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ABSTRACT 

Title: Automated Code Compliance for Structural Timber Design with 

Building Information Modelling 

 
This work set out to identify and overcome the barriers to specifying structural timber 

within the UK. In the first instance, a survey of practising structural engineers was 

conducted, and in combination with a review of the context via available literature, the 

objectives for the main body of the work were formulated. The solutions identified to 

address these barriers are in two forms: the first was to create code-compliant calculation 

tools for timber connections and the second approach presents a system for the automation 

of structural timber design as part of a Building Information Modelling (BIM) approach. 

The mathematical process of multi-dimensional data fitting is introduced in order to 

create automatic code compliance tools in BIM. This process is used to simplify the 

complex engineering calculations into a single equation that can be implemented into 

current BIM software engineering packages. BIM-based tools can contribute to 

addressing some of the challenges faced by structural engineering practitioners with 

respect to the design and detailing of timber structural systems, given the range of 

available timber products and enhanced levels of design complexities. From an industry 

perspective, it is envisaged that the work presented here can support structural engineers 

who want to incorporate timber in their projects but are finding the level of technical 

expertise required a significant barrier. 
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Chapter 1. Introduction  

1.1. Timber in construction  

Within structural engineering, the sub-specialism of structural timber design presents a 

particular case. As a structural material, timber has many well-established advantages 

which are: it has an excellent strength-to-weight ratio, it is durable and can be easily 

shaped and repaired [2]. It is typically considered aesthetically pleasing; possibly the only 

structural material where it is left exposed as an aesthetic feature and not as a cost-saving 

measure [3]. Finally, it is inherently sustainable as it provides good insulation properties 

[2] and offers a low carbon alternative to more conventional construction materials. The 

procurement of construction projects has a significant impact on the environment, the 

initial impact of a building on the environment results from the energy and other products 

consumed in its construction. Thereafter, the building and continues to affect the 

environment directly and indirectly throughout its operation, maintenance, refurbishment 

and final deconstruction.  

On average, trees absorb the equivalent of a tonne of CO2 for every cubic metre’s growth 

[4]; this compares to nearly 0.9 tonnes of CO2 emitted for every 1 tonne of cement 

produced [5] and  an average of 1.8 tonnes of CO2 emitted for every 1 tonne of steel 

produced [6]. Most importantly, timber is indefinitely renewable and extremely durable 

if used properly. It is ideal for the construction and prefabrication of buildings and 

building components [7] and a key component of initiatives that aim to modernize 

construction [8]. Carbon sequestration is typically defined as the capture and long-term 

storage of atmospheric carbon dioxide to help mitigate or defer global warming, this is 

illustrated within Figure 1-1. A comment for the European Commission DG Enterprise 

stated that ‘For every cubic meter of wood used instead of other building materials 

equates to around 0.8 tonne of CO2 saved from the atmosphere.’ [9] 
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Figure 1-1 CO2 flux for timber and non-timber products 

 

These advantages of timber use within construction have been recognised by producers 

and manufacturers and in recent years there have been considerable advances in the 

development of new timber products for structural uses. One of the main new products, 

Cross Laminated Timber (CLT), is seeing increases in both volume and distribution on a 

global scale [10]. In combination with other structural systems. such as Glued Laminated 

Timber (Glulam) CLT provides possibilities for tall, or even very tall, wooden buildings 

[11]. Such systems can contribute significantly to the reduction of the greenhouse gas 

emissions of buildings [12] and thus support the sustainability agenda.  

Within a number of developed nations, timber construction is the dominant construction 

method for residential construction, accounting for over 70% of all new starts in climates 

as diverse as Australia and Norway. Table 1-1 gives a detailed breakdown of the 

residential market and corresponding application of timber construction in different 

countries, based on statistical data from [13-24]. 
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Table 1-1 Snapshot of current global timber residential market share 

 

For the UK perspective the timber market is diverse but the supply chain still heavily 

relies on the key sectors of new housebuilding and home improvement for both the public 

and private sector [25].  

 

1.2. How design is fundamental for optimisation  

The main purpose of structural design is to provide a technical and efficient system to 

design a structure. This structure must resist and transmit the actions and deformations 

applied to it throughout its construction and working life, according to [26-29]. As pointed 

out by Rosenblueth [27], “Optimisation should consider not only the initial cost of the 

structure, but also: the benefits to be derived from the structure whilst in services; the 

present values of maintenance, damage and failure costs; and the probabilities that the 

structure might suffer damage or failure as a function of time.” Therefore, design criteria 

must take into account the probability that the structure will undergo acceptable levels of 

damage and the probability of structural failure, often referred to as probabilities of 

failure. A quotation from Gallagher in 1974 [26], “in contrast to analysis technology, 

optimal structural design technology had not yet enjoyed the protected or expected 

acceptance in practical design, and that it is difficult to ascertain the full range of 

considerations responsible for the slow acceptance of the available design technologies 

in the computational aspects of practical design.” This statement is still valid today; for 

example, the draft Eurocodes were published in the early 1990s, and their introduction 

has taken considerably longer than was envisaged [30]. Esteva and Rosenblueth in 1980 

[28] make the following statements, “Engineering design is rooted in society’s need to 

optimise. It implies considering alternative lines of action, assessing their consequences, 

and making the best choice”. Then Esteva concludes, “Achievements of the foregoing 

Timber

Country Structures 

market share 

(%)

Australia 23.5 7.1 190.8 90 %+

Canada 35.3 13.3 122.3 90 %+

Ireland 4.7 2.0 10.0 30%

Japan 127.3 60.6 1.4 39%

Norway 5.1 2.5 27.0 90 %+

Sweden 9.6 4.5 26.8 90 %+

USA 316.1 117.5 1009.0 90 %+

UK 64.1 25.7 149.0 22.8%

starts

(in millions) (in millions)

Annual housing

(000's)

Population Housing stock
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objectives requires much more than the dimensioning of structural members for given 

internal forces. It implies explicit consideration of those objectives and of the problems 

related to a non-linear structurel response and behaviour of materials, members and 

connections when subjected to several cycles of high-load reversals. It implies as well the 

identification of serviceability conditions and the formulation of acceptance criteria with 

respect to them.” 

From Esteva and Rosenblueth’s publication [28] it is clear that to gain achievements of 

design optimisation the engineer requires more than independent structural analysis, 

studies of mechanical behaviour of a structure and dimensioning of structural members 

for the given internal forces. It requires both a clear understanding of the roles of each of 

the above aspects and the overall grasp of their intimate relationship in each phase of the 

total design process [29]. This is where having an understanding of structural connections 

is vital. 

 

1.3. Structural analysis and design 

The three main objectives for design criteria are safety, performance of function and 

economy as described by Biggs [31]. Safety is the most important objective, as ultimate 

structural failure has the potential for loss of life and always involves financial losses. 

With this in mind, no structure can be described as 100% safe; there is always a non-zero 

probability of failure due to human errors during the design or construction phase; even 

accidental or environmental conditions may play a role. Different degrees of safety are 

dependent upon the nature of the structure and consequences of failure. For the intended 

use of a structure to be satisfied, the inhabitants or the users must have a degree of 

confidence over the robustness of the structure. This can be often undermined, even if the 

building has not suffered structural collapse but instead suffers from visible deflections, 

cracks in the walls / ceilings or even excessive vibrations. 

The design philosophy or approach is to define the complete process, including the design 

criteria, in terms of the numerical analysis and design phase of the total process. Over the 

years there have been a number of different philosophies and design approaches, which 

are described within Bertero’s paper [32]. 
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Design philosophies include  

 Linear elastic philosophy:  

 Plastic design philosophy:  

 Limit state design (LSD) philosophy: ultimate limit state (ULS) and 

serviceability limit state (SLS) 

 Performance-based building design philosophy 

 

Linear elastic design philosophy assumes that the design strength is calculated and 

restrained to yield a limit, under which the material follows Hooke’s law. Structures 

designed by the elastic method will have considerable redundancy strength beyond that 

of the elastic yield. The negative feature of this design philosophy is that a ductile member 

will not have the redundancy quantified or utilised in a clear and detailed manner [33]. 

From as early as 1914, research was being conducted into quantifying the redundancy 

within the linear elastic philosophy [34]. This research was then further refined until the 

early 1950s when Horne, Greenberg and Prager presented a foundation for the new theory 

of plasticity [35, 36]. The plastic design philosophy will design the structure based on the 

collapse loads as opposed to properly factored service working loads. This approach is 

based on the assumption that the structural members have sufficient ductility to allow a 

large increase in strain beyond the yield point without any increase in stress. 

Elastic-Plastic behaviour and the stress-strain relationship can be visualised by the typical 

stress-strain diagram, see Figure 1-2.  

 

Figure 1-2 Typical Stress-Strain Diagram of Structural Steel 
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The withdrawn structural design guidance document from 1973 CP-112 [37] and the more 

recently withdrawn / non-maintained code of practice BS-5268-2 [38] are based upon 

permissible stress design philosophy. This approach states that stresses developed within 

the structure as a result of service loads not exceeding the elastic limit have factors of 

safety applied. 

The performance-based building design (PBBD) approach is in essence, the practice of 

operating in terms of the end results rather than the systems or means [39]. Heidkamp 

defines it as: a structure shall be designed in such a way that it will function in a reliable 

manner and within an economical way to attain the required performance [40].  These 

statements do not say anything about the ways and means of building, e.g. types of 

material, thickness, dimensions and size of building components or methods of assembly, 

but instead clearly state the required end results. For further information on performance-

based building design please see Appendix A. 

The principle of limit state design is to define limits beyond which a structure no longer 

performs its designed function satisfactorily. The design methodology uses two terms: 

Ultimate Limit State (ULS) and Serviceability Limit State (SLS). 

Failure of ULS can be described as a condition of a structure beyond which it no longer 

fulfils one or more of the relevant design criteria and will most likely lead to collapse or 

an unsafe environment. These are defined as: 

 equilibrium (EQU): loss of static equilibrium 

 strength (STR): internal failure or excessive deformations 

 geotechnical (GEO): failure or excessive deformation of the ground where the 

strengths of the soil or rock are significant in providing resistance 

 fatigue (FAT): fatigue failure of the structure or structural members 

For the Serviceability Limit States (SLS), failure is defined as:  

 Deformations affecting the cosmetic appearance or even the perceived safety 

of the structure, or indeed hindering the function or the comfort within the 

structure 

 Vibrations that may cause discomfort or reduce the usability of the structure 

 Damage that is affecting the cosmetic appearance, reducing the durability of 

the construction materials 

The limit state design philosophy is adopted fully within the Eurocode framework. 
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1.4. The Aims of this Thesis 

In order to fulfil the AEC sector’s needs and to support the sustainability agenda, the more 

that the built environment is constructed out of wood fibre rather than less environmental 

alternatives, the better. The move from the withdrawn permissible stress design 

philosophy to the limit state design parametric approach will allow for better design 

optimisation. Bearing this in mind, the aims of this thesis are: 

a) To ease the specification of structural timber within the AEC sector, in order to 

increase the UK market share for structural timber. 

b) To aid the transition from BS 5268-6.1 to EC5 

c) To create user-friendly and time-efficient timber structural calculations that will 

allow design optimisation. 

These aims are addressed throughout the body of this work.  

 

1.5. The Objectives of this Thesis 

From the Thinking outside the box report by Harker [41] and the finding of the literature 

review [Chapter 2], it was identified that additional evidence and detail was required to 

categorise the barriers to Eurocode 5 (EC5) adoption and subsequent structural timber 

specification. A digital online survey was designed for this purpose [Chapter 4]. The 

findings from the industry research survey were used to inform the objectives which in 

turn help to flesh out the main aims of this research. 

 

Objectives: 

1. To do an industry survey of structural engineers that gives further clarity in 

identifying barriers for timber specification. 

Reduce barriers for timber specification and connection design by: 

2. To create and deliver educational material of current research, for the purpose of  

increasing the level of knowledge of structural timber for both university students 

and practising engineers.  

3. To reduce the complexity of EC5 through automation of timber connections: 

a. Identification of gaps and shortcomings within the existing automated 

structural timber connections calculations.  

b. Identification of the ideal software platform that can offer the best route 

for impact. 



8 

c. Creation of automated structural timber connection calculations within the 

identified platform. 

4. To Create case studies demonstrating the advantages of parametric methodology 

within EC5 timber connections. 

5. To Create case studies demonstrating the benefits of a transition to EC5 through 

the ability of optimisation. 

6. To identify and utilising routes for current research to be implemented into the 

AEC sector.  

7. To develop a proof of concept for BIM integration using multi-dimensional data 

fitting. 

 

1.6. The Structure of the Thesis 

The work presented within this thesis has been categorised and summarised into the nine 

chapters. The interrelationship between each stage of the work has been highlighted in 

Figure 3-2. The content of each chapter is summarised as follows: 

Chapter 2 Literature review 

This section looks at the current structural timber sector and its needs around 

standardisation and mass-customisation. It touches upon the Eurocode 

methodology for the calculation of timber connections. It then concludes with a 

discussion on automated design within a digital environment, including multi-

dimensional data fitting as a tool. 

Chapter 3 Methodology 

This thesis used a wide range of methodologies including an industry survey, code 

compliance software creation, case studies and multi-dimensional data fitting as 

a tool for creating BIM-ready equations. 

Chapter 4 Barriers to structural timber use: a survey  

The knowledge gap is identified and addressed, giving further evidence and detail 

for the AEC sector reluctance to transition to Eurocode 5: Design of timber 

structures.  
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Chapter 5 Code Compliance timber connection tools 

This section discusses the creation of the Code Compliance tools. Two timber 

connection calculations were created and released to the public. The usage data 

shows a high level of uptake among UK engineers. 

Chapter 6 Case studies 

The case studies shown here demonstrate the creation timeline for the newly Code 

Compliance timber connection calculations described above. In addition, the case 

studies highlight the power of this software in specifying timber for the most 

complex use cases. 

Chapter 7 BIM-ready equations  

This section discusses the creation and implementation of the BIM-ready 

equations, highlighting all of the steps taken, including the important role of the 

Code Compliance tools. The implementation of the BIM-ready equations results 

in an Automated Code Compliance timber connections calculations, within a BIM 

environment.  

Chapter 8 Conclusions 

This section brings together the body of work by identifying how each of the 

objectives have been addressed. 

Chapter 9 Future work 

The thesis is rounded off by highlighting the possible ways that this work can be 

expanded upon in the future  
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Chapter 2. Literature Review 

2.1. The current structural timber sector 

2.1.1. Fragmented sector 

For simplicity, the timber market supply-chain structure can be subdivided into five 

levels, from harvesting/importing to retailing, see Figure 2-1 for the list. Research 

conducted for the timber merchants market report UK 2011-2015 identifies that most 

companies cross over into more than one of the levels of this structure. For example some 

timber merchants now have manufacturing capabilities for engineered wood products 

[25]. 

 

Figure 2-1 Levels in the timber supply chain 

The timber sector is highly fragmented throughout the five levels of the supply chain, 

from resource ownership to retail [25, 41, 42]. There are some larger national merchants’ 

firms but the majority of the sector operates on a more local or regional basis, with the 

smaller firms accounting for around 50% of the market share. This is illustrated within 

Figure 2-2. 

 

Figure 2-2 Distribution of timber merchants’ market share 2010, by company size, information from [25] 
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There are several significant suppliers of timber frame housing, i.e. Robertson, Stewart 

Milne, etc., but it is estimated that there are approximately 100 suppliers in total. The 

fragmentation of the timber sector is also apparent within the customer base for timber 

merchants, see Figure 2-3.  

 
Figure 2-3 Timber Merchants sales distribution by customer group 2010 – by volume m3, from [25]  

2.1.2. Need for improved levels of standardisation and supply chain integration 

A definition of standardisation for the purposes of this research is the extensive use of 

common products, systems or processes which bring numerous benefits: lower 

construction costs, regularity, interface precision, lower maintenance costs and more 

scope for recycling,  This has been summarised from Gibb [43]. From the finding of ‘The 

Shaping the future of construction report’ [44], there are misconceptions of 

standardisation within the AEC sector about construction quality, lack of personalisation 

in design and final cost. This acts as a barrier for the use of standardisation techniques 

and components. These concerns with standardisation have already been addressed within 

other manufacturing industries, but for mitigation within the construction context, options 

are available. For example to mitigate against the limited customisation and additional 

risk of committing to a particular supplier, it is proposed by Renz [44] to develop 

industry-wide standards on component dimensions and connections that have the added 

ability of mass-customisation options.  

Research work undertaken by Dubois [45] identifies that it is increasingly common for 

firms to collaborate with their supply chain network as a means to improve company 

performance because of network effect. For example, firms adapt to one another in terms 

of technical solutions, logistics or administrative routines. But they then continue to say 

that within the AEC sector this network effect is less than usual. The reasons for, “the 

absence of adaptation are found to be the current focus on the efficiency of individual 

projects and the competitive tendering procedures used. It is concluded that these 
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characteristics are having a hampering effect on both efficiency and innovation in the 

industry today”.  

Despite the inherent benefits of using timber for construction, timber use is relatively 

limited. This can be attributed to a range of factors, from the supply chain to the inherent 

physical and mechanical complexity in the engineering modelling of a natural material 

such as wood. The major issue appears to be the lack of knowledge amongst the technical 

community and thus an ensuing lack of confidence in its performance. It is telling that 

this lack of expertise seems to appear globally, in countries with widely different markets, 

building traditions and levels of technical expertise [46-51]. As such, timber’s potential 

remains underutilized; this is particularly unfortunate today, where the technological 

advances of the past two decades have expanded significantly what can be achieved with 

structural timber systems.  

The AEC sector is often accused of being resistant to innovation and the introduction of 

new concepts [52]. This coupled with the fragmentation of the timber sector means that 

significant improvements in mass-customised standardisation and supply chain 

integration are necessary.  

2.1.3. Mass customised approach 

Supply chain integration can be improved and simplified by taking a mass customisation 

approach to product design. In many respects, the non-timber construction sector within 

the UK is several steps ahead of their timber counterpart, with better implementation of 

Building Information Modelling, Mass customisation and Design for manufacture and 

assembly. This is primarily a consequence of the fragmentation of the structural timber 

supply chain. There is a major disparity in investment into research between the 

steel/concrete and the timber sector. This disparity and fragmented supply chain results 

in the following shortfalls within the UK timber industry [41]: 

 The quality and accessibility of data to support modern wood building 

solutions and their associated design processes. 

 Established standardised design and detailing and communication of best 

practice. 

 Effective dissemination of academic research to practising structural 

engineers.   
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2.2. Mass customisation approach for the timber AEC sector  

For the timber construction industry to compete against the steel and concrete sector, the 

timber construction industry must engage with Modern Methods of Construction (MMC), 

which can be described as methods that improve both products and processes, as defined 

within the barker review [53]. This review also outlines the barriers to MMC. From the 

Architecture, Engineering and Construction (AEC) sector perspective, greater uptake of 

technology is considered fundamental. One of the keys to this improvement is having a 

Mass Customised approach (MC) [54], which is simply defined as delivering a 

customised requirement at an industrial scale using standardised components and 

construction methods [55, 56]. An early example of MC within the AEC Japanese sector 

is discussed within a Planning review document by Kotler [57], in which he gives credit 

to Davis for coining the seeming oxymoron MC in Davis’ book Future Perfect [58].  

MMC & MC will predominantly involve various levels of offsite construction and design 

for manufacture and assembly (DfMA), which is a process where the focus is on the ease 

of manufacture efficiency and the onsite assembly. This will help deliver competitive 

pricing and lead times [59]. This is a large undertaking. Figure 2-4 shows a simplified 

version of the various systems, sub-systems and components that may be used within a 

house construction. This research will be focused on timber connections using dowel type 

fixings, i.e. nailed, screwed and bolted, as it has been identified that the connections 

within a timber superstructure are the critical points. This is further explored within 

Section 2.4. Mass customisation permits the use of many different types of components 

and configurations to suit the project in hand. Engineers need good quality information 

in an accessible form to maximise the advantages of mass customisation.  
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Figure 2-4 Simplified view of the various systems, sub-systems and components that may be used within a house 

construction (a). The focus is on the nail screw and bolt connections (b) 
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2.2.1. There are three capabilities that make Mass Customisation work. 

For an organisation to succeed in implementing an MC business approach, Fabrizio 

Salvador stated that three fundamental organisational capacities have to be developed 

[60]. 

 These are defined as: 

 Solution space development: 

o The mass producer seeks to fulfil the central needs of their customer 

base while offering a limited number of standardised products. 

o Any business intending to adopt mass customisation will have to be 

able to understand what the individual needs of its customers are and 

then identify the product specifications on which customers’ needs 

diverge the most. With the addition of boundary conditions, this 

provides the scope for defining the proposed offerings. (Description 

summarised from [61].) 

 Robust process design: 

o Being able to offer flexibility in design without impeding on the 

business’s operations and supply chain [56]. 

 Choice navigation: 

o Customer frustration can be mitigated by simplifying the complexity 

of choice and the selection method. Otherwise, there is a risk of the 

“paradox of choice”. This is where being exposed to too many choices 

can be overwhelming, reducing the customer value rather than 

increasing it [62]. 

MC can reduce the barrier of timber connection calculation by creating a limited range of 

pre-approved connections. However, as part of the robust process design capability 

identified by Salvador, the main barrier to MC in timber engineering is still the connection 

design. Often it is the connection design that is the limiting factor as opposed to the 

member design, this is explored further in Chapter 2.4. This process can be simplified 

through the automation of design solutions.  

 

2.3. Eurocodes  

One of the aims of the introduction of Eurocodes was to harmonise the technical 

specifications of structures so that the limit state design methodology is the same for any 

material. The framework for how the Eurocodes are structured can be observed in Figure 
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2-5. The core codes provide the principles and requirements for reliability, safety, 

serviceability and durability of structures, actions on structures, geotechnical design 

principles and design considerations for seismic events. The material codes provide the 

design and detailing rules for all types of building and civil engineering structures and 

also for the primary construction materials. For a complete set of Eurocodes listed, see 0. 

Note that every national standards body may produce its own national annexe for each 

part of the Eurocode, providing nationally determined parameters. 

 

Figure 2-5 European structural code of practice 

2.3.1. Precursors to Eurocode 5 

The British standards institution first published guidance documents for a Code of 

Practice for structural use of timber in 1952 CP 112. This was based upon permissible 

stress design. Amendments to the 1952 version came in 1967 with the introduction of 

strength classes as a means of simplifying the specification of structural timber. In 1971 

the United Kingdom was in a transition period of converting from imperial to the metric 

unit system and as a result CP 112:1971, the so-called ‘metric unit’ was published. The 

CP 112: 1971 metric unit revision was eventually withdrawn in February of 1988. 

The British standards institution rewrote the codes of practice and in August 1984 

published BS 5268-2, structural use of timber. This was a code of practice for permissible 

stress design, materials and workmanship. The first edition contained grade stresses that 

use the fifth percentile lower exclusion values of strength, in contrast to CP 112 which 

contained first percentile values. Further editions and subsequent revisions were released 

and are summarised below: 
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 Second edition 1988; Information for species of tropical hardwood, grades of 

plywood and other structural boards.  

 Third edition July 1991; Amends and adds to the contents of the 1988 edition. 

 Fourth edition August 1996; Incorporates some of the European Committee 

for Standardization (CEN) standards on materials, to ease the specification 

and supply of materials during the period of coexistence of BS 5268 and 

Eurocode 5 [63]. 

 Fifth edition March 2002, with an amendment on 31st December 2007; 

Technical changes only. 

The UK transitioned from the British Standards to Eurocodes with the introduction of BS 

EN 1995-1-1 Eurocode 5: Design of timber structures – Part 1-1 General – common rules 

and rules for buildings. This was first published 15th December 2004, using the Limit 

State Design yield moment design model introduced by [64-66]. This standard then had 

a number of amendments: 31st July 2006; 31st January 2009; 31st May 2014, which were 

implementations of CEN amendments.  

2.3.2. The UK’s transition to Eurocode 5 

The draft Eurocodes were published in the early 1990s; their introduction has taken 

considerably longer than was envisaged, as reported by Brooker from BSI in 2015 [30]. 

A report by BDO on behalf of the Timber-Trade-Federation [41] starts to identify the 

barriers for EC5 adoption. The priorities identified are summarised as:  

 Professional education and continuing professional development around 

modern wood building solutions. 

 Continuing to develop and communicate the positive environmental benefits 

of modern wood building solutions, to counter the high degree of activity in 

this area by the steel and concrete lobbies.  

 Low quality and accessibility of data to support design processes for modern 

wood buildings solutions, including addressing the supply chain control over 

information.  

 Increased publicity around positive case studies for modern wood buildings 

solutions with lots of examples of good detailing for modern wood buildings 

solutions. 

As little work has been conducted, it is seen that further and more detailed, evidence for 

the barriers of EC5 adoption will be required. This is explored further in future chapters.  
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The move from the withdrawn permissible stress design philosophy (BS) to the limit state 

design approach (EC5) allows for any of the variables used within the calculation to be 

changed. This permits greater freedom in design and product optimisation. This is in 

contrast to the method adopted within the withdrawn British Standards of lookup table of 

predefined solutions. This simplifies the use of new engineered timber solutions such as:  

 Timber Concrete Composite combines timber and concrete, utilising the 

complementary properties of each material, see Figure 2-6a. 

 Structural Insulated Panels consist of an insulating layer of rigid core 

sandwiched between two layers of structural board, see Figure 2-6b. 

 Engineered Joists sandwich the web between the top and bottom flanges, 

creating an “I” shape. The flanges can be made from LVL (laminated veneer 

lumber) or solid wood, see Figure 2-6c. 

 Cross Laminated Timber (CLT) is an engineered wood product consisting 

of a number of layers of wood glued at alternating angles to one another, 

providing a structural two-way spanning timber panel that can be used to form 

walls, roof and floor panels, see Figure 2-6d. 

  Dowel Laminated Timber is fabricated from softwood timber posts 

connected with hardwood timber dowels. It can have a nailed or interlocking 

variant and is also referred to as brettstapel, see Figure 2-6e. 

  Glued Laminated Timber is made by glueing pieces of timber together to 

make larger sections. It is a way of manufacturing timber elements that cannot 

be easily sourced in solid timber, due to the large size or unusual shape, see 

Figure 2-6f. 

 

   

 

  

a:  Timber Concrete Composite b:  Structural Insulated Panel c:  Engineered Joist 

   

d:  Cross Laminated Timber e:  Dowel Laminated Timber f:  Glued Laminated Timber 

Figure 2-6: Examples of engineered timber solutions 
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At the time of writing, structural engineers working with timber within the UK are still 

going through a period of transition from the withdrawn non-maintained Permissible 

Stress design within BS 5268-2 by Limit State Design, Eurocode 5. This transition brings 

timber design in line with other materials such as steel and concrete.  Eurocode 5 contains 

only the essential rules and general formulae for design. It is an analytical approach that 

benefits from a transparent method of calculation. This allows users to change variables 

in order to achieve an efficient structure. It also allows for empirically validated strength 

values for both the material and the fasteners, which is directly applicable to the 

implementation of mass customisation (optimisation of standard components). The 

methods of calculation of timber connections used in these codes are discussed further in 

the next section. 

 

2.4. Structural Appraisal of connections using dowel type fasteners 

An interesting way of looking at structural engineering is described by Thomas McLain: 

“a structure is a constructed assembly of joints separated by members” [67]. That is to 

say, when designing a structure the joints are generally the critical factor of any 

engineered structure. The strength of the connectors in the joint will normally dictate the 

strength of the structure; their stiffness will greatly influence its overall behaviour and 

member sizes will generally be determined by the numbers and physical characteristics 

of the connector rather than by the strength requirements of the member material [2]. 

Research work conducted by Foliente on timber buildings identifies that it is often the 

inadequate connection design that is the primary cause of damage after the structure is 

exposed to extreme wind or earthquake events [68]. 

Key points:  

 Joints are crucial points in many timber 

structures because they can determine the 

overall strength and performance of that 

structure. 

 The length of structural timber is 

generally shorter than the required spans 

and as a result splicing or composite 

structures (e.g. trusses) must be used. 

 

Figure 2-7 Joints and system 
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 Forces between members are most often transferred through lap joints, either 

by adhesives (glues) or by dowel-type fixings (nails, bolts, screws, dowels or 

nail plates). 

The calculation method for connection resistance within EC5 uses the Johansen’s 

equations for dowel-type joints. 

2.4.1. General theory and assumptions 

Johansen first published his theory for the lateral load-carrying capacity of dowel type 

fastener timber connections in 1941 [64] in Danish. He published a shortened English 

version in 1949 [65], and this was then progressed by Möller [69]. His theory was based 

on the assumption that the connector and the timber (or wood-based material) being 

connected will behave as essentially rigid plastic materials in accordance with the 

strength-displacement relationships. So when the dowel or timber deforms, the lateral 

load-bearing capacity remains unchanged. Figure 2-8 shows how this assumption (black 

line) compares with the actual timber behaviour (green dashed lines). An additional 

assumption is made that failure is not caused as a result of insufficient spacing between 

the fixings and the end distances, and the minimum fixing spacing, edge and end distances 

for these assumptions to be valid can be found in EC5. The experiments for the 1949 

paper consisted of a bolted connection. The assumed behaviour composed of two effects:  

 Dowel effect of the bolt: which is influenced by yielding of the dowel and 

timber embedment. 

 Tension effect of the bolt: resistance of friction and tension between the 

surfaces. 

 

  

Figure 2-8 Strength-strain relationships used for dowel connections [70] 
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He assumed no axial load occurs, so no friction between the bolt and timber members 

were considered. Over the years other researchers have carried out tests to validate these 

equations [69-75]. By minimising the effects of friction between the members and 

contributions from the rope effect, a good similarity was found between the experimental 

tests and calculated values. 

2.4.2. Development of Johansen’s equations 

In Johansen’s 1941 paper  [64], he stated that tests would continue with nailed joints, 

which could essentially be dealt with from the same point of view as joints already 

investigated. Unfortunately, these tests, conducted over the period 1940 to 1945, were 

postponed indefinitely as he turned his attention onto other materials such as steel and 

concrete. His work was later expanded upon by Meyer [76]. However, it was not until the 

late 1970’s that Larsen (with permission from Johansen) carried out the missing tests. 

Larsen’s paper [66] concludes that Johansen’s theory for the dowelled joints based on the 

theory of plasticity is also suitable for the determination of the load-carrying capacity of 

nailed timber joint connections.  Larsen demonstrated that the load-carrying capacity of 

the joints is about 20% greater than Johansen’s predictive theory. This is attributed to 

axial force and the resulting friction between the timber members created when the joint 

begins to deform, see Figure 2-9. Additionally, the head causes restraining of the nail that 

may be greater than axial withdrawal in the point side resistance, see Figure 2-10. 

Therefore, in order to increase the accuracy of the Johansen’s yield theory being used 

within EC5, two correction terms were introduced: 

 the axial force in the fastener, based on the work of Larsen [66] and Hilson 

[77]. 

 The friction term, as proposed by Hansen [78]. 

 

Figure 2-9 Nail deformation 
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Figure 2-10: Nail withdrawal and pull through  

Larsen’s work also investigated the effect of nails placed tangentially to annular rings, 

see Figure 2-11. Even with all the additional work and development into the yield moment 

design model by other authors, these equations are still referred to as the Johansen’s 

equations see Figure D- 11 Johansen’s timber to timber single shear equations 

 and Figure D- 12 Johansen’s timber to timber double shear equations 

 
Figure 2-11: Regular and tangential placement 
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Figure 2-12 Johansen’s timber to timber single shear equations 

 

Figure 2-13 Johansen’s timber to timber double shear equations 

The resulting equations used in EC5 rely upon three main parameters of influence for the 

load-carrying capacity and behaviour of joints with dowel type fasteners, which are: 

1. the bending capacity of the dowel or yield moment. 

2. the embedding strength of the timber or wood-based material. 

3. the withdrawal strength of the dowel. 

Please see 0 and D for further explanation and context. As a result, the current calculation 

method is not straightforward and does not lead itself to hand calculations on account of 

the complex and repetitive nature of the developed calculations, see 0 for an example of 

connection calculations.  

2.4.3. Johansen’s equations, state of the art 

Further development of Johansen’s equations still continues, by identifying weakness, 

proposing amendments or new equations which only leads to improving accuracy. Some 

of the more recent proposed amendments are summarised here. 

As a result of work conducted by Jockwer, Steiger and Frangi [79] in 2015, a lower design 

value for the material parameter used within EC5 design equations for connections loaded 

perpendicular to grain has been proposed. 

Blass [1] brings attention to the advantages of using inclined self-tapping screws with 

continual threads as illustrated in Figure 2-14. This leads to an increased stiffness with 

increasing angle. Also, a new equation is presented for lateral load-carrying capacity of 

inclined screws with continual threads. The equation is for failure mode ‘f’, see 
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************** Error! Reference source not found.Error! Reference source not 

found.Error! Reference source not found.Error! Reference source not found., and 

this applies to single shear timber to timber connections with two plastic hinges forming. 

 

Figure 2-14 Main to side member timber connection [80] 

Predominantly self-tapping screws are used in solid timber and laminated timber 

products, with the main functions of load transfer between elements or reinforcement of 

timber members. The withdrawal properties have been analysed by a number of authors, 

primarily focusing on strength. A report by Blass in 2006 [81] sets the foundation for the 

theory where Pirnbacher [82] defines the basic parameters, and then Frese 2010 [83] 

proposes equations for calculating the withdrawal capacity of the self-tapping screws. 

This process was further advanced when Hübner 2013 [84] introduced hardwood to the 

equations. In 2012 the behaviour of self-tapping screws into the end grain of the wood, 

which is currently not considered within EC5, was investigated by Ellingsbo [85]. They 

did, however, find that the EC5 expression for axial withdrawal of the point side thread 

shows a good general agreement with characteristic values obtained in experimental tests. 

Ellingsbo comments that for longer effective lengths overestimation of the failure mode 

could occur, so further tests are required. The main body of the work presented by [81-

85] focuses on withdrawal strength rather than stiffness, with the investigation primarily 

on solid timber. Therefore these models are only applicable for timber products tested, 

and using these models on other timber products may cause unreliable results. An 

example of this is the complexity of Cross Laminated Timber (CLT) with thin lamellas 

in different directions, see Figure 2-15.  
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Figure 2-15 Essential influencing parameters of axially loaded screw connections in CLT. from [86] 

Uibel and Blass [87] in 2007 developed a reduction factor for the possibility of a screw 

intersecting any gaps and intersecting zones of two layers with different access to grain 

angles. In 2015 Ringhofer, Brandner and Schickhofer [86] provided an alternative to the 

reduction factor of Uibel and Blass by introducing a new universal approach for 

calculating the withdrawal properties of self-tapping screws within laminated timber 

products. Blass and Colling 2015 [88] reviewed the findings from seven different research 

studies based upon 1588 laboratory tests. For dowel connections with a double plastic 

hinge failure mode, an additional effect of slenderness is identified with a modified 

equation for 𝑀௬ slenderness proposed: 

 M୷ ൌ  
f୷,ୣ୤ ൉  dଷ

6
 (2-1) 

 f୷,ୣ୤ ൌ  ቐ
0.9 ൉ ሺf୷ ൅  f୳ሻ

2
0.9 ൉  f୳

       
for f୳ ൏ 450 MPa

 
for f୳ ൐ 450 MPa

 (2-2) 

where: 

𝑑  is the dowel diameter, 

𝑓௬  is the fastener yield strength 

𝑓௨  is the fastener tensile strength.  

This can increase the load-carrying capacity of these connections in the region of 25% in 

comparison to the current EC5 model. 

The Johansen’s equations have come a long way as research is ongoing. The more the 

research continues the more complex the calculations become. One of the current research 

focusses is in increasing the functionality of modern timber screws.  
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2.5. The complexity of the modern timber screws 

Barander states that “CLT and self-tapping screws have strongly dominated the latest 

developments in timber engineering” [89], which along with the environmental impact 

has helped to increase the market share of timber structures within the building sector of 

European countries like Austria, Germany and United Kingdom [90-92]. As a result, 

wood screws have become highly specialised and technical, and there are many different 

designs and parameters that manufacturers can modify to adjust the screw performance 

and capabilities. Some of these are head diameter and functional design, shank diameter, 

the ratio of outer thread diameter to the inner diameter, thread pitch, effective embedment 

depth, effective diameter, smooth shank penetration into the member containing the point 

of the screw and different design requirements depending upon the effective diameter. 

These parameters all can vary the uses of a fixing. An example of this can be seen in the 

Rothoblass screws for wood catalogue [93]. Here are some of their products: Figure 2-16 

for screw head variations; Error! Reference source not found. for screw point 

variations; Figure 2-18 for screw thread variations.  

 

Key for Screw head options, Figure 2-16 

 

 

 

 

 

Figure 2-16 Screw Head, images from [93]  

 

a)                b)                c)                d)                e)                f)                g) 

 

h)                j)                k)                m)                n)                p) 

a) Countersunk Smooth 

b) Countersunk with Ribs 

c) Countersunk 60ᵒ 

d) Cone-Shaped 

e) Under-head Ribs 

f) Convex 

g) Bugle 

h) Bush 

j) Cylindrical 

k) SFS Cylindrical 

m) Round 

n) Hexagonal 

p) Wide 
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Key for Screw point options, Error! Reference source not found. 

Figure 2-17 Screw points, images from [93] 

Key for Screw thread options, Figure 2-18 

 

 

 

 

 

Figure 2-18 Screw threads, images from [93] 

  

  

a)              b)             c)             d)             e)            f)              g)             h) 

  

j)              k)    

   

a)                b)                c)          d)             e)                f)          g)            h) 

  

j)                k)             m) 

a) Sharp 

b) Sharp 1 cut 

c) Sharp 2 cut 

d) Sharp 4 cut 

e) Bleeder 

f) Drilling 

g) Hook 

h) Wood - Steel 

j) Steel 

k) Classic wood 

m) Cement 

 

a) Asymmetric 

b) Regular fast 

c) Regular slow 

d) Tilobular 

e) Quadlobular 

f) Fine, for steel 

g) Classic wood 

h) Bugle 

h) Metric + Wood 

j) Double spacer 

k) Hi-Low 
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A list of material and coating available is given as follows,  

 Carbon steel + Galvanic zinc coating 

 Carbon steel + Duro-coat 

 Carbon steel + Organic zinc coating 

 Carbon steel + Revodip 

 Stainless steel; AISI 410 / martensitic 

 Stainless steel; AISI 304/A2  

 Stainless steel; AISI 316/A4 

 Bi-metal stainless steel + carbon steel; External use 

 Phosphate steel; Drywall 

All the information about Rothoblass screws for wood catalogue is quoted from [93] 

The complexity of modern screw fixings introduces new challenges for the structural 

engineer. The British Standards design approach which incorporates look-up tables is not 

adequately equipped to account for these advanced fixing variations. The Eurocode 

design method does allow for the connection effect of such fixing variations to be taken 

into consideration. These calculations, however, are laborious and not easily accessible 

for an engineer often working within tight time constraints.  

Possible ways to overcome this barrier are by the adoption of the parametric calculations 

used within the Eurocodes in either a Code-Compliance calculation tool or an Automated 

Code-Compliance tool within a BIM environment. Both of these approaches by the very 

nature of the parametric method allow for the mass customised methodology (MC). 
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2.6. Automated design 

2.6.1. Software / ICT 

Continued development of new information and computer technology in recent years has 

allowed and is in part driving a fundamental transformation of the AEC sector. More 

powerful computer hardware and sophisticated software tools are allowing for all 

construction disciplines to interact together at all stages of the structure’s life cycle, from 

design to demolition. 

2.6.2. Building Information Modelling (BIM) 

Within the realm of the Architecture, Engineering and Construction (AEC) sector, over 

the last two decades, the term Building Information Modelling (BIM) has had many 

different definitions by a number of authors. Perhaps the most common definition is by 

the National Building Information Model Standard Project Committee, according to 

which BIM is “a digital representation of physical and functional characteristics of a 

facility” [94]. The core idea of BIM as an information resource used together by several 

AEC professionals is common [95] and goes back to the first years of research in AEC 

computing [96]. More recently, the advances in computing power and software 

development and the adoption of software by all AEC disciplines have led many to view 

BIM as a process [97] or activity. Sometimes people differentiate between the Building 

Information Model (the resource) and Building Information Modelling (the process or 

activity) [98]. The promise of BIM is both significant and wide-ranging. One of the 

standard textbooks on the topic [98] lists a number of benefits covering the entire lifecycle 

process, from pre- and post-construction to design and fabrication. This benefits almost 

everyone within the construction process. This ranges from standard activities such as 

architectural design [99, 100] and cost estimation [101, 102] to more specialised aspects 

such as energy consumption [103] and labour productivity [104].   

The UK has attracted a great deal of attention by being the first country to introduce a 

mandatory implementation of BIM level 2. For England and Wales, this began in April 

2016 and for Scotland April 2017. 

Software vendors of the main structural engineering packages provide some level of BIM 

integration, mostly via Input/Output (I/O) tools with BIM-oriented architectural packages 

such as Autodesk Revit and the generic Industry Foundation Classes (IFC) [105, 106]. 

However, there are numerous issues with those: as early as 2008, practising structural 

engineers were reporting considerable scepticism with vendors’ promises of “seamless” 

links between packages [107]. The fact that interoperability is a major point of discussion 



30 

in the review by Volk et al [108] suggests that it will remain a major concern in the 

foreseeable future. In addition, there is the recurrent issue of the complexity and steep 

learning curve inherent in BIM-oriented software, as well as the need to maintain parallel 

BIM infrastructures for different clients [107]. The return of investment (ROI) of BIM, 

especially for micro, small and medium enterprises (SME) has long been a point of 

contention [109]. In structural engineering practice, this can be even more demanding, as 

structural engineers already must master complex structural analysis and design packages 

for completing the core tasks of their work. As such, any additional software package 

must demonstrate a considerable return to justify the overheads in time and resources. 

The structural timber design process  

Structural design is one of the core areas of the building design process and can pose 

unique challenges to the BIM process. The structural engineer interacts not only with the 

architect but also with a range of other engineering specialities. This can be either directly 

or via the architect, the project manager, or the contractor, depending on the nature and 

organisation of the project. A simplified schematic representation of the interactions (and 

thus data exchanges) between the architectural designer and some of the engineering 

disciplines is given in Figure 2-19. 

 

Figure 2-19 Schematic representation of interactions and data exchange between architect and some engineering 

disciplines 

Even within the structural engineering domain, a range of processes take place. Those 

might be done in-house in different types of software or subcontracted to specialists. 

Thus, more interactions and data exchanges take place. A simplified schematic 
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representation of those for the case of timber structures is given in Figure 2-20, while 

more extended versions exist for case-specific problems [110]. 

 

Figure 2-20 Schematic representation of the different stages of the structural design of a typical timber structure 

From the activities described in Figure 2-20, the structural design of members and 

especially connections, pose particular technical challenges. It is telling that timber design 

is either omitted altogether from the mainstream structural engineering packages with 

BIM support [105, 111] or, when addressed, it is without the more technically challenging 

aspects, such as connections [112]. The latter is usually the province of specialised 

software applications, often lacking effective BIM integration support [113]. The 

automation of the structural design of such elements would offer significant benefits, 

addressing some of the challenges mentioned in the introduction. The integration of this 

automation in a BIM context would also allow these benefits to be combined with the 

well-established benefits of BIM [98] and thus contribute further to the take-up of timber 

by the wider AEC industry. However, the complexity inherent in the activities presented 

in Figure 2-19 and Figure 2-20, together with the aforementioned interoperability issues 

often present in BIM, means that any automation needs to take place within a well-defined 

BIM framework, in order to fulfil its potential. 

Approaches in BIM frameworks 

As the definition of BIM is quite broad, it is useful to attempt to position the intended 

outcomes within the continuum of BIM possibilities. An often-employed scale for this 

range is the BIM levels or stages. As defined by Succar [114], stage 1 represents object-
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based modelling, stage 2 represents collaborative working, utilising at least one 

collaborative model, while stage 3 aspires to interdisciplinary nD models with network-

based integration and synchronous exchange of model and document data. 

Understandably, Succar recognises that Stage 3 would require fundamental changes in 

the modus operandi of the entire AEC industry, as well as significant maturity in network 

& software technologies. Though Succar was writing in 2009, a description of the same 

concept (referred to as “Level 3”) in the National Building Specification website, 

originally written in 2014 but not updated at the time of writing of this research, refers to 

it as the “holy grail” [115].  

Existing approaches can be said to belong to one of two categories, defined here as “single 

platform BIM” (SP-BIM) and “multi-platform BIM” (MP-BIM). Single platform BIM 

relies on the utilisation of either a single piece of BIM software or a small range of BIM-

compatible software applications, typically from the same vendor or as part of the same 

suite. This ensures I/O consistency and thus minimizes the development overheads. Other 

software packages might be used for non-BIM operations and, overall, SP-BIM is closer 

to Stage/Level 2. By contrast, multi-platform BIM allows the use of a wide range of BIM-

enabled software packages, targeted at different disciplines and developed by different 

vendors. Data I/O might be done via the Industry Foundation Class (IFC) or via 

middleware developed within the context of a professional project or research project. 

Conceptually, this is closer to Stage/Level 3. A brief summary of the two definitions is 

given in Table 2-1. 

Table 2-1 Single/multi-platform BIM description 

Term BIM functionality BIM 

Level 

Single-platform 

BIM (SP-BIM) 

Concentrated in a single application, or a small 

number of applications with verified interoperability 

(typically from a single vendor) 

External hardware, datasets, and calculations 

processes are handled via customized I/O tools. 

 

 

2 

Multi-platform 

BIM (MP-BIM) 

Allows the use of multiple BIM software packages, 

from many, or any vendor.  

This includes all, or most, hardware, datasets, and 

calculation processes.  

 

 

3 
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The relatively straightforward implementation of this classification means that it has been 

utilised for a wide range of AEC tasks and problems. Wang et al developed a framework 

for enabling facilities managers to engage in the design of a building [116] via SP-BIM, 

while McArthur suggested a framework for the operations phase, where the main 

interaction is between a facilities management and a BIM system [117]. Song et al 

developed a structural BIM framework for construction planning and scheduling and 

implemented it via Open Cascade, a generic 3D modelling C++ kernel [118], using IFC 

and Microsoft Excel files as data I/O mechanisms. Porwal and Hewange proposed a BIM-

based framework for public-private partnering in public construction projects [119] 

utilising the Autodesk suite of products to ensure compatibility.  

Similar approaches are also applicable to more specialised requirements. Choi et al [120] 

as well as Chavada et al [121] have applied it to the problem of work-space planning and 

management; in both cases, a single BIM environment was utilised to enable nD 

modelling and resolve conflicts. Addressing more technical issues, Kim et al developed 

a framework that enables the dimensional and surface quality assessment of precast 

concrete elements [122]. A key part of this work involved primary data collection via 

laser scanning. The focus of the framework was not BIM per se, but I/O interoperability 

with a BIM system. Thus, IFC was used as the data format and a single BIM platform 

was utilised. Park et al produced a framework to link augmented reality with a BIM to 

facilitate defect identification and management [123]. In this, the mock-ups suggest that 

the envisaged implementation would be via an SP-BIM.   

An earlier review by Cervosek [124] found that effective integration largely worked only 

within “tightly coupled” solutions, i.e. when the software developed has invested 

significantly in data I/O; typically this is the case only within applications from a single 

vendor, while users that attempt data I/O between applications from different vendors are 

faced with loss of information which often results in significant time loss for manual data 

input and remodelling. 

Researchers working on multi-disciplinary problems have typically had to engage more 

with an MP-BIM approach. Singh et al developed a theoretical framework which, 

crucially, addresses server issues and thus computing/software requirements of a more 

technical nature [125]. Working with a range of different software packages and 

platforms, they identified an extensive set of technical requirements, ranging from model 

organisation and data security issues to the various aspects of administrative, training and 

legal support required. It is interesting that these challenges are raised for a case that 
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concerns only architectural design, hydraulics and lighting, while the emphasis is on the 

visualisation and not detailed calculations. As such, even this extensive and highly 

detailed framework is unlikely to be able to satisfy the considerable computational 

demands of the structural engineering aspects of design. 

Similar limitations can be identified in other work: Ding et al developed a framework 

intended to provide computable nD [97]. The work is comprehensive and provides 

important pointers to areas for further BIM research. The computation described, 

however, is highly unlikely to satisfy the requirements of state-of-the-art of structural 

design. Similarly, frameworks suggested by Lu and Olofsson [126] and Kadolsky et al 

[127] deal with the immediate problem of compatibility between heterogeneous data and 

integration of different knowledge domains but provide a limited scope for advanced 

computational applications.  

The direct integration of computationally demanding approaches such as Finite Element 

Analysis (FEA) in an MP-BIM environment appears unlikely to be achievable in the 

foreseeable future [128]. It is characteristic that Volk et al [108] identified only one 

structural analysis-related innovative BIM process in their review. In this, Lee et al [129] 

rely on heuristics in order to satisfy the structural safety requirements they set, even when 

effectively using an approach closer to SP-BIM. BIM is challenging and there are a 

number of issues that need to be addressed in order for its full potential to be realised.  

2.6.3. Error risk and the need for peer-review of automated calculations  

Currently, spreadsheets or other calculation software such as Mathcad are common within 

organisations; with the move towards limit state design within the Eurocodes, this will 

only increase. However, a widely cited study conducted by Panko [130] estimates that 

about 5% of all formulas within operational spreadsheets contain errors, while a further 

study by Powell calculates this figure to be nearer 1% [131]. An additional study in 2009 

by Powell set out to look at the measure of impact as the result of errors within 25 

operational financial spreadsheets from 5 organisations. They identified 117 confirmed 

errors that were categorised into six types, see Table 2-2. From this total, 70 errors 

impacted the results, with a range of severity. Of these errors, seven exceeded $10 million 

[132]. This highlights the need for a high level of peer-review. 
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Table 2-2 Errors found were categorised into six types from [132] 

Name of errors Description 

logic errors where the incorrect formula was used 

reference errors incorrect variable reference or cell reference 

hardcoding numbers  hardcoding numbers in a formula 

copy/paste error incorrect formula due to copy paste error 

data input error incorrect input data used by the user 

optimisation error variables or cells left blank which affect the results 

 

As spreadsheets grow in complexity and are passed between users, errors are more likely 

to be made. One famous example of this is a widely cited paper from Harvard on the 

relationship between public debt and growth [133]. This paper was rebutted by an 

undergraduate doing a homework assignment when he turned up several significant errors 

in the original spreadsheet [134]. The original authors had mistakenly not selected several 

countries, had missed information out and had incorrectly weighted their averaging. 

Before the paper was disproved it had been influential in policy-making decisions in 

several countries and been cited by 1330 other academic papers. This example highlights 

both the ease of making errors in spreadsheets and the profound impact these errors can 

have. 

2.6.4. Automated Code Compliance: Definition classification and history  

Automated code compliance (ACC) is a topic that is currently much discussed within the 

BIM community [135-137]. Within the building construction industry, building standards 

and structural design codes are in place to provide health and safety in the form of 

structural stability, reliability, quality of materials and workmanship. Currently, the code 

compliance checking process is predominantly performed manually. Several studies have 

identified that the process of checking building designs against building codes is time-

consuming and prone to error [138, 139]. These problems are predominately a result of 

repetitive design iterations and modifications. The manual certification processes of the 

building codes carried out by certifying authorities and the increasing complexity of 

building regulations / structural design codes [136, 140]. Therefore, the code compliance 

checking for a new building can be a significant cause of delays and cost increases within 

the design stage. Therefore, political and public interest has contributed to an increased 

demand for using modern digital tools to optimise the construction process [141]. The 

implementation of BIM within the AEC sector is opening new possibilities to make 
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building processes more efficient [142-144]. In the future, we may find that ACC enabled 

BIM models may play a key role in obtaining approval from strategy bodies [145]. 

For structural and civil engineering, there are a number of three-dimensional BIM enabled 

structural analysis software packages which can perform automated code compliance 

checking for the sizing of structural timber members but lack the sophistication for 

calculating timber connections. 

