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Abstract  39 

A comprehensive two-dimensional liquid chromatography-based biomimetic platform (LCxLC) has 40 

been developed and validated for drug diffusion studies. Human serum albumin and Immobilized 41 

Artificial Membrane were thereby used in the first (1D) and second (2D) separation dimension, 42 

respectively. While the former was meant to emulate the blood, the latter was instead intended 43 

to mimic the intestinal mucosa epithelium. Therefore, the experimental conditions, i.e. pH, 44 

temperature and buffer composition, were modulated to reflect faithfully in vivo conditions. 30 45 

compounds, whose effective intestinal permeability (Peff) assayed in situ on humans by a validated 46 

technique was known from the literature, were used as model drugs.  47 
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A good and orthogonal separation was achieved for the whole dataset, although for a better 48 

distribution of the most polar compounds in the elution window a segmented gradient elution 49 

program had to be employed. Interestingly, the passively uptaken compounds having the most 50 

favorable Peff, populated a specific area of the 2D plots, implying that the affinity for HSA and IAM 51 

has to lie in specific ranges in order for a compound to be satisfactorily absorbed from the 52 

intestinal lumen.  53 

Although these results should be regarded as preliminary, this work paves an entirely new and 54 

unprecedented way to profile pharmaceutically relevant compounds for their in vivo absorption 55 

and distribution potential.        56 

 57 

Keywords: Immobilized Artificial Membrane; Human Serum Albumin; effective intestinal 58 

permeability; comprehensive two-dimensional liquid chromatography; ADMET profiling; 59 

bioaffinity chromatography.  60 

 61 
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Graphical abstract  71 

 72 

 73 

1. Introduction  74 

 75 

Most of the drug formulations are nowadays available on the market as oral dosage forms, being 76 

the oral administration route safer, cheaper and capable of meeting superior patient compliance 77 

[1]. Consequently, the majority of the active pharmaceutical ingredients (APIs)  have to pass the 78 

intestinal barrier to obtain the pharmacological effect for which they were designed [2]. For this 79 

reason, intestinal absorption represents a key biopharmaceutical feature to assess the  80 

performance of a drug with direct effects in drugs’ bioavailability (BA) [3]. Since 1995 the 81 

Biopharmaceutic Classification System (BCS) classifies the drugs into four classes according to their 82 

dose related-solubility and intestinal permeability [4].  83 
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In brief, some drug products could be considered for biowaiver, i.e. approved by providing only 84 

dissolution test outcomes rather than envisaging full bioequivalence studies on human subjects, 85 

with the proviso that (a) these formulations are immediate-release (85% of the drug released 86 

within 30 minutes) (b) the dose is fully soluble in water over a 1.0-7.5 pH range (c) the intestinal 87 

absorption is almost quantitative (fraction absorbed >90%) [5].  While water solubility is fairly easy 88 

to measure, permeability should be instead properly assayed to achieve correct BCS classification 89 

[6]. For instance, the food and drug administration (FDA) currently accepts absorption data only if 90 

intestinal uptake evidence is produced by human pharmacokinetic (PK) studies (mass balance or 91 

absolute BA) or in vivo intestinal perfusion in human subjects [7]. Alternatively, in vivo or in situ 92 

intestinal perfusion methods based on murine models, as well as models based on excised tissues 93 

or cellular monolayers, can as well be used. However, these procedures must be properly 94 

validated and even in that case their reliability is still regarded with extreme caution, as 95 

interlaboratory variability of data based on cell protocols is generally high. Indeed, uptake studies 96 

performed on such systems are claimed trustworthy only if the absorption is demonstrated to 97 

occur exclusively by passive diffusion, i.e. without any involvement of ATP-operated protein 98 

channels [7]. Consistently, the FDA encourages biowaiver applications providing intestinal 99 

absorption outcomes from different methodologies and in case of conflicting information, human 100 

data supersede in vitro or animal data. 101 

The gold standard of permeability determinations has long been considered the intubation and 102 

perfusion of a drug solution in situ in healthy human volunteers [2]. This approach (so called LOC-I-103 

