
Open Transport Modeling Networking for transportation applications

Marcus R Wigan

Principal. Oxford Systematics GPO Box 126 Heidelberg Victoria Australia 3084, Professor of Transport
Systems, Tri, Napier University, 66 Spylaw Rd Edinburgh, Scotland EH10 5BR, UK m.wigan@napier.ac.uk Tel
+44 131 455 5140 Fax +44 131 455 5141

Paul Drain

Ridge Technologies, 593 Hull Rd Lilydale Victoria Australia 3140
pdrain@ridge.com.au Tel +61 3 9735 1888 Fax +61 3 9735 3830

Word Count 6745



Abstract.

Transport modeling has developed to a stage where there is a wide range of tools, but a high level of dependence
on commercial systems. Recent developments in software and licensing approaches have underpinned the rapid
development of robust open source operating systems. In parallel to these developments, formal specifications of
data (largely though XML and application-specific XML vocabularies) have begun to emerge for transport-
specific applications. At the same time Java has become a widely used development tool. It is argued that these
developments allow a new approach to transport modeling and data interchange that can offer higher levels of
access and more rapid adaptation to local circumstances and to smaller research groups. The role of global
knowledge networking is considered as the underpinning for such an initiative, and the appropriateness of the
GPL (General Public License) widely used in open source software is considered.



INTRODUCTION

The first major round of widely used transport models was strongly influenced by the Bureau of Public Roads
release of course code in Fortran for a small suite of what were essentially a set of all-or-nothing network
modeling and assignment programs. This system provided a starting point for a range of more extensive and
powerful commercial and academic modeling systems, examples each being the initial commercial AM
Voorhees TRIPS package and the RRLTAP equilibrium modeling system from the UK Transport and Road
research laboratory.

This early and influential public initiative was later followed by the more complex family of programs
released in ready to run format for the IBM 360 series of computers by the Urban Mass Transit Administration
under the title of UTPS (Urban Transport Planning System). This system was less easy to modify and extend as
was widely used in its supplied form for a considerable number of years, while commercial systems such as
INRO’s EMME/2, MVA (UK)’s TRIPS, ITS Leeds’ SATURN, and such generally used consulting tools as
MINUTP and TranPlan and TMODEL appeared.

More recently different commercial approaches to modeling systems have been delivered, these
include,Quadstone (Scotland)’s Paramics highway microsimulation package, Caliper’s TransCad system based
on a GIS foundation, and the VISUM system from Germany. Several of these newer packages have provisions
for product extension by purchases and permit the addition of new algorithms or programs which can utilise the
basic data structures and utilities in the full package. Such extensions often gain wider circulation through user
groups, but still depend on those wishing to use them securing a copy of the underlying commercial package.

The key common features of the more productive earlier BPR-derived systems are

• Source code availability
• Central source of supply
• Data structure standardization

Data structure standardization was achieved sometimes unwittingly, but was still effective. The BPR a-
node, b-node list data structure indexing nodes in a network is still to be found buried deeply within packages
still in use today.

There was a long period where innovation in transportation modeling has been largely at a standstill or
at least subject only to very slow rates of change. The four step BPR approach is still in use in practice in many
places, and the very wide use of a single public sector and widely and cheaply available package (such as UTPS)
has faded away to a minority activity, Technically, the use of internal generation of networks and matrices and
the forms of models included have altered only slightly over several decades. The key additions have been the
construction of matrices from partial data (1980s and 1990s), the construction of networks from GIS sources
(1990s) and the inclusion of logit models for choice analysis (mostly in the1990’s).

Even so, many of the packages used on the ground still combine a series of external packages such as
ALOGIT from Rand Corporation and LIMDEP from Econometric Software to achieve these goals for model
estimation and special conflation tools to bridge the gaps between transport network models and spatial
information from GIS sources.

The 1990s saw the emergence of microsimulation as a widely used tool for traffic analysis, if not for
transport planning. While this has a very long history of traffic applications. For example, Wigan (1) provides a
substantial bibliography of a large number of applications even then that included large scale freeway
interchanges as well as small traffic intersections).