 

Figure 2-21 Classifications of Code-compliance, showing all the current posable systems of code-compliance 

Table 2-3 Classifications of Code-compliance 

a Code-Compliance: Non-digital manual process CC-nonDig 

b Code-Compliance: In-house design solutions CC-inhouse 

c Code-Compliance: Digital peer-reviewed design solutions CC 

d Automated Code-Compliance: non-BIM enabled ACC-nonBIM 

e Automated Code-Compliance: BIM enabled ACC 

 

It may be helpful to introduce the concept of classifications of Code-Compliance, as 

illustrated within Figure 2-21 and Table 2-3. At one end we have “CC-nonDig”: non-

digital design solutions that rely on such thing as lookup tables, design charts/graphs 

and the use of approved construction details amongst other non-digital solutions. At the 

other end, “ACC”: an automated design system that is BIM enabled. For the remainder 

of this research, the thesis will focus on CC and ACC approaches.   

Automated Code Compliance is not a new topic within the BIM community. Fenves in 

the 1960s published work on decision table formulation [146, 147] which created a 

foundation for ACC. However, the main applications of ACC so far have focused on 
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issues such as the design of the building envelope from an environmental perspective 

[136, 148] . Compliance uses different methods of approach: Rule or text-based 

interpretation using a logical approach and subsets of, i.e. simple logical approach [137, 

149, 150], predicate [151, 152], deontology [153], ontological [154, 155], object-based 

approach [149, 156-163], programmatic aspects [135] or machine learning [164]. It 

appears that the current literature on structural design ACC within BIM is of a design 

concept nature rather than industry application [128, 163, 165-175]. Ismail used a quote 

from the book ‘Object-Oriented Methods: A foundation’ [176], to justify the statement 

that ‘The variety of different techniques will always continue to develop in this field, the 

challenge is how to select and integrate these approaches’ [177].  Implementing “Smart” 

BIM objects used within this research draws upon the examples of “Intelligent” objects 

presented by Sacks in 2002 [178] and was first developed in 1998 [179]. The 

programming was conducted using AutoLISP++ for use within AutoCAD. Another name 

that has been used is semantic enrichment, as a catchall term for adding smart information 

into a BIM building model [180, 181]. 

Some structural aspects of ACC are directly implementable in BIM platforms. A typical 

example is the lookup tables. Before the advent of computers structural engineering 

practice relied heavily on such tables for identification of aspects such as appropriate 

cross-section sizes, etc. While the advance of computational design has reduced their 

importance, they are still popular in professional reference guides [182] and 

manufacturers’ literature [183]. These normally deal with single-variable problems. For 

example, for a given type of timber joist and given structural loading and support 

conditions, the engineer can find the necessary joist spacings in a lookup table. The 

implementation of such single-variable ACC aspects in BIM is both possible and with 

significant benefits. However currently it appears underutilized by timber manufacturers, 

who instead prefer to offer either detailed analysis software [184] or in-house design 

services [185]. Many other aspects are much more complex and computationally 

intensive. Contemporary structural codes and standards are developed under the 

assumption that they will be interpreted and applied by highly qualified and experienced 

practitioners. They incorporate simplified or generalised versions of the scientific state-

of-the-art, which rests on models developed and refined over decades (structural design) 

or centuries (structural analysis). Software developed to support engineers that work with 

these codes relies on complex algorithms. From a computer science perspective, ACC is 

often unfeasible with existing approaches as, for multi-variable optimisation problems, 

recursion issues appear, i.e. calculation functions would need to refer to themselves. Thus, 
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the current state-of-the-art relies on the interoperability between a BIM platform and 

various structural analysis and design software applications, with the issues of 

performance and data I/O described in the introduction.  

Over the years there have been several attempts in developing a method for automated 

code compliance checking, a timeline is illustrated within Figure 2-22.  

 

Figure 2-22 Timeline of ACC approaches, form [141]  and inspired by [160] 

The first authority to deliver a working system was a Singaporean building construction 

authority with the introduction of the platform, ‘CORENET’ which stands for 

construction and real estate network. It was not until 2002 when CORENT ePlanCheck 

was introduced that the platform had any capability of ACC, the functionalities of which 

are confined to building control barrier-free access and fire safety [186]. Within the 

CORENET platform a separate commercial module ‘Fornax’ has hardcoded checking 

routines which are not transparent and are therefore referred to as a black-box method 

(See Figure 2-23). Singaporean legislation and heavy government backing enabled uptake 

of the ACC CORENET platform.  

 

Figure 2-23 Black-box method, inspired by [187] 
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Solibri Model Checker is commercial software that relies upon imported IFC BIM 

models. It then operates in a black-box fashion, with an inability to allow custom rules 

without cooperation with Solibri. Building environment rules and analysis language 

(BERA) introduces a language-based code compliance checking system that is 

transparent for the user but unfortunately lacks the generality within the logic base 

programming language. 

The three methods described above, although realising a level of ACC, still demonstrate 

a lot of inadequacies. Therefore Preidel and Borrmann 2015 [141] developed a visual 

code checking language, which they describe as “formal language with a visual syntax 

and visual semantics” (see Figure 2-24). 

 

Figure 2-24 VCCL graph describing the central regulations of DIN 18232-2:2007-11, with image from [141]  

In conclusion, all the ACC systems presented here have a primary function and design 

which is based around the architectural building requirements rather than structural 

design and analysis, which will be required when calculating timber connection design. 

So, a different approach must be taken. 

2.6.5. Review of existing Code-Compliance timber connection software 

The thinking outside the box report [41] highlighted the lack of accessible high-quality 

data to support modern wood building solutions, including addressing the supply chain 

control over information. This demonstrates that the lack of automated timber connection 

calculations becomes a barrier to engineers specifying timber within construction 

projects. Since the report was published in 2013 there has been some progress in 

developing software tools. The main timber connection software tools currently available 

are discussed below, together with their advantages and disadvantages. The intention was 

to identify a potential software platform that is or could fulfil the current needs of UK 

based structural engineers working in practice. Additionally, an ideal platform would 
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have the ability to run batch processing of data or have an Application Interface (API) 

ability.  

This is a non-exhaustive list of timber calculation tools, all performing timber connection 

calculations to EC5 for connection such as main to side member, multiple member, 

tension splice and axial withdrawal. Some may additionally possess the ability to perform 

more complex calculation configurations, such as moment connections. 

Trada timber connections  

Developed by Timber Research and Development Association (Trada) which is based in 

the UK, the calculation tool is for the sole use of their members. The timber connections 

online tool was first released in May 2010. 

The automated calculation tool is limited in its functionality in terms of: 

 The output will not show the detailed calculation output, making it difficult to 

verify the calculation by hand. The software uses pre-calculated datasets for 

fixing resistance values. 

 Connection design options are limited, and the only real option is a tension 

connection with limited customisation options. 

 Customisation loading options: the members only have the option to transfer 

axial loading, without the option for external loading acting on members 

 Customisation of fixings: the fixing information is from a limited data set 

without the option for fixing variable customisation and ring shank nails are 

omitted by only showing smooth fixing options. 

 The online software tool is only available to Trada members  

Example of a calculation output can be seen in Appendix E. 

Teretron, The Rope Effect Ltd  

Teretron [188] is a product produced by ‘The Rope Effect Ltd’, released in 2015. Among 

other features the software calculates the lateral and axial capacity of fasteners, 

connections under tension and moment-resisting connections. This is an open design 

platform that allows for more flexibility as the users are not locked into using only one 

manufacture’s fixings. The reporting facility shows the full detailed results including the 

relevant Eurocodes references.   

Example of a calculation output can be seen in Appendix E. 
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Dluble: RF-/ Joints timber  

Dluble RFEM and RSTAB with add-on modules for Timber structures is a German based 

software house with a strong presence in mainland Europe, but currently without an 

authorized reseller within the UK. This information was correct on 17/04/2019.  

The current two add-on modules are: 

 Timber to Timber [189]: joints where timber members are directly connected 

to each other by means of slant screws. 

 Steel to Timber [190]: joints where timber members are indirectly connected 

to each other by means of steel plates. 

Combined, the two add-on modules can be used to design a number of timber connection 

configurations. Although the software is calculating the results rather than using 

calculated data from a lookup table, the reported results are still in a black-box format, 

without the ability to follow the calculation method for validation purposes.  

Example of a calculation output can be seen in Appendix E. 

Master EC5 Timber Connections, BIMware 

Master EC5 Timber connections [191] was first published in 2011 and designed for 

verification of load-carrying capacity of bolted splice connections for timber, wood-based 

and steel elements. Connection configurations are limited to connection with bolts only, 

and therefore, designs using screw or nails are not considered. It was created in Poland 

and currently has no UK distributor, limiting its uptake in the UK. Despite the vendor’s 

name, this calculation tool is not BIM enabled. 

Example of a calculation output can be seen in Appendix E. 

Proprietary Software 

Proprietary software packages include: 

 HECO calculation software (HCS) 

 My project, by Rothoblass 

Both allow their users to design timber connections using only the fixings supplied by 

their respective vendor, which is the main limiting factor for this type of software. They 

both come with a user-friendly interface offering the design engineer a number of 

connection designs to start from. However, the geometry options are limited, which 

reduces the end functionality. It is the author’s understanding that both vendors’ software 

use pre-calculated datasets for fixing resistance values and for this reason the timber 

properties are limited to a selection from a list without the ability to enter user defined 
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values. The output will not show the detailed calculation output, and only the results are 

shown without reference to the EC5 equations. 

Examples of calculation outputs can be seen in Appendix E for both vendor options.  

Tekla TEDDS, 2014, Using BS 5268-2:2002 

The Tekla TEDDS platform has timber connection design calculations, which are 

calculated to BS 5268-2:2002, a withdrawn and non-maintained standard. The scope of 

these calculations are limited to checking the design of a simple bolted, nailed, screwed 

or toothed-plate, timber-to-timber or timber-to-steel connection consisting of two 

members. 

The assumptions and limitations are as follows: 

 Connections are assumed to consist of a timber main member and timber or 

steel connected member inclined at an angle  relative to the main member. 

 A load F is applied to the connection through the connected member. 

 In bolted and toothed-plate connections, it is assumed that grade 4.6 steel bolts 

will be used. 

 In nailed connections, nails may be either plain wire, square twist shank or 

annular ring shank type. Nail holes may be specified as pre-drilled if required. 

 In toothed-plate connections, toothed-plate connectors may be square or round 

and either single or double sided. 

 In bolted, nailed and toothed-plate connections, both the main member and 

the connected member may consist of multiple similar elements. Where this 

is the case the individual elements are assumed to be positioned alternately 

through the connection. 

 In screwed connections, both the main member and the connected member 

consist of a single element. The main member is pointside and the connected 

member is headside. 

 The calculations do not attempt to check the geometry of the connection; users 

should satisfy themselves that the specified arrangement of connectors will 

actually fit. 

As this example only conducts the calculations to the withdrawn standards and is in itself 

fairly limited in functionality.  
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Automated Timber Connection Summary 

As discussed above, there are software tools currently available to perform automated 

timber connection calculations. It is not clear, however, if the needs of the UK structural 

engineer to confidently design with timber are met. The current capabilities of each 

software are summarised in  

Table 2-4 and it is plain that there is no one piece of software that can perform all of the 

tasks identified within  

Table 2-4. 

Table 2-4 Comparison of timber connection calculation software tools 
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Only the Tekla TEDDS calculations have ability to use an API for batch processing of 

calculations. Because this version is calculating to the withdrawn British Standards, it is 

omitted from the search for a suitable existing calculation tool. The majority of these tools 

lack transparency in the equations used, to allow confidence and easier checking. Some 

of these tools are produced outside the UK and not all of them can use the UK National 

Annexe, which causes barriers to use within the UK. Not all of them were available at the 

start of this PhD and all bar one has been updated and modified over the course of this 
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PhD. It is unclear if these software tools are widely used by structural engineers in the 

UK. To satisfy the 'Thinking outside the box' report [41] we need corroboration of 

whether this report’s statements are still valid and information on what software engineers 

are currently using. 

 

2.7. Multi-Dimensional Data Fitting for Multi-Variable ACC 

Currently, there is no existing BIM platform capable of performing automated code 

compliance calculations for timber connections. One potential method for implementing 

these complex calculations into a BIM environment would be to simplify the equations 

using Multi-Dimensional Data Fitting (MDDF). MDDF refers to the mathematical 

process that allows the fitting of datasets with an arbitrary number (nሻ of dimensions. 

Data fitting in one or two dimensions is commonly used in a range of fields. The simplest 

form of data fitting (with n = 1) is the common one-dimensional (1-D) curve fitting, where 

a mathematical equation is derived from a series of data points. Fitting with n = 2 it is 

typically referred to as surface fitting where a mathematical surface is generated so as to 

pass through or close a 2-D dataset. MDDF is the generalisation of this process to n-D, 

allowing the derivation of multi-variable algebraic expressions from extremely large 

datasets. As a mathematical method, it is neither new nor obscure: it is widely used in a 

variety of scientific fields to study topics such as gene expression [192, 193] and 

population synthesis [194]. Significant efforts have been made over the past three decades 

to improve and enhance the various aspects of the technique from a mathematical and 

computing perspective [195-197]. 

Despite its considerable potential and wide applicability, MDDF has not been widely used 

within the structural engineering field. One obstacle is the high cost of structural 

engineering experiments, which practically mean that the datasets are very small. A 

secondary potential reason is that MDDF outputs, while highly useful to predict 

behaviour, might not necessarily provide such useful insights into the physical behaviour 

of a system compared to analytical models.  

However, MDDF can be particularly useful for the purposes of ACC. It allows the 

substitution of a complex, multi-equation structural calculation algorithm with a single 

equation. This single equation might be extensive, but it is significantly lighter in 

implementation from a computational perspective. More importantly, it allows multi-

variable problems to be solved simultaneously and thus enables ACC features to be 

integrated into a “Smart” BIM component. 
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The programming of these “Smart” BIM components draws from an appropriate 

knowledge base. The development of such a knowledge base presents two challenges: 

firstly, identifying or developing suitable datasets that allow the application of MDDF 

techniques to derive the single-equation output; secondly, the application of the MDDF 

technique itself, which can be mathematically demanding. The following chapters 

describe how these challenges were addressed in this project. 

 

2.8. Summary  

From the findings of the literature review, it was identified that the transition to Eurocode 

5 for structural timber design is taking considerably longer than was first envisaged as 

reported by Brooker from BSI in 2015 [30]. A report by Harker in 2013 [41] starts to 

identify the barriers for EC5 adoption. The review identified that: 

 There is a lack of knowledge of timber engineering design to EC5. 

 There is a lack of high-quality accessible data to support modern timber 

solutions, including addressing the supply chain control over information. 

 There is a need for increased publicity and case studies of positive modern 

wood buildings solutions. 

It was identified that further evidence and more detailed findings were required in order 

to ascertain the UK AEC sector perceptions of structural timber design to Eurocode 5.  

The connections within a timber structure are often the critical factor in the design, as the 

strength of the structure is dictated by the strength of the connectors. Member sizes are 

often determined by the number of fixings used rather than by the strength of the member 

material itself. In addition, the fixing stiffness has an influence on the overall behaviour 

of the structure. The complexity of calculating the timber connections to EC5 is such that 

it is prohibitive – creating a barrier for specifying structural timber. Timber connection 

design CC or ACC can reduce this barrier, simplifying the connection design process. CC 

or ACC that has been through a rigorous peer-review process can provide a reduction in 

calculation errors, which in turn provides for a safer project. CC or ACC is time efficient 

and therefore provides ease of design optimisation and helps engineers specify timber 

confidently. 

BIM is an ideal environment for the implementation of ACC, as BIM is now mandatory 

within the UK for government procured projects and as developers and clients start to 

realise the benefits offered by BIM. This, in turn, will drive the implementation of BIM 

for non-BIM mandatory projects. BIM is here to stay. BIM provides the central repository 



47 

for information relating to the project and it makes sense to have output from ACC within 

it. As BIM ICT further develops structural engineers and designers will be using a 

singular BIM model and dataset for all of the multidisciplinary project team members. 

Implementing ACC for timber connection design into BIM will allow the designing 

engineer real-time feedback on the state of all of the timber connections, as structural 

changes are made to the model. BIM can allow for MC by providing flexibility and good 

choice navigation.  

This vision of BIM is not currently a reality, so this thesis works towards implementing 

timber connections CC and ACC into the AEC sector.  
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Chapter 3. Methodology  

3.1. Introduction 

Much work has been done to improve the accuracy of timber connection calculations in 

recent years. However, more work needs to be done to improve the accessibility of these 

calculations. Modern EC5 timber connection calculations are overly complex for the 

average structural engineer and are only likely to become more complex as new fixings 

are developed. This could be improved by CC software and ACC, especially if integrated 

within a BIM platform. This thesis presents the research work undertaken to implement 

this, using MDDF and other software solutions to make modern timber connection 

calculations more accessible and time-efficient. 

The development of such a BIM framework, which covers all the intended aspects, 

requires a sequenced approach and the utilisation of techniques from other fields, such as 

Multi-Dimensional Data Fitting (MDDF). 

The work began with a survey of the current approach in structural timber design, in order 

to identify the role of the structural engineer within the timber design process, the 

interaction and data exchange with other disciplines and the key design problems that a 

structural engineer is expected to solve. The study continued by analysing the current 

approaches in existing BIM frameworks, in order to identify possible methods to increase 

time efficiency and industrial applicability. The results of the study were used to 

formulate the aims and objectives outlined in section 0.  

 

3.2. Survey methodology  

The survey was carried out with ethical due-diligence, following best practice principles 

of anonymity of participants. Advance clear information was provided, outlining the 

intended data use and providing participants with an opportunity to review and amend 

their responses.  

The survey was disseminated to Structural Engineers via the following means: 

1. Direct email sent to members of the Timber Engineering Network. All recipients 
of this email were based in Scotland. 
  

2. Open online survey made available via LinkedIn, and shared onto the London 
IStructE group. 

The Institution of Structural Engineers (IStructE) is a professional body for structural 

engineers based in the United Kingdom, as of the 1st August 2020 the UK LinkedIn group 
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has over 52 thousand followers. This provided a good opportunity to directly target UK 

based structural engineers for this survey.   

 

For the purposes of survey question validation, a selected list of the above mentioned 

Timber Engineering Network and selected Edinburgh Napier university staff were 

requested for feed back on the survey questions and formatting. Ensuring that the 

questions presented, nor the method of response was leading. Please see the list of 

questions used within the survey in Table 4-1. 

 

3.3. Validation and Verification definitions  

The definitions of validation and verification within the PMBOK guide [198], have been 

adapted for the context of this thesis research work: 

 Verification checks whether the calculation tools are in compliance with EC5. 

 Validation checks whether the correct functionality has been created. 

 Verification is usually an internal process, whereas Validation is external. 

 Verification usually takes place before Validation. 

 

3.4. Creation of new TEDDS code compliance timber connection calculations 

The specification for the new code compliance timber connection calculation software 

was drafted and agreed upon before commencement of work. The programming interface 

for the Trimble Tekla TEDDS platform is a bespoke coding language using Microsoft 

Word as its editor, please see the scope document within Section 0-1. 
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Figure 3-1 Steps taken to create, verify and validate the timber connection calculation tool 
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Figure 3-2 Verification and validation process overview of this thesis 
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Internal verification of the software was conducted to satisfy that the correct results were 

being produced. Tekla performed additional verification for the same purpose. Mapping 

students onto four live projects as case studies where the calculation tools were used, 

served as validation of the usability and functionality. Then additionally there was a mass 

verification and validation conducted by the large user group, see 0-1 for a list of revisions 

that were conducted primarily as a result of this mass verification and validation process, 

as illustrated in Figure 3-1. This approach was also used to identify routes for additional 

academic research to be implemented into industry practice. For example the bespoke 

strength class grade C16+ for homegrown timber was implemented into the Tekla 

TEDDS platform across all of the timber calculations within the calculation library.  

 

3.5. Creation of BIM-ready equations 

The creation of the BIM-ready equations required a number of steps. As with the steps 

for creating the code compliance calculation tools, the axial loading was tackled first, and 

this provided a good proof of concept for the Multi-Dimensional Data Fitting (MDDF) 

process. The first step involved identifying the relevant variables and their boundary 

conditions required and from this the datasets were created using MatLab programming. 

The data sets underwent random point verification using the verified and validated code 

compliance calculation tool on the Tekla TEDDS platform. The verified dataset was then 

fitted using the MDDF process with a bespoke MatLab program which was created within 

this research. The new BIM-ready equation then was subjected to goodness-of-fit and 

algebraic verification. Production and implementation into a BIM environment of the 

simplified BIM-ready equations provided the validation of the MDDF process, see Figure 

3-2.  

3.5.1. Mathematical fitting 

A framework at a conceptual level was developed. This allowed for the identification of 

the key design problems that need to be automated. The framework identified two general 

types of problems that a structural engineer has to solve: 

 Simple (“single-variable”) problems, for which the majority of the structural 

calculations are either undertaken by the manufacturer or solutions can be 

easily found in the technical literature. 

 Complex (“multi-variable”) problems, for which a high level of technical 

knowledge and computational complexity is required. 
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The first category of such problems can be automated relatively simply and the integration 

in the framework in a straightforward process. An example of this can be found within 

one of the conference papers this study produced [199]. In this paper a smart BIM library 

component selects the correct structural specification of floor joist depending upon the 

span conditions, utilising a lookup table.  

The second category of problems are significantly more demanding and their complexity 

partially explains why the automation found in structural timber design is limited. In order 

to address these obstacles, the work draws on the mathematical technique of Multi-

Dimensional Data Fitting. An environment was developed within existing mathematical 

software, which enables complex problems to be solved. The thesis presents both the 

process and the capabilities of the software environment, in order to solve a complex 

multi-variable problem. While the initial concept behind the framework and the particular 

applications presented here, are focused on automating structural timber design problems, 

it is found that this can be generalised to address a number of similar problems and, 

theoretically, automate the building design process to a considerable extent. The 

conceptual framework is capable of being applied to numerous other problems.  

In closing, the limitations of the approach are acknowledged, as well as its applicability 

and implications for building design. 

While there are a number of software platforms available for fitting nonlinear 

multidimensional data, the particularities of this project meant that none provided the 

required functionality. As such, a customised MDDF platform was developed, based on 

the MATLAB computing environment, utilising the inbuilt nonlinear least-squares solver 

‘lsqcurvefit’ [200]. This function is effectively a least-squares estimator, based on the 

Levenberg-Marquardt algorithm (LM) and trust-region-reflective algorithm methods 

[201-203]. The first iteration of an LM algorithm can be traced back to 1944 [204], with 

subsequent improvements in the 1960s [205] and 1970s [206], with further refinement of 

the goodness-of-fit published in 1980 [207]. The MDDF platform developed for the 

purposes of this work uses the ‘lsqcurvefit’ function over multiple dimensions. In 

addition, it includes a Graphical User Interface (GUI) allowing visual inspection of data 

with full user ability to interrogate any of the n number of dimensions. 

An overview of the fitting procedure for different numbers of dimensions is presented in 

Figure 3-4, where τ is the number of data points to be fitted, i is the number of iterations, 

or points, along each dimension, and d is the number of dimensions.  
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The platform interface presents the user with a number of options for fitting the data. One, 

two, or all dimensions can be fit at once (Figure 3-3), while a numerical indicator of 

goodness-of-fit (for 100% and 95% of the data) is provided. The GUI allows visual 

inspection of the data against the fit, thus providing the user with a greater level of 

confidence (Figure 3-3 and Figure 3-5). 

 

Figure 3-3 Graphical user interface of the fitting software  
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Figure 3-4 Overview of the fitting procedure within the new fitting software 
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Figure 3-5 Data and fit comparison, for two dimensions  
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3.6.  Scope 

Naturally, the work presented in this thesis does not deal with ACC conclusively, and nor 

does it present a complete ready-to-market commercial-level system. Instead, it is 

intended to act as a proof-of-concept, demonstrating the feasibility of delivering effective 

ACC within an SP-BIM system with the current state-of-the-art in software and hardware, 

as well as highlighting the potential of the ACC concept more generally and the 

implications it has for changing building design as we currently understand it. 

 

3.7. Summary  

This thesis used a range of different methods to fulfil its aims. The software and the 

method of creation for the BIM-ready equations have been designed, verified and 

validated over the course of this research work. This process has formed the bulk of the 

project. The code compliance timber connection calculation tools are currently 

implemented and being used by the AEC sector, see Section 5.4 for the usage data. 

Various students have been trained to use the code compliance tools on complex 

engineering challenges, see Chapter 6, demonstrating that suitable software can empower 

inexperienced engineers to confidently calculate timber structures. The BIM-ready 

equations have been demonstrated within a 3D model, see Section 7.4.2, that is capable 

of showing the potential of Automated Code Compliance for timber connections within 

a BIM environment.  
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Chapter 4. Barriers to Structural Timber Use: A Survey 

4.1. Identifying barriers 

The barriers to Eurocode 5 (EC5) adoption and the specification of structural timber 

within the UK AEC sector have been discussed within the literature review. 2013 

Thinking outside the Box report [41] identified a number of priorities that need to be 

overcome, as listed below: 

 Professional education and continuing professional development around 

modern wood building solutions. 

 Continuing to develop and communicate the positive environmental benefits 

of modern wood building solutions, to counter the high degree of activity in 

this area by the steel and concrete lobbies.  

 Low quality and accessibility of data to support design processes for modern 

wood building solutions, including addressing the supply chain control over 

information.  

 Increased publicity around positive case studies for modern wood buildings 

solutions with lots of examples of good modern wood buildings solution 

detailing. 

These findings are in agreement with research work conducted by Schmidt & Griffin, 

where they discussed the barriers to the design and use of cross-laminated timber 

structures in high-rise multi-family housing from the context of the United States [49] 

published in 2013. Additionally, Barker’s report [53] in 2003 states that “greater uptake 

of technology is considered fundamental, to overcome the barriers to MC”. 

As the “Thinking outside the box” report was published in 2013, it was decided that a 

further study was justified to corroborate these findings and add further depth and 

knowledge. In order to ascertain the barriers preventing the use and application of 

structural timber within the UK construction sector, a survey was developed based on the 

findings of this report [41]. It was an online questionnaire which surveyed 76 structural 

engineers working within the UK.  

 

4.2. Survey  

The full report of the survey can be found in Appendix I. 

A total of 149 responses were generated from the survey, 76 of these were from IP address 

based in the UK, 19 from those based in Europe and 56 from the rest of the world.  Only 
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the results from the UK and Europe are reported in this study. A breakdown of the location 

of the UK respondents is given in Error! Reference source not found.. 

 

Figure 4-1 Number of UK respondents relative to geographical location within the UK 

Note that respondents whose location is given as “unknown” are those which have 

withheld there IP address. Whilst it is known that they have responded from somewhere 

in the UK there exact geographic location cannot be identified with certainty.  

The survey received 76 respondents from within the UK, and that the population of the 

UK IstructE LinkedIn group is approximately fifty-two thousand, it is found that the 

margin of error for the survey is at approximately 11%. This has been calculated using 

equation I- 1. 

For the purposes of this research a margin of error of around 11% is an adequate 

representation for the purpose of this study.   

 𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 ൌ

𝑧ଶ ൉ 𝑝ሺ1 െ 𝑝ሻ
𝑒ଶ

1 ൅ ሺ
𝑧ଶ ൉ 𝑝ሺ1 െ 𝑝ሻ

𝑒ଶ ൉ 𝑁 ሻ
 (I- 1) 

where: 

N = Population size: = 52,000 

e = Margin of error: ≈ 0.11  (11%) 

z = Confidence level 95%: z-Score = 1.96 

p = Percentage value: 0.5 (this is the default value as this value returns the worst case) 

It should be acknowledged that the results of the questionnaire may be skewed due to the 

nature of the sample surveyed. Respondents were selected from and existing list of 

COCIS contacts meaning that they are already predisposed to specify timber. 
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Additionally, the questionnaires title may have had the effect of pre-selecting those 

engineers responding via LinkedIn i.e those who are already using timber are more likely 

to respond to a questionnaire relating to timber, than those who do not use the material. 

For this purpose, some of the responses have been compared by selecting sub groups of 

the respondents, for example: by Geographic location, High timber use respondents, Low 

timber use respondents, respondents currently using EC5 and respondents from mainland 

Europe.  

Please see the list of questions used within the survey in Table 4-1. 

Table 4-1 Survey questions 

User location was only used if opted in by the user.  

 

 

Questions Response options 

Q1 Approximately what percentage of your work is undertaken 

using Timber, Steel or Concrete? 

Scale from 0 to 

100% 

Automated error 

correction 

 

 

Q2 

Do you agree or disagree with the following statements, (Q2 

to Q4) 

  

 Knowledge of timber engineering within professional 

teams is lacking 

Strongly Agree 
Agree 
Neutral 
Disagree 
Strongly Disagree 

 

Q3  Perceptions of timber often overrule reality. This means 

that the idea of using modern wood building solutions 

can often be stifled in the early stages of design 

 

Q4  The lack of centrally available ‘tables’ similar to those 

widely promoted by the concrete and steel industry, 

means that timber is seen as a riskier choice for 

designers 

 

Q5 Are you using Eurocode 5, Design of timber structures? Yes or No  

Q6 What would facilitate the use of Eurocode 5? Software, CPD, 

Supporting service, 

Robust structural 

details, Undergraduate 

education  

plus user comment 

Q7 What Structural Software do you use?  user comment, 

only 

Q8 Would you be more likely to specify timber and timber 

related products if the required technical information was 

freely accessible? 

Strongly Agree 
Agree 
Neutral 
Disagree 
Strongly Disagree 

 

Q9 Give one example of a timber structural detail that you 

would like to have standardised information for 

 user comment, 

only 

Q10 Are you using BIM, and if so to what level Yes / No  plus user comment 

 

Despite many advantages and positive perceptions of the material, outwith the low-rise 

housing market, it is seldom viewed as a viable alternative to steel or concrete. The survey 
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reports have identified the issues that prevent modern wood building solutions from being 

considered on an equal footing as more commonly adopted approaches. 

The survey findings are summarised below: 

 On average, approximately 33% of the work undertaken by respondents 

involved the specification of structural timber. Regional variations were found 

to exist, and this value was found to increase to approximately 50% in 

Scotland. This has been primarily attributed to the prevalence of the timber 

platform method of construction in the high volume, low-cost domestic 

housing sector. 

 The survey showed a good level of agreement with “Thinking Outside the 

Box” [41], indicating that in general a poor level of knowledge of timber and 

its applications exists and that this is an obstacle to its specification.  

 33% of respondents indicated that they were using Eurocode 5 [63]. It was 

found that the code was perceived as generally not fit for purpose, overly 

complex and that it did not offer any advantage over the standard which it 

replaced. This indicated that the adoption of Eurocode 5 [63] would only come 

as a result of its use being made a mandatory requirement – it is unlikely that 

engineers would make the switch to it by choice. 

 A wide range of software platforms was shown to be employed by engineers 

for the purposes of structural design. The majority (57%) of those surveyed 

used TEKLA Tedds [208] software, showing this to be the platform adopted 

as standard throughout the UK industry for design and specification. See 

Figure 4-2 for a breakdown of all software platforms used. 

 40% of respondents agreed that a lack of information relating to timber 

product and performance was a barrier to the specification of the material. 

 A need for the standardisation of details has been identified – in particular, 

those relating to commonly specified connections. 

 30% of respondents indicated that their design procedures are adopted as part 

of a wider BIM framework, although further analysis showed that most did 

this at a low level.   
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Figure 4-2 Software platforms used by UK based structural engineers, from survey 

 
The potential implications of these responses are as follows:  

 Generally speaking, the conclusions of the Thinking Outside of the Box report 

align with the opinions of those surveyed giving additional validation to the 

report. The predominant result from these questions is that there is a perceived 

lack of knowledge amongst design teams although the parameters of the 

question do not allow for the type of knowledge which is lacking to be 

determined.  

 The uptake of EC5 in the UK is shown to be limited, even amongst 

respondents who are pre-disposed towards the use of timber. The value of 

developmental work related to EC5 may be reduced as a result of the fact that 

results indicate that the majority of the Engineers are likely to still be using 

the superseded BS 5268 standard.   

 It can be surmised from these results that all options presented are valid means 

of increasing the uptake of EC5. The work being undertaken By COCIS offers 

a route to address most of the issues highlighted 

 CSC (Tekla) Tedds software has been shown to be the most commonly utilised 

structural software platform and therefore the one providing the most effective 

route to practicing engineers.   

 The results provide evidence that a lack of technical information is one of the 

barriers to the specification of home-grown timber. 
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 Due to the prevalence of connection and their critical nature in timber 

structures it is to be expected that the most requested standardised details 

requested are in relation to these.  

 It would appear that those involved in the Timber Engineering industry could 

be better positioned to take advantage of BIM. In general, the sector has not 

engaged with BIM – this could be attributable too: 

o A general unawareness or lack of understanding as to what BIM 

actually involves or entails  

o The nature of projects which utilise timber – timber is not typically 

used in the large scale projects where BIM may be adopted. 

o Engineers who specialise in timber tend to be small practices or “one 

man bands” i.e parties who are not set up to implement a BIM strategy 

 As well as indicating a general lack of uptake of BIM, those who are actually 

implementing it appear to be doing so at the very lowest level. Responses 

show little evidence of further development of BIM beyond the levels 

attainable by default through the use of AutoCAD or Revit.  

 

Follow on actions resulting from these key findings are listed as follows 

 Further surveys should be extended to consider the wider Engineering 

community and in particular parties who do not currently design with timber 

but can see the value of doing so. The information provided by such Engineers 

would be of great use to removing the barriers preventing the specification of 

structural timber.  

 Utilise findings in conjunction with Thinking Outside of the Box report in 

support of future funding applications. Quantify the nature of the knowledge 

which is perceived to be lacking and make best actions to address this 

shortfall.   

 This question should be retained as part of further questionnaires in order to 

demonstrate any increase in the use of EC5. It should also be followed by a 

further question asking if the increase in the uptake of EC5 can be attributed 

to our work with Tedds. 
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Issue Solution 

EC5 not user friendly Through automating the calculation process and introducing easy to use user 

interfaces EC5 can be rendered user friendly 

Cost associated with EC5 Economic cost of EC5 not addressable through the work of COCIS but through 

developing calculation on an existing software platform the need to purchase a 

physical hard copy is reduced  

EC5 Unfit for purpose Being an approved and reviewed standard EC5 has been declared to be fit for purpose. 

It is postulated that the view that it is unfit for purpose is as a result of its perceived 

level of complexity – particularly in relation to the more user friendly BS 5268.  

Automation of calculation process via Tedds will address this issue.  

Offers no feasible 

advantages to existing 

British Standards  

The advantage of EC5 are its analytical basis and the fact that it offers the user the 

ability to input their own variables. The ability to do this can be illustrated via CSC 

(Tekla) Tedds.  

 

 Continue to undertake development activities based on CSC (Tekla) Tedds 
software.  

 Identify routes which can be used to increase the flow of technical information 
to practicing Structural Engineers.  

 Development of streamlined methods for the calculation of timber connections 
and associated details. Further refinement of exact nature of details required. 

 Undertaken further research/ questionnaires to determine if BIM is relevant to 
timber engineering and also to identify if the creation of a BIM framework for 
timber will promotes its use amongst larger organisations that may be adopting 
BIM in earnest. 

 
In many respects, the non-timber construction sector within the UK is several steps ahead 

of its timber counterpart, with better implementation of building information modelling, 

mass customisation and design for manufacture and assembly. This is primarily a 

consequence of the fragmentation of the structural timber supply chain. There is a major 

disparity in investment into research between the steel/concrete and the timber sector. 

This disparity and fragmented supply chain results in the following shortfalls within the 

UK timber industry: 

 The quality and accessibility of data to support modern wood building 

solutions and their associated design processes. 

 Established standardised design and detailing and communication of best 

practice. 

 Effective dissemination of academic research to practising structural 

engineers.   
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4.3. Limitations of existing software tools 

The literature review investigated the currently existing software tools available for 

calculating timber connections using metal dowel-type fasteners, but the options are all 

limited in some way. They either lack transparency with the calculated data or do not 

allow for user-defined variables, for example only allowing for proprietary fixings, or 

they do not offer the freedom to design anything other than predefined connection 

configurations.  

An example of connections that are out with the capability of all the reviewed existing 

software options: 

 Vertical baton connected to a wall stud when there is either a void or insulation 

between the members, see Figure 4-3; 

 Main to side member connection when the main member is not aligned with 

the top of the side member, see Figure 4-4. 

 

It is correct that with a good working knowledge of connection design to EC5 an engineer 

can adapt the output from Teretron by The Rope Effect Ltd to calculate the two examples 

identified. But this undermines the original purpose of the software tool.  

From the finding of the survey conducted within this research, it is clear that none of the 

identified existing automated timber connection software solutions were being used by 

the respondents.  A full list of the software and web links used by the survey respondents 

are listed within Appendix J, which is sorted by software functionality.  

 

Figure 4-3 Connection for vertical wall baton 
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Figure 4-4 Connection for main to side member 

 

4.4. Identify the route to impact for automated calculations  

4.4.1. Streamlining academic research onto the desks of structural engineers  

The functionality of Eurocode 5 [63] and the Eurocodes, in general, are driven by the 

requirement for empirically validated strength values within the calculation process. This 

lends itself to greater freedom of product specification and can be exploited to facilitate 

the inclusion of academic research data onto the desks of structural engineers, in a mass 

customised approach. 

4.4.2. Justification for software platform TEKLA Tedds  

The use and application of structural timber engineering research findings within the 

Architecture, Engineering and Construction - AEC sector is currently limited. The AEC 

sector is fragmented in relation to the application of structural timber. Currently, there is 

a lack of available mechanisms capable of demonstrating overall technical compatibility 

of new timber solutions from a holistic perspective, while conforming to current and 

future building codes. This is a real problem, as building methods must change through 
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research exploitation in order to reduce the environmental impact and achieve UK 

Government’s residential building targets. One solution for this would be the 

development of software tools to allow engineers to take advantage of the latest research 

findings in their routine structural calculations. 

TEKLA Tedds [208] software has been shown via the UK based survey to be the most 

commonly utilised structural software platform within the UK. It is therefore currently 

the most effective way to condense the latest research findings into the hands of practising 

engineers.  

The Centre for Offsite Construction + Innovative Structures at Edinburgh Napier 

University has a track record of embedding research into practice via TEKLA Tedds 

calculations [209-212]. This mass customisable engineering approach using the industry-

standard software demonstrates a mechanism for streamlining research into practice.   

 

4.5. Summary  

The finding from the survey has been used to formulise the objectives and aims of this 

thesis, which are written in full within Chapter 1.  In addition, the survey satisfied two of 

the objectives: 

1. To do an industry survey of structural engineers that gives further clarity in 

identifying barriers for timber specification. 

Reduce barriers for timber specification and connection design by: 

6. To identify and utilising routes for current research to be implemented into the 

AEC sector.  

The survey findings identified that there are regional variations in the some questions, as 

structural timber design is more common within the Scottish AEC sector. In general there 

was a poor level of knowledge of timber and its applications, a lack of information 

available for timber engineered products but a  need for the standardisation of details – in 

particular, those relating to commonly specified timber connections. This presents an 

obstacle to structural timber and engineered timber products specifications. Fulfilling 

objective 1. 

Eurocode 5 was found to be perceived as generally not fit for purpose, overly complex 

and not to offer any advantage over the standard which it replaced and that adoption 

would only come as a result of its use being made a mandatory requirement. The survey 

also identified that 57% of respondents use TEKLA Tedds software, making this the UK 
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platform of choice for structural engineers and the potential for a clear pathway for 

delivering research findings into the hands of practising engineers. This goes part way 

in fulfilling objective 6. 

From an industry perspective, it is envisaged that the work presented here can support 

AEC practitioners who want to incorporate timber in their projects but are finding the 

level of technical expertise required a significant barrier. 

Connection design is one of the most challenging aspects of timber design in general, and 

Eurocode 5 in particular. The combination of timber’s anisotropicity and the complexity 

of the scientific state-of-the-art mean that even basic connections demand highly detailed 

calculations.  In the UK context, the difference in design philosophy between Eurocode 

5 [213] and the previous British Standard [214], with Limit State Design as opposed to 

Permissible Stress Design, poses an additional barrier for practitioners [215]. The design 

of a structural timber connection with metal dowel-type fasteners was chosen as a model 

problem to study in this thesis due to this complexity. 

  



69 

Chapter 5. Code Compliance Timber Connection Tools 

5.1. Introduction  

One of the main objectives set out within this research is reducing the complexity of EC5 

through automation of timber connections. As discussed in Chapter 4.4.2 the choice of 

platform for this work was Tekla Tedds, that currently has a user network of over sixteen 

thousand structural engineers within the UK.  

This chapter describes the functionality of the calculations, the assumptions and the 

limitations. The newly created code-compliance calculation tools will not be able to 

calculate all possible variations. However, they have been designed to cover the vast 

majority of timber connections that a structural engineer will encounter within a day to 

day project. Four calculation tools were developed to fulfil this need.  

 

5.2. Scope, Assumptions and limitations 

This is a simplified method of analysis for load-carrying capacity within timber-to-timber 

and steel-to-timber connections. 

 This calculation determines the load-carrying capacity of timber connections 

using metal dowel-type fasteners. 

 In accordance with EN 1995 and the National Annexes for the UK, Ireland, 

Finland, Sweden, Norway or the recommended Eurocode values. 

  

 
 

key: a) Main to side member,  b)Multi-member, c) Tension splice, d) Axial withdrawal  

Figure 5-1 Connection type examples 

 

a) b) 

c) d) 
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All the timber in the connections shall have a minimum strength class of C16, in 

accordance with BS EN 338. If solid timber is used for the connection, material shall be 

individually graded and marked. 

The load duration of the applied action is defined in the European standard BS EN 1995-

1-1:2004+A1, or the corresponding UK National Annexe. 

The strength equations used within these calculations assume that the shear and tensile 

strengths of fasteners will always exceed the capacity of the connection. If, however, there 

is a need to calculate the shear and tensile strengths of the fastener, it should be carried 

out in accordance with the requirements of BS EN1993-1-1. 

In order to verify the ultimate and serviceability limit states, each design effect has to be 

checked and for each effect, the largest value caused by the relevant combination of 

actions must be used. 

Timber should be pre-drilled when: 

 the characteristic density of the timber is greater than 500 kg/m³;  

 the diameter of the fastener exceeds 6 mm;  

 the timber thickness is less than that defined in Eq.(8.18) in EC5-1-1 

5.2.1. Axially loaded fixings 

This calculation consists of a point and headside members and can be used to calculate 

the withdrawal capacity of a fixing. A void can be specified to represent a physical void 

or materials that are not to be calculated for withdrawal capacity, for example PIR 

insulation boards on a warm deck roof system. 

The headside member has a minimum thickness of 16 mm but recommends a minimum 

of 19mm, which represents the minimum recommendations for timber cladding by 

BMTRADA ‘External timber cladding 3rd edition’. 

The calculation accepts the design axial load only. 

5.2.2. Tension splice 

This connection consists of two categories of members: main members and splice 

members. The main members are restricted to being timber where the splice members can 

be timber or steel, and the properties can be individually specified. The fixings can be 

nails, screws or bolts and the minimum splice member length is automatically calculated 

based upon fixing end distance spacings. 
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The main members have a minimum timber thickness of 20 mm. This connection style 

only permits tensile loading. All loadings are entered as design loading only. For 

connections using nails or screws, fixings will be from both sides and acting in single 

shear. For connections using bolts, the connection is in double shear. 

5.2.3. Main to side member connection 

This connection consists of two members, one of which is connected into the end grain. 

The calculation allows for fully specifying member properties, dimensions for both 

members and the second member can be rotated in two directions in order to calculate 

penetration lengths, spacings and the maximum number of allowable fasteners. If a 

connection uses slant fasteners then all fasteners must be in a similar fixing angle. Nails 

other than smooth nails, as defined in EN 14592, may be used in structures other than 

secondary structures, an example given within EC5 8.3.1.2 (4) of a secondary structure is 

a fascia board nailed to rafters. They should only be laterally loaded with at least three 

nails per connection and not exposed to service class three conditions. For nailed non-

secondary structures, the fastener should be parallel to the grain without the ability of 

fixing rotation. For slant nailing, there should be at least two slant nails in a connection.  

For screwed connections with axial and lateral loading, the minimum spacings, end and 

edge distances follow these rules:  

 screws with a diameter or effective diameter of less than or equal to 6 mm, 

use table 8.2 8.6 in EC5-1-1. 

 screws with a diameter greater than 6 mm - use table 8.4 and table 8.6 from 

EC5. 

5.2.4. Multiple member connection 

This connection consists of a minimum of two members and a maximum of five. The 

calculation allows for fully specifying member properties, dimensions for all members 

and each member can be rotated in one direction. Axial and external actions can be 

applied to all except the final member.  

In multiple shear plane connections, the resistance of each shear plane should be 

determined by assuming that each shear plane is a part of a series of three-member 

connections. To be able to combine the resistance from individual shear planes and a 

multiple shear plane connection, the governing failure modes of the fasteners in the 

respective shear planes should be compatible with each other. For example, they should 

not consist of combinations of failure modes (a), (b), (g) and (h) from EC5 Figure 8.2 

with the other failure modes. 
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For an explanation of the calculation method used for determining the angle of the shear 

plane and design force in the shear plane, please refer to “Design of Structural Timber to 

Eurocode 5” by McKenzie and Zhang, published by Palgrave Macmillan [216]. 

Connections in single shear have the option of using nails, screws or bolts. Connections 

in double shear must specify bolts. For connections using nails or screws the minimum 

number of fixings must be two. 

For screwed connections the minimum spacings and end and edge distances follow these 

rules:  

 screws with a diameter or effective diameter of less than or equal to 6 mm, 

use Table 8.2 in EC5-1-1. 

 screws with a diameter greater than 6 mm, use Table 8.4 in EC5-1-1. 

 

5.3. Challenges overcome 

There were a large number of challenges to be overcome. Here just one challenge is 

highlighted: the need for geometric measurements. A simple example of this is the 

pointside thread penetration calculation in the timber cladding connection in Figure 5-2. 

There are additional considerations and cases that need to be identified in order to finalise 

the pointside calculation. Figure 5-3 lists the three-dimensional geometric measurements 

required to determine the correct rule to use. This need for three-dimensional 

measurements is also illustrated in a more complex case using the main to side member 

calculation with the screw fixings inserted at an angle in Appendix K-4. 

The software platform TEDDS does not have a native three-dimensional environment to 

supply these geometric measurements. This was overcome by building a three-

dimensional environment using vector mathematics. This is illustrated in Figure 5-4 

where each numbered point was assigned three-dimensional coordinates that are 

governed by geometric rules and equations. This not only gives the required 

measurements but also gives the additional advantage of a three-dimensional image, as 

can be seen throughout 0.  
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Figure 5-2 Timber external cladding connection  

Figure 5-3 Screw pointside thread penetration rules 

 

 

 

 

 

where  

tpen 

lf   
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hh   
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lth  

 

pointside thread penetration  

total length of fixing  

point length  

height of headside member  

height of pointside member  

total thread length, including 

the point length 
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Figure 5-4 Tension splice 3D points 
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5.4. Usage data from Tekla 

For a measure of the impact, the Tekla Tedd's usage data was obtained in March 2018. 

Note that all statistics are recorded for a subset of the user base, users have to opt-in for 

Tekla to record their data. The current subset of users that are opted-in and using the UK 

content calculation library amount to 5,000+ active Tekla Tedds users, per month. For 

comparison purposes, we see that 42.7% use the timber beam calculations, including 

19.2% using the timber to Eurocodes and 23.5% using timber to the non-maintained 

British Standards. The newly created code-compliance timber connection calculations to 

EC5 are used by 10.3% of the subset group of UK Tekla Tedds users per month. The 

code-compliance calculations have led to teaching opportunities, both to university 

students and to IStructE members. In addition, it has led to several case studies, which 

are discussed more fully below. Note that on the 9th November 2017 the calculations were 

amended by Tekla to include the Irish, Swedish, Finnish and Norwegian National 

Annexes, see 0-1. 

In addition Trimble created an educational video demonstrating the connections (Figure 

5-5). Link: https://www.youtube.com/watch?v=WACc4yI0bB0&t=88s 

 

Figure 5-5 Youtube demonstration of connection calculations, screen captures  

 

5.5. Summary  

The newly created Code Compliance timber connection calculation tools have been both 

verified and validated and are now published and widely used by UK structural engineers.  

These calculation tools provide confidence by reducing the complexity for the user, while 

providing an simple to follow calculation and output. This is fulfilling Objective number 

3 of this research work.  
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Chapter 6. Case Studies 

The first project that is discussed here is for the new British Standard for a code of practice 

for the design and installation of external timber cladding – Part 2. The calculations 

behind this document are in line with the calculation method within EC5; this served as 

a good starting project as this is the simplest design calculation process. The work 

involved the creation of data sets that are included in the new BS 8605-2 External timber 

cladding – Part 2: Code of practice for design and installation. The second project of the 

Belfast truss used the splice connection tool that calculated the shear connection strength 

for the connections. This was an obvious progression, moving on from the simple axial 

loading connections of the cladding case study project. This case study went on to 

demonstrate effective project optimisation and resulted in additional publicity of other 

work carried out by Edinburgh Napier University. The third project which was the Nedd 

house served as an ideal testbed for proofing and further development of the software. 

This project resulted in additional functionality enhancements to the system. The fourth 

project, for the Dyson student village, presented a challenging design problem which was 

solved by a design iteration process made possible by the speed and flexibility of the 

newly created code-compliance  connection software. The final design solution was then 

verified by physical testing on a full size prototype within a lab setting.  

All four case study projects had students conducting the work using the newly created 

calculation tools, to allow for validation of the usability and functionality.  

 

6.1. BS 8605-2 External timber cladding – Part 2: Code of practice for design 

and installation [217] 

6.1.1. Introduction  

This project was to write a new British Standard code of practice for the design and 

installation of external timber cladding, based upon the connection calculation 

methodology of the connection design from EC5. The primary calculation used for this 

case study was the axial withdrawal tool, which is the simplest calculation process. By 

mapping a student onto this project this served as a validation of the usability and 

functionality for the user interface and the results output for the calculation. The student 

intern that was mapped onto this project was given training on the use of the newly created 

code compliance calculation tools for the timber connections and was supervised by 

myself. The project was to condense all the timber connection calculations needed into 

usable design steps, lookup tables and recommendations that: 
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 offer guidance on the material and design issues affecting external timber 

cladding assemblies; 

 give competent building designers, who are not structural engineers, the 

means to confidently design exterior timber cladding assemblies on buildings 

where the risk of wind damage is relatively low; 

 provide criteria for structural engineers designing external timber cladding 

assemblies for buildings where the risk of wind damage is relatively high, or 

who are verifying the work of others;  

 provide a suite of generic construction details addressing performance issues 

that might affect an external timber cladding assembly;  

 offer guidance for cladding installers.  

6.1.2. Build-up types of external timber cladding  

The number of configurations possible have been drawn down into the following nine 

sub system build-up types. 

Build-ups without insulation 

1. Horizontal external timber cladding on vertical battens, see Figure 6-1; 

2. Vertical external timber cladding on horizontal battens, see Figure 6-2; 

3. Vertical external timber cladding on two-layer battens, see Figure 6-3; 

4. Vertical external timber cladding panel with horizontal battens with a 45-degree 

cut, see Figure 6-4; 

5. Plywood cladding on vertical battens. 

Build-ups with insulation include: 

6. Horizontal external timber cladding and battens on rigid insulation, see Figure 

6-5; 

7. Horizontal external timber cladding and battens on secondary battens with flexible 

insulation include, see Figure 6-6; 

8. Horizontal external timber cladding on vertical battens fixed on concrete wall with 

angle brackets; 

9. Wider horizontal and vertical timber claddings with wider boards and 2no of 

fixings instead of 1no. 
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Figure 6-1 Horizontal external timber cladding on vertical battens 

 

Figure 6-2  Vertical external timber cladding on horizontal battens 

 

Figure 6-3 Vertical external timber cladding on two-layer battens 

 

Figure 6-4  Vertical external timber cladding panel with horizontal battens with a 45deg cut 



79 

 

Figure 6-5 Horizontal external timber cladding and battens on rigid insulation 

 

Figure 6-6 Horizontal external timber cladding and battens on secondary battens with flexible insulation 

 

Figure 6-7 Horizontal external timber cladding on vertical battens fixed on concrete wall with angle brackets 
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6.1.3. Summary 

This project took the newly created code-compliance connection design software for the 

speed and proven reliability of results and used it for the creation of data sets that are 

included into the new BS 8605-2 External timber cladding – Part 2: Code of practice for 

design and installation [217]. 