GUT perfusion technique) has been used for over 50 years, and effective permeability (Peff) values 104 

determined by this method give the best indication as to whether a drug compound has a 105 

sufficient potential for absorption. In brief, to allow the perfusion of a drug solution in a human, a 106 

radiopaque multichannel perfusion tube is inserted through the mouth and positioned in a region 107 
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comprised between the proximal to mid-small intestine [8]. Once the tube is correctly placed, a 108 

perfusion solution is continuously administered through one of the channels in the tube, and 109 

subsequently collected from other channels. Peff is determined by measuring the disappearance of 110 

an API from the intestinal lumen by perfusion and is equal to:  111 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 =  
−𝑄𝑄𝑖𝑖𝑖𝑖∗ln (𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑖𝑖𝑖𝑖

)

𝐴𝐴
          Eq. (1) 112 

where Qin is the perfusate flow rate, Cout and Cin are the concentrations of API leaving and entering 113 

the intestinal segment, and A is the surface area of the perfused intestinal segment, which is 114 

assumed to be a smooth cylinder [8]. However, as human intestinal perfusion requires patients’ 115 

hospitalization and follow-up, this technique is time- and resource- consuming.  Due to these 116 

considerations, albeit valuable, human intestinal perfusion work is hardly performed.  117 

Alternative methods, based on separation science, are increasingly gathering the attention of the 118 

scientific community [9, 10]. These methods allow the introduction in the separation mode of 119 

biological structures playing an essential role in drugs’ absorption such as membrane 120 

phospholipids and plasma proteins [11, 12]. The advantage lies in (a) a superior reproducibility of 121 

the measurements as compared to data achieved by the culturing of suitable cell monolayers, e.g. 122 

Caco-2 cells, (b) their greater speed as compared to screening methodologies implemented on 123 

animal (human included) models and (c) the aspect that, being based on physico-chemical 124 

parameters, they allow elucidation of molecular mechanisms.  125 

Chiral protein-based stationary phases, such as those based on human serum albumin (HSA), are 126 

commercially available and were successfully used for both chiral separation and plasma protein 127 

binding assessment purposes in high performance liquid chromatography (HPLC) set-ups [13]. HSA 128 

is indeed the most abundant plasma protein found in human blood. Produced by the liver, HSA 129 

has a 35-50 g L-1 reference blood concentration range and binds preferably acidic compounds [14]. 130 

Although HSA typically engages with analytes through non-specific hydrophobicity-driven 131 
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interactions, certain protein domains were demonstrated to be capable to recognize enantiomers 132 

thanks to the presence of specific interaction sites. At least two major enantioselective sites, i.e. 133 

Site I (binding warfarin) and Site II (binding diazepam), have been described on HSA [15]. 134 

Immobilized artificial membrane (IAM) are stationary phases based on phosphatidylcholine (PC)-135 

analogues covalently bound to a silica core exploited in reversed phase HPLC [16, 17]. They 136 

represent a rather simplified model of complex lipoidal biological bilayers with the main 137 

shortcomings being the monolayered nature of the membrane and the aspect that only one 138 

phospholipid, i.e. PC, is represented. Nevertheless, IAM-HPLC was proved effective in predicting 139 

the extent at which drugs cross biological membranes of strategic relevance in biopharmaceutics 140 

such as the blood-brain barrier, the intestinal tract and the skin [18-25].  141 

To the best of our knowledge, to date either IAM or HSA HPLC have been extensively and 142 

successfully employed in only one-dimensional liquid chromatography approaches for the 143 

characterization of pharmacokinetic and biodistribution properties of APIs. In recent years, the 144 

need of separating and characterizing more and more complex samples has led to the 145 

development of increasingly smaller particles and consequently of hardware capable of 146 

withstanding comparatively higher operating pressure [26]. However, this trend seems to have 147 

terminated in its natural evolution and chromatographers and separation scientists have focused 148 

their attention on multidimensional liquid chromatographic approaches as more powerful 149 

solutions to generate superior separation capacity [27].  150 

In this work, a comprehensive two-dimensional platform has been for the first time developed in 151 

fully biomimetic separation conditions and applied on 30 compounds whose intestinal effective 152 

permeability was known from one single bibliographic source to exclude any interlaboratory 153 

variability. The achieved separation has been eventually evaluated from both an analytical and a 154 

biopharmaceutical perspective.  155 
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  156 

