 

systems are illustrated. 
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Figure 2.2 a variety of concealed connection systems. 

In current timber design, member sizes are often determined by the need to have adequate 

section sizes for jointing. The use of a high performance jointing system has the potential to 

achieve substantial reductions in the volume of timber used in conventional structures such as 

roof trusses. Claisse and Davis (1998) tested four different jointing systems which are 

suitable for large timber sections (standard black bolts, split ring / shear plates, resin bonded 

steel dowels, and butt joints with bonded uni-axial glass (GRP) reinforcement). The results 

shown that the shear plates and the glass-reinforced joints offered the best performance. 

The selection of fasteners is not only controlled by the loading and the load-carrying capacity 

conditions but also includes some construction considerations such as aethetics, the cost- 

efficiency of the structure and the fabrication process. 
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2.3 TIMBER TRUSSED RAFTERS 

Trussed rafter roofs were introduced to the United Kingdom since the latter half of the 

1960's. They have been used mainly for roofs of domestic buildings, but their use is on the 

increase in larger buildings such as schools, institutional buildings and industrial premises 
[Mayo et al., 1993). 

Over the past 30 years, over 50 million trussed rafters have been manufactured and 
incorporated into the roof of various buildings in the UK. The trussed rafter system has 

revolutionized timber roof construction, with significant cost savings resulting from the more 

efficient use of timber and from prefabrication. Automation of structural design and detailing 

within the industry has greatly increased the reliability and accuracy of the process and 

permits the successful handling of evermore complex roof structures. [Bellamy, 1994] 

The term "truss rafter" covers prefabricated timber roof trusses, beams and other components 

constructed to individual design requirements. The design of trussed rafters in the UK is 

covered by BS 5268 : Part 3. They are manufactured from stress-graded softwood timber 

with moisture content not exceeding 22% [Newton, 1985]. 

The use of punched metal plates in the fabrication of roof trusses has been so successful that 

an industry has developed on that application. This industry is established world-wide and 

has developed sophisticated software packages capable of designing complex engineered 

components. The design of trussed rafters is based on the results of extensive research and 

testing and on the experience gained with the use of trussed rafter roofs in the United 

Kingdom and other countries. 

The behaviour of punched metal plate connected wood trusses can be characterized as semi- 

rigid. These joints allow some relative movement (axial, translation, and rotation) between 

the joined members in the plane of the truss due to concentric or eccentric forces in the 

members. Joint deformation can be responsible for a substantial proportion of the overall 

deformation of the structure and it often has a significant bearing on the internal force 

distribution. 
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Gupta and Gebremedhin (1990) developed a method for testing of an actual metal plate 

connected to wood truss joints using a truss- joint testing apparatus. The testing apparatus 

provided the flexibility to test different truss joints without major modifications. The three 

types of joints tested were the tension splice, heel, and web at the bottom chord. Load- 

displacement characteristics and failure modes of metal plate connected wood truss joints 

were presented. In-plane loads were applied to simulate the loads carried by truss members. 
The computerised testing apparatus and methods showed potential as an efficient testing 

procedure to assess joint behaviour. The failure of the heel joints was characterised as 
ductile, and that of the tension splice and web at the bottom chord joints as brittle. The failure 

of the joints was a combination of wood and teeth failure. The results were useful for semi- 

rigid joint analysis and design of metal plate connected wood trusses. 

The trussed rafters have been designed to achieve minimum use of raw materials, maximum 

off-site prefabrication, reduction in erection time, care of quality control, and a sharp 

reduction in cost of roofing. The truss plate was developed in the mid 1950's in the USA and 

was used extensively there by 1960. It was introduced into UK in 1962 and, within 6 years, 

80% of house roofs incorporated trussed rafter construction. There were approximately eight 

plate manufacturers and over 200 truss fabricators. The structural testing laboratory came to 

the conclusion that there was little difference in the performance of plates supplied by 

different manufacturers [ Mercer, 1982]. 

Structural characteristics of the joints must be derived from full scale load tests to be used as 
input for improved analysis and design of trusses. Several researchers (Qualle and 
Kbenan1979; McLain 1983; Gupta and Gebremedhin, 1988; Hansen and Mortensen, 1991) 

have emphasized the need for testing actual truss joints to determine their structural 

characteristics and failure modes. 

Foo (1993) investigated the behaviour of many aging and deteriorating timber Warren truss 

buildings built in early 1940. Sixteen full-size wooden Warren trusses were tested to failure 

to determine their load-carrying capacities and a total of four different joints typical of those 

found in a Warren truss structure were tested. The truss members were generally connected 

with split ring and bolt. The tests provided experimental confirmation that the repaired timber 

Warren truss hanger can be considered safe in withstanding specified loads, and satisfies both 
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the strength and the serviceability requirements of the canadian building codes. Test results 

also indicated that gusset plate reinforcement at the joints has beneficial effects in increasing 

the load-carrying capacities of the trusses. 

Bellamy (1994) described the design, manufacture and use of trussed rafters and discussed 

the interaction of structural engineers with the industry, emphasizing the importance of clear 

allocation of design responsibilities. 

Zhong et at. (1996) provided a practical approach to model trusses and roof truss systems by 

using a commercially available software, ETABS. The model developed in this study takes 

into account the system behaviour from load sharing and composite action, the semi-rigidity 

of the metal-plate-connected joints, and joint eccentricity. The model was verified by 

comparing the predicted deflections, member internal forces, truss strengths, and the load 

sharing of roof systems with the full-scale experimental results available in the literature. 

Vatovec et al. (1997) developed a three dimensional (3-D) finite-element joint model and 

several two-dimensional (2-D) joints models. A beam element based finite-element model, 

with different joint-stiffness assumptions ( pinned, rigid, and semi-rigid), was used to analyze 

the full-scale behaviour of a metal-plate-connected (MPC) wood scissors truss. The truss 

displacement and force results were investigated for sensitivity with respect to the modeling 

approach. To validate the assumption that the overall truss displacement predictions from 

different models were realistic, the results were compared to and shown to be within 10% of 

the experimental results. Greater variability existed between the truss member forces and 

moment results, as predicted by various models, depending on the modeling approach used. 

The 3-D models prediction of moments at the heel joint were significantly higher than the 

predictions of the 2-D models. The differences in results demonstrated the importance of 

selecting a modeling approach capable of accurately predicting member forces and moment 

distributions. The 3-D model, developed primarily for detailed analysis of individual MPC 

joints, was successful in predicting selected displacements of the test truss. Its use 

demonstrated a potential for future applications of such models in the analysis and design of 

MPC trusses. 

19 



Li et al. (1998) investigated a practical approach to model trusses and roof truss systems using 

a commercially available software program, ETABS. The model developed in this study took 

into account the system behaviour from load sharing and composite action, the semi-rigidity 

of the metal plate connected joints and joint eccentricity. 

2.4 TIMBER JOINTS DESIGN CODES 

The design of timber joints using mechanical fasteners has changed over the years. The need 

for more economic structures has exercised the mind of many design engineers, and those 

experienced in timber engineering. The serviceability and durability of the structures depend 

mainly on the design of the joints between the elements [Aasheim, 1995]. Figure 2.3 shows 

key elements needed to develop or support a design procedure for timber joints. 

At R 

Test procedures for Evaluation 
specific type/classes 

method(s) to 
of fasteners C 

obtain 

characteristic 
Design procedure 

10 for timber joints 
AZ values and 

Test procedures for nominal design 

whole joint systems values 

Figure 2.3 Key elements needed for joint design procedure (Smith and Foliente, 2002). 

The approach to the design of timber joints in the Eurocode 5( EC 5) differs radically from 

that used in British codes ( BS 5268 ). The design philosophy in BS 5268 is based on 

permissible design ( working stress ), whereas the EC5 is based on limit state design. The 

approach used in BS 5268 is based on empirical data, whereas the EC5 is based on ultimate 

load theory developed by Johansen ( 1949) [ Hilson and Whale, 1990]. 
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The EC5 used Johansen's theory as the basis for the calculation of the ultimate strength of 
joints made from nails, staples, screws, bolts, and dowels but used simplified forms of the 

equations. For example, in nailed joints the code imposes lower limits on penetration depth in 

order to enforce a mode 3 type of failure. Therefore: 

R= N[2-. My. fb. d ................................................................................. (2.1) 

where 
R: is the ultimate resistance per shear plane. 

My: is the plastic moment of resistance for the fastener. 

fb is the embedment stress 

d: is the fastener diameter. 

Substituting the values of fb, M, 9 f,, in equation (2.1) 

f, = 0.09. p. d °" N/mmZ 
................. 

(a) 

M,, = f,. °'6 N. mm ................. 
(b) 

and f,, =50( 19-d) N/mm 2 
.................. (c) 

Equation (2.1) yields to R=5.34 
, 
F1- 4. d1-82 V 

................................. (2.2) 

where 

p: is the density of the timber or sheet material kg/m' 

Equation (2.2) approximates to R=6.4 d16 the form of the equation used in EC 5. NFp 

2.4.1 BS 5268 - Part 2: 1996 

The permissible load for a nailed joint is determined as the sum of the permissible loads for 

each nail in the joint, where each permissible nail load, F.,,, is calculated from the equation : 

.......................................... ............... ..... F,,. =FxK�xK49xK.. (2.3) 
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where 
F: is the basic load fora nail. 

K, : is the modification factor for duration of loading. 

K, 9 is the modification factor for moisture content. 

K 50 : is the modification factor for the number of nails in each line. 

For duration of loading : 

K48 =I for long term loads. 

K 48 = 1.25 for tempered hardboard-to-timber joints: medium-term loads. 

K 49 = 1.40 for particleboard-to-timber joints: medium-term loads. 

K 48 = 1.12 for other than tempered hardboard-to-timber and particleboard-to-timber joints: 

medium-term loads. 

K 48 = 1.62 for tempered hardboard-to-timber joints: short-and very short-term loads. 

K 
49 = 2.10 for particleboard-to-timber joints: short-and very short-term loads. 

K48 = 1.25 for other than tempered hardboard-to-timber and particleboard-to timber joints: 

short-and very short-term loads. 

For moisture content : 

K�= 1.00 for lateral loads in joints in service class land 2. 

K 49 = 0.70 for lateral loads in timber-to timber joints in service class 3. 

K, 9= 1.00 for lateral loads using annular ringed shank nails and helical threaded Shank 

nails in all service class conditions. 

K 49 = 1.00 for withdrawal loads in all constant service class conditions. 

K49 = 0.25 for withdrawal loads where cyclic changes in moisture content can occur after 

nailing. 
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For the number of nails in each line : 

Where a number of nails of the same diameter, acting in single or multiple shear, are 

symmetrically arranged in one or more lines parallel to the line of action of the load in a 

primarily axially loaded member in a structural framework, then : 

K50 =1.0forn<10. 

Kso =0.9forn? 10. 

Where n is the number of nails in each line. In all other loading cases, where more than one 

nail is used in a joint : 

K50 = 1.0 

The latest revisions of BS 5268 and EC 5 both provide guidance on the design of dowel-type 

fasteners, but are limited when designing full connections with other factors, such as the 

general state of stresses in the connection area, proportions of load carried by each fasteners, 

dowel slenderness and fabrication tolerances, needing additional assessment by the designer. 

Canadian wood design standard 086.1-94 "Engineering design in wood (limit state design)" 

(CS 1994), provides the following equation for determination of connector strength. 

P, = (D P. (KD Ks,. Kr) nF(JG Jc JrJ0 Jr) 
....................................... 

(2.4) 

where 

( resistance factor ( 0.6 for timber connectors ) 

P. : is the connector specified strength parallel-to-grain. 

Ko load duration factor. 

K SF service condition factor for fastenings. 

Kr: treatment factor. 

n t.: number of fastenings. 

JG factor for groups of fastenings. 
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Jc connector configuration factor. 

JT thickness factor. 

Jo factor for connection orientation in grain. 

Jp : factor for lag screw penetration. 

In anticipation of the introduction of the new codes the Timber Research and Development 

Association (TRADA) in England, conducted a review of design practice for timber joints 

and established research data that was needed to support joint design to the new EC5 design 

code. The review highlighted the general lack of joint embedment response data available 

which is needed to facilitate joint design to EC5. 

Hilson and Whale (1990) summarised the background to the clauses for joints in EC5 and 

discussed possible future developments. They outlined the theoretical basis of the Eurocode 

approach and made comparisons with BS 5268. They then suggested a modified approach for 

future codes. 

Whale (1995) highlighted some design principles appropriate to joints made with punched 

metal plate fasteners based on the design method given in ECS. The principal factors 

influencing the strength of punched metal plate fastener joints are introduced. The test 

method used in EC5 to establish required plate sizes for joints is based on both their 

anchorage strength and their net cross-sectional steel strength. Finally, some general plate 

dimension rules are given, along with a description of the means by which the slip of 

punched metal plate fastener joints can be predicted under load. 

Baraldi and Junior (1996) developed test method for the new Brazilian standard for timber 

structures (NBR 7190/1996-Design of timber structure), to determine the strength, stiffness 

and to verify failure modes of timber joints made with metal plate connectors (PMC). Timber 

joints were subjected to shear, tension and withdraw resistance. 

O'Regan et al. (1998) presented a design procedure for determining the steel net-section 

capacity of metal-plate connected (MPC) tension splice joints subjected to combined tension 

and bending. Several common wood truss splice joint configurations were tested in combined 

tension and bending. All of the joints tested failed in the steel net-section of the truss plates. 
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Three models were developed to predict the ultimate strength of the steel net-section of the 

splice joints tested. A design procedure for determining the allowable design capacity of the 

steel net-section of a splice joint subjected to combined tension and bending was developed 

based on the most accurate model. The recommended design procedure was then compared 

with two alternative design methods for checking the safe capacity of the steel net section of 

tension splice joints of MPC wood trusses subjected to combined tension and bending. 

Reffold et al. (1999) described tests carried out on timber joints, formed with punched metal 

plate fasteners subjected to tension force perpendicular to the grain. The work was 

undertaken at the Building Research Establishment (BRE) in three phases. (1) development 

of a test rig and testing of full-scale girder trussed rafters. (2) development of a test rig and 

testing of concentrically loaded trussed rafter components. (3) development of a test rig and 

testing of eccentrically loaded trussed rafter components. The recently published BS 5268 

Part 3: 1998 code of practice for trussed rafter roofs contains a design formula for the first 

time that provides a method for establishing the adequacy of nail plate joints subject to 

tension forces perpendicular to the grain and is a result of the work carried out in phase (1) of 

this investigation. The results are presented and compared with design guidance given in the 

1997 draft BS 5268 : Part 3. 

The mean failure loads ( F.,, ) are compared with calculated failure loads (T_, ) given by the 

following formula from BS 5268 Part :3 

61.90. K = K< (3Tb(w+16d)) ............................................................... (2.5) 

where 

Qt K: characteristic tension stress perpendicular to the grain, taken as 

1.1 N/,. 

T: net tension force at the joint interface in the direction 

perpendicular to the grain ( N) . 
Ke : 1.0 in this instance but varies between 1.33,2.00, and 3.00 for 2,3 and 4 ply 

eccentrically loaded members respectively. 

iv : length of the nail plate measured parallel to the grain of the chord member ( mm ). 
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b: member thickness (mm). 

d: fastener (nail plate) bite (mm). 

Based on this comparison a revised design formula was presented as : 

a,. 9o. x =T/ b[w + 4.2d x (d / 45) o., ] ..................................................... (2.6) 

At the time of writing, BS 5268 : Part 3: 1998 was published and the term 'b' (member 

thickness) was removed from the design equation. The published equation is : 

= K, [ 0.06T / (w + 16d)] ........................................................... (2.7) 

Smith and Foliente (2002) presented a review of international practice for design of 

mechanical timber joints, and discussed the scope of work needed to elevate load and 

resistance factor design of joints so it is on a comparable to load and resistance factor design 

of timber members. Suggestions are made regarding actions necessary to place member and 

joint design on an equal footing. 

2.5 MOMENT ANCHORAGE CAPACITY 

The analysis of anchorage moment capacity of nail plate joints has shown that the plastic 

theory may be used in the calculation of anchorage stresses and in the strength verification 

of combined force-moment loading. The new European pre-standard for design of timber 

structures, Eurocode 5 (EC5) includes also the design rules for the moment capacity of nail 

plate joints for both the design in joint line and for the anchorage design between plate and 

timber member. 

Kevarinmaki (1996) has presented a non-linear method to simulate the moment capacity and 

the rotational stiffness behaviour of nail plate joints. Over 500 punched metal plate fastener 

joints test results, where the failure mode was moment anchorage, were analysed with the 

elastic and the plastic theory methods. The anchorage capacity in moment loading was 
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analysed and an alternative design method to that of Eurocode was presented. The problem 

of moment anchorage was handled in two phases : the force and moment stress distributions 

between plate and timber was determined first and then the anchorage strength ( lateral 

resistance of the embedded projections ) was checked for the combined force and moment 

anchorage stresses. The analysis methods of both of these phases may be divided to two 

categories : the elastic or plastic theory methods. 

(1) Elastic stress: 

The moment anchorage stress rA, ý,, may be calculated, based on the elastic theory in the 

actual point (i) of the effective nail plate area, from 

_ 
M,, r; tMýd. 

i .............................................................................. 
(2.8) 

Ip 

where 

MA: is the moment acting at the centroid of the effective area. 

Io: is the polar moment of inertia of the effective area. 

r; : is the distance from the centroid to the actual point of the effective area. 

(2) Plastic stress: 

When the moment anchorage stress rA, is supposed to be constant according to the plastic 

theory in the whole area Aef the stress rA, P, 
from moment M, acting at the centroid of the 

effective area is: 

rm. vr = 
M, 
W .. 

(2.9) 
P 

where W. is the plastic rotational section modulus defined as : 
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WP = frdA 
............................................................................... (2.10) 

'ýd 

Noren (1981) presented an approximate solution of WP for quadrilateral joint areas of nail 

plate surfaces : 

Wp=I Aef d 
.............................................................................. (2.11) 

where 
d: is the diagonal length of the effective area. It may be calculated from. 

d= (M)+h2 
........................................................................... 

(2.12) 

where 
h: is the maximum height of the surface perpendicular to the longest side. 

The rotational stiffness and the rotational capacity of nail plate joints have been verified 

based on the translation stiffness modulus and the ultimate slip values determined by 

standard axial load tests and compared with shear, eccentric tension and bending test results. 

Acceptable simplifications from the theoretical situation are presented for both the moment 

capacity and the rotational stiffness design. The result of analysis of the effect of timber to 

timber contact in chord splices is shown and the general simplified method to determine the 

force and moment components acting on the plate in both tension and compression loaded 

chord splices with the bending moment has been derived. 

Noren (1981) presented criteria for anchorage design using the following approximation in 

the form : 

( 
rF 

)2 +( 
rA/. PL 

)z <1.......... .................. (2.1 3) 
Lap 

FF. 
O. o 

23 



Using this criteria, no other design criteria is needed in the anchorage design. The loading 

direction with the nail plate (a) and with the grain direction ( a3) are always taken into 

account in term Noren suggested that the anchorage strength in the main direction 

a= O° would be generally a suitable maximum value for the plastic moment 

anchorage stress r� Pý . 

Kangas and Kevarinmaki (1995 ) have presented a comparison of the anchorage theories with 

292 shear, 116 bending and 44 eccentric tension test specimens of the anchorage failure. The 

analysis shows that the plastic theoretical moment anchorage stress TAl design is in better 

agreement with the test results and would be a better method than that based on the elastic 

theory as used in EC5. 

Induced stresses from both direct forces and moment acting on punched metal plate area may 

be calculated as follows : 

F, 
rF = Aff ........................................................................ (2.14) 

r ................... 
(2.15) 

where 

F, : is the resultant direct force acting at centroid of A,! . 

M4: is the total moment acting at the centroid of AfA. 

2.6 LOAD-DISPLACEMENT CHARACTERISTICS OF TIMBER JOINTS 

Many different shapes of load-displacement relationships are produced in literature from tests 

on timber joints of various types. The load-displacement relationship of timber joints is 

influenced by factors such as geometry and material properties for the connector and the joint 

members, method of fabrication, environment conditions, load duration, rate of loading and 

other factors [Smith, 1982; Wilkinson, 1971; 1972]. 
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The structural component of mechanical timber joints subjected to lateral loading is normally 

assessed with respect to their strength and displacement characteristics. This information may 

be obtained by type testing specific arrangements. A sufficient number of replicates should 

be tested to yield reliable estimates of any parameter used to define the distribution of load 

values corresponding to given joint displacements. Joint displacement is considered to be the 

relative displacement of the adjacent of a joint specimen. [Smith, 1982] 

Previous load history has a significant effect upon the load-displacement relationship of a 

joint specimen [Stluka, (1960); Wilkinson, (1971,1972); Mc Lain, (1975); Erki (1991)]. 

Analytical solution for the prediction of the load - displacement relationship for timber joints 

with dowel type connectors subjected to lateral loading have been presented by a number of 

research workers. They considered a joint as a two dimensional arrangement in the x and y 

plane which can be represented by a one dimensional beam on a winkler or discontinuous 

foundation (Hetenyi, 1939). For a winkler type foundation the force per unit length beneath 

the connector is taken to be directly proportional to the displacement at all points along the 

length of the connector. The problem reduces to the solution of the differential equation : 

d'M 
2=q...................................................................................... 

(2.16) 
dz 

where 
M: is the bending moment. 

q is the force beneath the connector. 

Foschi ( 1974 ) used a non-linear finite element model for the prediction of the load- 

displacement relationship for single shear nailed timber joints with lateral loading. He 

assumed that the nail is an ideal elastic-plastic material and that the load-deformation 

relationship for the foundation, which is assumed discontinuous, is of the form : 

P=(Pp+Piw)(1-exp(- Kºvp )) 
............................................ 

(2.21) 
0 
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where 

w: is the nail displacement. 

P 0, Pi and K are constants 

Later Foschi (1974) and Foschi and Bonac (1977) modeled the load-slip characteristics of 

nailed joints with predrilled steel plates, commonly used in the 1970's, by the finite-element 

method. Foschi et al. (1975) presented a semi-analytical, finite-element technique that 

predicted strength based on the failure of plate fasteners. 

Smith (1983,1988) also used the non-linear form of Foschi and Bonac (1977)'s model to 

describe foundation behaviour in an interactive finite-element model that included effects of 

bolt / wood friction, friction between wood members and fasteners. Load-displacement 

curves predicted by the model were good predictors (± 10%) of characteristic connection 

loads for displacements greater than 2 mm (0.08 in), but less accurate predictors (± 20%) for 

characteristics joint loads below 2mm ( 0.08 in ). The model predicted connection load- 

displacement curves up to 4 nun ( 0.16 in). 

Erki (1987) developed a model using one-dimensional finite element approximation to 

predict the short-term load-displacement response of a single fastener joint. The model treats 

the elasto-plastic behaviour of the fastener as well as the non-linear, non-elastic properties of 

the timber. It also accounts for some of the distinctive behaviour of timber joints such as 

fastener withdrawal, joint interface characteristics, and combined fastener bending and axial 

tension. 

Richard et a!. (1990) developed a finite-element analysis procedure applied to laterally 

loaded nails to give accurate load deformation relationships for a variety of nail joint details. 

Nonlinear nail and wood material properties from simple tests on nails and wood were used 

as inputs for the analysis. Analytical results for a wide range of joint details were presented. 

The results indicate how the basic design-code values should be modified to allow for 

differences in behaviour between nail plate joints with thick steel, thin steel, or plywood joint 

plates. The effect of factors, such as nail head size and shape as well as direction of loading 

with respect to the wood grain, were also considered. Finite-element analysis, with simple 

material tests on nails and wood as inputs, give reliable predictions of laterally loaded nail 
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joint behaviour over the complete joint deformation range. The analyses were in agreement 

with the experimental tests. 

Davalos and Pellicane (1992) developed a mathematical model to predict the load- 

deformation relationship of single-bolted connections in wood structures subjected to 

bending / tension loading. Analysis were made using a plane-stress, two-dimensional, 

orthotropic, linear-elastic finite-element model. 

Ying et al. (1998) presented a non-linear finite-element model for predicting the load-slip 

response of a single-shear nailed timber joint under reversed cyclic loading. A comparison of 

test data with model predictions demonstrates the validity of the model. The presented theory 

can be extended to analyse timber joints containing other dowel-type fasteners. 

2.7 LOAD AND MOMENT CAPACITY OF TIMBER JOINTS 

In timber construction, it is customary to design the connection as simple connection, i. e. no 

moment resisting capacity for the connections. This causes not only the use of more timber, 

but also the need for a bracing system, thus reducing the competitiveness of timber in 

construction [Cheng, 1996; Racher, 1995b]. 

The behaviour of timber members in load - carrying systems is dependent on the material 

properties of the timber and on the connections between the members [The subcommittee on 

wood research, 1979]. The behaviour pattern for moment - resisting connections can be 

described in terms of the connection types, component arrangement and the centre of rotation 

relative to the components of the connection [Smith, 1982; Faherty and Williamson, 1989]. 

Load is transferred in a punched metal plate fastener from the timber member into the plate 

teeth, then from the teeth into the steel plate and across the joint interface, then back down 

into the teeth in the other member. Joints are designed and fabricated with pairs of plates on 

opposite faces of the member. 
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BS5268 Part 3 gives positioning rules and rules for load capacity for punched metal plate. 

Permissible load for use with the code were determined by testing and are given in technical 

approvals. EC5 includes a number of equations which predict the strength of joints based on 

certain key characteristic plate strength properties. These plate properties should be 

established from standard tests whose basis is given in pr EN 1075. 

Mortensen et al. (1994) described tests and preliminary analysis of Knee joints of timber 

frames with mechanical fasteners in the form of nail-plate and nailed steel gussets. They 

presented their ongoing test program and theoretical work aiming at developing a finite 

element program that will predict the stiffness properties of moment resistant joints with 

punched metal plate fasteners (nail-plates). The moment capacity of the Knee joints were 

determined and rotational stiffness values applicable in the serviceability state were 

calculated for three different Knee joint designs using a 2-D finite element modeling. The 

alternative design with nail-plates resulted in an increase of the moment capacity and the 

rotational stiffness of the joint. It was found that future testing and more sophisticated 

analytical models would be needed for a better prediction of the behaviour of moment 

resistant joints, especially joints with nail-plate connectors. 

Mauro et al. (1996) studied the moment resistance in metal-plate connectors having a semi- 

rigid behaviour. Experimental results were evaluated to determine the partial fixing 

coefficient and the rotational stiffness coefficient. 

Cheng (1996) presented a new glulam rivet moment connection and its performance under 

monotonic and cyclic loading. Full-scale glulam butt joint moment connections were 

developed and constructed using steel gusset plate and glulam rivets, and were then tested 

under monotonic and cyclic loading. The connections exhibited significant moment capacity 

and ductility under both monotonic and cyclic loading. 

2.8 STRENGTH AND STIFFNESS OF TIMBER JOINTS 

The strength and stiffness of timber joints, depend on several parameters some of which are 

the wood species, geometry, moisture content, and the interlayer gap in the joint members. 
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Basic data on the strength and stiffness characteristics of the punched metal plate timber 

joints can only be obtained from laboratory tests. Early research on the strength 

characteristics of timber connectors was carried out by Perkins et al. (1933), Stern (1940, 

1941), Mehringer et al. (1943), Schotten (1938,1944) and Gloss(1947). 

Joints are often the most critical components of any engineered structure and can govern the 

overall strength, serviceability, durability, and fire resistance. Assessments of timber 

buildings damaged after extreme wind and earthquake events often point to inadequate 

connection as the primary cause of damage [Folient, 1998). 

The emphasis of research on timber joints focus only on strength and nobody seems to care 

about stiffness and ductility. This is probably due to the old allowable stress calculation 

method which disregards the structural behaviour at the ultimate limit state (ULS). However 

as the ULS method is increasingly adopted world wide, the combination of strength, stiffness 

and ductility are becoming all more important (Leijten and Virdi, 1996). 

Mack (1966) studied the strength and stiffness of nailed joints under short duration loading, 

and defined their load-deformation relationship as : 

P=K(AS+B)(1-e-ca)o ............................................................ (2.17) 

where 

P: is the load per nail in single shear (N) at displacement S( mm ( for 0<S<2.54mm ). 

K is a function based on nail diameter and timber species. 

A, B, C and D: are curve-fitting constants. 

Later Mack (1977) modified his equation to a simpler form for joints subjected to 

displacements of up to 0.5 mm : 

P=0.19di. 7s P so. 46 
................................................................... 

(2.18) 

Rodd (1973) Presented a theory for the strength of circular dowel timber joints when loaded 

parallel to the grain. The theory is based upon the compressive strength of timber both 

34 



parallel and perpendicular to the grain and upon the coefficient of friction between the 

surface of the dowels and the timber. The theoretical predictions were in good agreement 

with the experimental tests. 

Hilson (1969) developed a theory for the crushing strength of timber joints with split ring 

connectors when loaded parallel to the grain. The theory includes contribution from the split 

ring and the bolt. Hilson conducted over 100 tests on joints with 2.5 inch split rings. These 

tests indicated two principal modes in some joints made from thin timbers. When multiple 

timber connector units are placed in a joint, the failure mode was highly dependent on the 

spacing provided between connectors, both parallel and perpendicular to the grain. In 

addition, the amount of end and edge distances provided also played a significant role in the 

type of failure mode. 

Maraghechi and Itani (1984) presented the influence of joint stiffness. A total of five 

specimens were tested to obtain the axial stiffness of the connection ( K, ), two pieces of 

nominal 2x4 Douglas fir were connected by two toothed metal plates. The applied force 

versus joint deformation was found to be non-linear. For linear analysis, a line was fitted to 

the pooled data for all fir specimens using the method of least squares. The following 

equation was obtained : 

P=451.562 S 
......................................................................... (2.19) 

where 
P: is the axial force in lbs. 

S: is the slip deformation in inches. 

A stiffness of 451.562 lb/in was used for this plate size. The coefficient of correlation r, was 

0.96 . 
This stiffness was used for axial tensile and compressive behaviour of the joint. It was 

assumed that no lateral buckling of the metal plates would occur at the loads to be imposed 

and that the ends of the connected members would not come to bear on one another when 

loaded in compression. 
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Later Maragechi and Itani (1984) tested tension splice joints in pure axial tension, pure shear, 

and pure bending to obtain the stiffness of the joints. They reported that the axial and 

rotational stiffness of a joint have an appreciable influence on the members end forces, while 

shear forces have little effect. Lau (1987) obtained the strength and stiffness value for heel 

joints from actual tests to use in a computer program for analysis of timber frames. 

Vatovec et al. (1996) tested five different types of metal plates connected to timber joints 

(MPC) from a scissors truss to evaluate their behaviour. All joints were tested in a unique 

testing apparatus where in-plane loads along with moments were applied to simulate loads 

carried by the truss members. Strength, stiffness and failure modes for bottom chord splice 
joints at web (BSJ), heel joints (HJ), crown joints (CJ), bottom chord ridge joints (BRT), and 

top chord splice joints at web (TSJ) were reported. The average strengths of BSJ, HJ, CJ, 

BRJ, and TSJ were 51200 N, 49800 N, 33000 N, 52300 N, and 43100 N, respectively. The 

average values of the rotational stiffness were 245440 kNmm/rad, 249600 kNmm/rad, 

103700 kNmm/rad, and 33800 kNmm/rad for BSJ, HJ, BRJ, and TSJ, respectively. Average 

transitional stiffness values were 61.7 kN/mm for BSJ, 29.2 kN/mm for HJ, and 40.2 kN/mm 

for BRJ. The majority of bottom chord joints failed in plate tearing, whereas top chord joints 

generally failed in web member withdrawal mode. The joint stiffness data were used in 

preliminary finite element analysis of the same truss, and the analytical results compared well 

to actual full-scale test results. 

2.9 THE EFFECTS OF DURATION AND LOADING RATE 

The duration and rate of loading are parameters that significantly influence the joint 

behaviour. The evaluation of this effect is of interest to those dealing with test procedures 

and the design of the punched metal plate joints subjected to dynamic loads, e. g. impact and 

impulsive loading. The effect of load duration is a well-known phenomenon in wood. This 

effect is expressed in the so-called Madison curve, [ Girhammar and Andersson, 1988]. 

Timber experiences a significant loss of strength over a period of time. The strength value to 

be used in design of timber members for long-term permanent load are approximately only 

60% of the strength values found in a short-term laboratory test. The background to this 0.6 
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modification factor dates back to the 1940's when duration of load experiments were carried 

out at the forest products laboratory in Madison, Wisconsin, U. S. [Wood 1947,195 ]. 