This case study fulfilled objectives 2, 3 and 6 

Reduce barriers for timber specification and connection design by: 

2. To create and deliver educational material of current research, for the purpose of  

increasing the level of knowledge of structural timber for both university students 

and practising engineers;  

3. To reduce the complexity of EC5 through automation of timber connections; 

6. To identify and utilising routes for current research to be implemented into the 

AEC sector.  

The British Standard that has been created, (at the time of writing is still to be published) 

is intended for use by designers and contractors. It gives recommendations for the design 

and installation of external timber cladding assemblies in the UK. This is taking a very 

complex subject of timber connections and simplifying it down into a usable step by step 

approach that is more accessible, fulfilling objective 2 & 3. This body of work has been 

enhanced by the use of the newly created code-compliance connection calculations, 

which is directly delivering the results of research into the hands of the AEC sector, 

fulfilling objective 6 and reducing the barriers for timber specification. 
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6.2. Case study: Belfast Truss, the potential of home-grown UK timber 

6.2.1. Introduction 

This case study was undertaken by a Masters student under my supervision, using the 

newly created code compliance software on the Trimble TEDDS platform, see Appendix 

I. The case study resulted in a Master’s dissertation by Dale Johnstone and an 

international conference paper [218], and it is summarised below as it has relevance to 

the thesis.  

Carbon Dynamic approached Edinburgh Napier University with a challenge to design a 

roof system capable of delivering a clear span of 30m for industrial building projects, 

utilising UK Home-grown British spruce (WPCS). The Belfast Truss design was 

identified for historical and aesthetic reasons, see Figure 6-8.   

Within the investigation, it was identified that rather than the member design, the 

connection design was the limiting factor for this Belfast Truss system. As the timber 

density is the critical timer property that has an impact over connection design this 

presented an ideal opportunity to demonstrate the advantages of home-grown timber. The 

connections were designed using the newly created calculation software as discussed in 

Chapter 5. This research investigates the advantages of designing this structural roofing 

system, using the recently defined bespoke strength class C16+. Due to the greater 

characteristic strength and density values, this better fits the properties of UK grown 

spruce.  

 

Figure 6-8 Belfast Truss design 

6.2.2. Belfast Truss designs 

An image of a standard Belfast Truss can be seen in Figure 6-8, with a bowed top chord 

and a flat bottom chord with lattice bracing connecting both cords. There are a number of 

variations and definitions of this design with conflicting opinions. However, the Belfast 
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Truss design is a very efficient system for long span truss design in an account of the 

shape and corresponding bending moment distribution [219], see Figure 6-10.  

The first Belfast Truss system is documented in 1866 when McTear & Co. Promotions 

described the system as a ‘durable, cheap and handsome roof for felt’[219]. 

 

 

Figure 6-9 Belfast Trusses at Esgair Timber (photo courtesy of Barratt Associates) 

Comparative analysis for C16 as defined within EN 338 [220] and the newly defined 

home-grown C16+ for British spruce (WPCS) [221-223], were undertaken and optimised 

for each timber design class specification.  

 

Figure 6-10 Bending moment example diagram 

 

Figure 6-11 Appropriately located butt and scarf joints 
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There were a number of design challenges to be overcome in order for this system to 

work, and one example is of the connections within the top and bottom chords, as 

illustrated within Figure 6-11, Figure 6-12 and Figure 6-13. This is in addition to the 

connections of the lattice members to the top and bottom cords. 

 

 

Figure 6-12 Cross-section of truss members, before final optimisation with respect to timber density 

 

 

Figure 6-13  Plan view of bottom chord, Scarf joint 

6.2.3. UK Home-Grown Timber 

At present 52% of the wood fibre based panels (i.e. OSB) and 38% of dimensional timber 

are from home-grown sources. However, it is predicted that the production of timber in 

the UK is to increase by 50% by 2025 [223]. As the UK timber industry increases, it will 

be preferable that as a nation we find ways of utilising the home-grown resource better 

and reduce the net import of structural timber into the UK. From the latest Forestry 

Commission forecasts, we can see the current spread of species within the UK, see Figure 

6-14 and Table 6-1 [224, 225]. For the remainder of this case study, we will be focusing 

on the utilisation of the largest proportion of homegrown timber - British spruce (WPCS). 
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Figure 6-14 Standing and Available over bark volume of home-grown wood (in Great Britain) [224-226] 

Table 6-1 Standing coniferous timber volume (overbark standing) by principal species (in Great Britain) [224-226] 

  FE/FLS/NRW Private sector Total 
  000m3 000m3 000m3 

 All conifers 124,575 211,167 335,742 

 

WPCS 

Sitka spruce 70,766 99,247 170,012 

Norway spruce 6,678 13,067 19,745 

 

WPNN 

Scots pine 12,930 37,732 50,662 

Corsican pine 6,309 5,648 11,958 

WLAD Larch 9,235 26,887 36,122 

 Douglas fir 5,232 9,823 15,055 

 Lodgepole pine 9,798 8,486 18,285 

 Other conifers 3,627 10,547 14,174 

where: FE/FLS/NRW = Forestry England, Forestry and Land Scotland, Natural Resources Wales 
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Home-grown timber is often seen as inferior to imported timber because a relatively small 

amount of the UK spruce can be graded to C24 and the industry grades it to C16 or rejects 

as routine. However, with perfect grading machines, the same material can achieve the 

results shown in  Table 6-2. 

The reason that British spruce cannot currently achieve high yields of C24 is that not 

enough of it can reach the requirement for strength, stiffness and density. The main 

limiting property is stiffness, rather than strength and density. The timber grading is 

determined by three “grade 

determining properties” (strength, 

stiffness and density). All three 

properties must be higher than the 

limiting values, so the strength class is 

actually a minimum strength class, two 

of the values may indeed be greater 

than that of the strength class that the 

timber is grated to, and the strength class grades are well defined for the bulk of the timber 

species used within construction [227]. 

Work undertaken by Edinburgh Napier University has identified that the grading scale as 

set out within BS EN 338 [220] is not necessarily the best fit for some of the UK home-

grown timber species. For example, if a timber sample has been assigned a strength class 

graded based upon the stiffness being the limiting factor, then there is potential that the 

bending strength and the density will be much higher than those declared. This is often 

the case with UK timber [221]. It is commonly stated that UK home-grown timber grows 

too quickly. This implies that the timber has low density. However, studies at Edinburgh 

Napier University on one of the most popular UK timbers, Sitka spruce, have shown that 

the density is the least limiting factor of the timber. It is correct that it achieves saw log 

size with a short rotation; but the drawback to this is not low density but low stiffness due 

to the large ratio of juvenile wood [221].  

Within the UK, British spruce (WPCS) which is mainly Sitka and Norway spruce is 

graded on a pass or fail process to C16, but as shown in Figure 6-15 the density and 

bending strength are much higher than limits set within BS EN 338; and the limiting 

factor is the stiffness. UK timber producers and sawmills have been looking into 

marketing a bespoke strength class C16+ strength class, which with greater characteristic 

strength and density values, better fits the properties of UK grown spruce. Table 6-3 

Table 6-2 UK Home-grown timber C24 grading potential 

Percentage 

achieving C24 

grade 

Timber species 

~30%  British spruce  

~75%  UK larch 

~90%  UK IE Douglas fir  
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demonstrates the uplift from the standard C16 and the C16+ strength class requirements. 

The declared values for the C16+ come from [222]. 

Material properties - Bespoke strength class C16+ 

 

Figure 6-15 The characteristic properties of C16+ Comparison  

Table 6-3 Some strength class requirements [222] 
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6.2.4. Timber connections and the effect of timber density 

In order to calculate and optimise the structural timber connection designs, this case study 

utilised the newly created code-compliance structural timber connection calculation 

software, to see an output example please see Appendix K. The Belfast Truss design by 

its nature contains many distinct timber connections. The EC5 calculations for these are 

complex and time-consuming to do by hand. By utilising the code-compliance 

calculations connection properties can not only be calculated in an efficient manner, and 

they can be optimised in a way that would not otherwise be feasible. 

The equations used in EC5 rely upon three main parameters of influence for the load-

carrying capacity and behaviour of joints with dowel type fasteners, which are: 

1. The bending capacity of the dowel or yield moment; 

2. The withdrawal strength of the dowel; 

3. The embedding strength of the timber or wood-based material. 

Note: the timber density is the only timber property that is used in the calculation of lateral 

load-carrying capacity. 

6.2.5. Discussion and Findings 

Home-grown timber is often perceived as inferior to its imported equivalent but from the 

results of this case study, it has been demonstrated that home-grown timber can satisfy 

all the Eurocode 5 structural checks for this Belfast Truss design. When designing the 

connection, the only timber property that the calculation takes into account is the density 

of the timber. The new created C16+ grade of UK home-grown timber has a greater 

density than that of standard graded C16.  

When designing this Belfast Truss example the effect of the density properties of C16+ 

was compared to standard C16. It was observed that the calculated minimum size of the 

timber members and the fixings can be significantly reduced. For illustration, the 

calculated size of the bottom timber chords and the size and number of bolts in the 

connection were able to be reduced by 34% and 47% respectively, see  

Table 6-4, Error! Reference source not found. and Error! Reference source not 

found.. When repeating the calculations for this reduced design using the standard C16 

grade, the work identifies failure in shear capacity. This proves that utilising the greater 

density characteristics of the C16+ graded home-grown timber can provide stronger 

connections with fewer fasteners, thus allowing section sizes of the members to be 
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reduced. This was made possible by the Tedds code-compliance calculations allowing for 

repetitive design optimisation.  

𝑇𝑖𝑚𝑏𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 ൌ ൬1 െ  
350𝑚𝑚 ൈ 150𝑚𝑚
400𝑚𝑚 ൈ 200𝑚𝑚

൰  ൌ 0.34375 → 34.3% (6-1) 

𝑀𝑒𝑡𝑎𝑙 𝑓𝑖𝑥𝑖𝑛𝑔 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 ൌ ൮1 െ  
6 ൈ  𝜋 ൈ  ቀ

16𝑚𝑚
2 ቁ

ଶ

9 ൈ  𝜋 ൈ  ቀ18𝑚𝑚
2 ቁ

ଶ൲  ൌ 0.47325 → 47.3% (6-2) 

 

Table 6-4 Connection Design for C16 and C16+ timber members 

 

Impact of Findings: this example of a 30m clear span Belfast Truss roof system using UK 

home-grown timber graded to C16+ as opposed to standard C16 grade timber generated 

savings of: 

 Timber section dimensions savings of 34.4% 

 Metal fixings (bolts) savings of 47.3% 

 
Figure 6-16 Design comparison for Belfast Truss,  

These savings are considerable and would make a large difference to the feasibility and 

cost of using homegrown timber to construct Belfast Trusses. This has been published in 

the 6th European Conference on Computational Mechanics [218] and more details can be 

found in that publication. This case study demonstrates three points. Firstly code-

compliance calculations can allow complex timber designs to be modelled and optimised 

with ease. Secondly, that accurately grading timber can make large differences in 

Density Shear Splitting

ρk Capacity Capacity

Timber kg/m3 Utilisation Utilisation Connection

C16 310 0.843 0.809 9 no. M18 bolts, 400x200mm chord

C16+ 330 0.803 0.809 9 no. M18 bolts, 400x200mm chord

C16 310 1.037 0.998 6 no. M16 bolts, 350x150mm chord

C16+ 330 0.977 0.998 6 no. M16 bolts, 350x150mm chord
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construction design. Finally, it demonstrates that UK homegrown timber is more able to 

be used in structural design than was previously thought.  

As a result of the work within this case study, the strength class requirements for the 

bespoke strength class C16+ have implemented into all of the timber design code-

compliance calculations within Tekla tedds library, see Figure 6-17. The Tekla Tedds 

software platform has over 16,00 users within the UK. 

 
Figure 6-17 Implementation of C16+ into Tedds 

6.2.6. Summary 
This case study fulfilled objectives 4, 5 and 6  

Reduce barriers for timber specification and connection design by: 

4. To Create case studies demonstrating the advantages of parametric methodology 

within EC5 timber connections; 

5. To Create case studies demonstrating the benefits of a transition to EC5 through 

the ability of optimisation; 

6. To identify and utilising routes for current research to be implemented into the 

AEC sector.  

This project was ideal for demonstrating a computational timber connection calculation 

software previously created within this research. This software allowed for parametric 

optimisation of the Belfast Truss design that was used to compare the advantages between 

the standard C16 grade timber from EN 338 and the new bespoke strength C16+ home-

grown timber. This was only possible as a result of the parametric methodology adopted 

within the Eurocodes and in particular EC5, fulfilling objectives 4 and 5. 

The work within this case study was published within an international conference paper 

[218]. It also resulted in having the bespoke strength class of C16+ home-grown timber, 

which is an output of research from Edinburgh Napier University being implemented into 
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the library of calculations for Tekla Tedds platform that has a network of over 16 thousand 

users within the UK, fulfilling objective 6.  
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6.3. Case study: Challenging bespoke mass timber house design   

 

Figure 6-18 Nedd, Site location, photos from Channel 4 

Carbon dynamic was commissioned on a design and build contract for a unique house. 

The site has a very limiting set of conditions, being remote and with a dramatic landscape, 

situated high on the side of an isolated cliff overlooking Loch Nedd, with views 

overlooked by mountains, as can be seen in Figure 6-18. With unpredictable weather and 

an inaccessible location, the site is only accessible by the means of an 8-mile narrow 

single-track B-road. The site is a mix of bog and exposed bedrock. Perhaps this is why 

the project was the first in a new series on channel 4 “Impossible builds: Charlie Luxton 

and Aidan Keane meet ambitious families who are building innovative bespoke homes in 

some of the UK's most remote and challenging locations”.  

 

 

 

 

 

Figure 6-19 Chanel 4 link for the Nedd project https://www.channel4.com/programmes/impossible-builds 

Location: Nedd, Scottish Highlands, IV27 

4NN 

Year:  2017 

Partners: Carbon Dynamic 

Edinburgh Napier University 

Design Engineering workshop 
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6.3.1. Challenging test case 

The Nedd house project was the first live project using the newly created code-

compliance timber connection calculations, providing a testbed for real-world 

functionality testing. As a result, improvements were made that extended functionality 

and user experience. Some bug fixes and improvements were incorporated, for example, 

adding the ability to calculate connection strength with CLT connections when the screw 

is connected into the edge face of CLT.  

Because of the site limitations, the house was conceived as an offsite constructed 

volumetric design, as illustrated in Figure 6-20, Figure 6-21 and Figure 6-22. For 

accessibility down the 8-mile narrow single-track road, the modular units needed a narrow 

width. The superstructure is sitting elevated above the ground on top of the foundations 

that are a mix of pads into the bog and piers embedded into bedrock.  

 

Figure 6-20 Nedd house 3D drawing 

 

Figure 6-21 Nedd house plan 
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Figure 6-22 Nedd house unit number plan 

The structure itself is simple single-story construction using glue-laminated timber panels 

(GLT) for the walls, cross-laminated timber (CLT) for the roof and a timber frame floor 

system. The structure also includes two portal frames for picture frame windows, as can 

be seen in Figure 6-23 and 6-25.   

 

Figure 6-23 Completed project photo, Nedd house, photo from Channel 4  

A student was given training on the newly created code compliance calculation tools and 

was then mapped onto this project with supervision. All the timber connections and the 

full superstructure of the build were calculated. In addition, the structural engineers’ 

registration (SER) certification was prepared and submitted, which was used by Carbon 
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Dynamic to secure the building warrant approval. The fact that an inexperienced engineer 

could be trained to tackle such a demanding project shows both the user-friendliness of 

the software and its applicability and power. 

 

Figure 6-24 Connection details (summary) for a portal frame (picture frame window), Nedd house 

 

6.3.2. Research focus – software testing and optimisation  

At this time, the code-compliance timber connection tools were in the process of being 

written. The first connection calculation had been released to the public, but other 

calculations used were not yet released. Using the software on a live project was a good 

test of the software’s capabilities and usability. As a result, many changes were 

implemented and improvements were made.  

The main limiting factor for this project was the timber connections. One of the critical 

calculations was the external timber cladding connection. The project had a very high 

wind load, due to its location. As a result, the connection had to be both particularly robust 

and easy to install onsite. Figure 6-25 shows the final design. 
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Figure 6-25 Cladding Connection; top three: connection design, bottom: completed connection 
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Other connection examples can be found in Figure 6-26 that shows plywood to roof joist 

connection summary output from Tedds.  

 

Figure 6-26 Roof Connection Design 
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Figure 6-27 Connecting two GLT panels together for racking wall resistance 

 

Figure 6-28 3D drawings:  Floor joist, Wall panel, roof connections 
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6.3.3. Summary 
This case study fulfilled objectives 2 and 3c: 

Reduce barriers for timber specification and connection design by: 

2. To create and deliver educational material of current research, for the purpose of  

increasing the level of knowledge of structural timber for both university students 

and practising engineers; 

3. To reduce the complexity of EC5 through automation of timber connections: 

c. Creation of a robust code-compliance structural timber connection 

calculations within the identified platform. 

This high-profile project that was in the spotlight for a one-hour factual documentary 

television program, highlighted the benefits of designing using timber offsite design for 

manufacture and assembly (DFMA) process and by giving an Edinburgh Napier 

University student the opportunity to gain industry experience on a live project such as 

this, fulfilling objective 2. 

This case study project was invaluable for the development proofing of the created code-

compliance calculations, fulfilling objective 3c. 

 

 
Figure 6-29 Nedd, Offsite manufacture, upper: in factory, lower: onsite  
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6.4. Case study: Dyson Student Village 

 

Figure 6-30 Dyson case study: Site photo #11 

The Dyson Institute of Engineering and Technology student village was Architecturally 

designed by WilkinsonEyre and the design and build contract was awarded to Carbon 

Dynamic for off-site manufacture and assembly – see Figure 6-31 and Figure 6-32. The 

site can accommodate up to 50 students together with visiting staff and includes a 

communal space with a library, café, bar and screening room. 

 
Figure 6-31 Carbon Dynamic offsite manufacturing facility 

 
 

Location: Malmesbury, Wiltshire 

Year:  2018 

Partners:  WilkinsonEyre 

 Matt Stevenson: Carbon Dynamic 

 Edinburgh Napier University 

 Design Engineering workshop 

 Binder Holz 

 Stora Enso 

Figure 6-32 Dyson case study: On-site installation of units 

 

 

1 Photo by Peter Landers, http://www.architecturetoday.co.uk/stack-effect-2/ 
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The development was constructed using volumetric CLT units, entirely manufactured 

offsite and rapidly assembled on site. Edinburgh Napier University’s Centre for Offsite 

Construction and Innovative Structures (COCIS) participated in the project and carried 

out structural design and testing. This was an ideal project to test the software developed 

as part of this thesis and highlight its strengths and potential. The author trained a student 

and together all the connections in the build were calculated. In addition, the author and 

student were involved in the structural design process and completed full-scale lab testing 

of a prototype building. 

The student village is constituted of 78 volumetric units, variously assembled to form 19 

clusters up to 3-storey high (Figure 6-34, Figure 6-35 and Figure 6-36). Each cluster 

includes a shared kitchen and laundry and an entry area with reception and storage. Each 

pod has its own access, either directly from the garden or by earth ramps and stairs. The 

accommodations include a toilet and shower room, an open-plan bedroom area and 

work/living space. The units were delivered to site fully-fitted with bespoke furniture and 

built-in storage (Figure 6-33).  

The buildings are constituted 92% of 

natural materials and each unit is 

provided with triple-glazed windows 

and natural ventilation. Carbon 

Dynamic took a fabric-first approach 

and applied Passivhaus principles to 

design. “A Passivhaus is a building in 

which thermal comfort can be 

achieved solely by post-heating or 

post-cooling the fresh air flow 

required for good indoor air quality, 

without the need for additional recirculation of air [228]”; heat sources are, therefore, the 

sun, occupants and household appliances; additional heat can be supplied up to 10W per 

square metre [229].   

 

Figure 6-33 Dyson unit internal photo 
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Figure 6-34 Dyson case study: Site photo #22 

 
Figure 6-35 Dyson Village Overview 

 
Figure 6-36 Dyson case study: Site photo #33 

  

 

2 Photo by Peter Landers, http://www.architecturetoday.co.uk/stack-effect-2/ 
3 Photo by Peter Landers, http://www.architecturetoday.co.uk/stack-effect-2/ 
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6.4.1. Timber system 

For this project, we designed, manufactured and assembled volumetric units made of 

Cross Laminated Timber (CLT) imported from Europe. The modules are 7.2m x 4.2m x 

2.9m and can be assembled cantilevered to up to 3 meters. The project was developed 

using two sets of prototypes for the client, a design prototype (Figure 6-37) and a 

structural prototype (Figure 6-39 and Figure 6-41). The design prototype included interior 

finishes, furniture, electrical access points and cladding and was used for the client’s 

review. It was also useful to finalise the module’s weight and exact size. A technical 

prototype was built and used to assess the structural properties of the modules and verify 

the assembly process, the connection to the ground and the accuracy of the system. Due 

to standard load width restrictions, the external aluminium cladding was installed onsite 

in a dedicated buffer zone. A key element for the successful delivery of the project was 

the early design and engagement with the supply chain. Every aspect of the modules, 

from CLT connections to the position of power sockets, had to be finalised before 

manufacturing could start. In addition, although the modules look identical, there are 

small variations in their structural and design properties. To manage the variation between 

the modules, the student used a design interface matrix to control the balance between 

replicability and customisation.  

 

Figure 6-37 Dyson: design prototype photo by Matt Stevenson 

 

Figure 6-38 Sketchup models of Dyson units and cluster configurations 
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6.4.2. Research focus – connection design  

The presence of cantilevered modules required the study of specific engineering 

solutions, especially for the connections between units. A new connection was designed 

for the Dyson Student Village, which consists of a steel plate bolted to the modules from 

the inside, see Figure 6-39, Figure 6-40 and Figure 6-42. 

 

Figure 6-39 Dyson unit connection Detail 

All the connections in the building were calculated using the code-compliance timber 

connection software discussed in this thesis. The critical connection discussed above 

carries a large load due to the cantilever design of the buildings. This connection design 

went through many iterations of feasibility checking and optimisation. As part of this 

process, the code-compliance calculations were heavily utilised to speed up the design 

process and make the discussion of so many different options possible. The final steel to 

timber connection was designed and it was decided to conduct a laboratory test to confirm 

the accuracy of the calculations. 
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Figure 6-40 Dyson unit connection construction 

 

Figure 6-41 Dyson: Three-story static load testing  
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Figure 6-42 Dyson unit connection, internal view 

6.4.3. Research focus – structural performance  

Due to the cantilevered design (Figure 6-38 and Figure 6-41), there are strong forces on 

the timber structure and also the connection designed. The construction of the technical 

prototype was particularly useful, given that it allowed verifying the predictability and 

accuracy of the new connections.   

The prototype was also used to carry out tests on the static load, vibration and acoustic 

properties of the structure. In particular, the deflection of the stacked modules was 

calculated and then tested under a static load applied by a testing rig.  

The calculation method was based upon BS EN 380:1993 (Timber structures - Test 

methods - General principles for static load testing) and considered as total displacement, 

which is the combination of elements deflection and connections slip. This was calculated 

using the output of the code-compliance calculation with additional hand calculations. 

Symbols 

 F                       load, in newtons 

 G                          permanent load self-weight, in newtons 

 Q                          characteristic value of variable load, in newtons 

 T                           loading time, in seconds 

 Tr                          recovery time, in seconds 
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The principle of these test methods involves applying a stated regime of loading to a 

timber structure over a stated period of time, observing the corresponding deformations 

and reporting the test results. This test consists of three volumetric CLT buildings stacked 

up to form one complex.  

The accuracy of the load and deflection measured was within ± 3%. The test loading was 

both applied and resisted in a manner approximating to the actual service conditions. 

Eccentricities, other than those necessary to simulate service conditions, were avoided at 

points of loading and reaction and care was taken to ensure that no inadvertent restraints 

were present. 

Preparation 

To determine the moisture content and density of the CLT at the time of the test, samples 

were taken and tested at a later date. Also the environmental conditions of temperature 

and relative humidity existing during the test was measured. 

Basic loading procedure  

The basic loading procedure consists of the procedural steps (0–10) described in Table 

6-5. A diagrammatic representation of the loading procedure is given in Figure 6-43. 

 
Figure 6-43 Dyson: Schematic loading procedure 
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Table 6-5 Dyson test loading procedure 

Procedural 

Step 

Loading 

Procedure 

Time, in 

Seconds 

Load rate, 

kg/10s 

Load rate, 

kN/10s 

0 Only G, F = 0 0 0 0 

0 - 1 Apply F = 0.5Q ≥ 120 92 0.902 

1 - 2 Remove F = 0.5Q ≥ 120 -92 -0.902 

2 - 3 Apply F = 0.5Q ≥ 120 92 0.902 

3 - 4 Maintain F = 0.5Q ≥ 1200 (20min) 0 
 

4 - 5 Remove F = 0.5Q ≥ 120 -92 -0.902 

5 - 6  Recovery Time ≥ 1200 (20min) 0 0 

6 - 7 Apply F = Q ≥ 240 92 0.902 

7 - 8 Maintain F = Q T Decided on the 

day 

 

8 - 9 Remove F = Q ≥ 240 -92 -0.902 

9 - 10 Recovery Time Tr   Decided on the 

day 

 

 The maximum loading rate shall not exceed 0.25 Q per 60 s. 

 Load rate is subject to change given weight of loading apparatus. 
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Test load application arrangement 

The decision to apply the test load as a line load at the cantilever edge rather than a UDL 

over the length of the cantilever were to have the ability to apply and remove the load in 

a repeatable/uniform manner, within the time frame set out within BS EN 380:1993. 

 

Figure 6-44 Dyson: Method of load application 

There are two identical systems identified within Figure 6-44, which consist of four 

standard lifting straps, spreader bar, load cell and a remote-controlled electric winch. 

The test loading was based on a 2 kN/m2 floor loading; also the snow loading comes from 

the Dyson village prototype calculation report Section 4.2.1 with a load of 0.75 kN/m2. 
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Figure 6-45 Dyson: Calculated load combination 

 

Figure 6-46 Dyson: Deflection static load test equivalent loads, (Image from DEWS Glasgow) 
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Method of calculating the equivalent point load for the test.  

Max deflection for a point load on a cantilever beam;  δmax.p = (P × L3) / (3 × EI)  

Max deflection for a UDL load on a cantilever beam;  δmax.ω = (w × L4) / (8 × EI) 

(P × L3) / (3 × EI) = (w × L4) / (8 × EI)     so      (8 × P) / (3 × w × L)  

Equivalent point load =   w × L × ⅜ = P 

 

 where 

  L   length of cantilever (m) 

  w  UDL load,   = kN/m2 × m 

P   point load (kN) 

 

Variable loadings, Q    

First floor: 

 Floor loading, 2 kN/m2 × 3.5 m × 3 m × 0.375 =     7.875 kN 

Second floor: 

 Floor loading, 2 kN/m2 × 3.5 m × 6 m × 0.375 =   15.750 kN 

 Snow loading, 0.75 kN/m2 × 3.5 m × 6 m × 0.375 =     5.906 kN 

 Total, Second floor      21.656 kN 

 

Figure 6-47 Dyson: Transposed Q loads into point loads 
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Recording of deflections. 

The prototype building was constructed with all structural elements, see Figure 6-41. 

Cladding and internal fixings were not constructed, as they have a negligible structural 

impact. The prototype was fitted with seven dial gauges, as shown in Figure 6-48 and 

Figure 6-49. These provided a recording of the deformations of the prototype under the 

loads applied.  

 

Figure 6-48 Dyson: Test Layout and Construction 

 

(a) 

 

 

 
(b)  

 

Figure 6-49 Dyson: (a) Mechanical dial gauge (b) Dial gauge arrangement 
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According to the calculation the total displacement of the modules under static load was 

expected to be 11.3 mm as shown in Figure 6-50; displacement result given by the test 

was better than predicted, with only 8.3 mm.  

When the loads were released, the system went back to its original state, demonstrating 

both the robustness and the flexibility of the engineered volumetric system.  

 

 

Figure 6-50 Dyson: Calculated deflection under static loading 

 

6.4.4. Summary 
This case study fulfilled objectives 2, 3c and 4: 

Reduce barriers for timber specification and connection design by: 

2. To create and deliver educational material of current research, for the purpose of  

increasing the level of knowledge of structural timber for both university students 

and practising engineers;  

3. To reduce the complexity of EC5 through automation of timber connections: 

c. Creation of a robust code-compliance structural timber connection 

calculations within the identified platform; 

4. To Create case studies demonstrating the advantages of parametric methodology 

within EC5 timber connections. 

This prestigious project makes for a good case study, as a result of the challenging 

architectural design, which resulted with larger than normal actions to be resisted at the 
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unit to unit connections and the ground floor rear gable shear wall. The final connection 

solutions were as a result of an iterative process, to do with a combination of structural 

design and design for manufacture and assembly + disassembly (DfMA+D) requirements, 

which are only possible as a result of the parametric approach of EC5, fulfilling objective 

4. The project had a high level of external scrutiny over the structural design and 

calculations as a part of the building warrant and insurance process, much of which 

revolved around the connections of the CLT to CLT and the DfMA+D unit to unit 

connections. The level of scrutiny was very thorough: collectively the design team 

responded to over six hundred comments which resulted in zero system or structural 

changes to the project. This is a good statement to the reliability of the newly created 

code-compliance connection calculation software, fulfilling objective 3c. 

This project case study has been used in several external CPD events, including Zero 

Waste Scotland; Construction Scotland Innovation Centre; IStrucrE. It was used within 

university teaching activities. The project is also featured within the new Trimble 

Technology Lab with Edinburgh Napier University, see Figure 6-51, fulfilling objective 

2. 

 

Figure 6-51 Trimble Technology Lab, art work: installed at Seven Hills campus  
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Chapter 7. BIM-Ready Equation  

7.1. Introduction 

The current level of mathematical and logical function maturity within the main BIM 

authoring software platforms presents a challenge for the implementation of complex 

iterative calculation steps to be coded into a native BIM environment.  

The nature of the Johansen’s equations makes it inherently difficult to program in an 

environment where a minimum command is not present. Coding solutions would be both 

lengthy and computationally demanding or require a call out to external software. Finding 

a mathematical solution is preferable, as a singular project will contain many connections 

that will all need to be evaluated simultaneously, so computational power is at a premium.  

  

7.2. MDDF proof of concept, Axial loading of fasteners 

To create equations that can be natively programmed into BIM, multidimensional data 

fitting (MDDF) was chosen as a tool. In order to evaluate the complexity and 

effectiveness of the MDDF approach, a proof-of-concept example was required. Such an 

example should not be unnecessarily complex, but it should demonstrate effectively the 

process of multidimensional fitting. Figure 7-1 shows a visual representation of the 

methodology adopted for the proof of concept example.  

 

 

 

 

 

 

 

 

 

 

Figure 7-1 Proof of concept methodology 



115 

 

A typical timber-to-timber connection with metal dowel-type fasteners subjected to axial 

loading was selected (Figure 7-2). While it is not a particularly complex problem, it is 

very common in practice and reflective of the design process of more elaborate 

connections.  The standard adopted for the structural design was Eurocode 5 (EC5) [213], 

generally considered the state-of-the-art structural timber design code internationally.  

 

 

Figure 7-2 Timber-to-timber connection with fastener under axial loading 

In such a design case, the key consideration is the calculation of the characteristic 

withdrawal capacity of the fastener, in this case a screw. Due to the particularities of this 

connection, the screw is in tension and therefore buckling failure is not possible. In 

addition, there are no steel plates hence some failure modes, such as failure along the 

circumference of the group of screws, tensile failure of the screw and tear-off failure of 

the screw head, were not taken into account. The relevant failure modes that must be 

taken into account are: 

 Withdrawal failure of the threaded part of the screw (point side), Fax,point,Rk 

 Pull-through failure of the screw head (head side), Fhead,Rk 
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These are calculated from Equations (8.40a) and (8.40b) of Eurocode 5 respectively 

[213]. 

The total characteristic withdrawal capacity for screws, 𝐹௔௫.ோ௞, can, therefore, be 

calculated from     

            𝐹௔௫.ோ௞  ൌ minሺ𝐹௔௫.௣௢௜௡௧.ோ௞ ,𝐹௛௘௔ௗ.ோ௞ሻ (7-1) 

where: 

 𝐹௔௫.௣௢௜௡௧.ோ௞ ൌ  
1

1.2
 ൉ 𝑓௔௫.௞  ൉  𝑑௢  ൉  𝑡௣௘௡  ൉  ቆ

𝜌௞.௠

𝜌௣௦௦
ቇ
଴.଼

 (7-2) 

 𝐹௛௘௔ௗ.ோ௞ ൌ  𝑓௛.௞ ൉   𝑑௢
ଶ ൉  𝑘௛

ଶ ൉  ൬
𝜌௞.௠

𝜌௛௦௦
൰
଴.଼

 (7-3) 

This capacity is affected by eight different variables: the thread point side penetration tpen; 

the screw head and outer thread diameters, dh and d0 respectively; the pointside 

withdrawal strength fax.k; the headside pull-through strength fh.k; the characteristic density 

of the timber member ρk,m and the associated densities for the two strengths, ρhss and ρpss 

respectively.   

While look-up tables can be developed for specific types of components, this is not 

possible for a generalised case that covers all possible combinations of materials and 

screws. In order to develop the required BIM-implementable ACC database, a different 

approach was needed.  

7.2.1. Application of MDDF in the example 

The application of MDDF in this connection example requires the creation of large 

datasets, developed within MATLAB using nested loops of the automated design code 

calculations. These are then used for the extraction of fitted equations, using the 

MATLAB-based environment described above and the outputs can then be introduced in 

a BIM object. The process is summarised in Figure 7-3.  

 

Figure 7-3 Fitting Process Overview 
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The dataset developed for the axial loading example was based on eight variables with 

ten iterations each, thus resulting in 108 data points, which provided a large enough 

dataset for the fitting process. The variables and their boundary conditions are given in 

Table 7-1. 

Table 7-1 Boundary conditions of the axial withdrawal loading dataset 

  Minimum Maximum 

Thread point side penetration 𝑡௣௘௡ 21 𝑚𝑚 70 𝑚𝑚 

Screw outer thread diameter 𝑑௢ 3.5 𝑚𝑚 6 𝑚𝑚 

Head factor (ratio) 
kh = dh / d0 

𝑘௛ 1 4 

Pointside withdrawal strength 𝑓௔௫.௞ 4.5 𝑁/𝑚𝑚ଶ 15 𝑁/𝑚𝑚ଶ 

Head side pull-through 𝑓௛.௞ 4.5 𝑁/𝑚𝑚ଶ 15 𝑁/𝑚𝑚ଶ 

Member timber density 𝜌௞_௠ 290 𝑘𝑔/𝑚ଷ 460 𝑘𝑔/𝑚ଷ 

Associated density for 𝑓௛_௞ 𝜌௛௦௦ 290 𝑘𝑔/𝑚ଷ 460 𝑘𝑔/𝑚ଷ 

Associated density for 𝑓௔௫_௞ 𝜌௣௦௦ 290 𝑘𝑔/𝑚ଷ 460 𝑘𝑔/𝑚ଷ 

As Equation (7-1) demonstrates, the dataset is made up of two separate intersecting 

surfaces, and therefore by using the intersection of the two surfaces the dataset can be 

quantified using an equation. For this purpose, a sigmoid function is used as a form of a 

step function. The basic form of a sigmoid function can be seen in Equation (7-4) and 

Figure 7-4. 

 𝑦 ൌ  
1

1 ൅  𝑒ିቀ
୶ାக 
ன ቁ 

 (7-4) 

 

 

Figure 7-4 Sigmoid function example 
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The generic surface intersection fitting follows the process described in Figure 7-5.  

 

Figure 7-5 Surface fitting process 

 

  



119 

The application of the methodology in this axial loading example is described below. 

Step 1: The process requires the selection of two suitable variables where a clear 

intersection of the two surfaces can be observed while keeping the rest fixed. Here, the 

penetration length tpen and the pointside withdrawal strength fax,k have been selected. The 

user is required to enter an initial equation that describes the relationship of the surface 

intersection into the fitting software, with the appropriate fitting parameters and starting 

points (Figure 7-6.a). The software runs iterations until the best fit of the parameter is 

found, coinciding with the intersection of the surface planes. If the fitted equation does 

not have the required level of fit or Goodness of Fit (GoF), either a more appropriate 

initial value for the fitting parameter is required, or the initial equation needs to be 

amended.  For this example, the resulting fitted equation is: 

 𝑓ሺ𝑛ଶሻ  ൌ   624.844 ൉  𝑡௣௘௡ିଵ െ  𝑓𝑎𝑥.𝑘 (7-5) 

Step 2: The next variable selected is the headside pull-through strength fh,k  .This dataset, 

including both tpen and fax,k results in surfaces with a different relationship to Step 1 

(Figure 7-6.b). The observation of the shape of the dataset can be useful to provide a 

starting point for the variable that will be input into the fitting equation. The software then 

attempts to fit the equation, as per Step 1. For this example, the resulting fitted equation 

is: 

 𝑓ሺ𝑛ଷሻ   ൌ   41.656 ൉  𝑓ℎ.𝑘   ൉  𝑡௣௘௡ିଵ െ  𝑓𝑎𝑥.𝑘 (7-6) 

Steps 3 to 5 repeat the same process as Step 2, progressively including all variables, until 

finally, the resulting fitted equation includes the complete dataset. The shapes of the 

datasets on each step can be seen in Figure 7-6.c to Figure 7-6.e. 

From step 3, add in the fixing head multiplier 𝑘௛  

 𝑓ሺ𝑛ସሻ   ൌ   10.414 ൉  𝑘௛ଶ  ൉  𝑓ℎ.𝑘   ൉  𝑡௣௘௡ିଵ െ  𝑓𝑎𝑥.𝑘 (7-7) 

From step 4, add in the crew outer thread diameter 𝑑௢  

 𝑓ሺ𝑛ହሻ   ൌ   1.736 ൉   𝑑𝑜  ൉  𝑘௛ଶ  ൉  𝑓ℎ.𝑘   ൉  𝑡௣௘௡ିଵ െ  𝑓𝑎𝑥.𝑘 (7-8) 

From step 5, add in the two  remaining variables  𝜌௣௦௦ and 𝜌௛௦௦ associated densities 

headside and pointside. 

 𝑓ሺ𝑛଻ሻ   ൌ   1.196 ൉ ൬
𝜌௣௦௦
𝜌௛௦௦

൰
଴.଼

 ൉   𝑑𝑜  ൉  𝑘௛ଶ  ൉  𝑓ℎ.𝑘   ൉  𝑡௣௘௡ିଵ െ  𝑓𝑎𝑥.𝑘 (7-9) 
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a. 𝑓ሺ𝑠ଵሻ ൌ 𝑝 ൉  𝑡௣௘௡ିଵ െ  𝑓௔௫.௞ 

 

 

b. 𝑓ሺ𝑠ଶሻ ൌ 𝑝 ൉  𝑓௛.௞  ൉  𝑡௣௘௡ିଵ െ  𝑓௔௫.௞ 

 

 

c.  

𝑓ሺ𝑠ଷሻ ൌ 𝑝 ൉  𝑘௛
ଶ ൉  𝑓௛.௞  ൉  𝑡௣௘௡ିଵ

െ  𝑓௔௫.௞ 

 

 

d.  

𝑓ሺ𝑠ସሻ ൌ 𝑝 ൉   𝑑௢ ൉  𝑘௛
ଶ ൉  𝑓௛.௞  ൉  𝑡௣௘௡ିଵ

െ  𝑓௔௫.௞ 

 

e. 𝑓ሺ𝑠ହሻ ൌ 𝑝 ൉ ቀ
ఘ೛ೞೞ
ఘ೓ೞೞ

ቁ
଴.଼

 ൉   𝑑௢ ൉  𝑘௛
ଶ ൉  𝑓௛.௞  ൉  𝑡௣௘௡ିଵ െ  𝑓௔௫.௞ 

Figure 7-6 Surface fitting process steps for the axial loading example 
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Equation (7-10) describes the final fitted surface intersection, where the algebraic 

validation is the point of intersection when 𝐹௔௫.௣௢௜௡௧.ோ௞ = 𝐹௛௘௔ௗ.ோ௞ and the resulting 

multiplication factors have been rounded up towards safety:  

 𝑓ሺ𝑛ሻ   ൌ   1.196 ൉ ൬
𝜌௣௦௦
𝜌௛௦௦

൰
଴.଼

 ൉   𝑑𝑜  ൉  𝑘௛ଶ  ൉  𝑓ℎ.𝑘   ൉  𝑡௣௘௡ିଵ െ  𝑓𝑎𝑥.𝑘 (7-10) 

7.2.2. Validation and verification 

Before the fitting equation can be used, it should be both validated and verified. The 

validation process happens in two steps: inspecting the goodness of fit of the fitted 

equation and algebraically checking the fitted equation. 

7.2.3. Goodness of fit validation 

The goodness-of-fit (GoF) of a dataset in relation to a fitted equation describes how well 

the fit describes the data. It is a summary of the discrepancies between the two. The 

goodness-of-fit is calculated as follows: 

 𝐺𝑜𝐹ଵ଴଴ ൌ  
𝑚𝑎𝑥|𝑑𝑎𝑡𝑎௜ െ 𝑓𝑖𝑡௜|

Σ 𝑑𝑎𝑡𝑎௜
𝑁

 ൉  100 (7-11) 

 

 𝐺𝑜𝐹ଽହ ൌ  
2 ൉  𝑆𝑇𝐷𝐸𝑉ሺ𝑑𝑎𝑡𝑎௜ െ 𝑓𝑖𝑡௜ሻ

Σ 𝑑𝑎𝑡𝑎௜
𝑁

 ൉  100 (7-12) 

where: 

𝐺𝑜𝐹ଵ଴଴ is the goodness of fit expressed as a percentage for all of the data; 

𝐺𝑜𝐹ଽହ  is the goodness of fit expressed as a percentage of 95% of the data, useful when 

fitting experimental datasets; 

STDEV is the standard deviation. 

The goodness-of-fit values describe how close the data points lie to the fitted model, as a 

percentage of the data values. Therefore the lower the percentage value, the more accurate 

the fit is. This particular example has GoF values of: 𝐺𝑜𝐹ଵ଴଴ ൌ  0.00000013% and 

𝐺𝑜𝐹ଽହ ൌ  0.00000000012% with a maximum residual of 0.000138 kN. Therefore, for 

this example, we can state that with a high degree of certainty that the model is a good 

fit. See Appendix F for a screenshot showing the GoF results.  
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In addition to a numerical GoF, which can be narrowly focused on particular aspects of 

the data and then compress that information into a singular number, it is also good practice 

to visually inspect the graphical representation of the data and the fit, see Figure 3-3. 

7.2.4. Algebraic validation 

A visual inspection of the original EC5 equation shows it is made up of two surfaces that 

intersect. We know that this intersection lies at when 𝐹௔௫.௣௢௜௡௧.ோ௞ = 𝐹௛௘௔ௗ.ோ௞. Thus, we 

can rearrange the equations to determine where this point will occur in all dimensions. 

This can be used to check that the fitting software has converged on the correct solution. 

 𝐹௔௫.௣௢௜௡௧.ோ௞ ൌ  𝐹௛௘௔ௗ.ோ௞ (7-13) 

 

 
1

1.2
 ൉ 𝑓௔௫.௞  ൉  𝑑௢  ൉  𝑡௣௘௡  ൉  ቆ

𝜌௞.௠

𝜌௣௦௦
ቇ
଴.଼

 ൌ  𝑓௛.௞ ൉   𝑑௢
ଶ ൉  𝑘௛

ଶ ൉  ൬
𝜌௞.௠

𝜌௛௦௦
൰
଴.଼

 (7-14) 

 

 𝑓௔௫.௞ ൌ  
𝑓௛.௞ ൉   𝑑௢

ଶ ൉  𝑘௛
ଶ ൉  ቀ

𝜌௞.௠
𝜌௛௦௦

ቁ
଴.଼

𝑑௢  ൉  𝑡௣௘௡  ൉  ൬
𝜌௞.௠
𝜌௣௦௦

൰
଴.଼

൉  1
1.2 

   (7-15) 

 

 𝑓௔௫.௞ ൌ  
𝑓௛.௞ ൉   𝑑௢  ൉  𝑘௛

ଶ ൉  ቀ
𝜌௣௦௦
𝜌௛௦௦

 ቁ
଴.଼
൉ 1.2

 𝑡௣௘௡ 
   (7-16) 

 

 0 ൌ 1.2 ൉  𝑓௛.௞  ൉  𝑑௢  ൉  𝑘௛
ଶ  ൉  ൬

𝜌௣௦௦
𝜌௛௦௦

൰
଴.଼

൉  𝑡௣௘௡ିଵ െ 𝑓௔௫.௞ (7-17) 

When comparing this to result in Equation (7-17) to the fitted Equation (7-10), there is an 

acceptable margin of error, which is as a result of the resolution of the data set. Thus, in 

order to increase the reliability of the fitted equations larger data sets can help. This will 

come at a computational power cost, however, that is out with the boundary conditions 

of this research.  

7.2.5. Combining the fitted intersection equation 

Combining the fitted intersection equation with the sigmoid form Equation (7-4), a final 

BIM-ready equation can be derived, which accurately describes the complete 8D dataset 

Equation (7-18) 

 



123 

 

𝐹௔௫.ோ௞ ൌ  
𝑓௔௫.௞  ൉  𝑑௢  ൉  

𝑡௣௘௡
1.2  ൉  ൬

𝜌௞.௠
𝜌௣௦௦

൰
଴.଼

1 ൅  𝑒
൮
ଵ.ଶ ൉ቀ

ఘ೛ೞೞ
ఘ೓ೞೞ

ቁ
బ.ఴ

 ൉  𝑑𝑜 ൉ ௞೓మ ൉ 𝑓ℎ.𝑘  ൉ ௧೛೐೙షభെ 𝑓𝑎𝑥.𝑘
ି଴.଴଴ଵ ൲

 

൅  
𝑓௛௘௔ௗ.௞ ൉  ሺ𝑑௢ ൉  𝑘௛ሻଶ ൉  ቀ

𝜌௞.௠
𝜌௛௦௦

ቁ
଴.଼

1 ൅  𝑒
൮
ଵ.ଶ ൉ቀ

ఘ೛ೞೞ
ఘ೓ೞೞ

ቁ
బ.ఴ

 ൉  𝑑𝑜 ൉ ௞೓మ ൉ 𝑓ℎ.𝑘  ൉ ௧೛೐೙షభെ 𝑓𝑎𝑥.𝑘
଴.଴଴ଵ ൲

 

 

(7-18) 

 

7.2.6. Experimental verification 

In order for this fitting process to be verified, it should be compared against 

experimentally obtained data.  A series of tests on withdrawal perpendicular to the grain 

were carried out at Edinburgh Napier University in 2014, in accordance with BS EN 

1382:1999 [230] (Figure 7-7). Five types of screws ( 

Table 7-2) were tested, with forty tests carried out on each type. In order to test if pilot 

holes affected the results, ten additional tests were carried out with no pilot hole. This 

gave a total sample size of 210. The moisture content of the battens at the time of testing 

was 16.0%.  

 

Figure 7-7: Screw pull-out test set-up 

Table 7-2: Overview of screws tested 

  Nominal Nominal 

 Screw description   outer length 

  diameter 
 

  mm mm 
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Heco-Fix-plus  4.5 80 

Rothoblass, SCI A2  5 80 

Spax, Stainless steel  7755F 5 80 

Simpson Strong-Tie, 
item: S08300DB1E 

4.2 76 
 

Generic, Stainless steel  5 75 

 

The Fmax results were normalised with respect to the outer diameter of thread and the point 

side penetration.  

The fitting equitation requires the characteristic pointside withdrawal strength 𝑓௔௫_௞ and the 

associated characteristic timber density 𝜌௣௦௦. These were calculated from the data as: 

𝑓௔௫_௞ ൌ 19.5 𝑁/𝑚𝑚ଶ 

𝜌௣௦௦ ൌ 455.8 𝑘𝑔/𝑚ଷ 

Figure 7-8 shows the laboratory test results when normalised against screw dimensions, 

showing the withdrawal capacity against timber density. The test data has been 

normalised for an outer thread diameter of 4.5 mm and an effective thread penetration of 

25 mm, excluding the point of the screw. The thread penetration is determined by the 

thickness of the timber in the test setup. The blue points represent normalised data points, 

the black dashed line is the EC5 equations and the red line indicates the fitted equation, 

when  𝑓௔௫.௞ was calculated from 𝑓௔௫.௞ ൌ  ி೘ೌೣ.ೖ

ௗೞ ൉ ௧೛೐೙
 

where  

𝐹௠௔௫.௞  is the characteristic values of the test data after additional normalisation against 

timber density;  

𝑑௦  is diameter of the smooth plain part of the screw. 

The goodness-of-fit can be described by how far the data points lie from the fitted curve. 

In this case, 95% of the points lay within 29.9% of the fitted equation. As can be seen 

from the figure, the variation in the data points were large and this 29.9% is within the 

statistical noise of the data. In conclusion, the output of the fitted equation shows good 

agreement with the test data, thus verifying the fitting process.  
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Figure 7-8: Screw withdrawal capacity: Test data comparison 

7.2.7. Computational comparison from the MDDF proof of concept 

For this axially loaded example the resulting computational loading for the fitted equation 

is 32.0% of the original. Although this is a relatively simple example of fitting it 

demonstrates that the newly created BIM-ready equations run computationally 

approximately 3 times faster than the original equations. In addition, this can be run 

natively within the Revit or SketchUp pro platform, where the original equations present 

challenges that would need to be overcome.  

Please note that the computational speed comparison tests were conducted within a 

MATLAB environment where the computational comparison can be controlled. The 

original equations will be challenging to implement into a native BIM environment and 

if at all possible, they will likely run significantly slower than in the controlled speed test. 

The BIM-ready equations, on the other hand, are fairly straightforward to implement. 

7.2.8. Summary on the MDDF proof of concept 

The final fitted equation was validated by a goodness-of-fit and also algebraically and 

verified experimentally according to standard structural engineering practice, and this 

content has been published by Livingstone [231]. 

7.3. Lateral loading of fasteners  

Now that the approach of converting multidimensional equations into a single equation 

that can be implemented into a BIM environment has been realised, we can shift focus to 

a more complex timber connection. To calculate the most common timber connections, 

the lateral loading capacity must be evaluated in combination with the axial loading 

capacity equation explored above. This section deals with the lateral load-carrying 

capacity of metal dowel-type fasteners for timber-to-timber and panel-to-timber 
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connections in single shear. An example can be seen in Figure 7-9. The EC5 calculation 

format uses the Johansen’s equations, as described within the literature review. This uses 

the parametric approach of identifying the predicted failure mode and then the resulting 

fixing lateral loading resistance, see Appendix D for more details. The multiple failure 

modes of this approach result in a complex system of relationships between the resulting 

failure modes. This needs to be understood before data fitting can begin. 