 157 

2. Materials and Methods  158 

 159 

2.1 Chemicals and reagents 160 

 161 

The solutes were obtained from Merck (Machelen, Belgium), TCI-Europe (Zwijndrecht, Belgium), 162 

Thermofisher Acros Organics (Geel, Belgium) and Sanbio (Uden, The Netherlands) as listed in Table 163 

1. Naproxen, (+)-warfarin and (-) warfarin were purchased from Merck. The purity of all the tested 164 

solutes was equal to or higher than 98%. Water (18.2 MΩ·cm-1) was purified and deionized in 165 

house via a Milli-Q plus instrument from Millipore (Bedford, New Hampshire, USA). Acetonitrile 166 

and methanol used for the preparation of the eluents were HPLC grade and obtained from 167 

Biosolve (Valkenswaard, The Netherlands). Potassium phosphate monobasic and ammonium 168 

acetate were both from Sigma-Aldrich (Machelen, Belgium) and their purity was equal to and 169 

higher than 99%.  170 

 171 

2.2 LC analytical columns  172 

 173 

The 1D column was a Chiralpak HSA 150 x 2 mm i.d., 5 µm (Daicel, Raunheim, Germany) used with 174 

a Chiralpak 10 x 4 mm guard cartridge inserted in a cartridge holder and a column coupler (both 175 

for protein-based analytical columns), while the 2D column was a IAM.PC.DD2, 150 x 4.6 mm i.d., 176 

10 µm (Regis Technologies, Morton Grove, USA).   177 

    178 

2.3 2D LC system  179 
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 180 

The 2D LC instrument was assembled from two Agilent 1100 systems (Agilent Technologies, 181 

Waldbronn, Germany), interfaced via a 2-position/10-port switching valve with a microelectric 182 

actuator (VICI, Houston, U.S.A., model C2H-2000EH). The 1D separation was performed using an 183 

1100 quaternary pump equipped with a 1100 degasser coupled to an external six-port injection 184 

valve (Rheodyne, Alsbach, Germany). The temperature was controlled by an Agilent 1100 Series 185 

Thermostatted Column Compartment. An 1100 variable wavelength detector (VWD) equipped 186 

with a micro flow cell was used to monitor the 1D separation. The 2D instrument consisted of an 187 

1100 binary pump, 1100 degasser, and 1100 VWD equipped with a standard flow cell. All modules 188 

were controlled using two Windows-based computers equipped with ChemStation software 189 

(Agilent). The first was used to control the 1D pump, 1D detector, and 2D detector, and the second 190 

computer was used to operate the 2D gradient on the 2D pump. The 10- port switching valve was 191 

equipped with two 100 μL loops, and the modulation time was 2.0 min.  192 

 193 

2.4. Competitive binding and HSA Site I occupancy assessment  194 

 195 

2.4.1 Mobile phases  196 

 197 

The HSA mobile phase was composed of a 100 mM ammonium acetate buffer solution (A) and a 198 

75/25 (v/v) ammonium acetate buffer 100 mM pH 7/acetonitrile (B). The pH was adjusted at pH 199 

7.0 by dropwise addition of ammonia.  The mobile phase gradient applied on the IAM column in 200 

the 2D comprised a 10 mM potassium phosphate monobasic (Sigma-Aldrich, Machelen, Belgium 201 

purity ≥ 99%) buffer solution (A) and a 45/55 (v/v) 10 mM potassium dihydrogen 202 
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phosphate/acetonitrile (B) solution. The pH of this buffer was adjusted at pH 5.0 via dropwise 203 

addition of hydrochloric acid.  204 

 205 

2.4.2 2D LC elution programs  206 

 207 

The 1D separation was carried out at a 50 µL min-1 flow rate and under controlled temperature (30 208 