The first attempt of modem times to quantify load-duration effects in timber was made by 

Wood (1951). Wood's model, sometimes referred to as the Madison curve, is the basis for 

the load-duration factors prescribed in the national design specification for timber 

construction in U. S. (1991). The relationship, termed the "Madison curve", is illustrated in 

Figure 2.4 and is a plot of stress ratio against logarithmic time to failure load. Since that time, 

a significant amount of work has been conducted on modelling the time-dependent strength 

behaviour of structural timber. Several different types of models have been developed 

including damage accumulation, fracture mechanics, and strain energy models. Currently, 

damage accumulation models are the more popular approach to predicting load-duration 

effects. 
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Figure 2.4 Stress ratio (%) as a function of logarithmic time to failure (hours) for small 

clear specimens subjected to bending (Wood, 1951). 
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To date, there has been no comprehensive or conclusive treatment of timber effects in timber 

connections. Although some experimental work in this area has been conducted in the United 

States, the majority of the recent work appears to have been conducted in Europe and Japan. 

Rosowsky (1992) collected the available fatigue data on various timber connections and 

considered, in a preliminary way, the concept of duration of load effect for connections. In 

addition, the applicability of current damage accumulation models for lumber subjected to 

fluctuating load such as wind and earthquake was investigated. It was shown that for timber 

members to fail under these types of loads in a reasonably assumed duration, the load 

magnitudes would have to be many times greater than that for which the member was 

designed. Therefore, the issue of load-duration when considering transient fluctuating loads, 

should be treated in the design of the connections, rather than the members. Rosowsky and 

Fridley (1995) summarized the researches up to date which discussed the effects of the 

duration of loads on the timber joints. 

Kuilen (1995) provided background information on the influence of load- duration on the 

long-term load-carrying capacity and deformation behaviour of timber joints with mechanical 

fasteners. Furthermore, the effect of load level on the long-term capacity of joints made with 

nails, toothed-plate and split-ring connectors is shown. Two examples are includes, one 

showing the effect of load level on the long-term load-carrying capacity and another on the 

long-term deformation. Test results are compared with the design rules given in EC5. It is 

concluded that the influence of long-term loading on the load-carrying capacity of timber 

joints appear to be in the same order of magnitude as for timber members. 

Nielsen and Kousholt (1980) presented a load-duration strength model for timber based on 

viscoelastic fracture mechanics. The fracture mechanics model developed by Nielsen and 

Kousholt was reviewed and presented again by Johns and Madsen (1982) with particular 

reference to full-size lumber. Fridley et al. (1992) developed a strain energy model to predict 

load-duration effects in timber. 

Extensive studies of load duration effects for long-term loading have been carried out and 

some are underway [e. g., Barrett and Foschi, 1978a, b; Fewell, 1986; Gerhards, 1986; 

Madsen, 1986; Karacabeyli, 1988; and Rosowsky and Ellingwood, 1991]. Very few, if any, 

studies have been made of this effect for very short-term loading. Girhammar and Andersson 
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(1988) addressed the loading or deformation rate effect on the yield loads of nailed timber 

joints. Four different types of joints, which differed with respect to the thickness of the 

member and the angle of load to grain, were tested. The bearing strength of the wood and the 
bending strength of the nails were also tested in order to analytically verify the dynamic 

ultimate capacity of the joints. All tests were run with deformation rates from static loading 

values up to approximately lm/s. The pilot study results show that the strength of the nailed 
joints can be expressed in terms of the deformation rate. A logarithmic expression for the 

strength of the joints was obtained from regression analysis of approximately 200 results. 
The values obtained analytically agreed well with the experimental ones for the various joints 

tested. 

Various models have been developed to predict load-duration effects. Many of these models 
have been used to develop time-effect factors for design. Rosowsky and Reinhold (1999) 

presented the results from a test program that attempts to quantify rate of load and short term 
duration of load effects for timber fasteners such as nails and screws subjected to withdrawal 

or lateral loads The result from this preliminary study suggests that no obvious rate-of- 

loading effects exists for nailed connections subjected to either lateral or withdrawal loading. 

This has particular significance, for example, in the design of roof sheathing systems and 

roof to wall connections to resist high-wind uplift loads. Although, this study by no means 

provides a complete treatment of the topic of the duration of load effects in fasteners, it 

serves to highlight differences between connection and timber member time effects. It has 

been suggested that duration of load effects in connections differ substantially from those in 

timber members and that the factors developed using a cumulative damage model based on 
tests of timber members in bending (i. e. creep rupture) are not appropriate for the design of 

connections. 

2.10 EFFECT OF NUMBER AND CONNECTORS SIZE 

The size and type of timber connector plays a significant role in the magnitude of the design 

value. For example, a6 tol5 mm shear plate has less bearing area than a 100 mm shear plate. 

Therefore, assuming factors other than size do not control the design value of the 6 to 15 nun 

shear plate, it is considerably less than the value for the 100 mm shear plate. The effect of 
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size and type of timber connector are included in design by providing separate design values 

for each size and type [Faherty, 1995; Erki and Huggins, 1983]. Sheppard (1969) tested heel 

joints and compared six different sizes of metal-plates. He reported that the most common 

mode of failure was teeth withdrawal. 

Cramer el aL (1990) presented a model for the tensile and bending analysis of metal plate- 

connected wood-splice joints. The model employed a non-linear, plane stress finite element 

formulation to allow computation of the internal deformations, stress conditions, and ultimate 

strength for these joints. The individual stiffness contribution of the wood in the contact area, 

the steel plate, and the tooth-wood interface were considered in the analysis. Application of 

the model showed a strong plate size effect in the lateral load resistance of plates computed 

in the standard manner on a per-tooth basis. The theoretical mechanical behavior associated 

with the size effect was also presented. The work also showed that current design 

assumptions represent a realistic approximation of the behavior for relatively small plate 

connections, but unrealistic for connections involving larger plates. As a result, the technique 

may be useful for refining the design procedure of longer span trusses containing larger 

metal-plate connectors. The ability to model bending behaviour and assess the effect of gap 

closure between members was included. 

Leslie and Polensek (1992) developed a theoretical model predicting mechanisms of load 

transfer between a wood member and a metal die-punched truss plate. The model, which 

treats a truss-plate tooth as a beam on an inelastic foundation of wood and applies Runge- 

Kutta numerical analysis to solve the governing differential equations, predicts the load- 

displacement trace and ultimate load of truss-plate joints. The model was verified with eight 

truss-plate joint types, three of which varied the number of teeth, and five, the plate and grain 

angle. Theoretical and experimental load-displacement traces showed good agreement. 

Rodd (1995) described the effect of plate size on the maximum strength per nail of punched 

metal plate timber fasteners ( PMPTF's ). A series of tests ( three different widths of three 

different lengths of plates were used in each set of tests ) were carried out on timber joints 

made with punched metal plate timber fasteners ( PMPTF's ) in which the load was applied 

perpendicular to the grain of the timber to investigate that the size of plate used in basic tests 

of this type influences the results obtained. The results have implications for those involved 
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in drafting the standards intended to control such tests and raise issues for truss designers 

concerning the use of different size of plates in this particular load to grain orientation. 

The choice of plate width and length can have a large effect on the maximum load per nail 

value obtained from punched metal plate timber joint tests. The values are likely to be much 

higher if obtained from the use of narrow plates with long embedded length than if obtained 

from the use of wide plates with short embedded lengths [Rodd, 1995]. 

O'Regan et al. (1998) presented a design procedure for determining the required plate length 

to prevent lateral-resistance (tooth-withdrawal) failure of a metal-plate-connected (MPC) 

tension splice joint using a truss plate with the calculated minimum required length. This was 

to ensure that the joint would fail in the steel net-section, where the bending moment present 

at the joint were explicitly included in the design. In addition to the recommended procedure, 

a simple rule-of-thumb is given that will yield a conservative value of the required plate 

length. 

Kermani and Goh (1998) evaluated the semi-rigid characteristics of nailed timber joints, with 

respect to the level of translation and rotational rigidities under short and medium tern 

loading. Their work details experimental and analytical study investigating the load-carrying 

characteristics of multi-nailed joints under short duration lateral loading in which the effects 

of different nailing configurations and components subjected to shear were considered. The 

effects of connection rigidity were examined by increasing the number of nails in the joint 

from one per side up to the maximum allowable number of nails for a predetermined joint 

size, and also by varying their positions with respect to the centre of geometry of the nail 

group. A total of 700 connection specimens were tested and their load-deformation 

characteristics were studied. A model was developed to simulate the load-deformation 

characteristics of multi nailed timber connections up to failure. Comparisons were presented 

between design solutions produced by applying this research and those available in the 

literature, and also using EC 5 design rules. 

They presented a model to simulate the non-linear load-deformation behaviour of the multi- 

nailed timber connections subjected to single shear using the following general formula 

expressing the load function : 
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F=A f, (N) f2 (S) f3(Q) f4 (5) f5(t) f6(Ev) ....................................... (2.20) 

where 
F: is the load carried by a multi-nailed timber joint. 

A: is a curve-fitting constant. 

f, (N): is a nail function. 

f2 (S) : is a timber species function. 

f3 (ß) : is a gusset plates function. 

f, 4 (S) : is a displacement function. 

f5 (t) : is a time function ( the duration of applied load ). 

f6 (E v) : is an environmental function. 

2.11 Effect of grain direction 

Grain refers to the general arrangement of the vertically aligned cells, it is the longitudinal 

direction of the main elements of timber, these main element being fibres or tracheids, and 

vessels in the case of hard wood. Timber is anisotropic material, its strength properties are 

heavily dependent on the orientation of stress in relation to the grain directions. Timber is 

much stronger in compression parallel to the grain than in compression perpendicular to the 

grain [Illston et al., 1979,1987; Taylor, 1991; Smith and Ronald, 1979, Illston, 1996; 

Kermani, 1999]. 

The strength properties in any direction to the grain can be approximated using Hankinson 

formula as follows: 

N_ 
PQ 

Psin2O+Qcos2O 
(2.21) 
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where 
N: is the strength in compression at an angle 0 of load to grain. 

P: is the strength in compression parallel to the grain. 

Q: is the strength in compression perpendicular to the grain. 

The strength of timber is high when loaded parallel to the grain, whereas perpendicular to the 

grain the strength properties are low. The tension strength of timber parallel to the grain is 

about 40 times greater than the tension strength perpendicular to the grain [Steer P. 1., 1995]. 

Freas and Scholten (1946) investigated the effect that angle of load to grain has on the 

strength of shear plates. It was found that the variation in joint strength with the angle of load 

to grain corresponded, at both the maximum and proportional limit loads, with the Hankinson 

formula. However, for loads at a slip of 0.1 mm or less, the variation is linear. 

Foschi (1977) developed a model based on Hankinson equation (2.21), predicting the relation 

between punched metal plate timber joint stiffness to plate orientation with respect to grain 

direction of the timber member and the load direction. 

Edlund (1995) described the strength and stiffness of timber loaded in tension and 

compression at different angle to the grain under short-term loading. It is concluded that the 

tensile strength is larger than the compressive strength and the lowest strength for timber is in 

tension perpendicular to the grain. He compared the results obtained with Hankinson 

equation (2.21), which gives good agreement with test results. 

Kermani (1996) investigated the influence of grain direction on in-plane strength properties 

of plywood. An extensive experimental programme were made to determine the tensile, 

compressive, bending and shear strength properties of the plywoods with respect to their 

grain orientations. A semi-empirical equation based on Hankinson's formula was developed 

which permits the calculation of the strength properties of plywoods with respect to their 

face-grain orientations. It was found that plywood grain orientation has considerable 

influence on strength and stiffness of the joints. 
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Ref old et al. (1999) observed that, joints where the nail plate direction is parallel to the grain 

of the chord member performed better than joints where the nail plate was oriented 

perpendicular to the grain of the chord member. 

2.12 SUMMARY 

In recent years, rising costs of structural materials and the need for more efficient use of 

timber resources has increased the necessity for timber components to be more light-weight 

and more material efficient. With a better understanding of material properties and joint load 

carrying characteristics, the size of components can be streamlined, hence reducing the cost 

of raw materials and increasing the efficiency of the connections. 

Timber engineering today is a growing industry and much of this expansion has been made 

possible by the developments that have taken place in timber jointing. It is clear from the 

literature that much research has been carried out to understand and predict the behaviour of 

mechanical timber joints. 

The semi-rigid behaviour of mechanical timber joints is complex and depends on several 

parameters such as type and system of joints, the load and deformation rate, the duration of 

load, the number of fasteners, the size of the plate, connection orientation and grains 

directions, and connection configuration factors. The types of connectors and their material 

properties can influence the load-displacement characteristics, the load carrying capacity, the 

moment carrying capacity, as well as the strength and stiffness of the joints. 

The design philosophy in BS 5268 is based on permissible stress design, whereas the EC5 is 

limit state design philosophy is based on limit states theory developed by Johansen (1949). 

Design of punched metal plate timber joints are not yet fully covered in EC5 and BS 5268. 

The basic data on the strength and stiffness characteristics of the punched metal plate 

connectors can only be obtained from laboratory tests. 
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CHAPTER THREE 

LABORATORY WORK AND TESTING PROGRAM 



3. LABORATORY WORK AND TESTING PROGRAM 

3.1 INTRODUCTION 

This chapter describes details of the research program carried out in this thesis. The work 

was carried out at the school of built environment at Napier University involving 

experimental and analytical investigation on punched metal plate timber connections. The 

work includes detailed experimental investigation of parameters effecting the structural 

behaviour of punched metal plates timber fasteners (PMPTF's) such as number and length of 

bites (nails), thickness of plates, grain direction, deformation and loading rates. The 

specimens were loaded to failure in tension, compression and moment forces to investigate 

the performance of the joints. 

The objectives of this work are as follows ; 

1- To develop a simple test methods and apparatus for testing the punched metal plate 

timber joints, subjected to tension, compression and moment forces. 

2- To determine the strength, stiffness and to characterise failure modes of timber joints 

made with punched metal plate connectors under tension, compression, and moment 

forces. 

3- To characterise factors influencing the load-carrying capacity and perforniance of the 

punched metal plate timber fasteners. 

4- To investigate the influence of the various parameters such as number and length of bites, 

thickness of the plate, grain direction, deformation and loading rates on the structural 

behaviour and performance of the joints. 
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The performance of timber structural systems depends on the material properties of the 

timber and on the connection between the members. The serviceability of timber structures 

depends mainly on the efficiency of the joints between the elements. The load capacity of the 

punched metal plate (nail-plate) is established, in general, by empirical means as result of 

destructive testing in accordance with relevant national standards. The basic of tests is 

tensile/compression loading applied parallel and perpendicular to the grain of the timber. 

3.2 LABORATORY WORK 

The strength and stiffness of the punched metal plate timber connections subjected to 

tension, compression and moment forces were determined on the basis of destructive testing 

according to the ECS, the load carrying capacity and the stiffness characteristics of the 

connections were determined from tests according to British Standards (EN 1380, EN 1381, 

EN 26891, EN 28970 and prEN 1075). 

3.2.1 MATERIALS 

3.2.1.1 Timber 

All the joint specimens were manufactured using selected TR26 grade European whitewood 

obtained from a local timber merchant. The timber sections were visually inspected and as 

far as possible defect free timber were selected. Particular attention were made to select 

specimens that were of uniform quality, free from knots, free from split and resin pockets 

and had relatively straight grain that could influence the results. The European white wood 

stored indoor in a well-ventilated storage for several weeks before individual specimens were 

made. After the conditioning period the specimen were sawn and planed. Care was taken to 

ensure that no knots, split or resin pocket coincided with the position of the fasteners in the 

full size pieces. The moisture content and density of the timber were measured after each test 

by cutting out small cubes of timber from the specimens. These cubes were weight, 

measured, dried at 100°C for 24 hrs and reweighed. The mean moisture content at the time of 

testing was 12% and the mean density was 475 kg/m3. 
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3.2.1.2 Fasteners 

The punched metal plate timber fasteners (PMPTFs) are now available in a wide variety of 

size and types from several different manufacturer in the United Kingdom as well as other 

countries. They are mechanical fasteners manufactured from pre-galvanised mild steel or 

stainless steel strips. A punched metal plate fastener is defined in prEN1075 ' Timber 

structures - test methods -joints made of punched metal plate fasteners' as a fastener made 

of metal plate of nominal thickness not less than 0.9mm and not more than 2.5mm, having 

integral projections punched out in one direction and bent perpendicular to the base of the 

metal plate, being used to join two or more pieces of timber of the same thickness in the same 

plane. 

Tests were performed on joints made with punched metal plates produced and supplied by 

MiTek Industries Ltd manufacturer. MiTek is one of the largest punched metal plates 

manufacturer in the United Kingdom, and owns both the Hydro-Air and Bevplate trade 

names. There are many types and size of punched metal plate timber connections. The 

properties of different plates used in manufacturing of the specimens are shown in table 3.1. 

The plates are pressed into the timber members on each side of the joints allowing the teeth 

to act as nails in transferring load from a timber member into steel plates and into the 

adjacent timber member. Type, size of the fasteners and dimension of the joints of each 

samples were recorded. 

Plate ref. Plate properties (mm) 

number Length Width Thickness 

M20/0310B 101 25 1 

B90212 120 30 1.2 

M14/1333 133 38 2 

Table 3.1. Properties of different plates used in specimen joints. 
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3.2.2 FABRICATION OF TEST SPECIMENS 

The fabrication of test specimens were in accordance with prEN1075: 1997. The joints were 

made of two pieces of timber joined together with two fasteners positioned parallel to each 

other and symmetrically opposite faces of the joint. The fasteners were positioned on the 

members so as to minimise the effect of moment rotation. The plates were pressed into the 

timber members on each side of the joints. The projections of the fasteners were fully 

embedded in the timber so that the contact surface of the fastener was flush with the surface 

of the timber. 

The size and geometry of the test pieces were dependent upon the fasteners size and the 

properties being measured, the length of the test piece loaded in tension were such that the 

ends of the test machine grips were not less than 200mm from the ends of the fasteners. 

Where necessary, the ends of the test piece were reinforced to avoid premature failure or slip 

at the grips. The test pieces were fabricated so that the pieces of timber in the test were 

separated by a gap of not less than 4 mm for compression and moment capacity testing and 

not less than 2mm in case of the tension capacity testing. 

The difference in thickness between adjoining pieces did not exceed 0.5mm, for each test 

pieces the two joining members were cut from the same plank to ensure a test piece of 

balanced density. The dimensions, densities, and moisture contents of each timber samples 

were recorded. 

3.3 TESTING PROGRAM 

The behaviour of the joints depends on the type of applied loading. In order to determine the 

effects of different parameters on the performance of the joints, a variety of tests were 

carried out on joints with different parameters subjected to different loading (tension, 

compression, and moment) conditions. 
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3.3.1 Tension test 

Tension test samples were generally made of two pieces of timbers dimensioned as 

73mmx300mm and 73mmx80mm by 45mm thickness, joined together with two punched 

metal plates positioned parallel to each other. The sample thickness of 45mm was considered 

to be suitable to ensure that the timber used had a thickness of not less than 33mm or twice 

the length of the projection plus 5mm, whichever was the greater to satisfy the recommended 

value given in the British Standard prEN 1075: 1997 and to minimise the effect of fastener 

bending and produce the desired embedment. The test pieces were fabricated so that the 

pieces of timber in the test were separated by a gap of not less than 2mm. A typical tension 

test specimen is shown in Figure 3.1. The difference in thickness between adjoining pieces 

did not exceed 0.5mm, for each test pieces the two joining members were cut from the same 

plank to ensure a test piece of balanced density. The dimensions, densities, and moisture 

contents of each timber samples were recorded. 
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Figure 3.1 Tension test specimen. 
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33.2 Compression test 

Compression tests samples were generally made of two pieces of timber dimensioned as 

73mm x 170 mm and 73 x 67 mm by 45 mm thickness, joined together with two punched 

metal plates positioned parallel to each other. The test pieces were fabricated so that the 

pieces of timber in the test were separated by a gap of not less than 4mm. A typical 

compression test specimen is shown in Figure 3.2. 
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Figure 3.2 Compression test specimen. 
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3.3.3 Moment test 

Moment test samples were generally made of two pieces of timber dimensioned as 

65inmx300mm and 65mmX 130mm by 45mm thickness, joined together with two punched 

metal plates positioned parallel to each other. The test pieces were fabricated so that the 

pieces of timber in the test were separated by a gap of not less than 4mm. A typical moment 

test specimen is shown in Figure 3.3. 
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Figure 3.3 Moment test specimen. 
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3.4 INSTRUMENTATION 

The tests were conducted using Lloyd universal testing machine with a combined loading 

and data acquisition facility as shown in Figure 3.4, the load cell and strain gauge based 

transducers were connected to a PC. The load-deformation data was continuously recorded 

by the on-board computer until failure occurred. Load cells and transducers were all 

calibrated and wired into the systems prior to the series tests. Measurement were taken by 

means of a computerized data acquisition system with an accuracy oft I% for load and slip. 

Two symmetrically transducers were used during each test, they were installed as shown in 

Figure3.5. One transducer was placed on each side of the joints on seating angles screwed to 

the timber and attached to the vertical member to measure the joint slip, defined as the 

relative movement between the two members of the connection in the direction of loading at 

any given time during testing. The signal from the two transducers were averaged to remove 

any deformation in the system that would be due to specimen twist. Typical set-ups for 

tension, compression and moment tests are shown in Figure 3.6. 
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Figure 3.4 Lloyd Universal Testing Machine with a combined loading and data acquisition 
facility. 

Figure 3.5 Transducers installation in tension test. 
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Figure 3.6 Typical tests set-up. 
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3.5 LOADING PROCEDURE 

The tests were conducted in accordance with BS EN26891 requirements, which involved a 

multi-stages loading regime. Load were applied up to 0.4 F", (Estimated load determined 

from preliminary tests) and maintained for 30 seconds, and then reduced to 0.1 F,, and 

maintained for a further 30 seconds. Thereafter the loads were increased until the ultimate 

load or slip of 15mm was reached. Figure 3.7 shown the loading procedure. 
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Figure 3.7 Loading procedure in accordance with BSEN 26891. 

3.6 DEFORMATION AND LOADING RATES 

Tests were carried out to determine the influences of deformation and loading rates on the 

strength and stiffness characteristics of the punched metal plate timber joints subjected to 

tension and compression loading parallel to the grain. The effects of different deformation 

rates from lmm/min up to 5mm/min and loading rates from 500 N/min up to 10000 N/min 

were examined. The punched metal plate type used in construction of the joint specimens 

was B90212 (l20mmx3Ommxl. 2mm). 

56 



3.7 CONNECTION CONFIGURATIONS 

In this section the description of the connection with different parameters (number and 
length of bites, grain direction, plate thickness) tested are discussed. 

3.7.1 Number of bites 

Tests were carried out to determine the influences of number of bites (teeth) on the strength 

and structural behaviour of the punched metal plate timber connections. Connection with 

different number of bites subjected to tension, compression and moment forces were 

considered. The effects of number of bites in the joints from one per side up to eight per side 

were examined. Connections with different number of bites configurations, which were 

selected for testing, are shown in Figure 3.8. The punched metal plate type used in 

construction of the joint specimens was M20/03 1013 (101mmx25mmxlmm). The chosen bite 

number/position combinations were designed to examine the influence of 

symmetrical/asymmetrical distribution of loads in the plates. 

0 00 0ý0U ONOS 0000 

0ý0ý 0ý0ý 000 0ý0ý 

Figure 3.8 Punched metal plate timber connections with different number of bites configurations. 
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3.7.2 Length of bites 

Tests were carried out to determine the influences of length of bites (teeth) on the strength 

and structural behaviour of the punched metal plate timber connections. Connection type 

with different length of bites subjected to tension, compression and moment forces were 

considered. The effects of length of bites in the joints from 5mm up to 20mm were examined. 

Connections with different length of bites configurations are shown in Figure 3.9. The 

punched metal plate type used in construction of the joint specimens was a small strip 

(130mmx38mmX2mm) which cut from plate number M14/1333 as supplied by MiTek 

industries. 

Figure 3.9 Punched metal plate timber connections with different length of bites configurations. 
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3.7.3 grain direction 

Tests were carried out to determine the influences of the grain direction on the strength and 

structural behaviour of the punched metal plate timber connections. Connections with 

different grain direction subjected to tension, compression and moment forces were 

considered. The effects of angle of grains of 0,30 
, 
60 and 90 were examined. Connections 

with different grain direction configurations are shown in Figure 3.10. The punched metal 

plate type used in construction of the joint specimens was M20/0310B 

(l Ol mmx25mmX l mm). 
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Figure 3.10 Punched metal plate timber connections with different grain direction 

configurations. 
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3.7.4 Thickness of the plate 

Tests were carried out to determine the influences of the thickness of the plate on the 

strength and structural behaviour of the punched metal plate timber connections. Connection 

type with different plate thickness subjected to tension, compression and moment forces 

were considered. The effects of plate thickness (I mm and 2mm) were examined. Joints were 

made of two different plates. The first group made of punched metal plates M20/03I OB with 

I mm plate thickness and the second group made of small strip of punched metal plate 

M 14/1333 with 2mm plate thickness. 

3.8 SUMMARY 

In this chapter details of laboratory work and testing program investigating the effects of 

some parameters on the structural behaviour of the punched metal plates timber fasteners 

(PMPTF's) such as number and length of bites (nails), thickness of plate, grain direction, 

deformation and loading rates were described. The specimens were subjected to tension, 

compression and moment forces up to failure, with the aim to investigate the performance of 

the joints. 

One aim of this work was to develop a simple test method and apparatus for testing a 

punched metal plate timber joints subjected to tension, compression, and moment forces, that 

aim has been achieved. The test methods presented were appropriated to determine the 

strength and stiffness of joints made with punched metal plate fasteners. The specimens were 

easy to manufacture and handle. The test apparatus was simple but effective; it applied equal 
force to both sides of the components and produced consistent results. The test specimens 

were prepared in accordance with British standard prEN1075: 1997. 
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CHAPTER FOUR 

INFLUENCE OF DEFORMATION / LOADING RATES ON 

THE BEHAVIOUR OF THE TEST SPECIMENS 



4. INFLUENCE OF DEFORMATION / LOADING RATES ON THE 

BEHAVIOUR OF THE TEST SPECIMENS 

4.1 INTRODUCTION 

The semi-rigid behaviour of the punched metal plate timber joints ( PMPTJ's ) depends on 

several parameters, some of which are related to timber properties such as wood species, 

geometry of wood, moisture contents, and wood density. Others related to the plate 

properties such as plate size, plate thickness, number of bites, length of bites and plate 

direction. It is also believed that loading properties such as load rate, deformation rate, 

direction of load, type of load, duration of load would influence the strength/stiffness 

characteristics of the timber structure. In order to establish a testing procedure, the effects of 

application of different deformation and loading rates on the performance of the joints were 

examined. From literature review, it is evident that extensive studies of load-duration effects 

have been carried out. Very few, if any, studies have been made to study the effects of 

loading and deformation rates under short-term loading. The evaluation of the effects of 

loading and deformation rates are interesting to those dealing with test procedures and the 

design of the punched metal plate timber joints subjected to various loads. 

This chapter describes a series of tests carried out on timber joints made with punched metal 

plate timber fasteners (PMPTF's) in which the load was applied parallel to the grain of the 

timber. The specimens were loaded to failure both in tension and in compression in order to 

determine the influences of deformation and loading rates on the strength and behaviour of 

the punched metal plate timber joints under short-term duration. 
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4.2 TESTING PROGRAM 

Tests were carried out to determine the influence of deformation and loading rates on the 

strength characteristics of the punched metal plate timber joints subjected to tension and 

compression loading parallel to the grain. Testing programme for joints subjected to tension 

and compression loading at different deformation and loading rates are summarised in table 

4.1 and 4.2 respectively. Minimum of 5 specimen joints at each deformation and loading rate 

were tested, totalling over 85 specimen joints. 

Plate ref. 

number 

Plate properties (mm) 
Deformation rate 

(mm/min) 

Length Width Thickness Tension Compression 
690212 120 30 1.2 1 1 

B90212 120 30 1.2 2 3 

690212 120 30 1.2 3 5 
B90212 120 30 1.2 4 

Table 4.1. Testing programme for joints subjected to tension and compression loading at 
different deformation rate. 

Plate ref. Plate properties (mm) Load rate (N/min) 

number Length Width Thickness Tension Compression 

B90212 120 30 1.2 500 500 

B90212 120 30 1.2 1000 2000 

B90212 120 30 1.2 1500 4000 

B90212 120 30 1.2 2000 5000 

B90212 120 30 1.2 2500 10000 

Table 4.2. Testing programme for joints subjected to tension and compression loading at 

different loading rate. 
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4.3 LABORATORY WORK 

The punched metal plate type used in construction of testing specimens was (B902 12- 

120mmx3OmmX l . 2mm) as supplied by MiTek industries. The specimens were loaded to 

failure in tension and compression. All joint specimens were manufactured using material as 

explained in chapter 3. The average moisture content at the time of testing was 12 % and the 
3 

mean density was 475 kg/m. 

The tension test samples were generally made of two pieces of timber dimensioned as 73 x 

300 mm and 73 x 80 mm by 45 mm thickness. For compression tests, samples were made of 

two pieces of timber dimensioned as 73 x 170 mm by 45 mm thickness. The specimens were 

made according to the British standard pr EN 1075: 1997 as explained in chapter 3. Typical 

tension and compression test specimens are shown in Figures 3.2 and 3.3 respectively and 

test set-up is shown in Figure 3.3. The instrumentation and loading procedures were 

explained previously in chapter 3. 

4.4 Effect of deformation rate 

4.4.1 Tension tests 

In Figure 4.1 typical non-linear load-displacement curves up to 1mm displacement with 

average curves for specimens at various deformation rates subjected to tensile loading 

parallel to the grain of timber are shown. 
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Figure 4.1 Load - displacement behaviour of joints loaded in tension parallel to the grain at 
different deformation rate. 

The behaviour of the joints tested was assessed through their load-displacement relationships 

up to failure loads. The load-displacement behaviour of each joint specimen was examined 

and third order polynomial equations were fitted to define the curves. The fitted curves 

simulated the load-displacement behaviour of the connections with good accuracy. These 

equations were directed to pass through the point of origin to simulate the condition of zero 

deformation at zero loads. 

A comparison of joints performance at different deformation rates up to 1 mm displacement is 

presented in Figure 4.2. The failure load at l mm displacement for each group of specimens is 

shown in Table 4.3. 
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Figure 4.2 Comparison of joints performance subjected to tension force parallel to the grain 

at different deformation rate. 

Plate ref number 
Deformation rate 

(mm/min) 
Average load at I mm 

displacement (N) 

B90212 1 7830 
B90212 2 8487 
B90212 3 8818 
B90212 4 9306 

Table 4.3 The average load at 1 mm displacement for joints subjected to tension 

force parallel to the grain at various deformation rate. 

It was observed that the deformation rate had significant effects on the strength of the joints 

when loaded in tension. The strength of the joints increased with an increase in the 

deformation rate. The rate of increasing was increased as the deformation rate increased. 
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4.4.1.1 The strength characteristics of the joints 

In order to investigate the effects of the deformation rate on the performance of the joints 

subjected to tension load under short-term duration, the strength characteristics of all tested 

specimens were analysed in detail. 

The average load sustained by each joints specimen at 0.1 mm to 1 mm displacement levels 

was determined. Figure 4.3 represents results of applied load versus deformation rate in the 

joints at displacement levels of 0. lmm to lmm. The relationships were approximately linear. 

Power equations were fitted the load versus deformation rate curves to define them. The 

equations obtained are tabulated and presented in Table 4.4. These equations were used to 

develop an empirical model (i. e. equation 4.1) describing the strength characteristics of 

punched metal plate timber connections at different deformation rates under tensile loading. 
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Figure 4.3 Load sustained in the joint versus deformation rate under tensile loading parallel to the 

grain. 
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Figure 4.3 cont. 
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(k) Characteristics at I mm displacement. 

Displacement 
(mm) 

Tensile load, P, 
(N) 

Coefficient of 
correlation, R2 

0.1 2744.4 do. is6° 0.8772 

0.2 4150.9 do'149' 0.9475 

0.3 5169.5 do. 1574 0.9698 
0.4 6101.9 d0"317 0.963 

0.5 6718.3 d°' 153 0.9504 

0.6 7188 d° " 116 0.9728 

0.7 7495.3 d°109'' 0.9838 

0.8 7690.7 d° "04 0.9912 

0.9 7789.3 do" 147 0.9966 

1 7811.5 do 1201 0.9877 

d= deformation rate (mm/min). 