 

Figure 7-9 Lateral load connection example 

7.3.1. Creation of data set  

In a similar approach to the previous axial loading proof of concept example, the dataset 

required for the lateral loading connections needs eight variables. For the data set created 

it was decided that each variable would have ten iterations, which equates to 10଼ data 

points, each point requiring eight bytes of storage, and the dataset is therefore 0.8 

gigabytes in size. For explanation, if we were to use twenty iterations for each variable 

the resulting data set will require 204 GB of storage. Within this example, no form of 

batch processing was used, but merely operated within the confines of my computer 

hardware limitations. For future work dataset creation and manipulation need not be 

limited as various mathematical methods and overlapping batch processing can be 

applied. The dataset was calculated using the Johansen’s equations (Equation (7-19)) 

found in EC5. The selected boundary conditions for the eight variables used are listed 

within Table 7-3. Please note that the boundary conditions have been chosen to best 

represent the majority of lateral loading fixings used within structural timber construction. 

Table 7-3 Boundary conditions of the lateral loading dataset variables 

  Minimum Maximum 

Characteristic Withdrawal capacity Fax,Rk 0.1 kN 6 kN 

Fastener profile rf.mod 1.15 2 

Characteristic timber embedment, headside member fh,k,1 15 N/mm2 30 N/mm2 

Characteristic timber embedment, pointside member fh,k,2 15 N/mm2 30 N/mm2 
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Thickness headside member t1 20 mm 50 mm 

Shaft penetration length in pointside member t2 20 mm 100 mm 

Effective screw diameter d 2 mm 8 mm 

Tensile strength of fastener fu,f 400 N/mm2 1000 N/mm2 

 

Verification of this dataset was undertaken in the same manner as the proof of concept 

dataset. Randomised datapoints were compared with the relevant calculations on the 

Tedds platform (0.0, where code compliance calculations have been through a process of 

verification internally by Tekla and will externally be the user network. More details can 

be seen in 0.1.  

See 0.1 for the example code for the data set creation for lateral loaded connections. The 

created dataset contains the returned force value along with the identification for the 

failure mode for each data point. 

 

(7-19) 

 

7.3.2. Inspecting and fitting of the data set 

Using the graphical user interface (GUI) described within Section 3.5 (see Figure 3-3) for 

visual inspection of the failure modes within the dataset, it can be seen that multiple 

failure modes intersect (Figure 7-10 and Figure 7-11). In each figure, two variables are 

varied on the X and Y axes and all the others are fixed, with the values stated above the 

figures. Both figures are visualising the same data set, just from the viewpoint of different 

variables. The colour of the surface indicates the failure mode. 
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Figure 7-10 Lateral load data set: t1 vs t2 Figure 7-11 Lateral load data set: fh-k,1 vs Fax.Rk 

Note: these figures were created using a greater resolution of dataset for the axes variables. 

In Figure 7-10 the dataset is visualised in the form of headside member thickness vs the 

pointside penetration, while Figure 7-11 shows characteristic embedment strength in the 

headside member vs the characteristic withdrawal capacity. It was observed that all the 

failure modes intersect each other at some line and point in the multidimensional dataset, 

except for failure modes “B” and “D”.   

In order to get the best possible fit for the data it was decided to fit just the intersection of 

the surfaces, as used in the proof of concept example. Therefore, multiple sigmoid 

functions are used to represent the multiple failure mode intersections. The resulting 

equation can be seen in Equation (7-20) below. This method of multidimensional data 

fitting generally results in a good level of fit, or this example of the goodness-of-fit (GoF) 

for the lateral loaded fitted equation has GoF values of: 𝐺𝑜𝐹ଵ଴଴ ൌ  0.00012 % and 

𝐺𝑜𝐹ଽହ ൌ  0.0000015 % with a maximum residual of 0.000002178 kN. This 

demonstrates a high degree of certainty that the model is a good fit, providing certainty 

of accuracy. See 0.2) showing a screenshot for the resulting GoF values and the code used 

for calculating this.  

At first glance, the new BIM-ready Equation (7-20) is larger than the original that it is 

intended to replace Equation (7-19), but the advantage of the newly created equation is 

that it can be easily installed into a BIM environment, where the original presents a 

difficult challenge for implementation. Within most BIM environments there is a lack of 

logical function or mathematical operators available, as discussed in Section 7.1. The 

other advantage is that the computational load of the equation is lower.  

For this example the resulting computational loading for the fitted equation is 43.5% of 

that of the original, running over twice the speed for the EC5 lateral loading equation for 
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single shear. See 0.3 and G.4 showing a screenshot for the lateral load optimisation 

percentage comparison and the code used for calculating this.  

Please note that, as in the proof of concept, the computational speed comparison tests 

were conducted within a MATLAB, as the original equations are challenging to 

implement into a BIM environment. 
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7.4.  Implementation into BIM 

7.4.1. Interoperability with BIM  

The analysis of existing research frameworks demonstrates that the effective automation 

of structural analysis and design computations in BIM cannot be achieved via a multi-

platform (MP)-BIM approach, at least with the current state-of-the-art in hardware and 

software. It introduces an extensive set of technical challenges and the benefit to cost ratio 

is not large enough. As described in the literature review, the current practice of structural 

analysis and design software is to treat structural calculations within BIM as a data I/O 

issue as opposed to core functionality. Thus it appears reasonable to adopt a single 

platform (SP)-BIM approach, addressing the structural computational aspects indirectly, 

as separate knowledge domains.  

The framework developed for the purposes of this work assigns an SP-BIM system as the 

core interdisciplinary modelling and management domain. Individual components are 

analysed and designed from a structural engineering perspective to achieve Automatic 

Code Compliance (ACC). This requires them to satisfy the structural design requirements 

according to the respective national code or standard. The results of the ACC analysis are 

programmed into BIM components. These BIM components are input in the core BIM 

platform and are available to designers. A schematic representation of the process for the 

development of the framework is given in Figure 7-12.  

 
where 

MDDF = Multi-Dimensional Data Fitting 

ACC equations = fitted equations that describe a defined data set 

BIM components = digital three-dimensional components that contain smart information 

Figure 7-12 BIM integration, Schematic representation of the framework development process 
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When design decisions are made that affect the structural performance and thus the code 

compliance of BIM components, the components respond in real-time to the design 

decisions. Typically, this is done in one of the following three ways: 

Way 1, by adjusting themselves automatically, so as to achieve code compliance. For 

example, a beam might change cross-section, or the joist spacings of a floor might change. 

This enables ACC, while maintaining the design intention (e.g. dimensions of a floor).  

Way 2, by providing limiting values the designer is protected from going beyond the 

code. For example, if a beam cannot support the type of loading beyond a certain span, 

the respective BIM component will be limited to be designed up to a certain span. 

Way 3, providing immediate straightforward feedback on the structural performance of a 

component allows the designer to identify if the component is fit for purpose. For 

example, a connection can identify that, with the given materials and geometry, it can 

withstand typical loads for residential buildings, but not for commercial. 

As a result of this process and assuming only ACC BIM components have been used, the 

entire design is code-compliant, without having to resort to costly and inaccurate I/O from 

structural engineering software. The SP-BIM approach allows for focussing the BIM 

aspects of the work where the technology performs best, namely 3D modelling, 

information management and interdisciplinary collaboration without engaging with the 

complexities of MP-BIM, which is arguably not mature enough for effective use in 

contemporary professional practice, at least in its full envisaged Level 3 breadth.  

Naturally, the success of the framework described in the previous subsection rests on the 

development of a suitable ACC knowledge base, the outputs of which are utilised to 

program the respective BIM components. It is important, therefore, to identify the types 

of ACC problems that can arise, so appropriate examples can be developed in order to 

demonstrate the feasibility of the approach. 
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7.4.2. Practical application of fitted equations into smart BIM components 

 

 

 

Figure 7-13 Smart BIM component example: Tension splice connection 

In order to demonstrate the functionality of the BIM-ready equations for both the axial 

and lateral loading equations, an example of a tension splice connection is used, as seen  

in Figure 7-13. 

 There were a number of problems that were overcome while coding the BIM-ready 

equation into the BIM environment. The mathematical functionality of Revit or Trimble 

SketchUp has limits. The character 𝛽 that represents the embedment ratio is not available 

so it was replaced with ‘SS’, likewise ϒ was replaced with ‘Lam’. The format of the 

sigmoid function also needed amending, and the original sigmoid equation results in an 

extremely large number on the denominator as a result of the exponential form of the 

equation. This throws an error as the number is too large for the software platform to 

handle. The solution for this is to change the form of the sigmoid to an equivalent using 

tanh as opposed to the exponential function. An example of a simple one step sigmoid 

can be seen in Equation (7-21).  

 ൬
1
2
൅

1
2

tanh൫𝑠𝑤ሺ𝑓𝑚௕ െ 𝑓𝑚௔ሻ൯൰ (7-21) 

where: 

𝑠𝑤 is the inverse sigmoid width, the larger the value the steeper (narrower) the sigmoid; 

𝑓𝑚௜ is the calculated value of the failure mode, (i), as found in Equation (7-19).  
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Within this example, a smart BIM component is comprised of three sub-components: 

headside member, pointside member and a group of fixings. Each contains a number of 

variables relating to that sub-component. These details can be seen in Figure 7-14. 

The main component itself contains a number of variables that are calculated from the 

sub-components variables, and an example of this can be found within Figure 7-15. Please 

see Appendix H for the code used within the smart BIM component’s implementation for 

the BIM-ready equation. 

The resulting smart BIM components that have the BIM-ready equations are not a 

resulting BLACK-BOX solution but can indeed identify the failure mode with the results, 

as seen in Figure 7-15 and Figure 7-16. By identifying the failure mode in this way, it 

allows for ease of checking. 

The real demonstration of the BIM enabled functionality can be seen when the user 

amends any of the parametric variables. For demonstration purposes, in Figure 7-16 the 

characteristic density for the headside member has been changed from 350 kg/m3 to 450 

kg/m3. The resulting actions are automatically calculated reporting the findings, and this 

is visually demonstrated within Figure 7-15 and Figure 7-16. The results have been 

verified using the newly created Code Compliance automated calculations within the 

Trimble Tekla TEDDS platform.  

 



134 

7.5. Summary 

In this chapter new equations were created 

that accurately calculate the connection 

strength for timber connections. These 

equations are designed to be natively 

implementable into existing BIM 

environments. Currently, the implementation 

of the existing EC5 equations presents 

barriers for programming. Even if these 

barriers were overcome, the existing EC5 

equations are far more computationally 

demanding that the new equations presented 

here. 

The final BIM-ready equations perform in a 

manner that is best described as a grey box. A 

black-box approach will not allow a user to 

follow the design steps, and this approach 

allows the user to see the results at each step, 

but will not display the equations used. This 

is visible within Figure 7-14, Figure 7-15 and 

Figure 7-16 

Figure 7-14 Smart BIM Component, sub 

components details  
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Figure 7-15 Smart BIM component variables  Figure 7-16 Smart BIM component amended headside 

density     
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Chapter 8. Conclusions 

In Chapter 1 the aims and objectives of this thesis were set out. The subsequent chapters 

explained how these aims and objectives were met through a range of different techniques 

and research activities. Here the objectives are restated, together with a brief summary of 

how they were successfully fulfilled.  

The first objective was “To do an industry survey of structural engineers that gives 

further clarity in identifying barriers for timber specification”. This was accomplished 

with an AEC sector review survey discussed in Chapter 4 with 76 respondents within the 

UK. The purpose of this survey was to corroborate and expand upon the findings from 

the thinking outside the box report by Harker [41], which identifies the barriers for 

structural timber specification within the AEC sector. The results of this survey helped to 

define the parameters of this research.  

The second objective was “To create and deliver educational material of current 

research, for the purpose of  increasing the level of knowledge of structural timber for 

both university students and practising engineers”. This has been achieved in a number 

of ways. The first is by delivering the newly created Code Compliance timber connection 

calculation software on the Tekla TEDDS platform. There are approximately sixteen 

thousand users on the network within the UK, see Section 5.4 for the usage data and 0 for 

examples of the output of the calculations. Sections of the work presented in this thesis 

have been used in conference and journal publications. Finally, this objective has been 

fulfilled in a range of ways by the case studies described in Chapter 6.  

The third objective was “To reduce the complexity of EC5 through automation of timber 

connections”. This has been accomplished by the publication of the newly created code 

compliance calculation software discussed in Chapter 5. In addition, this software was 

used in the creation of data sets for the new British Standard “BS 8605-2 External timber 

cladding – Part 2: Code of practice for design and installation” [217], discussed in Section 

6.1. Two of the case studies detailed in Chapter 6 were additionally valuable for the 

development and proofing of the code compliance calculation software. Finally, the use 

of MDDF to reduce the computational complexity of connection calculations will 

significantly increase the ease of specifying timber connections so it can be natively 

implemented in a BIM environment, as discussed in Chapter 7,  

The fourth objective was “To Create case studies demonstrating the advantages of 

parametric methodology within EC5 timber connections”. This has been demonstrated 

within two of the case studies. In the Belfast Truss study (Section 6.2) a structural design 
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was compared between standard C16 grade and C16+ homegrown bespoke grade timber. 

This is not feasible if the design was undertaken without a parametric approach, i.e. using 

BS 5268. In a similar fashion, the Dyson student village project case study (Section 6.4) 

required an iterative approach of design optimisation that was only possible as a result of 

the parametric approach of EC5. 

The fifth objective was “To Create case studies demonstrating the benefits of a transition 

to EC5 through the ability of optimisation”. The Belfast Truss case study (Section 6.2) 

demonstrates that the connections required for this design are feasible. BS 5268 lacks the 

ability for an optimised design that was required for the 30m clear span. The iterative 

optimisation not only created a working solution but also provided a reduction in timber 

section size and the number of fixings required. 

The sixth objective was “To identify and utilising routes for current research to be 

implemented into the AEC sector”. As a result of one of the case studies where the 

advantages of home-grown timber were highlighted after discussion (Section 6.2), it was 

agreed that this bespoke C16+ strength class was to be included in the Tekla Tedds 

platform for all of the timber automated calculations within the library. This new strength 

class is the result of research work undertaken by Ridley-Ellis [222] from ENU. The Tekla 

Tedds platform has a user network of over 16 thousand users within the UK. In addition, 

the BS 8605-2 timber cladding case study (Section 6.1) directly delivers the findings of 

research into the hands of the AEC sector, which simplifies the specification of external 

timber cladding, in turn removing barriers for the AEC sector. An additional route has 

been identified: the use of BIM-ready equations can allow the implementation of complex 

problems into a BIM environment and thus to a wider audience.  

The seventh objective was “To develop a proof of concept for BIM integration using 

multi-dimensional data fitting”. This was accomplished for both axial withdrawal and 

lateral loading of fasteners (Chapter 7). Both of these connection calculations were 

successfully fitted and implemented into a BIM environment.  

In conclusion, by fulfilling all of the seven objectives set out this achieves the aims set 

out, to ease the specification of structural timber within the AEC sector, in order to 

increase the UK market share for structural timber and to aid the transition from BS 5268-

6.1 to EC5. 

BIM-based tools can contribute to addressing some of the challenges faced by structural 

engineering practitioners. A BIM-based framework for the development of components 
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that deliver Automatic Code Compliance (ACC) is presented. The structural design 

problems that such components solve are categorised as simple, where ACC can be 

implemented directly, or complex, where more advanced approaches are needed. The 

mathematical process of Multi-Dimensional Data Fitting (MDDF) is introduced to 

address the latter issue, enabling the compression of complex engineering calculations to 

a single equation that can be easily implemented into a BIM software engineering package 

while offering computational efficiency.  

Analysis of both of the newly created BIM-ready equations demonstrates a high degree 

of certainty that the model is a good fit, providing certainty of accuracy. Please see the 

Table 8-1 below.  

Table 8-1 The goodness-of-fit values for BIM-ready equations 

 𝐺𝑜𝐹ଵ଴଴ 

(%) 

𝐺𝑜𝐹ଽହ 

(%) 

Max residual 

(kN) 

More details 

(Section) 

Axial loading 0.00000013 0.00000000012 0.000138 7.2.2 

Lateral loading 0.00012 0.0000015 0.00000278 7.3.2 

 

As the final step, a tension splice connection was demonstrated by the implementation of 

the newly created BIM-ready equations into a smart BIM object. In this object, changing 

any of the variables results in an automatic recalculation, thus fulfilling the seventh 

objective.  

  

 

Figure 8-1 Tension splice connection 
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Chapter 9. Future Work 

One of the main reasons for this work is to make the calculating of timber connections 

more accessible to the standard structural engineer that may or may not be familiar with 

timber design to EC5. Figure 9-1 shows the output from a generic three-bed semidetached 

house BIM model. The model itself contains much information, for this example all of 

the timber connections were designed using the newly created Code Compliance 

calculations that were created as part of this research work, and then the results were 

manually entered into the BIM model. The accessibility and speed for optimisation of the 

new CC calculation software were apparent. However if the BIM-ready equations were 

implemented into a standard smart BIM component that can be used in all of the 

connections within a BIM model, this would allow the connection design to be carried 

out within the model directly, allowing for true ACC in terms of the connection design. 

This would also eliminate error created by manual data transfer into and out of the BIM 

model and speed up the process by several orders of magnitude.  

The MDDF approach has been demonstrated here by the creation of BIM-ready equations 

that calculate the timber-to-timber and panel-to-timber connections designed to EC5. 

There are still steel-to-timber connections to be considered in the future.  

The work presented within this thesis was concentrated around the metal dowel type 

timber connections, this process of MDDF has potential for incorporating other 

elements/functions of the construction process into a BIM enabled automated code 

compliance. Looking at Figure 2-4, it can bee see that there are many other types of 

connections types, i.e. Adhesive, Timber connectors and metal plates.  

 

Table 9-1 Floor slab span table for home grown Cross Laminated Timber panels 
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Another example is that of creating a fully BIM enabled ACC tool that calculates the 

maximum floor slab span for home grown Cross Laminated Timber panels see Table 9-1.  

On a wider note, the MDDF method can be used to create solutions for many other 

scenarios, whether the data is from test data or from calculated data as it was in this thesis. 

It can be used to fit any data set and turn raw data into singular equations, which then 

allow for easy implementation into a native BIM environment, for automated code 

compliance functionality.  

 

  

 
Figure 9-1 BIM model output, Generic three-bed semidetached house 



141 

References 

1. Blass, H.J., Bienhaus, A., and Kramer, V. Effective bending capacity of dowel-
type fasteners. in Joints in Timber Structures. 2001: 71 Stuttgart, Germany. 

2. Porteous, J. and Kermani, A., Structural Timber Design to Eurocode 5. 2013: 
Wiley-Blackwell. 

3. Patlakas, P., An Evaluation of Modern Timber Systems for Flexible Housing. 
Architectural Research Quarterly, n.d.: [under review]. 

4. Wood For Good, Key Facts: Wood and the low carbon economy. Available from: 
www.woodforgood.com. 

5. Mahasenan, N., Smith, S., and Humphreys, K. The Cement Industry and Global 
Climate Change: Current and Potential Future Cement Industry CO2 Emissions. 
in Greenhouse Gas Control Technologies - 6th International Conference. 2003,  
2: 995-1000 Kyoto, Japan. 

6. WSA, Steel's contribution to to low carbon future: Worldsteel position paper, in 
Worldsteel-association. 2014. 

7. Hairstans, R., Off-Site and Modern Methods of Timber Construction: A 
Sustainable Approach. 2010: TRADA Technology Limited. 

8. Egan, J., The Egan report-rethinking construction, in Report of the construction 
industry task force to the Deputy Prime Minister. 1998, Department of Trade and 
Industry: London, UK. 

9. Comprehensive report 2002-2003 regarding the role of forest products in climate 
change mitigation. 2003: Brussels. 

10. Brandner, R. Production and Technology of Cross Laminated Timber (CLT): A 
state-of-the-art Report. in Focus Solid Timber Solution-European Conference on 
Cross Laminated Timber (CLT). 2013: 21-22 Graz, Austria. 

11. Kuilen, J.W.G.V.D., Ceccotti, A., Xia, Z., and He, M., Very Tall Wooden 
Buildings with Cross Laminated Timber. Procedia Engineering, 2011. 14: 1621-
1628. 

12. Lehmann, S., Low carbon construction systems using prefabricated engineered 
solid wood panels for urban infill to significantly reduce greenhouse gas 
emissions. Sustainable Cities and Society, 2013. 6: 57-67. 

13. ABS. Australian Bureau of Statistics: Dwelling units approved. 2014; Available 
from: http://www.abs.gov.au/ausstats/abs@.nsf/mf/8731.0. 

14. Baily, R. Housing starts up but more supply needed, Construction Industry 
Federation. 2014; Available from: http://cif.ie/news-feed/blog/407-housing-
starts-up-but-more-supply-needed.html. 

15. CMHC, Preliminary Housing Start Data. November 2014 ed. 2014: Canada 
Mortgage and Housing Corporation. 



142 

16. e-stat. Statistical tables:by structure. 2014; Available from: http://www.e-
stat.go.jp/SG1/estat/ListE.do?lid=000001117116. 

17. Ireland-after-NAMA. Census 2001: Housing stock and vacancy. 2011. 

18. Japan-Property-Central. Japan's nationwide residential vacancy rate hits record 
high of 13.5% 2014; Available from: 
http://japanpropertycentral.com/2014/08/japans-nationwide-residential-vacancy-
rate-hits-record-high-of-13-5/. 

19. O'Driscoll, E., Market Report for Ireland 2011, in UNECE Timber Committe. 
2011, 33. 

20. Palmer, S., Timber frame housing, in Sustainable homes. 2000: Kent, UK. 

21. Statistisk-sentralbyrå. Dwellings, 1 January. 2013; Available from: 
http://www.ssb.no/en/bygg-bolig-og-eiendom/statistikker/boligstat. 

22. Timbertrends, Market report 2012. Structural Timber Association, 2013(11). 

23. TradingEconomics. Sweden Building Starts. 2014; Available from: 
http://www.tradingeconomics.com/sweden/housing-index. 

24. MacDicken, K., Global forest resources assessment 2015: Country report U.K. of 
Great Britain and Northern Ireland. 2014, 81: Rome, Italy. 

25. AMA_Research_Ltd, Timber Merchants Market Report UK 2011-2015 Analysis. 
2011. 

26. Gallagher, R.H., Optimum structural design: Theory and applications. 1973: John 
Wiley & Sons Inc. 

27. Rosenblueth, E., Safety and structural design. Reinforced Concrete Engineering, 
1974. 1: 407-516. 

28. Esteva, L. and Rosenblueth, E., Design Of Earthquake Resistant Structures. 1980: 
Pentech Press. 

29. Bertero, V.V. State of the art report on: design criteria. in Proceedings of 11th 
world conference on earthquake engineering. 1996:  Acapulco, Mexico. 

30. Brooker, O., Eurocodes: How to use them and how to realize their potential for 
your business. 2015: BSI. 

31. Biggs, J.M., Introduction to structural engineering analysis and design. 1986: 
Prentice-Hall. 

32. Bertero, V.V. The need for multi-level seismic design criteria. in Proceedings of 
11th World Conference on Earthquake Engineering. 1996, (2120):  Acapulco, 
Mexico. 

33. Leelataviwat, S., Goel, S.C., and Chao, S.-H., Plastic versus Elastic Design of 
Steel Structures, in Structural Engineering and Geomechanics - Volume 1. 
2020.196. 



143 

34. Heyman, J., Structural analysis: a historical approach [This provides a historical 
review of the methods of structural analysis and design including elastic and 
plastic analysis theories]. 1998: Cambridge University Press. 

35. Horne, M., Fundamental Propositions in the Plastic Theory of Structures. Journal 
of the Institution of Civil Engineers, 1950. 34(6): 174-177. 

36. Greenberg, H.J. and Prager, W., Limit design of beams and frames. Transactions 
of the American Society of Civil Engineers, 1952. 117(1): 447-458. 

37. CP-112, Code of practice for the structural use of timber. 1973, BSI Standards 
Publication. 

38. BSI, BS-5268-2 Structural use of timber. Code of practice for permissible stress 
design, materials and workmanship. 2002, BSI Standards Publication. 

39. Foliente, G.C., Developments in performance-based building codes and 
standards. Forest Products Journal, 2000. 50(7/8): 12. 

40. Heidkamp, H. and Papaioannou, I. Performance Based Design and Eurocode. in 
Proceedings of the 7th International Symposium on Geotechnical Safety and Risk 
(ISGSR). 2011: 519-526 Munich, Germany. 

41. Harker, S., Swdish-wood, Timber-Trade-Federation, and UK-Timber-Frame-
Association, Thinking outside the box. 2013, Timber-Trade-Federation and UK-
Timber-Frame-Association London, UK. 

42. United_Nations, Forest Products: Annual Market Review 2012-2013: Geneva 
Timber and Forest Study Paper 33. 2013, Food and Agriculture Organization of 
the UN. 

43. Gibb, A., Standardisation and Customisation in Construction: A Review of Recent 
and Current Industry and Research Initiatives on Standardisation and 
Customisation in Construction, in CRISP, London, United Kingdom. 2001. 

44. Renz, A., Solas, M., Almeida, P., Buhler, M., Gerbert, P., Castagnino, S., and 
Rothballer, C. Shaping the Future of Construction. A Breakthrough in Mindset 
and Technology. in World Economic Forum. 2016,  7. 

45. Dubois, A. and Gadde, L.-E., Supply strategy and network effects—purchasing 
behaviour in the construction industry. European journal of purchasing & supply 
management, 2000. 6(3-4): 207-215. 

46. Hu, Q., Dewancker, B., Zhang, T., and Wongbumru, T., Consumer Attitudes 
Towards Timber Frame Houses in China. Procedia-Social and Behavioral 
Sciences, 2016. 216: 841-849. 

47. Jonsson, R., Prospects for timber frame in multi-storey house building in England, 
France, Germany, Ireland, the Netherlands and Sweden. 2009, School of 
Technology and Design, Växjö University: Växjö, Sweden. 

48. Roos, A., Woxblom, L., and McCluskey, D., Τhe influence of architects and 
structural engineers on timber in construction–perceptions and roles. Silva 
Fennica, 2010. 44(5): 871-884. 



144 

49. Schmidt, J. and Griffin, C.T. Barriers to the design and use of cross-laminated 
timber structures. in International Conference of Structures and Architecture. 
2013:  Guimaraes, Portugal. 

50. Canada Wood. Wood Frame Construction Report in China. 2014; Available from: 
http://canadawood.org/reports/china/market-development-activities/2007/. 

51. Xia, B., O'Neill, T., Zuo, J., Skitmore, M., and Chen, Q., Perceived obstacles to 
multi-storey timber-frame construction: an Australian study. Architectural 
Science Review, 2014. 57(3): 169-176. 

52. Vernikos, V.K., Goodier, C.I., Gibb, A.G., Robery, P., and Broyd, T., Realising 
offsite construction and standardisation within a leading UK infrastructure 
consultancy. repository.lboro.ac.uk, 2012. 

53. Barker, K., Review of Housing Supply: Securing Our Future Housing Needs: 
Interim Report: Analysis. 2003: HM Stationery Office. 

54. Piroozfar, P. and Piller, F.T., Mass customisation and personalisation in 
architecture and construction: an introduction. Mass Customisation and 
Personalisation in Architecture and Construction, ed. P.A.E. Piroozfar and F.T. 
Piller. 2013, London, UK: Routledge. 3-14. 

55. Hairstans, R., Building offsite, an introduction. 2016: Construction scotland 
innovation centre. 

56. Pine, B.J., Victor, B., and Boynton, A.C., Making mass customization work. 
Harvard business review, 1993. 71(5): 108-11. 

57. Kotler, P., From mass marketing to mass customization. Planning review, 1989. 
17(5): 10-47. 

58. Davis, S., Future Perfect: A Startling Vision of the Future We Should Be 
Managing Now. 1987, Reading, MA: Addison-Wesley. 

59. HM-Government, Construction 2025. 2013, BIS/13/955. 

60. Salvador, F., De Holan, P.M., and Piller, F.T., Cracking the code of mass 
customization. MIT Sloan management review, 2009. 50(3): 71. 

61. Piroozfar, P.A. and Piller, F.T., Mass customisation and personalisation in 
architecture and construction. 2013: Routledge. 

62. Huffman, C. and Kahn, B.E., Variety for sale: Mass customization or mass 
confusion? Journal of retailing, 1998. 74(4): 491-513. 

63. BSI, BS EN 1995-1-1: Eurocode 5: Design of timber structures, Part 1-1: General 
-Common rules and rules for buildings. 2004, BSI Standards Publication. 

64. Johansen, K., Forsøg med træ for bindelser (Experiments with wood for 
connections). Bygningsstatiske meddelelser 1941. 2. 

65. Johansen, K., Theory of timber connections. International Association of Bridge 
and Structural Engineering, 1949. 9(4): 249-262. 



145 

66. Larsen, H.J., Johansen’s nail tests. Bygningsstatiske meddelelser 1977(48, 1). 

67. McLain, T.E. Connectors and fasteners: research needs and goals. in Wood 
Engineering in the 21st Century: Research Needs and Goals. 1998: 56-69, ASCE.  
Portland, Oregon. 

68. Foliente, G., Design of timber structures subjected to extreme loads. Progress in 
Structural Engineering and Materials, 1998. 1(3): 236-244. 

69. Möller, T., En ny metod för beräkning av spikförband [New method of estimating 
the bearing strength of nailed wood connections]. 1950, Report. 

70. Aune, P. and Patton-Mallory, M., Lateral load-bearing capacity of nailed joints 
based on the yield theory: theoretical development. Vol. 469. 1986: United States 
Department of Agriculture, Forest Service, Forest Products Laboratory. 

71. Daudeville, L., Davenne, L., and Yasumura, M., Prediction of the load carrying 
capacity of bolted timber joints. Wood Science and Technology, 1999. 33(1): 15-
29. 

72. Hilson, B., Whale, L., and Smith, I., Characteristic properties of nailed and bolted 
joints under short-term lateral load, part 5 – appraisal of current design data in BS 
5268: part 2: 1984, structural use of timber. Institute of Wood Science, 1990. 
11(6): 208 - 212. 

73. Whale, L. and Smith, I. The derivation of design clauses for nailed and bolted 
joints in Eurocode 5. in Proceedings of the CIB-W18 Meeting. 1986,  19:  
Florence, Italy. 

74. Whale, L., Smith, I., and Larsen, H. Design of nailed and bolted joints proposals 
for the revision of existing formulae in draft Eurocode 5 and the CIB code. in 
Proceedings of the CIB-W18 Meeting. 1987: 20-7 Dublin, Ireland. 

75. Siimes, F., Johanson, P., and Niskanen, E., Investigations on the ultimate 
embedding stress and nail holding power of finish pine. The State Institute for 
Technical Research, Tiedoitus, 1954. 122. 

76. Meyer, A., Die Tragfähigkeit von Nagelverbindungen bei statischer Belastung 
(The load bearing capacity of nail joints under static load.). HOLZ als Roh-und 
Werkstoff, 1957. 15(2): 96-109. 

77. Hilson, B.O., Timber Engineering Step 1-Basis of design, material properties, 
structural components and joints: Lecture C3: joints with dowels type fasteners – 
theory. 1995: Almere. 

78. Hansen, K.F., Mechanical properties of self-tapping screws and nails in wood. 
Canadian Journal of Civil Engineering, 2002. 29(5): 725-733. 

79. Jockwer, R., Steiger, R., and Frangi, A. Evaluation of the reliability of design 
approaches for connections perpendicular to the grain. in International Network 
on Timber Engineering Research (INTER). 2015: 131-145, Timber Scientific 
Publishing.  Karlsruhe, Germany. 

80. Blass, H. and Bejtka, I. Screws with continuous threads in timber connections. in 
RILEM Proceedings PRO. 2001,  22: 193-202. 



146 

81. Blass, H.J., Bejtka, I., and Uibel, T., Load capacity of connections with self-
drilling wood screws with full thread - German. 2006: KIT Scientific Publishing. 

82. Pirnbacher, G., Brandner, R., and Schickhofer, G., Base parameters of self-
tapping screws. Proceedings of CIBW, 2009. 18. 

83. Frese, M., Fellmoser, P., and Blass, H.J., Models for the calculation of the 
withdrawal capacity of self-tapping screws. European Journal of Wood and Wood 
Products, 2010. 68(4): 373-384. 

84. Hübner, U., Withdrawal strength of self-tapping screws in hardwoods. 
Proceedings of the 46th CIB W18 Meeting, 2013. 46. 

85. Ellingsbo, P. and Malo, K.A. Withdrawal capacity of long self-tapping screws 
parallel to grain direction. in World conference on timber engineering. 2012: 228-
237 Auckland, New Zealand. 

86. Ringhofer, A., Brandner, R., and Schickhofer, G. A Universal Approach for 
Withdrawal Properties of Self‐Tapping Screws in Solid Timber and Laminated 
Timber Products. in International Network on Timber Engineering Research 
(INTER). 2015: 79-96 Karlsruhe, Germany. 

87. Uibel, T. and Blass, H.J. Edge joints with dowel type fasteners in cross laminated 
timber. in Proceedings of the CIB-W18 Meeting. 2007:  Bled, Slovenia. 

88. Blass, H.J. and Colling, F. Load‐carrying capacity of dowelled connections. in 
International Network on Timber Engineering Research (INTER). 2015: 115-129 
Karlsruhe, Germany. 

89. Brandner, R., Ringhofer, A., and Grabner, M., Probabilistic models for the 
withdrawal behavior of single self-tapping screws in the narrow face of cross 
laminated timber (CLT). European Journal of Wood and Wood Products, 2018. 
76(1): 13-30. 

90. Stingl, R., Zukal, M.L., and Teischinger, A., Holzbauanteil in Österreich: 
statistische Erhebung von Hochbauvorhaben: Share of timber structures in 
Austria: statistical evaluation of building constructions. 2011: ProHolz Austria, 
Arbeitsgemeinschaft der Österreichischen Holzwirtschaft zur Förderung der 
Anwendung von Holz. 

91. Lane, T. The rise of cross laminated timber. Building. co. uk. 2016; Available 
from: https://www.building.co.uk/technical-case-studies/the-rise-of-cross-
laminated-timber/5069291.article. 

92. Jones, K., Stegemann, J., Sykes, J., and Winslow, P., Adoption of unconventional 
approaches in construction: The case of cross-laminated timber. Construction and 
Building Materials, 2016. 125: 690-702. 

93. rothoblaas, Screws for Wood Catalogue. 2014, rothoblaas. 

94. BuildingSMART. Technical Vision. 2016; Available from: 
http://buildingsmart.org/standards/technical-vision/. 

95. Russell, P. and Elger, D. The Meaning of BIM. in Architecture in Computro -26th 
eCAADe Conference Proceedings. 2008:  Antwerpen, Germany. 



147 

96. Björk, B.-C., Basic structure of a proposed building product model. Computer 
Aided Design, 1989. 21(2): 71-78. 

97. Ding, L., Zhou, Y., and Akinci, B., Building Information Modeling (BIM) 
application framework: The process of expanding from 3D to computable nD. 
Automation in Construction, 2014. 46: 82-93. 

98. Eastman, C., Teicholz, P., Sacks, R., and Liston, K., BIM handbook: A guide to 
building information modeling for owners, managers, designers, engineers and 
contractors. 2011: John Wiley and sons. 

99. Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C., and O'Reilly, K., 
Technology adoption in the BIM implementation for lean architectural practice. 
Automation in Construction, 2011. 20(2): 189-195. 

100. Penttilä, H. Early architectural design and BIM. in Computer-Aided Architectural 
Design Futures. 2007: 291-302 Dordrecht, Netherlands. 

101. Cheung, F.K., Rihan, J., Tah, J., Duce, D., and Kurul, E., Early stage multi-level 
cost estimation for schematic BIM models. Automation in Construction, 2012. 27: 
67-77. 

102. Smith, P., BIM & the 5D project cost manager. Procedia-Social and Behavioral 
Sciences, 2014. 119: 475-484. 

103. Abanda, F.H. and Byers, L., An investigation of the impact of building orientation 
on energy consumption in a domestic building using emerging BIM (Building 
Information Modelling). Energy, 2016. 97: 517-527. 

104. Poirier, E.A., Staub-French, S., and Forgues, D., Measuring the impact of BIM on 
labor productivity in a small specialty contracting enterprise through action-
research. Automation in Construction, 2015. 58: 74-84. 

105. TEKLA. Structural Designer. 2016; Available from: 
https://www.tekla.com/uk/products/tekla-structural-designer. 

106. Computers & Structures Inc. Building Information Modeling. 2016; Available 
from: https://www.csiamerica.com/building-information-modeling. 

107. Schinler, D. and Nelson, E., BIM and the Structural Engineering Community, in 
STRUCTURE. 2008, 10-12. 

108. Volk, R., Stengel, J., and Schultmann, F., Building Information Modeling (BIM) 
for existing buildings — Literature review and future needs. Automation in 
Construction, 2014. 38: 109-127. 

109. Marasini, R. and Patlakas, P. Is there a business case for small to medium 
enterprises (SMES) to use building information modelling? in 1st UK Academic 
conference on BIM. 2012:  Newcastle, UK. 

110. IStructE and TRADA, Manual for the design of timber building structures to 
Eurocode 5. 2007, London, UK: The Institution of Structural Engineers. 

111. Computers and Structures Inc. SAP2000 - Compare Levels. 2016; Available from: 
https://www.csiamerica.com/products/sap2000/compare-levels. 



148 

112. Autodesk. Robot Structural Analysis - Timber Design. 2014; Available from: 
https://knowledge.autodesk.com/support/robot-structural-analysis-
products/learn-explore/caas/CloudHelp/cloudhelp/2014/ENU/Robot/files/GUID-
6E2262BF-610E-421A-A342-33D7BE012925-htm.html. 

113. Ltd, T.R.E. Teretron. 2016; Available from: https://www.teretron.com/. 

114. Succar, B., Building information modelling framework: A research and delivery 
foundation for industry stakeholders. Automation in Construction, 2009. 18(3): 
357-375. 

115. NBS. BIM Levels explained. 2014; Available from: 
https://www.thenbs.com/knowledge/bim-levels-explained. 

116. Wang, Y., Wang, X., Wang, J., Yung, P., and Jun, G., Engagement of Facilities 
Management in Design Stage through BIM: Framework and a Case Study. 
Advances in Civil Engineering, 2013. 2013: 8. 

117. McArthur, J.J., A Building Information Management (BIM) Framework and 
Supporting Case Study for Existing Building Operations, Maintenance and 
Sustainability. Procedia Engineering, 2015. 118: 1104-1111. 

118. Song, S., Yang, J., and Kim, N., Development of a BIM-based structural 
framework optimization and simulation system for building construction. 
Computers in Industry, 2012. 63(9): 895-912. 

119. Porwal, A. and Hewage, K.N., Building Information Modeling (BIM) partnering 
framework for public construction projects. Automation in Construction, 2013. 
31: 204-214. 

120. Choi, B., Lee, H., Park, M., Chom, Y., and Kim, H., Framework for Work-Space 
Planning Using Four-Dimensional BIM in Construction Projects. Journal of 
Construction Engineering and Management, 2014. 140(9): 04014041. 

121. Chavada, R., Dawood, N., and Kassem, M., Construction workspace 
management: the development and application of a novel nD planning approach 
and tool. Journal of Information Technology in Construction (ITcon), 2012. 17: 
213-236. 

122. Kim, M.-K., Cheng, J.C.P., Sohn, H., and Chang, C.-C., A framework for 
dimensional and surface quality assessment of precast concrete elements using 
BIM and 3D laser scanning. Automation in Construction, 2015. 49, Part B: 225-
238. 

123. Park, C.-S., Lee, D.-Y., Kwon, O.-S., and Wang, X., A framework for proactive 
construction defect management using BIM, augmented reality and ontology-
based data collection template. Automation in Construction, 2013. 33: 61-71. 

124. Cerovsek, T., A review and outlook for a ‘Building Information Model’ (BIM): 
A multi-standpoint framework for technological development. Advanced 
Engineering Informatics, 2011. 25(2): 224-244. 

125. Singh, V., Gu, N., and Wang, X., A theoretical framework of a BIM-based multi-
disciplinary collaboration platform. Automation in Construction, 2011. 20(2): 
134-144. 



149 

126. Lu, W. and Olofsson, T., Building information modeling and discrete event 
simulation: Towards an integrated framework. Automation in Construction, 2014. 
44: 73-83. 

127. Kadolsky, M., Baumgärtel, K., and Scherer, R.J., An Ontology Framework for 
Rule-based Inspection of eeBIM-systems. Procedia Engineering, 2014. 85: 293-
301. 

128. Hofmeyer, H. and Bakker, M., Spatial to kinematically determined structural 
transformations. Advanced Engineering Informatics, 2008. 22(3): 393-409. 

129. Lee, S.-I., Bae, J.-S., and Cho, Y.S., Efficiency analysis of Set-based Design with 
structural building information modeling (S-BIM) on high-rise building 
structures. Automation in Construction, 2012. 23: 20-32. 

130. Panko, R.R., What we know about spreadsheet errors. Journal of Organizational 
and End User Computing (JOEUC), 1998. 10(2): 15-21. 

131. Powell, S.G., Baker, K.R., and Lawson, B., Errors in operational spreadsheets. 
Journal of Organizational and End User Computing (JOEUC), 2009. 21(3): 24-
36. 

132. Powell, S.G., Baker, K.R., and Lawson, B., Impact of errors in operational 
spreadsheets. Decision Support Systems, 2009. 47(2): 126-132. 

133. Reinhart, C.M. and Rogoff, K.S., Growth in a Time of Debt. American economic 
review, 2010. 100(2): 573-78. 

134. Herndon, T., Ash, M., and Pollin, R., Does high public debt consistently stifle 
economic growth? A critique of Reinhart and Rogoff. Cambridge journal of 
economics, 2014. 38(2): 257-279. 

135. Solihin, W. and Eastman, C., Classification of rules for automated BIM rule 
checking development. Automation in Construction, 2015. 53: 69-82. 

136. Tan, X., Hammad, A., and Fazio, P., Automated code compliance checking for 
building envelope design. Journal of Computing in Civil Engineering, 2010. 
24(2): 203-211. 

137. Zhang, J. and El-Gohary, N.M., Automated Information Transformation for 
Automated Regulatory Compliance Checking in Construction. Journal of 
Computing in Civil Engineering, 2015: B4015001. 

138. Jeong, J. and Lee, G., Requirements for automated code checking for fire 
resistance and egress rule using BIM. ICCEMICCPM 2009, 2010: 316-322. 

139. Shih, S., Sher, W., and Giggins, H. Assessment of the Building Code of Australia 
to Inform the Development of BIM-enabled Code-checking Systems. in 
Proceedings of CIB World Building Congress. 2013:  London, UK. 

140. Greenwood, D., Lockley, S., Malsane, S., and Matthews, J. Automated 
compliance checking using building information models. in The Construction, 
Building and Real Estate Research Conference of the Royal Institution of 
Chartered Surveyors. 2010, RICS.  Paris, France. 



150 

141. Preidela, C. and Borrmanna, A. Automated Code Compliance Checking Based on 
a Visual Language and Building Information Modeling. in ISARC. Proceedings 
of the International Symposium on Automation and Robotics in Construction. 
2015,  32: 1, Vilnius Gediminas Technical University, Department of 
Construction Economics & Property.  Oulu, Finland. 

142. Eastman, C., Eastman, C.M., Teicholz, P., and Sacks, R., BIM handbook: A guide 
to building information modeling for owners, managers, designers, engineers and 
contractors. 2011: John Wiley & Sons. 

143. Kam, C., Fischer, M., Hänninen, R., Karjalainen, A., and Laitinen, J., The product 
model and Fourth Dimension project. Electronic Journal of Information 
Technology in Construction, 2003. 8: 137-166. 

144. Mihindu, S. and Arayici, Y. Digital construction through BIM systems will drive 
the re-engineering of construction business practices. in 2008 International 
Conference Visualisation. 2008: 29-34, IEEE.  London, UK. 

145. Dimyadi, J., Clifton, C., Spearpoint, M., and Amor, R. Regulatory knowledge 
encoding guidelines for automated compliance audit of building engineering 
design. in Proceedings of the ICCCBE/CIB W78. 2014:  Orlando, Florida. 

146. Fenves, S.J., Tabular decision logic for structural design. Journal of the Structural 
Division, 1966. 92(6): 473-490. 

147. Fenves, S.J., Gaylord, E.H., and Goel, S.K., Decision table formulation of the 
1969 AISC specification. 1969, University of Illinois Engineering Experiment 
Station. College of Engineering. University of Illinois at Urbana-Champaign. 

148. Tan, X., Fazio, P., and Hammad, A., Automated Code Compliance Checking for 
Building Envelope Performance. American Society of Civil Engineers, 2010: 256-
263. 

149. Eastman, C., Lee, J.-m., Jeong, Y.-s., and Lee, J.-k., Automatic rule-based 
checking of building designs. Automation in Construction, 2009. 18(8): 1011-
1033. 

150. Lee, J.M., Automated checking of building requirements on circulation over a 
range of design phases. 2010, Georgia Institute of Technology. 

151. Lee, H., Lee, J.-K., Park, S., and Kim, I., Translating building legislation into a 
computer-executable format for evaluating building permit requirements. 
Automation in Construction, 2016. 71: 49-61. 

152. Solihin, W., A simplified BIM data representation using a relational database 
schema for an efficient rule checking system and its associated rule checking 
language. 2015, Georgia Institute of Technology. 

153. Salama, D. and El-Gohary, N., Semantic modeling for automated compliance 
checking, in Computing in Civil Engineering. 2011.641-648. 

154. Yurchyshyna, A., Faron-Zucker, C., Le Thanh, N., and Zarli, A. Towards an 
ontology-based approach for formalisation of expert knowledge in conformity 
checking model in construction. in Technology Management Conference (ICE). 
2008: 1-8, IEEE International.  Lisbon, Portugal. 



151 

155. Zhong, B., Ding, L., Luo, H., Zhou, Y., Hu, Y., and Hu, H., Ontology-based 
semantic modeling of regulation constraint for automated construction quality 
compliance checking. Automation in Construction, 2012. 28: 58-70. 

156. Yang, Q. and Li, X. Representation and execution of building codes for automated 
code checking. in Computer Aided Architectural Design Futures. 2001: 315-329, 
Springer.  Dordrecht, Netherlands. 

157. Khemlani, L., CORENET e-PlanCheck: Singapore's automated code checking 
system. AECbytes, October, 2005. 

158. Drogemuller, R., Jupp, J., Rosenman, M.A., and Gero, J.S. Automated code 
checking. in CRC for Construction Innovation, Clients Driving Innovation 
International Conference. 2004:  Surfers Paradise, Australia. 

159. Ding, L., Drogemuller, R., Rosenman, M., Marchant, D., and Gero, J. Automating 
code checking for building designs-DesignCheck. in Clients Driving Innovation: 
Moving Ideas into Practice. 2006, CRC for Construction Innovation.  Brisbane, 
Australia. 

160. Dimyadi, J. and Amor, R. Automated Building Code Compliance Checking–
Where is it at. in Proceedings of CIB WBC. 2013: 172-185 Brisbane, Australia. 

161. Balaban, Ö., Kilimci, E.S.Y., and Cagdas, G. Automated Code Compliance 
Checking Model for Fire Egress Codes. in Proceedings of the 30th eCAADe 
Conference - Volume 2. 2012,  2: 117-125 Prague, Czech Republic. 

162. Malsane, S., Matthews, J., Lockley, S., Love, P.E., and Greenwood, D., 
Development of an object model for automated compliance checking. Automation 
in Construction, 2015. 49: 51-58. 

163. Ha, T.H.N.-K.H. and Bedard, C. Architectural and structural design with code 
compliance checking. in 3rd Design and Decision Support Systems in 
Architecture and Urban Planning. 1996:  Spa, Belgium. 

164. Michalski, R.S., Carbonell, J.G., and Mitchell, T.M., Machine learning: An 
artificial intelligence approach. 2013: Springer Science & Business Media. 

165. Steiner, B., Mousavian, E., Saradj, F.M., Wimmer, M., and Musialski, P., 
Integrated Structural–Architectural Design for Interactive Planning. Computer 
Graphics Forum, 2017. 36(8): 80-94. 

166. Scherer, R. and Gehre, A., An approach to a knowledge-based design assistant 
system for conceptual structural system design. Proc., ECPPM 2000, Product and 
Process Modeling in Building and Construction, 2000: 229-238. 

167. Sacks, R., Warszawski, A., and Kirsch, U., Structural design in an automated 
building system. Automation in Construction, 2000. 10(1): 181-197. 

168. Mora, R., Rivard, H., and Bédard, C., Computer representation to support 
conceptual structural design within a building architectural context. Journal of 
Computing in Civil Engineering, 2006. 20(2): 76-87. 



152 

169. Mora, R., Bédard, C., and Rivard, H., A geometric modelling framework for 
conceptual structural design from early digital architectural models. Advanced 
Engineering Informatics, 2008. 22(2): 254-270. 

170. Luth, G.P., Jain, D., Krawinkler, H., and Law, K.H., A formal approach to 
automating conceptual structural design, Part I: Methology. Engineering with 
Computers, 1991. 7(2): 79-89. 

171. Huang, L., Breit, M., and Mensinger, M. Approach to handle architectural 
flexibility requirements for automated structural design proposals of steel 
concrete office buildings in early design phases. in Proceedings of the 
International Workshop: Intelligent Computing in Engineering. 2012: 4-6 
Herrsching, Germany. 

172. Hofmeyer, H., Cyclic application of transformations using scales for spatially or 
structurally determined design. Automation in construction, 2007. 16(5): 664-673. 

173. Fenves, S.J., Rivard, H., and Gomez, N., SEED-Config: a tool for conceptual 
structural design in a collaborative building design environment. Artificial 
Intelligence in Engineering, 2000. 14(3): 233-247. 

174. Breit, M., Huang, L., Lang, F., Ritter, F., and Borrmann, A. Serious Play: Intuitive 
Architectural Conceptual De-Sign With Immediate Structural Feedback and Eco-
Nomical and Ecological Performance Predictions. in Procedings of the 12th 
International Conference on Construction Applications of Virtual Reality. 2012:  
Taipei Taiwan. 

175. Rafiq, M., Packham, I., Easterbrook, D., and Denham, S., Visualizing search and 
solution spaces in the optimum design of biaxial columns. Journal of computing 
in civil engineering, 2006. 20(2): 88-98. 

176. James, M. and Odell, J.J., Object-Oriented Methods: A Foundation. 1995: 
Prentice Hall. 

177. Ismail, A., Ali, K., and Iahad, N. A Review on BIM-based automated code 
compliance checking system. in 5th International Conference on Research and 
Innovation in Information Systems (ICRIIS). 2017: 1-6 Langkawi, Malaysia. 

178. Sacks, R., Integrated AEC information services using object methods and a central 
project model. Computer‐Aided Civil and Infrastructure Engineering, 2002. 
17(6): 449-456. 

179. Sacks, R., Issues in the development and implementation of a building project 
model for an automated building system. International Journal of Construction 
Information Technology, 1998. 5: 75-101. 

180. Clarke, M. and Harley, P., How smart is your content? Using semantic enrichment 
to improve your user experience and your bottom line. Science Editor, 2014. 
37(2): 40-44. 

181. Belsky, M., Sacks, R., and Brilakis, I., Semantic enrichment for building 
information modeling. Computer‐Aided Civil and Infrastructure Engineering, 
2016. 31(4): 261-274. 

182. Fionna, C., Structural Engineer's Pocket Book: Eurocodes. 2014: CRC Press. 



153 

183. KLH, Structural Pre-Analysis Tables. 2017: Katsch, Murau. 

184. Mitek. PAMIR Software. 2017; Available from: 
http://www.mitek.co.uk/PAMIR/. 

185. Wiehag. Solid Timber Solutions. 2017; Available from: 
http://en.timberconstruction.wiehag.com/content/download/2355/17645/file/WI
EHAG_Company_brochure_English_01.pdf. 

186. Xu, R., Solihin, W., and Huang, Z. Code Checking and Visualization of an 
Architecture Design. in Proceedings of the conference on Visualization. 2004: 
598.10, IEEE Computer Society.  Austin, Texas. 