°C) by using a linear gradient elution program set as follows: 0 min: 0% B1; 10 min: 0% B1; 20 min: 209 

40% B1; 40 min: 50% B1; 60 min:50% B1;  100 min: 85% B1; 180 min: 100% B1; 200 min: 100% B1.   210 

The 2D separation was carried out at 5.0 mL min-1 and at room temperature, i.e. 25 ± 2 °C, by using 211 

a linear gradient elution program set as follows: 0 min: 25% B2; 1.50 min: 100% B2; 1.51 min: 25% 212 

B2; 2 min: 25% B2.  213 

 214 

2.5 Bioaffinity measurements 215 

 216 

2.5.1 Mobile phases  217 

 218 

The HSA mobile phases consisted of a 100 mM potassium phosphate monobasic buffer solution 219 

(A) and a 75/25 (v/v) a 100 mM potassium dihydrogen phosphate/2-propanol (HPLC grade, 220 

Biosolve, Valkenswaard, The Netherlands) solution (B).  To mimic the blood compartment, the pH 221 

was adjusted with hydrochloric acid and the aqueous solution had a pH value of 7.00 ± 0.05. The 222 

IAM mobile phases were the same as that used for the calibration and described in 2.4.1.  223 

 224 

2.5.2 2D LC elution programs 225 

 226 
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Two different separation methods were developed. In both cases, the 1D separation was carried 227 

out at a 50 µL min-1 flow rate and under controlled temperature (30 °C) by using a linear gradient 228 

elution program set as follows: 0 min: 0% B1; 20 min: 0% B1; 120 min: 100% B1; 200 min: 100% B1. 229 

In both analytical methods, the 2D separation was carried out at 5.0 mL min-1 and at room 230 

temperature, i.e. 25 ± 2 °C. However, in a first method a fixed linear gradient 2D elution program 231 

was set as follows: 0 min: 25% B2; 1.50 min: 100% B2; 1.51 min: 25% B2; 2 min: 25% B2, whereas in 232 

a second method a mixed gradient elution method was used. Therefore, from 0 to 36 min the 233 

program was set as follows: 0 min: 0% B2; 1.50 min: 55% B2; 1.51 min: 0% B2; 2 min: 0% B2 and 234 

from 36 to 200 min the composition of the eluents was changed as follows: 0 min: 25% B2; 1.50 235 

min: 100% B2; 1.51 min: 25% B2; 2 min: 25% B2.  236 

After preparation, all the mobile phases were vacuum- filtered through 0.20 μm nylon membranes 237 

(Grace, Lokeren, Belgium) and degassed in an ultrasonic cleaner (Branson 2510, Frequency: 40 238 

kHz, Branson Ultrasonics, Danbury, USA) for 20 minutes before use.  239 

 240 

2.6 Sample preparation  241 

 242 

Stock solutions of all drugs were prepared by dissolving 10 mg of each solute in 2 mL of methanol 243 

and kept at -4 °C, except for cyclosporin A which was dissolved in DMSO and stored -20°C. 244 

Working solutions were freshly prepared at the beginning of each day by dilution of the stock 245 

solutions to 50 μg mL−1 with the starting mobile phase for all the analytes. Nifedipine samples and 246 

nifedipine-containing mixtures were wrapped in aluminium foil before feeding the autosampler to 247 

protect this chemical from photodegradation. 248 

 249 

2.7 LC experimental conditions  250 
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 251 

The injection volume for each analysis was 10 µL. The calibration was recorded at 254 nm UV 252 

wavelength whereas the bioaffinity measurements were monitored at 220 nm UV wavelength.   253 

 254 

2.8 Postprocessing  255 

 256 

Raw data were exported as comma-separated values and converted to a data matrix in GC image 257 

R2.5 software (GCimage, Lincoln, U.S.A.). From these matrices, contour plots and 3D scatterplots 258 

were generated by using OriginPro 8.5 (OriginLab Corporation, Northampton, U.S.A.). The 259 

chromatographic retention factors of each analyte were calculated by using Eq. (S1).  260 