Table 4.4 The equations of the various curves in Figure 4.3. 

From the equations in Table 4.4, an empirical model (i. e. equation 4.1) describing the tensile 

load sustain in the joints at different deformation rates was developed. 
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P, = 8651.28 
0.4612 

d"O"'-6'? m (4.1) 

where P, = tensile load (N). 

S= displacement (mm). 

d= deformation rate (mm/min). 

In Figure 4.4, the effect of increases in the deformation rate on the performance and strength 

characteristics of the connections at displacement levels of 0.1 mm to 1 mm are shown. For all 

specimens tested the displacement at failure was about l mm. 
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Figure 4.4 Load vs deformation rate in joints under tensile loading parallel to the grain. 
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It is clear that the performance and strength of the joints were dependent on the deformation 

rate at the joints when loaded in tension parallel to the grain. The strength of the joints 

increased with an increase of the deformation rate. The rate of increasing in strength was 
increased as the deformation rate increased. At high displacement (imm), strength was high 

comparing with low displacement (0.1 mm). 

In Figure 4.5, a comparison of deformation rate versus displacement curves between 

experimental and empirical (i. e. equation 4.1) results for joints at different deformation rate 

are represented. The agreement between the empirical model and experimental observation 

was good. 
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Figure 4.5 Comparison of deformation rate vs displacement curve between experimental and 

empirical (i. e. equation 4.1) results. 
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4.4.2 Compression tests 

In Figure 4.6 typical non-linear load-displacement curves up to 1mm displacement with 

average curves for specimens at various deformation rates subjected to compression loading 

parallel to the grain of timber are shown. 
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Figure 4.6 Load - displacement behaviour of joints loaded in compression parallel to the grain at 
different deformation rate. 

Similar method of analysis used in tension test was applied to compression test. A 

comparison of joints performance at different deformation rate up to Imm displacement is 

presented in Figure 4.7. The failure load at 1mm displacement for each group of specimens is 

shown in Table 4.5. 
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Figure 4.7 Comparison of joints performance subjected to compression force parallel to 

the grain at different deformation rate. 

Plate ref. number 
Deformation rate 

(mm/min) 
Average load at 1 mm 

displacement (N) 

B90212 1 5399 
B90212 3 6711 
B90212 5 8040 

Table 4.5 The average load at Imm displacement for joints subjected to compression 

force parallel to the grain at various deformation rate. 

It was observed that the deformation rates, similar to tensile loads, had significant effects on 

the strength of the joints when loaded in compression. The strength of the joints increased 

with an increase in the deformation rate. The rate of increasing was approximately linear. 

4.4.2.1 The strength characteristics of the joints 

In order to investigate the effects of the deformation rate on the performance of the joints 

subjected to compression load under short-term duration, the strength characteristics of all 

tested specimens were analysed in detail. 
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The average magnitude of the applied load sustained by each joint specimen at 0.1 mm to 

Imm displacement level was determined. Figure 4.8 represents results of applied load versus 

deformation rate in the joints at displacement levels of 0.1mm to Imm. The relationships 

were approximately linear. Exponential equations were fitted the load versus deformation 

rate to define them. These equations were used to develop an empirical model (i. e. equation 

4.2) describing the strength characteristics of punched metal plate timber connections at 

different deformation rate under compression loading. 

P =5491.9ä0b0 
seo"04'5-0""" (4.2) 

where Pc = compression load (N). 

S= displacement (mm). 

d= deformation rate (mm/min). 

74 



3000 6000 

z 2500 ------------ 
: 
-----. z 5000 ý..;.....: 

000 ä 2000 ei 14 m 
- 1500 -- --------- ."... $ 3000$_ ýf e 
B_ 
ä 1000 

"" Tat Result ä 00 
o Tost Rtyultý 

6 500 - Fitted curve < 1000 
F- 

Fitted curvcl 
00 

01234560123456 

Deformation rate, mm/min 
(a) Characteristics at 0.1 mm displacement. 

7000- 
z 6000 - --- ---. e 

.65 000 - --- ---- 
4000 e .. 

B 3000 
2000 e Test Result 

< 1000 ---------" Fitted curve 
0 

0I23456 

Deformation rate, mm/min 
(c) Characteristics at 0.3mm displacement. 

10000 
Z 8000 -- - -- ---- - 
$ 6000 ....... 

T 4000 -- - o- ----- .. -- 
e Test Result 

c 2000 
- Fitted curve 

0 

0I23456 

Deformation rate, mm/min 

(e) Characteristics at 0.5mm displacement. 

10000 

Z 8000 
eo' 
3 6000 ---- .e.. 
$ 4000 --- --- . 

o Test Rcstdt 
2000 Fitted curve 

0 

0I23456 

Deformation rate, mm/min 

(g) Characteristics at 0.7mm displacement. 

Deformation rate, mm/min 

(b) Characteristics at 0.2mm displacement. 

10000 

Z 8000 i .... 

I 6000 ° 
$ 4000---- '- -ý 

°e Test Result 2000 fitted ctm e'. C 
0 

0I23456 

Deformation rate, mm/min 
(d) Characteristics at 0.4mm displacement. 

10000 
Z 8000 

6000 

4000 
2000 Tat Restdis 

Fitted cur% c 
0 

0I23456 

Deformation rate, mm/min 

(Q Characteristics at 0.6rnm displacement. 

10000 
z 8000 o 

6000- 
4000 

e Test Restdtsj 
2000 

Fittcd can el 
0 

0123456 

Deformation rate, mm/min 

(h) Characteristics at 0.8mm displacement. 

Figure 4.8 Load sustained in the joint versus deformation rate under compression loading parallel to 

the grain. 
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In Figure 4.9, the effect of increases in the deformation rate on the performance and strength 

characteristics of the connections at displacement levels of 0.1 mm to 1 mm are shown. 
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Figure 4.9 Load vs deformation rate in joints under compression loading parallel 

to the grain. 

It is clear that the performance and strength of the joints were dependent on the deformation 

rate at the joints when loaded in compression parallel to the grain. The strength of the joints 

increased with an increase in the deformation rate. The rate of increasing in strength was 

increased as the deformation rate increased. At high displacement (l nun), the strength was 

high comparing with low displacement (0.1 min). 
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4.5 Effect of loading rate 

4.5.1 Tension tests 

In Figure 4.10 typical non-linear load-displacement curves up to 0.9mm displacement with 

average curves for specimens at various loading rate subjected to tensile loading parallel to 

the grain of timber are shown. 
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Figure 4.10 Load - displacement behaviour of joints loaded in tension parallel to the grain at 

different loading rate. 
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The behaviour of the joints tested was assessed through observation of the failed specimens 

and their load-displacement relation. The load-displacement behaviour of each joint 

specimen was examined and fifth order polynomial equations were fitted to define the 

curves. The fitted curves simulated the load-displacement behaviour of the connection with 

good accuracy. These equations were directed to pass through the point of origin to simulate 

the condition of zero deformation at zero loads. 

A comparison of joints performance at different deformation rates up to 0.9mm displacement 

is presented in Figure 4.11. The failure load at 0.9mm displacement for each group of 

specimens is shown in Table 4.6. 
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Figure 4.11 Comparison of joints performance subjected to tension force parallel to the grain at 
different loading rate. 

Plate ref. number 
Loading rate 

(N/min) 
Average load at lmm 

displacement (N) 

690212 500 8177 
B90212 1000 7528 
690212 1500 8846 
B90212 2000 8169 
B90212 2500 7398 

Table 4.6 The average load at 0.9mm displacement for joints subjected to tension 

force parallel to the grain at various loading rate. 
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From the results obtained, it was observed that the 500 N/min, 1000 N/min and 2000 N/min 

loading rates are almost identical but the 1500 N/min and 2500 N/min loading rates behaved 

in an unpredictable manner, the strength of the joints was high with 1500 N/min and low with 
2500 N/min. 

4.5.2 Compression tests 

In Figure 4.12 typical non-linear load-displacement curves up to 0.9mm displacement with 

average curves for specimens at various loading rate subjected to compression loading 

parallel to the grain of timber are shown. 
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Figure 4.12 Load - displacement behaviour of joints loaded in compression parallel to the grain at 

different loading rate. 
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Similar method of analysis used in tension test was applied to compression test. A 

comparison of joints performance at different loading rate up to 0.9mm displacement is 

presented in Figure 4.13. The failure load at 0.9mm displacement for each group of 

specimens is shown in Table 4.7. 
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Figure 4.13 Comparison of joints performance subjected to compression force parallel to the 

grain at different loading rate. 

Plate ref. number 
Loading rate 

(N/min) 
Average load at Imm 

displacement (N) 

B90212 500 5209 
B90212 2000 5839 
B90212 4000 6048 
B90212 5000 8402 
B90212 10000 8815 

Table 4.7 The average load at 0.9mm displacement for joints subjected to compression 

force parallel to the grain at various loading rate. 
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It was observed that the loading rate had significant effects on the strength of the joints 

when loaded in compression. The strength of the joints increased with an increase in the 

loading rate. 

4.5.2.1 The strength characteristics of the joints 

In order to investigate the effects of the loading rate on the performance of the joints 

subjected to compression load under short-term dur,, tion, the strength characteristics of all 

tested specimens were analysed in detail. 

The average magnitude of the applied load sustained by each joints specimen at 0.1 mm to 

0.9mm displacement level was determined. Figure 4.14 represents results of applied load 

versus loading rate in the joints at displacement levels of 0. lmm to 0.9mm. Exponential 

equations were fitted the load versus deformation rate to define them. 
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In Figure 4.15, the effect of increases in the loading rate on the performance and strength 

characteristics of the connections at displacement levels from 0.1 mm to 0.9mm are shown. 
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Figure 4.15 Load vs loading rate in joints under compression loading parallel to the 

grain. 

It is clear that the performance and strength of the joints were dependent on the loading rate 

at the joints when loaded in compression parallel to the grain. The strength of the joints 

increased with an increase of the loading rate. At high displacement (0.9mm), the strength 

was high comparing with low displacement (0.1 mm). 

4.6 Failure modes 

All joints studied behaved in a similar manner. They showed a non-linear response from 

beginning up to the failure load. In tension tests, as the load increased, plate started to peel 

away from the timber members at their upper end. This peeling progressed toward the centre 

of the joint until the plate withdrew completely (i. e. anchorage failure). In compression tests, 
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there were three modes of failure. The most common mode of failure was anchorage failure 

(teeth withdrawal). As the load increased, plate started to peel away from the timber members 

at their lower end. This peeling progressed upward until the plate withdrew completely. The 

second failure mode was plate buckling, as the load increased the middle of the plate started 

buckling. The third was the closure of the gap between the connected member, this happened 

in joints with high load capacity. In general, the failure of joints was characterised as ductile. 

A considerable amount of ductility was usually observed prior to failure. 

4.7 SUMMARY 

This chapter described a series of tests carried out on timber joints made with punched metal 

plate timber fasteners (PMPTF's) in which the load was applied parallel to the grain of the 

timber. The specimens were loaded to failure both in tension and in compression in order to 

determine the influences of deformation and loading rates on the strength of the joints under 

short-term duration. 

From the results obtained, it was found that the deformation rate at the joints having a 

significant effects on the strength and performance of the joints. Increasing the deformation 

rate would increase the strength of the joints. The rate of increasing in strength was increased 

as the deformation rate increased when loaded in tension and compression. Also it was found 

that the loading rate has significant effects when subjected to compression loading. 

Increasing the loading rate would increase the strength of the joints under compression 

loading. In order to establish a testing procedure and loading method, it was decided to use a 

deformation rate of I mm/min in all tests because it gave more consistent results. 

The failure of joints was characterised as ductile, a considerable amount of ductility was 

generally observed prior to failure. In the case of compression loads, there were three modes 

of failure, the most common mode of failure was anchorage failure (teeth withdrawal); as the 

load increased the toothed-plates started to peel away from the timber members. The second 

failure mode was plate buckling, as the load increased the middle of the plate started 

buckling. The third failure modes was the closure of the gap between the connected member, 

this happened when compression load applied at high load level. In the case of tensile loads 

the most common mode of failure was anchorage failure. 
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Empirical models describing the strength characteristics of joints at different deformation 

rates subjected to tension and compression loading were developed and compared well with 

the experimental results. 
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5- LOAD-DISPLACEMENT CHARACTERISTICS OF PUNCHED 

METAL PLATE TIMBER JOINTS SUBJECTED TO TENSILE 

LOADS 

5.1 INTRODUCTION 

The load capacities of the punched metal-plate timber connections are established, in general, 

by empirical means as a result of destructive testing in accordance with relevant national 

standards. The basis of tests is tensile loading applied parallel and or perpendicular to the 

grain of the timber. 

During the past decade, very few research studies have been carried out on the short-teen 

behaviour of punched metal plate timber connections subjected to lateral loading. To-date, 

there is little information available on any parametric or comparative studies to determine the 

efficiency of such connections with regards to the level of rigidity they provide. Designers 

usually consider the effect of plate size on the joints. Having said that, the effects of the 

different characteristics of the metal plates on the structural performance of the joints have 

not been studied in detail. 

This chapter describes details of experimental work investigating load-displacement 

characteristics of the punched metal plate timber connections under short duration loading, in 

which the effects of different factors such as number of bites, length of bites, grain directions 

and plate thickness were considered. This is to evaluate their efficiency for use in a variety of 

timber structures. It is anticipated in this chapter to determine the structural behaviour of 

punched metal plate timber connections when subjected to tensile loads with respect to their 

strength and displacement characteristics. Also, empirical models developed to simulate the 

load-displacement behaviour of the joints using different parameters. 
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5.2 TESTING PROGRAM 

Tests were carried out to determine the influences of different variables such as number of 
bites, length of bites, grain directions and plate thickness on the performance of the punched 

metal plate timber joints subjected to tensile loading. Testing programme for different 

variables (number of bites, length of bites, grain directions, plate thickness) are summarised 

in table 5.1. Minimum of 5 specimens per joint type were tested, totalling over 70 specimen 

joints. 

Plate ref. Plate properties (mm) Bite properties Grain 

number Length Width Thickness Number Length (mm) direction 

M20/0310B 101 25 1 1 8 0 

M20/0310B 101 25 1 2 8 0 

M20/0310B 101 25 1 3 8 0 

M20/0310B 101 25 1 4 8 0 

M20/0310B 101 25 1 5 8 0 

M20/03IOB 101 25 1 6 8 0 

M20/0310B 101 25 1 7 8 0 

M20/0310B 101 25 1 8 8 0 

M20/0310B 101 25 1 8 8 30 

M20/0310B 101 25 1 8 8 60 

M20/03IOB 101 25 1 8 8 90 

M 44/1333 133 38 2 8 5 0 

-K14/1333 133 38 2 8 10 0 

M14/1333 133 38 2 8 15 0 

Table 5.1. Testing programme for joints subjected to tensile loading. 
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5.3 LABORATORY WORK 

For testing the effects of the number of bites and grain directions the punched metal plate 

type used was M20/031OB-101mmX25mmXlmm and for the length of bites a small strip 

130mrnx38mmx2mm which was cut from plate number M14/1333 as supplied by MiTek 

industries. The specimens were loaded to failure in tension. All joint specimens were 

manufactured using material as explained in chapter 3. The average moisture content at the 

time of testing was 12 % and the mean density was 475 kg/m3. The induced deformation rate 

during loading was 1 mm/min. 

The test samples were generally made of two pieces of timber dimensioned as 73 x 300 mm 

and 73 x 80 mm by 45 mm thickness. The specimens were made according to the British 

standard pr EN 1075: 1997 as explained in chapter 3. Typical tension test specimen is shown 

in Figure 3.1 and test set-up is shown in Figure 3.6. The instrumentation and loading 

procedures were as explained in chapter 3. 

5.4 RESULTS AND DISCUSSION 

The emphasis of the past research efforts on timber joints has focused on their strength and 

load carrying capacities. Very few studies have been made of the stiffness and ductility of the 

connections. This is probably due to the old allowable stress calculation method, which 

disregards the structural behaviour at the ultimate limit state. In this section the structural 

behaviour of joints with respect to their strength, stiffness and ductility are considered. 

Timber and connections failure modes are different. The timber failure modes are often 

brittle where the connections failures are most probably ductile. The main source of ductility 

in timber structures is the mechanically fastened joints. 
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5.4.1 Effects of number of bites 

Tests were carried out to determine the influences of number of bites on the performance of 

the punched metal plate timber joints subjected to tensile loads. The test samples were 

generally made of two pieces of timber dimensioned as 73mmx300mm and 73mmx8Omm by 

45mm thickness. The punched metal plate type used in construction of testing specimens was 

M2010310B-10lmmx25mmXlmm. The specimens were loaded to failure in tension. All joint 

specimens were manufactured using material as explained in chapter 3. 

In Figure 5.1 typical load-displacement curves up to 0.6mm displacement with fitted curve 

(average curves) for specimens with various number of bites subjected to tensile loading are 

shown. All joints made of punched metal plates M20/0310B with equal length of bites (8mm) 

and the loads applied parallel to the grain of timber. 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their load-displacement relationship. The load-displacement behaviour of each joint 

specimen was examined and second order polynomial equation was fitted to define the 

curves. The fitted curves simulated the load-displacement behaviour of the connection with 

good accuracy. These equations were directed to pass through the point of origin to simulate 

the condition of zero deformation at zero loads. 
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Figure 5.1 Load - displacement behaviour of joints with different number of bites loaded in tension 

parallel to the grain. 
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A comparison of performance of joints in relation to the number of bites tested up to 0.6mm 

displacement is presented in Figure 5.2. The average load at 0.6mm displacement for each 

group of specimens is shown in Table 5.2. 
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Figure 5.2 Comparison of joints performance subjected to tension force 

parallel to the grain using different number of bites. 

Plate ref. number Number of bites 
Average load at 

0.6mm displacement Failure modes 

M20/031OB 1 1126 Anchorage 
M20/03 10B 2 2219 Anchorage 
M20/0310B 3 3631 Anchorage 
M20/03IOB 4 4701 Anchorage 
M20/03IOB 5 5637 Anchorage 
M20/0310B 6 6769 Anchorage 
M20/031 OB 7 7426 Anchorage 
M20/0310B 8 8240 Anchorage 

Table 5.2 The average load at 0.6mm displacement for joints with various number 

of bites subjected to tension force parallel to the grain. 

It was observed that the number of bites had significant effects on the ultimate strength and 

stiffness and hence on the ductility of the joints when loaded in tension. The stiffness of the 

joints increased with an increase in the number of bites. The rate of increasing was 

approximately linear. 
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5.4.1.1 The stiffness characteristics of the joints 

In order to investigate the effects of number of bites on the performance of the joints 

subjected to tension load under short-term duration, the stiffness characteristics of all tested 

specimens were analysed in detail. The stiffness of the joint (K! ) defined as the ratio between 

the applied load and the displacement in the joint. 

K=s (S. 1) 

where K, = stiffness of the joint under tensile loading (N/mm). 

P, = tensile load (N). 

8= displacement (mm). 

For all specimens tested the displacement at failure was about 0.6mm. The average magnitude 

of the stiffness sustained by each joints specimen at 0.05mm to 0.6mm displacement level 

was determined. Figure 5.3 represents results of stiffness versus number of bites in the joints 

at displacement levels of 0.05mm to 0.6mm. Linear equations were fitted the stiffness versus 

number of bites curves to define them. These equations were directed to pass through the 

point of origin to simulate the condition of zero stiffness at number of bites equals to zero. 

The equations obtained are tabulated and presented in Table 5.3. These equations were then 

analysed and an empirical model (i. e. equation 5.2) describing the stiffness of punched metal 

plate timber connections with different number of bites under tensile loading was developed. 
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Figure 5.3 Stiffness sustained in the joint versus number of bites under tensile loading parallel to 

the grain. 
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Displacement 
(mm) 

Stiffness 
(KN/mm) 

Coefficient of 
correlation, R2 

0.05 4.3291 n 0.9204 

0.1 3.7725 n 0.9017 

0.15 3.6222 n 0.9106 

0.2 3.3343 n 0.9440 

0.25 3.0469 n 0.9498 

0.3 2.8059 n 0.9561 

0.35 2.5915 n 0.9636 

0.4 2.3937 n 0.9688 

0.45 2.2193 n 0.9755 

0.5 2.0665 n 0.9823 

0.55 1.9359 n 0.9841 

0.6 1.8134 n 0.9864 

n= number of bites in the joints. 

Table 5.3 The equations of the various curves in Figure 5.3. 
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Using the equations in Table 5.3, an empirical model (i. e equation 5.2 ) describing the 

stiffness of the joints with different number of bites under tensile loading was developed. 

K, _ 4.5297 e-1.56256 n (5.2) 

where K, = stiffness of the joint under tensile loading (kN/mm). 

S= displacement (mm). 

n= number of bites in the joint. 

In Figure 5.4, the effect of increase in the number of bites on the performance of the 

connections with respect to the stiffness sustained by them at displacement levels from 0.05 

to 0.6mm are shown. 
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Figure 5.4 Stiffness vs number of bites in joints under tensile loading parallel to 

the grain. 
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It is clear that the stiffness of the joints were dependent on the number of bites in the joints 

when loaded in tension parallel to the grain. The stiffness of the joints increased with an 

increase in the number of bites. The rate of increasing was approximately linear. 

At low displacement (0.05mm), stiffness was high comparing with high displacement 

(0.6mm). The rate of increasing in stiffness was reduced as displacement was increased. 

In Figure 5.5, a comparison of stiffness versus displacement between experimental and 

empirical (i. e. equation 5.2) results, for joints with different number of bites are represented. 

There was a good agreement between the empirical model and experimental results. 

In Table 5.4 Comparison between the experimental and empirical (i. e. equation 5.2) stiffness 

at displacement levels from 0.05mm to 0.6mm for the various number of bites in the joints 

are shown. 
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Figure 5.5 Comparison of stiffness vs displacement curve between experimental and empirical 

(i. e. equation 5.2) results. 
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Plate Number Number 
of Bites 

Displacement 
level (mm) 

Experimental 
stiffness 
(kN/mm) 

Empirical 
stiffness 
(kN/mm) 

Percentage 
of Error 

(%) 
M20/0310B 1 0.05 4.329 4.189 -3 
M20/0310B 2 0.05 8.658 8.379 -3 
M20/0310B 3 0.05 12.987 12.568 -3 
M20/031013 4 0.05 17.316 16.757 -3 
M20/03 10B 5 0.05 21.646 20.946 -3 
M20/0310B 6 0.05 25.975 25.136 -3 
M20/0310B 7 0.05 30.304 29.325 -3 
M20/0310B 8 0.05 34.633 33.514 -3 
M20/03108 1 0.1 3.772 3.874 3 
M20/0310B 2 0.1 7.545 7.749 3 
M20/0310B 3 0.1 11.317 11.623 3 
M20/0310B 4 0.1 15.090 15.498 3 
M20/0310B 5 0.1 18.863 19.372 3 
M20/0310B 6 0.1 22.635 23.247 3 
M20/0310ß 7 0.1 26.407 27.121 3 
M20/0310B 8 0.1 30.180 30.996 3 
M20/0310B 1 0.15 3.622 3.583 -I 
M20/0310B 2 0.15 7.244 7.167 
M20/0310B 3 0.15 10.867 10.750 -I 
M20/0310B 4 0.15 14.489 14.333 -1 
M20/0310B 5 0.15 18.111 17.916 -1 
M20/0310B 6 0.15 21.733 21.500 -I 
M20/0310B 7 0.15 25.355 25.083 l 
M20/0310B 8 0.15 28.978 28.666 1 
M20/0310B 1 0.2 3.334 3.314 -1 
M20/0310B 2 0.2 6.669 6.628 -I 
M20/03 10B 3 0.2 10.003 9.942 -I 
M20/03 10B 4 0.2 13.337 13.256 -1 
M20/0310B 5 0.2 16.671 16.570 -1 
M20/03 10B 6 0.2 20.006 19.884 -I 
M20/031013 7 0.2 23.340 23.198 -I 
M20/0310B 8 0.2 26.674 26.512 -1 
M20/0310B 1 0.25 3.047 3.065 
M20, /03 10B 2 0.25 6.094 6.130 1 
M20/0310B 3 0.25 9.141 9.195 

M20/03 IOB 4 0.25 12.188 12.260 
M20/0310B 5 0.25 15.235 15.325 
M20/0310B 6 0.25 18.281 18.390 

Table 5.4 Comparison between experimental and empirical stiffness at displacement level from 

0.05mm to 0.6mm for various number of bites in the joints. 
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Plate Number Number 
of Bites 

Displacement 
level (mm) 

Experimental 
stiffness 
kN/mm () 

Empirical 
stiffness 
(kN/mm) 

Percentage 
of Error 

(%) 
M20/0310B 7 0.25 21.328 21.455 
M20/0310B 8 0.25 24.375 24.520 
M20/0310B 1 0.3 2.806 2.835 
M20/0310B 2 0.3 5.612 5.669 
M20/0310B 3 0.3 8.418 8.504 
M20/0310B 4 0.3 11.224 11.338 1 
M2010310B 5 0.3 14.029 14.173 
M20/0310B 6 0.3 16.835 17.008 
M20/0310B 7 0.3 19.641 19.842 
M20/0310B 8 0.3 22.447 22.677 
M20/0310B 1 0.35 2.591 2.622 
M201031OB 2 0.35 5.183 5.243 1 
M20/0310B 3 0.35 7.774 7.865 1 
M20/0310B 4 0.35 10.366 10.486 I 
M20/0310B 5 0.35 12.957 13.108 
M20/0310B 6 0.35 15.549 15.730 
M20/0310B 7 0.35 18.140 18.351 
M20/0310B 8 0.35 20.732 20.973 
M20/0310B 1 0.4 2.394 2.425 
M20/0310B 2 0.4 4.787 4.849 
M20/0310B 3 0.4 7.181 7.274 1 
M20/0310B 4 0.4 9.575 9.698 1 
M20/0310B 5 0.4 11.968 12.123 
M20/03 1013 6 0.4 14.362 14.547 
M20/03 10B 7 0.4 16.756 16.972 
M20/0310B 8 0.4 19.150 19.397 
M20/0310B 1 0.45 2.219 2.242 
N120/0310B 2 0.45 4.439 4.485 
M20/031 013 3 0.45 6.658 6.727 
M20/0310B 4 0.45 8.877 8.969 
M20/0310B 5 0.45 11.097 11.212 1 
M20/0310B 6 0.45 13.316 13.454 
M20/0310B 7 0.45 15.535 15.697 
M20/0310B 8 0.45 17.754 17.939 
M20'0310B 1 0.5 2.067 2.074 0 
M20'0310B 2 0.5 4.133 4.148 0 
M20103108 3 0.5 6.200 6.222 0 
M20'03IOB 4 0.5 8.266 8.295 0 ': I 
M20! 031013 5 0.5 10.332 10.369 0 
M20/0310B 6 0.5 12.399 12.443 0 
M20/0310B 7 0.5 14.466 14.517 0 
M20/031013 8 0.5 16.532 16.591 0 
M20/0310B 1 0.55 1.936 1.918 -1 
M20/0310B 2 0.55 3.872 3.836 -1 
M20/0310B 3 0.55 5.808 5.754 -I 
M20/0310B 4 0.55 7.744 7.672 -1 
M20'031013 5 0.55 9.679 9.590 -1 
M20/0310B 6 0.55 11.615 11.508 -I 

Table 5.4 cont. 
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Plate Number Number 
of Bites 

Displacement 
level (mm) 

Experimental 
stiffness 
(kN/mm) 

Empirical 
stiffness 
(kN/mm) 

Percentage 
of Error 

(%) 
M20/0310B 7 0.55 13.551 13.426 -I 
M20/0310B 8 0.55 15.487 15.344 -I 
M20/0310B 1 0.6 1.813 1.774 -2 
M20/0310B 2 0.6 3.627 3.548 -2 
M20/0310B 3 0.6 5.440 5.322 -2 
M20/0310B 4 0.6 7.254 7.095 -2 
M20/0310B 5 0.6 9.067 8.869 -2 
M20/03IOB 6 0.6 10.880 10.643 -2 
M20/0310B 7 0.6 12.694 12.417 -2 
M20/031013 8 0.6 14.507 14.191 -2 

Table 5.4 cont. 

In Figure 5.6, a comparison of stiffness versus number of bites between experimental and 

empirical (i. e. equation 5.2) results for various joints with different number of bites at 

displacement levels from 0.05mm to 0.6mm are represented. There was a good agreement 

between the empirical model and experimental results. 

103 



40, 

E 30. .-- 
25 
20 

----.. 

-- 
IS - EaperineotalnJfness 
10 

y5....... ý- 
--. -. 

Empriralstifl 

0123456789 

Number of bites 

(a) Characteristics at 0.05mm displacement. 

33 
30 
25 .. -- "- - 
20 - --- -- --- -- - 
IS ---- 

---------- - 

10 ------ . Espenmenu is i fies 
yS---. Empi*aIstAnesi 

0 
0123456789 I- 

Number of bitcs 

(c) Characteristics at 0.15mm displacement 

2s 
2° 

10 --.,. ---"-- 

iEIcssj 

S -' ---.;.. ' 
' 

Emprica IstM--- 

° 

0123456789 I- 

Nianber of bites 

(e) Characteristics at 0.25mm displacement. 

25 
20 

10 ------ ..... -ExatrineeulstATnets 
EmpricalttiRness 

0 

0123456789 1- 

Number of bites 

(g) Characteristics at 0.35mm displacement 

35 

E 30 

ýE 21 
20 

IO --...... Espe rinenUltrJTnarr 
yO5--.. 

ýmpiirtltlilTnett 

0123456789 10 

Number of bides 

(b) Characteristics at 0.1 mm displacement. 

30 
25 

zE 20 ,...:...: . 
15 

>~ -E Ape menu I u0ne 
N5: H- 

['-Empiric 

a lniRncee 

0123456799 

J10 

Number of bites 

(d) Characteristics at 0.2mm displacement. 

30 
25-. ..; 
20 .......... 
IS 
10 ...,. --"-...... Eýerineýuýlsiillnrss' 

ý5 
EmpricýIstiRness 

I 

0123456789 10 

Number of bites 

(t) Characteristics at 0.3mm displacement. 

25 

20 

IS 

a IU 
ý -. .... Eaparine nulýýdTneýý 

0-- 
0123436799 10 

Number of bites 

(h) Characteristics at 0.4mm displacement. 

Figure 5.6 Comparison of stiffness vs number of bites between experimental and empirical (i. e. equation 5.2) results. 
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5.4.2 Effects of length of bites 
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Tests were carried out to determine the influences of length of bites on the performance of 

the punched metal plate timber joints subjected to tensile loads. The test samples were 

generally made of two pieces of timber dimensioned as 73mmx300mm and 73mmx8Omm by 

45mm thickness. The punched metal plate type used in construction of testing specimens was 

small strip of plates cut from M14/1333. The specimens were loaded to failure in tension. All 

joint specimens were manufactured using material as explained in chapter 3. 
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In Figure 5.7 typical load-displacement curves up to 0.24mm displacement with fitted curve 

(average curves) for specimens with various length of bites subjected to tensile loading are 

shown. All joints made of small strip of plates cut from M14/1333 punched metal plates with 

equal number of bites (8bites) and the loads applied parallel to the grain of timber. 
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Figure 5.7 Load - displacement behaviour of joints with different length of bites loaded 

in tension parallel to the grain. 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their load-displacement relation. The load-displacement behaviour of each joint 

specimen was recorded and plotted. Fourth order polynomial equations was fitted to define 

the curves. The fitted curves simulated the load-displacement behaviour of the connection 

with good accuracy. These equations were directed to pass through the point of origin to 

simulate the condition of zero deformation at zero loads. 
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For all specimens tested the displacement at failure was about 2.4mm. A comparison of 

performance of joints in relation to the length of bites tested up to 2.4mm displacement is 

presented in Figure 5.8. The average load at 2.4mm displacement for each group of 

specimens is shown in Table 5.5. It was observed that the length of bites had significant 

effects on ultimate strength and stiffness and hence on the ductility of the joints when 

loaded in tension. The stiffness of the joints increased with an increase in the bites length. 

The rate of increasing was approximately linear. 
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Figure 5.8 Comparison of joints performance subjected to tension force 

parallel to the grain using different length of bites. 