187. Von Bertalanffy, L., The history and status of general systems theory. Academy 
of Management Journal, 1972. 15(4): 407-426. 

188. Ltd, T.R.E. Teratron. 2019; Available from: http://teretron.cz/. 

189. Dluble. Timber to Timber. 2019; Available from: 
https://www.dlubal.com/en/products/rfem-and-rstab-add-on-
modules/connections/rf-joints-timber-timber-to-timber. 

190. Dluble. Steel to Timber. 2019; Available from: 
https://www.dlubal.com/en/products/rfem-and-rstab-add-on-
modules/connections/rf-joints-timber-steel-to-timber. 

191. BIMWARE. Master EC5 Timber Connections. 2019; Available from: 
https://bimware.com/en/software/master-for-the-eurocodes/master-ec5-timber-
connections.html. 

192. Slonim, D.K., From patterns to pathways: gene expression data analysis comes of 
age. Nature Genetics, 2002. 

193. Luo, J., Duggan, D.J., Chen, Y., Sauvageot, J., Ewing, C.M., Bittner, M.L., Trent, 
J.M., and Isaacs, W.B., Human prostate cancer and benign prostatic hyperplasia 
molecular dissection by gene expression profiling. Cancer research, 2001. 
61(12): 4683-4688. 

194. Abolfazl, M., Joshua, A.A., and Kermit, W., Population Synthesis with 
Subregion-Level Control Variable Aggregation. Journal of Transportation 
Engineering, 2009. 135(9): 632-639. 

195. Fang, L. and Gossard, D.C., Multidimensional curve fitting to unorganized data 
points by nonlinear minimization. Computer-Aided Design, 1995. 27(1): 48-58. 

196. Garcke, J. and Hegland, M., Fitting multidimensional data using gradient 
penalties and the sparse grid combination technique. Computing, 2009. 84(1): 1-
25. 

197. Roger, S., Multidimensional scaling, tree-fitting, and clustering. Science, 1980. 
210(4468): 390-398. 

198. Snyder, C., A project manager's book of tools and techniques: a companion to the 
PMBOK Guide. 2018: Wiley. 



154 

199. Patlakas, P., Livingstone, A., and Hairstans, R. A BIM Platform for Offsite 
Timber Construction. in eCAADe. 2015,  1(33): 597-604 Vienna, Austria. 

200. MathWorks. lsqcurvefit Documentation. 2017; Available from: 
https://uk.mathworks.com/help/optim/ug/lsqcurvefit.html?s_tid=gn_loc_drop. 

201. Coleman, T. and Li, Y., On the Convergence of Reflective Newton Methods for 
Large-scale Nonlinear Minimization Subject to Bounds vol. 67. 1994, Ithaca, NY, 
USA: Cornell University. 

202. Coleman, T.F. and Li, Y., An Interior Trust Region Approach for Nonlinear 
Minimization Subject to Bounds. SIAM Journal on Optimization, 1996. 6(2): 418-
445. 

203. Sorensen, D.C., Newton’s Method with a Model Trust Region Modification. 
SIAM Journal on Numerical Analysis, 1982. 19(2): 409-426. 

204. Levenberg, K., A method for the solution of certain non-linear problems in least 
squares. Quarterly of applied mathematics, 1944. 2(2): 164-168. 

205. Marquardt, D.W., An algorithm for least-squares estimation of nonlinear 
parameters. Journal of the society for Industrial and Applied Mathematics, 1963. 
11(2): 431-441. 

206. Moré, J.J., The Levenberg-Marquardt algorithm: implementation and theory, in 
Numerical analysis. 1978.105-116, Springer. 

207. Bentler, P.M. and Bonett, D.G., Significance tests and goodness of fit in the 
analysis of covariance structures. Psychological bulletin, 1980. 88(3): 588. 

208. Tedds, T. Tekla Tedds. 2015; Available from: http://www.tekla.com/CSC-is-
tekla. 

209. EPSRC. Structural optimisation of timber offsite modern methods of construction. 
2010; Available from: 
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/I018778/1. 

210. Leitch, K., PhD thesis: The development of a hybrid racking panel. 2010. 

211. Mendez, J., Timber frame racking panel design (EN1995). 2014, TEKLA Tedds. 

212. PD-6693-1, UK noncontradictory complementary information to Eurocode 5: 
design of timber structures, part 1: general common rules and rules for buildings. 
2012, BSI Standards Publication. 

213. BSI, BS EN 1995-1-1:2004+A2:2014, Eurocode 5: Design of timber structures. 
General. Common rules and rules for buildings. 2014, BSI Standards Publication. 

214. BSI, BS 5268-2:2002 Structural use of timber. Code of practice for permissible 
stress design, materials and workmanship. 2002, BSI Standards Publication. 

215. Livingstone, A., Menendez, J., Leitch, K., and Hairstans, R. The Case for Mass 
Customisation of Structural Timber Design. in Structures Congress 2015. 2015, 
ASCE.  Portland, OR. 



155 

216. McKenzie, W.M.C. and Zhang, B., Design of structural timber to Eurocode 5. 
2007: Basingstoke : Palgrave Macmillan  

217. BSI, BS 8605-2 External timber cladding – Part 2: Code of practice for design and 
installation. 2019, BSI Standards Publication. 

218. Johnstone, D., Hairstans, R., and Livingstone, A. Design of a long span Belfast 
truss using UK home-grown timber. in 6th European Conference on 
Computational Mechanics (Solids, Structures and Coupled Problems) 7th 
European Conference on Computational Fluid Dynamics. 2018:  Glasgow, UK. 

219. Gould, M., Jennings, A., and Montgomery, R., Belfast roof truss. Structural 
Engineer, 1992. 70: 127-9. 

220. BSI, BS EN 338:2016 Structural Timber - Strength Classes. 2016, BSI Standards 
Publication. 

221. Ridley-Ellis, D., Adams, S., and Lehneke, S. Thinking beyond the usual strength 
grades-with examples of British spruce and larch. in Proceedings of the World 
Conference on Timber Engineering. 2016:  Vienna, Austria. 

222. Ridley-Ellis, D., Derivation of GoldenEye-702 grading machine settings for 
British Spruce. 2014, Report for CEN TC124/WG2/TG1: Edinburgh Napier 
University. 

223. Davies, I., Sustainable construction timber: sourcing and specifying local timber. 
2016: Forestry Commission. 

224. Brewer, A., 50-year forecast of softwood timber availability. 2014, Forestry 
Commission, National Forest Inventory: http://www.forestry.gov.uk/inventory. 

225. Brewer, A., 50-year forecast of Hardwood timber availability. 2014, Forestry 
Commission, National Forest Inventory: http://www.forestry.gov.uk/inventory. 

226. Ridley-Ellis, D., Grade in Britain. 2016: http://blogs.napier.ac.uk/cwst/grade-in-
britain/. 

227. Ridley-Ellis, D., Stapel, P., and Baño, V., Strength grading of sawn timber in 
Europe: an explanation for engineers and researchers. European Journal of Wood 
and Wood Products, 2016. 74(3): 291-306. 

228. The Passivhaus standard. 2019; Available from: https://passivehouse.com/. 

229. What is Passivhaus? 2018; Available from: http://www.passivhaustrust.org.uk/. 

230. BSI, BS EN 1382:1999 Timber structures. Test methods. Withdrawal capacity of 
timber fasteners. 1999, British Standard Institution. 

231. Livingstone, A., Patlakas, P., Milne, M., Smith, S., and Hairstans, R. Multi-
dimensional data fitting for the structural design of a simple timber connection. in 
World Conference on Timber Engineering (WCTE 2016). 2016: 2037-2044, 
Vienna University of Technology.  Vienna, Austria. 

232. Meacham, B.J., Performance-Based Building Regulatory Systems. 2010: Inter-
jurisdictional Regulatory Collaboration Committee. 



156 

233. BSI, BS-4978 Visual strength grading of softwood - Specification. 2007, BSI 
Standards Publication. 

234. BSI, BS EN 408 Timber structures - structural timber and glued laminated timber 
- Determination of some physical and mechanical properties. 1995, BSI Standards 
Publication. 

235. BSI, BS EN 384 Structural timber. Determination of characteristic values of 
mechanical properties and density. 1995, BSI Standards Publication. 

236. BSI, BS EN 338:2009 Structural Timber - Strength Classes. 2009, BSI Standards 
Publication. 

237. FprEN-338, Structural timber—strength classes. 2015, European Committee for 
Standardization, Brussels. 

238. BSI, BS EN 1990 Eurocode 0, BS EN 1990 Basis of sturctural design. 2002, BSI 
Standards Publication. 

239. BSI, BS EN 1991-1-1 Eurocode 1: Actions on structrues - Part 1-1: General 
actions - Densities, self-weight, imposed loads for buildings. 2009, BSI Standards 
Publication. 

240. Harris, R., Manual for the design of timber building structures to Eurocode 5. 
2007, London, UK: Institution of Structural Engineers. 

241. Adhesives.org. Adhesive and sealant educational portal. 2017; Available from: 
http://www.adhesives.org/. 

242. Solutions-for-wood. Technology profile, Using adhesives on wood. 2017; 
Available from: http://www.solutionsforwood.com/_docs/reports/TP09-
03UsingAdhesivesonWood.pdf. 

243. D-Lab. Learn-it: adhesives. 2017; Available from: https://d-
lab.mit.edu/sites/default/files/D-Lab_Learn-It_Adhesives.pdf. 

244. Multimedia.3m. Choosing and using a structural adhesive. 2017; Available from: 
http://multimedia.3m.com/mws/media/795693O/choosing-and-using-a-
structural-adhesive-white-paper.pdf. 

245. BSI, BS EN 14592 Timber structures - Dowel-type fasteners - Requirements. 
2008, BSI Standards Publication. 

246. (ASCE), A.S.o.C.E., Mechanical Connections in  Wood Structures, in ASCE 
Manuals and Reports on Engineering Practice No. 84. 1996. 

247. Gupta, R., Vatovec, M., and Miller, T.H., Metal-plate-connected wood joints: a 
literature review. 1996, Corvallis, Or.: Forest Research Laboratory, Oregon State 
University. 

248. Smith, I., Whale, L., RODD, P., ANDERSON, C., HILSON, B., and POPE, D., 
Characteristic properties of nailed and bolted joints under short-term lateral load. 
Journal of the Institute of Wood Science, 1987. 11(2): 53-71. 



157 

249. BSI, BS EN 383:1993 Timber Structures- Test methods _ Determination of 
embedment strength and foundation values for dowel type fasteners. 1993, BSI 
Standards Publication. 

250. BSI, BS EN 383:2007 Timber Structures- Test methods _ Determination of 
embedment strength and foundation values for dowel type fasteners. 2007, BSI 
Standards Publication. 

251. Wilkinson, T., Dowel bearing strength. Research Paper FPL-RP-505. US 
Department of Agriculture. Forest Service. Forest Products Laboratory, 
Madison, WI, 1991. 

252. Pope, D. and Hilson, B., Embedment testing for bolts a comparison of the 
European and American procedures. Journal of the Institute of Wood Science 
(United Kingdom), 1995. 13(6): 568-571. 

253. Thelandersson, S. and Larsen, H.J., Timber engineering. 2003: John Wiley & 
Sons. 

254. Rammer, D.R. and Winistorfer, S.G., Effect of moisture content on dowel-bearing 
strength. Wood and fiber science, 2007. 33(1): 126-139. 

255. BSI, BS EN 26891: 1991 Timber structures. Joints made with mechanical 
fasteners. General principles for the determination of strength and deformation 
characteristics. 1995, BSI Standards Publication. 

 

 

 

  



158 

Appendices to thesis 

Appendix A. Performance-based building design   

The performance-based building design (PBBD) approach is in essence, the practice of operating 

in terms of the end results rather than the systems or means [39]. Heidkamp defines it as: A 

structure shall be designed in such a way that it will function in a reliable manner and within an 

economical way to attain the required performance [40].  These statements do not say anything 

about the ways and means of building, e.g. types of material, thickness, dimensions, and size of 

building components or methods of assembly, but instead clearly states the required end results.  

Performance-based building regulatory systems are implemented within both the Scottish and the 

English/Welsh building regulation systems.  

Implementation for England and Wales: a bill to adopt a performance-based system was presented 

to parliament in 1983 then by 1985 the majority of the previous rules were removed, and the new 

system was implemented. The obligatory guidelines for means of escape stood retained until 

1991, to allow time for training of both building control and fire brigade staff. The full system of 

performance-based regulations was in force within England and Wales since 1991. In May 2005 

Scottish building standards introduced performance-based design, in response to the European 

Commission’s Construction Products Directive, which was brought into UK law through the 

Construction Products Regulations 1991 [232]. 

Performance-based design and Eurocodes: Heidkamp and Papaioannou comment, “a consistent 

realization of a design concept requires the consideration of probabilistic approaches and 

ultimately leads to a reliability-based design, and that this approach conforms well to the basic 

design concept of the Eurocodes directive” [40]. Significant progress on advanced algorithms and 

increased computational power have and will make full probabilistic procedures feasible and 

practical engineering applications. 

Implementation of performance-based building codes within New Zealand: the NZBC facilitates 

three different methods to demonstrate compliance: [145]  

 ‘Acceptable solution’ which accompanies prescriptive requirements  

 ‘verification method’ compliance is demonstrated by prescribed computational and 

design methods  

 ‘alternative solution’ compliance by means of proven and peer-reviewed engineering 

design, which can involve mathematical computation, simulations and appropriate 

laboratory tests.  
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Appendix B. EN Eurocode Parts  

EN 1990 Eurocode: Basis of structural design 
EN 1991 Eurocode 1: Actions on structures 
EN 1991-1-1 Eurocode 1: Actions on structures - Part 1-1: General actions - Densities, 

self-weight, imposed loads for buildings 
EN 1991-1-2 Eurocode 1: Actions on structures - Part 1-2: General actions - Actions 

on structures exposed to fire 
EN 1991-1-3 Eurocode 1: Actions on structures - Part 1-3: General actions - Snow 

loads 
EN 1991-1-4 Eurocode 1: Actions on structures - Part 1-4: General actions - Wind 

actions 
EN 1991-1-5 Eurocode 1: Actions on structures - Part 1-5: General actions - Thermal 

actions 
EN 1991-1-6 Eurocode 1: Actions on structures - Part 1-6: General actions - Actions 

during execution 
EN 1991-1-7 Eurocode 1: Actions on structures - Part 1-7: General actions - 

Accidental actions 
EN 1991-2  Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges 
EN 1991-3 Eurocode 1: Actions on structures - Part 3: Actions induced by cranes 

and machinery 
EN 1991-4  Eurocode 1: Actions on structures - Part 4: Silos and tanks 
EN 1992 Eurocode 2: Design of concrete structures 
EN 1992-1-1 Eurocode 2: Design of concrete structures - Part 1-1: General rules and 

rules for buildings 
EN 1992-1-2 Eurocode 2: Design of concrete structures - Part 1-2: General rules - 

Structural fire design 
EN 1992-2 Eurocode 2: Design of concrete structures - Part 2: Concrete bridges - 

Design and detailing rules 
EN 1992-3 Eurocode 2: Design of concrete structures - Part 3: Liquid retaining and 

containment structures 
EN 1993 Eurocode 3: Design of steel structures 
EN 1993-1-1 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules 

for buildings 
EN 1993-1-2 Eurocode 3: Design of steel structures - Part 1-2: General rules - 

Structural fire design 
EN 1993-1-3 Eurocode 3: Design of steel structures - Part 1-3: General rules - 

Supplementary rules for cold-formed members and sheeting 
EN 1993-1-4 Eurocode 3: Design of steel structures - Part 1-4: General rules - 

Supplementary rules for stainless steels 
EN 1993-1-5 Eurocode 3: Design of steel structures - Part 1-5: General rules - Plated 

structural elements 
EN 1993-1-6 Eurocode 3: Design of steel structures - Part 1-6: Strength and stability 

of shell structures 
EN 1993-1-7 Eurocode 3: Design of steel structures - Part 1-7: Strength and stability 

of planar plated structures subject to out of plane loading 
EN 1993-1-8  Eurocode 3: Design of steel structures - Part 1-8: Design of joints 
EN 1993-1-9  Eurocode 3: Design of steel structures - Part 1-9: Fatigue 
EN 1993-1-10 Eurocode 3: Design of steel structures - Part 1-10: Material toughness 

and through-thickness properties 
EN 1993-1-11 Eurocode 3: Design of steel structures - Part 1-11: Design of structures 

with tension components 
EN 1993-1-12 Eurocode 3: Design of steel structures - Part 1-12: General - High 

strength steels 
EN 1993-2  Eurocode 3: Design of steel structures - Part 2: Steel bridges 
EN 1993-3-1 Eurocode 3: Design of steel structures - Part 3-1: Towers, masts and 

chimneys – Towers and masts 
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EN 1993-3-2 Eurocode 3: Design of steel structures - Part 3-2: Towers, masts and 
chimneys – Chimneys 

EN 1993-4-1  Eurocode 3: Design of steel structures - Part 4-1: Silos 
EN 1993-4-2  Eurocode 3: Design of steel structures - Part 4-2: Tanks 
EN 1993-4-3  Eurocode 3: Design of steel structures - Part 4-3: Pipelines 
EN 1993-5:  Eurocode 3: Design of steel structures - Part 5: Piling 
EN 1993-6: Eurocode 3: Design of steel structures - Part 6: Crane supporting 

structures 
EN 1994 Eurocode 4: Design of composite steel and concrete structures 
EN 1994-1-1 Eurocode 4: Design of composite steel and concrete structures – Part 1-

1: General rules and rules for buildings 
EN 1994-1-2  Eurocode 4: Design of composite steel and concrete structures – 

Part 1-2: General rules - Structural fire design 
EN 1994-2 Eurocode 4: Design of composite steel and concrete structures –Part 2: 

General rules and rules for bridges 
EN 1995 Eurocode 5: Design of timber structures 
EN 1995-1-1 Eurocode 5: Design of timber structures - Part 1-1: General - Common 

rules and rules for buildings 
EN 1995-1-2 Eurocode 5: Design of timber structures - Part 1-2: General - Structural 

fire design 
EN 1995-2  Eurocode 5: Design of timber structures - Part 2: Bridges 
EN 1996 Eurocode 6: Design of masonry structures 
EN 1996-1-1 Eurocode 6: Design of masonry structures - Part 1-1: General rules for 

reinforced and unreinforced masonry structures 
EN 1996-1-2 Eurocode 6: Design of masonry structures - Part 1-2: General rules - 

Structural fire design 
EN 1996-2 Eurocode 6: Design of masonry structures - Part 2: Design 

considerations, selection of materials and execution of masonry 
EN 1996-3 Eurocode 6: Design of masonry structures - Part 3: Simplified calculation 

methods for unreinforced masonry structures 
EN 1997 Eurocode 7: Geotechnical design 
EN 1997-1  Eurocode 7: Geotechnical design - Part 1: General rules 
EN 1997-2 Eurocode 7: Geotechnical design - Part 2: Ground investigation and 

testing 
EN 1998 Eurocode 8: Design of structures for earthquake resistance 
EN 1998-1 Eurocode 8: Design of structures for earthquake resistance – Part 1: 

General rules, seismic actions and rules for buildings 
EN 1998-2 Eurocode 8: Design of structures for earthquake resistance – Part 2: 

Bridges 
EN 1998-3 Eurocode 8: Design of structures for earthquake resistance – Part 3: 

Assessment and retrofitting of buildings 
EN 1998-4 Eurocode 8: Design of structures for earthquake resistance – Part 4: 

Silos, tanks and pipelines 
EN 1998-5 Eurocode 8: Design of structures for earthquake resistance – Part 5: 

Foundations, retaining structures and geotechnical aspects 
EN 1998-6 Eurocode 8: Design of structures for earthquake resistance – Part 6: 

Towers, masts and chimneys 
EN 1999 Eurocode 9: Design of aluminium structures 
EN 1999-1-1 Eurocode 9: Design of aluminium structures - Part 1-1: General 

structural rules 
EN 1999-1-2  Eurocode 9: Design of aluminium structures - Part 1-2: 

Structural fire design 
EN 1999-1-3  Eurocode 9: Design of aluminium structures - Part 1-3: 

Structures susceptible to fatigue 
EN 1999-1-4  Eurocode 9: Design of aluminium structures - Part 1-4: 

Cold-formed structural sheeting 
EN 1999-1-5  Eurocode 9: Design of aluminium structures - Part 1-5: 

Shell structures  
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Appendix C. Structural timber engineering for context 

Timber material properties and grading 

The definition of a tree can be summarised as a land plant that is normally tall, and living 

for more than a couple of years. For perennials, (i.e. oak, pine, coconut, bamboo etc.) the 

trunk remains from year to year, in contrast the herbaceous perennials (for example a 

banana tree) the trunk dies back each year. Generally speaking, wood is often put into 

either one of two categories, hardwood or softwood. These definitions have got nothing 

to do with the qualities of the harvested wood itself. For example, balsa wood is one of 

the least dense but is technically classed as a hardwood. In a similar manner, the wood of 

the yew tree which is classified as a softwood, and has a density higher than most 

hardwoods, including several types of oak. Classifying a wood is either hard or soft is 

entirely dependent upon the seeds produced by the tree. Hardwoods are classified if the 

seeds produced are encapsulated by either a shell or fruit. But if tree produces seeds that 

are exposed to the elements when they fall from the tree then the timber harvested from 

it will be classified as a softwood. The technical term given to any softwood is 

Gymnosperms which means naked seed, and for hardwoods the term is Angiosperms 

which translates to enclosed seeds. Although the terms hardwood and softwood and in no 

way related to the toughness of a given piece of wood, it can be seen that hardwoods 

generally have a higher density than softwoods.  

Structural timber as a material is defined as non-homogeneous, that is to say that the 

material is not uniform and will have irregularities. For example, the growth rings in most 

cases can be easily identified, as the early wood that has grown earlier in the season 

contrasts to the latewood grown later in the season. Under a microscope, it can be 

observed that the early wood cells are wide with thin walls, where the cells of the 

latewood are narrow with thick walls. The extent of variability is such that two boards cut 

from the same tree can have very different mechanical and physical properties. 

Contributing factors to the variability within timber can be down to a number of different 

factors [227, 233] some of which are summarised as:  

 knots, size and position 

 slope of grain 

 rate of growth, ring width 

 wane, insufficient wood at the corner or on the edge 

 fissures, lengthwise splits 

 resin pockets and bark pockets 
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 distortion 

 

 ratio of early and late wood 

 timber density 

 presence of reaction wood 

 other damage 

 

On a microscopic level, there are other influencing factors such as, the ratio of the 

molecules that make up the cell wall. The different types of molecules are: cellulose 

which provides tension; lignin provides compression; hemicelluloses which links the 

cellulose and lignin together giving flexibility; extractives and water. All of these factors 

are influenced from the sawmill processing and drying the timber, the management of the 

forest and climate conditions while the tree grew, and species of tree [227].  

Within Europe there are three key properties used for determining the structural grade of 

timber, these are strength, stiffness and density. These can either be tested in bending or 

in tension, within laboratory tests conducted in accordance with [234, 235]. For standard 

construction timber the strength grade classifications are based on bending and are 

defined within [236], the grades are either prefixed with ‘C’ for softwoods and ‘D’ for 

hardwoods. For timber products where tension is the governing factor for example, the 

manufacture of glue laminated products the strength grade classifications are based on 

tension, and are defined within [237], which have a prefix of ‘T’. 

 

Timber member design 

The basic requirements for designing timber structures and member in accordance with 

[238], will be fulfilled when a limit state design encompassing partial factors methods 

using [239] for actions and combinations, along with the supplementary provisions 

outlined in [63].  

For timber member design the engineer has to identify whether the member is subject to 
flexure, axle or a combination of both actions. As the design requirements differ, which 
are summarised in Table C-1. 

  



163 

Table C-1 Main design requirements for design to EC5 

For flexural members For axially loaded members 

  

 Static equilibrium  Static equilibrium 

 Bending stress & lateral torsional 

instability 

 Axial stress & lateral 

instability 

 Shear stress  Deflection 

 Bearing stress  

 Torsion stress  

 Deflection  

 Vibration  

 

Timber connection overview 

An interesting way of looking at structural engineering is described by Thomas McLain: 

“a structure is a constructed assembly of joints separated by members” [67]. That is to 

say that the joints are generally the critical factor in the design of the structure. The 

strength of the connectors in the joint will normally dictate the strength of the structure; 

their stiffness will greatly influence its overall behaviour and member sizes will generally 

be determined by the numbers and physical characteristics of the connector rather than 

by the strength requirements of the member material. 

Key points:  

 Joints are crucial points in many timber structures because they can determine 

the overall strength and performance of that structure. 

 The length of structural timber is generally shorter than the required spans and 

as a result splicing or composite structures (e.g. trusses) must be used. 

 Forces between members are most often transferred through lap joints, either 

by adhesives (glues) or by dowel-type fixings (nails, bolts, screws, dowels or 

nail plates). 
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Figure C- 1 Joints and system 

Examples of connections in systems 

There are a number of different ways that the connection can work within a system. 

Commonly used pinned-connections can be found in a simple post and beam timber 

system, see Figure C- 2 Pinned connections, Post and beam system [227]. Moment 

resistance or semi-rigid connections see Figure C- 3 Moment-resisting frames, [227]. 

showing a moment-resisting frame, an example can be found in the John Hope Gateway 

Biodiversity Centre, Edinburgh. Where a moment resistance connection within a stiff roof 

diaphragm see Figure C- 4 John Hope Gateway Biodiversity Centre, Edinburgh, this 

transmits the lateral loads to the concrete walls and cores rather than to the slender steel 

rod columns. Figure C- 5 Sibelius Hall, Lahti, Finland, 

https://www.sibeliustalo.fi/en/sibelius-hall  

 shows a tree truss supported by columns, the compressive forces are transmitted to the: 

we’re the connection method, and in Figure C- 6 Scottish parliament, debating chamber 

. a truss system where compressive forces are transmitted from the timber web elements 

to the steel chords, which are intention, via the connection method. 
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Figure C- 2 Pinned connections, Post and beam 

system [227] 

Figure C- 3 Moment-resisting frames, [227] 

 

Figure C- 4 John Hope Gateway Biodiversity Centre, Edinburgh 

 
Figure C- 5 Sibelius Hall, Lahti, Finland, 

https://www.sibeliustalo.fi/en/sibelius-hall  

 

Figure C- 6 Scottish parliament, debating chamber 
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Figure C- 7 Plywood box beam 

 

Figure C- 8 Flitch beam 

 

 

 

 
 

Figure C- 9 Laminated veneer lumber, www.metsawood.com  Figure C- 10 Glue laminated timber beams 
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Increasing spans through connections 

There are a range of options to increase the span by the inclusion of connections. There 

are multiple different styles of timber trusses and long span timber beams, features and 

advantages of some are detailed within Table C-2. Figure C- 11 Roof truss examples 

 (a-c) show some different styles of roof truss where connections have been used to 

combine timber elements of different lengths to achieve longer spans.   

a) b) c) 

Figure C- 11 Roof truss examples 

There are a number of different styles of timber beams possible, four of the more common 

beams are listed within Table C-2, which also highlights their differences / advantages. 

Even although there are some similarities within these timber beams construction / 

manufacturing process are quite different from each other. The plywood box beams are 

manufactured by nailing and gluing plywood sheets to horizontal flanges and vertical 

stiffeners Figure C- 7 Plywood box beam 

. Flitch beams are commonly constructed by bolting or nailing together two or more 

pieces of timber with a metal plate in between Figure C- 8 Flitch beam 

. Laminated veneer lumber beams (LVL) is an offsite manufacturing process of 

laminating thin sheets of timber together to form a solid section Figure C- 9 Laminated 

veneer lumber, www.metsawood.com. Glue laminated timber beams are also 

manufactured offsite, by gluing together timber to form solid timber sections Figure C- 

10 Glue laminated timber beams 

. 
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Table C-2 Truss and beam comparisons 

 

Connection types 

Forces between structural members must be transferred, and this can be done in a manner 

of fashions. The traditional timber carpentry joints can look pleasing to the eye see Figure 

C- 12 Carpentry joint, 

http://www.dytimberframing.com  

, and also function incredibly well when used in 

the correct setting. However, the carpenter 

creating the timber connections requires a high 

skill level, and creating the connection is very 

time consuming. The other options are glued 

joints; dowel type connectors such as nails, 

screws, bolts and dowels and connection plates. 

All of these options are outlined in more detail below.  

Notes:

Roor truss

Plywood box 
beams 

It is easy to include a pre-camber 
when manufactured offsite

Flitch beams 
They require less depth than wood 
only beams of the same strength

Laminated veneer 
lumber beams 

High compression strength, 
depending on the percentage of 
veneers laid crossways.

Glue laminated 
timber beams 

Well suited for decorative portal 
frame structures
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Figure C- 12 Carpentry joint, 

http://www.dytimberframing.com  
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Glued joints 

To form a glued joint, see Figure C- 13 Glued I joist 

section 

 high levels of quality assurance are required in the 

manufacturing process to ensure a strong bond is 

created. In choosing an appropriate adhesive the 

following things have to be taken into account: the 

method of application, the required speed for curing, 

will heating is needed or available, and the cost. The 

cost of the connection not only depends on the 

manufacturing process but also on the adhesive itself 

and its rate of spread. 

 

 

Correctly made bonded joints on timber surfaces parallel to the grain have the same 

properties as the wood. Likewise, joints between panel materials and timber and panel 

materials have the same properties as the weakest of the materials. This is the basis for 

glued laminated timber (glu-lam), and for built-up members such as box-and I-beams. 

Structural glued joints are often stiffer, and can be more pleasing to the eye when 
compared with mechanical type fasteners. They can be more suitable for a corrosive 
environment, and when made with thermosetting resins provide better fire resistance 
than that of metal dowel-type fasteners. For example, when a nail is exposed to fire it 
begins to heat up, which then chars the wood along the full length of the fastener, 
reducing the fire resistance time. The main disadvantages of using structural glued 
connections is that you require strict quality control, therefore it is better achieved 
within an offsite factory environment. Glued connections are unsuitable when there are 
significant loads perpendicular to the glue plane. The connection strength is heavily 
dependent upon angle of grain, and can be unsuitable for connecting different types of 
material together, or where there is a fluctuating moisture content. Some commonly 
used glues, together with their properties, are outlined in Table C-3. 

 

  

 

Figure C- 13 Glued I joist section 
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Table C-3 Adhesive comparison table 

 

The contents of this table are from a number of sources.  [240-244] 

 

 

 

 

 

 

Application
Setting process and cure 

time
Advantages / Disadvantages

interior

but some special 

formulations are waterproof

non‐reactive, 40 minutes 

at room

temperature

easy to work with

Interior, high speed 

production lines

non‐reactive, sets by 

cooling
grips on contact when hot

waterproof, high cost, marine‐

plywood

fully exterior, plywood, some 

particalboard

semi‐exterior and Interior, 

plywood, particleboard, 

formwork panels. (not often 

used alone in the UK)

semi‐exterior and Interior, 

laminating, plywood, 

particleboard, finger jointing

interior, plywood, 

particleboard, wood jointing, 

bent laminations

10 to 12 hours to cure. 

There are liquid catalysts 

that will allow the resin 

to cure in 20 minutes

easy to work, withsomewat 

gap filling, moisture resistant, 

foundry sand molds

isocyanates fully exterior, 

polyurethane semi‐exterior 

and moist interior where 

temperature does not exceed 

50°, laminating

reactive, one component 

sets with heat in 2 

minutes, from to 2 to 60 

minutes at room 

temperature for two‐

part resins

ability to set in high moisture 

conditions, suitable for 

multiple martials, 100% solid, 

good gap filling properties, 

low glue spread rate, 

expensive

semi‐exterior and Interior

reactive, hardens 

between 2 ‐ 60 min gains 

full strength in 24 hours

structural repairs, suitable for 

multiple martials, timber end‐

jointing, waterproof, good gap 

filling properties

(1)     

(2)     

fully exterior, laminating, 

finger jointing, wood jointing

reactive, sets in 2 

minutes with heat and 6 

hours at room 

temperature
waterproof

Resorcinol 

formaldehyde  (RF)

Phenol‐resorcinol 

formaldehyde  (PRF)

Phenol formaldehyde     

(PF)

An elevated temperature is required to cure PF, MF and MUF adhesives.

Adhesive

PVA (polyvinyl acetate) adhesives should not be used for structural purposes, but in 

certain limited circumstances PVAc (cross linked PVA adhesives) may be acceptable.

Thermo‐Plastic

Thermo and Room Temperature Set

Thermo‐Set

Catalyst

moisture resistant, low cost

reactive, sets with heat 

in 2 minutes and 30 

minutes to 12 hours at 

room temperature

Polyvinyl Acetate,     

Catalyzed Polyvinyl 

Acetate  (PVA) 

Hot Melts

Melamine formaldehyde 

(MF) 

Melamine urea 

formaldehyde   (MUF)

Isocyanates and 

Polyurethanes

(Most Polyurethane are 

thermo‐set but 

thermoplastic are 

available)

Epoxy resins

Urea formaldehyde  (UF)
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Dowel type connectors 

Wooden dowels and pegs have been used in 

woodworking for many centuries. Joints 

with dowels are used in timber construction 

to transmit high forces, and are an 

economical type of joint which are easy to 

produce. Dowels are circular rods of timber 

Figure C- 14 Timber dowel double shear 

test 

, steel, or carbon-reinforced plastics which 

have a minimum diameter of 6mm and a 

maximum of 30 mm. The dowels are driven 

into identically or marginally undersized 

holes. These holes must either be drilled 

through all members in one operation or 

made using computer numerical control 

machines (CNC). 

Nails 

Nails are the most commonly used fasteners in timber construction (see Figure C- 15 

Timber frame racking panels 

) and are available in a variety of lengths, cross-sectional areas and surface treatments 

Figure C- 16 Coil of nails 

. The most common type of nail is the smooth steel wire nail which has a circular cross-

section and is cut from wire coil having a minimum tensile strength of 600N/mm2. They 

are available in a standard range of diameters up to a maximum of 8mm and can be plain 

or treated against corrosion, for example, by galvanising. Nails may be driven in by hand 

or by use of a nail gun. When nails are to be driven into dense timbers there is a danger 

that excessive splitting will occur. Methods of avoiding splitting are blunting the pointed 

end of the nail so that it cuts through the timber fibres rather than separating them or to 

pre-drill a hole in the timber less than 80% of the nail diameter. Pre-drilling is not 

normally carried out on timbers with a lower characteristic density of 500kg/m3. As well 

 

Figure C- 14 Timber dowel double shear test 
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as having smooth nails there are also threaded / grooved nails as defined by [245] which 

have a greater resistance to axle withdrawal. 
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Advantages of pre-drilling nails: 

 The lateral load carrying capacity of the nail is increased. 

 The spacing between the nails, and the distances between the nails and the end 

and edge of the timber may be reduced thus producing more compact joints. 

 Less slip occurs in the finished joints. 

Disadvantages: 

 Labour intensive and as a result expensive. 

 Reduces the cross-sectional area of the member. 

  
Figure C- 15 Timber frame racking panels 

 

Figure C- 16 Coil of nails 

 

Screws  

Wood screws (see Figure C- 17 Common Wood 

screws 

) are especially suitable for steel-to-timber and 

panel to timber joints, but they can also be used 

for timber-to-timber joints. Such screwed joints 

are normally designed as single shear joints. 

Screws are inserted by turning and this can be 

done either by hand or by power actuated tool 

depending on the situation. The main advantage 

a screw has over a nail is its additional axial 

withdrawal capacity.  

 

 

 

 

 

Figure C- 17 Common Wood screws 
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Bolts 

Bolt connections offer a higher lateral load carrying capacity than nails or screws. 

Standard bolts are made from carbon or alloy steels and come in a variety of different bolt 

classes, which are categorised by yield strength and ultimate tensile strength see  

Table C-4. These connections are generally easily fabricated; the bolts are inserted into 

oversized predrilled holes. The diameter of the oversized holes in timber should be no 

greater than 1 mm larger than the diameter of the bolt, or 2 mm larger for steel plate. For 

the purposes of EC5 calculations bolts can range from 6 mm to 30 mm in diameter. They 

are used with washers that have a side length of about 3d and thickness of 0.3d, where d 

is the bolt diameter. A bolted connection will be tightened on application so that the 

members of the connection fit closely together. If necessary bolts will be required to be 

re-tightened when the timber has reached equilibrium moisture content. 

Another type of bolt is a lag screw which has a sharp end and coarse threads designed to 

penetrate and grip wood fibre see Figure C- 18 Photograph of standard bolt and lag screw 

. 

 

Figure C- 18 Photograph of standard bolt and lag screw 

 

Table C-4 Yield strength f_yb and ultimate tensile strength f_ub for bolts [234] 

 

 

N/mm2 N/mm2

4.6 240 400
4.8 320 400
5.6 300 500
5.8 400 500
6.8 480 600
8.8 640 800
10.9 900 1000

Bolt 
Class

𝑓௨௕𝑓௬௕
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Timber connectors 

Bolted joints subject to lateral loading can be strengthened significantly by the addition 

of connectors in the joint surface, as they enlarge the wood contact area over which the 

load is distributed. They are mainly used to transfer loads in heavy timber or glulam 

members such as roof trusses. They are not usually protectively coated and need to be 

galvanized when used with wood treated with preservative or in wet service conditions. 

Specification and installation of the bolt is important as it clamps the joint together so that 

the connector acts effectively.  

This style of connector has been available for more than a hundred years. The first patient 

dates back to 1889 [246]. Today there are three main categories available which are: 

 Ring and split-ring connectors are for timber to timber only and are installed 

in pre-cut grooves. 

 Shear plate connectors are for timber to timber or timber to steel and are 

installed in pre-cut grooves. 

 Toothed-plate connectors are for timber to timber or timber to steel and are 

pressed into the timber. 

 

Figure C- 19 Timber connectors, Toothed plate connector www.cullen-bp.co.uk 

 

Connection plates 

The definition of punched metal plates fastener comes from BS EN 1075: “Timber 

Structures – Joints made of punched metal fasteners” as “a fastener made of metal plate 

having integral projections punched out in one direction and bent perpendicular to the 

base of the plate, being used to join two or more pieces of timber of the same thickness 

in the same plane” see Figure C- 20. The punched metal plate fastener was invented in 

Florida in 1952, which then revolutionised the timber truss industry [247]. The metal used 

is generally galvanised or stainless steel plate, of thicknesses varying from 0.9mm to 

2.5mm.  
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The key advantages are the low cost, ease of installation, their higher structural efficiency 

and rotational stiffness. 

The limiting strength of a punched metal plate is determined by one of two criteria: 

 Its anchorage (gripping) capacity in any of the jointed members. 

 Its net sectional steel capacity at any of the interfaces. 

 

Figure C- 20 Punched metal plate connector 

Dimensional nailing plates are made of light-gauge mild steel cut and folded to shape and 

pre-punched with holes for specified nails see Figure C- 21. The most common kinds are: 

 Angle brackets  

 Joist hangers 

 Truss clips 

 
Figure C- 21 Three-dimension nailing plates 

Specification of connections  

When designing a connection, the specification of the fixing will depend on a range of 

factors: 
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 The nature of the forces being applied and their magnitude. 

 The practicality and/or manufacturability. 

 The aesthetics required. 

 The environmental conditions. 

 The cost. 

It is also important to consider how the whole system is to function, and this will depend 

not only on the load-carrying capacity of connection but also on the load-deformation 

characteristics of the connection. If the system being designed is statically indeterminate 

then the load deformation is influenced by the load deformation of the members and slip 

in the joints. Slip in the joints is often the largest contributor and can therefore be an 

important criterion in specification. 

Also, important in design is the concept of connections acting together. Nails, screws and 

bolts can be used together in a joint as they have similar ductile behaviour. However, 

because the tolerance required in the bolt predrilled holes leads to higher initial slip, bolts 

should not be considered to be acting together with other mechanical fasteners.  

 

Structural systems 

To create a structural system out of timber, multiple structural members or components 

are connected together. There are four main categories of structural systems: 

Panelised systems, otherwise called two-dimensional construction systems, can take the 

form of wall panels, floor or roof castes etc (Figure C- 22).  

Volumetric systems take the form of three-dimensional units manufactured in a factory 

then delivered in a near completed state to the construction site. These units can be fully 

finished complete with fixtures and fittings, or be a module within a larger building or 

complex. Volumetric systems are often assembled from combinations of panelised 

systems (Figure C- 23). 

Sub-assemblies and components are items that do not meet either of the above criteria, 

for example: roof trusses, doors, windows. These are usually manufactured within a 

factory environment (Figure C- 24).  

Hybrid systems are a combination of more than one system, for example a combination 

of volumetric and panelised system (Figure C- 25). 
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These systems generally lend themselves to Design for manufacture and assembly 

(DfMA), off-site manufacture (OSM) which can enable mass-customisation (MC). 

 

 

Figure C- 22 Panelised wall system. from CCG Figure C- 23 Volumetric modular system. From SiBCAS 

Ltd 

 

Figure C- 24 Sub-assembly system, Belfast truss [247] Figure C- 25 Hybrid system 
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Appendix D. Connection design 

Parameter s of influence 

The equations used in EC5 rely upon three main parameters of influence for the load 

carrying capacity and behaviour of joints with dowel type fasteners, which are: 

1. The bending capacity of the dowel or yield moment. 

2. The embedding strength of the timber or wood-based material. 

3. The withdrawal strength of the dowel. 

These three parameters are discussed in the following three sections: 

Bending capacity / yield moment 

Bending capacity or yield moment is theoretically the maximum bending moment that 

the dowel type fastener can resist before going into a plastic deformation. Figure D- 1 and 

Figure D- 2 shows a metal dowel connection that has been tested into plastic deformation. 

The possible strength increase due to the plastic deformation is disregarded. 

𝑀௬.ோ௞ ൌ 0.3 𝑓௨ 𝑑ଶ.଺  for round nails    EC5 eq- 8.14 

Which is  

𝑀௬.ோ௞ ൌ 0.45 𝑓௨ 𝑑ଶ.଺  for square and grooved nails 

where: 

𝑀௬.ோ௞  is the characteristic value for the yield moment 

𝑑 is the nail diameter 

𝑓௨  is the tensile strength of the wire 

 

  

 

Figure D- 1 Metal dowel double 

shear test, Blass [1]  
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Figure D- 2 Screw dowel double shear test 

Embedment strength 

The Johansen’s theory assumes that timber is a rigid plastic material, research into 

embedment strength started as early as 1954, unfortunately no standardised methods or 

procedures were in place and it wasn’t until the late 1980’s that development of a 

standardised test method and procedure to characterise the embedment strength of timber 

fasteners was created by [248] see Figure D- 3. This was then adopted by the European 

committee developing the harmonised design code and test methods, and into the british 

standards in 1993  [249] and 2007 [250].  

The embedment strength of the timber, or wood-based product, fh, is the average 

compressive strength at maximum load under the action of a stiff straight dowel. 

According to BS EN 383 [250].  

𝑓௛ ൌ  
𝐹௠௔௫

𝑑 ൉ 𝑡
     ሺ𝐵𝑆 𝐸𝑁 383 𝑒𝑞. 2ሻ 

where: 

𝐹௠௔௫ is maximum load of the test, or the load at which a 5mm deformation occurred 

𝑑 is the Fastener diameter 

𝑡 is the thickness of the timber 
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Figure D- 3 European embedment test setup 

At a similar time to the European test methods was being developed, over in America, 

research by [251] was developing a different approach for measuring embedment 

strength, which has been adopted by the American and Canadian standards. The 

advantage of this approach, is that it eliminates bending of the fastener during testing, see 

Figure D- 4. There are also negatives of this approach, which makes it difficult to measure 

the embedment stiffness / deformations [252]. 

 

Figure D- 4 American embedment test setup, image from [253] 

From experimental tests the following parameters influence the embedment strength of 

timber: [253, 254] 

 Density: embedment strength increases in a linear manner with respect to 

timber density. 

 Moisture content: as this increases the bending strength decreases, and this is 

independent of timber species and dowel diameter. 

 Diameter of the fixing or the predrilled hole: the embedment strength 

decreases with increasing fastener diameter. 
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 Reinforcement of timber perpendicular to grain: for example, installing self-

tapping wood screws either side of a bolted connection will increase 

embedment strength within that timber member. 

 Friction between the fixing and timber will increase embedment strength. 

Embedment strength for nails as defined by EC5 

For nailed panel-to-timber connections the embedment strengths are as defined by EC5, 
and summarised in Table D-1. 

Table D-1 Characteristic embedment strength of nails for EC5 

Timber based 
product 

Nail limitations Characteristic embedment strength, 

khf ,0,  (N/mm2) 

LVL and timber Nails with diameter  
up to 8mm 

3.0082.0  dk without predrilled holes 

& 

kd )01.01(082.0   with predrilled holes 

Plywood Head diameter  
of at least 2d 

3.011.0 dk  

Hardboard in 
accordance with 
EN 662-2 

6.03.030 td    

Particle board and 
OSB 

1.07.065 td    

  

where: 

ρk   is the characteristic density of the timber in kg/m3, 

d    is the diameter of the nail in mm, and 

t    is the panel thickness in mm. 

Ratio of characteristic embedment strengths  

To simplify the strength equations, the ratio of the characteristic embedment strength of 

member 2, fh,2,k, to the characteristic embedment strength of member 1, fh,1,k, is derived 

and written as: 

𝛽 ൌ  
𝑓௛,ଶ,௞

𝑓௛,ଵ,௞
       𝐸𝐶5 𝑒𝑞. 8.8 

where: 

𝑓௛,ଵ,௞ Characteristic embedment strength of timber, in headside member 

𝑓௛,ଶ,௞ Characteristic embedment strength of timber, in pointside member 
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Characteristic withdrawal capacity of nails  

Characteristic withdrawal capacity within 

EC5 for nails comes from the minimum 

of the pointside axle withdrawal and the 

headside pull-through. 

For nails other than smooth nails, as 

defined in EN 14592 

𝐹௔௫.ோ௞ ൌ 𝑚𝑖𝑛 ቊ
𝑓௔௫.௞  ∙  𝑑 ∙  𝑡௣௘௡
𝑓௛௘௔ௗ.௞ ∙  𝑑௛

ଶ   

  EC5 eq. 8.23 

 

For smooth nails 

𝐹௔௫.ோ௞ ൌ

𝑚𝑖𝑛 ቊ
𝑓௔௫.௞  ∙  𝑑 ∙  𝑡௣௘௡

𝑓௔௫.௞  ∙  𝑑 ∙  𝑡 ൅ 𝑓௛௘௔ௗ.௞  ∙  𝑑௛
ଶ  

 EC5 eq. 8.24 

 

 

Figure D- 5 Pint-side and head-side of connection fixing 

𝑓௔௫.௞   is the characteristic point-side withdrawal strength 

𝑓௛௘௔ௗ.௞  is the characteristic head-side pull-through strength 

𝑑  is the nail diameter  

𝑡௣௘௡ is the point-side penetration length or the length of the threaded part, 

excluding the point length, in the point side member 

𝑡  is the thickness of the head side member 

𝑑௛  is the nail head diameter 

 

The characteristic withdrawal strength 𝑓௔௫.௞ and 𝑓௛௘௔ௗ.௞ should be determined by test, 

unless specified in the following. 

𝑡ଵ 𝑡ଶ 
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For smooth nails with a point-side penetration of at least 12 ∙ 𝑑. 

𝑓௔௫.௞ ൌ 20 ∙ 10ି଺  ∙  𝜌௞
ଶ   EC5 eq. 8.25 

𝑓௛௘௔ௗ.௞ ൌ 70 ∙ 10ି଺  ∙  𝜌௞
ଶ   EC5 eq. 8.26 

where: 

𝜌௞  is the characteristic timber density in 𝑘𝑔/𝑚ଷ. 

Once the characteristic withdrawal strengths are identified, either from the manufacturers 

test data, or from the equations above, you may still be required to multiply by a reduction 

factor depending upon the penetration depth. 

From EC5 8.3.2(7) reduction factors    

For smooth nails, 𝑡௣௘௡ should be at least 8 ∙ 𝑑 

 when 𝑡௣௘௡ < 12 ∙ 𝑑 the withdrawal capacity is multiplied by 
௧೛೐೙

ସ ∙ ௗ ି ଶ
 

For threaded nails, 𝑡௣௘௡ should be at least 6 ൉ 𝑑 

  when 𝑡௣௘௡ < 8 ∙ 𝑑 the withdrawal capacity is multiplied by 
௧೛೐೙

ଶ ∙ ௗ ି ଷ
 

 

Johansen’s equations: Failure mode calculation format 

The calculation approach used within EC5 is based upon Johansen’s general theory, and 

predicts the method of failure for the timber-to-timber and steel-to-timber connections 

using dowel type fixings.  

This calculates each possible failure modes in turn, and so identifies the failure mode with 

the lowest resistance. 

The general format for these equations can be summarised as: the result from the 

Johansen’s yield load, multiplied by any effect from friction, plus the rope effect. 

𝐹௩.ோ௞ ൌ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟   ∗     𝑗𝑜ℎ𝑎𝑛𝑠𝑒𝑛 𝑦𝑖𝑒𝑙𝑑 𝑙𝑜𝑎𝑑    ൅     𝑅𝑜𝑝𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 

 

friction effects 

There are two types of friction effect that can arise between the two timber members in a 

connection: 
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The first will develop if the members are in direct contact when assembled (see Error! 

Reference source not found.). This friction will be eliminated either if there is no direct contact 

on assembly or if there is shrinkage of the timber or wood products in service. As a result 

of this it is conservatively not considered in EC5 (friction factor = 1). 

 

Figure D- 6 Connection, friction not considered 

The other will arise when the fasteners yield, pulling the members together as the 

fasteners deform (see Figure D- 7). This type of friction will always arise in failure modes 

that include yielding of the fasteners and has been included in the EC5 equations relating 

to such modes. This effect is termed the “rope effect”. 

 

Figure D- 7 Connection friction effect, fastener yields 

When the dowel type fastener does not yield we assume that there is no fiction factor, but 

as the fastener begins to yield then the fiction factor should be included. The friction 

factor to be used is outlined in Table D-2. 
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Table D-2 Friction factors 

 

 

Rope effect 

The rope effect is the contribution to the lateral load carrying capacity of the point side 

withdrawal of dowel type fastener. 

Which can be written as:  𝑅𝑜𝑝𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 ൌ ிೌೣ.ೃೖ

ସ
 

Please note: If the axial withdrawal capacity of the fastener is not known then the rope 

effect should be considered as zero. 

limiting factor 

there is a limiting factor to the rope effect, depending upon the profile of the fixing the 

maximum uplift percentage limit is altered. As described below.  

𝐹௩.ோ௞ ൌ 𝑚𝑖𝑛 ቀ𝑋 ൅  𝑅𝑜𝑝𝑒 𝑒𝑓𝑓𝑒𝑐𝑡
𝑋 ൉  𝐿𝑃%

ቁ 

𝑋 ൌ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ൉ 𝑗𝑜ℎ𝑎𝑛𝑠𝑒𝑛 𝑦𝑖𝑒𝑙𝑑 𝑙𝑜𝑎𝑑 

𝐿𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ሺ𝐿𝑝ሻ ൌ

⎩
⎪
⎨

⎪
⎧

15% Round nails
25% Square nails
50% Other nails

100% Screws
25% Bolts
0% Dowels ⎭

⎪
⎬

⎪
⎫

 

 

friction factor  

 

failure modes 

(see section X)  

1.05 (+5%) fastener partially yields (d) (e) (j)  

1.15 (+15%) fastener fully yields (f) (k) 
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member notation 

For the member thickness within EC5 connection calculation the thicknesses are 

identified as either t1 or t2. This is also true for multiple shear plane connections which is 

explained in more detail later on. 

For single shear connections: 

t1 is the fixing head-side member thickness; 

t2 is the fixing point-side penetration; 

where ‘fixing head-side material thickness’ is the thickness 

of the member containing the fixing head and ‘fixing point-

side thickness’ is the distance that the pointed end of the nail 

penetrates into a member, minus the point length. 