 261 

2.9 Data sources 262 

 263 

For the scatterplots, n-octanol/water lipophilicity values either of the neutral forms of the 264 

analytes, i.e. log PN, and of the mixtures present in solution at pH 7.4, i.e. log D7.4 were collected 265 

from the scientific literature [28, 29] (except for creatinine, fexofenadine, whose log PN and log 266 

D7.4  values were calculated and for cyclosporin A, lisinopril, losartan, L-phenylalanine and 267 

valacyclovir, whose log D7.4 but not log PN values were calculated),  whilst all n-octanol/water the 268 

mixtures present in solution at pH 5.0, i.e. log D5.0, were calculated, except for acetaminophen, (+)-269 

griseofulvin and nifedipine, which do not support any ionizable moiety and, as a consequence of 270 

that, their log PN values were assumed as reasonable estimates of their log D values at both pH 271 

values. The calculation of lipophilicity values was accomplished by the software Marvin Sketch 272 

17.1.23.0 on a Windows-based quad-core PC [30]. Effective human jejunum permeability (Peff) 273 
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data were taken from [31, 32]. When more than one Peff value was reported, an average was 274 

considered. 275 

 276 

 277 

3.0 Results and Discussions  278 

 279 

3.1 Method development 280 

 281 

Protein-based liquid chromatographic stationary phases are generally used for bioaffinity 282 

chromatography. Therefore, method development conducted on such phases, even in 1D, poses 283 

several constraints, regardless of these being exploited for protein binding assessment or for mere 284 

chiral separation purposes. Indeed, deliberate deviations from the recommended pH range (5.0-285 

7.0), temperature (20-30 °C), operating pressure (lower than 150 bar), buffer concentration (up to 286 

100 mM) and types (ammonium acetate or phosphates), organic modifier ratio (0-15% v/v for 287 

analysis, max 25% for decontamination) and type (2-propanol or in general alcohols preferred) can 288 

lead to significant reduction of column lifetime and loss of reproducibility [33]. The manufacturer 289 

suggests the usage of charged additives such as N,N-dimethyloctyl amine (DMOA), trifluoroacetic 290 

acid (TFA), octanoic acid (OA), heptafluorobutyric acid to be added to the mobile phases at a 291 

concentration not higher than 2, 10, and 5 mM, respectively to modulate retention and 292 

enantioselectivity [33].  293 

However, in our study this was not an option since, as the manufacturer acknowledges, these 294 

additives have such a strong affinity for the matrix that they end up being very difficult, if not 295 

impossible, to remove quantitatively. Consistently, the manufacturer suggests that if the 296 



 14 

separation scientist wishes to include such cationic or anionic additives as part of method 297 

development then “the column should be dedicated for the purpose”.  298 

This work is aimed at prospecting the selectivity of two different stationary phases embedding 299 

biological structures that are crucial for drug absorption (IAM) and distribution (HSA) in a 2D LC 300 

setting. For this reason, in the method development we were concerned not only on allowing a 301 

satisfactorily separation of the analytes under consideration, but also the on ensuring that the 302 

analyses were realized in conditions able to mirror as closely as possible the biological 303 

compartment in which absorption and distribution take place.  To fulfil this goal, we worked to 304 

assure that the affinity indexes achieved from the biomimetic measurements had solid physico-305 

chemical meaning and accuracy and that these both were retained over time.  306 

Consistently, the utmost care was put in preserving the performance of the biomimetic LC 307 

columns over time. This was achieved by optimizing on one hand the capability of the separation 308 

process to account for the highly specific recognition forces and molecular interactions that occur 309 

in vivo. On the other hand, we compromised for a longer column lifetime and no deviation from 310 

the ideal chromatographic behaviour that these phases feature. For instance, although some 311 

authors [9] conducted plasma protein binding measurements on HSA column applying conditions 312 

differing from those recommended by the manufacturer (high flow rates, i.e. 1.8 mL min-1 on a 50 313 

x 3 mm, mobile phase at pH 7.4, 30% (v/v) 2-propanol), we preferred to strictly adhere to these, 314 