The emergence of several large scale and far more efficient microsimulation models has now been
enabled by the far faster computers now available. Examples in traffic include DYNAMIT from MIT in
Cambridge Mass, PARAMICS from Quadstone and SIAS in Edinburgh UK, AIMSUM from Spain, VISUM
from Germany and others under active commercial development.

There are also a growing number of other systems with wide public policy impact, such as DYNAMOD
from the University of Canberra Australia which is a microsimulation of a full synthetic population of 1% of
the Australian population (150,000 records) which is aged over fifty years and targeted at examining the effects
of taxation and other public policies on households over time. DYNAMOD simulates fertility, mortality,
household formation, income, employment and migration events, but ignores spatial aspects.

INTEGRATION ISSUES

It is increasingly necessary to use a range of models to bring all the different aspects of transport and traffic
projects and impacts together. The problems involved fall into several different categories:

• Data formatting and input



• Interchange of data between models
• Interchange between the very different conceptual data structures in different models
• Verification of the internal operation of commercial models when integrated with other types of

system (often made even more difficult by a lack of access to the necessary proprietary source code)
• Working with multiple models with very different learning curves and assumptions
• Wide variety of ‘add-in’ facilities to customize commercial and other closed models for specific

purposes

At a practical level families of links between different types of models are emerging. The University of
Catalunya group responsible for the AIMSUM microsimulation model has linked network models, Area Traffic
Control models and developed links to the widely used EMME/2 assignment system into a package termed
GETRAM (3). This is typical of the tactical approach to addressing these structural problems. A similar but more
tightly integrated approach is Caliper’s development of their microsimulation (TransModeller) as a fully
integrated with the GIS and GIS-T data structures and models within Transcad, their GIS-T.

There is also a range of higher-level initiatives designed to alleviate some of this problems. These
include moves to formalize the metadata used for transport data inputs. These are not simply a question of
adopting a particular Transport Thesaurus, and involves a wide range of international and national conventions
for data specifications. Typical examples include the standard codes for commodity specifications (changing
these would be a major issue for Bureaus of Census and export categorizations, however awkward they might be
for transport applications). Progress in this area is occurring slowly, with library science and transport user and
research groups still some way from reaching the necessary common ground.

For data issues Metadata initiatives have begun to be recognized as a necessary component of data
modeling in transport and related fields, but this is still far from universally accepted (4). At a different level, the
problems of model interworking have been examined by (amongst others) the BRIDGES and SPOTLIGHT (5)
projects of the European Union. These projects aimed at defining data structures that would permit data and data
structures to be interchanged between different transport models at a higher level than the basis data. This work
has shown clearly that the approach has some merit, but cannot easily be made an open set of specifications.
XML was used as a framework to ensure a high level of automated transportation and portability, but the
resulting GTF (6) vocabulary for model data structures still falls short of the open and transformable
specifications that would allow the full interchange processes to be implemented.

The objectives of the GTF initiative were –and are - impeccable, but the context within which it was
initially developed was perhaps too limited. We have four domains to consider:

• Data item specifications
• External data structure communication specifications

These two have been addressed in a first iteration by the development of GTF, using the desirable
features of XML, where data and structure are intrinsically separable. However the interaction with the transport
models needs to be addressed in more detail. Naturally the internal data structures within the models developed
and used by different vendors will differ between commercial (or indeed non-commercial) systems, but
addressing the external interchange issue does not directly solve the problems of the internal representations and
their validation.

To address this aspect would require commercial transport modeling system vendors to supply XML
specifications of their operational tools at a level that would, so more than one commercial transport modeling
company has advised, give open access to the core intellectual property within their systems. Which indeed it
would, but they are all uniformly pleased to enable their systems to read in XML formats and specifications. So
we can add two more very desirable objectives:

• XML specifications of internal data structures
• Ability to validate the internal implementations of the models in use.