 

For double shear connections: 

t1 is the minimum of the fixing 

head-side member thickness 

and the fixing point-side 

penetration minus the point length. 

t2 is the central member thickness for a connection. 

Note: In a three-member connection, nails may overlap in 

the central member provided: ሺ𝑡 െ  𝑡ଶሻ ൐ 4 ൉ 𝑑 

where d is the diameter of fixing. 

 

 

 

 

 

 

 

Figure D- 8 Single shear 

member notation 

 

Figure D- 9 Double shear 

member notation 

 

Figure D- 10 Nail overlap  
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single shear failure modes 

 

Figure D- 11 Johansen’s timber to timber single shear equations 

double shear failure modes 

 

Figure D- 12 Johansen’s timber to timber double shear equations 
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Other design considerations 

Splitting capacity 

When a lateral load is applied at an angle to the grain there is a potential for splitting. The 

splitting capacity is satisfied when:  

𝐹௟௔.௦௣ ൉ 𝑆𝑖𝑛ሺ𝛼ሻ
𝐹ଽ଴.ோௗ

൏ 1 

where: 

𝐹ଽ଴.ோ௞ ൌ 14 𝑏 𝑤 ට
௛೐

ଵି ೓೐
೓

   is the characteristic splitting capacity 

𝐹ଽ଴.ோௗ ൌ  𝑘௠௢ௗ ൉  
ிవబ.ೃೖ

ఊಾ.೎೚೙೙೐೎೟೔೚೙
   is the design splitting capacity 

𝑤 ൌ  max ቊቀ
௪೛೗

ଵ଴଴
ቁ
଴.ଷହ

1
    when using punched metal plate fasteners 

𝑤 ൌ  1     for all other fasteners 

 

and: 

𝐹௟௔.௦௣ is the design force in the shear plane 

𝑤  is a modification factor 

ℎ௘ is the loaded edge distance to the centre of the most distant fastener or to the edge 

of the punched metal plate fastener 

ℎ is the timber member height 

𝑏 is the member thickness 

𝑤௣௟ is the width of the punched metal plate fastener parallel to the grain 

 

Figure D- 13 Splitting capacity 
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Multiple fastener connections loaded laterally 

The total load carrying capacity of the joint will be the combined ultimate loads of the 

fasteners. However, this would only be the case if all the respective single fasteners 

reached their ultimate loads at the same time as the whole connection failed. In fact, the 

ultimate load carrying capacity of the connection is smaller than the sum of the single 

fastener ultimate loads and this is known as “group effect”.  

For one row of fasteners parallel to the grain direction, the effective characteristic load-

carrying capacity parallel to the row, 𝐹௩.௘௙.ோ௞, should be taken as:  

𝐹௩.௘௙.ோ௞ ൌ  𝑛௘௙.௥௢௪ 𝐹௩.ோ௞ 

where: 

𝑛௘௙.௥௢௪  is the effective number of fasteners in line parallel to the grain. 

𝐹௩.ோ௞  is the characteristic load-carrying capacity of each fastener parallel to the grain.  

 

Serviceability limit state: Joint slip 

The design of any structural timber project engineer will have to combine the global 

analysis along with the local analysis of the connection. The principal factor is the joint 

behaviour that has an effect on the distribution of forces and overall deformation of the 

structure. The load slope can be calculated in accordance with EC5, or determined from 

test results for the chosen connections in accordance with EN 26891 [255]. 

In contrast with rigidly glued joints, mechanical fasteners exhibit large deformations that 

must be considered by the designer.  
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Figure D- 14 Load slip comparison, This graft was recreated from [245] 

where: 

a. Nail; b. Bolt; c. Dowel; d. Double side toothed-plate; e. Punched plate; f. Split-ring; g. 

Glued joint. 

Note from the graph: the initial slip of the bolted connection is the result of the oversized 

holes. 

Calculating the load slip for dowel-type fasteners in accordance with EC5.  

The final deformation of joint, a conservative approach; 𝑢𝑙௙௜௡ ൌ  𝐹௩.ாௗ  / 𝐾௦௘௥.௙௜௡.௖ 

where: 

𝐾௦௘௥   is the slip modulus from Table D-3, or determined from test results 

𝐾௦௘௥.௙௜௡  is the final mean value of slip / lateral stiffness per fixing.   

𝐾௦௘௥.௙௜௡.௖  is the Lateral stiffness per connection      
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𝑇𝑁𝐹௖  is the total number of fixings in the connection 

𝑘ௗ௘௙.௠   is the deformation factor, from Table D-4, (ED5 table 3.2) 

𝑘ௗ௘௙.௖   is the deformation factor for each connection    

𝐹௩.ாௗ  is the design action 

𝐾௦௘௥.௙௜௡ ൌ  𝐾௦௘௥ / ሺ1 ൅  𝑘ௗ௘௙.௖ሻ  

𝐾௦௘௥.௙௜௡.௖ ൌ  𝐾௦௘௥.௙௜௡ ൉ 𝑇𝑁𝐹௖  

𝑘ௗ௘௙.௖ ൌ 2 ൉  ඥ𝑘ௗ௘௙.௠ଵ ൉  𝑘ௗ௘௙.௠ଶ  

Load slip is a function of the mean density of timber and the diameter of the fixing. 

Table D-3 Values of Kser for fasteners in timber-to-timber and wood-based panel-to-timber connections (EC5 Table 

7.1) 

Fastener type Kser  
(N/mm) 

Nails without predrilling 
Small wood screws (d ≤ 6mm) without 
predrilling 

m
1.5d0.8/30 

Wood screws with predrilling 
Bolts. (Clearance to be added separately.) 
Dowels 

m
1.5d/23 

Split ring, shear plate and Toothed-plate 
type C10 and C11 connectors 

md/2 

Toothed-plate connectors: type C 1 to C9 m d / 4 

Notes:   
m = mean density of timber (see Tables 3.14 to 3.18) 
d  = diameter of round nail or side length of square nail, nominal diameter of  
    screw, diameter of bolt or dowel, or nominal diameter or side length of a 
    timber connector (see BS EN 13271#6.13). 
For bolts the clearance (dhole – dbolt) should be added to the calculated slip. 
If the mean densities m,1 and m,2 of two connected wood-based members differ 

then 2,m1,mm  . 

For steel-to-timber or concrete-to-timber connections use m for the timber member 
and multiply Kser by 2. 

  

Table D-4 Values of k_def for timber and wood-based materials 

 

1 2 3

Solid timber, Glued 

laminated timber, LVL
0.60 0.80 2.00

Plywood 0.80 1.00 2.50

OSB/2 2.25  ‐  ‐

OSB/3, OSB/4 1.50 2.25  ‐

Service class
Material
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Appendix E. Example outputs of existing timber connection software 

Trada 
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Rothoblaas 
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Dlubal 

Example output from the Dlubal timber to timber connection calculation add-in. the Date 

23rd October 2017 

https://bimsolutions.lv/rf-joints-timber-timber-timber-add-module-rfem-rstab/ 

RF-/JOINTS Timber – Timber to Timber Add-on Module for RFEM/RSTAB 

 

Input  

 

Design 
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Results 
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BIMware 
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Runet WOODexpress  
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Teretron 

https://www.teretron.com/en-GB/download 

Date of publication 2016 

Components 

Name Teretron 2016 Sample Project 

Location London, UK 

Client  

Associates  

Other  

 

Component 

Name Fastener lateral capacity (2) 

Folder Connections 

Type Fastener lateral capacity 

Floor  

Other  

 

 FASTENER LATERAL CAPACITY  

 Fastener lateral capacity 

 

 

EN 1995-1-1:2004+A2:2014 

 Members 

 

 Single shear connection 

 

 Material Type 1 : Timber 

 Timber class : C16 

 

 Width [ b1 ] = 45 mm 

 

 Angle [ φ1 ] = 0 ° 

 

 Characteristic density [ ρk,1 ] = 310 kg/m3 
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 Material Type 2 : Timber 

 Timber class : C16 

 

 Width [ b2 ] = 45 mm 

 

 Angle [ φ2 ] = 90 ° 

 

 Characteristic density [ ρk,2 ] = 310 kg/m3 

 

 Timber-to-timber connection in single shear 

 

 Total screw length [ l ] = 75 mm 

 

 Penetration depth [ t1 ] = 45 mm 

 Penetration depth [ t2 ] = 30 mm 

 

Clause 8.7.1(3) Effective diameter [ def ] = 2.695 mm 

 

 Characteristic yield moment [ My,Rk ] = 2,716 Nꞏmm 

 

 Without predrilling 

 

 Maximum contribution of rope effect [ (Fax,Rk / 4)max 

] = 100 % 

 Head diameter [ dh ] = 6.8 mm 

 Outer thread diameter [ d ] = 3.6 mm 

 Inner thread diameter [ d1 ] = 2.45 mm 

 

 Total screw length [ l ] = 75 mm 

 Length of the threaded part [ lg ] = 45 mm 

 Penetation length of the threaded part [ lef ] = 45 mm 

 

 Total width [ b ] = 90 mm 
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 Characteristic density [ ρk,min ] = 310 kg/m3 

 Associated density [ ρa ] = 400 kg/m3 

 

 Characteristic pointside withdrawal strength [ fax,k ] = 

13.16 MPa 

 

Equation (8.40a) Characteristic withdrawal capacity of shank [ 

Fshank,ax,Rk ] = 1,738.65 N 

 

 Characteristic headside pull-through strength [ fhead,k 

] = 20.56 MPa 

 

Equation (8.40b) Characteristic pull-through resistance [ Fhead,ax,Rk ] = 

775.322 N 

 

Clause 8.7.2(1) Characteristic axial withdrawal capacity [ Fax,Rk ] = 

775.322 N 

 

 Design action 

 

 Design force angle = 0 ° 

 

 Design modifications to the load-carrying capacity 

 

 Number of shear planes [ nsp ] = 1  

Table 3.1 Factor [ kmod ] = 1.1  

Table 2.3 Partial factor [ γM ] = 1.3  

 

 Fastener lateral capacity 

 

 Embedment strengths 

 

 Characteristic embedment strength parallel to the 

grain [ fh,0,1,k ] = 18.88 MPa 

 



207 

 Characteristic embedment strength parallel to the 

grain [ fh,0,2,k ] = 18.88 MPa 

 

 Characteristic lateral load-carrying capacity per 

shear plane 

 

 Load-carrying capacity values 

 

 Load-carrying capacity value [ Fv,Rk,a ] = 2,289.703 N 

 Load-carrying capacity value [ Fv,Rk,b ] = 1,526.469 N 

 Load-carrying capacity value [ Fv,Rk,c ] = 1,011.037 N 

 Load-carrying capacity value [ Fv,Rk,d ] = 1,057.394 N 

 Load-carrying capacity value [ Fv,Rk,e ] = 819.265 N 

 Load-carrying capacity value [ Fv,Rk,f ] = 798.421 N 

 

 Characteristic lateral load-carrying capacity per shear 

plane [ Fv,Rk ] = 798.421 N 

 

 Design lateral load-carrying capacity 

 

 Design lateral load-carrying capacity [ Fv,Rd ] = 

675.587 N 

 

 OTHER CHECKS  

 

 Other checks 

 

 Pointside penetration requirements 

 

 

 Pointside penetration length [ tpen ] = 30 mm 

Clause 8.7.2(3) Required pointside penetration length [ tpen, min ] = 

21.6 mm 
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 Pointside penetration length check: PASS 

 

 

 

 

 For timber without predrilling 

 

 

Clause 8.3.1.1(2) Maximum allowed diameter/side [ dmax ] = 6 mm 

 Diameter/Side [ d ] = 2.695 mm 

 

Clause 8.3.1.1(2) Maximum allowed density [ ρk,max ] = 500 kg/m3 

 

Clause 8.3.1.2(6) Minimum allowed thickness [ b1,min ] = 18.865 mm 

 Width [ b1 ] = 45 mm 

 

Clause 8.3.1.1(2) Maximum allowed density [ ρk,max ] = 500 kg/m3 

 Characteristic density [ ρk,2 ] = 310 kg/m3 

 

Clause 8.3.1.2(6) Minimum allowed thickness [ b2,min ] = 18.865 mm 

 Width [ b2 ] = 45 mm 

 

 

 Predrilling requirements check: PASS 

 

 SPACINGS AND DISTANCES  

 

 Minimum allowed spacings and distances 

 

 

 Member 1 

 

 

 Timber class : C16 

 Characteristic density [ ρk,1 ] = 310 kg/m3 



209 

 Outer thread diameter [ d ] = 3.6 mm 

 Angle between force and member 1 [ θ1 ] = 0 ° 

 

Table 8.2 Column spacing [ a1,min ] = 36 mm 

Table 8.2 Row spacing [ a2,min ] = 18 mm 

Table 8.2 Distance from loaded end [ a3,t,min ] = 54 mm 

Table 8.2 Distance from unloaded end [ a3,c,min ] = 36 mm 

Table 8.2 Distance from loaded edge [ a4,t,min ] = 18 mm 

Table 8.2 Distance from unloaded edge [ a4,c,min ] = 18 mm 

 

 Member 2 

 

 

 Timber class : C16 

 Characteristic density [ ρk,2 ] = 310 kg/m3 

 Outer thread diameter [ d ] = 3.6 mm 

 Angle between force and member 2 [ θ2 ] = 90 ° 

 

Table 8.2 Column spacing [ a1,min ] = 18 mm 

Table 8.2 Row spacing [ a2,min ] = 18 mm 

Table 8.2 Distance from loaded end [ a3,t,min ] = 36 mm 

Table 8.2 Distance from unloaded end [ a3,c,min ] = 36 mm 

Table 8.2 Distance from loaded edge [ a4,t,min ] = 25.2 mm 

Table 8.2 Distance from unloaded edge [ a4,c,min ] = 18 mm 

 

 

References 

Timber Data 

Solid timber data according to: 

EN 338: 2009, "Structural Timber. Strength Classes" 

EN 1990:2002 Eurocode 0, Basic of Structural Design 

Elastic analysis according to: 

EN 1990:2002 and EN 1991:2002 
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EN 1995:2004+A2:2014 Eurocode 5, Section 1-1, General - Common rules and rules 

for buildings 

Partial factor γM for properties 

and strengths of materials according to: 

EN 1995-1-1:2004+A2:2014, 

Section 2, Table 2.3 

Modification factor kmod taking into account the effect 

of duration of load and moisture content according to: 

EN 1995-1-1:2004+A2:2014, 

Section 2, Clause 2.4 

The structural analysis for the calculation of forces and moments must conform to: 

EN 1995-1-1:2004+A2:2014, 

Section 5 

Connections with metal fasteners according to: 

EN 1995-1-1:2004+A2:2014, Section 8 

 

Calculation of lateral load-carrying capacity 

of metal dowel-type fasteners according to: 

EN 1995-1-1:2004+A2:2014, 

Section 8, Clause 8.2 

The effect of the threaded part of the screw 

shall be taken into account in determining 

the load-carrying capacity, by using an 

effective diameter def according to: 

EN 1995-1-1:2004+A2:2014, 

Section 8, Subclauses 8.7.1(1) , 8.7.1(2) and 8.7.1(3) 

Calculation of characteristic yield moment 

of screws according to: 

EN 1995-1-1:2004+A2:2014, 

Section 8, Subclauses 8.7.1(4) , 8.7.1(5) , 

8.3.1.1(4) and 8.5.1.1(1) 

Calculation of characteristic embedment strength 

for screws according to: 
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EN 1995-1-1:2004+A2:2014, 

Section 8, Subclauses 8.7.1(4) , 8.7.1(5) , 8.3.1.1(5) , 

8.3.1.1(6) , 8.3.1.3(3) , 8.5.1.1(2) and 8.5.1.2(1) 

Calculation of effective number of screws 

arranged in a row parallel to the grain, according to: 

EN 1995-1-1:2004+A2:2014, 

Section 8, Subclauses 8.7.1(4) , 8.7.1(5) , 

8.3.1.1(8) and 8.5.1.1(4) 

Maximum contribution of the rope effect 

to the characteristic load-carrying capacity 

as a percentage of the Johansen part: 

100% for screws, according to: 

EN 1995-1-1:2004+A2:2014, 

Section 8, Subclause 8.2.2(2) 

Recommended mimimum spacings, edge distances 

and end distances for bolts in a grid arrangement, 

according to: 

EN 1995-1-1:2004+A2:2014, 

Section 8, Subclauses 8.7.1(4) , 8.7.1(5) , 8.3.1.2(5) , 

8.3.1.3(2) , 8.3.1.4(1) and 8.5.1.1(3) 

The design must conform to the requirements of: 

EN 1995-1-1:2004+A2:2014, Section 10 
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Appendix F. Axial loading data fitting GoF screen shot 
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Appendix G. Data fitting laterally loaded connections 

 Data set creation and calculating the Goodness-of-fit: Code 

clear 
clc 
int = 10; 
SW = 0.00001; 
  
Fax_Rk_var1 = linspace(1.5,5,int);   
Pf_mod_var2 = linspace(1.5,2,int);  
fh_k_1_var3 = linspace(10,30,int);  
fh_k_2_var4 = linspace(10,30,int);  
t1_var5 = linspace(20,50,int);  
t2_var6 = linspace(20,100,int);   
d_var7 = linspace(3.1,8,int);  
fu_f_var8 = linspace(400,1000,int);    
  
data = zeros(length(Fax_Rk_var1),length(Pf_mod_var2), length(fh_k_1_var3), 
length(fh_k_2_var4), length(t1_var5), 
length(t2_var6),length(d_var7),length(fu_f_var8)); 
dataf = data; 
fitdat=data; 
EC5Ans = zeros(length(Fax_Rk_var1),length(Pf_mod_var2), length(fh_k_1_var3), 
length(fh_k_2_var4), length(t1_var5), 
length(t2_var6),length(d_var7),length(fu_f_var8)); 
EC5AnsList = zeros(length(Fax_Rk_var1),length(Pf_mod_var2), 
length(fh_k_1_var3), length(fh_k_2_var4), length(t1_var5), 
length(t2_var6),length(d_var7),length(fu_f_var8)); 
tic 
for i = 1 : length(Fax_Rk_var1) 
    for j = 1 : length(Pf_mod_var2) 
        for k = 1 : length(fh_k_1_var3) 
            for l = 1 : length(fh_k_2_var4) 
                for m = 1 : length(t1_var5) 
                    for n = 1 : length(t2_var6) 
                        for p = 1 : length(d_var7) 
                            for q = 1 : length(fu_f_var8) 
  
    Be = fh_k_2_var4(l) / fh_k_1_var3(k) ; 
    Rope = Fax_Rk_var1(i) / 4; 
    t21 = t2_var6(n)/t1_var5(m); 
    f_m_a = (fh_k_1_var3(k) * t1_var5(m) * d_var7(p)) / 1000; 
    f_m_b = (fh_k_2_var4(l) * t2_var6(n) * d_var7(p)) / 1000; 
    
    f_m_c_jyt = f_m_a / (1 + Be) * (sqrt(Be + 2 * 
Be^(2)*(1+(t21)+t21^(2))+Be^(3)*(t21^(2)))-Be*(1+t21));    
    f_m_c = min((f_m_c_jyt + Rope), (Pf_mod_var2(j) * f_m_c_jyt)); 
  
    f_m_d_jyt = (1.05 * f_m_a / (2 + Be)) * (sqrt(2 * Be* 
(1+Be)+((4*Be*(2+Be)*  (0.45 * fu_f_var8(q) * 
d_var7(p)^(2.6)))/(fh_k_1_var3(k)*t1_var5(m)^(2)*d_var7(p))))-Be); 
    f_m_d = min((f_m_d_jyt + Rope), (Pf_mod_var2(j) * f_m_d_jyt)); 
     
    f_m_e_jyt = (1.05 * (fh_k_2_var4(l) * t2_var6(n) *d_var7(p)) / 
(1+2*Be))*(sqrt(2*Be^(2)*(1+Be)+((4*Be*(1+2*Be)*  (0.45 * fu_f_var8(q) * 
d_var7(p)^(2.6)))/(fh_k_1_var3(k) * t2_var6(n)^(2) *d_var7(p))))-Be) / 1000; 
    f_m_e = min((f_m_e_jyt + Rope), (Pf_mod_var2(j) * f_m_e_jyt)); 
       
    f_m_f_jyt = 1.15 * sqrt((2*Be) / (1+Be)) * sqrt((2*  (0.45 * fu_f_var8(q) 
* d_var7(p)^(2.6)) * fh_k_1_var3(k) * d_var7(p))) / 1000; 
    f_m_f = min((f_m_f_jyt + Rope), (Pf_mod_var2(j) * f_m_f_jyt));   
     
    [force,failure] = min([f_m_a  f_m_b f_m_c f_m_d f_m_e f_m_f]);     
    data(i,j,k,l,m,n,p,q) = force; 
    dataf(i,j,k,l,m,n,p,q) = failure; 
     
    EC5Ans = min([f_m_a f_m_b f_m_c f_m_d f_m_e f_m_f]); 
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    AnsA = ((1 / (1 + exp((f_m_a - f_m_b)/SW)))*(1 / (1 + exp((f_m_a - 
f_m_c)/SW))) * (1 / (1 + exp((f_m_a - f_m_d)/SW))) * (1 / (1 + exp((f_m_a - 
f_m_e)/SW))) * (1 / (1 + exp((f_m_a - f_m_f)/SW))) * f_m_a); 
    AnsB = ((1 / (1 + exp((f_m_b - f_m_a)/SW)))*(1 / (1 + exp((f_m_b - 
f_m_c)/SW))) * (1 / (1 + exp((f_m_b - f_m_e)/SW))) * (1 / (1 + exp((f_m_b - 
f_m_f)/SW))) * f_m_b); 
    AnsC = ((1 / (1 + exp((f_m_c - f_m_a)/SW)))*(1 / (1 + exp((f_m_c - 
f_m_b)/SW))) * (1 / (1 + exp((f_m_c - f_m_d)/SW))) * (1 / (1 + exp((f_m_c - 
f_m_e)/SW))) * (1 / (1 + exp((f_m_c - f_m_f)/SW))) * f_m_c); 
     
    AnsD = ((1 / (1 + exp((f_m_d - f_m_a)/SW)))*(1 / (1 + exp((f_m_d - 
f_m_c)/SW))) * (1 / (1 + exp((f_m_d - f_m_e)/SW))) * (1 / (1 + exp((f_m_d - 
f_m_f)/SW))) * f_m_d); 
    AnsE = ((1 / (1 + exp((f_m_e - f_m_a)/SW)))*(1 / (1 + exp((f_m_e - 
f_m_b)/SW))) * (1 / (1 + exp((f_m_e - f_m_c)/SW))) * (1 / (1 + exp((f_m_e - 
f_m_d)/SW))) * (1 / (1 + exp((f_m_e - f_m_f)/SW))) * f_m_e); 
    AnsF = ((1 / (1 + exp((f_m_f - f_m_a)/SW)))*(1 / (1 + exp((f_m_f - 
f_m_b)/SW))) * (1 / (1 + exp((f_m_f - f_m_c)/SW))) * (1 / (1 + exp((f_m_f - 
f_m_d)/SW))) * (1 / (1 + exp((f_m_f - f_m_e)/SW))) * f_m_f); 
     
    Anser = AnsA + AnsB + AnsC + AnsD + AnsE + AnsF;  
         
    fitdat(i,j,k,l,m,n,p,q) = Anser; 
  
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
toc  
     
    Resid = fitdat - data; 
    Gof_max = max(abs(Resid(:)))/ mean(data(:)) 
    Gof_95 = (2*std(Resid(:))) / mean(data(:)) 
     
 

 

 Screen shot for the Goodness-of-fit  
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 Computational comparison, Code 

 
clear 
clc 
int = 8; 
Fax_Rk_var1 = 3.4;  Pf_mod_var2 = 2; fh_k_1_var3 = 23.3; fh_k_2_var4 = 23.3; 
t1_var5 = 20; t2_var6 = 45;  d_var7 = 4.7; fu_f_var8 = 600;    
  
t_pen = 40; d = 6; k_h = 2.5; f_ax_k = 6; f_h_k = 6; ro_km = 310; ro_pss = 
350; ro_hss = 350; 
A_1 = 1.2 * (ro_pss / ro_hss)^(0.8) * d * k_h * k_h * f_h_k * t_pen^(-1) - 
f_ax_k; 
  
Be = fh_k_2_var4 / fh_k_1_var3 ; 
Rope = Fax_Rk_var1 / 4; 
t21 = t2_var6 / t1_var5; 
  
 
loop = 100000; 
tic 
for i = 1 : loop 
    F_ax_point_Rk = f_ax_k * d * (t_pen / 1.2) * (ro_km / ro_pss)^(0.8); 
    F_head_Rk = f_h_k * (d * k_h) * (d * k_h) * (ro_km / ro_hss)^(0.8); 
    Fax_Rk_var1 = min([F_ax_point_Rk F_head_Rk]); 
    Rope = Fax_Rk_var1 / 4; 
    t21 = t2_var6 / t1_var5; 
    f_m_a = ((fh_k_1_var3 * t1_var5 * d_var7) / 1000); 
    f_m_b = (fh_k_2_var4 * t2_var6 * d_var7) / 1000; 
     
    f_m_c_jyt = ((fh_k_1_var3 * t1_var5 * d_var7)) / (1 + Be) * (sqrt(Be + 2 * 
Be^(2)*(1+(t21)+t21^(2))+Be^(3)*(t21^(2)))-Be*(1+t21))+ Rope;    
    f_m_c = min((f_m_c_jyt + Rope), (Pf_mod_var2 * f_m_c_jyt)); 
     
    f_m_d_jyt = (1.05 * ((fh_k_1_var3 * t1_var5 * d_var7)) / (2 + Be)) * 
(sqrt(2 * Be* (1+Be)+((4*Be*(2+Be)*  (0.45 * fu_f_var8 * 
d_var7^(2.6)))/(fh_k_1_var3*t1_var5^(2)*d_var7)))-Be)+ Rope; 
    f_m_d = min((f_m_d_jyt + Rope), (Pf_mod_var2 * f_m_d_jyt)); 
     
    f_m_e_jyt = ((1.05 * (fh_k_2_var4 * t2_var6 *d_var7) / 
(1+2*Be))*(sqrt(2*Be^(2)*(1+Be)+((4*Be*(1+2*Be)*  (0.45 * fu_f_var8 * 
d_var7^(2.6)))/(fh_k_1_var3 * t2_var6^(2) *d_var7)))-Be) / 1000) + Rope; 
    f_m_e = min((f_m_e_jyt + Rope), (Pf_mod_var2 * f_m_e_jyt)); 
   
    f_m_f_jyt = (1.15 * sqrt((2*Be) / (1+Be)) * sqrt((2*  (0.45 * fu_f_var8 * 
d_var7^(2.6)) * fh_k_1_var3 * d_var7)) / 1000) + Rope; 
    f_m_f = min((f_m_f_jyt + Rope), (Pf_mod_var2 * f_m_f_jyt));  
   
    F_M = min([f_m_a f_m_b f_m_c f_m_d f_m_e f_m_f]);     
end 
toc  
elapsedTime_1 = toc; 
tic 
  
 
  
for i = 1 : loop   
    Fax_Rk_var1 = (f_ax_k * d * (t_pen / 1.2) * (ro_km / ro_pss)^(0.8) ) / (1 
+ exp(A_1 / -0.001)) + (f_h_k * (d * k_h)* (d * k_h) * (ro_km / ro_hss)^(0.8)) 
/ (1 + exp(A_1 / 0.001)); 
    Rope = Fax_Rk_var1 / 4; 
    f_m_a = (fh_k_1_var3 * t1_var5 * d_var7) / 1000; 
    f_m_b = (fh_k_2_var4 * t2_var6 * d_var7) / 1000; 
    f_m_c = ((fh_k_1_var3 * t1_var5 * d_var7)) / (1 + Be) * (sqrt(Be + 2 * 
Be^(2)*(1+(t21)+t21^(2))+Be^(3)*(t21^(2)))-Be*(1+t21))+ Rope;    
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    f_m_d = (1.05 * ((fh_k_1_var3 * t1_var5 * d_var7)) / (2 + Be)) * (sqrt(2 * 
Be* (1+Be)+((4*Be*(2+Be)*  (0.45 * fu_f_var8 * 
d_var7^(2.6)))/(fh_k_1_var3*t1_var5^(2)*d_var7)))-Be)+ Rope; 
    f_m_e = ((1.05 * (fh_k_2_var4 * t2_var6 *d_var7) / 
(1+2*Be))*(sqrt(2*Be^(2)*(1+Be)+((4*Be*(1+2*Be)*  (0.45 * fu_f_var8 * 
d_var7^(2.6)))/(fh_k_1_var3 * t2_var6^(2) *d_var7)))-Be) / 1000) + Rope; 
    f_m_f = (1.15 * sqrt((2*Be) / (1+Be)) * sqrt((2*  (0.45 * fu_f_var8 * 
d_var7^(2.6)) * fh_k_1_var3 * d_var7)) / 1000) + Rope;   
    Anser = (((0.5+0.5*tanh(1000*(f_m_b-f_m_a)))*(0.5+0.5*tanh(1000*(f_m_c-
f_m_a)))*(0.5+0.5*tanh(1000*(f_m_d-f_m_a)))*(0.5+0.5*tanh(1000*(f_m_e-
f_m_a)))*(0.5+0.5*tanh(1000*(f_m_f-f_m_a)))) * f_m_a) + 
(((0.5+0.5*tanh(1000*(f_m_a-f_m_b)))* (0.5+0.5*tanh(1000*(f_m_c-f_m_b)))* 
(0.5+0.5*tanh(1000*(f_m_e-f_m_b)))* (0.5+0.5*tanh(1000*(f_m_f-f_m_b)))) * 
f_m_b) + (((0.5+0.5*tanh(1000*(f_m_a-f_m_c)))* (0.5+0.5*tanh(1000*(f_m_b-
f_m_c)))* (0.5+0.5*tanh(1000*(f_m_d-f_m_c)))* (0.5+0.5*tanh(1000*(f_m_e-
f_m_c)))* (0.5+0.5*tanh(1000*(f_m_f-f_m_c)))) * f_m_c) + 
(((0.5+0.5*tanh(1000*(f_m_a-f_m_d)))* (0.5+0.5*tanh(1000*(f_m_c-f_m_d)))* 
(0.5+0.5*tanh(1000*(f_m_e-f_m_d)))* (0.5+0.5*tanh(1000*(f_m_f-f_m_d)))) * 
f_m_d) + (((0.5+0.5*tanh(1000*(f_m_b-f_m_e)))* (0.5+0.5*tanh(1000*(f_m_c-
f_m_e)))* (0.5+0.5*tanh(1000*(f_m_d-f_m_e)))* (0.5+0.5*tanh(1000*(f_m_e-
f_m_e)))*(0.5+0.5*tanh(1000*(f_m_f-f_m_e)))) * f_m_e) + 
(((0.5+0.5*tanh(1000*(f_m_a-f_m_f)))* (0.5+0.5*tanh(1000*(f_m_b-f_m_f)))* 
(0.5+0.5*tanh(1000*(f_m_c-f_m_f)))* (0.5+0.5*tanh(1000*(f_m_d-f_m_f)))* 
(0.5+0.5*tanh(1000*(f_m_e-f_m_f)))) * f_m_f); 
end 
toc 
elapsedTime_2 = toc; 
  
 
Lateral_load_MDDF_Optimisation = elapsedTime_1 / elapsedTime_2 
Lateral_load_MDDF_Optimisation_present = 100 / elapsedTime_1 * elapsedTime_2 
 
 
 

 
 Screen shot for the Computational comparison 
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Appendix H. BIM-ready equation: code for the lateral loading  

F_v.Rk=((0.5+0.5*tanh(sw*(fm_b-fm_a)))*(0.5+0.5*tanh(sw*(fm_c-

fm_a)))*(0.5+0.5*tanh(sw*(fm_d-fm_a)))*(0.5+0.5*tanh(sw*(fm_e-

fm_a)))*(0.5+0.5*tanh(sw*(fm_f-fm_a)))*fm_a)   +   ((0.5+0.5*tanh(sw*(fm_a-

fm_b)))*(0.5+0.5*tanh(sw*(fm_c-fm_b)))*(0.5+0.5*tanh(sw*(fm_d-

fm_b)))*(0.5+0.5*tanh(sw*(fm_e-fm_b)))*(0.5+0.5*tanh(sw*(fm_f-fm_b)))*fm_b)   +   

((0.5+0.5*tanh(sw*(fm_a-fm_c)))*(0.5+0.5*tanh(sw*(fm_b-

fm_c)))*(0.5+0.5*tanh(sw*(fm_d-fm_c)))*(0.5+0.5*tanh(sw*(fm_e-

fm_c)))*(0.5+0.5*tanh(sw*(fm_f-fm_c)))*fm_c)   +   ((0.5+0.5*tanh(sw*(fm_a-

fm_d)))*(0.5+0.5*tanh(sw*(fm_b-fm_d)))*(0.5+0.5*tanh(sw*(fm_c-

fm_d)))*(0.5+0.5*tanh(sw*(fm_e-fm_d)))*(0.5+0.5*tanh(sw*(fm_f-fm_d)))*fm_d)   +    

((0.5+0.5*tanh(sw*(fm_a-fm_e)))*(0.5+0.5*tanh(sw*(fm_b-

fm_e)))*(0.5+0.5*tanh(sw*(fm_c-fm_e)))*(0.5+0.5*tanh(sw*(fm_d-

fm_e)))*(0.5+0.5*tanh(sw*(fm_f-fm_e)))*fm_e)   +    ((0.5+0.5*tanh(sw*(fm_a-

fm_f)))*(0.5+0.5*tanh(sw*(fm_b-fm_f)))*(0.5+0.5*tanh(sw*(fm_c-

fm_f)))*(0.5+0.5*tanh(sw*(fm_d-fm_f)))*(0.5+0.5*tanh(sw*(fm_e-fm_f)))*fm_f) 

 

where: 

FM_A = f_hk1*t_1*Fixings!d 

FM_B =f_hk2*t_2*Fixings!d 

FM_C = 

(fm_a/(1+SS))*(sqrt(SS+2*power(SS,2)*(1+(t_2/t_1)+power(t_2/t_1,2))+power(ss,3)* 

power(t_2/t_1,2))-ss*(1+(t_2/t_1)))+(Rope/4) 

FM_D = 1.05 * (fm_a/(2+SS))*(sqrt(2*SS*(1+SS)+((4*SS*(2+SS)*M_yRk)/ 

(f_hk1*Fixings!d*power(t_1,2)) ) )-SS)+Rope 

FM_E = 

1.05*((f_hk1*t_2*Fixings!d)/(1+2*SS))*(sqrt(2*power(SS,2)*(1+SS)+((4*SS*(1+2*S

S)*M_yRk)/(f_hk1*Fixings!d*power(t_2,2))) )-SS)+Rope 

FM_F = 1.15*(sqrt((2*SS)/(1+SS))) * sqrt(2*M_yRk*f_hk1*Fixings!d)+Rope 
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Appendix I. Full Survey findings 

 

Contained within this section are the results of an online survey developed as a means to 

identify the barriers detrimental to the specification of timber and wood based products 

in the UK. The survey was developed based on the work undertaken by the Centre for 

Offsite Construction and Innovative Structures (COCIS) in combination with the findings 

of the “Thinking outside the box” report – a collaboration between Swedish Wood, the 

Timber Trade Federation and the former United Kingdom Timber Frame Association 

(now rebranded as the Structural Timber Association).  

The result of the survey are presented in full as part of this section and are summarised in 

section 4.1. 

Introduction 

The Centre for Offsite Construction and Innovative Structures (COCIS) is a research 

centre within Edinburgh Napier Universities Institute of Sustainable Construction. In 

order to gain an improved understanding of the obstacles preventing the specification of 

structural timber and wood based products a survey was undertaken. 

The following questions were asked of the respondents: 

1. Approximately what percentage of your percentage of your work is undertaken 

in Timber, Steel or concrete? 

2. How strongly do you agree or disagree with the following statements: 

3. “Knowledge of timber Engineering within professional teams is lacking” 

4. “Perceptions of timber often overrule reality. This means that the idea of using 

modern wood building solutions can often be stifled in the early design stages. 

5. “The lack of centrally available tables similar to those promoted by the concrete 

and steel industry means that timber is seen as a riskier choice for designers.  

6. Are you using Eurocode 5, Design of timber structures 

7. What would facilitate the use of Eurocode 5 ? 

8. What Structural software do you use?  

9. Would you be more likely to specify timber and timber related products if the 

required technical information was freely accessible?   

10. Give one example of a timber structural detail that you would like to have 

standardised information for. 

11. Are you using BIM, and if so to what level? 
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Distribution of survey   

The survey was developed using SurveyMonkey and was disseminated to Structural 

Engineers via the following means: 

1. Direct email sent to members of the Timber Engineering Network. All recipients 
of this email were based in Scotland. 
  

2. Open online survey made available via Linkidin 

A total of 149 responses were generated from the survey, 76 of these were from IP address 

based in the UK, 19 from those based in Europe and 56 from the rest of the world.  Only 

the results from the UK and Europe are reported in this study. A breakdown of the location 

of the UK respondents is given in Figure I- 1. 

 

Figure I- 1 Number of UK respondents relative to geographical location within the UK 

Note that respondents whose location is given as “unknown” are those which have 

withheld there IP address. Whilst it is known that they have responded from somewhere 

in the UK there exact geographic location cannot be identified with certainty.  

The nature of the responses to each question and along with their perceived implications 

are reported in the following sections.  
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Question 1 - Nature of work undertaken 

“Approximately what percentage of your work is undertaken using Timber, Steel 

or Concrete?” 

Purpose of Question: To determine the degree to which timber is currently utilised in 

the structural design process in comparison to commonly specified materials.  

Results: The responses from this question are presented in and Figure I- 2.         

     Figure I- 2 Responses to Question 1: “Approximately what percentage of your work is undertaken using 

timber?”- responses (Left) and average percentage of work undertaken using timber for each geographic region 

(Right). 

 

Analysis: The results suggest that it is in Scotland that the majority of structural engineers 

are involved with designs utilising timber – a result in line with the prevalence of the 

Timber Platform Frame method of construction. Approximately 25-30% of engineers 

throughout England use regularly specify timber. This figure reduces to 16% in and 

around central London, possibly as a result of a lack of prevalence of the low-cost high 

volume domestic housing where timber is most commonly employed in this area.  

Only one respondent to the survey (based in Dublin) indicated that they worked 

exclusively using timber. 

It should be acknowledged that the results of the questionnaire may be skewed due to the 

nature of the sample surveyed. Respondents were selected from and existing list of 

COCIS contacts meaning that they are already predisposed to specify timber. 

Additionally, the questionnaires title may have had the effect of pre-selecting those 

engineers responding via Linkidin i.e those who are already using timber are more likely 

to respond to a questionnaire relating to timber that those who do not use the material.  
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On average, it would appear that timber accounts for approximately 30% of the work 

undertaken by respondents.  

Implication: Values presented for the amount of work undertaken involving timber 

should be viewed as being greater than the overall consensus of practicing Structural 

Engineers operating within the UK. 

Further Action: Further surveys should be extended to consider the wider Engineering 

community and in particular parties who do not currently design with timber but can see 

the value of doing so. The information provided by such Engineers would be of great use 

to removing the barriers preventing the specification of structural timber. 

 

Question 2, 3 and 4 - Agreement with “Thinking outside of the Box “ 

report 

“Do you agree or disagree with the following statements: 

Q2. Knowledge of timber engineering within professional teams is lacking 

Q3.Perceptions of timber often overrule reality. This means that the idea of using 

modern wood building solutions can often be stifled in the early stages of design 

Q4.The lack of centrally available ‘tables’ similar to those widely promoted by the 

concrete and steel industry, means that timber is seen as a riskier choice for 

designers” 

Purpose of Question: These questions have been developed based on the key findings 

of the “Thinking Outside the Box” report. Responses will be used to further validate the 

findings of this report. 

Results: Results to these questions are presented in Figure I- 3. 
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Figure I- 3 Summary of responses to Q2, Q3 and Q4 

Analysis: Respondents generally agreed with the findings of the “Thinking Outside of 

the Box” report with 59% of all respondents agreeing that knowledge of timber 

engineering amongst professional teams was lacking. This is of interest due to the fact 

that as already highlighted – the results of the questionnaire are skewed towards those 

already using the material indicating there may be a lack of knowledge amongst those 

who already work predominantly with timber.  

The greatest disagreement was shown in relation to the lack of centrally available design 

tables being one of the barriers to specification of timber with 24% of respondents 

disagreeing with the statement given and 8% strongly disagreeing.  

Q3 provoked the greatest degree of neutrality – possibly as a result of the unclear wording 

or lack of directness (the statement is reproduced as it appears in the Thinking Outside of 

the Box report) 

At the extreme ends of opinion, the number of respondents strongly agreeing with the 

statements remains consistent at approximately 10% whilst those strongly disagreeing 

with the given statements is less than this. 
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Implication: Generally speaking, the conclusions of the Thinking Outside of the Box 

report align with the opinions of those surveyed thereby giving additional validation to 

the report.  

The predominant result from these questions is that there is a perceived lack of knowledge 

amongst design teams. The parameters of the question do not allow for the nature of the 

type of knowledge which is lacking to be determined – this may be relevant to further 

surveys to be undertaken.  

Further Action: Utilise findings of the survey in conjunction with Thinking Outside of 

the Box report in support of future funding applications. Quantify the nature of the 

knowledge which is perceived to be lacking and make best actions to address this 

shortfall.   

 

Question 5 - Use of Eurocode 5 

“Are you using Eurocode 5, Design of timber structures?” 

Purpose of Question: To determine the uptake of the BS EN 1995-1-1 Eurocode 5 (EC5) 

document amongst respondents as a means to identifying the most effective route for 

future developmental work.  

Results: Responses to Question 5 are presented in Figure I- 4. 

Figure I- 4 Overall responses (Left) and responses for geographic locations in the UK (Right) for Question 5: “ Are 

you using Eurocode 5 Design of Timber Structures?” 

 

Analysis: Approximately 1/3 of respondents state that they are currently using EC5. The 
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postulated that BS5268 is still the preferred method of design (for the UK at least). This 

general trend was shown to exist across the country.  

Implication: The uptake of EC5 in the UK is shown to be limited, even amongst 

respondents who are pre-disposed towards the use of timber. The value of developmental 

work related to EC5 may be reduced as a result of the fact that results indicate that the 

majority of the Engineers are likely to still be using the superseded BS 5268 standard.   

Further Action: Further work undertaken in relation to EC5 should be aimed at further 

facilitating the introduction and use of the standard. 

 

Question 6 - Facilitation of Eurocode 5 

“What would facilitate the use of Eurocode 5?” 

Purpose of Question: To identify areas to target for future programs of work facilitating 

the introduction of EC5.  

Results: The responses to Question 6 have been summarised and presented in Figure I- 

5. Further to the prescribed answers respondents were also provided with the opportunity 

to add their own comments to what they saw to be the areas which would facilitate the 

introduction of EC5. Each of the responses are reproduced directly as part of Table I- 1 . 

A further in depth analysis of each response and their perceived implications are also 

provided. 

 

Figure I- 5 Responses to Question 6: “What would facilitate the use of Eurocode 5?” 
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Analysis: Results demonstrate that software and CPD are highlighted to be of primary 

importance to the uptake of EC5. It is interesting to note that undergraduate education 

ranks almost as highly as the two leading responses (Software and CPD). Due to the fact 

that respondents can answer positively to all questions, results are less definitive than 

could be hoped for and conclusive findings are somewhat lacking. However, based on a 

comparison of the results it would appear that the needs for a support services is not seen 

to be particularly pressing.  

Opinions with respect to EC5 show stagnation with respect to its adoption. Although 

responses were brief and not developed to a great extent, they give a sense that there is  a 

great deal of inertia which requires to be overcome for EC5 to be accepted. It appears that 

the change to EC5 must be forced upon the Engineering community otherwise it will quite 

happily continue to adopt tried and tested methods. Resistance to EC5 appears to be as a 

result of: 

1. Lack of user friendliness - The level of departure from existing design 
methods, the perceived level of complexity in the calculations and its general 
lack of user friendliness 

2. Associated expense - The expense associated with switching to a new design 
method 

3. Unfit for purpose - Lack of confidence in the method and opinion that EC5 is 
“not fit for purpose”  

4. Offers little perceivable advantage - Lack of clarity as to what advantage the is 
offered by the method 

Views of individual engineers with respect to Question 6 

Table I- 1 Views of individual engineers with respect to Question 6 

Direct Quote Analysis Implication/Action 

“Good, detailed design 
guides” 
 

Further need for published 
information and technical notes 

Possibly an inclusion of technical notes 
as part of Tedds calculation (in line 
with Eurocodes+ approach) 

“the need to design timber 
structures” 

Respondent  specified that they 0% of 
their work involves timber 

EC5 may be used if this engineers does 
begin to undertake work with timber 

“Requirement by 
professional institutions for 
their members to stay up-to-
date with changes in the 
industry, rather than 
allowing some of their 
members to ignore them.” 

Push required from professional 
bodies such as IStructE. Indicative of 
the fact that unless forced to change 
the industry will continue to adopt 
established practice 

Engineers must be “pushed” into 
adopting EC5. The perceived 
advantages of using the new code will 
not be sufficient on their own to create 
sufficient “pull” to encourage change. 

“Reduction in costs of 
guides” 

Self-explanatory – although it is 
unclear if this is in reference to the 
price of the actual codes (EC5 approx. 
£225) or the price of the guides 
published in the support of them 

EC5 is inherent to the calculations 
developed as part of Tedds therefore 
the necessity to purchase the codes is 
negated – further to this information 
and guidance could be included as part 
of commonly adopted design software 

“company standard - due to 
move across to Eurocodes 
soon” 

Respondent currently adopts code 
other than Eurocode in line with 
company practice but will move to 
EC5 soon 

A movement already exists amongst 
larger companies towards switching to 
EC5 
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“tradition, experience, 
precedents” 

Unclear – possibly meaning that once 
the use of the codes is established 
further that this in itself will promote 
a further increase in uptake 

Engineers are well experienced with 
the current design standards which they 
employ – the lack of experience with 
respect to EC5 is a barrier to its 
acceptance  

“The suitability of timber for 
the projects I work on (large 
span bridges)” 

Unclear – possibly that it is the 
limitations of the material itself that 
prevent the respondent from 
specifying it and therefore using EC5 

Increasing awareness of the capabilities 
of timber required (timber can/has been 
used for long span bridges)  

“Time” Unclear – possibly time taken to 
retrain or to undertake the actual 
calculation process itself or the time 
associated with retraining in a new 
design method 

Offers an opportunity to highlight the 
role of software programs in 
streamlining the design process 

“Racking and Masonry 
Shielding need to be sorted to 
bring these into line with 
BS5268 figures at least.” 

Specific technical criticism of the 
design method 

There still exists a preference for tried 
and tested methods  

“Certification” Unclear – possibly that the use of EC5 
would increase if it was made 
mandatory for certification purposes.  

Pressure to adopt Eurocode is required 
from external parties i.e Engineers 
required to be “pushed” into using it 

“Industry Consensus” If EC5 was to be adopted as industry 
norm then this would further promote 
uptake 

Industry consensus may be promoted 
through bodies such as ISTRCUTE  
and ICE 

“Full withdrawal of British 
stand - But I saw the 
introduction of Eurocodes as 
pointless” 

Engineers have to be given no 
alternative but to adopt Eurocode – 
again this is consistent of the notion of 
being forced into adopting it 

The fact that British Standards have 
now been superseded needs to be made 
clearer 

“A useful Code of Practice, 
EC5 is worthless.” 

Lack of faith in the method  The benefits and usability of the 
Eurocodes requires to be highlighted  

 

Implication: It can be surmised from these results that all options presented are valid 

means of increasing the uptake of EC5. The work being undertaken By COCIS offers a 

route to address most of the issues highlighted  

Further Actions:  

Table I- 2 Further action identified as a result of responses to Question 6 

Issue Solution 

Lack of user friendliness Through automating the calculation process and introducing easy to use user 

interfaces EC5 can be rendered user friendly 

Associated expense Economic cost of EC5 not addressable through the work of COCIS but through 

developing calculation on an existing software platform the need to purchase a 

physical hard copy is reduced  

Unfit for purpose Being an approved and reviewed standard EC5 has been declared to be fit for 

purpose. It is postulated that the view that it is unfit for purpose is as a result of 

its perceived level of complexity – particularly in relation to the more user 

friendly BS 5268.  

Automation of calculation process via Tedds will address this issue.  

Offers little perceivable 

advantage 

The advantage of EC5 are its analytical basis and the fact that it offers the user 

the ability to input their own variables. The ability to do this can be illustrated 

via Tedds.  
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Question 7 - Structural software 

 

“What Structural Software do you use?” 

Purpose of question: To determine the structural software platforms commonly utilised 

by engineers as a means to identify those which provide the most direct route to the end 

user.  

Results: Responses to the question showed a wide and varied range of software is 

currently employed by Engineers. The survey has revealed that 38 differing platforms are 

employed by engineers. 

See Figure 4-2 

 

Analysis: 57% of respondents use CSC (Tekla) Tedds software making it by far the most 

commonly used software platform. A further 6% of respondents used other CSC (Tekla) 

software platform meaning that CSC (Tekla) software is adopted by 63% of structural 

engineers in the UK. Bentley’s STAAD PRO and Master series software are the second 

most commonly used amounting to 6 percent of the respondents. Responses make it clear 

that there are a wide variety of platforms adopted by the respondents to the questionnaire. 

No obvious trend other than the prevalence of CSC (Tekla) software appears to exist – 

the majority of software platforms identified being utilised by a single respondent.  

Implications: CSC (Tekla) Tedds software has been shown to be the most commonly 

utilised structural software platform and therefore the one providing the most effective 

route to practicing engineers.   

Further Action: Utilise CSC (Tekla) Tedds as an effective route through which to 

facilitate the structural timber design process.  
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Question 8 - Technical information requirements 

 

“Would you be more likely to specify timber and timber related products if the 

required technical information was freely accessible? “ 

Purpose of Question: To determine if the lack technical information on timber and 

timber products is a barrier to its specification. 

Results: 

 

Figure I- 6 Responses to Question 8: “Would you be more likely to specify timber and timber related products if the 

required technical information was freely available?” 

Analysis: Responses were geared towards agreeing with the outlined statement with the 

majority of respondents (57.5%) either agreeing or strongly agreeing that the free ability 

of technical information would increase their likely hood of specifying timber for 

structural purposes. Approximately 1/3 of respondents (27.4%) expressed no definitive 

opinion whilst 8.2% disagreed and 6.8% strongly disagreed with the statement.  

Implication: The results provide evidence – although by no means conclusive - that a 

lack of technical information is one of the barriers to the specification of home-grown 

timber.  

Further Action: Further utilise existing routes whilst identifying further ones which may 

be used to increase the flow of technical information to practicing Structural Engineers.  
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Question 9 - Standardised details 

 

“Give one example of a timber structural detail that you would like to have 

standardised information for” 

Purpose of Question: To determine what technical details engineers would like to see 

presented in a standardised easily specified format in order that they me be incorporated 

into ongoing work – namely their incorporation within the Tedds library of calculations.  

Results: Responses from those surveyed have been directly reproduced and categorised 

according to subject area and are presented in 

Table I- 3 Responses to Question 9: “Give one example of a timber structural detail that you would like to have 

standardised information for” 

Category Detail highlighted by response 

Members “Flitch beams”/ “Columns”/ “Columns”/ “Joists, trusses” 
Connections “nailed and bolted joints”/ “Shear connections including nailing and screwing details”/ 

“Bolted connections”/ “Connections”/ “Typical Connection Details”/ “Moment connection 
details”/ “Main workstream is in rail bridges and ancillary structures.  End connections usually 
problematic on waybeams.”/ “Typical joint details”/ “Connections”/ “Moment connections”/ 
“Connections generally.”/ “Connections. Of all types. Something like the steel green book.”/ 
“Beam to column Connections” 

Wall Details  
 

“Racking panels anchorage detailing/sole plate fixings.”/ “Sole Plate Fixings and Panel Bottom 
rail fixings to Sole Plates.”/ “Internal wall parallel to floor joists where wall is required for 
racking resistance”/ “Floor to wall detail”/ “pinned fixing for curtain wall including 3-
dimensional tolerances adjustment.”/ “Tie between wallhead and floor”/ “Timber frame sole 
plate fixings” 

Other Details  
 

“Column beam connection”/  “Column bases”/  “Details to prevent disproportionate collapse”/  
“standard details for CLT”/ “BRIDGE DECKING”/ “Bolt groupings at joints”/ “C16 lintels 
and cripple stud load tables.”/ “Hip apex joint.”/ “Splicing new joist ends to cut out rotten 
joists.” 