even if this may effect in longer run times. This is because we designed this biomimetic platform 315 

with a potential to be exploited in drug development programs in which large compound libraries 316 

are assayed daily and data reproducibility is crucial. Consistently, although the pH of the blood 317 

compartment in physiological condition is 7.4, the 1D mobile phase pH was set to 7. This is 318 

motivated by the instance that the HSA column should not be used at a pH above 7.0 according to 319 

the column manufacturer [33]. A pH 5 was chosen to mimic that of the duodenum and the small 320 
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intestine. These are the regions of the gastrointestinal tract that are mainly involved in drugs’ 321 

absorption, thanks to the very large surface area (ca. 80 cm2 cm-1) that they provide along with 322 

their typically long transit time (>3 h) [34].  323 

 324 

The results of a performance check are described in section S1.0 of supporting information 325 

whereby representative chromatograms are shown in Figure S1 and S2 along with the 326 

experimentally determined chromatographic retention coefficients and resolution values which 327 

are listed in Table S1. The HSA column features enhanced affinity for neutral and especially acidic 328 

compounds and the capability of the stationary phase to resolve a (±)-warfarin racemate was 329 

assumed as an indication of Site I being intact. This assures that the HSA affinity indexes depict not 330 

only unspecific – generally lipophilicity- driven – interactions, but also highly specific recognition 331 

forces, which are responsible of enantioselectivity.  On the contrary, the IAM phase exhibits 332 

superior retention of cations, whereas acids are on average less retained than neutral compound 333 

having same lipophilicity values in agreement with Avdeef’s “pH piston hypothesis” [35]. 334 

According to this, cations would be favored with regards to neutral compounds of same 335 

lipophilicity in the interaction with IAM.PC phases as its negatively charged phosphate moieties 336 

locate more internally as compared to the positively charged amino groups. This allows bases to 337 

have a deeper and more productive interaction of electrostatic nature and to better 338 

accommodate their apolar moieties in the hydrophobic tails of the lipid network, especially as 339 

compared to acidic solutes. Therefore, in our design we chose to conduct the separation in 1D on 340 

the HSA phase and in 2D on the IAM phase, to allow satisfactorily orthogonality, which implies that 341 

the separation mechanisms used in each dimension are independent of each other [36].  342 

First of all, we had to verify that the given (re-)equilibration volume in the 2D separation was 343 

suitable to achieve reproducibility in both retention time and chromatographic peak profile. To 344 
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find out this the separation  was studied in 1D and the same chromatographic conditions described 345 

in 2.4.2 were applied, but the flow rate was halved and consequently broadened the separation 346 

window by two times. This was done to allow assessment of even small discrepancies in the 347 

chromatographic signals by visual inspection. The experimental procedure is properly detailed in 348 

2.0 of the supporting information.  349 

In brief, both the conditions detailed in 2.4.2 and that discussed in 2.5.2 for the first 36 minutes of 350 

the mixed gradient elution program were applied. For the sake of conciseness, only the 351 

chromatograms achieved by applying the former are discussed, but the results obtained were 352 

highly comparable.  The column was equilibrated by flushing 50.0 mL, i.e. 20 column volumes, at 353 

constant flow rate, i.e. 2.5 mL min-1 of the starting mobile phase and then three different samples 354 

(carbamazepine, desipramine, naproxen) and one sample mixture (acetaminophen, antipyrine, 355 

carbamazepine and naproxen) were injected for four consecutive times. Figure 1 shows excellent 356 

reproducibility of the measurements over the four runs and demonstrate that only 2.5 mL, i.e. 357 

only one column volume, is sufficient to allow complete column re-equilibration. This most 358 

probably takes place because the overall variation in the acetonitrile concentration is only 30% 359 

(v/v) in both the elution programs. However, it is worth noting that while conventional LC 360 

protocols recommend to equilibrate columns by flushing from 10 to 20 column volumes it is 361 

common practice in LCxLC to significantly reduce this [37]. Lower equilibration volumes (0.5-1.0-362 