Only the first is an objective that could be (potentially) addressed by GTF, but the second is closely
related to the considerably less well known Dcode (7) initiative also developed within SPOTLIGHT. Dcode
addresses the validation and structural information processes that are desirable for transport modeling system
users to have in place, and emphasizes the need to have clear links in terms of appropriate application and
interpretation. Meeting each of these goals, while highly desirable, would require a degree of understanding of
transport models that would be difficult to achieve unless a great deal of diverse expertise could be captured into
the proposed information system.

It would be useful to find another route to the same end, where the basis for the models had a more
coherent underpinning and common language in terms of structure and data item interpretation. Any such



approach would need to bridge the technical computing infrastructure required to ensure greater transparency
and the constructs meaningful to transport model users, implemented on the technical foundation.

This suggests that a profitable route to follow would be to look to a coherent framework for making the
best of existing efforts on the underlying technical computing (to build and develop models) and operational
experience and expertise in the use of the models thereby produced. This will depend as much on networking
between model users as between model builders and designers.

A POSSIBLE STRATEGY

The approaches implied by GTF, SPOTLIGHTs and commercial parties such as TSS are all directed to the
external interfacing and the reductions of errors and effort in bringing different types of models together in a
coherent and reliable manner. The proposal made in the present paper is to alter the basis for the use,
development and validation of transport models to one where economies of scale and more rapid takeup of
innovations – and a swifter approach to validation – can be achieved. At this stage such an approach can only be
complementary to present commercial initiatives, but there are sound grounds for considering that this could
change quite quickly over time.

There are several underpinning technical and computing developments that have made this possible:

• Wide adoption of Object Oriented formulations for models and data systems
• Formal specification languages (specifically UML - Universal Modeling Language)
• Wide adoption of Java in a machine and operating system independent form
• World wide access to common CVS’s (Concurrent Versioning

Systems)
• The emergence of very high quality and reliable Open Source Unix related operating

systems
• Availability of open source data bases and object oriented front ends for existing relational data

bases such as Oracle, Informix and IBMs DB2
• Development of commercially viable open source related licensing
• Development of global communities to audit and validate code

Each of these are critical to the proposal of an Open Source Transport Modeling Network. The first six
are technical underpinnings but the last are the most critical. The former have a prime role in enabling the
networks of human interchange and knowledge base improvement to function in a mixed but global information
and transactional economy.

Design and Code issues

Object Oriented formulations for models allow a high level of reuse and this communication of classes
of object modeled and types of processes attached to these objects. This is very different to the implementation
approaches used in earlier decades, and effectively reintroduce the possibility of common data structure
standards, similar to but at a far higher conceptual level than the de facto standards created by the early BPR
network data structures.

This capability is not enough on its own, as the formal understanding of each object needs to be very
clearly defined for it to be usable by others. While many in the transport field are not yet familiar with UML (8),
it is becoming widely used as a formal object description language which can be reasonably easily understood in
its diagrammatic form – and which can also be used to generate Java code for the objects directly.

This introduces a high level of underlying rigor into the modeling process. First the objects in the model
need to be clearly and formally designed, and then the formal operational description can be generated directly
from this. While this does not of itself do more than make formal programmer approaches easier to access, this is
a major advance in accessibility of such approaches to program and model design.

Java is designed to be a fully portable language, and draws strongly from the p-code architecture of the
UCSD p-system of the 1980s (9). Once again, the speed of modern computers allows the intermediate code
approach that underpins Java to be run very swiftly, and a range of efficient compilers to native code exist for
various microcomputer architectures, without subverting the portability of the language. Java is naturally object
oriented in its design, and furthermore is an ideal match to XML, the data description framework that has been
used to implement GTF. Java has been widely adopted as the language of choice for portable systems, and is
now commonly used for new transport modeling initiatives.

Another factor that is becoming important is that Java environments are available in Open Source, and
run within Open Source operating systems as well as proprietary operating systems. The limited support life of
each generation of the dominant Microsoft family of operating systems is atheir firm and published policy, and



the ability to sustain a stable environment for Java code over a longer period may tip the balance towards Open
Source operating systems. This does not dictate that development be done under them, simply that a stable and
supportable ;environment is and will continue to be available outside.