Systems and 
components 

“Portals”/ “Multi-storey medium rise timber frame flats”/ “trusses”/ “SIPS”/ “Racking panels 
to EC5”/ “trusses” 

Miscellaneous 
 

“None.  Ensuring the competency of the contractor would be better.”/ “Timber frame 
settlement”/ “skeleton”/ “Not applicable”/ “All details are different depending on the structure.  
Generally we have standard details in house for timber”/ “None” 

 

 

Figure I- 7 Responses to Question 9: “Give one example of a timber structural detail that you would like to have 
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standardised information for” 

Analysis: Those surveyed indicated that connection and connection orientated details are 

the most desirable standardised detail. The requirement for standardised details related to 

walls detailing for racking capacity should also be noted.  The responses given could be 

interpreted to infer that the majority of respondents are involved in the design of domestic 

housing.  

Implication: Due to the prevalence of connections and their critical nature in the design 

of timber structures it is to be expected that the most requested standardised details are 

related to this area. 

Further Action: Development of streamlined methods for the calculation of timber 

connections and associated details based on further input from practicing Engineers.   

 

Question 10 - Attitudes to BIM 

 

“Are you using BIM, and if so to what level” 

Purpose of Question: To determine the BIM level at which the respondents are operating 

as a means to assess the future receptiveness to the development of a “Mass Customised 

approach to Timber Engineering” using the approach 

Results: Responses to the question are presented in Figure I- 8 and are presented so as to 

reflect the two aspects of the question; i) Are you using BIM and ii) if so to what level? 

The data presented in reference to ii) has been gathered from the respondents who 

answered “Yes” to i).  

Figure I- 8 Responses to Question 10: “Are you using BIM (Left) and if so to what level (Right)?” 

 

Table I- 4 Additional information given in response to Question 10 is presented as follows: 

30%

69%

1%

YES NO No Answer

41%

18%

27%

5%

Level not specified Level 1 Level 2 Level 3
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Details of responses 

given to Question 10 

“For building services design and detailing only.”/ “Technicians in office are beginning 

to use BIM” /“Infrequent-job specific” /“occasionally” /“Structural steel design and 

detailing” /“Basic induction course.  Looking to adopt Revit for all projects within the 

company in the near future.” /“Timber frame models are bin models as information is taken 

from them. Citing lists etc. Is not integrated with structural software though.” /“10% of 

projects” /“Early days.” /“Drawings” /“I don´t use it directly but work in projects that 

implement it” /“Aiming to get to LEVEL 2. but currently running at a pseudo level 1.8/1.9. 

ie not supporting cobie ” 

 

Analysis: It would appear that the vast majority (69%) of those surveyed are not 

implementing BIM in anyway. Of the 30% who are implementing BIM, it would appear 

that this is only to a limited degree or level. Of those implementing BIM, only 27% are 

operating at Level 2 and only 5% (1 respondent) of those surveyed are operating at Level 

3. The majority of those indicating that they are using BIM did not indicate to which level 

they were employing it too and it is postulated that is as a result of BIM being 

implemented at a minimal level i.e the use of AutoCAD or Revit being taken as BIM 

compliancy.  

Implications: It would appear that those involved in the Timber Engineering industry 

could be better positioned to take advantage of BIM. In general, the sector has not 

engaged with BIM – this could be attributable too: 

 

 A general unawareness or lack of understanding as to what BIM actually 
involves or entails  

 The nature of projects which utilise timber – timber is not typically used in the 
large scale projects where BIM may be adopted. 

 Engineers who specialise in timber tend to be small practices or “one man 
bands” i.e parties who are not set up to implement a BIM strategy 

As well as indicating a general lack of uptake of BIM, those who are actually 

implementing it appear to be doing so at the very lowest level. Responses show little 

evidence of further development of BIM beyond the levels attainable by default through 

the use of AutoCAD or Revit.  

Further Action: Undertaken further research/ questionnaires to determine if BIM is 

relevant to timber engineering and also to identify if the creation of a BIM framework for 

timber will promotes its use amongst larger organisations that may be adopting BIM in 

earnest.  
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Further Analysis: Data from “High Timber Use” respondents  (≥50%) 

to survey 

 

Figure I- 9 Data from “High Timber Use” respondents to Q2, Q3 and Q4 

 
Figure I- 10 Data from “High Timber Use” respondents: Q5 “Are you using EC5?” (left) and Q6 “What would 

facilitate the use of EC5?” (right) 

 
Figure I- 11 Data from “High Timber Use” respondents: Q8 “Would you be more likely to specify timber and timber 

related products if the required technical information was freely accessible?” (left) and Q10 “Are you using BIM?” 
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Further Analysis: Data from “Low Timber Use” respondents (≤50%) to 

survey 

 

 

Figure I- 12 Data from “Low Timber Use” respondents to Q2, Q3 and Q4. 

 

 

 
Figure I- 13 Data from “Low Timber Use” respondents: Q5 “Are you using EC5?” (left) and Q6 “What would 

facilitate the use of EC5?” (right) 

 

Amongst those specifying a high proportion of their work is undertaken using timber, 

35% of respondents use Tedds software. 
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Figure I- 14 Data from “Low Timber Use” respondents: Q8 “Would you be more likely to specify timber and timber 

related products if the required technical information was freely accessible?” (left) and Q10 “Are you using BIM?” 

 

Further Analysis: Data from respondents using EC5 

 

Figure I- 15 Data from respondents using EC5 for Q1 

 

Figure I- 16 Data from respondents using EC5 to Q2, Q3 and Q4. 

10%

41%

36%

8%
5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

N
u
m
b
er
 o
f 
re
sp
o
n
se
s

34%

66%

YES NO

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
er
ce
n
ta
ge
 o
f 
U
K
 r
es
p
o
n
d
en

et
s

Percentage of work undertaken in specificed material

Timber

Steel

Concrete

0%

10%

20%

30%

40%

50%

60%

70%

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

P
er
ce
n
ta
ge
 o
f 
re
sp
o
n
d
en

ts
 e
xp
re
re
ss
in
g 

vi
ew

Respondent view

Knowledge of timber
engineering within
professional teams is lacking.

Perceptions of timber often
overrule reality. This means
that the idea of using modern
wood building solutions can
often be stifled in the early
stages of design

The lack of centrally available 
â€˜tablesâ€™ similar to those 
widely promoted by the 
concrete and steel industry, 
means that timber is seen as a 
riskier choice for designers. 



235 

46% of respondents using EC5 indicated that they use Tedds software. 

Figure I- 17 Data from respondents using EC5 to Q8 “Would you be more likely to specify timber and timber related 

products if the required technical information was freely accessible?” (left) and Q10 “Are you using BIM?” 

 

Further Analysis: Responses from Europe 

The survey was made available online via Linkidin and was therefore open to 

international recipients. A total of 19 respondents from mainland Europe completed the 

questionnaire 6 responses came from Spain, 3 from Germany and Italy, 2 from Romania 

and a single response from Belgium, Denmark, Greece, Poland and the Netherlands.  

 

A further 53 respondents from around the world replied to the questionnaire, given the 

diversity of the locations and the nature of the responses this information has not been 

considered as part of this study.  

Results, analysis and conclusions drawn from the European respondents are collectively 

presented as follows:  
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materials?” 

The percentage break down of those using timber revealed that amongst the respondents 

it was not widely utilised with over 60% of respondents indicating that they do not 

undertake any sort of work involving the material. The maximum percentage of work 

using timber was indicated to be 20%. Concrete would appear to be the predominant 

material specified by those completing the questionnaire. 

View to Questions 2, 3 and 4 show those responding to the questionnaire from mainland 

Europe agree with the principles of the Thinking Outside of the Box report giving further 

credence to findings of the report.  

 

 

 

Figure I- 19 European responses to Q2, Q3 and Q4 

Despite the fact that a minority of respondents indicated that they undertook work with 

timber it would appear that those designing with it do so in accordance with Eurocode 5. 

It is suggested that the 68% indicating that they do not use EC5 do so because they do not 

undertake any work using timber. Such results would also suggest that the Eurocode suite 

of design methods have been more widely accepted and are employed to a greater degree 

across mainland Europe than in the UK.  
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In terms of measures that could be employed to facilitate the use of EC5 software 

development and undergraduate training showed a number of positive responses with 

53% and 58% respectively.  

 

 

 
Figure I- 20 European responses to Q5 and Q6: “Are you using Eurocode 5?”(Left) and “What would facilitate the 

use of Eurocode 5?”(Right) 

 

Examples of details the respondents would like to see included are given in Table I- 5.  In 

line the responses from the UK the requirements for standardised connections details 

features highly. The nature of the standardised details presented could be taken to indicate 

that timber is utilised more for the purposes of Civil Engineering and infrastructure 

projects (i.e bridges) rather than domestic housing as indicated by UK respondents.  

 

Table I- 5 Responses to Question 9 “Give one example of a timber structural detail that you would like to have 

standardised information for” 

Details of responses 

given to Question 9 

“pedestrian bridge parapet composite joint detail (timber+ steel or concrete) Timber”/  

“roof-truss systems”/ “Timber connections” / “unnecessary” / “Base column connection”/ 

“balustrades, guardrails /“Joints” /“Pedestrian walkway”/ “For instance, the dimensions 

and material properties of timber beams and not only the woodwork.” /“Fixed bolted 

connections” /“joints details” /“joints” 

 

Responses to Question 10 would indicate that only 17% of European respondents utilise 

BIM – as opposed to 30% of UK respondents.  
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Appendix J. Survey respondents identified software used 

List of used software identified by survey respondents 

2D/3D Analysis  
 

 
Prokon www.prokon.com/ 

 
Tekla: Fastrak, Orion, Solve www.tekla.com 

 
Autodesk: Robot www.autodesk.co.uk/  

 
RM-WIN www.rm-win.pl/ 

 
Bentley: Sacs (oil and gas) www.bentley.com/  

 
Bentley: RAM steel www.bentley.com/ 

 
Bentley: STAD Pro www.bentley.com/  

 
Fitzroy: Sand www.fitzroy.com/  

 
SESAM (offshore structures) www.dnvgl.com/  

 
S-Frame www.s-frame.com/  

 
Oasys www.oasys-software.com/  

 
Masterseries www.masterseries.com/  

 
ETABS www.csiamerica.com/products/etabs  

 
Graitec: Superstress www.uk.graitec.com/supersuite/superstress/  

 

Finite element analysis 

 

 
LISA (Free)  www.lisafea.com/  

 
Plaxis www.plaxis.com/  

 
Lusas www.lusas.com/  

 
Altair: StrudCAD  www.altair.com   

 
3Ds: Abaqus/simulia www.3ds.com  

   

MEP Design CAD 
 

 
ENCAD  www.encad.co/  

   

Retaining wall analysis  
 

 
Wallap www.geosolve.co.uk/  

   

Timber engineering using steel connector products  
 

MiTek www.mitek.co.uk/  

   

Calculation pad and template calculations  
 

Tekla Tedds  www.tekla.com/uk/products/tekla-tedds  

   

Template calculations  
 

 
Scale / SAM https://fitzroy.com/  
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Appendix K. The Newly created Code Compliance Tedds output 

 Tekla TEDDS timber connections, references and  revision history 

Calculation references: 

 Eurocode 5: Design of timber structures 

Part 1‐1:General ‐ Common rules and rules for buildings ‐ EN1995‐1‐1:2004 + A1:2008 incorporating Corrigendum 

No.1 

 Published Document PD 6693‐1 as UK Non‐Contradictory Complementary Information to Eurocode 5: Design of 

timber structures (2012 Publication). 

 Boverket mandatory provisions amending the board’s mandatory provisions and general recommendations 

(2011:10) on the application of European design standards (Eurocodes), EKS ‐ BFS 2015:6 EKS 10 

 Finnish National Annex NA to SFS EN 1995‐1‐1 

 Irish National Annex NA to IS EN 1992‐1‐1:2004 

 Norwegian National Annex NA to NS EN 1995‐1‐1:2004/NA:2010 + A1:2013 

 UK National Annex NA to BS EN 1995‐1‐1:2004 + A1:2008 incorporating National Amendment No.1 

 Structural timber ‐ Strength classes ‐ EN 338:2016 

 Timber structures – requirements for dowel type fasteners ‐ EN 14592, Edition 2012 
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Revision History 

Version  Date  Description 

  22nd January 2019  Added link to video demonstration in calculation notes. 

1.1.07  30th August 2018  Enhanced the calculation to include options for a summary table and user defined 

output notes. 

1.1.06  7th June 2018  Fixed summary output always calculating "Load utilisation factor" assuming single 

shear. 

Modified Show fields in various Calc Items to prevent result from appearing in the 

progress log. 

1.1.05  15th May 2018  Initialise variables used for drawing Id's as temporary variables so that they do not 

affect automated testing of the examples. 

1.1.04  15th December 2017  Fixed issue for the tension splice connection when using steel side members and 

screws the characteristic axial force capacity was incorrectly calculated.   

1.1.03  9th November 2017  Added Irish, Swedish, Finnish and Norwegian national annexes. 

1.1.02  1st September 2017  Fixed issue for the nail data lists.  

Fixed issue for the main to side member connection when using screws, the moment 

calculation was using the incorrect variable for tensile strength. 

Fixed issue for the main to side member and tension splice calculation, the 

withdrawal capacity and pull‐through resistance was multiplied by the effective 

number of fixings. 

1.1.01  9th January 2017  Enhanced output options to include an option to omit the fixing spacing table. 

Enhanced output options to include an option to omit the timber splitting 

calculation. 

Fixed main to side member connection not retaining the head diameter of the 

selected screw. 

Corrected clause references in output. 

Corrected multi‐member connection transposing the Elevation and End Elevation 

sketches in the user interface and output. 

1.1.00  8th September 2016  Enhanced to include multiple member; tension splice and axially loaded fixing 

connections. 

Minor corrections to the main to side member connection. 

1.0.00  3rd May 2015  Original version 
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 Tedds output: Main to side member - Screwed edge beam example 

TIMBER CONNECTION DESIGN 

In accordance with EC5 and the UK National Annex incorporating National Amendment No.2 and the Published 

Document PD6693-1:2012 Non-Contradictory Complementary Information to Eurocode 5. 
Tedds calculation version 1.1.07 

Design summary 

Description Provided Required Utilisation Result 
pointside penetration 21.0 mm 35.5 mm 0.592 PASS 
spacing/edge distances   0.875 PASS 
load utilisation factor   0.628 PASS 

 

  
 

Plan  Elevation 

 

  
 

End elevation 
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Geometric Properties 

Member 1 

Breadth b1 = 45 mm  

Height h1 = 220 mm  

Cross sectional area A1 = 9900 mm2 

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m1 = 10 N/mm2 

Characteristic density of the timber k.m1 = 310 kg/m3 

Member 2 

Breadth b2 = 45 mm  

Height h2 = 145 mm  

Cross sectional area A2 = 6525 mm2 

Rotation about the X-X axis 0  

Rotation about the Z-Z axis 0  

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m2 = 10 N/mm2 

Characteristic density of the timber k.m2 = 310 kg/m3 

Screws 

Description 3.5 mm / 2.1 mm x 90 mm screw 

Number of screws Nfixings = 3 

Head diameter dh.f = 6.975 mm 

Head length ln.l.f = 0.500 mm 

Smooth shank diameter df = 3.50 mm 

Outer thread diameter douter.f = 3.50 mm 

Inner thread diameter dinner.f = 2.05 mm 

Total length lf = 90.0 mm 

Thread length, including the point lth.f = 60.0 mm 

Point length lpoint.f = 9.0 mm 

Total screw pointside penetration PsP = 44.50 mm 

Tensile strength of each fixing fu.fs = 600 N/mm2 

Counter sunk head 

 

  
 

Smooth shank penetration (4 × douter.f) / (PsP – lth.f) = -0.903 

Conditions of 8.7.1(2) are not met, effective diameter calculated in accordance with 8.7.1(3) 

Effective screw diameter - cl 8.7.1(3) def.f = dinner.f × 1.1 = 2.26 mm 

Pointside penetration 

non smooth shank - cl 8.7.1(2) tpen = PsP – lpoint.f = 35 mm 

Minimum penetration of fixing in main member tmin.pen = 6 × douter.f = 21.0 mm  

 tmin.pen / tpen = 0.59 
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PASS - Pointside penetration is acceptable 

Check to validate that no pre-drilling is acceptable 

Characteristic dencity < 500 kg/m3 - cl 8.3.1.1(2) k.m1 / 500kg/m3 = 0.62 OK 

 k.m2 / 500kg/m3 = 0.62 OK 

Diameter of fixing < 6mm - cl 8.3.1.1(2) df / 6mm = 0.58 OK 

Timber thickness > tmin - cl 8.3.1.2(6) 

tmin = max (7 × df, (13 × df - 30mm) × (max(k.m1,k.m2)/ 400kg/m3)) = 25 mm OK 

PASS - Predrilling is not required 

Partial safety factors 

Safety factors - EC0 National Annex 

Limit state (STR)  

Permanent actions G = 1.35 

Variable actions Q = 1.50 

Safety factors – EC5 National Annex 

Material factor for timber M = 1.30 

Material factor for connections M.connection = 1.30 

Actions acting on member 2 

Characteristic lateral action 

Permanent vertical lateral action Gla.v.k = 0.08 kN 

Permanent horizontal lateral action Gla.h.k = 0.00 kN 

 Gla.k = (Gla.v.k
2 + Gla.h.k

2) = 0.08 kN 

Variable vertical lateral action Qla.v.k = 0.08 kN 

Variable horizontal lateral action Qla.h.k = 0.00 kN 

 Qla.k = (Qla.v.k
2 + Qla.h.k

2) = 0.08 kN 

Design lateral action, EN1990 - eq 6.10 Fla.Ed = ((G × Gla.v.k + Q × Qla.v.k)2 + (G × Gla.h.k + Q × Qla.h.k)2) = 0.23 

kN 

Characteristic axial permanent action Gax.k = 0.00 kN 

Characteristic axial variable action Qax.k = 0.00 kN 

Design axial action, EN1990 - eq 6.10 Fax.Ed = G × Gax.k + Q × Qax.k = 0.00 kN 

Angle between the force and the grain direction  = 90 - atan((G × Gla.h.k + Q × Qla.h.k) / (G × Gla.v.k + Q × Qla.v.k)) = 90˚ 

Min. angle screw axis - grain direction point side screw = 0˚ 

Modification factors – Table 3.1 

Service class of timber 1 

Load-duration Short term 

 kmod = 0.90 

Embedment strength in timber - eq 8.15 

Characteristic embedment strength, side member fh.k.1 = 82 kNm/kg × k.m1 × (def.f / 1mm)-0.3 = 19.92 N/mm2 

Characteristic embedment strength, main member fh.k.2 = 82 kNm/kg × k.m2 × (def.f / 1mm)-0.3 = 19.92 N/mm2 

Yield moment of screw - eq 8.14 My.Rk = 0.30 mm0.4 × fu.fs × def.f
 2.6  = 1491 Nmm 

Withdrawal resistance 

Penetration length of the threaded part lef.f = tpen = 35.50 mm 

Characteristic values of the withdrawal and pull-through strengths 

Withdraw capacity, User entered fax.k.pss = 11.000 N/mm2 

Associatated density a.ax.k.pss = 350.00 kg/m3  

Effective number of screws - eq 8.41 nef = Nfixings
0.9 = 2.688 
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Withdrawal capacity - eq 8.40a Fax.point.Rk = fax.k.pss × douter.f × lef.f / (1.2 × cos(screw)2 + sin(screw)2) × 

(k.m2 / a.ax.k.pss)0.8 = 1034 N 

Headside pull-through, User entered fhead.k.hss = 9.40 N/mm2 

Associatated density a.head.k.hss = 350.00 kg/m3  

Pull-through resistance - eq 8.40b Fax.head.Rk = fhead.k.hss × dh.f
2 × (k.m2 / a.head.k.hss)0.8 = 415.003 N 

 Fax.Rk = min(Fax.point.Rk, Fax.head.Rk) = 0.4150 kN 

Design value of axial withdrawal capacity Fax.Rd =(kmod× Fax.Rk) / M.connection = 0.2873 kN 

Lateral load-carrying capacity of connection 

Failure modes for timber to timber connections: 

 

 

 

 

 

 

 

Embedment ratio  = fh.k.2 / fh.k.1 = 1.00 

Thickness headside member t1 = b1 = 45 mm 

Penetration length in pointside member t2 = tpen = 35 mm 

Maximum rope effect contribution - cl. 8.2.2(2) & 8.3.1.2(4)  

 Pf.mod = 2 

 Pf.mod – 1 = 100 % 

 Rope = Fax.Rk / 4 = 104 N 

Failure mode (a) f.m.a = fh.k.1 × t1 × def.f = 2.02 kN 

Failure mode (b) f.m.b = fh.k.2 × t2 × def.f = 1.59 kN 

Failure mode (c) f.m.cJyt = f.m.a / (1+) × ([ + 2 × 2 × (1 + (t2 / t1)+(t2 / t1)2) + 3 × ( (t2 

/ t1)2)] -  × (1 + (t2 / t1))) 

 f.m.c = min(f.m.cJyt + Rope, Pf.mod × f.m.cJyt) = 0.86 kN 

Failure mode (d) f.m.dJyt = (1.05 × f.m.a / (2 + )) × ( [2 ×  × (1 + ) + ((4 ×  × (2 + ) 

× My.Rk) / (fh.k.1 × t12 × def.f))] - )  

 f.m.d = min(f.m.dJyt + Rope, Pf.mod × f.m.dJyt) = 0.85 kN 

Failure mode (e) f.m.eJyt = (1.05 × (fh.k.1 × t2×def.f) / (1 + 2 × )) × ( [2 × 2 × (1 + ) + ((4 

×  × (1 + 2 × ) × My.Rk) / (fh.k.1 × t22 × def.f))] - )  

 f.m.e = min(f.m.eJyt + Rope, Pf.mod × f.m.eJyt) = 0.71 kN 

Failure mode (f) f.m.fJyt = 1.15 ×  [(2 × ) / (1 + )] ×  [(2 × My.Rk × fh.k.1 × def.f)] 

 f.m.f = min(f.m.fJyt + Rope, Pf.mod × f.m.fJyt) = 0.52 kN 

Characteristic lateral nail shear resistance  Failure mode (f) 

 Fv.Rk = 0.52 kN 

Design resistance per fixing - cl 8.3.1.2(4) Fv.Rd = (kmod × Fv.Rk) / M.connection / 3 = 0.12 kN 

Load utilisation factor ut_load = Fla.Ed / (Nfixings × Fv.Rd) = 0.628 

PASS - Design resistance exceeds design load 

Splitting capacity of timber 

Loaded edge distance he = 118 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk = 14 × b1 × 1 mm-1 × (he × 1mm-1 / (1 - (he / h1))) × 1 N = 10.05 

kN 

Design splitting capacity F90.Rd = kmod × F90.Rk / M.connection = 6.96 kN 

 Fla.Ed / F90.Rd =0.033 
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PASS - Splitting capacity of timber exceeds the design force in member 

Spacing 

 

  
 

 Allowable 

Member 1  minimum Applied 

Spacing of rows perpendicular to grain, a2:  5  douter.f 17.5 mm 45.0 mm 

Distance between fixing and loaded edge, a4t:  (5 + 2  sin )  douter.f 24.5 mm 102.0 mm 

Distance between fixing and unloaded edge, a4c:  5  douter.f 17.5 mm 28.0 mm 

      

Member 2 

Spacing of rows perpendicular to grain, a2:  5  douter.f 17.5 mm 45.0 mm 

Distance between fixing and loaded edge, a4t:  (5 + 2  sin )  douter.f 24.5 mm 10000.0 mm 

Distance between fixing and unloaded edge, a4c:  5  douter.f 17.5 mm 10000.0 mm 

      

Minimum breadth of member: 2  a4c.m2  35.0 mm  45.0 mm 

Allowable minimum from table 8.2 

PASS - All spacing conditions are met 
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 Tedds output: Main to side member - Nailed roof soffit example 

 

TIMBER CONNECTION DESIGN 

In accordance with EC5 and the UK National Annex incorporating National Amendment No.2 and the Published 

Document PD6693-1:2012 Non-Contradictory Complementary Information to Eurocode 5. 
Tedds calculation version 1.1.07 

Design summary 

Description Provided Required Utilisation Result 
pointside penetration 36.0 mm 44.6 mm 0.807 PASS 
spacing/edge distances   0.933 PASS 
load utilisation factor   0.247 PASS 

 

  
 

Plan  Elevation 
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End elevation 

This is a Secondary Structure 

(Note : An example of a secondary structure is a fascia board nailed to rafters) 

Geometric Properties 

Member 1 

Breadth b1 = 32 mm  

Height h1 = 220 mm  

Cross sectional area A1 = 7040 mm2 

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m1 = 10 N/mm2 

Characteristic density of the timber k.m1 = 310 kg/m3 

Member 2 

Breadth b2 = 60 mm  

Height h2 = 145 mm  

Cross sectional area A2 = 8700 mm2 

Rotation about the X-X axis 40  

Rotation about the Z-Z axis 0  

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m2 = 10 N/mm2 

Characteristic density of the timber k.m2 = 310 kg/m3 

Screws 

Description 6.0 mm / 3.6 mm x 160 mm screw 

Number of screws Nfixings = 3 

Head diameter dh.f = 6.975 mm 

Head length ln.l.f = 0.500 mm 

Smooth shank diameter df = 6.00 mm 

Outer thread diameter douter.f = 6.00 mm 

Inner thread diameter dinner.f = 3.55 mm 

Total length lf = 160.0 mm 
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Thread length, including the point lth.f = 60.0 mm 

Point length lpoint.f = 15.4 mm 

Total screw pointside penetration PsP = 117.73 mm 

Tensile strength of each fixing fu.fs = 600 N/mm2 

Counter sunk head 

 

  
 

Smooth shank penetration - cl 8.7.1(2) (4 × douter.f) / (PsP – lth.f) = 0.416 

Conditions of 8.7.1(2) are met, effective diameter equals smooth shank diameter 

Effective screw diameter def.f = df = 6.00 mm 

Pointside penetration, smooth shank - cl 8.7.1(2) tpen = lth.f – lpoint.f = 45 mm 

Minimum penetration of fixing in main member tmin.pen = 6 × douter.f = 36.0 mm  

 tmin.pen / tpen = 0.81 

PASS - Pointside penetration is acceptable 

Check to validate that no pre-drilling is acceptable 

Characteristic dencity < 500 kg/m3 - cl 8.3.1.1(2) k.m1 / 500kg/m3 = 0.62 OK 

 k.m2 / 500kg/m3 = 0.62 OK 

Diameter of fixing < 6mm - cl 8.3.1.1(2) df / 6mm = 1.00 Not suitable 

Timber thickness > tmin - cl 8.3.1.2(6) 

tmin = max (7 × df, (13 × df - 30mm) × (max(k.m1,k.m2)/ 400kg/m3)) = 42 mm OK 

FAIL - Requires to be predrilled 

Partial safety factors 

Safety factors - EC0 National Annex 

Limit state (STR)  

Permanent actions G = 1.35 

Variable actions Q = 1.50 

Safety factors – EC5 National Annex 

Material factor for timber M = 1.30 

Material factor for connections M.connection = 1.30 

Actions acting on member 1 

Characteristic lateral action 

Permanent vertical lateral action Gla.v.k = 0.08 kN 

Permanent horizontal lateral action Gla.h.k = 0.00 kN 

 Gla.k = (Gla.v.k
2 + Gla.h.k

2) = 0.08 kN 

Variable vertical lateral action Qla.v.k = 0.08 kN 

Variable horizontal lateral action Qla.h.k = 0.00 kN 

 Qla.k = (Qla.v.k
2 + Qla.h.k

2) = 0.08 kN 

Design lateral action, EN1990 - eq 6.10 Fla.Ed = ((G × Gla.v.k + Q × Qla.v.k)2 + (G × Gla.h.k + Q × Qla.h.k)2) = 0.23 

kN 

Characteristic axial permanent action Gax.k = 0.00 kN 

Characteristic axial variable action Qax.k = 0.00 kN 

Design axial action, EN1990 - eq 6.10 Fax.Ed = G × Gax.k + Q × Qax.k = 0.00 kN 

Angle between the force and the grain direction  = 90 - atan((G × Gla.h.k + Q × Qla.h.k) / (G × Gla.v.k + Q × Qla.v.k)) = 90˚ 
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Min. angle screw axis - grain direction point side screw = 0˚ 

Modification factors – Table 3.1 

Service class of timber 2 

Load-duration Medium term 

 kmod = 0.80 

Embedment strength in timber - eq 8.15 

Characteristic embedment strength, side member fh.k.1 = 82 kNm/kg × k.m1 × (def.f / 1mm)-0.3 = 14.85 N/mm2 

Characteristic embedment strength, main member fh.k.2 = 82 kNm/kg × k.m2 × (def.f / 1mm)-0.3 = 14.85 N/mm2 

Yield moment of screw - eq 8.14 My.Rk = 0.30 mm0.4 × fu.fs × def.f
 2.6  = 18987 Nmm 

Withdrawal resistance 

Penetration length of the threaded part lef.f = tpen = 44.60 mm 

Characteristic values of the withdrawal and pull-through strengths 

Withdraw capacity, User entered fax.k.pss = 4.500 N/mm2 

Associatated density a.ax.k.pss = 350.00 kg/m3  

Effective number of screws - eq 8.41 nef = Nfixings
0.9 = 2.688 

Withdrawal capacity - eq 8.40a Fax.point.Rk = fax.k.pss × douter.f × lef.f / (1.2 × cos(screw)2 + sin(screw)2) × 

(k.m2 / a.ax.k.pss)0.8 = 911 N 

Headside pull-through, User entered fhead.k.hss = 5.00 N/mm2 

Associatated density a.head.k.hss = 350.00 kg/m3  

Pull-through resistance - eq 8.40b Fax.head.Rk = fhead.k.hss × dh.f
2 × (k.m2 / a.head.k.hss)0.8 = 220.746 N 

 Fax.Rk = min(Fax.point.Rk, Fax.head.Rk) = 0.2207 kN 

Design value of axial withdrawal capacity Fax.Rd =(kmod× Fax.Rk) / M.connection = 0.1358 kN 

Lateral load-carrying capacity of connection 

Failure modes for timber to timber connections: 

 

 

 

 

 

 

 

Embedment ratio  = fh.k.2 / fh.k.1 = 1.00 

Thickness headside member t1 = b1 = 32 mm 

Penetration length in pointside member t2 = tpen = 45 mm 

Maximum rope effect contribution - cl. 8.2.2(2) & 8.3.1.2(4)  

 Pf.mod = 2 

 Pf.mod – 1 = 100 % 

 Rope = Fax.Rk / 4 = 55 N 

Failure mode (a) f.m.a = fh.k.1 × t1 × def.f = 2.85 kN 

Failure mode (b) f.m.b = fh.k.2 × t2 × def.f = 3.97 kN 

Failure mode (c) f.m.cJyt = f.m.a / (1+) × ([ + 2 × 2 × (1 + (t2 / t1)+(t2 / t1)2) + 3 × ( (t2 

/ t1)2)] -  × (1 + (t2 / t1))) 

 f.m.c = min(f.m.cJyt + Rope, Pf.mod × f.m.cJyt) = 1.50 kN 

Failure mode (d) f.m.dJyt = (1.05 × f.m.a / (2 + )) × ( [2 ×  × (1 + ) + ((4 ×  × (2 + ) 

× My.Rk) / (fh.k.1 × t12 × def.f))] - )  

 f.m.d = min(f.m.dJyt + Rope, Pf.mod × f.m.dJyt) = 1.60 kN 
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Failure mode (e) f.m.eJyt = (1.05 × (fh.k.1 × t2×def.f) / (1 + 2 × )) × ( [2 × 2 × (1 + ) + ((4 

×  × (1 + 2 × ) × My.Rk) / (fh.k.1 × t22 × def.f))] - )  

 f.m.e = min(f.m.eJyt + Rope, Pf.mod × f.m.eJyt) = 1.86 kN 

Failure mode (f) f.m.fJyt = 1.15 ×  [(2 × ) / (1 + )] ×  [(2 × My.Rk × fh.k.1 × def.f)] 

 f.m.f = min(f.m.fJyt + Rope, Pf.mod × f.m.fJyt) = 2.17 kN 

Characteristic lateral nail shear resistance  Failure mode (c) 

 Fv.Rk = 1.50 kN 

Design resistance per fixing - cl 8.3.1.2(4) Fv.Rd = (kmod × Fv.Rk) / M.connection / 3 = 0.31 kN 

Load utilisation factor ut_load = Fla.Ed / (Nfixings × Fv.Rd) = 0.247 

PASS - Design resistance exceeds design load 

Splitting capacity of timber 

Loaded edge distance he = 169 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk = 14 × b1 × 1 mm-1 × (he × 1mm-1 / (1 - (he / h1))) × 1 N = 12.11 

kN 

Design splitting capacity F90.Rd = kmod × F90.Rk / M.connection = 7.45 kN 

 Fla.Ed / F90.Rd =0.031 

PASS - Splitting capacity of timber exceeds the design force in member 

Spacing 

 

  
 

 Allowable 

Member 1  minimum Applied 

Spacing of rows perpendicular to grain, a2:  5  douter.f 30.0 mm 35.0 mm 

Distance between fixing and loaded edge, a4t:  (5 + 5  sin )  douter.f 60.0 mm 64.3 mm 

Distance between fixing and unloaded edge, a4c:  5  douter.f 30.0 mm 37.5 mm 

      

Member 2 

Spacing of rows perpendicular to grain, a2:  5  douter.f 30.0 mm 35.0 mm 

Distance between fixing and loaded edge, a4t:  (5 + 5  sin )  douter.f 24.0 mm 37.5 mm 

Distance between fixing and unloaded edge, a4c:  5  douter.f 18.0 mm 37.5 mm 

      

Minimum breadth of member: 2  a4c.m2  36.0 mm  60.0 mm 

Allowable minimum from table 8.2 

PASS - All spacing conditions are met 
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 Tedds output: Main to side member - Ver. Slant screw example 

TIMBER CONNECTION DESIGN 

In accordance with EC5 and the UK National Annex incorporating National Amendment No.2 and the Published 

Document PD6693-1:2012 Non-Contradictory Complementary Information to Eurocode 5. 
Tedds calculation version 1.1.07 

Design summary 

Description Provided Required Utilisation Result 
pointside penetration 36.0 mm 44.6 mm 0.807 PASS 
spacing/edge distances   0.681 PASS 
load utilisation factor   0.507 PASS 

 

  
 

Plan  Elevation 

 

  
 

End elevation 

Member 1

Member 2
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Geometric Properties 

Member 1 

Breadth b1 = 60 mm  

Height h1 = 220 mm  

Cross sectional area A1 = 13200 mm2 

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m1 = 10 N/mm2 

Characteristic density of the timber k.m1 = 310 kg/m3 

Member 2 

Breadth b2 = 60 mm  

Height h2 = 145 mm  

Cross sectional area A2 = 8700 mm2 

Rotation about the X-X axis 0  

Rotation about the Z-Z axis -35  

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m2 = 10 N/mm2 

Characteristic density of the timber k.m2 = 310 kg/m3 

Screws 

Description 6.0 mm / 3.6 mm x 180 mm screw 

Number of screws Nfixings = 2 

Head diameter dh.f = 6.975 mm 

Head length ln.l.f = 0.500 mm 

Smooth shank diameter df = 6.00 mm 

Outer thread diameter douter.f = 6.00 mm 

Inner thread diameter dinner.f = 3.55 mm 

Total length lf = 180.0 mm 

Thread length, including the point lth.f = 60.0 mm 

Point length lpoint.f = 15.4 mm 

Total screw pointside penetration PsP = 69.32 mm 

Tensile strength of each fixing fu.fs = 600 N/mm2 

Counter sunk head 

 

  
 

Smooth shank penetration (4 × douter.f) / (PsP – lth.f) = 2.575 

Conditions of 8.7.1(2) are not met, effective diameter calculated in accordance with 8.7.1(3) 

Effective screw diameter - cl 8.7.1(3) def.f = dinner.f × 1.1 = 3.91 mm 

Pointside penetration, smooth shank - cl 8.7.1(2) tpen = lth.f – lpoint.f = 45 mm 

Minimum penetration of fixing in main member tmin.pen = 6 × douter.f = 36.0 mm  

 tmin.pen / tpen = 0.81 

PASS - Pointside penetration is acceptable 

Check to validate that no pre-drilling is acceptable 

Characteristic dencity < 500 kg/m3 - cl 8.3.1.1(2) k.m1 / 500kg/m3 = 0.62 OK 

 k.m2 / 500kg/m3 = 0.62 OK 
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Diameter of fixing < 6mm - cl 8.3.1.1(2) df / 6mm = 1.00 Not suitable 

Timber thickness > tmin - cl 8.3.1.2(6) 

tmin = max (7 × df, (13 × df - 30mm) × (max(k.m1,k.m2)/ 400kg/m3)) = 42 mm OK 

FAIL - Requires to be predrilled 

Partial safety factors 

Safety factors - EC0 National Annex 

Limit state (STR)  

Permanent actions G = 1.35 

Variable actions Q = 1.50 

Safety factors – EC5 National Annex 

Material factor for timber M = 1.30 

Material factor for connections M.connection = 1.30 

Actions acting on member 1 

Characteristic lateral action 

Permanent vertical lateral action Gla.v.k = 0.08 kN 

Permanent horizontal lateral action Gla.h.k = 0.00 kN 

 Gla.k = (Gla.v.k
2 + Gla.h.k

2) = 0.08 kN 

Variable vertical lateral action Qla.v.k = 0.08 kN 

Variable horizontal lateral action Qla.h.k = 0.00 kN 

 Qla.k = (Qla.v.k
2 + Qla.h.k

2) = 0.08 kN 

Design lateral action, EN1990 - eq 6.10 Fla.Ed = ((G × Gla.v.k + Q × Qla.v.k)2 + (G × Gla.h.k + Q × Qla.h.k)2) = 0.23 

kN 

Characteristic axial permanent action Gax.k = 0.00 kN 

Characteristic axial variable action Qax.k = 0.00 kN 

Design axial action, EN1990 - eq 6.10 Fax.Ed = G × Gax.k + Q × Qax.k = 0.00 kN 

Angle between the force and the grain direction  = 90 - atan((G × Gla.h.k + Q × Qla.h.k) / (G × Gla.v.k + Q × Qla.v.k)) = 90˚ 

Min. angle screw axis - grain direction point side screw = 55˚ 

Modification factors – Table 3.1 

Service class of timber 1 

Load-duration Medium term 

 kmod = 0.80 

Embedment strength in timber - eq 8.15 

Characteristic embedment strength, side member fh.k.1 = 82 kNm/kg × k.m1 × (def.f / 1mm)-0.3 = 16.89 N/mm2 

Characteristic embedment strength, main member fh.k.2 = 82 kNm/kg × k.m2 × (def.f / 1mm)-0.3 = 16.89 N/mm2 

Yield moment of screw - eq 8.14 My.Rk = 0.30 mm0.4 × fu.fs × def.f
 2.6  = 6216 Nmm 

Withdrawal resistance 

Penetration length of the threaded part lef.f = tpen = 44.60 mm 

Characteristic values of the withdrawal and pull-through strengths 

Withdraw capacity, User entered fax.k.pss = 4.500 N/mm2 

Associatated density a.ax.k.pss = 350.00 kg/m3  

Effective number of screws - eq 8.41 nef = Nfixings
0.9 = 1.866 

Withdrawal capacity - eq 8.40a Fax.point.Rk = fax.k.pss × douter.f × lef.f / (1.2 × cos(screw)2 + sin(screw)2) × 

(k.m2 / a.ax.k.pss)0.8 = 1025 N 

Headside pull-through, User entered fhead.k.hss = 5.00 N/mm2 

Associatated density a.head.k.hss = 350.00 kg/m3  

Pull-through resistance - eq 8.40b Fax.head.Rk = fhead.k.hss × dh.f
2 × (k.m2 / a.head.k.hss)0.8 = 220.746 N 
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 Fax.Rk = min(Fax.point.Rk, Fax.head.Rk) = 0.2207 kN 

Design value of axial withdrawal capacity Fax.Rd =(kmod× Fax.Rk) / M.connection = 0.1358 kN 

Lateral load-carrying capacity of connection 

Failure modes for timber to timber connections: 

 

 

 

 

 

 

 

Embedment ratio  = fh.k.2 / fh.k.1 = 1.00 

Thickness headside member t1 = b1 = 60 mm 

Penetration length in pointside member t2 = tpen = 45 mm 

Maximum rope effect contribution - cl. 8.2.2(2) & 8.3.1.2(4)  

 Pf.mod = 2 

 Pf.mod – 1 = 100 % 

 Rope = Fax.Rk / 4 = 55 N 

Failure mode (a) f.m.a = fh.k.1 × t1 × def.f = 3.96 kN 

Failure mode (b) f.m.b = fh.k.2 × t2 × def.f = 2.94 kN 

Failure mode (c) f.m.cJyt = f.m.a / (1+) × ([ + 2 × 2 × (1 + (t2 / t1)+(t2 / t1)2) + 3 × ( (t2 

/ t1)2)] -  × (1 + (t2 / t1))) 

 f.m.c = min(f.m.cJyt + Rope, Pf.mod × f.m.cJyt) = 1.51 kN 

Failure mode (d) f.m.dJyt = (1.05 × f.m.a / (2 + )) × ( [2 ×  × (1 + ) + ((4 ×  × (2 + ) 

× My.Rk) / (fh.k.1 × t12 × def.f))] - )  

 f.m.d = min(f.m.dJyt + Rope, Pf.mod × f.m.dJyt) = 1.55 kN 

Failure mode (e) f.m.eJyt = (1.05 × (fh.k.1 × t2×def.f) / (1 + 2 × )) × ( [2 × 2 × (1 + ) + ((4 

×  × (1 + 2 × ) × My.Rk) / (fh.k.1 × t22 × def.f))] - )  

 f.m.e = min(f.m.eJyt + Rope, Pf.mod × f.m.eJyt) = 1.23 kN 

Failure mode (f) f.m.fJyt = 1.15 ×  [(2 × ) / (1 + )] ×  [(2 × My.Rk × fh.k.1 × def.f)] 

 f.m.f = min(f.m.fJyt + Rope, Pf.mod × f.m.fJyt) = 1.10 kN 

Characteristic lateral nail shear resistance  Failure mode (f) 

 Fv.Rk = 1.10 kN 

Design resistance per fixing - cl 8.3.1.2(4) Fv.Rd = (kmod × Fv.Rk) / M.connection / 3 = 0.22 kN 

Load utilisation factor ut_load = Fla.Ed / (Nfixings × Fv.Rd) = 0.507 

PASS - Design resistance exceeds design load 

Splitting capacity of timber 

Loaded edge distance he = 83 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk = 14 × b1 × 1 mm-1 × (he × 1mm-1 / (1 - (he / h1))) × 1 N = 9.72 

kN 

Design splitting capacity F90.Rd = kmod × F90.Rk / M.connection = 5.98 kN 

 Fla.Ed / F90.Rd =0.038 

PASS - Splitting capacity of timber exceeds the design force in member 

Spacing 
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 Allowable 

Member 1  minimum Applied 

      

      

      

      

Member 2 

Slant fixings, EC5  8.3.2(10), aslant 60.0 mm 88.1 mm 

      

      

      

Minimum breadth of member: 2  a4c.m2  60.0 mm  60.0 mm 

Allowable minimum from table 8.2 

PASS - All spacing conditions are met 

 

  

Member 1

Member 2
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 Tedds output: Main to side member - Hor. Slant screw sxample 

TIMBER CONNECTION DESIGN 

In accordance with EC5 and the UK National Annex incorporating National Amendment No.2 and the Published 

Document PD6693-1:2012 Non-Contradictory Complementary Information to Eurocode 5. 
Tedds calculation version 1.1.07 

Design summary 

Description Provided Required Utilisation Result 
pointside penetration 30.0 mm 33.3 mm 0.900 PASS 
spacing/edge distances   0.952 PASS 
load utilisation factor   0.623 PASS 

 

  
 

Plan  Elevation 

 

  
 

End elevation 

Geometric Properties 

Member 1 

Breadth b1 = 45 mm  

Height h1 = 145 mm  

Cross sectional area A1 = 6525 mm2 

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m1 = 10 N/mm2 

Characteristic density of the timber k.m1 = 310 kg/m3 
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Member 2 

Breadth b2 = 50 mm  

Height h2 = 145 mm  

Cross sectional area A2 = 7250 mm2 

Rotation about the X-X axis 0  

Rotation about the Z-Z axis 0  

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m2 = 10 N/mm2 

Characteristic density of the timber k.m2 = 310 kg/m3 

Screws 

Description 5.0 mm / 3.0 mm x 100 mm screw 

Number of screws Nfixings = 2 

Head diameter dh.f = 6.975 mm 

Head length ln.l.f = 0.500 mm 

Smooth shank diameter df = 5.00 mm 

Outer thread diameter douter.f = 5.00 mm 

Inner thread diameter dinner.f = 3.00 mm 

Total length lf = 100.0 mm 

Thread length, including the point lth.f = 60.0 mm 

Point length lpoint.f = 7.0 mm 

Total screw pointside penetration PsP = 40.34 mm 

Tensile strength of each fixing fu.fs = 600 N/mm2 

Counter sunk head 

 

  
 

Smooth shank penetration (4 × douter.f) / (PsP – lth.f) = -1.018 

Conditions of 8.7.1(2) are not met, effective diameter calculated in accordance with 8.7.1(3) 

Effective screw diameter - cl 8.7.1(3) def.f = dinner.f × 1.1 = 3.30 mm 

Pointside penetration 

non smooth shank - cl 8.7.1(2) tpen = PsP – lpoint.f = 33 mm 

Minimum penetration of fixing in main member tmin.pen = 6 × douter.f = 30.0 mm  

 tmin.pen / tpen = 0.90 

PASS - Pointside penetration is acceptable 

Check to validate that no pre-drilling is acceptable 

Characteristic dencity < 500 kg/m3 - cl 8.3.1.1(2) k.m1 / 500kg/m3 = 0.62 OK 

 k.m2 / 500kg/m3 = 0.62 OK 

Diameter of fixing < 6mm - cl 8.3.1.1(2) df / 6mm = 0.83 OK 

Timber thickness > tmin - cl 8.3.1.2(6) 

tmin = max (7 × df, (13 × df - 30mm) × (max(k.m1,k.m2)/ 400kg/m3)) = 35 mm OK 

PASS - Predrilling is not required 

Partial safety factors 



 

Edinburgh Napier, COCIS 
Unit 1, 7 Hills Business Park 

Bankhead Crossway South 

Edinburgh EH11 4EP 

Project 

  

Job Ref. 

  

Section 

  

Sheet no./rev. 