Plate reff, number 
Length of bites 

(mm) 

Average load at 
2.4mm displacement 

M14/1333 5 5409 
M14/1333 10 8170 
M14/1333 15 10657 
M14/1333 20 13650 

Table 5.5 The average load at 2.4mm displacement for joints with various bites 

length subjected to tension force parallel to the grain. 
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5.4.2.1 The stiffness characteristics of the joints 

In order to investigate the effects of length of bites on the performance of the joints subjected 

to tension load parallel to the grain under short-term duration, the stiffness characteristics of 

all tested specimens were analysed in detail. The stiffness of the joint (K, ) defined as the ratio 

between the applied load and the displacement in the joint as described in equation 5.1. 

The average magnitude of the stiffness sustained by each joints specimen at 0.2mm to 2.4mm 

displacement level was determined. Figure 5.9 represents results of stiffness versus length of 

bites in the joints at displacement levels from 0.2mm to 2.4mm. Third order polynomial 

equations were fitted the non-linear stiffness versus length of bites curves to define them. 

These equations were directed to pass through the point of origin to simulate the condition of 

zero stiffness at bites length equals to zero. The equations obtained are tabulated and 

presented in Table 5.6. From these equations an empirical model (i. e. equation 5.3) 

describing the stiffness of punched metal plate timber connections with different bites length 

under tensile loading was developed. 
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Figure 5.9 Stiffness sustained in the joint versus length of bites under tensile loading parallel to the 

grain. 
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Displacement 
(mm) 

Stiffness 
(KN/mm) 

Coefficient of 
correlation, R2 

0.2 0.005613 - 0.2011 12 + 3.0836 1 0.9990 

0.4 0.004413 - 0.152412 + 2.21091 0.9961 

0.6 0.0031 l3 - 0.1093 /1 + 1.67121 0.9933 

0.8 0.0024 13 - 0.083812 + 1.3502 1 0.9927 

1.0 0.00213 - 0.071711 + 1.16791 0.9941 
1.2 0.001813 - 0.0651 1s + 1.0516 / 0.9960 

1.4 0.001613 - 0.0592 12 + 0.9522 1 0.9970 

1.6 0.0015 13 -0.0542 12 + 0.86891 0.9988 

1.8 0.001313 - 0.048712 + 0.79081 0.9998 

2.0 0.001213 - 0.0432 l2 +0.71771 1 

2.2 0.001 13 - 0.0375 l? + 0.647 1 0.9996 

2.4 0.0009 l3 - 0.0326 12 + 0.584 1 0.9990 

I= length of bites in the joints (mm). 

Table 5.6 The equations of the various curves in Figure 5.9. 

Using the equations in Table 5.6, an empirical model (i. e equation 5.3) describing the 

stiffness of the joints with different length of bites under tensile loading was developed. 

K1 _ 0.002 ä-0.7467 l3 - 0.0714 ö-0,7263 !2+1.1483 5.0'667/ 1 (5.3) 

where K, = stiffness of the joint under tensile loading (kN/mm). 

8= displacement (mm). 

1= length of bites in the joint(mm). 

In Figure 5.10, the effect of increase in the bites length on the performance of the 

connections with respect to the stiffness sustained by them at displacement levels from 

0.2mm to 2.4mm are shown. 
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Figure 5.10 Stiffness vs length of bites in joints under tensile loading 

parallel to the grain. 

It is clear that the stiffness of the joints were dependent on the length of bites in the joints 

when loaded in tension parallel to the grain. The stiffness of the joints increased with an 
increase in the bites length. The rate of increase in stiffüess increased as the length of bites 

increased above approximately 60% of the maximum length of bites available in a tested 

punched metal plate. At low displacement levels, stiffness was high compared with at high 

displacement levels. The rate of increasing in stiffness was reduced as displacement was 

increased. 

In Figure 5.11, a comparison of stiffness versus displacement relationships between 

experimental and the developed empirical results for joints with different bites length are 

represented. There was a good agreement between the empirical model and experimental 

results. 
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Figure 5.11 Comparison of stiffness vs displacement curve between experimental and empirical 

(i. e. equation 5.3) results. 

In Table 5.7 Comparison between the experimental and empirical (i. e. equation 5.3) stiffness 

at displacement levels 0.2mm to 2.4mm for the various bites length in the joints are shown. 
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Bites length 
Plate Number 

(mm) 
Displacement 

level (mm) 

Experimental 
stiffness 

(kN/mm) 

Empirical 

stiffness 
(kN/mm) 

Percentage 

of Error 
(%) 

M1411333 5 0.2 11.091 11.886 7 
M14/1333 10 0.2 16.326 17.271 6 
MI 11333 15 0.2 19.907 21.144 6 
M144333 20 0.2 26.032 28.494 9 
511411333 5 0.4 7.795 7.603 -2 
NI M1333 10 0.4 11.269 11.234 0 
M1411333 15 0.4 13.724 13.866 1 
M14/1333 20 0.4 18.458 18.473 0 
M14/1333 5 0.6 6.011 5.852 -3 
M1411333 10 0.6 8.882 8.727 -2 
M1411333 IS 0.6 10.933 10.821 -1 
'ßf14/1333 20 0.6 14.504 14.332 -I 
ß414/1333 5 0.8 4.956 4.859 -2 
M14/1333 10 0.8 7.522 7.293 -3 
N114/1333 15 0.8 9.498 9.072 -4 
M14/1333 20 0.8 12.684 11.968 -6 M 14/1333 5 1 4.297 4.207 -2 
M 14/1333 10 1 6.509 6.343 -3 
M14/1333 15 1 8.136 7.910 -3 
x(14! 1333 20 1 10.678 10.406 -3 
M14/1333 5 1.2 3.856 3.739 -3 
M14/1333 10 1.2 5.806 5.659 -3 
N114/1333 15 1.2 7.201 7.070 -2 
M14/1333 20 1.2 9.392 9.282 -l 
M14/1333 5 1.4 3.481 3.384 -3 
M11! 1333 10 1.4 5.202 5.138 -I 
N114/1333 15 1.4 6.363 6.430 
X114/1333 20 1.4 8.164 8.426 3 
N114/1333 5 1.6 3.177 3.103 -2 
\114'1333 10 1.6 4.769 4.725 -1 
S1141333 15 1.6 5.901 5.922 0 
M14/1333 20 1.6 7.698 7.749 

IM 1411333 5 1.8 2.899 2.876 - 
M 14/1333 10 1.8 4.338 4.389 

N11411333 15 1.8 5.292 5.507 4 
M 1411333 20 1.8 6.736 7.196 7 
M14/1333 5 2 2.658 2.686 
\114/1333 10 2 4.057 4.108 
\114/1333 15 2 5.095 5.160 1 
M14/1333 20 2 6.674 6.736 1 
\114/1333 5 2.2 2.423 2.525 4 

, \114/1333 10 2.2 3.720 3.869 4 
114! 1333 15 2.2 4.643 4.865 5 
x14/1333 20 2.2 5.940 6.344 7 

Table 5.7 Comparison between experimental and empirical stiffness at displacement level from 0.2mm to 

2.4mm for various bites length in the joints. 
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Bites length Displacement Experimental Empirical Percentage 
Plate Number (mm) level (mm) stiffness stiffness of Error 

(kN/mm) (kN/mm) (%) 
M14/1333 5 2.4 2.218 2.387 8 
M14/1333 10 2.4 3.480 3.663 5 
M14/1333 15 2.4 4.463 4.610 3 
M 14/1333 20 2.4 5.840 6.007 3 

Table 5.7 cont. 

In Figure 5.12, a comparison of stiffness versus length of bites betwcen experimental and 

empirical (i. e. equation 5.3) results for various joints with different length of bites at 

displacement levels from 0.2mm to 2.4mm are represented. There was a good agreement 

between the empirical model and experimental results. 
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Figure 5.12 Comparison of stiffness vs length of bites between experimental and empirical 

(i. e. equation 5.3) results. 
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5.4.3 Effects of grain direction 

Tests were carried out to determine the influences of the grain direction on the performance 

of the punched metal plate timber joints subjected to tensile loads. The effects of angle of 

grains of 0,30 
, 
60 and 90 were examined. The test samples were generally made of two 

pieces of timber dimensioned as 73mmx300mm and 73mmx80mm by 45mm thickness. The 

punched metal plate type used in construction of testing specimens was M20/0310B- 

101mmx25mmxlmm. The specimens were loaded to failure in tension. All joint specimens 

were manufactured using material as explained in chapter 3. 

In Figure 5.13 typical load-displacement curves up to lmm displacement with fitted curve 
(average curves) for specimens with various grain direction subjected to tensile loading are 
shown. All joints made of punched metal plates M20/0310B with equal number of bites 

(8bites) and equal bites length (8mm). 

5000 

Z 3000 

$ 3000 
eee0 

a p$8eooee- 

2000 0' 
oe Tcst Results 

< 1000 
Fitted curve 

0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

4000 

3000 
00öbýýöýýoOýý° 

1000 000 
Tcst Results 1 
Pitted curve 

0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0 
Displacement, mm 

(a) 0° grain angle. 

3500 

z 3000 :-- -o-e"0000aiÄ. 
9 2500 

". O ° öAý°ýpeoe "" 
2000 

1500 '''- o-° , - 1000 e°e 
Test Results 

S00 

1,24 

Fitted curve 
0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 I. 

Displaccment, mm 

(c) 60° grain angle. 

Displacenicnt, mm 

(b) 30° grain angle. 

3500 
3000 

ep 09 

X000 8 , o? Yege$ee "e! 
e 

8 1500 
1000 80 

Tcsi Rcsulis 
500 -- 

-Fitlcdcivvc 
04 Ir I: ý- . -- --- - 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

Displaccment, mm 

(d) 90° grain angle. 

Figure 5.13 Load - displacement behaviour of joints under tension loading with different grain 
direction. 118 



The behaviour of the joints tested was assessed through observation of the failed specimens 

and their load-displacement relation. The load-displacement behaviour of each joint 

specimen was recorded and plotted. Third order polynomial equations was fitted to define the 

curves. The fitted curves simulated the load-displacement behaviour of the connection with 

good accuracy. These equations were directed to pass through the point of origin to simulate 

the condition of zero deformation at zero loads. 

A comparison of joints performance in relation to the grain direction tested up to lmm 

displacement is presented in Figure 5.14. The average load at 1 mm displacement for each 

group of specimens is shown in Table 5.8. 
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Figure 5.14 Comparison of joints performance subjected to tension force using 
different grain direction. 

Plate ref number 
Grain direction 

(degree) 
Average load at 1 mnm 

displacement (N) 

M20/0310B 0 3827 
M20/0310B 30 3446 
M20/03I OB 60 2852 
M20/0310B 90 2691 

Table 5.8 The average load at 1 mm displacement for joints with various grain direction subjected to 

tension force. 
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5.4.3.1 The stiffness characteristics of the joints 

In order to investigate the effects of the grain direction on the performance of the joints 

subjected to tension load under short-term duration, the stiffness characteristics of all tested 

specimens were analysed. The stiffness of the joint (K1) defined as the ratio between the 

applied load and the displacement in the joint as described in equation 5.1. 

For all specimens tested the displacement at failure was about lmm. The average magnitude 

of the stiffness sustained by each joints specimen at O. lmm to lmm displacement level was 

determined. Figure 5.15 represents results of stiffness versus grain direction in the joints at 

displacement levels of O. Imm to lmm. The relationship between stiffness and the grain 

direction was approximately linear. Linear equations were fitted the stiffness versus grain 

direction curves to define them. The equations obtained are tabulated and presented in Table 

5.9. From these equations an empirical model (i. e. equation 5.4) describing the stiffness of 

punched metal plate timber connections with different grain direction under tensile loading 

was developed. 
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Figure5.15 Stiffness sustained in the joint versus grain directions under tensile loading. 

121 



8 

. . --. --.. ---`. -... 
" 

F. lIResub 6- Fimd curve 

-----`-- -'-----'-- ý2 
yO 

0 15 30 45 60 75 90 105 

Gain direct ion, degree 

(i) Characteristics at 0.7mm displacement. 

Figure 5.15 cont. 
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(k) Characteristics at 0.7mm displacement. 

Displacement 
(mm) 

Stiffness 
(KN/mm) 

Coefficient of 
correlation, R2 

0.1 -0.0538 g+ 12.167 0.9605 

0.2 -0.0359 g+9.2562 0.9737 

0.3 -0.0283 g+7.7974 0.9995 

0.4 -0.0244 g+6.7741 0.9859 

0.5 -0.0221 g+6.0647 0.9836 

0.6 -0.0203 g+5.4779 0.9781 

0.7 -0.0187 g+4.9974 0.977 

0.8 -0.0168 g+4.5542 0.9689 

0.9 -0.015 g+4.1523 0.9653 

1 -0.0133 g+3.8039 0.9604 

g= angle of grain (degree). 

Table 5.9 The equations of the various curves in Figure 5.15. 

Using the equations in Table 5.9, an empirical model (i. e equation 5.4) describing the 

stiffness of the joints with different grain direction under tensile loading was developed. 

Kt - 0.0145 9-0'3739 g+4.102 jo. sooe (5.4) 
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where K, = stiffness of the joint under tensile loading (kN/mm). 
S= displacement (mm). 

g= angle of grain (degree). 

In Figure 5.16, the effect of grain direction on the performance of the connections with 

respect to the stiffness sustained by them at displacement levels from 0.1 mm to I mm are 

shown. 
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Figure 5.16 Stiffness vs grain direction in joints under tensile loading. 

it is clear that the stiffness of the joints were dependent on the grain direction in the joints 

under tensile loading. The stiffness of the joints decreased with an increase in the angle of 

grain. The rate of decrease in stiffness increased as the angle of grain increased. At low 

displacement (0.1mm), stiffness was high comparing with high displacement (I mm). The 

rate of increasing in stiffness was reduced as displacement was increased. 
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In Figure 5.17, a comparison of stiffness versus displacement curves between experimental 

and empirical (i. e. equation 5.4) results for joints with different grain direction are 

represented. There was a good agreement between the empirical model and experimental 

results. 
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Figure 5.17 Comparison of stiffness vs displacement curve between experimental and empirical 

(i. e. equation 5.4) results. 

In Table 5.10 Comparison between the experimental and empirical (i. e. equation 5.4) 

stiffness at displacement levels from 0. tmm to lmm for the various grain direction in the 

joints are shown. 
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Grain 
Plate Number direction 

(degree) 

Displacement 
In-el (mm) 

Experimental 
stiffness 

(kN/mm) 

Empirical 
stiffness 

(kN/mm) 

Percentage 
of Error 

(%) 

M20/0310B 0 0.1 12.167 12.984 7 
M20/0310B 30 0.1 10.553 11.353 8 
M20/0310B 60 0.1 8.939 9.722 9 
M20/0310B 90 0.1 7.325 8.091 10 
M20/03106 0 0.2 9.256 9.178 -1 
M20/0310B 30 0.2 8.179 8.083 -I 
M20/0310B 60 0.2 7.102 6.987 -2 
M20/0310B 90 02 6.025 5.892 -2 M20/0310B 0 0.3 7.797 7.493 
M20/0310B 30 03 6.948 6.625 -5 
M20/0310B 60 03 6.099 5.757 -6 
M20/0310B 90 0.3 5.250 4.889 -7 
M2010310B 0 0.4 6.774 6.488 -4 
M20/0310B 30 0.4 6.042 5.752 -5 
M20/03106 60 0.4 5.310 5.016 -6 
M201031013 90 0.4 4.578 4.280 -7 
M20/0310B 0 0.5 6.065 5.803 4 
M20/0310B 30 0.5 5.402 5.155 -5 
M20/0310B 60 0.5 4.739 4.508 -5 
M20/0310B 90 0.5 4.076 3.860 -5 
M20/03IOB 0 0.6 5.478 5.297 -3 
M20/03I0B 30 0.6 4.869 4.714 .3 
M20/0310B 60 0.6 4.260 4.130 -3 
M20/0310B 90 0.6 3.651 3.547 .3 
M20/03IOB 0 0.7 4.997 4.904 -2 
M20/0310B 30 0.7 4.436 4.370 
M20/03IOB 60 0.7 3.875 3.836 -1 
M20/0310ß 90 0.7 3.314 3.302 0 
M20/03IOB 0 0.8 4.554 4.587 1 
M20/0310B 30 0.8 4.050 4.092 1 
M20/03IOB 60 0.8 3.546 3.598 1 
M20/0310B 90 0.8 3.042 3.103 2 
M20103I0B 0 0.9 4.152 4.324 4 
M20/0310B 30 0.9 3.702 3.862 4 
M20/0310B 60 0.9 3.252 3.400 5 
M20/0310B 90 0.9 2.802 2.938 5 
M20/0310B 0 1 3.804 4.102 8 
M20/031013 30 1 3.405 3.667 8 
M20/0310B 60 1 3.006 3.232 
M20/0310B 90 1 2.607 2.797 7 

Table 5.10 Comparison between experimental and empirical stiffness at displacement 

level from 0. lmm to lmm for various grain direction in the joints. 
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In Figure 5.18, a comparison of stiffness versus grain direction curves between experimental 

and empirical (i. e. equation 5.4) results for various joints with different grain direction at 

displacement levels of 0.1mm to 1mm are presented. There was a good agreement between 

the empirical model and experimental results. 

16 12 
E- -- ------- E 
E4 

'----' E- 
,0 

Hmpric a lniRncts 

0 IS 30 45 60 75 90 105 0 IS 30 45 60 75 90 105 

Gain direction, drgree 

(a) Characteristics at 0.1 mm displacement. 

12 
10 ..... . 

zE a---------- ----...... 
6 
4------"-... - -- -- --- 

lstJrneu 
2--: ----- -Empiric a is tiRness 

0 
0 15 30 45 60 75 90 105 

Grain direction, degree 

(c) Characteristics at 0.3mm displacement. 

Gain direction, degree 

(b) Characteristics at 0.2mm displacement. 

10 

6 :... 

4 

2......... ...... Eýerencilia 1iiRncatl yr 
Empricaltrirncis 

0 

0 15 30 45 60 75 90 105 

Grain direction, degree 
(d) Characteristics at 0.4mm displacement. 

lo 

g 

6- 

4 

.--.... 
Etc nncoulstilTness 2 

-'Empirical stiffness 
0 

0 IS 30 45 60 75 90 105 

Grain direction, degree 

(e) Characteristics at 0.5mm displacement. 

7 
5 

a 
3 

JE 2 -- -- -- ---...... Eq, riven Is Is IMrs6 
NI----, - --- Empüal s tiRnes2 

0 15 30 45 60 75 90 105 

Grain direction, degree 

(g) Characteristics at 0.7mm displacement. 

8 
7 
6 

4 
3 

19 2---. Eýe'rinenuttrilincri 
to I ......... EmpricsIciiRnur 

0L- 

-' 0 IS 30 45 60 75 90 105 

Gain direction, degree 

(f) Characteristics at 0.6mm displacement. 

7 
6 ------- -- ----- - 

4- 
ý. c Z ".....,. - 

... 
EPerimenulniRneaa 

0 15 30 45 60 75 90 105 

Grain direction. degree 

(h) Characteristics at 0.8mm displacement. 

Figure 5.18 Comparison of stiffness vs grain direction between experimental and empirical (i. e. equation 5.4) results. 
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5.4.4 Effects of plate thickness 
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Tests were carried out to determine the influences of the plate thickness on the performance 

of the punched metal plate timber joints subjected to tensile loads. The test samples were 

generally made of two pieces of timber dimensioned as 73mmx300mrn and 73mmx80mm by 

45mm thickness. The punched metal plate types used in construction of testing specimens 

were M20/0310B, Imm thickness and small strip of plates cut from M14/1333,2mm 

thickness. The specimens were loaded to failure in tension. All joint specimens were 

manufactured using material as explained in chapter 3. 

In Figure 5.19 typical load-displacement curves up to 0.6mm displacement with fitted curve 

(average curves) for specimens with various plate thickness subjected to tensile loading are 

shown. Joints were made of two different plates. The first group made of punched metal 

plates M20/0310B with 1mm plate thickness and the second group made of small strip of 

punched metal plate M14/1333 with 2mm plate thickness. All plates having equal number of 
bites (Sbites) and load applied parallel to the grain of timber. 
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Figure 5.19 Load - displacement behaviour of joints with different plate thickness loaded in 

tension parallel to the grain. 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their load-displacement relation. The load-displacement behaviour of each joint 

specimen was recorded and plotted. Second order polynomial equations were fitted to define 

the curves. The fitted curves simulated the load-displacement behaviour of the connection 

with good accuracy. These equations were directed to pass through the point of origin to 

simulate the condition of zero deformation at zero loads. 

A comparison of performance of joints in relation to the plate thickness tested up to 0.6mm 

displacement is presented in Figure 5.20. The average load at 0.6mm displacement for each 

group of specimens is shown in Table 5.11. It was observed that the plate thickness had 

significant effects on ultimate strength and stiffness and hence on the ductility of the joints 

when loaded in tension. The ultimate load capacity of the joints increased with an increase 

in the plate thickness. 
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Figure 5.20 Comparison of joints performance subjected to tension force 

parallel to the grain using different plate thickness. 

number Plate ref 
Plate thickness Average load at 0.6mm 

Failure modes . (mm) displacement (N) 

M20/0310B 1 4701 Anchorage 

M14/1333 2 8915 Anchorage 

Table 5.11 The average load at 0.6mm displacement for joints with various plate 

thickness subjected to tension force parallel to the grain. 

5.4.4.1 The stiffness characteristics of the joints 

In order to investigate the effects of plate thickness on the performance of the joints subjected 

to tension load parallel to the grain under short-term duration, the stiffness characteristics of 

all tested specimens were analysed in detail. The stiffness of the joint (K1) defined as the ratio 

between the applied load and the displacement in the joint as described in equation 5.1. 
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For all specimens tested the displacement at failure was about 0.6mm. The average 

magnitude of the stiffness sustained by each joints specimen at 0.05mm to 0.6mm 

displacement level was determined. Figure 5.21 represents results of stiffness versus plate 

thickness in the joints at displacement levels of 0.05mm to 0.6mm. Power equations were 

fitted the stiffness versus plate thickness curves to define them. These equations were 

directed to pass through the point of origin to simulate the condition of zero stiffness at plate 

thickness equals to zero. The equations obtained are tabulated and presented in Table 5.12. 

These equations were then analysed and an empirical model (i. e. equation 5.5) describing the 

stiffness of punched metal plate timber connections with different plate thickness under 

tensile loading was developed 
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Figure 5.21 Stiffness sustained in the joint versus plate thickness under tensile loading parallel to 

the grain. 
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Displacement 
(mm) 

Stif less 
(KN/mm) 

0.05 19.820 t0.9890 

0.10 17.410 to'9°76 

0.15 15.593 to. 8818 

0.20 14.425 to. 83o1 

0.25 13.248 t0.8143 

0.30 12.223 to. s021 

0.35 11.371 to. s0" 

0.40 10.460 to. 8362 

0.45 9.6267 to. 9562 

0.50 8.9660 to. 8771 

0.55 8.3582 t0.8981 

0.60 7.8350 to. 9233 

t= thickness of the plate (mm). 

Table 5.12 The equations of the various curves in Figure 5.21. 

Using the equations in Table 5.12, an empirical model (i. e equation 5.5) describing the 

stiffness of the joints with different plate thickness under tensile loading was developed. 

K, = 20.375e -ß 62'611.926 P-1.2969 6+1.0291 (5.5) 

where K, = stiffness of the joint under tensile loading (kN/mm). 

S= displacement (mm). 

t= thickness of plate(mm). 

In Figure 5.22, the effect of increase in the plate thickness on the performance of the 

connections with respect to the stiffness sustained by them at displacement levels of 0.05mm 

to 0.6mm are shown. 
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Figure 5.22 Stiffness vs thickness of plate in joints under tensile loading parallel to the grain. 

It is clear that the stiffness of the joints were dependent on the thickness of plate in the joints 

when loaded in tension parallel to the grain. The stiffness of the joints increased with an 

increase in the plate thickness. At low displacement (0.05mm), stiffness was high comparing 

with high displacement (0.6mm). The rate of increasing in stiffness was reduced as 

displacement was increased. 

In Figure 5.23, a comparison of stiffness versus displacement curves between experimental 

and empirical (i. e. equation 5.5) results for joints with different plate thickness are 

represented. There was a good agreement between the empirical model and experimental 

results. 
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Figure 5.23 Comparison of stiffness vs displacement curve between experimental and 

empirical (i. e. equation 5.5) results. 

In Table 5.13 Comparison between the experimental and empirical (i. e. equation 5.5) 

stiffness at displacement levels from 0.05mm to 0.6mm for the various plate thickness in the 

joints are shown. 
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Plate Number 
Plate 

thickness 
(mm) 

Displacement 
level (mm) 

Experimental 
stiffness 

(kN/mm) 

Empirical 
stiffness 

(kN/mm) 

Percentage 
of Error 

(%) 

ßl20/031 OB 1 0.05 19.820 18.768 -5 
`114/1333 2 0.05 39.339 36.741 -7 

M120/031013 I 0.1 17.410 17.288 - 
M14/1333 2 0.1 32.660 32.682 0 

\120'03106 1 0.15 15.593 15.925 2 
M14/1333 2 0.15 28.733 29.266 2 

M20/031013 1 0.2 14.425 14.669 2 
M14/1333 2 0.2 25.645 26.383 3 

M20.10310B 1 0.25 13.248 13.513 2 
1,114/1333 2 0.25 23.296 23.943 3 

\120/03106 0.3 12.223 12.447 2 
M14/1333 2 0.3 21.312 21.874 3 

`/10.03106 1 0.35 11.371 11.466 
M14/1333 2 0.35 19.874 20.118 1 

. %120. '0310B 0.4 10.460 10.562 
ßt14/1333 2 0.4 18.675 18.627 0 

\120/03108 0.45 9.627 9.729 
ßi14/1333 2 0.45 17.427 17.362 0 

M20/031013 1 0.5 8.966 8.962 0 
ß114/1333 2 0.5 16.468 16.291 -1 

M20/0310B 0.55 8.358 8.255 -1 
M14/1333 2 0.55 15.576 15.388 -1 

%120/03108 I 0.6 7.835 7.604 -3 
%114/1333 2 0.6 14.859 14.633 -2 

Table 5.13 Comparison between experimental and empirical stiffness at displacement level 

from 0.05mm to 0.6mm for various plate thickness in the joints. 

In Figure 5.24, a comparison of stiffness versus thickness of plate curves between 

experimental and empirical (i. e. equation 5.5) results for various joints with different plate 

thickness at displacement levels from 0.05mm to 0.6mm are represented. There was a good 

agreement between the empirical model and experimental results. 
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Figure 5.24 Comparison of stiffness vs thickness of plate between experimental and empirical 

(i. e. equation 5.5) results. 
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5.5 Failure modes 

25 

20 
Is 
10 _ 
5---- "E perinanulnJTnau 

in 
° 

EmpücýlýýiRneýý 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Thickness of plate, mm 

(n) Characteristics at 0.6mm displacement. 

All joints studied behaved in similar manner. The load-displacement curves were clearly non- 
linear from beginning up to failure load. The slope of load-displacement relationship of the 

connections tested was reduced as the load increased. Visual observation of load- 

displacement behaviour of specimens up to failure indicates that the failure nodes for joint 

types tested were nail plate anchorage failure (nail withdrawal from the timber). As the load 

increased, plate started to peel away from the timber members at their upper end. This 

peeling progressed downward until the plate withdrew completely. The failure of joints was 

characterised as ductile. A great deal of plastic deformation (ductility) was noted before 

failure. Typical anchorage failure of joints is shown in Figure 5.25. 
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Figure 5.25 Typical failures of joint when loaded in tension parallel to the grains. 

5.6 SUMMARY 

In this chapter details of experimental work carried out to study the load-displacement 

characteristics of the punched metal plate timber connections, using joints with different 

parameters such as number of bites, length of bites, grain direction and thickness of the plate. 

The specimens tested were subjected to tensile loading. 

From the results obtained, it was found that the number of bites, length of bites, the grain 

direction and the plate thickness in the joints have a significant effects on the load- 

displacement characteristics of the joints. Increasing number of bites, length of bites, 

thickness of plate and decreasing angle of grain direction would increase the strength and 

stiffness of the joints. The failure of joints was characterised as ductile, a considerable 

amount of ductility was generally observed prior to failure. The most common mode of 

failure was anchorage failure (teeth withdrawal); as the load increased the toothed-plates 

started to peel away from the timber members. 
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Empirical models describing stiffness characteristics of joints with different parameters 

(number of bites, length of bites, grain direction, and plate thickness) subjected to tensile 

loading were developed and compared well with the experimental results. 
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CHAPTER SIX 

LOAD-DISPLACEMENT CHARACTERISTICS OF PUNCHED 

METAL PLATE TIMBER JOINTS SUBJECTED TO 

COMPRESSION LOADS 



6. LOAD-DISPLACEMENT CHARACTERISTICS OF PUNCHED 

METAL PLATE TIMBER JOINTS SUBJECTED TO 

COMPRESSION LOADS 

6.1 INTRODUCTION 

This chapter describes details of experimental work investigating load-displacement 

characteristics of the punched metal plate timber connections under short duration loading, in 

which the effects of different factors such as number of bites, length of bites, grain directions 

and plate thickness were considered. This is to evaluate their efficiency for use in a variety of 

timber structures. It is anticipated in this chapter to determine the structural behaviour of 

punched metal plate timber connections when subjected to compression loads with respect to 

their strength and displacement characteristics. Also, empirical models are developed to 

simulate the load-displacement behaviour of the joints using different parameters. 

6.2 TESTING PROGRAM 

Tests were carried out to determine the influences of different variables such as number of 

bites, length of bites, grain directions and plate thickness on the performance of the punched 

metal plate timber joints subjected to compression loading. Testing programme for different 

variables (number of bites, length of bites, grain directions, plate thickness) are summarised 

in table 6.1. Minimum of 5 specimens per joint type were tested, totalling over 70 specimen 

joints. 
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Plate ref. Plate properties (mm) Bite properties Grain 

number Length Width Thickness Number Length (mm) direction 

M20/0310B 101 25 1 1 8 0 

M20/0310B 101 25 1 2 8 0 

M20/0310B 101 25 1 3 8 0 

M20/0310B 101 25 1 4 8 0 

M20/0310B 101 25 1 5 8 0 

M20/0 110B 101 25 1 6 8 0 

M20/0310B 101 25 1 7 8 0 

M20/0310B 101 25 1 8 8 0 

M20/0 110B 101 25 1 8 8 30 

M20/0310B 101 25 1 8 8 60 

M20/0310B 101 25 1 8 8 90 

M14/1333 133 38 2 8 5 0 

M14/1333 133 38 2 8 10 0 

M14/1333 133 38 2 8 15 0 

Table 6.1. Testing programme for joints subjected to compression loading. 

63 LABORATORY WORK 

For testing the effects of the number of bites and grain directions the punched metal plate 

type used was M20/031OB-101mmx25mmX1mm and for the length of bites a small strip 

130mmx38mmX2mm which was cut from plate number M14/1333 as supplied by MiTek 

industries. The specimens were loaded to failure in compression. All joint specimens were 

manufactured using material as explained in chapter 3. The average moisture content at the 

time of testing was 12 % and the mean density was 475 kg/m3. The induced deformation rate 

during loading was imm/min. 
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The test samples were generally made of two pieces of timber dimensioned as 73 x 170 mm 

and 73 x 67 mm by 45 mm thickness. The specimens were made according to the British 

standard pr EN 1075: 1997 as explained in chapter 3. Typical compression test specimen is 

shown in Figure 3.2 and test set-up is shown in Figure 3.6. The instrumentation and loading 

procedures were as explained in chapter 3. 

6.4 RESULTS AND DISCUSSION 

6.4.1 Effects of number of bites 

Tests were carried out to determine the influences of number of bites on the performance of 

the punched metal plate timber joints subjected to compression loads. The test samples were 

generally made of two pieces of timber dimensioned as 73mmx 170mm and 73 x 67 by 

45mm thickness. The punched metal plate type used in construction of testing specimens was 

M20/03lOB-lOlmm>25mmxlmm. The specimens were loaded to failure in compression. 

All joint specimens were manufactured using material as explained in chapter 3. 

In Figure 6.1 typical load-displacement curves up to 0.6mm displacement with fitted curve 

(average curves) for specimens with various number of bites subjected to compression 

loading are shown. All joints made of punched metal plates M20/0310B with equal length of 

bites (8mm) and the loads applied parallel to the grain of timber. 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their load-displacement relation. The load-displacement behaviour of each joint 

specimen was examined and third order polynomial equations was fitted to define the curves. 