Concurrent Versioning Systems: local and global

The next step is not purely a technical issue. The growth of global communities supporting and
enhancing source code has begun to create very reliable code, and the internet allows common repositories for
code development, versioning and access to be maintained in a distributed manner for distributed access. The
CVS (Concurrent Versioning System) is a key piece of infrastructure that allows diverse groups and individuals
to interact and maintain rapidly developing bodies of computer code – and, just as important, documentation.
This is one of the central enabling technologies now used to bring spatially dispersed communities together to
address technically demanding tasks.

In CVS, a safe and closed ‘sandbox’ for work is automatically created when a working copy is checked
out for a CVS project using the CVS checkout {project-name} command. The 'sandbox' can be thought of as a
controlled area within which CVS can track for changes made to the various source files. The subset of files
copied to the developers machine using the 'cvs checkout' command lives on the users machine only and is not
touched by the main repository again unless the developer issues a checkin command, where files that have been
modified by the user, or that belong to other developers will be automatically updated by CVS to form one basic
repository. Thus the developer who lives within the sandbox will stand to gain a lot of benefits of concurrent
development. This benefit cannot be achieved for work done outside a sandbox.

Using CVS can also resolve issues with Quality Assurance and other non-code development (the
system can also be used with documentation) . In very large projects it makes little sense for the QA team to
checkout the entire source into a local sandbox, and then be expected to build near-identical copies of what exists
within the repository. Having a large number of developers checking out and rebuilding the same source on
similar infrastructure is a waste of resources. .A better way of managing a large number of developers in with a
similar build environments in a cross platform environment would be to create a ‘branch’ CVS on an hourly or
daily basis that can be checked out by an automated script that can run several tests (both sanity tests on the code
and compile time tests), create ready to use debuggable binaries for the developers and copy these ready made
binaries to a centra l location on the network. QA team members can then take the binaries generated by the
build team on a regular basis for testing, submitting bug reports or patches back to the developers using the
‘comment’ option of the CVS ‘checkin’ facility. This is a formal way in which loosely connected developers can
accurately track the progress of outstanding bugs or features within the code under their control without having
to constantly request status information from other members of the development community (10).

In very large projects, it does not make sense for the developers to check-out the entire source into the
local sandbox. In such cases, they can take the binaries generated by the build team on a regular basis for all
those components of the application that is not changed by them and only check-out the parts that are built by the
developer.

For example, in a Java modelling project, the build team can keep the results of their last successful
build in a standard location in the form of JAR files on the network file servers. Individual developers will use a
standard classpath setup that has the network drives mounted on standard paths. Thus, the developers will
automatically get the latest version of the files as required by them. To gain the benefits of working within a
sandbox as mentioned above, the developer must keep his or her sandbox in sync with the main repository, but
does not need to do unless he wishes to.

A group may keep a CVS entirely local to them, there is no necessity to checkin with the other more
widely accessible CVS, consequently the commercial and non-commercial work can be managed in a manner
allowing effective coordination as desired. A regular CVS update with the appropriate tag or branch name will
ensure that the sandboxes are kept up to date.

The tools for the job are not restricted to CVS, although CVS makes distributed and otherwise very
loosely coordinated work possible and manageable.

Open source environments

The extensive adoption of the Open Source approach to software development has attracted many
parties to contribute databases and other tools, and effective variants on the licensing models have allowed
commercial vendors to participate in this process. The niceties of these intellectual property management
capabilities are critical for the proposed Open Source Transport Models initiative.

Open Source software is a key component is any future initiative for transport modeling. Issues are
beginning to arise that could make working with the dominant Microsoft operating systems and tools
increasingly problematical.



• Restrictions to their use in environments excluding Open Source software systems
• Interactions with the GPL
• Withdrawal of Java from current releases of Windows,
• The introduction of non-standard Java ‘variants’ as part of the .NET strategy.