1.5 and 2.0 mL were tested) led to unreproducible results, with not overlappable signals and 363 

compromised peak symmetry (data not shown). Consistently, Venter and co-workers used only 1.6 364 

column volumes for re-equilibration but the gradients applied spanned from totally aqueous (with 365 

0.1% v/v formic acid) to 100% acetonitrile [38].    366 

Despite the potential of stationary phase components such as silica to engage nonspecific 367 

secondary interactions, most reports [39] indicate that immobilized HSA conserves the binding 368 



 17 

properties of the protein in solution, allowing fast and reliable analyses of binding interactions. 369 

However, a further complication lies in the aspect that one or more drug molecules can in 370 

principle compete for the same biding site, producing potentially diverse retention times when a 371 

compound is analysed alone or in mixture with one or more competitive displacers [40].  Although 372 

partial and allosteric competitions have been studied with HSA HPLC, a complete displacement has 373 

never been reported [39]. However, a noticeable example of this is the diazepam/ibuprofen co-374 

binding [41]. To avoid any possible co-binding, we took the following arrangements: all the solutes 375 

were injected individually and no retention time shifts were recorded when they were instead 376 

injected in the same mixture and a competitive binding and HSA Site I occupancy assessment with 377 

10 model drugs and an allosteric binder, i.e. (±)-warfarin, was run before each biomimetic 378 

measurement to investigate about possible competitive binding with Site I of the HSA and rate of 379 

occupancy of this enantioselective site. 380 

 381 

3.2 Competitive binding and HSA Site I occupancy assessment 382 

 383 

The results of this assessment are shown in Figure 2. Clearly, except for the most polar 384 

compounds, i.e. acetaminophen and antipyrine, which overlap, a good orthogonal separation is 385 

achieved for all the assayed solutes. Evidently, (+)-warfarin and (-)-warfarin display a different 386 

interaction toward the HSA phase, being the former less retained than the latter. Analogously, 387 

another acidic racemate, i.e. (±)-ketoprofen, is resolved in its enantiomers. These results go well 388 

with the studies conducted by Zou and co-workers [42], which determined the stereoselective 389 

binding of warfarin and ketoprofen to HSA by both microdialysis and 1D HSA HPLC. The authors 390 

concluded that the S-enantiomers ((+)-ketoprofen and (-)-warfarin) bind to the HSA more strongly 391 

than (R)-enantiomers to HSA and that HSA exhibit stronger stereoselectivity to warfarin than to 392 



 18 

ketoprofen racemates [42]. This is in full agreement with our findings as the resolution of the (±)-393 

warfarin is evidently superior to that of (±)-ketoprofen signals, as can be inferred from Figure 2. 394 

Consistently, the IAM phase exploited in 2D did not allow any chiral separation and both 395 

enantiomers exhibited same IAM affinity. Although IAM.PC phases do feature an asymmetric 396 

carbon atom in their structure, they have never been reported to act as chiral selectors [16].    397 

 398 

3.3 2D LC bioaffinity experiments 399 

 400 

The first 2D LC bioaffinity experiment is visualized in Figure 3. While no refocusing issues can be 401 

observed, the applied chromatographic conditions in both dimensions evidently allowed poor 402 

separation of roughly a third of the dataset (compounds 1-10). These are extremely polar 403 

compounds (-4.30 ≤ log PN ≤ 0.53), whose interaction with both stationary phases is rather limited.  404 

The least retained compound on both dimensions was enalaprilat (log kHSA = -0.886 and log kIAM = -405 

2.332), the compounds exhibiting the strongest affinity were (+)-ketoprofen on the HSA (log kHSA = 406 

1.246) and desipramine on the IAM (log kIAM = 0.653) phases. This is consistent with previous 407 

studies regarding both the selectivity of the IAM phase [43] and that of HSA [44]. Three are indeed 408 

the most lipophilic bases included in the dataset, i.e. desipramine (pKa = 10.40), propranolol (pKa 409 

= 9.45) and verapamil (pKa = 8.92)[45]. Among these, desipramine is the one featuring the highest  410 