The fitted curves simulated the load-displacement behaviour of the connection with good 

accuracy. These equations were directed to pass through the point of origin to simulate the 

condition of zero deformation at zero loads. 

144 



1400 
1200 ----- 
1000 . 
s00 " 

E. 
600 

400 
200 ----- - 

" Test Results 

------------ -Fitted curve 

0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

(a) One bite. Displacement. mm 

5000 

z 4000 00 = 
° $ 3000 - °... - --e. °. 

2000 aResults 
1000 ; 

.. -e Fi curve 
0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

(c) Three bites. Displacement, mm 

6000 

Z 5000 ---- 
4000 ....... . 

3000 

2000 o Test Results 
< 1000- .......... - Fitted curve 

0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Five bites. 
Displacement, mm 

(e) 

6000 

Z 5000 0- 0 

4000- 
3000- 

°" Tat Rcsults 
c 2ý 

e. 
e. ... 

< 1000 ° .. - Fiuedcurve 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Displacement. mm 
(g) Seven bites. 

3000 

Z 2500 ý$ 
1 2000 t-$/a 

$ 1500. 

1000 ' ' 
< o l est Nc. ults 

500 Xý Filled curve, 
0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 
(b) Two bites. Displacement, mm 

5000 

z 4000 0 
$ 3000 -!; 

0-0 

$ 2000 Fs o 'fest Results 
< 1000 

Fitted curve 

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 

(d) Four bites. Displacement, nim 

V Vuv 
0 30 0O, 

d 4000 ö 
3000 $ 
2000 -IA 

t 

est Resuhs o; 
< 1000 

t d e i curve 
0 

00 0.1 0.2 0.3 0.4 0.3 0.6 0.7 0.8 

(0 Six bites. Displaccmcnl, nim 

7000- 

z 
6000 r 

. 5000 
4000 0. 

'_. ö 
0o 

8 3000 °0 
2000 O fl' 1 RcSUllf 1 1000 Filled curve 

0 'J 

0.0 0.1 0.2 0.3 0.4 0.3 0.6 0.7 OS 

(h) Eight bites 
Displaccmcnl. mm 

. 

Figure 6.1 Load - displacement behaviour of joints with different number of bites loaded in compression 

parallel to the grain. 
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A comparison of performance of joints in relation to the number of bites tested up to 0.6mm 

displacement is presented in Figure 6.2. The average load at 0.6mm displacement for each 

group of specimens is shown in Table 6.2. 
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Figure 6.2 A comparison of joints performance in relation to the number of bites under 

compression loading. 

Plate ref. number Number of bites 
Average load at 

0.6mm displacement 
(N) 

Failure modes 

M20/0310B 1 1250 Anchorage 
M20/0310B 2 2528 Anchors e 
M20/0310B 3 3541 Anchorage 
M20/0310B 4 4497 Anchorage 
M20/03 I OB 5 4511 Anchorage 

M20/03I OB 6 4596 Closure of the gap 
M20/03I OB 7 4675 Closure of the gap-Plate buckling-Timber 
M20/03I OB 8 4864 Closure of the gap-Plate buckling-Timber 

Table 6.2 The average load at 0.6mm displacement for joints with various number of 

bites subjected to compression force parallel to the grain. 
146 



It was observed that the number of bites had significant effects on the strength and stiffness 

and hence on the ductility of the joints when loaded in compression. The stiffness of the 

joints increased with an increase in the number of bites. The rate of increasing reduced as 

the number of bites increased above 50% of the total number of bites available in a standard 

toothed-plate size. 

6.4.1.1 The stiffness characteristics of the joints 

In order to investigate the effects of number of bites on the performance of the joints 

subjected to compression load under short-term duration, the stiffness characteristics of all 

tested specimens were analysed in detail. The stiffness of the joint (Kc) defined as the ratio 

between the applied load and the displacement in the joint. 

K=P (6. l) 

where K, = stiffness of the joint under compression loading (N/mm). 

Pý = compression load (N). 

6= displacement (mm). 

For all specimens tested the displacement at failure was about 0.6mm. The average 

magnitude of the stiffness sustained by each joints specimen at 0.05mm to 0.6mm 

displacement levels was determined. Figure 6.3 represents results of stiffness versus number 

of bites in the joints at displacement levels of 0.05mm to 0.6mm. The relationships were non- 

linear. Third order polynomial equations were fitted the stiffness versus number of bites 

curves to define them. These equations were directed to pass through the point of origin to 

simulate the condition of zero stiffness at number of bites equals to zero. The equations 

obtained are tabulated and presented in Table 6.3. These equations were then analysed and an 

empirical model (i. e. equation 6.2) describing the stiffness of punched metal plate timber 

connections with different number of bites under compression loading was developed. 
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Figure 6.3 Stiffness sustained in the joint versus number of bites under compression loading parallel 

to the grain. 
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Displacement 
(mm) 

Stiffness 
(kN/mm) 

Coefficient of 
correlation, R2 

0.05 0.0416 n3 - 0.769 n2 + 4.966 n 0.8346 

0.1 0.016 n3 - 0.4866 n2 + 4.1318 n 0.9073 

0.15 0.0148 n3 - 0.4634 n2 + 4.0233 n 0.9562 

0.2 0.0143 n3 - 0.4432 n2 + 3.8601 n 0.9524 

0.25 0.0157 n3 - 0.4313 n2 + 3.6895 n 0.9636 

0.3 0.0127 n3 - 0.3938 n2 + 3.542 n 0.9548 

0.35 0.0143 n3 - 0.3958 n2 + 3.4433 n 0.9447 

0.4 0.0101 n3 - 0.3396 n2 + 3.2453 n 0.9707 

0.45 0.0089 n3 - 0.31 n2 + 3.0603 n 0.9781 

0.5 0.0101 n3 - 0.3107 n2 + 2.9679 n 0.978 

0.55 0.0098 n3 - 0.2935 n2 + 2.8291 n 0.9802 

0.6 0.0081 n3 - 0.2593 n2 + 2.6451 n 0.9876 

n= number of bites in the joints. 

Table 6.3 The equations of the various curves in Figure 6.3. 

Using the equations in Table 6.3, an empirical model (i. e equation 6.2) describing the 

stiffness of the joints with different number of bites under compression loading was 
developed. 

Kc=0.0066fi n-- 0.2381 S°3734n'+2.5611 ö 1J07n (6.2) 

where K, =stiffness of the joint under compression loading (kN/mm). 

8= displacement (mm). 

n= number of bites in the joint. 

In Figure 6.4, the effect of increase in the number of bites on the perfomiancc of the 

connections with respect to the stiffness sustained by them at displacement levels from 0.05 

to 0.6mm are shown. 
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Figure 6.4 Stiffness vs number of bites in joints under compression loading parallel to the grain. 

It is clear that the stiffness of the joints were dependent on the number of bites in the joints 

when loaded in compression parallel to the grain. The stiffness of the joints increased with an 

increase in the number of bites. The rate of increasing reduced as the number of bites 

increased above approximately 50% of the total number of bites available in a standard 

punched metal plate size. At low displacement (0.05mm), stiffness was high comparing with 

high displacement (0.6mm). The rate of increasing in stiffness was reduced as displacement 

was increased. 
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In Figure 6.5, a comparison of stiffness versus displacement curves between experimental 

and empirical (i. e. equation 6.2) results for joints with different number of bites arc 

represented. There was a good agreement between the empirical model and experimental 

results. 
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Figure 6.5 Comparison of stiffness vs displacement curve between experimental and empirical 

(i. e. equation 6.2) results. 
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In Table 6.4 Comparison between the experimental and empirical (i. e. equation 6.2) stiffness 

at displacement levels 0.05mm to 0.6mm for the various number of bites in the joints are 

shown. 

Plate Number Number 
of Bites 

Displacement 
level (nun) 

Experimental 
stiffness 
(kN/mm) 

Empirical 
stiffness 
(kN/mm) 

Percentage 
of Error 

(%) 
M20/03IOB 1 0.05 4.239 4.415 4 
M20/0310B 2 0.05 7.189 7.562 5 
M2010310B 3 0.05 9.100 9.631 6 
M20/03108 4 0.05 10.222 10.812 6 
M20/0310B 5 0.05 10.805 11.295 5 
M20/0310B 6 0.05 11.098 11.269 2 
M20/0310B 7 0.05 11.350 10.925 -4 
M20/0310B 8 0.05 11.800 10.451 -11 
M20/03 10B 1 0.1 3.661 3.816 4 
M20/03IOB 2 0.1 6.445 6.639 3 
M20/0310B 3 0.1 8.448 8.601 2 
M20/0310B 4 0.1 9.766 9.834 
M20/0310B 5 0.1 10.494 10.470 0 
M20/0310B 6 0.1 10.729 10.641 
M20/0310B 7 0.1 10.567 10.480 -i 
M20/0310B 8 0.1 10.104 10.118 0 
M20/0310B 1 0.15 3.575 3.502 -2 
M20/0310B 2 0.15 6.311 6.143 -3 
M20/03 I OB 3 0.15 8.299 8.031 -3 
M20/0310B 4 0.15 9.626 9.273 -4 
M20/0310B 5 0.15 10.381 9.975 -4 
M20/0310B 6 0.15 10.654 10.244 -4 
M20/0310B 7 0.15 10.533 10.186 -3 
M20/03IOB 8 0.15 10.106 9.910 -2 
M20/0310B 1 0.2 3.431 3.294 -4 
M20/0310B 2 0.2 6.062 5.811 -4 
M20/03IOB 3 0.2 7.978 7.643 -4 
M20/0310B 4 0.2 9.264 8.882 -4 
M20/0310B 5 0.2 10.008 9.621 -4 
M20/0310B 6 0.2 10.294 9.951 -3 
M20/0310B 7 0.2 10.209 9.963 -2 
M20/031013 8 0.2 9.838 9.750 -1 
M20/031013 1 0.25 3.274 3.140 -4 
M20/0310B 2 0.25 5.779 5.563 -4 
M20/03IOB 3 0.25 7.611 7.351 -3 
M20/0310B 4 0.25 8.862 8.585 -3 
M20/031013 5 0.25 9.627 9.347 -3 
M20/0310ß 6 0.25 10.001 9.718 -3 

Table 6.4 Comparison between experimental and empirical stiffness at displacement 

level of 0.05mm to 0.6mm for various number of bites in the joints. 
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Plate Number Number 
of Bites 

Displacement 
level (mm) 

Experimental 
stiffness 
(kN/mm) 

Empirical 
stiffness 
(kN/mm) 

Percentage 
of Error 

(%) 
M20/0310B 7 0.25 10.078 9.781 .3 M20/0310B 8 0.25 9.951 9.618 .3 M2010310B 1 0.3 3.161 3.020 -4 M20/0310B 2 0.3 5.610 5.368 .4 M2010310B 3 0.3 7.425 7.118 .4 
M20/0310B 4 0.3 8.680 8.345 4 
M20/0310B 5 0.3 9.453 9.123 .3 
M20/0310B 6 0.3 9.818 9.526 

.3 M2010310B 7 0.3 9.854 9.628 -2 M2010310B 8 0.3 9.635 9.504 _1 M20/0310B 1 0.35 3.062 2.922 _5 M20/0310B 2 0.35 5.418 5.208 .4 M2010310B 3 0.35 7.154 6.926 .3 M2010310B 4 0.35 8.356 8.145 .3 M20/0310B 5 0.35 9.109 8.934 -2 M2010310B 6 0.35 9i00 9.361 -I 
mcwwivn 
M20'0310B 8 

v. » 
0.35 

Y. 014 9,495 
9.537 9.404 

.1 
_1 M2010310B 1 0.4 2.916 2.839 .3 M2010310B 2 0.4 5.213 5.072 _3 M20V0310B 3 0.4 6.952 6.763 _3 M2010310B 4 0.4 8.194 7.974 -3 M2010310B 5 0.4 8.999 8.771 .3 M20/0310B 6 0.4 9.428 9.218 .2 M20/0310B 7 0.4 9.541 9.377 -2 M20/0310B 8 0.4 9.399 9.314 .I M20/0310B 1 0.45 2.759 2.768 0 

M20/0310B 2 0.45 4.952 4.955 0 
M20/0310B 3 0.45 6.631 6.621 0 
M20! 0310B 4 0.45 7.851 7.825 0 
M20/0310B 5 0.45 8.664 8.628 0 
M20/0310B 6 0.45 9.124 9.090 0 
M20/0310B 7 0.45 9.285 9.272 0 
M2010310B 8 0.45 9.199 9.232 0 
M20'0310B 1 0.5 2.667 2.706 1 
M20/0310B 2 0.5 4.774 4.853 2 
M20! 031013 3 0.5 6.380 6.496 2 
M20/0310B 4 0.5 7.547 7.693 2 
M2010310B 5 0.5 8.335 8.501 2 
M20/0310B 6 0.5 8.804 8.976 2 
M20/0310B 7 0.5 9.015 9.176 2 
M20/0310B 8 0.5 9.030 9.158 1 
M20/0310B 1 0.55 2.545 2.651 4 
M20/0310B 2 0.55 4.563 4.761 4 
M20/0310B 3 0.55 6.110 6.384 4 
M20/031OB 4 0.55 7.248 7.574 4 
M20/0310B 5 0.55 8.033 8.386 4 
M20/0310B 6 0.55 8.525 8,873 4 

Table 6.4 cont. 
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Plate Number 
Number 
of Bites 

Displacement 
level (mm) 

Experimental 
stiffness 

(kN/mm) 

Empirical 
stiffness 

(kN/mm) 

Percentage 
of Error 

(%) 
M20/0310B 7 0.55 8.784 9.089 3 
M20/0310B 8 0.55 8.866 9.089 3 
M20/0310B 1 0.6 2.394 2.602 9 
M201031OB 2 0.6 4.318 4.679 8 
M20/0310B 3 0.6 5.820 6.284 8 
M20/0310B 4 0.6 6.950 7.467 7 
M20/0310B 5 0.6 7.755 8.281 7 
M20/0310B 6 0.6 8.285 8.778 6 
M20/0310B 7 0.6 8.588 9.009 5 
M20/0310B 8 0.6 8.713 9.025 4 

Table 6.4 cont. 

In Figure 6.6, a comparison of stiffness versus number of bites between experimental and 

empirical (i. e. equation 6.2) results for various joints with different number of bites at 
displacement levels of 0.05mm to 0.6mm are represented. There was a good agreement 
between the empirical model and experimental results. 
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Figure 6.6 Comparison of stiffness vs number of bites between experimental and empirical (i. e. equation 6.2) results. 
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Figure 6.6 cont. 

6.4.2 Effects of length of bites 
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Tests were carried out to determine the influences of length of bites on the perfomrance of 

the punched metal plate timber joints subjected to compression loads. The test samples were 

generally made of two pieces of timber dimensioned as 73mmx 170ºnm and 73mmx67mm by 

45mm thickness. The punched metal plate type used in construction of testing specimens was 

small strip of plates cut from M14/1333. The specimens were loaded to failure in 

compression. All joint specimens were manufactured using material as explained in chapter 

3. 

In Figure 6.7 typical load-displacement curves up to 4.5mm displacement with fitted curve 

(average curves) for specimens with various length of bites subjected to compression loading 

are shown. All joints made of small strip of M14/1333 punched metal plates with equal 

number of bites (8bites) and the loads applied parallel to the grain of timber. 
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(d) 20mm bites length. 

Figure 6.7 Load - displacement behaviour of joints with different bites length loaded in compression 
parallel to the grain- 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their load-displacement relation. The load-displacement behaviour öf each joint 

specimen was examined and fourth order polynomial equations was fitted to define the 

curves. The fitted curves simulated the load-displacement behaviour of the connection with 

good accuracy. These equations were directed to pass through the point of origin to simulate 

the condition of zero deformation at zero loads. 

A comparison of joints performance in relation to the length of bites tested up to 4.5mm 

displacement is presented in Figure 6.8. The average load at 4.5mm displacement for each 

group of specimens is shown in Table 6.5. 
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Figure 6.8 Comparison of joints performance subjected to compression 
force parallel to the grain using different length of bites. 

Plate ref. number 
Length of bites 

(mm) 

Average load at 
4.5mm displacement 

(N) 
M 14/1333 5 6012 
M14/1333 to 8398 
M14/1333 15 9988 
M14/1333 20 12490 

Table 6.5 The average load at 4.5mm displacement for joints with various bites 

length subjected to compression force parallel to the grain. 

6.4.2.1 The stiffness characteristics of the joints 

In order to investigate the effects of length of bites on the performance of the joints subjected 

to compression load parallel to the grain under short-teen duration, the stiffness 

characteristics of all tested specimens were analysed in detail. The stiffness of the joint (Kc) 

defined as the ratio between the applied load and the displacement in the joint as described in 

equation 6.1. 
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For all specimens tested the displacement at failure was about 4.5mm. The average 

magnitude of the stiffness sustained by each joints specimen at 0.25mm to 4.5mm 

displacement level was determined. Figure 6.9 represents results of stiffness versus length of 

bites in the joints at displacement levels of 0.25mm to 4.5mm. Third order polynomial 

equations were fitted the non-linear stiffness versus length of bites curves to define them. 

These equations were directed to pass through the point of origin to simulate the condition of 

zero stiffness at bites length equals to zero. The equations obtained are tabulated and 

presented in Table 6.6. These equations were then analysed and an empirical model (i. e. 

equation 6.3) describing the stiffness of punched metal plate timber connections with 

different bites length under compression loading was developed. 
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Figure 6.9 Stiffness sustained in the joint versus length of bites under compression loading 

parallel to the grain. 
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Figure 6.9 cont. 

Length of bitcs, mm 

(t) Characteristics at 4.5mm displacement. 

Displacement 
(mm) 

Stiffness 
(KN/mm) 

Coefficient of 
correlation, R2 

0.25 0.0056! 3-0.193512+2.1482! 0.978 

0.50 0.00413 - 0.1364 /z + 1.5759 l 0.9924 

0.75 0.002813-0.0999l2+ 1.2339! 1 

1 0.0022 13 -0.0803 12 + 1.03161 0.9971 

1.25 0.0018 /3 - 0.0664 /2 + 0.87491 0.9923 

1.50 0.0015 13 - 0.056712 + 0.7704 / 0.9951 

1.75 0.0013 13 -0.0493 12 +0.6878/ 0.9961 

2 0.0012 13 -0.0439 12 +0.62531 0.9969 

2.25 0.0011 /3 - 0.040212 +0.57881 0.9976 

2.50 0.001 13-0.0371 /2+0.5401 1 0.9981 

2.75 0.0009 /3 - 0.0353 /2 + 0.5115 1 0.9984 

3 0.0009 13 - 0.0337 12 + 0.48571 0.9986 

3.25 0.000913 - 0.0323 !2+0.4628 1 0.9993 

3.50 0.0008 13 -0.0307 12 +0.44131 0.9995 

3.75 0.0008 13 - 0.0294 12 + 0.4227 1 0.9992 

4 0.00081' - 0.028 /2 +0.40531 0.999 

4.25 0.0007 /3 - 0.0267 12 +0.38931 0.9994 

4.50 0.0007 13 - 0.0252 12 +0.37361 0.9992 

!= length of bites in the joints (nom). 

Table 6.6 The equations of the various curves in Figure 6.9. 
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Using the equations in Table 6.6, an empirical model (i. e equation 6.3) describing the 

stiffness of the joints with different length of bites under compression loading was 
developed. 

Kc _ 0.00213-0.7602 l3 - 0.0763 3-0.735512 + 0.9794 3-0.63261 (6.3) 

where K, = stiffness of the joint under compression loading (kNhnm). 

S= displacement (mm). 

I= length of bites in the joint(mm). 

In Figure 6.10, the effect of increase in the bites length on the performance of the 

connections with respect to the stiffness sustained by them at displacement levels of 0.25mm 

to 4.5mm are shown. 
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Figure 6.10 Stiffness vs length of bites in joints under compression loading parallel to the grain. 
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It is clear that the stiffness of the joints were dependent on the length of bites in the joints 

when loaded in compression parallel to the grain. The stiffness of the joints increased with an 

increase in the bites length. The rate of increase in stiffness increased as the length of bites 

increased above approximately 60% of the maximum length of bites available in a tested 

punched metal plate. At low displacement levels, stiffness was high compared with at high 

displacement levels. The rate of increasing in stiffness was reduced as displacement was 

increased. 

In Figure 6.11, a comparison of stiffness versus displacement relationships between 

experimental and the developed empirical results for joints with different bites length arc 

represented. There was a good agreement between the empirical model and experimental 

results. 
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Figure 6.11 Comparison of stiffness vs displacement curve between experimental and empirical 

(i. e. equation 6.3) results. 
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In Table 6.7 Comparison between the experimental and empirical (i. e. equation 6.3) stiffness 

at displacement levels 0.25mm to 4.5mm for the various bites length in the joints are shown. 

Plate 
Number 

Bites length 
(mm) 

Displacement 
level (mm) 

Experimental 
stiffness 
(k, N/mm) 

Empirical 
stiffness 
(kN/mm) 

Percentage 
of Error 

(%) 
M14/1333 5 0.25 6.603 7.236 10 
M14/1333 10 0.25 7.732 8.414 9 
M14/1333 15 0.25 7.585 8.053 6 
M14/1333 20 0.25 10.364 10.67 3 
M14/1333 5 0.5 4.970 4.861 -2 
M14/1333 10 0.5 6.119 6.037 -I 
M14/1333 15 0.5 6.449 6.197 -4 
M14/1333 20 0.5 8.958 8.008 4 
M 1411333 5 0.75 4.022 3.844 4 
M14/1333 10 0.75 5.149 4.934 -4 
M14/1333 15 0.75 5.481 5.231 -5 
M14/1333 20 0.75 7.118 6.693 -6 
M14/1333 5 1 3.426 3.252 -5 
M 14/1333 10 1 4.486 4.264 -5 
M14/1333 15 I 4.832 4.611 -5 
M14/1333 20 1 6.112 5.868 4 
M14/1333 5 1.25 2.940 2.855 -3 
M14/1333 10 1.25 3.909 3.802 -3 
M14/1333 15 1.25 4.259 4.170 -2 
M14/1333 20 1.25 5.338 5.288 -I 
M14/1333 5 1.5 2.622 2.566 -2 
M14/1333 10 1.5 3.534 3.459 -2 
M14/1333 15 1.5 3.861 3.834 -I 
M14/1333 20 1.5 4.728 4.850 3 
M14/1333 5 1.75 2.369 2.345 -1 
M14/1333 10 1.75 3.248 3.191 -2 
M14/1333 IS 1.75 3.612 3.568 .1 
M14/1333 20 1.75 4.436 4.505 2 
M14/1333 5 2 2.179 2.168 -1 
M14/1333 10 2 3.063 2.974 -3 
M 14/1333 IS 2 3.552 3.349 -6 
M14/1333 20 2 4.546 4.223 -7 
M14/1333 5 2.25 2.027 2.023 0 
M14/1333 10 2.25 2.868 2.795 -3 
M14/1333 15 2.25 3.350 3.166 -5 
M14/1333 20 2.25 4.296 3.987 .7 
M14/1333 5 2.5 1.898 1.901 0 
M14/1333 10 2.5 2.691 2.643 -2 
M14/1333 15 2.5 3.129 3.010 -4 
M14/1333 20 2.5 3.962 3.786 -4 

Table 6.7 Comparison between experimental and empirical stiffness at displacement level of 0.25mm to 

4.5mm for various bites length in the joints. 
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Plate 
Number 

Bites length 
(mm) 

Displacement 
level (mm) 

Experimental 
stiffness 
(kN/mm) 

Empirical 
stiffness 
(kN/mm) 

Percentage 
of Error 

(%) 
M14/1333 5 2.75 1.787 1.798 
M14/1333 10 2.75 2.485 2.512 
M14/1333 15 2.75 2.768 2.874 4 
M14/1333 20 2.75 3.310 3.613 9 
M 14/1333 5 3 1.699 1.708 
M14/1333 10 3 2.387 2.398 0 
M14/1333 15 3 2.741 2.754 0 
M14/1333 20 3 3.434 3.460 
M 14/1333 5 3.25 1.619 1.629 
M14/1333 10 3.25 2.298 2.297 0 
M14/1333 15 3.25 2.712 2.648 -2 M14/1333 20 3.25 3.536 3.325 -6 
M 14/1333 5 3.5 1.539 1.559 
M14/1333 10 3.5 2.143 2.208 3 
M14/1333 15 3.5 2.412 2.553 6 
M14/1333 20 3.5 2.946 3.204 9 
M 14/1333 5 3.75 1.479 1.497 1 
M14/1333 10 3.75 2.087 2.127 2 
M14/1333 15 3.75 2.426 2.468 2 
M14/1333 20 3.75 3.094 3.095 0 
M14/1333 5 4 1.426 1.441 
M14/1333 10 4 2.053 2.054 0 
M 14/1333 15 4 2.479 2.390 -4 
M 1411333 20 4 3.306 2.996 .9 
M 14/1333 5 4.25 1.366 1.390 2 
M 14/1333 10 4.25 1.923 1.988 3 
M 14/1333 15 4.25 2.194 2.319 6 
M 14/1333 20 4.25 2.706 2.906 7 
M 14/1333 5 4.5 1.325 1.344 
M14/1333 10 4.5 1.916 1.927 
M14/I333 15 4.5 2.296 2.253 -2 
M14/I333 20 4.5 2.992 2.823 -6 

Table 6.7 cont. 

In Figure 6.12, a comparison of stiffness versus length of bites curves between experimental 

and empirical (i. e. equation 6.3) results for various joints with different length of bites at 

displacement levels of 0.25mm to 4.5mm are represented. There was a good agreement 

between the empirical model and experimental results. 
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Figure 6.12 Comparison of stiffness vs length of bites between experimental and empirical 

(i. e. equation 6.3) results. 
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6.43 Effects of grain direction 
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(t) Characteristics at 4.5mm displacement. 

Tests were carried out to determine the influences of the grain direction on the performance 

of the punched metal plate timber joints subjected to compression loads. The effects of angle 

of grains of 0 30 
, 
60 and 90 were examined. The test samples were generally made of 

two pieces of timber dimensioned as 73mmxl70mm and 73mmx67mm by 45mm thickness. 

The punched metal plate type used in construction of testing specimens was M20/0310B- 

101mmx25mmxlmm. The specimens were loaded to failure in compression. All joint 

specimens were manufactured using material as explained in chapter 3. 

In Figure 6.13 typical non-linear load-displacement curves up to 0.9mm displacement with 
fitted curve (average curves) for specimens with various grain direction subjected to 

compression loading are shown. All joints made of punched metal plates M20/0310B with 

equal number of bites (8bites) and equal bites length (8mm). 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their load-displacement relation. The load-displacement behaviour of each joint 

specimen was examined and third order polynomial equations were fitted to define the 

curves. The fitted curves simulated the load-displacement behaviour of the connection with 

good accuracy. These equations were directed to pass through the point of origin to simulate 

the condition of zero deformation at zero loads. 
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Figure 6.13 Load - displacement behaviour of joints with different grain direction under compression 

loading. 

A comparison of performance of joints in relation to the grain direction tested up to 0.9mm 

displacement is presented in Figure 6.14. The average load at 0.9mm displacement for each 

group of specimens is shown in Table 6.8. 
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Figure 6.14 Comparison of joints performance subjected to compression 
force using different grain direction. 

Grain direction 
Average load at 

Plate ref. number 0.9mm displacement 
(degree) 

(N) 
M20/0310B 0 6691 
M20/0310B 30 6447 
M20/0310B 60 5362 
M20/0310B 90 4321 

Table 6.8 The average load at 0.9mm displacement for joints with various grain 

direction subjected to compression force. 
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6.4.3.1 The stiffness characteristics of the joints 

In order to investigate the effects of the grain direction on the performance of the joints 

subjected to compression load under short-term duration, the stiffness characteristics of all 

tested specimens were analysed. The stiffness of the joint (Kc) defined as the ratio between 

the applied load and the displacement in the joint as described in equation 6.1. 

For all specimens tested the displacement at failure was about 0.9mm. The average 

magnitude of the stiffness sustained by each joints specimen at 0.1 mm to 0.9mm 

displacement level was determined. Figure 6.15 represents results of stiffness versus grain 

direction in the joints at displacement levels of 0.1mm to 0.9mm. Linear equations were 

fitted the stiffness versus grain direction curves to define them. The equations obtained are 

tabulated and presented in Table 6.9. These equations were then analysed and an empirical 

model (i. e. equation 6.4) describing the stiffness of punched metal plate timber connections 

with different grain direction under compression loading was developed. 
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Figure 6.15 Stiffness sustained in the joint versus grain direction under compression loading. 
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Figure 6.15 cont. 

Displacement 
(mm) 

Stiffness 
(KN/mm) 

Coefficient of 
correlation, R2 

0.1 -0.0508 g+ 12.526 0.9214 

0.2 -0.0614 g+ 12.431 0.909 

0.3 -0.0664 g+ 12.313 0.9463 

0.4 -0.0671 g+ 11.924 0.9762 

0.5 -0.0617 g+ 11.264 0.9796 

0.6 -0.0536 g+ 10.383 0.9691 

0.7 -0.0443 g+9.3934 0.9592 

0.8 -0.0373 g+8.5444 0.9382 

0.9 -0.0304 g+7.705 0.9443 

g= angle of grain (degree). 

Table 6.9 The equations of the various curves in Figure 6.15. 

Using the equations in Table 6.9, an empirical model (i. e equation 6.4) describing the 

stiffness of the joints with different grain direction under compression loading was 

developed. 
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Kc . 0.130662g - 0.09548g - 0.0462g - 7.0196ö1+ 0.63288 + 12.627 (6.4) 

where K, = stiffness of the joint under compression loading (kN/mm). 

6= displacement (mm). 

g= angle of grain (degree). 

In Figure 6.16, the effect of grain direction on the performance of the connections with 

respect to the stiffness sustained by them at displacement levels of 0.1mm to 0.9mm are 

shown. 
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Figure 6.16 Stiffness vs grain direction in joints under compression loading. 
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It is clear that the stiffness of the joints were dependent on the grain direction in the joints 

under compression loading. The stiffness of the joints decreased with an increase in the angle 

of grain. The rate of decrease in stiffness increased as the angle of grain increased. At low 

displacement (0. Imm), stiffness was high comparing with high displacement (0.9mm). The 

rate of increasing in stiffness was reduced as displacement was increased. 

In Figure 6.17, a comparison of stiffness versus displacement between experimental and 

empirical (i. e. equation 6.4) results for joints with different grain direction are represented. 

There was a good agreement between the empirical model and experimental results. 
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Figure 6.17 Comparison of stiffness vs displacement curve between experimental and empirical 
(i. e. equation 6.4) results. 

In Table 6.10 Comparison between the experimental and empirical (i. e. equation 6.4) 

stiffness at displacement levels 0.1mm to 0.9mm for the various grain direction in the joints 

are shown. 
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Plate Number 
Grain 

direction 
(degree) 

Displacement 
level (mm) 

Experimental 
stiffness 
(kN/mm) 

Empirical 
stiffness 
(kN/mm) 

Percentage 
of Error 

(%) 
M20/0310B 0 0.1 12.526 12.620 1 
M20/0310B 30 0.1 11.002 10.987 0 
M20/0310B 60 0.1 9.478 9.354 - 
M20/0310B 90 0.1 7.954 7.721 -3 
M20/0310B 0 0.2 12.431 12.473 0 
M20/0310B 30 0.2 10.589 10.671 1 
M20/03IOB 60 0.2 8.747 8.869 1 
M20/03 1013 90 0.2 6.905 7.068 2 
M20/0310B 0 0.3 12.313 12.185 -1 
M20/0310B 30 0.3 10.321 10.293 0 
M20/03IOB 60 0.3 8.329 8.401 1 
M20/03IOB 90 0.3 6.337 6.509 3 
M20/0310B 0 0.4 11.924 11.757 -1 M20/0310B 30 0.4 9.911 9.853 -1 M20/0310B 60 0.4 7.898 7.949 
M20/03IOB 90 0.4 5.885 6.045 3 
M20/0310B 0 0.5 11.264 11.189 -1 
M20/03IOB 30 0.5 9.413 9.351 -1 
M20/0310B 60 0.5 7.562 7.514 -I 
M20/0310B 90 0.5 5.711 5.676 
M20/0310B 0 0.6 10.383 10.480 
M20/0310B 30 0.6 8.775 8.787 0 
M20/0310B 60 0.6 7.167 7.094 -1 
M20/0310B 90 0.6 5.559 5.401 -3 
M20/0310ß 0 0.7 9.393 9.630 3 
M20/0310B 30 0.7 8.064 8.161 1 
M20/03IOB 60 0.7 6.735 6.691 -I 
M20/0310B 90 0.7 5.406 5.222 -3 
M20/0310B 0 0.8 8.544 8.641 1 
M20/0310B 30 0.8 7.425 7.473 1 
M20/0310B 60 0.8 6.306 6.305 0 
M20/0310B 90 0.8 5.187 5.136 -1 
M20/0310B 0 0.9 7.705 7.511 -3 
M20/0310B 30 0.9 6.793 6.722 -1 
M20/0310B 60 0.9 5.881 5.934 
M20/0310B 90 0.9 4.969 5.146 4 

Table 6.10 Comparison between experimental and empirical stiffness at displacement level from 

0.1 mm to 0.9mm for various grain direction in the joints. 