While all these steps are commercially appropriate for a dominant commercial provider, they
introduce a new level of sovereign risk for technical users. In general these risks can be avoided by using Open
Source operating systems. As many full Java systems can be run under Windows variants, development can
continue using the dominant platform, but delivery may be prove to be best under Open Source operating
system.

Open Source software of itself is not a problem for interworking with Windows, it is the terms of the
various licences used to manage the intellectual and commercial aspects that cause the complications. The
widely used GPL (General Public Licence) presents genuine difficulties when it applies to software than may be
merged with software provided under commercial or more restrictive foms of licence.

Open Source software does not of itself introduce a lack of control of a risk to the commercially
licensed software on other serves and systems. uncontrolled, or presents a risk to a secured network of
commercial systems. The already high and steadily improving standards of reliability and transparency regularly
achieved by such widely used and dependable open source systems as the ubiquitous Apache web server and the
OpenBSD operating system, which are proven favourites with both private and commercial interests on the
internet.

There are two distinct issues here.

• The reliability and transparency of open source software
• The terms of the several different forms of open source Licence formats under which it may be

released and used.

Open Source Licenses

There is ample evidence that the reliability and – especially transparency - of open source are a major
assets in many projects. The scale of participation in open source activities is remarkable, and the process of
mutual testing impressive. A glance at the Sourceforge website (www.sourceforge.net) with its 43,000 projects
and just under half a million registered users will show the sale of the activity and the care with which problems
and vulnerabilities are addressed, fixed and communicated.

Open source is used far more heavily by technical rather than commercial users . Large communities of
interest and support have emerges and matured to deliver networked resources such as Sourceforge. Open
Source is now a suitable host for the development, delivery and extension of new generations of transport
planning systems. No change in hardware is needed, and multitasking, multiprocessing and multithreading is all
available in a mature format if and when it is needed. Two of the largest projects in open source are :

• The Mozilla Web browser: an Open Source version of the Netscape browser, components of which
are used in everything from embedded browers for use on GPS and PDA systems .

• The Apple Darwin operating system, which is the core of the new OS X operating system for all
Apple computers

Darwin is another large scale and extremely widely used Open Source project. However, Darwin
initially had problems with the customized form of license that Apple initiated for it, but this has now largely
been addressed and adjusted. The mechanisms that deliver robustness and transparency, and allow standards to
be maintained are common to all Open Source software issues under any form of course licencing.

The key problem for all parties is the exact form of the various different licences used to release Open
Source software. There are two streams of special interest here: GPL originating from the Free Software
Foundation and the BSD/X11 license from Berkeley (11).

The GPL is certainly suitable for university and government use, but can severely constrain commercial
parties from close involvement. A BSD/X11 licence does not cause these types of problems, and allows
commercial and other parties to comfortably coexist.

This license issue is central to any move to build a network of services and systems for transport
planning. There are many well developed and respected systems in commercial use that could be even more
effective in such an environment, as long as their intellectual property was secured and revenue streams
permitted. One example of a commercial system that can readily coexist with Open Source is the DELTA time



staged land use transport modeling system from the UK. DELTA is currently designed to hand over to any
commercial or other assignment package at each time period and then resume. No formal linkage is needed with
the assignment package, which could be licensed using GPL, a commercial licence or any other variant without
any impact on either – as long as the input and output items and formats were known.

In this case there is no problem with the GPL, as there is no need to access the source code of the
assignment package, and only the data formats for interchange are required…. but if an open source assignment
package were to be used and integrated tightly into the DELTA package, the form of license used would then
have a major impact.

OpenBSD, the secure Berkeley Unix derivative operating system in the Open Source domain, and
Mozilla, the Open Source project that is the foundation for current versions of Netscape, have their own formal
processes. These comprise two of the most appropriate tried and tested models for Open Source projects.

The choice of form of license is not straightforward, although dual licensing is also possible, and
frequently undertaken, A critical issue that has emerged is the need to make any license GPL compatible if at all
possible, as this maximizes the likelihood that other developers will support the project. Berkeley have
themselves revised the BSD licence to ensure closer compatibility: so too has the Mozilla project.