  258   

Calc. by 

AL 

Date 

15 October 

Chk'd by 

  

Date 

  

App'd by 

  

Date 

  
 

Safety factors - EC0 National Annex 

Limit state (STR)  

Permanent actions G = 1.35 

Variable actions Q = 1.50 

Safety factors – EC5 National Annex 

Material factor for timber M = 1.30 

Material factor for connections M.connection = 1.30 

Actions acting on member 1 

Characteristic lateral action 

Permanent vertical lateral action Gla.v.k = 0.08 kN 

Permanent horizontal lateral action Gla.h.k = 0.00 kN 

 Gla.k = (Gla.v.k
2 + Gla.h.k

2) = 0.08 kN 

Variable vertical lateral action Qla.v.k = 0.08 kN 

Variable horizontal lateral action Qla.h.k = 0.00 kN 

 Qla.k = (Qla.v.k
2 + Qla.h.k

2) = 0.08 kN 

Design lateral action, EN1990 - eq 6.10 Fla.Ed = ((G × Gla.v.k + Q × Qla.v.k)2 + (G × Gla.h.k + Q × Qla.h.k)2) = 0.23 

kN 

Characteristic axial permanent action Gax.k = 0.00 kN 

Characteristic axial variable action Qax.k = 0.00 kN 

Design axial action, EN1990 - eq 6.10 Fax.Ed = G × Gax.k + Q × Qax.k = 0.00 kN 

Angle between the force and the grain direction  = 90 - atan((G × Gla.h.k + Q × Qla.h.k) / (G × Gla.v.k + Q × Qla.v.k)) = 90˚ 

Min. angle screw axis - grain direction point side screw = 65˚ 

Modification factors – Table 3.1 

Service class of timber 1 

Load-duration Medium term 

 kmod = 0.80 

Embedment strength in timber - eq 8.15 

Characteristic embedment strength, side member fh.k.1 = 82 kNm/kg × k.m1 × (def.f / 1mm)-0.3 = 17.77 N/mm2 

Characteristic embedment strength, main member fh.k.2 = 82 kNm/kg × k.m2 × (def.f / 1mm)-0.3 = 17.77 N/mm2 

Yield moment of screw - eq 8.14 My.Rk = 0.30 mm0.4 × fu.fs × def.f
 2.6  = 4012 Nmm 

Withdrawal resistance 

Penetration length of the threaded part lef.f = tpen = 33.34 mm 

Characteristic values of the withdrawal and pull-through strengths 

Withdraw capacity, User entered fax.k.pss = 11.000 N/mm2 

Associatated density a.ax.k.pss = 350.00 kg/m3  

Effective number of screws - eq 8.41 nef = Nfixings
0.9 = 1.866 

Withdrawal capacity - eq 8.40a Fax.point.Rk = fax.k.pss × douter.f × lef.f / (1.2 × cos(screw)2 + sin(screw)2) × 

(k.m2 / a.ax.k.pss)0.8 = 1607 N 

Headside pull-through, User entered fhead.k.hss = 9.40 N/mm2 

Associatated density a.head.k.hss = 350.00 kg/m3  

Pull-through resistance - eq 8.40b Fax.head.Rk = fhead.k.hss × dh.f
2 × (k.m2 / a.head.k.hss)0.8 = 415.003 N 

 Fax.Rk = min(Fax.point.Rk, Fax.head.Rk) = 0.4150 kN 

Design value of axial withdrawal capacity Fax.Rd =(kmod× Fax.Rk) / M.connection = 0.2554 kN 

Lateral load-carrying capacity of connection 

Failure modes for timber to timber connections: 
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Embedment ratio  = fh.k.2 / fh.k.1 = 1.00 

Thickness headside member t1 = b1 = 45 mm 

Penetration length in pointside member t2 = tpen = 33 mm 

Maximum rope effect contribution - cl. 8.2.2(2) & 8.3.1.2(4)  

 Pf.mod = 2 

 Pf.mod – 1 = 100 % 

 Rope = Fax.Rk / 4 = 104 N 

Failure mode (a) f.m.a = fh.k.1 × t1 × def.f = 2.64 kN 

Failure mode (b) f.m.b = fh.k.2 × t2 × def.f = 1.96 kN 

Failure mode (c) f.m.cJyt = f.m.a / (1+) × ([ + 2 × 2 × (1 + (t2 / t1)+(t2 / t1)2) + 3 × ( (t2 

/ t1)2)] -  × (1 + (t2 / t1))) 

 f.m.c = min(f.m.cJyt + Rope, Pf.mod × f.m.cJyt) = 1.07 kN 

Failure mode (d) f.m.dJyt = (1.05 × f.m.a / (2 + )) × ( [2 ×  × (1 + ) + ((4 ×  × (2 + ) 

× My.Rk) / (fh.k.1 × t12 × def.f))] - )  

 f.m.d = min(f.m.dJyt + Rope, Pf.mod × f.m.dJyt) = 1.12 kN 

Failure mode (e) f.m.eJyt = (1.05 × (fh.k.1 × t2×def.f) / (1 + 2 × )) × ( [2 × 2 × (1 + ) + ((4 

×  × (1 + 2 × ) × My.Rk) / (fh.k.1 × t22 × def.f))] - )  

 f.m.e = min(f.m.eJyt + Rope, Pf.mod × f.m.eJyt) = 0.91 kN 

Failure mode (f) f.m.fJyt = 1.15 ×  [(2 × ) / (1 + )] ×  [(2 × My.Rk × fh.k.1 × def.f)] 

 f.m.f = min(f.m.fJyt + Rope, Pf.mod × f.m.fJyt) = 0.89 kN 

Characteristic lateral nail shear resistance  Failure mode (f) 

 Fv.Rk = 0.89 kN 

Design resistance per fixing - cl 8.3.1.2(4) Fv.Rd = (kmod × Fv.Rk) / M.connection / 3 = 0.18 kN 

Load utilisation factor ut_load = Fla.Ed / (Nfixings × Fv.Rd) = 0.623 

PASS - Design resistance exceeds design load 

Splitting capacity of timber 

Loaded edge distance he = 93 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk = 14 × b1 × 1 mm-1 × (he × 1mm-1 / (1 - (he / h1))) × 1 N = 10.07 

kN 

Design splitting capacity F90.Rd = kmod × F90.Rk / M.connection = 6.20 kN 

 Fla.Ed / F90.Rd =0.037 

PASS - Splitting capacity of timber exceeds the design force in member 

Spacing 
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 Allowable 

Member 1  minimum Applied 

Spacing of rows perpendicular to grain, a2:  5  douter.f 25.0 mm 40.0 mm 

Distance between fixing and loaded edge, a4t:  (5 + 5  sin )  douter.f 50.0 mm 52.5 mm 

Distance between fixing and unloaded edge, a4c:  5  douter.f 25.0 mm 52.5 mm 

      

Member 2 

Spacing of rows perpendicular to grain, a2:  5  douter.f 25.0 mm 40.0 mm 

Distance between fixing and loaded edge, a4t:  (5 + 5  sin )  douter.f 50.0 mm 52.5 mm 

Distance between fixing and unloaded edge, a4c:  5  douter.f 25.0 mm 52.5 mm 

Slant fixings, EC5  8.3.2(10), aslant 50.0 mm 53.6 mm 

Minimum breadth of member: 2  a4c.m2  50.0 mm  50.0 mm 

Allowable minimum from table 8.2 

PASS - All spacing conditions are met 
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 Tedds output: Multi Member - Bolts 5 members example 

TIMBER CONNECTION DESIGN 

In accordance with EC5 and the UK National Annex incorporating National Amendment No.2 and the Published 

Document PD6693-1:2012 Non-Contradictory Complementary Information to Eurocode 5. 
Tedds calculation version 1.1.07 

Design summary 

Description Provided Required Utilisation Result 
Edge/end spacing    PASS 
Shear plane resistance   0.135 PASS 
Splitting capacity of timber   0.034 PASS 

 

  
 

Plan  End elevation 

 

Member

1, 200 × 60 mm, C16, Rotated 0°

     Axial load 0.34 kN   Continuous member

     Load on member 0.25 kN

2, 145 × 45 mm, C16, Rotated -135°

     Axial load 0.45 kN   Compression

3, 145 × 45 mm, C16, Rotated -90°

     Axial load -0.18 kN   Tension

4, 145 × 45 mm, C16, Rotated -135°

     Axial load 0.45 kN   Compression

5, 200 × 60 mm, C16, Rotated 0°
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Elevation 

This connection is in double shear 

Geometry 

Bolts 

Bolt description M10 Grade 8.8 bolt 

Number of Bolts Nfixings = 1 

Effective number of fixings nef = Nfixings = 1  

Bolt diameter d = df = 10 mm 

Washer diameter required - cl 10.4.3(2) dw = 3 × df = 30 mm 

Washer thickness required - cl 10.4.3(2) dwt = 0.3 × df = 3 mm 

Tensile strength of each fixing fu.f = 800 N/mm2 

Tensile stress area of bolt Ab.t = 58.52 mm2 

Member 1 

Member type Continuous member 

Breadth b1 = 60 mm 

Height h1 = 200 mm 

Cross sectional area A1 = 12000 mm2 

Rotation about the Y-Y axis 0  

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m1 = 10 N/mm2 

Characteristic density of the timber k.m1 = 310 kg/m3 

Member 2 

Member type End member 

Breadth b2 = 45 mm 

Height h2 = 145 mm 

Cross sectional area A2 = 6525 mm2 

Rotation about the Y-Y axis -135  

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m2 = 10 N/mm2 

Characteristic density of the timber k.m2 = 310 kg/m3 

Member 3 

Member type End member 

Breadth b3 = 45 mm 

Height h3 = 145 mm 

Cross sectional area A3 = 6525 mm2 

Rotation about the Y-Y axis -90  

Strength class C16 
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Characteristic tension strength parallel to the grain ft.0.k.m3 = 10 N/mm2 

Characteristic density of the timber k.m3 = 310 kg/m3 

Member 4 

Member type End member 

Breadth b4 = 45 mm 

Height h4 = 145 mm 

Cross sectional area A4 = 6525 mm2 

Rotation about the Y-Y axis -135  

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m4 = 10 N/mm2 

Characteristic density of the timber k.m4 = 310 kg/m3 

Member 5 

Member type Continuous member 

Breadth b5 = 60 mm 

Height h5 = 200 mm 

Cross sectional area A5 = 12000 mm2 

Rotation about the Y-Y axis 0  

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m5 = 10 N/mm2 

Characteristic density of the timber k.m5 = 310 kg/m3 

Partial safety factors 

Material factor for connections, table 2.3 M.connection = 1.30 

Actions 

Modification factors – Table 3.1 

Service class of timber 1 

Load-duration Medium term 

 kmod = 0.80 

Design action in member 1 Fla.1 = 0.34 kN Continuous member 

Design action in member 2 Fla.2 = 0.45 kN Compression 

Design action in member 3 Fla.3 = -0.18 kN Tension 

Design action in member 4 Fla.4 = 0.45 kN Compression 

Design load on member 1 Fla.ex1 = 0.25 kN  

Calculated output 

Angle of shear planes relative to the grain direction in each member 

Shear plane Member Joint Angle of shear plane 

1 1 1.2.1 1.1.2 = 36  

1 2 1.2.1 1.2.1 = 171  

2 2 2.3.2 2.2.3 = 63  

2 3 2.3.2 2.3.2 = 18  

3 3 3.4.3 3.3.4 = 169  

3 4 3.4.3 3.4.3 = -146  

4 4 4.5.4 4.4.5 = -10  

4 5 4.5.4 4.5.4 = -145  

Design force in shear plane 1  Fla.sp1  = 0.42 kN 

Design force in shear plane 2  Fla.sp2  = 0.07 kN 
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Design force in shear plane 3  Fla.sp3  = 0.11 kN 

Design force in shear plane 4  Fla.sp4  = 0.36 kN 

Characteristic embedment strength in timber at angle  to the grain 

eq 8.33, softwood k90.m1 = 1.35 + 0.015 × (d / 1mm) = 1.50 

eq 8.33, softwood k90.m2 = 1.35 + 0.015 × (d / 1mm) = 1.50 

eq 8.33, softwood k90.m3 = 1.35 + 0.015 × (d / 1mm) = 1.50 

eq 8.33, softwood k90.m4 = 1.35 + 0.015 × (d / 1mm) = 1.50 

eq 8.33, softwood k90.m5 = 1.35 + 0.015 × (d / 1mm) = 1.50 

member Joint - eq 

1  1.2.1  8.32 fh.0.k.1  = 82 MN/kg × (1 mm - (0.01 × d)) × k.m1  =22.88 N/mm2 

  8.31 fh.k.1.2  = fh.0.k.1  / (k90.m1  × sin(1.1.2 )2 + cos(1.1.2)2) = 19.46 N/mm2 

2  1.2.1  8.32 fh.0.k.2  = 82 MN/kg × (1 mm - (0.01 × d)) × k.m2 =22.88 N/mm2 

  8.31 fh.k.2.1  = fh.0.k.2  / (k90.m2  × sin(1.2.1 )2 + cos(1.2.1 )2) = 22.62 N/mm2 

2  2.3.2  8.32 fh.0.k.2  = 82 MN/kg × (1 mm - (0.01 × d)) × k.m2  =22.88 N/mm2 

  8.31 fh.k.2.3  = fh.0.k.2  / (k90.m2  × sin(2.2.3 )2 + cos(2.2.3)2) = 16.40 N/mm2 

3  2.3.2  8.32 fh.0.k.3  = 82 MN/kg × (1 mm - (0.01 × d)) × k.m3 =22.88 N/mm2 

  8.31 fh.k.3.2  = fh.0.k.3  / (k90.m3  × sin(2.3.2 )2 + cos(2.3.2 )2) = 21.86 N/mm2 

3  3.4.3  8.32 fh.0.k.3  = 82 MN/kg × (1 mm - (0.01 × d)) × k.m3  =22.88 N/mm2 

  8.31 fh.k.3.4  = fh.0.k.3  / (k90.m3  × sin(3.3.4 )2 + cos(3.3.4)2) = 22.47 N/mm2 

4  3.4.3  8.32 fh.0.k.4  = 82 MN/kg × (1 mm - (0.01 × d)) × k.m4 =22.88 N/mm2 

  8.31 fh.k.4.3  = fh.0.k.4  / (k90.m4  × sin(3.4.3 )2 + cos(3.4.3 )2) = 19.79 N/mm2 

4  4.5.4  8.32 fh.0.k.4  = 82 MN/kg × (1 mm - (0.01 × d)) × k.m4  =22.88 N/mm2 

  8.31 fh.k.4.5  = fh.0.k.4  / (k90.m4  × sin(4.4.5 )2 + cos(4.4.5)2) = 22.53 N/mm2 

5  4.5.4  8.32 fh.0.k.5  = 82 MN/kg × (1 mm - (0.01 × d)) × k.m5 =22.88 N/mm2 

  8.31 fh.k.5.4  = fh.0.k.5  / (k90.m5  × sin(4.5.4 )2 + cos(4.5.4 )2) = 19.67 N/mm2 

Yield moment of fixing - eq 8.30 My.Rk = 0.30 mm0.4 × fu.f × d 2.6 = 95546 Nmm 

Design strength of the fixing, EN1993-1-8 F1ax.Rd = 0.9 × fu.f × 0.8 × Ab.t  = 33707.46 N 

Design capacity of washer - cl 8.5.2(2) F2ax.Rd = 3 × fc.90.k.m2 × ( / 4) × ((dw)2 – (d + 1mm)2) = 4038.05 N 

 Fax.Rk = min(F1ax.Rd, F2ax.Rd) = 4038.05 N 

Lateral load-carrying capacity of connection 

Failure modes for timber to timber double shear connections: 

 
Maximum rope effect contribution - cl. 8.2.2(2)  

cl 8.2.2(2) Pf.mod = Profile_{.f} = 1.25 

 Pf.mod – 1 = 25 % 

 Rope = Fax.Rk / 4 = 1010 N 

Double Shear joint formed from members 1.2.1  for timber to timber joint with a bolt in double Shear, the characteristic 

lateral resistance per shear plane is the smallest value in - eq 8.7 

Embedment ratio 2.1 = fh.k.2.1  / fh.k.1.2  = 1.16 

Thickness headside member t1 = b1 = 60 mm 

Thickness of central member t2 = b2 = 45 mm 
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Failure mode (g) f.m.g1  = fh.k.1.2  × t1 × d = 11.68 kN 

Failure mode (h) f.m.h1  = 0.5 × fh.k.2.1 × t2 × d = 5.09 kN 

Failure mode (j) f.m.jJyt.1  = 1.05 × (f.m.g1  / (2 + 2.1 )) × ( [2 × 2.1  × (1 + 2.1 ) + ((4 × 

2.1  × (2 + 2.1 ) × My.Rk) / (fh.k.1.2  × d × t12))] - 2.1) 

 f.m.j1  = min(f.m.jJyt.1  + Rope, Pf.mod × f.m.jJyt.1) = 6.78 kN 

Failure mode (k) f.m.kJyt.1  = 1.15 ×  ((2 × 2.1 ) / (1 + 2.1 )) ×  (2 × My.Rk × fh.k.1.2 × d) 

 f.m.k1  = min(f.m.kJyt.1  + Rope, Pf.mod × f.m.kJyt.1) = 8.28 kN 

Characteristic lateral shear resistance Failure mode (h) 

 Fv.Rk1  = 5.09 kN 

Design resistance per fixing Fv.Rd1  = (kmod × Fv.Rk1) / M.connection = 3.13 kN 

 1.1.2 .Abs = Abs(1.1.2) = 36 deg 

 1.2.1.Abs = 180 - Abs(1.2.1) = 9 deg 

 min.SP1 = min(1.1.2.Abs, 1.2.1.Abs) = 9 deg 

Load utilisation factor ut_load1  = Fla.sp1  / ((nef + (Nfixings - nef) × (min.SP1  / 90)) × Fv.Rd1) = 0.135 

PASS - Design capacity of the shear plane exceeds the design force within shear plane 

Double Shear joint formed from members 2.3.2  for timber to timber joint with a bolt in double Shear, the characteristic 

lateral resistance per shear plane is the smallest value in - eq 8.7 

Embedment ratio 3.2 = fh.k.3.2  / fh.k.2.3  = 1.33 

Thickness headside member t1 = b2 = 45 mm 

Thickness of central member t2 = b3 = 45 mm 

Failure mode (g) f.m.g2  = fh.k.2.3  × t1 × d = 7.38 kN 

Failure mode (h) f.m.h2  = 0.5 × fh.k.3.2 × t2 × d = 4.92 kN 

Failure mode (j) f.m.jJyt.2  = 1.05 × (f.m.g2  / (2 + 3.2 )) × ( [2 × 3.2  × (1 + 3.2 ) + ((4 × 

3.2  × (2 + 3.2 ) × My.Rk) / (fh.k.2.3  × d × t12))] - 3.2) 

 f.m.j2  = min(f.m.jJyt.2  + Rope, Pf.mod × f.m.jJyt.2) = 5.74 kN 

Failure mode (k) f.m.kJyt.2  = 1.15 ×  ((2 × 3.2 ) / (1 + 3.2 )) ×  (2 × My.Rk × fh.k.2.3 × d) 

 f.m.k2  = min(f.m.kJyt.2  + Rope, Pf.mod × f.m.kJyt.2) = 7.89 kN 

Characteristic lateral shear resistance Failure mode (h) 

 Fv.Rk2  = 4.92 kN 

Design resistance per fixing Fv.Rd2  = (kmod × Fv.Rk2) / M.connection = 3.03 kN 

 2.2.3 .Abs = Abs(2.2.3) = 63 deg 

 2.3.2.Abs = Abs(2.3.2) = 18 deg 

 min.SP2 = min(2.2.3.Abs, 2.3.2.Abs) = 18 deg 

Load utilisation factor ut_load2  = Fla.sp2  / ((nef + (Nfixings - nef) × (min.SP2  / 90)) × Fv.Rd2) = 0.024 

PASS - Design capacity of the shear plane exceeds the design force within shear plane 

Double Shear joint formed from members 3.4.3  for timber to timber joint with a bolt in double Shear, the characteristic 

lateral resistance per shear plane is the smallest value in - eq 8.7 

Embedment ratio 4.3 = fh.k.4.3  / fh.k.3.4  = 0.88 

Thickness headside member t1 = b3 = 45 mm 

Thickness of central member t2 = b4 = 45 mm 

Failure mode (g) f.m.g3  = fh.k.3.4  × t1 × d = 10.11 kN 

Failure mode (h) f.m.h3  = 0.5 × fh.k.4.3 × t2 × d = 4.45 kN 

Failure mode (j) f.m.jJyt.3  = 1.05 × (f.m.g3  / (2 + 4.3 )) × ( [2 × 4.3  × (1 + 4.3 ) + ((4 × 

4.3  × (2 + 4.3 ) × My.Rk) / (fh.k.3.4  × d × t12))] - 4.3) 

 f.m.j3  = min(f.m.jJyt.3  + Rope, Pf.mod × f.m.jJyt.3) = 6.36 kN 

Failure mode (k) f.m.kJyt.3  = 1.15 ×  ((2 × 4.3 ) / (1 + 4.3 )) ×  (2 × My.Rk × fh.k.3.4 × d) 

 f.m.k3  = min(f.m.kJyt.3  + Rope, Pf.mod × f.m.kJyt.3) = 8.30 kN 
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Characteristic lateral shear resistance Failure mode (h) 

 Fv.Rk3  = 4.45 kN 

Design resistance per fixing Fv.Rd3  = (kmod × Fv.Rk3) / M.connection = 2.74 kN 

 3.3.4 .Abs = 180 - Abs(3.3.4) = 11 deg 

 3.4.3.Abs = 180 - Abs(3.4.3) = 34 deg 

 min.SP3 = min(3.3.4.Abs, 3.4.3.Abs) = 11 deg 

Load utilisation factor ut_load3  = Fla.sp3  / ((nef + (Nfixings - nef) × (min.SP3  / 90)) × Fv.Rd3) = 0.042 

PASS - Design capacity of the shear plane exceeds the design force within shear plane 

Double Shear joint formed from members 4.5.4  for timber to timber joint with a bolt in double Shear, the characteristic 

lateral resistance per shear plane is the smallest value in - eq 8.7 

Embedment ratio 5.4 = fh.k.5.4  / fh.k.4.5  = 0.87 

Thickness headside member t1 = b4 = 45 mm 

Thickness of central member t2 = b5 = 60 mm 

Failure mode (g) f.m.g4  = fh.k.4.5  × t1 × d = 10.14 kN 

Failure mode (h) f.m.h4  = 0.5 × fh.k.5.4 × t2 × d = 5.90 kN 

Failure mode (j) f.m.jJyt.4  = 1.05 × (f.m.g4  / (2 + 5.4 )) × ( [2 × 5.4  × (1 + 5.4 ) + ((4 × 

5.4  × (2 + 5.4 ) × My.Rk) / (fh.k.4.5  × d × t12))] - 5.4) 

 f.m.j4  = min(f.m.jJyt.4  + Rope, Pf.mod × f.m.jJyt.4) = 6.36 kN 

Failure mode (k) f.m.kJyt.4  = 1.15 ×  ((2 × 5.4 ) / (1 + 5.4 )) ×  (2 × My.Rk × fh.k.4.5 × d) 

 f.m.k4  = min(f.m.kJyt.4  + Rope, Pf.mod × f.m.kJyt.4) = 8.29 kN 

Characteristic lateral shear resistance Failure mode (h) 

 Fv.Rk4  = 5.90 kN 

Design resistance per fixing Fv.Rd4  = (kmod × Fv.Rk4) / M.connection = 3.63 kN 

 4.4.5 .Abs = Abs(4.4.5) = 10 deg 

 4.5.4.Abs = 180 - Abs(4.5.4) = 35 deg 

 min.SP4 = min(4.4.5.Abs, 4.5.4.Abs) = 10 deg 

Load utilisation factor ut_load4  = Fla.sp4  / ((nef + (Nfixings - nef) × (min.SP4  / 90)) × Fv.Rd4) = 0.099 

PASS - Design capacity of the shear plane exceeds the design force within shear plane 

PASS - Failure modes are compatible with each other 

Splitting capacity of timber 

Member 1 

Loaded edge distance he.m1 = 100 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk1 = 14 N/mm × b1 × Abs(he.m1 × 1mm-1 / (1 - (he.m1 / h1)))) = 

11.88 kN 

Design splitting capacity F90.Rd1 = kmod × F90.Rk1 / M.connection = 7.31 kN 

Design shear force Fv.Ed1 = Fla.sp1 × Sin(1.1.2) = 0.25 kN 

Splitting utilisation ut_Split1 = Abs(Fv.Ed1 / F90.Rd1) = 0.034 

PASS - Splitting capacity of timber exceeds design force in member 

Member 2  

Loaded edge distance he.m2  = 73 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk2  = 14 N/mm × b2  × Abs(he.m2  × 1mm-1 / (1 - (he.m2  / h2 )))) = 

7.59 kN 

Design splitting capacity F90.Rd2  = kmod × F90.Rk2  / M.connection = 4.67 kN 

Design shear force Fv.Ed2 = max(Fla.sp1  × Sin(1.2.1 ), Fla.sp2  × Sin(2.2.3)) = 0.06 kN 

Splitting utilisation ut_Split2  = Abs(Fv.Ed2  / F90.Rd2) = 0.014 

PASS - Splitting capacity of timber exceeds design force in member 
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Member 3  

Loaded edge distance he.m3  = 18125000173 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk3  = 14 N/mm × b3  × Abs(he.m3  × 1mm-1 / (1 - (he.m3  / h3 )))) = 

7.59 kN 

Design splitting capacity F90.Rd3  = kmod × F90.Rk3  / M.connection = 4.67 kN 

Design shear force Fv.Ed3 = max(Fla.sp2  × Sin(2.3.2 ), Fla.sp3  × Sin(3.3.4)) = 0.02 kN 

Splitting utilisation ut_Split3  = Abs(Fv.Ed3  / F90.Rd3) = 0.005 

PASS - Splitting capacity of timber exceeds design force in member 

Member 4  

Loaded edge distance he.m4  = 73 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk4  = 14 N/mm × b4  × Abs(he.m4  × 1mm-1 / (1 - (he.m4  / h4 )))) = 

7.59 kN 

Design splitting capacity F90.Rd4  = kmod × F90.Rk4  / M.connection = 4.67 kN 

Design shear force Fv.Ed4 = max(Fla.sp3  × Sin(3.4.3 ), Fla.sp4  × Sin(4.4.5)) = -0.06 kN 

Splitting utilisation ut_Split4  = Abs(Fv.Ed4  / F90.Rd4) = 0.014 

PASS - Splitting capacity of timber exceeds design force in member 

Member 5 

Loaded edge distance he.m5 = 100 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk5  = 14 N/mm × b5  × Abs(he.m5  × 1mm-1 / (1 - (he.m5  / h5)))) = 

11.88 kN 

Design splitting capacity F90.Rd5  = kmod × F90.Rk5  / M.connection = 7.31 kN 

Design shear force Fv.Ed5  = Fla.sp4  × Sin(4.5.4) = -0.21 kN 

Splitting utilisation ut_Split5  = Abs(Fv.Ed5  / F90.Rd5) = 0.028 

PASS - Splitting capacity of timber exceeds design force in member 

Fixing Spacing 

 

  
 

Allowable minimum bolt spacings from table 8.4 

Minimum spacings and edge / end distances. 
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a1 Spacing of fixings within one row parallel to grain, 

a2 Spacing of rows perpendicular to grain 

a3,c Distance between fixing and unloaded end 

a3,t Distance between fixing and loaded end 

a4.top Distance between fixing and unloaded/loaded edge, dependent upon shear plane angle 

a4,bot Distance between fixing and unloaded/loaded edge, dependent upon shear plane angle 
 a1 a2 a3,t a3.c a4.top a4.bot 

Member Member 1  48.1 mm  40.0 mm        31.8 mm  30.0 mm 

Member Member 2  49.9 mm  40.0 mm  80.0 mm     37.8 mm  30.0 mm 

Member Member 3  49.8 mm  40.0 mm  80.0 mm     30.0 mm  30.0 mm 

Member Member 4  49.8 mm  40.0 mm  80.0 mm     30.0 mm  31.2 mm 

Member Member 5  48.2 mm  40.0 mm        30.0 mm  31.8 mm 

PASS - All spacing conditions are met 
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 Tedds output: Multi Member - Nailed 2 member example 

TIMBER CONNECTION DESIGN 

In accordance with EC5 and the UK National Annex incorporating National Amendment No.2 and the Published 

Document PD6693-1:2012 Non-Contradictory Complementary Information to Eurocode 5. 
Tedds calculation version 1.1.07 

Design summary 

Description Provided Required Utilisation Result 
Pointside penetration 18.6 mm 47.3 mm 0.394 PASS 
Edge/end spacing    PASS 
Shear plane resistance   0.467 PASS 
Splitting capacity of timber   0.112 PASS 

 

  
 

Plan  End elevation 

 

Member

1, 45 × 45 mm, C16, Rotated 0°

     Load on member 0.40 kN

2, 45 × 145 mm, C16, Rotated 90°
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Elevation 

This connection is in single shear 

Geometry 

Nails 

Nail description 3.10 mm x 100 mm ring shanked nail  

Number of nails Nfixings = 1 

Number of rows NoRfixings = 1 

Number per row NpRfixings = 1 

Fixings to both sides FBS = 1 No  

Effective number of fixings - cl 8.3.1.1(8) nef = Nfixings × FBS = 1  

Nail diameter d = df = 3.1 mm 

Nail head diameter dh.f = 6.975 mm 

Nail length lf = 100.0 mm 

Nail point length lpoint.f = 7.75 mm 

Nail pointside penetration tpen = 47.25 mm 

Tensile strength of each fixing fu.f = 700 N/mm2 

Minimum pointside penetration - cl 8.3.1.2(2) tmin.pen = 6 × d = 18.6 mm 

Pointside penetration tmin.pen / tpen = 0.39 

PASS - Pointside penetration is acceptable 

Member 1 

Member type Continuous member 

Breadth b1 = 45 mm 

Height h1 = 45 mm 

Cross sectional area A1 = 2025 mm2 

Rotation about the Y-Y axis 0  

Strength class C16 

Characteristic tension strength parallel to the grain ft.0.k.m1 = 10 N/mm2 

Characteristic density of the timber k.m1 = 310 kg/m3 

Member 2 

Member type Continuous member 

Breadth b2 = 145 mm 

Height h2 = 45 mm 

Cross sectional area A2 = 6525 mm2 

Rotation about the Y-Y axis 90  

Strength class C16 
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Characteristic tension strength parallel to the grain ft.0.k.m2 = 10 N/mm2 

Characteristic density of the timber k.m2 = 310 kg/m3 

Partial safety factors 

Material factor for connections, table 2.3 M.connection = 1.30 

Actions 

Modification factors – Table 3.1 

Service class of timber 2 

Load-duration Instantaneous 

 kmod = 1.10 

Design action in member 1 Fla.1 = 0.00 kN Continuous member 

Design load on member 1 Fla.ex1 = 0.40 kN  

Calculated output 

Angle of shear planes relative to the grain direction in each member 

Shear plane Member Joint Angle of shear plane 

1 1 1.2.1 1.1.2 = 90  

1 2 1.2.1 1.2.1 = 0  

Design force in shear plane 1  Fla.sp1  = 0.40 kN 

Characteristic embedment strength in timber, - eq 8.15 

member Joint 

1  1.2.1  fh.k.1.2  = 82 kNm/kg × k.m1  × (df / 1mm)-0.3 =18.10 N/mm2 

2  1.2.1  fh.k.2.1  = 82 kNm/kg × k.m2 × (df / 1mm)-0.3 =18.10 N/mm2 

Yield moment of fixing - eq 8.14 My.Rk = 0.45 mm0.4 × fu.f × df
2.6 = 5968 Nmm 

Withdrawal resistance 

cl 8.3.2(7)  tpen / df = 15.2 Dp = 1.00 

Characteristic values of the withdrawal and pull-through strengths 

Pointside withdraw - eq 8.25 fax.k.ps = 20 (m5/(kg×s2)) × k.m2
2 × Dp = 1.92 N/mm2 

Headside pull-through - eq 8.26 fhead.k.hs = 70 (m5/(kg×s2)) × k.m1
2 = 6.73 N/mm2 

Characteristic withdrawal capacity - eq 8.23 Fax.Rk = min(fax.k.ps × df × tpen, fhead.k.hs × dh.f
2) = 0.282 kN 

Design value of axial withdrawal capacity Fax.Rd =(kmod× Fax.Rk) / M.connection = 0.238 kN 

Lateral load-carrying capacity of connection 

Failure modes for timber to timber single shear connections: 

 
Maximum rope effect contribution - cl. 8.2.2(2)  

cl 8.2.2(2) Pf.mod = Profile.f = 1.50 

 Pf.mod – 1 = 50 % 

 Rope = Fax.Rk / 4 = 70 N 

The characteristic lateral resistance per shear plane is the smallest value in equations (8.6) 

Embedment ratio  = fh.k.2.1 / fh.k.1.2 = 1.00 

Thickness headside member t1 = b1= 45 mm 

Penetration length in pointside member t2 = tpen = 47 mm 
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Failure mode (a) f.m.a = fh.k.1.2 × t1 × d = 2.53 kN 

Failure mode (b) f.m.b = fh.k.2.1 × t2 × d = 2.65 kN 

Failure mode (c) f.m.cJyt = f.m.a / (1 + ) × ( [ + 2 × 2 × (1 + (t2 / t1) + (t2 / t1)2) + 3 × ( 

(t2 / t1)2)] -  × (1 + (t2 / t1))) 

 f.m.c = min(f.m.cJyt + Rope, Pf.mod × f.m.cJyt) = 1.14 kN 

Failure mode (d) f.m.dJyt = (1.05 × f.m.a / (2 + )) × ( [2 ×  × (1 + ) + ((4 ×  × (2 + ) 

× My.Rk) / (fh.k.1.2 × t12 × d))] - )  

 f.m.d = min(f.m.dJyt + Rope, Pf.mod × f.m.dJyt) = 1.09 kN 

Failure mode (e) f.m.eJyt = (1.05 × (fh.k.1.2 × t2 × d) / (1 + 2 × )) × ( [2 × 2 × (1 + ) + ((4 

×  × (1 + 2 × ) × My.Rk) / ( fh.k.1.2 × t22 × d))] - )  

 f.m.e = min(f.m.eJyt + Rope, Pf.mod × f.m.eJyt) = 1.13 kN 

Failure mode (f) f.m.fJyt = 1.15 ×  [(2 × ) / (1 + )] ×  [(2 × My.Rk × fh.k.1.2 × d)] 

 f.m.f = min(f.m.fJyt + Rope, Pf.mod × f.m.fJyt) = 1.01 kN 

Characteristic lateral nail shear resistance Failure mode (f) 

 Fv.Rk1 = 1.01 kN 

Design resistance per fixing Fv.Rd1 = (kmod × Fv.Rk1) / M.connection = 0.86 kN 

 1.1.2.Abs = Abs(1.1.2) = 90 deg 

 1.2.1.Abs = Abs(1.2.1) = 0 deg 

 min.SP1 = min(1.1.2.Abs,1.2.1.Abs) = 0 deg 

Load utilisation factor ut_load1 = Fla.sp1 / ((nef + (Nfixings - nef) × (min.SP1 / 90)) × Fv.Rd1) = 0.467 

PASS - Design capacity of the shear plane exceeds the design force within shear plane 

Splitting capacity of timber 

Member 1 

Loaded edge distance he.m1 = 23 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk1 = 14 N/mm × b1 × Abs(he.m1 × 1mm-1 / (1 - (he.m1 / h1)))) = 4.23 

kN 

Design splitting capacity F90.Rd1 = kmod × F90.Rk1 / M.connection = 3.58 kN 

Design shear force Fv.Ed1 = Fla.sp1 × Sin(1.1.2) = 0.40 kN 

Splitting utilisation ut_Split1 = Abs(Fv.Ed1 / F90.Rd1) = 0.112 

PASS - Splitting capacity of timber exceeds design force in member 

Member 2 

Loaded edge distance he.m2 = 6525000268 mm 

Characteristic splitting capacity - eq 8.4 F90.Rk2  = 14 N/mm × b2  × Abs(he.m2  × 1mm-1 / (1 - (he.m2  / h2)))) = 

13.62 kN 

Design splitting capacity F90.Rd2  = kmod × F90.Rk2  / M.connection = 11.52 kN 

Design shear force Fv.Ed2  = Fla.sp1  × Sin(1.2.1) = 0.00 kN 

Splitting utilisation ut_Split2  = Abs(Fv.Ed2  / F90.Rd2) = 0.000 

PASS - Splitting capacity of timber exceeds design force in member 

Fixing Spacing 
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Allowable minimum nail spacings from table 8.2 

Minimum spacings and edge / end distances. 

a1 Spacing of fixings within one row parallel to grain, 

a2 Spacing of rows perpendicular to grain 

a3,c Distance between fixing and unloaded end 

a3,t Distance between fixing and loaded end 

a4.top Distance between fixing and unloaded/loaded edge, dependent upon shear plane angle 

a4,bot Distance between fixing and unloaded/loaded edge, dependent upon shear plane angle 
 a1 a2 a3,t a3.c a4.top a4.bot 

Member Member 1  15.5 mm  15.5 mm        21.7 mm  15.5 mm 

Member Member 2  31.0 mm  15.5 mm        15.5 mm  15.5 mm 

PASS - All spacing conditions are met 
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 Tedds output: Tension Splice - Ply splice example 

TIMBER CONNECTION DESIGN 

In accordance with EC5 and the UK National Annex incorporating National Amendment No.2 and the Published 

Document PD6693-1:2012 Non-Contradictory Complementary Information to Eurocode 5. 
Tedds calculation version 1.1.07 

Design summary 

Description Provided Required Utilisation Result 
Load utilisation factor 7.220 kN 4.500 kN 0.623 PASS 
Pointside penetration 12.6 mm 24.8 mm 0.509 PASS 
Column spacing 26.8 mm 45.0 mm 0.595 PASS 
Row spacing 12.5 mm 25.0 mm 0.500 PASS 
Edge spacing  10.5 mm 22.5 mm 0.467 PASS 
Overlap   0.415 PASS 

 

  
 

Plan  Elevation 

 

  
 

End elevation 

This connection is in single shear 

Geometry 

Nails 

Nail description 2.10 mm x 40 mm ring shanked nail  

Number of nails Nfixings = 18 

Number of rows NoRfixings = 5 

Row spacing a2 = 25.0 mm 

Number per row NpRfixings = 4 

Column spacing a1 = 45.0 mm 

Fixings to both sides FBS = 2 Yes  

Nail diameter d = df = 2.1 mm 

Nail head diameter dh.f = 4.725 mm 

Nail length lf = 40.0 mm 

Nail point length lpoint.f = 5.25 mm 

Nail pointside penetration tpen = 24.75 mm 

Tensile strength of each fixing fu.f = 700 N/mm2 

Effective number of fixings - cl 8.3.1.1(8) nef = (NpRfixings^1.000 - 0.5) × FBS × NoRfixings = 35.00  

Minimum pointside penetration - cl 8.3.1.2(2) tmin.pen = 6 × d = 12.6 mm 

Pointside penetration tmin.pen / tpen = 0.51 

PASS - Pointside penetration is acceptable 
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Main member 

Breadth b1 = 45 mm 

Height h1 = 145 mm 

Cross sectional area A1 = 6525 mm2 

Strength class C16 

Characteristic tensile strength parallel to the grain ft.0.k.m1 = 10 N/mm2 

Characteristic density of the timber k.m1 = 310 kg/m3 

Plywood splice members 

Breadth b2 = 10 mm 

Height h2 = 145 mm 

Minimum length lenm2 = 2 × (a3t.m1 + a3t.m2 + (NpRfixings-1)×a1) = 362 mm 

Characteristic density of the plywood k.m2 = 500 kg/m3 

Characteristic compression perpendicular fc.90.k.m2 = 1.88 N/mm2 

If you are to allow a gap between the connection members this will need to be added to lenm2 

Partial safety factors 

Material factor for connections, table 2.3 M.connection = 1.30 

Actions 

Modification factors – Table 3.1 

Service class of timber 1 

Load-duration Permanent 

 kmod = 0.60 

Design tensile action Ft.Ed = 4.50 kN  

Calculated output 

Characteristic embedment strength in timber, - eq 8.15 

member Joint 

Main member,  eq 8.15 fh.k.1 = 82 kNm/kg × k.m1 × (d / 1mm)-0.3 =20.35 N/mm2 

Splice member, plywood eq 8.20 fh.k.2 = 110 kNm/kg × k.m2 × (d / 1mm)-0.3 =44.02 N/mm2 

Yield moment of fixing - eq 8.14 My.Rk = 0.45 mm0.4 × fu.f × df
2.6 = 2168 Nmm 

Withdrawal resistance 

cl 8.3.2(7)  tpen / df = 11.8 Dp = 1.00 

Characteristic values of the withdrawal and pull-through strengths 

Pointside withdrawal - eq 8.25 fax.k.ps = 20 (m5/(kg×s2)) × k.m1
2 × Dp = 1.92 N/mm2 

Headside pull-through - eq 8.26 fhead.k.hs = 70 (m5/(kg×s2)) × k.m2
2 = 17.50 N/mm2 

Characteristic withdrawal capacity - eq 8.23 Fax.Rk = min(fax.k.ps × df × tpen, fhead.k.hs × dh.f
2) = 0.1 kN 

Design value of axial withdrawal capacity Fax.Rd =(kmod× Fax.Rk) / M.connection = 0.046 kN 

Lateral load-carrying capacity of connection 

Failure modes for timber to timber single shear connections: 

 
Maximum rope effect contribution - cl. 8.2.2(2)  

cl 8.2.2(2) Pf.mod = Profile.f = 1.50 
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 Pf.mod – 1 = 50 % 

 Rope = Fax.Rk / 4 = 25 N 

The characteristic lateral resistance per shear plane is the smallest value in equations (8.6) 

Embedment ratio  = fh.k.1 / fh.k.2 = 0.46 

Thickness headside member t1 = b2 = 10 mm 

Penetration length in pointside member t2 = tpen = 25 mm 

Failure mode (a) f.m.a = fh.k.2 × t1 × d = 0.92 kN 

Failure mode (b) f.m.b = fh.k.1 × t2 × d = 1.06 kN 

Failure mode (c) f.m.cJyt = f.m.a / (1 + ) × ( [ + 2 × 2 × (1 + (t2 / t1) + (t2 / t1)2) + 3 × ( 

(t2 / t1)2)] -  × (1 + (t2 / t1))) 

 f.m.c = min(f.m.cJyt + Rope, Pf.mod × f.m.cJyt) = 0.45 kN 

Failure mode (d) f.m.dJyt = (1.05 × f.m.a / (2 + )) × ( [2 ×  × (1 + ) + ((4 ×  × (2 + ) 

× My.Rk) / (fh.k.2 × t12 × d))] - )  

 f.m.d = min(f.m.dJyt + Rope, Pf.mod × f.m.dJyt) = 0.46 kN 

Failure mode (e) f.m.eJyt = (1.05 × (fh.k.2 × t2 × d) / (1 + 2 × )) × ( [2 × 2 × (1 + ) + ((4 

×  × (1 + 2 × ) × My.Rk) / ( fh.k.2 × t22 × d))] - )  

 f.m.e = min(f.m.eJyt + Rope, Pf.mod × f.m.eJyt) = 0.54 kN 

Failure mode (f) f.m.fJyt = 1.15 ×  [(2 × ) / (1 + )] ×  [(2 × My.Rk × fh.k.2 × d)] 

 f.m.f = min(f.m.fJyt + Rope, Pf.mod × f.m.fJyt) = 0.60 kN 

Characteristic lateral nail shear resistance Failure mode (c) 

 Fv.Rk1 = 0.45 kN 

Design resistance per fixing Fv.Rd1 = (kmod × Fv.Rk1) / M.connection = 0.21 kN 

Load utilisation factor ut_load = Ft.Ed / (nef × Fv.Rd1) = 0.623 

PASS - Design capacity of the shear plane exceeds the design force within shear plane 

Fixing Spacing 

 

  
 

Allowable minimum nail spacings from table 8.2 

Minimum spacings and edge / end distances. 

a1 Spacing of fixings within one row parallel to grain, 

a2 Spacing of rows perpendicular to grain 

a3,t Distance between fixing and loaded end 

a4,c Distance between fixing and unloaded edge 
 a1 a2 a3,t a4,c 

Main member 17.9 mm  8.9 mm  31.5 mm  10.5 mm 

Splice member 26.8 mm  12.5 mm  14.7 mm  6.3 mm 

Applied column spacing a1 = 45.0 mm 

Applied row spacing a2 = 25.0 mm 

Applied edge distance, main member Appmain = 22.5 mm 

Applied edge distance, splice member Appsplice = 22.5 mm 

Minimum length of splice member lenm2 = 362 mm 

PASS - All spacing conditions are met 
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 Tedds output:Tension Splice - Steel splice example 

TIMBER CONNECTION DESIGN 

In accordance with EC5 and the UK National Annex incorporating National Amendment No.2 and the Published 

Document PD6693-1:2012 Non-Contradictory Complementary Information to Eurocode 5. 
Tedds calculation version 1.1.07 

Design summary 

Description Provided Required Utilisation Result 
Load utilisation factor 10.572 kN 10.000 kN 0.946 PASS 
Pointside penetration 13.8 mm 32.3 mm 0.428 PASS 
Column spacing 16.1 mm 45.0 mm 0.358 PASS 
Row spacing 8.1 mm 25.0 mm 0.322 PASS 
Edge spacing  11.5 mm 35.0 mm 0.329 PASS 
Overlap   0.722 PASS 

 

  
 

Plan  Elevation 

 

  
 

End elevation 

This connection is in single shear 

Geometry 

Nails 

Nail description 2.30 mm x 40 mm ring shanked nail  

Number of nails Nfixings = 16 

Number of rows NoRfixings = 4 

Row spacing a2 = 25.0 mm 

Number per row NpRfixings = 4 

Column spacing a1 = 45.0 mm 

Fixings to both sides FBS = 2 Yes  

Nail diameter d = df = 2.3 mm 

Nail head diameter dh.f = 5.175 mm 

Nail length lf = 40.0 mm 

Nail point length lpoint.f = 5.75 mm 

Nail pointside penetration tpen = 32.25 mm 

Tensile strength of each fixing fu.f = 700 N/mm2 

Effective number of fixings - cl 8.3.1.1(8) nef = (NpRfixings^1.000) × FBS × NoRfixings = 32.00  

Minimum pointside penetration - cl 8.3.1.2(2) tmin.pen = 6 × d = 13.8 mm 

Pointside penetration tmin.pen / tpen = 0.43 

PASS - Pointside penetration is acceptable 
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Main member 

Breadth b1 = 45 mm 

Height h1 = 145 mm 

Cross sectional area A1 = 6525 mm2 

Strength class C16 

Characteristic tensile strength parallel to the grain ft.0.k.m1 = 10 N/mm2 

Characteristic density of the timber k.m1 = 310 kg/m3 

Steel splice members 

Breadth b2 = 2.0 mm 

Height h2 = 145 mm 

If you are to allow a gap between the connection members this will need to be added to lenm2 

Partial safety factors 

Material factor for connections, table 2.3 M.connection = 1.30 

Actions 

Modification factors – Table 3.1 

Service class of timber 1 

Load-duration Permanent 

 kmod = 0.60 

Design tensile action Ft.Ed = 10.00 kN  

Calculated output 

Characteristic embedment strength in timber, - eq 8.15 

member Joint 

Main member,  eq 8.15 fh.k.1 = 82 kNm/kg × k.m1 × (d / 1mm)-0.3 =19.80 N/mm2 

Yield moment of fixing - eq 8.14 My.Rk = 0.45 mm0.4 × fu.f × df
2.6 = 2747 Nmm 

Withdrawal resistance 

cl 8.3.2(7)  tpen / df = 14.0 Dp = 1.00 

Characteristic values of the withdrawal and pull-through strengths 

Pointside withdrawal - eq 8.25 fax.k.ps = 20 (m5/(kg×s2)) × k.m1
2 × Dp = 1.92 N/mm2 

Characteristic withdrawal capacity - eq 8.23 Fax.Rk = fax.k.ps × df × tpen = 0.1426 kN 

Design value of axial withdrawal capacity Fax.Rd =(kmod× Fax.Rk) / M.connection = 0.0658 kN 

Lateral load-carrying capacity of connection 

Linear interpolation of the failure modes for timber to steel plate single shear connections, when the steel plate thickness is 

greater that 0.5d and less than d, with the tolerance on the hole diameters being less than 0.1douter.f: 

 
Maximum rope effect contribution - cl. 8.2.2(2)  

cl 8.2.2(2) Pf.mod = Profile.f = 1.50 

 Pf.mod – 1 = 50 % 

 Rope = Fax.Rk / 4 = 36 N 

The characteristic lateral resistance per shear plane is the smallest value in equations (8.9) 

Pointside penetration t1 = tpen = 32 mm 
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Failure mode (a) f.m.a = 0.4 × fh.k.1 × t1 × d = 0.59 kN 

Failure mode (b) f.m.bJyt = 1.15 ×  [2 × My.Rk × fh.k.1 × d] 

 f.m.b = min(f.m.bJyt + Rope, Pf.mod × f.m.bJyt) = 0.61 kN 

Characteristic lateral nail shear resistance (8.9) Failure mode (a) 

 Fv.Rk1.ab = 0.59 kN 

 
The characteristic lateral resistance per shear plane is the smallest value in equations (8.10) 

Pointside penetration t1 = tpen = 32 mm 

Failure mode (c) f.m.c = fh.k.1 × t1 × d = 1.47 kN 

Failure mode (d) f.m.dJyt = fh.k.1 × t1 × d × ([2 + ((4 × My.Rk) / (fh.k.1 × d × (t1)2))] - 1) 

 f.m.d = min(f.m.dJyt + Rope, Pf.mod × f.m.dJyt) = 0.76 kN 

Failure mode (e) f.m.eJyt = 2.3 × [My.Rk × fh.k.1 × d] 

 f.m.e = min(f.m.eJyt + Rope, Pf.mod × f.m.eJyt) = 0.85 kN 

Characteristic lateral nail shear resistance (8.10) Failure mode (d) 

 Fv.Rk1.cde = 0.76 kN 

Linear interpolation minter = (Fv.Rk1.cde - Fv.Rk1.ab) / (d – (0.5 × d)) = 151 kN/m 

 cinter = Fv.Rk1.ab – (minter × (0.5 × d)) = 414 N 

Characteristic lateral nail shear resistance Fv.Rk1 = minter × b2 + cinter = 0.716 kN 

Design resistance per fixing Fv.Rd1 = (kmod × Fv.Rk1) / M.connection = 0.33 kN 

Load utilisation factor ut_load = Ft.Ed / (nef × Fv.Rd1) = 0.946 

PASS - Design capacity of the shear plane exceeds the design force within shear plane 

The load-carrying capacity of the steel plates should be calculated independently by the user. 

Fixing Spacing 

 

  
 

Allowable minimum nail spacings from table 8.2 

Minimum spacings and edge / end distances. 

a1 Spacing of fixings within one row parallel to grain, 

a2 Spacing of rows perpendicular to grain 

a3,t Distance between fixing and loaded end 

a4,c Distance between fixing and unloaded edge 
 a1 a2 a3,t a4,c 

Main member 16.1 mm  8.1 mm  34.5 mm  11.5 mm 

Splice member            

Applied column spacing a1 = 45.0 mm 

Applied row spacing a2 = 25.0 mm 

Applied edge distance, main member Appmain = 35.0 mm 

Applied edge distance, splice member Appsplice = 35.0 mm 

Minimum length of splice member lenm2 = 408 mm 

PASS - All spacing conditions are met 
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 Tedds output: Axially loaded fixing - Roof batten 75mm insulation void example 

TIMBER CONNECTION DESIGN 

In accordance with EC5 and the UK National Annex incorporating National Amendment No.2 and the Published 

Document PD6693-1:2012 Non-Contradictory Complementary Information to Eurocode 5. 
Tedds calculation version 1.1.07 

Design summary 

Description Provided Required Utilisation Result 
Load utilisation factor 0.906 kN 0.800 kN 0.883 PASS 
Pointside penetration 36.0 mm 44.6 mm 0.807 PASS 

 

  
 

 

 Section 

Geometry 

Screws 

Description 6.0 mm / 3.6 mm x 180 mm screw 

Effective number of fixings nef.ax = 1 = 1.00  

Head diameter dh.f = 11.800 mm 

Head length ln.l.f = 0.500 mm 

Smooth shank diameter df = 6.00 mm 

Outer thread diameter douter.f = 6.00 mm 

Inner thread diameter dinner.f = 3.55 mm 

Total length lf = 180.0 mm 

Thread length, including the point lth.f = 60.0 mm 

Point length lpoint.f = 15.4 mm 

Tensile strength of each fixing fu.f = 600 N/mm2 

Thread pointside penetration tpen.th = tpen = 44.60 mm 

Minimum pointside penetration - cl 8.7.2(3) tmin.pen = 6 × douter.f = 36.0 mm 

Counter sunk head 
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Pointside penetration tmin.pen / tpen.th = 0.81 

 

PASS - Pointside penetration is acceptable 

Point side member 

Depth h1 = 145 mm 

Strength class C24 

Characteristic tensile strength parallel to the grain ft.0.k.m1 = 14 N/mm2 

Characteristic density of the timber k.m1 = 350 kg/m3 

Head side member 

Depth h2 = 45 mm 

Strength class C24 

Characteristic tensile strength parallel to the grain ft.0.k.m2 = 14 N/mm2 

Characteristic density of the timber k.m2 = 350 kg/m3 

Void between head side and point side member vod = 75.0 mm 

Check to validate that no pre-drilling is acceptable 

Characteristic dencity < 500 kg/m3 - cl 8.3.1.1(2) k.m1 / 500kg/m3 = 0.70 OK 

 k.m2 / 500kg/m3 = 0.70 OK 

Diameter of fixing < 6mm - cl 8.3.1.1(2) df / 6mm = 1.00 Not suitable 

Timber thickness > tmin - cl 8.3.1.2(6) 

tmin = max (7 × df, (13 × df - 30mm) × (max(k.m1,k.m2)/ 400kg/m3)) = 42 mm OK 

FAIL - Requires to be predrilled 

Partial safety factors 

Material factor for connections, table 2.3 M.connection = 1.30 

Actions 

Modification factors – Table 3.1 

Service class of timber 3 

Load-duration Instantaneous 

 kmod = 0.90 

Design axial action Fax.Ed = 0.80 kN  

Calculated output 

Withdrawal resistance 

Penetration length of the threaded part lef.f = tpen.th = 44.60 mm 

Min. angle screw axis - grain direction point side screw = 90˚ 

Characteristic values of the withdrawal and pull-through strengths 

Characteristic values of the withdrawal and pull-through strengths 

Withdraw capacity, User entered fax.k.pss = 11 N/mm2 

Associatated density a.ax.k.pss = 350 kg/m3  

Withdrawal capacity - eq 8.40a Fax.point.Rk = fax.k.pss × douter.f × lef.f / (1.2 × cos(screw)2 + sin(screw)2) × 

(k.m1 / a.ax.k.pss)0.8 = 2944 N 

Headside pull-through, User entered fhead.k.hss = 9.4 N/mm2 

Associatated density a.head.k.hss = 350 kg/m3  

Pull-through resistance - eq 8.40b Fax.head.Rk = fhead.k.hss × dh.f
2 × (k.m2 / a.head.k.hss)0.8 = 1309 N 

 Fax.Rk = min(Fax.point.Rk, Fax.head.Rk) = 1.309 kN 

Design value of axial withdrawal capacity Fax.Rd =(kmod× Fax.Rk) / M.connection = 0.906 kN 
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Load utilisation factor ut_load = Fax.Ed / Fax.Rd = 0.883 

PASS - Design axial withdrawal capacity exceeds the design axial action 

Fixing Spacing 

Allowable minimum screw spacings for point side member from table 8.6  

Allowable minimum screw spacings for head side member from table 8.6 

Minimum edge / end distances. 

a3,c Distance between fixing and unloaded end 

a4,c Distance between fixing and unloaded edge 

a1,CG End distance of the centre of gravity of threaded part of the screw in member 

a2,CG Edge distance of the centre of gravity of threaded part of the screw in member 

 
 a3,c a4,c a1,CG a2,CG 

Point side member       60.0 mm  24.0 mm 

Head side member       60.0 mm  24.0 mm 
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