In Figure 6.18, a comparison of stiffness versus grain direction curves between experimental 

and empirical (i. e. equation 6.4) results for various joints with different grain direction at 
displacement levels from 0.1mm to 0.9mm are represented. There was a good agreement 

between the empirical model and experimental results. 
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Figure 6.18 Comparison of stiffness vs grain direction between experimental and empirical 

(i. e. equation 6.4) results. 
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Figure 6.18 cont. 

6.4.4 Effects of plate thickness 

Tests were carried out to determine the influences of the plate thickness on the performance 

of the punched metal plate timber joints subjected to compression loads. The test samples 

were generally made of two pieces of timber dimensioned as 73mmxl7Omm and 

73mmx67mm by 45mm thickness. The punched metal plate types used in construction of 

testing specimens were M20/0310B, lmm thickness and small strip of plates cut from 

M14/1333,2mm thickness. The specimens were loaded to failure in compression. All joint 

specimens were manufactured using material as explained in chapter 3. 

In Figure 6.19 typical load-displacement curves up to 0.6mm displacement with fitted curve 

(average curves) for specimens with various plate thickness subjected to compression loading 

are shown. Joints were made of two different plates. The first group made of punched metal 

plates M20/0310B with 1mm plate thickness and the second group made of small strip of 

punched metal plate M 14/1333 with 2mm plate thickness. All plates having equal number of 

bites (8bites) and load applied parallel to the grain of timber. 
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Figure 6.19 Load- displacement behaviour of joints with different plate thickness loaded in 

compression parallel to the grain. 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their load-displacement relation. The load-displacement behaviour of each joint 

specimen was examined and second order polynomial equations were fitted to define the 

curves. The fitted curves simulated the load-displacement behaviour of the connection with 

good accuracy. These equations were directed to pass through the point of origin to simulate 

the condition of zero deformation at zero loads. 

A comparison of performance of joints in relation to the thickness of plate tested up to 

0.6mmmm displacement is presented in Figure 6.20. The average load at 0.6mm 

displacement for each group of specimens is shown in Table 6.11. 
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Figure 6.20 Comparison of joints performance subjected to compression 

force parallel to the grain using different plate thickness. 
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Plate ref number 
Plate thickness Average load at 0.6mm Failure modes (mm) displacement (N) 

M20/03 I OB 1 4423 Anchorage 

M14/1333 2 4717 Closure of the gap-Timber 

Table 6.11 The average load at 0.6mm displacement for joints with various plate 

thickness subjected to compression force parallel to the grain. 

6.4.4.1 The stiffness characteristics of the joints 

In order to investigate the effects of plate thickness on the performance of the joints subjected 

to compression load parallel to the grain under short-term duration, the stiffness 

characteristics of all tested specimens were analysed in detail. The stiffness of the joint (K, ) 

defined as the ratio between the applied load and the displacement in the joint as described in 

equation 6.1. 

For all specimens tested the displacement at failure was about 0.6mm. The average 

magnitude of the stiffness sustained by each joints specimen at 0.05mm to 0.6mm 

displacement level was determined. Figure 6.21 represents results of stiffness versus plate 

thickness in the joints at displacement levels from 0.05mm to 0.6mm. Power equations were 

fitted the stiffness versus plate thickness curves to define them. These equations were 

directed to pass through the point of origin to simulate the condition of zero stiffness at plate 

thickness equals to zero. The equations obtained are tabulated and presented in Table 6.12. 

From these equations an empirical model (i. e. equation 6.5) describing the stiffness of 

punched metal plate timber connections with different plate thickness under compression 

loading was developed. 
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Figure 6.21 Stiffness sustained in the joint versus plate thickness under compression loading parallel 

to the grain. 
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Figure 6.21 cont. 
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Displacement 
(mm) 

Stiffness 
(KN/mm) 

0.05 9.78 t°'4128 

0.10 9.77 t0.2564 
0.15 10.38 to. o767 
0.20 10 10.1137 

0.25 9.664t01317 

0.30 9.51 to. 0859 

0.35 9.2029 to. 089 

0.40 8.9325 to. 0736 

0.45 8.4578 to. 0864 

0.50 8.172 t0.0673 

0.55 7.7818 t00999 

0.60 7.3717 t0. o92s 

t= thickness of the plate (mm). 

Table 6.12 The equations of the various curves in Figure 6.21. 

Using the equations in Table 6.12, an empirical model (i. e equation 6.5) describing the 

stiffness of the joints with different plate thickness under compression loading was 
developed. 

K, =-10.72382 +2.07148+9.8642 I 84216'+10.3474=-5.98036+0.5584 
(6.5) 

where Kc = stiffness of the joint under compression loading (kN/mm). 

S= displacement (mm). 

t= thickness of plate(mm). 

In Figure 6.22, the effect of increase in the plate thickness on the performance of the 

connections with respect to the stiffness sustained by them at displacement levels of 0.05mm 

to 0.6mm are shown. 
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Figure 6.22 Stiffness vs thickness of plate in joints under compression loading parallel to 

the grain. 

It is clear that the stiffness of the joints were dependent on the thickness of plate in the joints 

when loaded in compression parallel to the grain. The stiffness of the joints increased with an 

increase in the plate thickness. At low displacement (0.05mm), stiffness was high comparing 

with high displacement (0.6mm). The rate of increasing in stiffness was reduced as 

displacement was increased. 

In Figure 6.23, a comparison of stiffness versus displacement between experimental and 

empirical (i. e. equation 6.5) results for joints with different plate thickness are represented. 

There was a good agreement between the empirical model and experimental results. 

In Table 6.13 Comparison between the experimental and empirical (i. e. equation 6.5) 

stiffness at displacement levels 0.05mm to 0.6mm for the various plate thickness in the joints 

are shown. 
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Figure 6.23 Comparison ofstiffness vs displacement curve between experimental and empirical 
(i. e. eauation 6.5) results. 

Plate Number 
Plate 

thickness 
(MM) 

Displacement 
level (mm) 

Experimental 
stiffness 
(kN/mm) 

Empirical 
stiffness 
(kN/mm) 

Percentage 
of Error 

(%) 
M20/0310B I 0.05 9.78 9.941 2 
M14/1333 2 0.05 13.02 12.974 0 

M20/0310B I 0.1 9.77 9.964 2 
M14/1333 2 0.1 11.67 11.894 2 

M20! 0310B 1 0.15 10,380 9.934 4 
M14/1333 2 0.15 10.947 11.143 2 

M20/0310B 1 0.2 10 9.850 -2 
M14/1333 2 0.2 10.82 10.621 -2 M2010310B 1 0.25 9.664 9.712 0 
M14/I333 2 0.25 10.588 10.254 -3 

M20/03 1013 I 0.3 9.510 9.521 0 
M14/1333 2 0.3 10.093 9.981 -I 

M20/03IOB 1 0.35 9.203 9.276 I 
M14/1333 2 0.35 9.789 9.749 0 

M20/03IOB 1 0.4 8.932 8.977 1 
M14/1333 2 0.4 9.400 9.508 1 

M20/0310B 1 0.45 8.458 8.625 2 
M14/1333 2 0.45 8.980 9.213 3 
N120/0310B 1 0.5 8.172 8.219 l 
M14/1333 2 0.5 8.562 8.824 3 

M20/0310B 1 0.55 7.782 7.760 0 
M14/1333 2 0.55 8.340 8.306 0 

M20/0310B 1 0.6 7.372 7.247 -2 
M 1411333 2 0.6 7.861 7.640 -3 

Table 6.13 Comparison between experimental and empirical stiffness at displacement level from 

0.05mm to 0.6mm for various plate thickness in the joints. 
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In Figure 6.24, a comparison of stiffness versus thickness of plate curves between 

experimental and empirical (i. e. equation 6.5) results for various joints with different plate 
thickness at displacement level 0.05mm to 0.6mm were represented. There was a good 

agreement between the empirical model and experimental results. 
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(a) Characteristics at 0.05mm displacement. (b) Characteristics at 0.1 mm displacement. 
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(g) Characteristics at 0.35mm displacement. (h) Characteristics at 0.4mm displacement. 

Figure 6.24 Comparison of stiffness vs thickness of plate between experimental and empirical (i. e. 

equation 6.5) results. 187 
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Figure 6.24 cont. 

6.5 Failure modes 
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All joints studied behaved in similar manner. The load-displacement curves were clearly non- 
linear from beginning up to failure load. The slope of load-displacement relationship of the 

connections tested was reduced as the load increased. There were four modes of failure. The 

most common mode of failure was anchorage failure (teeth withdrawal). As the load 

increased, plate started to peel away from the timber members at their lower end. This 

peeling progressed upward until the plate withdrew completely. This mode of failure was 

common in joints made with low number of bites (1 to 5 bites), low bites length (5mm and 

10mm), 1mm plate thickness and when load is applied at low grain direction (0° and 30°). 

The second failure mode was plate buckling, as the load increased the middle of the plate 

started buckling. This mode of failure was happened in joints with high number of bites 

(land 8 bites) and when load is applied parallel to the grain. The third failure mode was the 

closure of the gap between the connected members. This mode of failure was happened in 
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joints with high number of bites (6 to 8 bites), high bites length (15mm and 20mm), 2mm 

plate thickness and when load is applied at low grain direction (0° and 30°). The fourth 

failure mode was timber failure. This mode of failure was happened in joints with high 

number of bites (land 8 bites), high bites length (15mm and 20mm), 2mm plate thickness 

and when load is applied perpendicular to the grain. In general, the failure of joints can be 

characterised as ductile. A considerable amount of ductility was usually observed prior to 

failure. Typical anchorage failure of joint is shown in Figure 6.25. 

i 

Figure 6.25 Typical anchorage failures of joint when loaded in compression parallel to the grains. 

189 



6.6 SUMMARY 

In this chapter details of experimental work carried out to study the load-displacement 

characteristics of the punched metal plate timber connections, using joints with different 

parameters such as number of bites, length of bites, grain direction and thickness of the plate. 

The specimens tested were subjected to compression loading. 

From the results obtained, it was found that the number of bites, length of bites, the grain 
direction and the plate thickness in the joints have a significant effects on the load- 

displacement characteristics of the joints. Increasing number of bites, length of bites, 

thickness of plate and decreasing angle of grain direction would increase the strength and 

stiffness of the joints. The failure of joints was characterised as ductile, a considerable 

amount of ductility was generally observed prior to failure. There were four modes of failure, 

the most common mode of failure was anchorage failure (teeth withdrawal); as the load 

increased the toothed-plates started to peel away from the timber members. The second 

failure mode was plate buckling, as the load increased the middle of the plate started 

buckling. The third failure mode was the closure of the gap between the connected members. 

The fourth failure mode was timber failure. 

Empirical models describing stiffness characteristics of joints with different parameters 

(number of bites, length of bites, grain direction, and plate thickness) subjected to 

compression loading were developed and compared well with the experimental results. 
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INFLUENCE OF FACTORS AFFECTING THE BEHAVIOUR 
OF THE PUNCHED METAL PLATE TIMBER JOINTS 



7. INFLUENCE OF FACTORS AFFECTING THE BEHAVIOUR OF 

THE PUNCHED METAL PLATE TIMBER JOINTS 

7.1 INTRODUCTION 

In the previous chapters it was established that the structural behaviour and load carrying 

capacity of punched metal plate timber connections depends on many factors including 

number and length of bites, plate and grain directions. In this chapter, a statistical approach is 

used to classify the level of importance of these factors on the performance of the joints. 

In addition, this chapter presents a comparison of the stiffness of the joints in relation to the 

grain direction between the empirical models developed in chapter 5 and 6 and the procedure 

described by Foschi (1977). Also, in this chapter the effects of the teeth directions on the 

performance of the punched metal plate timber joints under tensile loading are examined. An 

empirical model describing the stiffness characteristics of the joints in relation to the different 

teeth directions is developed. 

7.2 CLASSIFICATION OF FACTORS INFLUENCING THE BEHAVIOUR OF THE 
JOINTS 

In this section, a series of tests have been carried out on punched metal plate timber joints in 

order to classify the level of importance of factors such as, number of bites, length of bites 

and grain directions on the performance of the joints. The specimens were loaded to failure 

both in tension and in compression. The importance of such factors was classified using a 

statistical technique described by Taguchi [Grove and Davis, 1992]. 

In this method, two extreme levels of each factor were selected. For the number of bites 

plates with 1 bite and 8 bites, for the length of bites 5mm and 20mm long bites and for the 

grain direction parallel (0°) and perpendicular (90°) were selected. 
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7.2.1 TESTING PROGRAM 

Testing programme is summarised in table 7.1. 

Plate ref. Plate properties (mm) Bite properties Grain 

number Length Width Thickness Number Length (mm) direction 

M14/1333 133 38 2 1 5 0 

M14/1333 133 38 2 1 5 90 

M14/1333 133 38 2 1 20 0 

M14/1333 133 38 2 1 20 90 

M14/1333 133 38 2 8 5 0 

M14/1333 133 38 2 8 5 90 

M14/1 333 133 38 2 8 20 0 

M14/1333 133 38 2 8 20 90 

Table 7.1. Testing programme for joints subjected to tension and compression loading. 

The preparations of test samples were similar to those explained in chapter 3,5 and 6. The 

punched metal plate type used in construction of testing specimens was M14/1333- 

133mmx38mmx2mm. The specimens were loaded to failure in tension and compression. 

7.2.2 Tension tests - the strength characteristics 

In Figure 7.1 the load-displacement (average curves) behaviour of the joints for specimens 

using different plate configuration and grain direction subjected to tensile loading are shown. 

A comparison of joints performance up to failure is presented in Figure 7.2. Table 7.2 shows 

the average ultimate loads for joint specimens with different plate configuration and grain 

direction subjected to tensile loading. 
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To evaluate the importance of each factor, the total average ultimate loads sustained in the 

joint specimens when that factor was at level I is compared with the total average ultimate 
loads sustained in the joint specimens when that factor was at level 2. Level I and level 2 

which used for number of bites were I and 8 bites, for length of bites were 5mm and 20mm 

and for grain direction were 0° and 90° respectively. In other words, the results were 

contrasted according to the level of each factor. So, for example, take number of bites factor. 

The total average ultimate load for specimens with 1 bites is 3783 N (1008+143+1869+763) 

and the total average ultimate load for specimens with 8 bites is 16821 N 

(5599+521+8599+2102). The difference between the two levels is 13038 N (16821-3783). A 

similar calculation was carried out for the other factors. Factor with highest difference in 

average ultimate load between the two levels was considered as the most important factor, 

which was the grain direction factor in this case. Table 7.3 shows the classification of the 
importance of different factors affecting the ultimate load carrying capacity of the joints 

subjected to tensile loading. 

Run 
Bite properties Grain Av. ultimate 

Number Length (mm) direction load (N) 

1 1 5 0 1008 

2 1 5 90 143 

3 1 20 0 1869 

4 1 20 90 763 

5 8 5 0 5599 

6 8 5 90 521 

7 8 20 0 8599 

8 8 20 90 2102 

Table 7.2 Average ultimate load for joints subjected to tensile loading. 
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Figure 7.1 Load-displacement behaviour of joints with different plate configuration and grain direction 

loaded in tension. 
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Figure 7.2 Comparison of joints performance with different plate configuration and grain 
direction subjected to tension force. 

Factor Number of bites Length of bites (mm) Grain direction 
(degree) 

Level Level I Level 2 Level I Level 2 Level I Level 2 
(I bite) (8 bite) (5mm) (20mm) (00) (90°) 

Total ultimate load (N) 3783 16821 7271 13333 3529 17075 

Difference between 
level I and level 2 (N) 13038 6062 13546 

Classification 2 3 1 

Table 7.3 Classification of the importance of different factors affecting the ultimate load 

carrying capacity of the joints subjected to tensile loading. 
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It is clear from Table 7.3 that, the difference between the ultimate load capacities of joints are 

quite large when loaded parallel to the grain than when loaded perpendicular to the grain 

under tensile loading. There is a strong indication that the grain direction effects is very 
important when joints are subjected to tensile loading. Also, increasing number of bits in the 

plate is more important than increasing length of the bites when joints are subjected to tensile 

loading. 

7.2.3 Tension tests - the stiffness characteristics 

In order to evaluate and classify the importance of the factors tested under tensile loading, 

the stiffness characteristics of the joints with regards to the levels of the displacement were 
determined. Similar method of analysis used in the previous section was applied. 

In Figure 7.3, a comparison of stiffness versus displacement using different plate 

configurations and grain directions subjected to tensile loading is shown. Table 7.4 shows 

the classifications of the importance of different factors affecting the stiffness 

characteristics of the joints under tensile loading. 
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Figure 7.3 Stiffness vs displacement for joints with different plate configuration and grain direction 

subjected to tension force. 
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Factor 
Displacement Level of factor 

Difference between 
total stiffness at Cl if i level (mm) 

Levell Level2 level I and level 2 
N/n) 

ass icat on 

Number of bites 0.2 1 bite 8 bites 19785 

Length of bites (mm) 0.2 5mm 20mm 10295 2 
Grain direction (degree) 0.2 90° 0° 9245 3 

Number of bites 0.4 1 bite 8 bites 15637 

Length of bites (mm) 0.4 5mm 20mm 9017 2 
Grain direction (degree) 0.4 90° 00 6293 3 

Number of bites 0.6 l bite 8 bites 11649 

Length of bites (mm) 0.6 5mm 20mm 6837 2 
Grain direction (degree) 0.6 90° 0° 6361 3 

Number of bites 0.8 1 bite 8 bites 9521 

Length of bites (mm) 0.8 5mm 20mm 5583 3 
Grain direction (degree) 0.8 90° 0° 6101 2 

Number of bites I I bite 8 bites 8296 1 
Length of bites (mm) 1 5mm 20mm 4628 3 

Grain direction (degree) 1 90° 0° 6020 2 

Number of bites 1.2 1 bite 8 bites 7450 1 
Length of bites (mm) 1.2 5mm 20mm 4038 3 

Grain direction (degree) 1.2 90° 0° 5916 2 

Number of bites 1.4 1 bite 8 bites 6842 

Length of bites (mm) 1.4 5mm 20mm 3572 3 
Grain direction (degree) 1.4 90° 00 5768 2 

Number of bites 1.6 I bite 8 bites 6314 

Length of bites (mm) 1.6 5mm 20mm 3254 3 

Grain direction (degree) 1.6 90° 0° 5534 2 

Number of bites 1.8 1 bite 8 bites 5955 1 
Length of bites (mm) 1.8 5mm 20mm 2931 3 

Grain direction (degree) 1.8 90° 0° 5387 2 

Number of bites 2 1 bite 8 bites 5572 

Length of bites (mm) 2 5mm 20mm 2688 3 

Grain direction (degree) 2 90° 00 5176 2 

Number of bites 2.2 1 bite 8 bites 5316 

Length of bites (mm) 2.2 5mm 20mm 2520 3 
Grain direction (degree) 2.2 90° 0° 5042 2 

Table 7.4 Classifications of the importance of different factors affecting the stiffness 
characteristics of the joints under tensile loading. 
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Displacement Level of factor 
Difference between 

total stiffness at Classification Factor level (rum) 
Level I Level 2 

level 1 and level 2 
(N/nun) 

Number of bites 2.4 1 bite 8 bites 5049 

Length of bites (mm) 2.4 5mm 20mm 2353 3 

Grain direction (degree) 2.4 90° 0° 4871 2 

Number of bites 2.6 1 bite 8 bites 4791 1 

Length of bites (mm) 2.6 5mm 20mm 2235 3 

Grain direction (degree) 2.6 90° 0° 4685 2 

Number of bites 2.8 1 bite 8 bites 4563 

Length of bites (mm) 2.8 5mm 20mm 2113 3 

Grain direction (degree) 2.8 90° 0° 4515 2 

Number of bites 3 1 bite 8 bites 4302 2 

Length of bites (mm) 3 5tnm 20mm 1966 3 

Grain direction (degree) 3 90° 0° 4306 1 

Number of bites 3.2 1 bite 8 bites 4057 2 

Length of bites (nun) 3.2 5mm 20mm 1857 3 

Grain direction (degree) 3.2 90° 0° 4103 1 

Number of bites 3.4 1 bite 8 bites 3839 2 

Length of bites (mm) 3.4 5mm 20mm 1757 3 

Grain direction (degree) 3.4 90° 0° 3919 

Number of bites 3.6 1 bite 8 bites 3641 2 

Length of bites (mm) 3.6 5mm 20mm 1673 3 

Grain direction (degree) 3.6 90° 0° 3743 

Number of bites 3.8 1 bite 8 bites 3437 2 

Length of bites (nun) 3.8 5mm 20mm 1589 3 

Grain direction (degree) 3.8 90° 0° 3557 

Number of bites 4 1 bite 8 bites 3260 2 

Length of bites (mm) 4 5mm 20mm 1516 3 

Grain direction (degree) 4 90° 0° 3386 1 

Table 7.4 cont. 
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It is clear from Table 7.4 that, at low displacement levels, the most important factor affecting 

the stiffness of the joints was the number of bites. The grain direction importance at low 

displacement level was low comparing with the number of bites. As the displacement levels 

increased, the importance of the grain direction increased. At high displacement levels, the 

most important factor was the grain directions. 

The examination of the results show that in the joints with low number of bites failure occurs 

at small displacement levels with failure modes being predominantly anchorage failure. With 

increase in number and length of bites the stiffness of the plates increase leading to increase 

in the stiffness of the joints. This is illustrated in Figure 7.3. Therefore, at low displacement 

levels the number of bites were more influential in resisting loads than the other factors. 

Also, from Figure 7.3 it is evident that in the joints with high grain directions the stiffness of 

the joints was very low and failure occurred in the timber member at low displacement 

levels. As the load increased, plates started to peel away from the timber members. This 

peeling caused the cut of the timber cells (grains). With decrease in the grain direction there 

was a sharp increase in the stiffness of the joints and failure occured at high displacement 

levels. Therefore, at high displacement levels the grain directions were more influential in 

resisting loads than the other factors. 

7.2.4 Compression tests - the strength characteristics 

In Figure 7.4, the load-displacement behaviour (average curves) of the joints specimens using 
different plate configuration and grain direction subjected to compression loading are shown. 

A comparison of joints performance up to failure is presented in Figure 7.5. Table 7.5 shows 

the average ultimate loads for joint specimens with different plate configuration and grain 

direction subjected to compression loading. Similar method of analysis used in tension test 

was applied to compression tests. Table 7.6 shows the classification of the importance of 

different factors affecting the ultimate load carrying capacity of the joints subjected to 

compression loading. 
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Run 
Bite properties Grain Av. ultimate 

Number Length (mm) direction load (N) 

1 1 5 0 1172 

2 1 5 90 1266 

3 1 20 0 1901 

4 1 20 90 2154 

5 8 5 0 6787 

6 8 5' 90 6670 

7 8 20 0 11650 

8 8 20 90 6814 

Table 7.5 Average ultimate load for joints subjected to compressive loading. 
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Factor Number of bites Length of bites (mm) Grain direction 
(degree) 

Level 
Level I Level 2 Level I Level 2 Levell Level2 
(1 bite) (8 bite) (5mm) (20mm) (0°) (90°) 

Total ultimate load (N) 6493 31921 15895 22519 16904 21510 

Difference between 
level l and level 2 (N) 

25428 6624 4606 

Classification 1 2 3 

Table 7.6 Classification of the importance of different factors affecting the ultimate load carrying 

capacity of the joints subjected to compressive loading. 

The compound influence of the increase in the number of bites in comparison with the other 
factors is illustrated in the values shown in Table 7.6. Also, increasing number of bits is more 

effective than increasing length of bites in the joints. Unlike joints subjected to tensile 

loading, the grain direction is less effective when joints subjected to compressive loading. 

7.2.5 Compression tests - the stiffness characteristics 

In order to evaluate and classify the importance of the factors tested, the stiffness 

characteristics of the joints at various displacement levels were determined. Similar method 

of analysis used in the tension tests was applied. 
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In Figure 7.6, a comparison of stiffness versus displacement using different plate 

configurations and grain directions subjected to compression loading is shown. Table 7.7 

shows the classifications of the importance of different factors affecting the stiffness 

characteristics of the joints under compression loading. 
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Figure 7.6 Stiffness vs displacement for joints with different plate configuration and 

grain direction subjected to compression force. 
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Displacement 
Factor 

Level of factor Difference between 
total stiffness at Cl if level (mm) 

Level I Level 2 level I and level 2 
(N/mm) 

ass ication 

Number of bites 0.2 1 bite 8 bites 14475 1 

Length of bites (mm) 0.2 5mm 20mm 3255 3 
Grain direction (degree) 0.2 900 00 12945 2 

Number of bites 0.4 1 bite 8 bites 14110 1 
Length of bites (mm) 0.4 5mm 20mm 5726 3 

Grain direction (degree) 0.4 90° 00 10160 2 

Number of bites 0.6 1 bite 8 bites 12935 1 
Length of bites (mm) 0.6 5mm 20mm 5653 3 

Grain direction (degree) 0.6 90° 0° 7237 2 

Number of bites 0.8 1 bite 8 bites 12038 1 
Length of bites (nun) 0.8 5mm 20mm 5250 2 

Grain direction (degree) 0.8 90° 0° 5176 3 
Number of bites I I bite 8 bites 11332 1 

Length of bites (mm) I 5mm 20mm 4772 2 

Grain direction (degree) 1 90° 0° 3940 3 

Number of bites 1.2 1 bite 8 bites 10719 

Length of bites (nun) 1.2 5mm 20mm 4385 2 

Grain direction (degree) 1.2 90° 00 3109 3 
Number of bites 1.4 1 bite 8 bites 10232 1 

Length of bites (mm) 1.4 5mm 20mm 4090 2 

Grain direction (degree) 1.4 90° 0° 2628 3 

Number of bites 1.6 1 bite 8 bites 9841 

Length of bites (mm) 1.6 5mrn 20mm 3859 2 
Grain direction (degree) 1.6 90° 0° 2253 3 

Number of bites 1.8 I bite 8 bites 9555 

Length of bites (mm) 1.8 5mm 20mm 3527 2 
Grain direction (degree) 1.8 90° 0° 1985 3 

Number of bites 2 1 bite 8 bites 9285 1 

Length of bites (mm) 2 5mm 20mm 3301 2 

Grain direction (degree) 2 90° 0° 1751 3 

Number of bites 2.2 1 bite 8 bites 8997 1 
Length of bites (nun) 2.2 5mm 20mm 3085 2 

Grain direction (degree) 2.2 90° 0° 1591 3 

Table 7.7 Classifications of the importance of different factors affecting the stiffness characteristics 

of the joints under compression loading. 
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Factor Displacement Level of factor Difference between 
total stiffness at Cl if i level (mm) 

Level1 Level 2 
level I and level 2 ass icat on 

Number of bites 2.4 1 bite 8 bites 8684 

Length of bites (mm) 2.4 5mm 20mm 2916 2 

Grain direction (degree) 2.4 900 00 1474 3 

Number of bites 2.6 1 bite 8 bites 8448 1 

Length of bites (mm) 2.6 5mm 20mm 2750 2 
Grain direction (degree) 2.6 90° 0° 1358 3 

Number of bites 2.8 1 bite 8 bites 8174 1 
Length of bites (mm) 2.8 5mm 20mm 2576 2 

Grain direction (degree) 2.8 900 00 1292 3 

Table 7.7 cont. 

The compound influence of the increase in the number of bites in comparison with the other 
factors is illustrated in the values shown in Table 7.7. 

The importance of the grain direction effects was more than the length of bites effects at low 

displacement levels, but at high displacement levels, the length of bites was more important. 

When load was applied perpendicular to the grain, the stiffness was low and failure occurred 

suddenly at low displacement levels but when loaded parallel to the grain, the stiffness was 
high and failure occurred at high displacement levels. Therefore, the grain direction effects 

are more important than the length of bites effects at low displacement levels. 

The stiffness of the joints was high when high stiffness plate was used and when load applied 

parallel to the grain. The failure mode was the closure of the gap between the connected 

members and these failures occurred at high displacement levels. 
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7.3 EFFECTS OF GRAIN DIRECTION 

This section presents a comparison between the empirical models developed (i. e. equations 
5.4 and 6.4) and Foschi's formulae [1977] (equation 7.1 and 7.2). The procedure described 

by Foschi was based on Hankinson's equation. It was used to obtain the stiffness of the joints 

for different grain directions when load is applied both parallel and/or perpendicular to the 

plate major axis. 

kQ = 
KAA KAE 

KAAsin2 (4p-w)+KAE cost (0, _(a) 
(7. t) 

where K. = stiffness of the joint when load is applied parallel to the plate major axis (kN/mm). 

KAA = stiffness of the joint when load is applied parallel to the plate major axis and parallel to 

the grain (kN/mm). 

KAE = stiffness of the joint when load is applied parallel to the plate major axis and 

perpendicular to the grain (kN/mm). 

rp = is the angle between the plate major axis and the x-direction, measured counter clockwise 

(degree). 

is the angle between the grain direction and the x-axis, (degree). 

k- KEE KE4 
e KEEsin2((p-w)+KE-Icos2(rp-w) 

(7.2) 

where KK =stiffness of the joint when load is applied perpendicular to the plate major axis (kN/mm). 

KEA = stiffness of the joint when load is applied perpendicular to the plate major axis and 

parallel to the grain (kN/mm). 

KEE = stiffness of the joint when load is applied perpendicular to the plate major axis and 

perpendicular to the grain (kN/mm). 
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A comparison of the performance of the joints in relation to the grain directions at 

displacement levels 0.1mm to 0.8mm between the empirical models developed (i. e. equation 

5.4) and Foschi formulae (equation 7.1) under tensile loading is presented in Figure 7.7. 

There was a good agreement between the developed empirical model and Foschi's formula 

under tensile loading. 

Figure 7.8 presents a comparison of performance of joints in relation to the grain directions at 

displacement levels 0.1mm to 0.8mm between the empirical models developed (i. e. equation 

6.4) and Foschi formulas (equation 7.1) under compressive loading. There was a good 

agreement between the empirical model and Foschi formula under compressive loading. 

In Table 7.8 and 7.9 Comparison between the stiffness of the joints using empirical equations 

(i. e. 5.4 and 6.4) and Foschi's formula for different grain directions under tension and 

compression loading are shown respectively. 
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Figure 7.8 Comparison of stiffness vs grain direction between empirical model (i. e. equation 6.4) 

and Foschi's formulae (i. e. equation 7.1) under compressive loading. 