A variety of factors can influence the decision on how to licence a project . These factors may be purely
economic . In such cases the decision if often made under the incorrect assumption that Open Sourced software
cannot deliver a fair return on investment for all concerned,. The decision may simply be dictated by
organisational policy, or as a question of ownership. This often occurs when a new project is spawned from
several other hybrid sources, that may or may not have a 'free' and 'open' licence.

Clearly a lucid guide to Licensing must be a basic element in any open source strategy for transport
modeling applications.

When projects reach a stage where code-linking and release to other organizations and to the general
public arise, there are two distinct ways to licence the project successfully and avoid complications and
violations arising later. Both methods are similar in implementation but have differences depending on

• If developer starts a projec t from scratch. They can choose license you wish use and to maintain and
have the people funding the project sign a written agreement confirming this. Or,

• If they based their work - or improved on existing work - on something that exists under a free
licence already.

In the later case, If at all possible, it is preferable for them to base their work on an existing program
that was released under the GNU GPL. Care should then be taken to inform the project manager, other third-
party developers, funding parties and anyone else internally involved with the project that, ``We're not allowed
to release the modified version except under the GNU GPL - any other way would be copyright infringement.'',
this protective clause works because GPL-only code is only usable in GPL projects (12).

If the eventual product (the software) requires both commercial and free distribution (eg. two different
subsets of users), the GNU GPL licence can still be used successfully in both cases - as long as the sources
remain available to both sets of users - and as a consequence of this availability the modification of these sources
is explicitly allowed as well as the redistribution.

One of the more common ways to do this is to have a boxed copy, with manuals, installer and support
guide as the commercial version, and a freely downloadable source and binary pair worldwide. One can still sell
the boxed copy worldwide and provide sources as a component of the distribution (which in turn, means these
sources may be modified and re-distributed as long as their (rather modified) sources include text that describes
where the original software was obtained, together with a notice stating that this 'new' distribution was a clearly
modified version or subset of the existing one. This approach may appeal to some transport software developers,
but in view of the limited market size, other alternatives would probably be preferred.

Software may be developed in conjunction with a third-party who uses software which is not released
under a ''free'' licence (eg. the X11 licence) but is still considered to be free software code – in this case, any
derivative works that appear that need to link to the original licence should be 'Dual Licenced', as Dual-license
code can be linked with any other free software code (GPL or otherwise).

As one can choose which licence to apply when using the code. If you need to link it with non-GPL
code, then it is an option to select the less restrictive BSD license. The code then, is still free to those using it
under the GPL licence (eg. those who have downloaded the code from an FTP site, are using it within the
parameters of GPL) but can also be linked with non-'free' code in order to make a product that can be
redistributed under the alternative licence.

It is important to understand that the 'Copyright' describes the code's ownership. Whereas 'Licensing' is
a term of uses for the end user. If there are several licenses, you can choose which one to use. Of course, dual-
licensing only works if the copyright owner(s) agree.. It is preferable to get the parties to agree to any licencing
structure before commencement of the project).



Auditing processes

One of the major benefits of Open Source development has proved to be the ability to organise auditing and peer
quality control on a distributed basis. As much of the new generation of transport tools are being developed at
Universities, any approach that allows a large critical mass group of people involved with the overall system will
enhance the quality of the outcome of the work, as the internal resources will rarely permit this diversity of
expert users and assessors to be any single team.

The operation of the auditing and quality control differs for different versions of the Open Source
movement. OpenBSD has a well established auditing process .and only code that has passed this hurdle is
integrated into the new releases. OpenBSD relies on a two-tree development model, the '-stable' tree, includes
only security and reliability fixes to existing code and the '-current' tree, which are were enhancements,
experiments, audit tracking and new features are tested.

Once a '-current' tree has been 'tagged' for release, only patches that are reliability, security or
configuration fixes can be added. These patches will then be reviewed by the code maintainer and rejected if
they prove to be anything other than a fix (ie. a one-line reliability patch that is coupled with a 100 line code
enhancement) or accepted as 'reviewed and cleared' if the code is acceptable.