210 



M20/0310B 90 0.1 8.091 8.091 0 
M20/0310B 0 0.2 9.178 9.178 0 
M20/0310B IS 0.2 8.630 8.847 _3 M20/0310B 30 0.2 8.083 8.055 0 
M20/0310B 45 0.2 7.535 7.177 5 
M20,103 ]OB 60 0.2 6.987 6.471 7 
M201031OB 75 0.2 6.439 6.040 6 
M20/0310B 90 0.2 5.892 5.892 0 
N120/0310B 0 0.3 7.493 7.493 0 
M20,10310B 15 0.3 7.059 7.234 -2 M20/0310B 30 0.3 6.625 6.613 0 
M20'0310B 45 0.3 6.191 5.917 4 
M2010310B 60 0.3 5.757 5.354 7 
M20/0310B 75 0.3 5.323 5.010 6 
M20/0310B 90 0.3 4.889 4.889 0 
M20/0310B 0 0.4 6.488 6.488 0 
M20/0310B IS 0.4 6.120 6.270 -2 
M20! 0310B 30 0.4 5.752 5.747 0 
M20/031OB 45 0.4 5.384 5.158 4 
M20/031013 60 0.4 5.016 4.678 7 
M20'0310B 75 0.4 4.648 4.380 6 
M20, '0310B 90 0.4 4.280 4.280 0 
M20/0310B 0 0.5 5.803 5.803 0 
M20/0310B 15 0.5 5.479 5.614 -2 
M20/0310B 30 0.5 5.155 5.155 0 
M20/0310B 45 0.5 4.831 4.640 4 
M20'0310B 60 0.5 4.508 4.213 7 
M20/03 10B 75 0.5 4.184 3.950 6 
M20/0310B 90 0.5 3.860 3.860 0 
M20-'03108 0 0.6 5.297 5.297 0 
M20/0310B 15 0.6 5.005 5.127 -2 
M20/0310B 30 0.6 4.714 4.716 0 
M201031OB 45 0.6 4.422 4.250 4 
M20'03109 60 0.6 4.130 3.870 6 
M20/0310B 75 0.6 3.839 3.630 5 
M20/03lOB 90 0.6 3.547 3.547 0 
M20/031OB 0 0.7 4.904 4.904 0 
M20/031OB 15 0.7 4.637 4.750 -2 

Table 7.8 Comparison of stiffness vs grain direction between empirical model (i. e. equation 
5.4) and Foschi's formulae at displacement levels 0.1mm to Imm tinder tensile 
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Plate Number 
Grain 

direction 
(degree) 

Displacement 
level (mm) 

Empirical 
stiffness 
(kN/mm) 

Foschl formula 
stiffness 
(kN/mm) 

Percentage 

of 
Difference 

M20/0310B 30 0.7 4.370 4.370 0 
M20/0310B 45 0.7 4.103 3.950 4 
M20/0310B 60 0.7 3.836 3.600 6 
M20/03IOB 75 0.7 3.569 3.380 5 
M20/0310D 90 0.7 3.302 3.302 0 
M20/0310B 0 0.8 4.587 4.587 0 
M20'031013 15 0.8 4.339 4.445 -2 
M20/0310B 30 0.8 4.092 4.097 0 
M20/0310B 45 0.8 3.845 3.702 4 
M20.103108 60 0.8 3.598 3.380 6 
M20'0310B 75 0.8 3.351 3.172 5 
M20'0310B 90 0.8 3.103 3.103 0 
M20/03 1013 0 0.9 4.324 4.324 0 
M20/0310B 15 0.9 4.093 4.192 -2 
M20/0310B 30 0.9 3.862 3.868 0 
M20/0310B 45 0.9 3.631 3.500 4 
M20/03IOB 60 0.9 3.400 3.194 6 
M20/0310B 75 0.9 3.169 3.003 5 
M20/0310B 90 0.9 2.938 2.938 0 
M20.10310B 0 1 4.102 4.102 0 
M20, '03 10B 15 3.885 3.977 -2 
M20/0310B 30 3.667 3.673 0 
M201031013 45 3.450 3.326 4 
M20/0310B 60 3.232 3.039 6 
M20/0310B 75 3.014 2.860 5 
M20'0310ß 90 1 2.797 2.797 0 

Table 7.8 cont. 
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Grain Displacement Empirical Foschl formula Percentage 
Plate Number direction 

level (mm) stiffness stiffness of 
(degree) (kN/mm) (kN/mm) Difference 

M20/0310B 0 0.1 12.620 12.620 0 
M20/0310B 15 0.1 11.804 12.105 _3 M20/0310B 30 0.1 10.987 10.892 1 
M20/0310B 45 0.1 10.171 9.580 a 
M20/0310B 60 0.1 9.354 8.551 9 
M20/0310B 75 0.1 8.538 7.930 7 
M20/031 OB 90 0.1 7.721 7.721 0 
M20/0310B 0 0.2 12.473 12.473 0 
M20/0310B 15 0.2 11.572 11.865 -3 M20/0310B 30 0.2 10.671 10.471 2 
M20/0310B 45 0.2 9.770 9.023 8 
M20/0310B 60 0.2 8.869 7.930 11 
M2010310B 75 0.2 7.969 7.280 9 
M20/0310B 90 0.2 7.068 7.068 0 
M20/0310B 0 0.3 12.185 12.185 0 
M20/0310B 15 0.3 11.239 11.512 -2 M20/0310B 30 0.3 10.293 10.004 3 
M20'031OB 45 0.3 9.347 8.486 9 
M20; 0310B 60 0.3 8.401 7.370 12 
M20103I08 75 0.3 7.455 6.721 10 
M20/031OB 90 0.3 6.509 6.509 0 
M20/0310B 0 0.4 11.757 11.757 0 
M20'031013 15 0.4 10.805 10.060 7 
M2010310B 30 0.4 9.853 9.512 3 
M20i0310B 45 0.4 8.901 7.986 10 
M20/031OB 60 0.4 7.949 6.882 13 
M20/0310B 75 0.4 6.997 6.250 11 
M20/031013 90 0.4 6.045 6.045 0 
M20/0310B 0 0.5 11.189 11.189 0 
M20/0310B 15 0.5 10.270 10.505 -2 
M20/031OB 30 0.5 9.351 9.003 4 
M20/0310B 45 0.5 8.432 7.534 11 
M20/0310B 60 0.5 7.514 6.473 14 
M20/0310B 75 0.5 6.595 5.870 11 
M20/0310B 90 0.5 5.676 5.676 0 
M20/031OB 0 0.6 10.480 10.480 0 
Vt20/031OB 15 0.6 9.633 9.859 -2 
M20/0310B 30 0.6 8.787 8.486 3 
M20/0310B 45 0.6 7.941 7.129 10 
M20/0310B 60 0.6 7.094 6.146 13 
M20/0310B 75 0.6 6.248 5.582 11 
M20/0310B 90 0.6 5.401 5.401 0 
M20/0310B 0 0.7 9.630 9.630 0 
11120/0310B 15 0.7 8.896 9.115 -2 

Table 7.9 Comparison of stiffness vs grain direction between empirical model (i. e. equation 6.4) 

and Foschi's formulae at displacement levels 0.1mm to 0.9mm under compressive 
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Plate Number 
Grain 

direction 
(degree) 

Displacement 
level (mm) 

Empirical 
stiffness 
(kN/mm 

Foschi formula 
stiffness 
(kN/mm) 

Percentage 
of 

Difference 

M20/0310B 30 0.7 8.161 7.953 3 
M20/0310B 45 0.7 7.426 6.772 9 
M20/03I08 60 0.7 6.691 5.900 12 
M20/031OB 75 0.7 5.956 5.400 9 
M20/0310B 90 0.7 5.222 5.222 0 
M20/0310B 0 0.8 8.641 8.641 0 
M20/0310B 15 0.8 8.057 8.263 -3 M20/03IOB 30 0.8 7.473 7.382 1 
M20/0310B 45 0.8 6.889 6.443 6 
, M20/03 1013 60 0.8 6.305 5.716 9 
M20/0310B 75 0.8 5.720 5.283 8 
M20/0310B 90 0.8 5.136 5.136 0 
M20103108 0 0.9 7.511 7.511 0 
M20/0310B 15 0.9 7.117 7.287 -2 
M20/03 10B 30 0.9 6.722 6.737 0 
M20/0310B 45 0.9 6.328 6.108 3 
M20/03IOB 60 0.9 5.934 5.586 6 
M20/03108 75 0.9 5.540 5.263 5 
M20/0310B 90 0.9 5.146 5.146 0 

Table 7.9 cont. 
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7.4 EFFECTS OF THE PLATE DIRECTIONS 

In this section, tests were carried out in order to determine the influence of the direction of 

the plate on the performance of the punched metal plate timber joints subjected to tensile 

loading. The effects of plate direction of 0°, 45° and 90° were examined. The preparations of 

test sampies were similar to those explained in chapter 3 and 5. The punched metal plate type 

used in construction of testing specimens was M20/0310-101mmx25mmxlmm. Different 

directions of plate are shown in Figure 7.9. 
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In Figure 7.10, the load-displacement (average curves) behaviour of the joints for specimens 

with various plate directions subjected to tensile loading are shown. 
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Figure 7.10 Load-displacement behaviour of joints with different plate direction under tensile 

loading. 
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It is clear from Figure 7.9 that with the plate direction at 450, bites were not all effective. 

Only 6 out of 8 bites were effective, this was considered in the determination of the effects of 

the teeth directions. Different directions of the teeth (bites) with respect to timber grain 

direction are illustrated in Figure 7.11, where A-A represents a cross section of a tooth. Case 

(a), corresponds to tests where the force is applied parallel to the plate major axis and parallel 

to the grain. Case (b), corresponds to tests where the load is applied perpendicular to the plate 

major axis and parallel to the grain. Case (c), corresponds to tests where the load is applied at 

45° to the plate major axis and parallel to the grain. 

FFF 

A 
050, 

A 

, IflIII 
(a) 0° (b) 90° (c) 45° 

A cross section of a tooth. 

Grain direction. 

Figure 7.11 Different direction of teeth in punched metal plate timber connections. 
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The method of analysis developed in chapter 5 and 6 was applied to this section to determine 

the effects of the teeth directions on the behaviour of the punched metal plate timber 

connections. A comparison of the stiffness of the joints with different teeth directions is 

presented in Figure 7.12. The dotted curve illustrates stiffness of the plates positioned at 45° 

assuming all their teeth are effective. Table 7.10 shows the average stiffness for joint 

specimens with different teeth directions under tensile loading. Empirical model (i. e. 

equation 7.3) describing the stiffness of the joints with different teeth directions under tensile 
loading was developed. 

K, =(0.0017 -0.00115)a2+(0.13 195-2413)a-8.4911,5 +17.191 (7.3) 

where k, = stiffness of the joint under tensile loading (kN/mm). 
S= displacement (mm). 

a= directions of the teeth (degree). 
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Figure 7.12 Comparison of joints performance with different teeth direction under 

tensile loading. 
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Plate Number Teeth directions Displacement level 
(degree) (mm) Stiffness (kN/mm) 

M20/0310B 0 0.1 13.56 
M20/0310B 45 0.1 13.12 
M20/0310B 90 0.1 1171 
M20/0310B 0 0.2 16.03 
M20/O310B 45 0.2 9.75 
M20/0310B 90 0.2 9.69 
M20/0310B 0 0.3 15.21 
M20/0310B 45 0.3 8.49 
M20/0310B 90 0.3 8.21 
M20/03I0B 0 0.4 13.93 
M20/0310B 45 0.4 7.77 
M20/0310B 90 0.4 7.18 
M20/0310B 0 0.5 12.85 
M20/0310B 45 0.5 6.99 
M20/0310B 90 0.5 6.32 
M20/0310B 0 0.6 11.78 
M20/0310B 45 0.6 6.53 
M20/0310B 90 0.6 5.64 
M20/0310B 0 0.7 10.83 
M20/03IOB 45 0.7 6 
M20/0310B 90 0.7 5.08 
M20/03IOB 0 0.8 9.81 
M20/0310B 45 0.8 5.56 
M20, '031OB 90 0.8 4.65 
M20/0310B 0 0.9 9 
M20/0310B 45 0.9 5.21 
M20/0310B 90 0.9 4.26 
M20/0310B 0 I 8.28 
M20/031OB 45 1 4.86 
M20/0310B 90 1 3.94 
M20/0310B 0 1.1 7.59 
M20/0310B 45 1.1 4,56 
M20/0310B 90 1.1 3.66 
M20/0310B 0 1.2 6.98 
M20/0310B 45 1.2 4.29 
M20/0310B 90 1.2 3.4 
M20/0310B 0 1.3 6.44 
M20/0310B 45 1.3 4.04 
M20/0310B 90 1.3 3.16 
M20/0310B 0 1.4 5.98 
M20/031OB 45 1.4 3.82 
M20/0310B 90 1.4 2.94 

Table 7.10 Average stiffness for joint specimens with different teeth directions 

under tensile loading. 
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It is clear that the stiffness of the joints were dependent on the teeth directions. The stiffness 

of the joints decreased with an increase in the angle of the teeth directions. The rate of 

decrease in stiffness increased as the angle of the teeth directions increased. At low 

displacement levels, stiffness was high compared with high displacement levels. The rate of 

increasing in stiffness was reduced as displacement was increased. 

In Figure 7.13, the effect of teeth directions on the performance of the connections with 

respect to the stiffness sustained by them at displacement levels of 0.1mm to 1.4mm are 

shown. 
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Figure 7.13 Stiffness vs teeth direction in joints under tensile loading. 
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7.5 SUMMARY 

This chapter described a series of tests carried out on punched metal plate timber joints in 

order to classify the importance of factors such as, number of bites, length of bites and grain 
directions on the performance of the joints. The specimens were loaded to failure both in 

tension and in compression. Taguchi methodology was used to analyse and classify the 

importance of such factors. From the test results and analysis carried out, it was found that 

the grain direction has large effects on the performance of the joints under tensile loading and 

the effectiveness of the grain direction was less when joints were subjected to compressive 
loading. Also, it was clear that increasing the number of bites in the joints was more 
important than increasing the length of bites. There was also a strong indication that the 

number of bites effects was dominant when joints were subjected to compressive loading. 

The developed empirical models which describing the stiffness characteristics of the joints 

with different grain directions under tensile and compression loading were compared well 

with the formulae described by Foschi. 

Also, tests were carried out in order to determine the influence of the directions of the plate 

and the teeth on the performance of the punched metal plate timber joints subjected to tensile 

loading. From the results it was found that the stiffness of the joints were dependent on the 

teeth directions. The stiffness of the joints decreased with an increase in the angle of the teeth 

directions. The rate of decrease in stiffness increased as the angle of the teeth directions 

increased. At low displacement levels, stiffness was high compared with high displacement 

levels. The rate of increasing in stiffness was reduced as displacement was increased. 

Empirical model describing the stiffness characteristics of joints with different teeth 

directions subjected to tensile loading was developed. 
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CHAPTER EIGHT 

THE MOMENT-ROTATION CHARACTERISTICS OF THE 
PUNCHED METAL PLATE TIMBER FASTENERS 



8. THE MOMENT-ROTATION CHARACTERISTICS OF THE 

PUNCHED METAL PLATE TIMBER FASTENERS 

8.1 INTRODUCTION 

Punched metal plate joints are used widely for the construction of timber roof trusses. 

Traditional approaches to the analysis and design of the trusses are based on the assumption 

that the joints are either pinned or completely rigid. These are simply the extreme cases of 

true joints behaviour. In either of these two conditions, the forces and displacement obtained 

are unreliable and do not represent the actual structural behaviour, leading to over or under 

designed members and joints. The actual joints can be characterised as semi-rigid. These 

joints allow some relative movement (axial, translation, and rotation) between the connected 

members in the plane of the truss due to concentric or eccentric forces in the members. 

However, in engineering practice a connection can be considered pinned if its stiffness is so 

small that the connection is incapable of transmitting any significant moment, thus permitting 

almost free rotation. Similarly, a connection can be considered rigid if its rigidity is so large 

that the connection is capable of transmitting significant moment and will not permit any 

rotation. 

The assumptions that the joints are either pinned or rigid are not entirely consistent with 

practical conditions. However, they have been accepted because of the simplicity in design 

and analysis procedures of truss roof structures. 

In this chapter the semi-rigidity effects of the punched metal plate timber joints are discussed. 

Details of experimental work investigating the moment-rotation characteristics of the joints 

are given using joints with different variables such as number of bites, length of bites, grain 

directions and plate thickness. Empirical models describing moment-rotation behaviour and 

rotational stiffness of the joints were developed and compared with the experimental results. 
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8.2 TESTING PROGRAM 

Tests were carried out to determine the influences of different variables such as number of 

bites, length of bites, grain directions and plate thickness on the performance of the punched 

metal plate timber joints subjected to moment force. Testing programme for different 

variables (number of bites, length of bites, grain directions, plate thickness) are summarised 

in Table 8.1. Minimum of 5 specimens per joint type were tested, totalling over 70 specimen 

joints. 

Plate ref. Plate properties (mm) Bite properties Grain 

number Length Width Thickness Number Length (mm) direction 

M20/0310B 101 25 1 1 8 90 

M20/0310B 101 25 1 2 8 90 

M20/0310B 101 25 1 3 8 90 

M20/0310B 101 25 I 4 8 90 

M20/0310B 101 25 1 5 8 90 

M20/0310B 101 25 1 6 8 90 

M20/0310B 101 25 1 7 8 90 

M20/0310B 101 25 1 8 8 90 

M20/03IOB 101 25 1 8 8 0 

M20/0310B 101 25 1 8 8 30 

M20/0310B 101 25 I 8 8 60 

M14/1333 133 38 2 8 5 90 

M14/1333 133 38 2 8 10 90 

M14/1333 133 38 2 8 15 90 

Table 8.1 Testing programme for joints subjected to moment force. 

224 



8.3 LABORATORY WORK 

The punched metal plate type used in construction of number of bites and grain directions 

testing specimens was M20/031OB-lOlmmx25mmxlmm and for length of bites testing 

specimens was a small strip 130mmx38mmx2mm which cut from plate number M14/1333 as 

supplied by MiTek industries. The specimens were loaded to failure in bending. All joint 

specimens were manufactured using material as explained in chapter 3. The average moisture 

content at the time of testing was 12 % and the mean density was 475 kg/m3. 

The test samples were generally made of two pieces of timber dimensioned as 

65mmx300mm and 65mmXI3Omm by 45mm thickness. Typical test set-up is shown in 

Figure 8.1. The instrumentation and loading procedures were as explained in chapter 3. 

End-restraint 

sduccr 

Figure 8.1 Moment test set-up. 
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8.4 RESULTS AND DISCUSSION 

A typical moment-rotation behaviour of the joints tested is shown in Figure 8.2 and is 

compared with the idealised behaviour of fully pinned and fully rigid joints. 
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01234567 
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Figure 8.2 Moment - rotation curve for different joints. 

This Figure clearly illustrates that the punched metal plate connected joints posses 

considerable moment-rotational stiffness. If this semi-rigid behaviour is utilized in the 

analysis-design process, it can lead to savings in materials used. 

8.4.1 Effects of number of bites 

Tests were carried out to determine the influences of number of bites on the performance of 

the punched metal plate timber joints subjected to applied moments. The test samples were 

generally made of two pieces of timber dimensioned as 65mmx300mm and 65mmx 133mm 

by 45mm thickness. The punched metal plate type used in construction of testing specimens 

was M20/03IOB-101mmx25mmx 1mm. The specimens were loaded to failure in bending. All 

joint specimens were manufactured using material as explained in chapter 3 
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In Figure 8.3 typical non-linear moment-rotation curves up to 0.05 radian rotation with best 

fit (average curves) for specimens with various number of bites subjected to moments are 

shown. All joints made of punched metal plates M20/0310B with equal length of bites (8mm) 

and the loads applied perpendicular to the grain of timber. The induced deformation rate 

during loading was I mm/min. The timber average moisture content at the time of testing was 

12 % and the mean density was 475 kg/m3. 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their moment-rotation relationship. The moment-rotation behaviour of each specimen 

was examined and forth order polynomial equation was fitted to define the curve. A 

comparison of joints performance and their moment-rotation relationships in relation to the 

number of bites up to 0.05 radian rotation is presented in Figure 8.4. The average induced 

moment for each group of specimens is shown in Table 8.2. 
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Figure 8.3 Moment-rotation behaviour of joints with various number of bites subjected to applied 

moments. 
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Figure 8.4 A comparison of joints performance in relation to the number of bites tested. 

Plate ref. number Number of bites Average moment 
(KNmm) 

M20/0310B 1 18.90 
M20/0310B 2 34.62 
M20/031 OB 3 47.58 
M20/031 OB 4 50.80 
M20/0310B 5 51.62 
M20/0310B 6 52.63 
M20/031 OB 7 53.45 
M20/0310B 8 53.88 

Table 8.2 The average moment at rotation of 0.05 radian for various 

number of bites. 

It was observed that the number of bites had significant effects on the performance of the 

joints. All joints studied behaved in similar manner. They showed a non-linear response from 

beginning up to the failure load. 

229 



8.4.1.1 Rotational stiffness characteristics of the joints 

In order to investigate the effects of number of bites on the performance of the joints 

subjected to applied moment under short-term duration, the rotational stiffness characteristics 

of all tested specimens were analysed in detail. The rotational stiffness of the joint (K9) 

defined as the ratio between the moment and the rotation in the joint. 

4M K e 

M 
KB _ 

(8.1) 
B 

where KA = Rotational stiffness( KNmm/radian). 

M= Applied moment (KNmm). 

0= Rotation (radian). 

The average magnitude of the rotational stiffness sustained by each joints specimen at 0.01 to 

0.05 radian rotation level was determined. Figure 8.5 represents results of rotational stiffness 

versus number of bites in the joints at rotation levels of 0.01 to 0.05 radian. Power equations 

were fitted the non-linear rotational stiffness versus number of bites curves to define them. 

These equations were directed to pass through the point of origin to simulate the condition of 

zero rotational stiffness at number of bites equals to zero. The equations obtained are 

tabulated and presented in Table 8.3. These equations have been solved and empirical model 

(i. e. equation 8.2) describing the rotational stiffness of punched metal plate timber 

connections with different number of bites was developed. 
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Figure 8.5 Rotational stiffness sustained in the joint versus number of bites in the joint. 
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Rotation, 0 
(radian) Rotational stiffness (kNm/radian) 

Coefficient of 
correlation, R2 

0.01 1.1859 n0.3166 0.90 

0.02 0.8285 n°'4113 0.91 

0.03 0.6523 no. 45ao 0.91 

0.04 0.5323 n°'4800 0.89 
0.05 0.4580 n°'4807 0.86 

n= number of bites in the joints. 

Table 8.3 The equations of the various curves in Figure 8.5. 

Using the equations in Table 8.3, an empirical model (i. e equation 8.2) describing the 

rotational stiffness of the joints with different number of bites was developed. 

KB = 0.08020"0"90'n 1.1 24SO° Hx 

where KA = Rotational stiffness(kNm/radian). 
0= rotation (radian). 

n= number of bites in the joint. 

(8.2) 

In Figure 8.6, the effect of increase in the number of bites on the performance of the 

connections with respect to the rotational stiffness sustained by them at rotation levels of 0.01 

to 0.05 radian are shown. 
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Figure 8.6 Rotational stiffness vs number of bites in the joints. 
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It is clear that the rotational stiffness were dependent on the number of bites in the joints. 

Increasing the number of bites will increase the rotational stiffness of the joints. The rate of 

increase in rotational stiffness reduced as the number of bites increased above approximately 

60% of the total number of bites available in a standard toothed-plate size. At low rotation 

level, the rotational stiffness was high compared with high rotation level. The rate of increase 

in the rotational stiffness was reduced as the rotation levels were increased. 

In Figure 8.7, a comparison of rotational stiffness with respect to increase in rotation levels 

between experimental and empirical (i. e. equation 8.2) results for various joints with different 

number of bites are represented. The agreement between the empirical model and 

experimental observation was good. 
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Figure 8.7 Comparison of rotational stiffness vs rotation curve between experimental and 

empirical (i. e. equation 8.2) results. 
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In Table 8.4 Comparison between the experimental and empirical (i. e. equation 8.2) rotation 

stiffness at various rotation levels 0.01 to 0.05 radian for the various number of bites in the 
joints are shown. 

Plate Number 
Number 
of Bites 

Rotation level 
(radian) 

Empirical 
Rotational 
stiffness 

Mm/radian 

Experimental 
Rotational 
stiffness 

kNm/ radian) 

Percentage 
of Error 

(%) 

M2010310B 1 0.01 1.214 1.186 2 
M20/0310B 2 0.01 1.524 1.477 3 
M20/0310B 3 0.01 1.741 1.679 4 
M20103108 4 0.01 1.913 1.839 4 
M20/0310B 5 0.01 2.059 1.974 4 
M20/0310B 6 0.01 2.185 2.091 4 
M20/0310B 7 0.01 2.299 2.196 5 
M20/0310B 8 0.01 2.402 2.291 5 
M20/0310B 1 0.02 0.807 0.829 .3 
M20, '0310B 2 0.02 1.061 1.102 .4 
M20, '0310B 3 0.02 1.245 1.302 -4 
M20/0310B 4 0.02 1.394 1.465 -5 
M20.! 0310B 5 0.02 1.523 1.606 -5 
M20/03100 6 0.02 1.636 1.731 -5 
M2010310 7 0.02 1.739 1.845 -6 
M20/0310B 8 0.02 1.833 1.949 -6 
M20/0310B 1 0.03 0.635 0.652 -3 
M20/0310B 2 0.03 0.862 0.894 -4 
M20/0310B 3 0.03 1.030 1.074 -4 
M20, /0310B 4 0.03 1.169 1.224 .4 
M2010310B 5 0.03 1.289 1.355 -5 
M2010310B 6 0.03 1.397 1.471 -5 
M20/0310B 7 0.03 1.495 1.578 -5 
M20/0310B 8 0.03 1.586 1.677 -5 
M20/0310B 1 0.04 0.536 0.532 1 
M20/0310B 2 0.04 0.745 0.742 0 
M201031013 3 0.04 0.903 0.902 0 
M20/0310B 4 0.04 1.036 1.035 0 
M20/0310B 5 0.04 1.151 1.153 0 
M20/0310B 6 0.04 1.256 1.258 0 
M20/0310B 7 0.04 1.351 1.355 0 
M20/03100 8 0.04 1.440 1.444 0 

Table 8.4 Comparison between empirical and experimental rotational stiffness at rotation 
levels from 0.01 to 0.05 radian for various number of bites in the joints. 
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Plate Number 
Number 
of Bites 

Rotation level 
(radian) 

Empirical 
Rotational 
stiffness 

kNm/radian 

Experimental 
Rotational 
stiffness 

kNm/ radian 

Percentage 
of Error 

(%) 

M20/0310B 1 0.05 0.47 0.458 3 
M20/0310B 2 0.05 0.666 0.639 4 
M20/0310B 3 0.05 0.818 0.777 5 
M20/0310B 4 0.05 0.945 0.892 6 
M20/0310B 5 0.05 1.058 0.993 7 
M20/0310B 6 0.05 1.160 1.084 7 
M20/03108 7 0.05 1.254 1.167 7 
M20/0310B 8 0.05 1.341 1.244 

Table 8.4 cont. 

In Figure 8.8, a coMparison of rotational stiffness versus number of bites between 

experimental and empirical (i. e. equation 8.2) results for various joints with different number 

of bites at rotation levels from 0.01 to 0.05 radian are represented. There was a good 

agreement between the empirical model and experimental results. 
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Figure 8.8 Comparison of rotational stiffness vs number of bites between experimental 

and empirical (i. e. equation 8.2) results. 
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8.4.1.2 Moment anchorage stress (r, ) of the joints 

In this section the effects of number of bites on the moment anchorage capacity of the joints 

are analysed. The moment anchorage capacities of the joints tested were calculated from 

equation 8.3, according to the EC5. This equation is based on the plastic stress theory. 

r 
4M 

A (8.3) 
M Aefd 

where 

d= ý`` 2 +h 
2 (8.4) ýhf 

ej 

where: MA= moment acting on the plate at the centroid of the effective area. 

lid = maximum height of the effective anchorage area perpendicular to the longest side. 
A, = area of the total contact surface between the plate and the timber, reduced by those part 

of the surface which are outside some specified dimension from the edges and ends. 

Assuming that all bites are equally effectives, the effective area of each bites will be equal to 

the total effective area divided by the number of bites. For the plates used in testing 

M20/0310B of dimensions 101mmx25mmxlmm, the effective area of each bite will be equal 

to 142.1875 mm2. The effective area of the plate (8bites) and each bite individually are 

shown in Figure 8.9. 
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Figure 8.9 Dimensions of plate and bite effective area in the joints. 

In Table 8.5 the effective area for a joints with various number of bites arc shown. 

Plate ref. 
number 

Number 
of bites 

Effective area 
(mmz) 

M20/0310B 1 142.1875 
M20/0310B 2 284.3750 
M20/031013 3 426.5625 
M20/0310B 4 568.7500 
M20/0310B 5 710.9375 
M20/0310B 6 853.1250 
M20/0310B 7 995.3125 
M20/0310B 8 1137.500 

Table 8.5 The effective area for a joints with various number of bites. 

50 5- 

50 3 mm 

The average magnitude of the moment anchorage stress sustained by each joint specimen at 

0.01 to 0.05 radian rotation level was determined. Figure 8.10 represent results of moment 

anchorage stress versus number of bites in the joints at rotation levels of 0.01 to 0.05 radians. 
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Second order polynomial equations were fitted the curves to define it. The equations obtained 

are tabulated and presented in Table 8.6. These equations have been solved and empirical 

model (i. e. equation 8.5) describing the moment anchorage stress of punched metal plate 

timber connections with different number of bites was developed. 
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Figure 8.10 Moment anchorage stress sustained in the joint versus number of bites in the joint. 
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Rotation, B 
(radian) 

Moment anchorage stress Coefficient of 
R2 

0.01 8.0968 n°9' 0.9662 

0.02 11.313 n-0.8603 0.9618 

0.03 13.361 n-08176 0.9512 

0.04 14.209 n-0.7612 0.9378 

0.05 15.282 n-0.7603 0.9277 

n= number of bites in the joint. 

Table 8.6 The equations of the various curves in Figure 8.10 

Using the equations in Table 8.6, an empirical model (i. e equation 8.5) describing the 

moment anchorage stress of the joints with different number of bites was developed. 

rm = 03946 1i-0u1se; "46 (8.5) 

where rm=Moment anchorage stress (N/mm2). 

0= Rotation (radian). 

n= number of bites in the joint. 

In Figure 8.11, the effect of increase in the number of bites on the performance of the 

connections with respect to the moment anchorage stress sustained by them at rotation levels 

of 0.01 to 0.05 radian are shown. 
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Figure 8.11 Moment anchorage stress vs number of bites in the joints. 

In Figure 8.12, a comparison of moment anchorage stress versus rotation curves between 

experimental and empirical (i. e. equation 8.5) results for various joints with different number 

of bites were represented. The agreement between the empirical model and experimental 

observation was good. 

242 



Is Iz 
16 10 
14 ...... ------" 
12 11 

6 
.... e ulmomcu ..... ..... ...... E, 

` 
molmomrni 

"" 7'. 
I6 

.-_"--- 

Ejwcnn 
Z_.. aerlonge stress 4 .... ..... ..... ,e um., 

4 Empvw. Imomr. t E mrni 

...... , nrlongr stoss 
220.00 

0.01 0.02 0.03 0.04 0.05 0.06 0.00 0.01 0.02 0.03 0.04 0 05 0.06 

(a) One bite 
Rotation, radian Rotation, radian (b) Two bites. 

97 
6 Id8 

. ...... ü5.. 
........ 

"".. m 
anrho n; e suers anc ho ra tc umis 

-l 

2 Empücalmomem 2 
Emprcalmomcnl 

tochora Qc singt 

00 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.00 0.01 0.02 003 0.04 0.05 0.06 

(c) Three bites. Rotation. radian 

42 

anchonse stmss 

Ii 

= 
Empricalmoment 

I. '.: - aucholigc stress 

0i 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 

(c) Five bites. 
Rotation. radian 

4 
GN 

M1 
3 

eý g 
s2-...... Eýerintnulmomtat ýz Z eocbonst Simse 

----- Empüilmomeat 
Y aec Eonýc Sites 
gO 

§0m 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 

(g) Seven bites. 
Rotation. radian 

(d) Four bites. Rotation, radian 

4 

2_ """"". " EWrrinemalmomrnt 

"ochonyciir u 

..... 
Empn. Imomrnl 
auhonyc clmrc 

0 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 

Rotation, radian 
(f) Six bites. 

3 .... 
2 

...... Eapc rincnulmo mcnl1II 

an Cho fl jcoo 

-'--- Empüc al momen i 
MAC Crate CIn: C 

0 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 

Rotation, radian 
(h) Eight bites. 

Figure 8.12 Comparison of moment anchorage stress vs rotation curve between experimental and empirical 

(i. e. equation 8.5) results. 
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In Table 8.7 Comparison between the experimental and empirical (i. e. equation 8.5) moment 

anchorage stress at various rotation levels 0.01 to 0.05 radian for the various number of bites 

in the joints are shown. 