OpenBSD counters the common "all development is halted in release phase" problem by continuing to
allow new code to be added to the "-current" tree at any time - in effect, the "tagged" phase of development is
simply taking a snapshot of "-current" and making sure the code within the tree is of release quality.

During the 'tagged' phase, the entire Operating Environment is rebuilt on the various platforms
OpenBSD supports - this build phase is entirely automated by scripts, but any piece of code that fails on a given
platform generates a fault report which is sent to the code maintainer, the code reviewer and anyone tracking the
current build tree (anywhere from 50 to 3,000 people depending on the platform being tested) meaning that a
code fault is noticed by many developers, system integrators and users before being subjected to release.

Finally, after a set period of time after the build tests are declared known good on all supported
platforms, the 'tagged' release becomes the new -release tree and is released to the community.

This process is already working in a distributed manner for many projects. It would be a small step to
have a network of transport model developers operating in a similar manner: some as full participants and
contributors, some in a user/review mode, and some to ensure that their commercial tools interface cleanly with
what emerges.

The very large Mozilla Open Source prpject has developed practical guidelines (15) on how the
auditing process can be done on a distributed basis across a global network of groups and individuals. While the
details are not appropriate here, the fact that ones reputation is at stake in ensuring that the process is well and
cooperatively undertaken (and often that ones name appears in the source tree) have proved to be powerful
motivators.

These considerations are fundamental to any Open Source transport modeling network reaching and
maintaining both critical mass and the necessary sustained support on a broad front. The security aspects are not
so crucial for applied modeling as for kernel level code, but where cooperative processes or modified kernels are
deployed – as could easily be the case in a complex large scale microsimulation model, running on a cluster of
machines

Open Source Transport Modeling Network

The subject of this paper is the creation and development and of an Open Source transport modeling process.
The key elements have been summarized earlier, and the creation of a collaborative Network of specialists would
appear to be a valuable initiative, and one that the present paperspecifically proposes.

Such a process would not start form nothing. There are a number of transport models now being
developed in Java, and are currently easily operated under Open Source Operating systems. Two examples are
given here, drawn solely on the basis of personal familiarity from the extremely wide range of projects at various
stages of initiation, development and maturity across the world.:

• PedFlow: An agent based microsimulation model of pedestrian movement and interactions project
being developed at Napier University in Scotland (13) in conjunction with collecting fresh pedestrian
micromovement data, pedestrian interaction monitoring and measurement. This model also uses XML
files instead of a relational or object oriented data bases (14) to hold both data and results, and the
match between Java objects and XML data specifications has proved to be very effective.

• TLUMIP: A large scale family of models under active development for the State of Oregon. Includes
economic activity, household, land use and employment development over time and space, direct
micromodelling of 1.8m trips in tours, microsimulation of freight movements. Implemented entirely in



Java, and using a freely available data store (Borland’s runtime Jdatastore) to consolidate data and
results.

The basic design of these very different models is dependent on object specifications and families of
Java classes. At least in the case of TLUMIP, the code is intended by the clients to be made openly available
under an open source licence, although exactly which variant is not yet clear.

TLUMIP is just one of the efforts across the globe to improve transport modeling, albeit a large and
ambitious one. The next such effort will raise similar questions as to how to make the operational tools widely
available, readily built upon and usable with other existing and future data and systems.

It is proposed that an Open Source Transport network be set up, initially at least using the existing Open
Source tools and practices, and – again at the first stage at least – based on strict Java and open source licensing.
The technical collaboration and remote joint working infrastructures already exist. There are several major
studies addressing metadata and new forms of models for freight, passengers, pedestrians and networks are
beginning to emerge. The economies of scale and the scope for cumulative gains in transport land use modeling
are substantial, and should be appraised as part of any new modeling initiative.