Plate Number Number 
of Bites 

Rotation level 
(radian) 

Experimental 
moment 

anchorage stress 
/mm' 

Empirical 
moment 

anchorage stress 
NIMM: 

Percentage 
of Error 

(%) 
M20/0310B 1 0.01 8.097 8.334 3 
M20/0310B 2 0.01 4.177 4.301 3 
M20/03108 3 0.01 2.836 2.920 3 
M20/0310B 4 0,01 2.154 2.219 3 
M20/0310B 5 0.01 1.741 1.793 3 
M20/03IOB 6 0.01 1.463 1.507 3 
M20/0310B 7 0.01 1.263 1.301 3 
M20/0310B 8 0.01 1.111 1.145 3 
M20/0310B 1 0.02 11.313 10.956 .3 
M20/0310B 2 0.02 6.232 6.032 .3 
M20/0310B 3 0.02 4.397 4.254 .3 
M20/031013 4 0.02 3.433 3.321 .3 
M20/03IOB 5 0.02 2.833 2.740 .3 
M20/031013 6 0.02 2.422 2.342 .3 
M20/0310B 7 0.02 2.121 2.051 _3 
M20/0310B 8 0.02 1.891 1.828 .3 
M20/031013 1 0.03 13.361 12.857 .4 
M20/03IOB 2 0.03 7.581 7.329 .3 
M20/0310B 3 0.03 5.442 5.276 -3 
M20/0310B 4 0.03 4.301 4.178 .3 
M20/0310B 5 0.03 3.584 3.487 .3 
M20/0310B 6 0.03 3.088 3.008 _3 
M20/0310B 7 0.03 2.722 2.654 -2 
M20/0310B 8 0.03 2.440 2.382 -2 
M20/0310B 1 0.04 14.209 14.403 1 
M20/0310B 2 0.04 8.383 8.406 0 
M20/0310B 3 0.04 6.157 6.135 0 
M20/03IOB 4 0.04 4.946 4.906 .l 
M20/0310B 5 0.04 4.174 4.125 .I 
M20/0310B 6 0.04 3.633 3.580 -I 
M20/0310B 7 0.04 3.231 3.176 -2 
M20/0310B 8 0.04 2.918 2.863 -2 

Table 8.7 Comparison between empirical and experimental moment anchorage stress at 

rotation levels of 0.01 to 0.05 radian for various number of bites in the joints. 
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Plate Number 
Number 
of Bites 

Rotation level 
(radian) 

Experimental 
moment 

anchorage stress 
N/mm= 

Empirical 
moment 

anchorage stress 
N/mm' 

percentage 
of Error 

(%) 

M20/0310B 1 0.05 15.282 15.728 3 
M20/0310B 2 0.05 9.021 9.342 4 
M20/0310B 3 0.05 6.627 6.888 4 
M20/0310B 4 0.05 5.325 5.549 4 
M20/0310B 5 0.05 4.494 4.692 4 
M20/031OB 6 0.05 3.912 4.092 5 
M20/0310B 7 0.05 3.479 3.644 5 
M20/03108 8 0.05 3.143 3.296 5 

Table 8.7 cont. 

In Figure 8.13, a comparison of moment anchorage stress versus number of bites curves 

between experimental and empirical (i. e. equation 8.5) results for various joints with different 

number of bites were represented. The agreement between the empirical model and 

experimental observation was good. 
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Figure 8.13 Comparison of moment anchorage stress vs number of bites curve between experimental and 

empirical (i. e. equation 8.5) results. 
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8.4.2 Effects of length of bites 

Tests were carried out to determine the influences of length of bites on the performance of 
the punched metal plate timber joints subjected to applied moments. The test samples were 

generally made of two pieces of timber dimensioned as 65mmx300mm and 65mmx 133mm 

by 45mm thickness. The punched metal plate type used in construction of testing specimens 

was small strip of plates cut from M14/1333. The specimens were loaded to failure in 

bending. All joint specimens were manufactured using material as explained in chapter 3. 

In Figure 8.14 typical non-linear moment-rotation curves up to 0.05 radian rotation with 
fitted curve (average curves) for specimens with various length *of bites subjected to applied 

moments are shown. All joints made of small strip of plates cut from M14/1333 punched 

metal plate with equal number of bites (8 bites) and the loads applied perpendicular to the 

grain of timber. 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their moment-rotation relationship: The moment-rotation behaviour of each specimen 

was examined and third order polynomial equation was fitted to define the curve. A 

comparison of joints performance and their moment-rotation relationships in relation to the 

bites length up to 0.05 radian rotation is presented in Figure 8.15. The average induced 

moment for each group of specimens is shown in Table 8.8. 
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Figure 8.14 Moment-rotation behaviour of joints with various length of bites subjected to 

applied moments. 
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Plate ref. number 
Length of bites 

(mm) 
Average moment 

(kNmm) 

M14/1333 5 77.2 

M 14/1333 10 100 

M14/1333 15 135.4 

Table 8.8 The average moment at rotation of 0.05 radian for various 
length of bites. 

It was observed that the length of bites had significant effects on the performance of the 

joints. All joints studied behaved in a similar manner. They showed a non-linear response 

from beginning up to the failure load. 

8.4.2.1 Rotational stiffness characteristics of the joints 

Similar method of analysis used for the number of bites was applied to the length of bites. 

The equations obtained are tabulated and presented in Table 8.9. These equations have been 
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solved and empirical model (i. e. equation 8.6) describing the rotational stiffness of punched 

metal plate timber connections with different length of bites was developed. Figure 8.16 

represents results of rotational stiffness versus length of bites in the joints at rotation levels of 

0.01 to 0.05 radian. 
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Figure 8.16 Rotational stiffness sustained in the joint versus length of bites in the joint. 
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Rotation, 0 
(radian) 

Rotational stiffness 
(kNm/radian) 

Coefficient of 
correlation, R2 

0.01 -0.0203 l2 + 0.7021 1 0.9196 

0.02 -0.0131 l2+0.51551 0.9217 

0.03 -0.011 12 + 0.4182 1 0.9044 
0.04 -0.01 12 + 0.35721 0.8871 

0.05 -0.0091 12 + 0.31181 0.8626 

I= length of bites in the joints (mm). 

Table 8.9 The equations of the various curves in Figure 8.16 

Using the equations in Table 8.9, an empirical model (i. e equation 8.6) describing the 

rotational stiffness of the joints with different length of bites was developed. 

K©. -O. 002 0f0.4936 e. 0.0709 gO. 3016 1 (8.6) 

where Ke = Rotational stiffness(kNm/radian). 
0= rotation (radian). 

= length of bites in the joint (mm). 

In Figure 8.17, the effect of increase in the length of bites on the performance of the 

connections with respect to the rotational stiffness sustained by them at rotation levels of 0.01 

to 0.05 radian are shown. 

251 



6 
ýS 

z 

t` 3 

SZ 

1 

0 

0.01 radian 

----------" ------- .......... 0.02 radian 

---------- 0.03 radian 
0.04 radian 

0.05 radian 

05 io is 20 
Length of bites, mm 
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It is clear that the rotational stiffness were dependent on the length of bites in the joints. 

Increasing the length of bites will increase the rotational stiffness of the joints. The rate of 

increase in rotational stiffness increase as the length of bites increased above approximately 

50% of the maximum length of bites in a joint tested. At low rotation level, the rotational 

stiffness was high comparing with high rotation level. The rate of increasing in the rotational 

stiffness was reduced as the rotation levels were increased. 

In Figure 8.18, a comparison of rotational stiffness versus rotation curves between 

experimental and empirical (i. e. equation 8.6) results for various joints with different length 

of bites are represented. The agreement between the empirical model and experimental 

observation was good. 
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Figure 8.18 Comparison of rotational stiffness vs rotation curve between experimental 

and empirical (i. e. equation 8.6) results. 
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In Table 8.10 Comparison between the experimental and empirical (i. e. equation 8.6) rotation 
stiffness at various rotation levels 0.01 to 0.05 radian for the various number of bites in the 
joints are shown. 

Length of 
Plate Number 

nga 

(mm) 

Rotation level 
(radian) 

Empirical 
Rotational 
stiffness 

kNm/radlan 

Experimental 
Rotational 
stiffness 

kNm/ radian) 

Percentage 
of Error 

(%) 
M14/1333 5 0.01 3.086 3.003 3 
M14/1333 10 0.01 5.201 4.991 4 
M14/1333 15 0.01 6.344 5.964 6 
M14/1333 5 0.02 2.178 2.25 -3 M14/1333 10 0.02 3.666 3.845 _5 M14/1333 15 0.02 4.464 4.785 _7 M14/1333 5 0.03 1.776 1.816 -2 M14/1333 10 0.03 2.987 3.082 _3 M14/1333 15 0.03 3.634 3.798 4 
M14/1333 5 0.04 1.537 1.536 0 
M14/1333 10 0.04 2.584 2.572 0 
M14/1333 15 0.04 3.141 3.108 1 
M14/1333 5 0.05 1.374 1.332 3 
M14/1333 10 0.05 2.309 2.208 5 
M14/1333 15 0.05 2.8 2.63 6 

Table 8.10 Comparison between empirical and experimental rotational stiffness at rotation levels 

of 0.01 to 0.05 radian for various length of bites in the joints. 

In Figure 8.19, a comparison of rotational stiffness versus length of bites between 

experimental and empirical (i. e. equation 8.6) results for various joints with different bite 

length at rotation levels of 0.01 radian to 0.05 radian are represented. There was a good 

agreement between the empirical model and experimental results. 
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Figure 8.19 Comparison of rotational stiffness vs length of bites between experimental and 

empirical (i. e. equation 8.6) results. 
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8.4.3 Effects of grain direction 

Tests were carried out to determine the influences of the grain direction on the performance 

of the punched metal plate timber joints subjected to applied moments. The test samples were 
generally made of two pieces of timber dimensioned as 65mmx300mm and 65mmx 133mm 
by 45mm thickness. The punched metal plate type used in construction of testing specimens 
was M20/0310B-101mmx25mmxlmm. The specimens were loaded to failure in bending. All 
joint specimens were manufactured using material as explained in chapter 3. 

In this section the effect of timber grain direction on the rotational stiffness characteristics of 
the joints were analysed in. In Figure 8.20 typical non-linear moment-rotation curves up to 
0.05 radian rotation with fitted curve (average curves) for specimens with various grain 
direction subjected to applied moments are shown. All joints made of punched metal plates 
M20/0310B with equal length of bites (8mm) and equal number of bites (8 bites). 
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Figure 8.20 Moment-rotation behaviour of joints with various grain direction subjected to applied moments. 
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The behaviour of the joints tested was assessed through observation of the failed specimens 

and their moment-rotation relationship. The moment-rotation behaviour of each specimen 

was examined and third order polynomial equation was fitted to define the curve. A 

comparison of joints performance and their moment-rotation relationships in relation to the 

grain direction up to 0.05 radian rotation is presented in Figure 8.21. The average induced 

moment for each group of specimens is shown in Table 8.11. 
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Figure 8.21 A comparison of joints performance in relation to the grain direction tested. 

Plate ref number Grain direction 
Average moment 

(kNmm) 

M20/0310B 00 58.90 

M20/0310B 30° 57.67 

M20/0310B 60° 55.32 

M20/0310B 90° 53.62 

Table 8.11 The average moment at rotation of 0.05 radian for various grain direction. 
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It was observed that the grain direction had significant effects on the performance of the 

joints. All joints studied behaved in similar manner. They showed a non-linear response from 

beginning up to the failure load. 

8.4.3.1 Rotational stiffness characteristics of the joints 

Similar method of analysis used for the number of bites was applied to the grain directions. 

The equations obtained are tabulated and presented in Table 8.12. These equations was 

solved and empirical model (i. e. equation 8.7) describing the rotational stiffness of punched 

metal plate timber connections when loaded in different grain directions was developed. 

Figure 8.22 represents results of rotational stiffness versus grain directions in the joints at 

rotation levels of 0.01 to 0.05 radian. 
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Figure 8.22 Rotational stiffness sustained in the joint versus grain direction. 
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0 
(radian) 

Rotational stiffness 
(kNm/radian) 

Coefficient ficient of 
correlation, R2 

0.01 -0.0073 g+2.6375 0.9827 

0.02 -0.004 g+2.1004 0.9903 

0.03 -0.0023 g+1.7112 0.9768 

0.04 -0.0014 g+1.4026 0.9554 
0.05 -0.0012 g+1.1825 0.9759 

g= angle of grain direction. 

Table 8.12 The equations of the various curves in Figure 8.22 

Using the equations in Table 8.12, an empirical model (i. e equation 8.7) describing the 

rotational stiffness of the joints with different grain direction was developed. 

K0--4xIOs01.1694gt0.28850,0.4919 

where KO = Rotational stiffness(kNm/radian). 

©= rotation (radian). 

g= angle of grain direction (degree). 

(8.7) 

In Figure 8.23, the effect of grain direction on the performance of the connections with 

respect to the rotational stiffness sustained by them at rotation levels of 0.01 to 0.05 radian 

are shown. 
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Figure 8.23 Rotational stiffness vs grain direction in the joints. 

It is clear that the rotational stiffness were dependent on the grain direction in the joints. 

Increasing the angle of the grain will decrease the rotational stiffness of the joints. The rate of 

decreasing in rotational stiffness increase as the grain direction increased up to approximately 

angle of 60° in a joint tested. At low rotation level, the rotational stiffness was high 

comparing with high rotation levels. The rate of increasing in the rotational stiffness was 

reduced as the rotation levels were increased. 

In Figure 8.24, a comparison of rotational stiffness versus rotation curves between 

experimental and empirical (i. e. equation 8.7) results for various joints with different grain 

direction are represented. The agreement between the empirical model and experimental 

observation was good. 
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Figure 8.24 Comparison of rotational stiffness vs rotation curve between experimental and empirical 

(i. e. equation 8.7) results. 

In Table 8.13 Comparison between the experimental and empirical (i. e. equation 8.7) rotation 

stiffness at various rotation levels 0.01 to 0.05 radian for the various grain direction in the 

joints are shown. 
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Plate Number 
Grain 

direction 
(degree) 

Rotation level 
(radian) 

Empirical 
Rotational 
stiffness 

kNm/radian 

Experimental 
Rotational 
stiffness 

(kNm/ radian 

Percentage 
of Error 

(%) 

M20/0310B 0° 0.01 2.779 2.638 5 
M20/0310B 30° 0.01 2.518 2.419 4 
M20/03IOB 60° 0.01 2.256 2.2 3 
M20/03 I 0B 90° 0.01 1.994 1.981 1 
M20/0310B 0° 0.02 1.976 2.1 -6 
M20/0310B 30° 0.02 1.86 1.98 _6 
M20/0310B 60° 0.02 1.744 1.86 .6 
M20/031013 90° 0.02 1.627 1.74 .6 
M20/03 I OB 0° 0.03 1.619 1.711 .5 
M20/03 I OB 30° 0.03 1.547 1.642 -6 M20/03 I OB 60° 0.03 1.474 1.573 .6 
M20/0310B 90° 0.03 1.402 1.504 .7 
M20/0310B 0° 0.04 1.405 1.403 0 
M20/03 I OB 30° 0.04 1.354 1.361 .1 
M20/0310B 60° 0.04 1.302 1.319 .I 
M20/0310B 90° 0.04 1.25 1.277 -2 
M20/0310B 0° 0.05 1.259 1.183 6 
M20/0310B 30° 0.05 1.219 1.147 6 
M20/0310B 60° 0.05 1.18 1.111 6 
M20/0310B 90° 0.05 1.14 1.075 6 

Table 8.13 Comparison between empirical and experimental rotational stiffness at rotation 
levels of 0.01 to 0.05 radian for various grain direction in the joints. 

In Figure 8.25, a comparison of rotational stiffness versus grain direction curves between 

experimental and empirical (i. e. equation 8.7) results for various joints with different grain 

direction at rotation levels 0.01 radian to 0.05 radian are represented. There was a good 

agreement between the empirical model and experimental results. 
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Figure 8.25 Comparison of rotational stiffness vs grain direction between experimental 

and empirical (i. e. equation 8.7) results. 
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8.4.4 Effects of plate thickness 

Tests were carried out to determine the influences of plate thickness on the performance of 
the punched metal plate timber joints subjected to applied moments. The test samples were 

generally made of two pieces of timber dimensioned as 65mmx300mm and 65mmx 133mm 

by 45mm thickness. The punched metal plate type used in construction of testing specimens 

was M20/031OB-101mmX25mmXlmm for lmm plate thickness group and M14/1333 for 
2mm plate thickness group. The specimens were loaded to failure in bending. All joint 

specimens were manufactured using material as explained in chapter 3. 

In this section the effect of plate thickness on the rotational stiffness characteristics of the 
joints were analysed in detail. In Figure 8.26 typical non-linear moment-rotation curves up to 
0.05 radian rotation with fitted curve (average curves) for specimens with various plate 
thickness subjected to applied moments are shown. Joints were made of two different plates. 
The f irst group made of punched metal plates M20/03I OB with 1 mm plate thickness and the 

second group made of punched metal plate M14/1333 with 2mm plate thickness. 

The behaviour of the joints tested was assessed through observation of the failed specimens 

and their moment-rotation relationship. The moment-rotation behaviour of each specimen 

was examined and third order polynomial equation was fitted to define the curve. A 

comparison of joints performance and their moment-rotation relationships in relation to the 

plate thickness up to 0.05 radian rotation is presented in Figure 8.27. The average induced 

moment for each group of specimens is shown in Table 8.14. 
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Figure 8.26 Moment-rotation behaviour of joints with various plates thickness subjected 

to applied moments. 
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Figure 8.27 A comparison of joints performance in relation to plate thickness tested. 

Plate ref number 
Plate thickness Average moment 

(mm) (kNmm) 
M20/0310B 1 50.8 

M14/1333 2 100 

Table 8.14 The average moment at rotation of 0.05 radian for various plate thickness. 

It was observed that the plate thickness had significant effects on the performance of the 
joints. All joints studied behaved in similar manner. They showed a non-linear response from 

beginning up to the failure load. 

8.4.4.1 Rotational stiffness characteristics of the joints 

Similar method of analysis used for the number of bites was applied to the plate thickness. 

The equations obtained are tabulated and presented in Table 8.15. These equations was 

solved and empirical model (i. e. equation 8.8) describing the rotational stiffness of punched 

metal plate timber connections with different plate thickness was developed. Figure 8.28 

represents results of rotational stiffness versus plate thickness in the joints at rotation levels 

of 0.01 to 0.05 radian. 
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Figure 8.28 Rotational stiffness sustained in the joint versus thickness of plate. 
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Rotation, B 
(radian) 

Rotational stiffness 
(kNm/radian) 

Coefficient of 
correlation, R2 

0.01 2.237 t 0.9702 

0.02 1.7298 t 0.9868 

0.03 1.3967 t 0.9991 

0.04 1.168 t 0.9999 

0.05 1.004 t 0.9993 

t= plate thickness (mm). 

Table 8.15 The equations of the various curves in Figure 8.28 

Using the equations in Table 8.15, an empirical model (i. e equation 8.8) describing the 

rotational stiffness of the joints with different plate thickness was developed. 

KB_- 0.237990.49191 

where Ke = rotational stiffness(kNm/radian). 

0= rotation (radian). 

t= plate thickness (mm). 

(8.8) 

In Figure 8.29, the effect of plate thickness on the performance of the connections with 

respect to the rotational stiffness sustained by them at rotation levels of 0.01 to 0.05 radian 

are shown. 
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Figure 8.29 Rotational stiffness vs plate thickness in the joints. 

It is clear that the rotational stiffness were dependent on the plate thickness in the joints. 

Increasing the thickness of the plate will increase the rotational stiffness of the joints. The 

rate of increasing in rotational stiffness is approximately linear. At low rotation level, the 

rotational stiffness was high comparing with high rotation level. The rate of increasing in the 

rotational stiffness was reduced as the rotation levels were increased. 

In Figure 8.30, a comparison of rotational stiffness versus rotation curves between 

experimental and empirical (i. e. equation 8.8) results for various joints with different plate 

thickness are represented. The agreement between the empirical model and experimental 

observation was good. 

In Table 8.16 Comparison between the experimental and empirical (i. e. equation 8.8) rotation 

stiffness at various rotation levels 0.01 to 0.05 radian for the various plate thickness in the 

joints are shown. 
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Figure 8.30 Comparison of rotational stiffness vs rotation curve between experimental 

and empirical (i. e. equation 8.8) results. 

Table 8.16 Comparison between empirical and experimental rotational stiffness at rotation levels 

of 0.01 to 0.05 radian for various plate thickness in the joints. 
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In Figure 8.31, a comparison of rotational stiffness versus plate thickness between 

experimental and empirical (i. e. equation 8.8) results for various joints with different plate 

thickness at rotation levels of 0.01 radian to 0.05 radian were represented. There was a good 

agreement between the empirical model and experimental results. 
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Figure 8.31 Comparison of rotational stiffness vs plate thickness between experimental and 

empirical (i. e. equation 8.8) results. 
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8.5 THE ROTATIONAL RIGIDITY OF THE JOINTS 

In Figure 8.32 the percentage change in rotational rigidity of punched metal plate joints with 
different configurations and grain directions at rotation of 0.01 radian are shown. Joints with 

the largest number of bites (i. e. 8 bites) and largest length of bites (i. e. 15mm) were assumed 

to provide 100% rigidity for the joints considered, for comparison purposes. 
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Figure 8.32 % increase in rigidity for different plate configurations and grain directions at 0.01 

radian. 

For all specimens tested the rotational stiffness at serviceability limit state was considered at 

rotation level of 0.01 radians (approximately at 40% of the ultimate). The percentage increase 

in rotational stiffness for different plate thickness and grain directions was linear and for 

number and length of bites was non-linear. For the number and length of bites the rate of 

increases in stiffness decreased with increase in the number and length of bites. 
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8.6 FAILURE MODES 

The failure of joints was characterized as ductile, a considerable amount of ductility was 

generally observed prior to failure. There were three modes of failure. The most common 

mode of failure was anchorage failure (teeth withdrawal); as the load increased the toothed- 

plates started to peel away from the timber members. This mode of failure was common in 

joints made with low number of bites (1 to 4 bites), low bites length (5mm and 10mm), 1 mm 

plate thickness. The second failure mode was plate buckling; as the load increased the top 

edge of the plate started to buckle away from the timber members. This mode of failure was 
happened in joints with high number of bites (5 to 8 bites), lmm plate thickness and when 

load is applied parallel to the grain. The third failure mode was the bending of the bites, as 
the load increased bites started to bent and cut the timber along the grain, which caused the 

crack in the timber members. This happened with high number of bites (7 and 8 bites), high 

length of bites and when moment applied at low grain direction (0° and 30° grain angle). 

8.7 DESIGN OF THE PUNCHED METAL PLATE TIMBER JOINTS 

A design flowchart for punched metal plate timber joints is provided which ircorporates the 

research findings into a design/analysis process. It is shown in Figure 8.33. 
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Figure 8.33 Design flowchart for punched metal plate timber joints. 
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In Figure 8.33, Block (A) is concerned with the loading properties such as type of load 

(tension, compression or moment load), direction of the load to the grain of the timber, 

duration of the load, load and deformation rates. Block (B) is concerned with timber 

properties such as timber species, geometry of the timber, grain direction, moisture content, 

and density of the timber. Block (C) is concerned with the selection of the appropriate plate 

size. 

The calculation of the ultimate load and stiffness of the joints with different parameters takes 

place at Blocks (D), (E), and (F). The purpose of block (G) is to calculate the characteristic 

loads. The characteristic load is calculated using the minimum value of ultimate loads from 

Blocks (D), (E), and (F) using equations in chapter 5 and 6. 

The characteristic design load calculation takes place at Block (I) with the application of the 

safety factor. The calculation of anchorage stress and moment anchorage stress takes place at 

Block (H) and joint slip takes place at Block (J). If the plate size is not satisfactory then the 

process is repeated from Block (C). 

8.8 SUMMARY 

In this chapter, details of experimental work carried out to study the moment-rotation 

characteristics of the punched metal plate timber connections, using joints with different 

parameters such as number of bites, length of bites, grain direction and thickness of the plate. 

The specimens tested were subjected to applied moment force up to failure. 

From the results obtained, it was found that the number of bites, length of bites, the grain 

direction and the plate thickness in the joints have a significant effects on the moment- 

rotation characteristics of the joints. Increasing number of bites, length of bites, thickness of 

plate and decreasing angle of grain direction would increase the moment capacity and 

rotational stiffness of the joints. The percentage increase in rotational stiffness at 

serviceability limit state for different plate thickness and grain directions was linear and for 

number and length of bites was non-linear. For the number and length of bites the rate of 

increases in stiffness decreased with increase in the number and length of bites. 
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The failure of joints was characterised as ductile, a considerable amount of ductility was 

generally observed prior to failure. There were three modes of failure, the most common 

mode of failure was anchorage failure (teeth withdrawal); as the load increased the toothed- 

plates started to peel away from the timber members. The second failure mode was plate 

buckling, as the load increased the top edge of the plate started to buckle away from the 

timber members. The third failure modes was the bending of the bites, as the load increased 

bites started to bent and cut the timber along the grain. 

Empirical models describing rotational stiffness characteristics of joints with different 

parameters ( number of bites, length of bites, grain direction, and plate thickness) and 

moment anchorage stress of the joints with different number of bites subjected to applied 

moment were developed and compared well with the experimental results. 
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9. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

9.1 Conclusions 

Most failures in timber structures occur at joints. The deformations of the joints are 

responsible for the overall deformation of most timber structures. The serviceability and the 
durability of a structural system depends mainly on the performance of the joints connecting 

the elements. 

This research was conducted to study the behaviour of punched metal plate timber 

connections and to examine some of the main factors affecting the connection performance. 
It details experimental and analytical work investigating the load-displacement and moment- 

rotation characteristics of the punched metal plate timber connections in which the effects of 

factors such as number of bites, length of bites, plate thickness and orientation and timber 

grain directions were studied. Based on the analysis of the results and observation of the 

strength and stiffness characteristics and failure modes of the connections, the following 

conclusions are drawn: 

1. In terms of transferring axial and shear forces and moments between the connected 

members, It is feasible to use punched metal plates at the joints of timber structures. These 

joints are capable of acting as tension, compression and moment resisting members. 

2. Although it is time and money consuming, empirical destructive tests such as tension, 

compression and moment are necessary for determination of strength and stiffness 

characteristics of the punched metal plate timber joints. Simple but effective test methods 

were derived in this research. 

3. The load-displacement and moment-rotational characteristics of the joints tested were 

non-linear. 

4. The shape of the load-displacement is influenced by factors such as; number of bites, 

length of bites, thickness of the plate, plate direction, grain direction and loading and 
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deformation rates. Hence, all these factors have significant effects on the load- 

displacement characteristics of the joints. 

5. Failure in the timber structure is generally of two types. The failure in the plated joints is 
in general ductile with significant plastic deformation, whilst the failure mode of the 

timber itself is brittle. Therefore, having a timber structure designed with connected joints 

that permits flexibility, to a certain degree, is very important in order to maintain safety 
and avoid sudden failure. 

6. Failure modes : 

(1) For joints subjected to compression loading 4 modes of failures were observed; 

a. The most common mode of failure was anchorage failure (teeth withdrawal). As the 

load increased, plate started to peel away from the timber members at their lower 

ends. This peeling progressed upward until the plate withdrew completely. This mode 

of failure was common in joints made with low number of bites (I to 5 bites), low 

bites length (5mm and 10mm), Imm plate thickness and when load was applied at 
low grain direction (0° and 30°). 

b. The second failure mode was plate buckling, as the load increased the middle of the 

plate started to buckle. This mode of failure occurred in joints with high number of 
bites (land 8 bites) and in joints where the load was applied parallel to the grain. 

c. The third failure mode was the closure of the gap between the connected members. 

This mode of failure happened in joints with high number of bites (6 to 8 bites), high 

bites length (15mm and 20mm), 2mm plate thickness and when load was applied at 

low grain direction (0° and 30°). 

d. The fourth failure mode was timber failure. This mode of failure occurred in joints 

with high stiffness i. e. with high number of bites (land 8 bites), high bites length 

(15mm and 20mm), 2mm plate thickness and when load is applied perpendicular to 

the grain. 
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(2) In the case of joints subjected to tensile load, the most common failure mode was 
anchorage failure (teeth withdrawal), whatever the configuration of the plate or the grain 
direction. 

(3) For joints subjected to applied moment 3 modes of failure were observed; 

a. The most common mode of failure was anchorage failure (teeth withdrawal); as the 
load increased the toothed-plates started to peel away from the timber members. This 

mode of failure was common in joints made with low number of bites (I to 4 bites), 
low bites length (5mm and IOmm), Irrun plate thickness. 

b. The second failure mode was plate buckling; as the load increased the top edge of the 

plate started to buckle away from the timber members. This mode of failure happened 

in joints with high number of bites (5 to 8 bites), l mm plate thickness and when load is 

applied parallel to the grain. 

c. The third failure mode was the bending of the bites, as the load increased bites started to 
bent and cut the timber along the grain, which caused the crack in the timber members. 

this happened with high number of bites (7 and 8 bites), high length of bites and when 

moment applied at low grain direction (0° and 30° grain angle). 

7. Under short duration loading, the load rate and deformation rate have similar effect on the 

punched metal plate timber joints, especially in the case of compression. The strength and 

stiffness of the joint increased with increase in the load rate or deformation rate. 

8. The stiffness of the joint under both compression and tensile loading was increased with 
increasing in the number of bites, bites length and thickness of plate and was decreased 

with increasing the plate and the grain directions to the applied load. 

9. The rate of increase in the stiffness of the joints was increased with increase in the number 

and/or length of the bites and with decreasing the grain and/or plate orientations. With 

increasing the number of bites, the rate of increase in the stiffness of the joints was 
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approximately linear under tensile loading and non-linear under compression loading. The 

stifrness of the joints almost doubled when the thickness of the plates was doubled. 

10. The punched metal plate timber joints provide partial rotational resistance when subjected 

to applied moments. The moment capacity and rotational stiffness of the joints increased 

with increases in the plate stiffness such as number of the bites, length of the bites, and 

plate thickness and decreased with increases in the grain directions. The percentage of 
increase in the rotational stiffness at serviceability limit state was linear with increases in 

the plate thickness and with decreases in the grain directions, and was non-linear with 
increases in the number and/or the length of the bites. For the number and the length of 
bites the rate of increases in stiffness decreased with increase in the number and length 

of bites. 

11. The number of bites is one of the most important parameter affecting the performance of 

the joints. Specially, when joints were subjected to compressive loading. Increasing the 

number of bites in the joints was more effective than increasing the length of the bites 

under both tension or compression loadings. 

12. The grain direction has a large effect on the performance of the joints under tensile 

loading than under compression loading. 

13. The effectiveness of the grain direction at low displacement levels under tensile loading 

was low compared with the number of bites. As the displacement levels increased, the 

effectiveness of the grain direction was increased. At high displacement levels, the grain 

direction importance was more than the number of bites importance. 

14. Empirical models were developed to calculate the load carrying capacity of the joints 

subjected to various deformation rates. 

15. Empirical models were developed to calculate the stiffness of the joint based on load- 

displacement behaviour. Different models were developed to simulate the effects of the 

grain direction or plate parameters (number of bites, length of bites, thickness of plate or 

teeth direction). 

281 



16. Empirical models were also developed to simulate, the moment-rotation behaviour and 

moment anchorage stress values of the punched metal plate connected timber joints with 

good accuracy. 

17. The developed empirical models can be used by other researchers for comparison and 

the test results can be used as a database for future research. 

9.2 RECOMMENDATIONS FOR FUTURE WORK 

Although timber has been used as a structural material for many years, a number of problems 

that are related to the behaviour and strength of timber structures and their components 

remain to be solved. The future of the timber engineering industry will depend not on the 

timber but on its method of connection. Research must be carried out to find new methods of 

connection to enable the basic material to be used more efficiently. The object of this section 
is to outline the areas for research and information needed on the characteristics, 

performance, and design of punched metal plate timber joints. 

1. Testing of a range of full-scale trusses made with punched metal plate timber fasteners to 

determine their structural characteristics and failure modes for comparison with the tested 

joints. 

2. Determination of the dynamic behaviour of the punched metal plate timber joints under 

cyclic loading conditions. 

3. To investigate the behaviour of punched metal plate joints subjected to various loads 

under medium-term and/or long-term loadings. 

4. To examine the effect of timber thickness in the joints. More research is needed to verify 

if timber members of different thickness would show similar results on the behaviour of 

the joints with different parameter examined. 
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5. Further research is needed to include environmental effects on the behaviour of punched 
metal plate timber joints. 

6. To examine the effects of various parameters using different species of timber and/or 

different plates. 

7. To investigate the behaviour of the joints subjected to other loading, such as combined 

loading and/or torsion. 

8. To carry out an economical viability analysis on the implementation of semi-rigid 

characteristics in the design-analysis process. 

9. To examine the effects of the gap between the connected members on the behaviour of the 

punched metal plate timber joints. 

10. To determine the influence of the position of the bites on the behaviour of the joints. 

It. Further research should be conducted into the improvement of connection stiffness, 

which could involve various parameters and plate configurations. 
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