Establishing a basic set of standards and collaboration conventions for auditing and extension would be
a small overhead on any current major modeling initiative, and the gains could be perhaps give a payback even
within that single first project. There are no spatial boundaries in this new collaborative world, but the mutual
trust and personal knowledge of the other participants would be a critical element in establishing the network.
Once set up and operating, the learning curve for others to participate would be materially easier and less
expertise intensive.

Auditing user code is more difficult than auditing operating system code, but the same pattern of
inquiry and testing is appropriate (See Appendix). The procedures and effort levels can be materially reduced
from operating system auditing in Java were to be the sole programming language. C and C++ are intrinsically
less ‘safe’, and object oriented design methods provide a further level of simplification for the transport
modeling network. Userspace (application) code is more difficult than code in kernel-space to modify and audit
for many reasons, but one of the more common traps is to make platform dependant fixes, which may be
forgotten by developers later in the development cycle (common amongst 32bit only fixes) which may cause
other platforms to break when porting to new architectures like PowerPC, IA64 or portable systems. The Mozilla
guidelines (15) offer a practical cooperative framework for this task.

There are major gains to be made in allowing transport modelers to start with a far larger basic
framework of tools and starting points than they do now, and this will also allow XML and metadata initiatives
to deliver early practical benefits.

This proposal could not have been formulated prior to the emergence of Java, XML, CVS and the Open
Source movement. Given these tools are now in place with wide user communities, this paper proposes that the
transport modeling community take full advantage of the opportunity for constructive and global collaboration
that they can now support.

This proposal does not require any group to adopt more than a cooperative approach to other groups to
operate, but the mutual exchanges in the growth and adoption of metadata specifications and collaborative
research and development and application work will add up to more than the sum of the parts if some of these
principles are espoused.



REFERENCES

1. Wigan, M.R. Applications of simulation to traffic problems - an annotated bibliography. Transport and
Road Research Laboratory. Library Bibliography LB102/MRW, Crowthorne, UK. 1968.
2. King, A., Baekgaard and Robinson. M. DYNAMOD-2: An overview NATSEM Technical Paper 19.
University of Canberra (also at http://www.natsem.canberra.edu.au/pubs/tps/tp19/tp19.html)
3. Transport Simulation Systems (TSS). At http://www.tss-bcn.com/products.html
4. Wigan, M.R, Grieco, M., and Hine, J. Enabling and managing greater access to transport data through
metadata. Transportation Research Record (In Press) 2002.
5. SPOTLIGHTS Thematic network. At http://www.mcrit.com/SPOTLIGHTS/spotlights_folio.htm
6. Neilsen, O., Ruffert, E., and Mandel, B. Generalised Transportation-data Format (GTF) – data, model, and
machine interaction. Association for European Transport 2001 Annual Conference, Cambridge UK. PTRC,
London Proceedings CDrom. 2001
7. Gaudry, M., Neilsen, O. and Tsamboulos, D. Spotlights TN – WP2 Dcode deonotological code Dcode: a
pedigree form requirement (PFR) proposal for European Transformation Information System (ETIS) recognized
data and models. 2001 (at http://www.mcrit.com/SPOTLIGHTS/dcode.htm)
8. Evits, P. A UML Pattern Language. Software Engineering Series. Macmillan Technical Publishing.
Indianapolis, 2000.
9. Clark, R. and Koehler, S. The UCSD Pascal handbook: A reference and guidebook for programmers.
Prentice-Hall, Englewood Cliffs. 1982.
10. Slide, D. and Drain, P. Bridging the gap between developers and users – one step at a time. ARULUG
Annual Conference, Canberra. 2000.
11. Stallman, R.M. Introduction to the GNU licensing model. http://www.gnu.org/philosophy/
12. http://www.opensource.org/licenses/bsd-license.html
13. Kerridge, J., Hine, J. and Wigan, M. Agent based modeling of pedestrian movements: the questions that
need to be asked and answered. Environment and Planning B 3(28), 327-341. 2001.
14. Kukla, R. and Kerridge, J. The use of XML to store tructural data in PEDFLOW. Software Practice and
Experience (under review)
15. Mozilla Core Review Guidelines. www.mozilla.org/hacking/reviwers.html