[cationic specie]/[neutral specie] ratio at pH 5, and, in agreement with the “pH piston hypothesis”, 411 

is the one having the strongest affinity with the IAM phase. Two are instead the acids 412 

characterized by highest lipophilicity, i.e. fluvastatine (pKa = 5.50[46]) and ketoprofen (pKa = 413 

4.45[45]). Again, between these, the analyte with a greater dissociation constant was retained for 414 

a longer time, thus confirming the affinity of the HSA phase for acidic solutes. Clearly, no 415 

breakthrough or peak refocusing issues are observable. As expected, chiral separation occurred 416 
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preferably for acidic racemates, i.e. (±)-fexofenadine, (±)-fluvastatin and (±)-ketoprofen, for which 417 

anyhow the HSA matrix is known to have stronger affinity. However, although no chiral resolution 418 

was achieved for the basic racemates (±)-atenolol, (±)-metoprolol and (±)-propranolol, the (±)-419 

verapamil racemate was instead enantioselectively retained to some extent.  Interestingly, even if 420 

a fluvastatin/salicylic acid competitive binding to the HSA has been reported by Tse et al. [47], no 421 

variation in the retention factors was recorded when these compounds were individually 422 

measured. Furthermore, Jattinagoudar and co-workers claimed that according to spectroscopy 423 

and molecular docking-based studies they carried out [48], the secondary structure of serum 424 

albumin was changed in the presence of fexofenadine. In our experiments again no variation in 425 

the chromatographic retention coefficient was appreciated, therefore if any structural 426 

rearrangement took place, this had apparently a negligible influence on the bioaffinity 427 

measurements. Indeed, the authors studied in interaction of fexofenadine with bovine serum 428 

albumin (BSA) and not with HSA. Even though these two proteins share 76% sequence homology, 429 

they however differ due to the presence of two tryptophan residues in BSA, with Trp-213 located 430 

within a hydrophobic binding pocket in the subdomain IIA, and Trp-134 located on the surface of 431 

the albumin molecule in subdomain IB [49]. Moreover, Jattinagoudar and co-workers conducted 432 

fluorescence spectroscopy binding measurements by using relatively high fexofenadine levels, i.e. 433 

5-45 µM, to react with 2.5 µM BSA [48]. This is (at least) 50 times higher than the concentrations 434 

applied in HSA based HPLC. 435 

As said, although a good and orthogonal separation was achieved for most of the assayed 436 

compounds, this method failed in discriminating the most polar molecules. Conceivably, these 437 

feature remarkably diverse Peff values, consequently we decided to apply a segmented gradient 438 

elution program in  2D with the aim of broadening the separation window of the compounds 439 

elution within the first 36 minutes.  440 
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The result of this further method development are shown in Figure 4. Evidently, the compounds 441 

eluting within the first 36 minutes are much better distributed than before over the separation 442 

space. Again a part from cyclosporine A, whose peak shape suffers from some fronting, the 443 

majority of analytical signals have good peak shape, with carbamazepine, hydrochlorothiazide and 444 

losartan featuring excellent symmetry. An inversion in the elution  order is seen for antipyrine and 445 

atenolol (compound 10 and 11), being the latter more retained in eluents richer in aqueous buffer. 446 

Although this circumstance might be unexpected when LC is exploited on electrically neutral 447 

stationary phases, this is instead reasonable when we consider that IAM phases are instead 448 

electrically charged and exhibit preferential affinity for cations [18]. Both antipyrine and atenolol 449 

are bases, however the first (pKa = 6.8[29]) is much weaker than the second (pKa = 9.6 [29]). 450 

Indeed, ionization is enhanced in fully aqueous phases as the addition of an organic modifier 451 

lowers the dielectric constant of the medium. A possible explanation of this chromatographic 452 

behaviour is that in pure aqueous eluent atenolol dissociates into its ions to a greater extent than 453 

antipyrine, and its cations are more abundant at the experimental pH, i.e. 5.0, than its neutral 454 

microspecies. However, when the starting mobile phase features already 25% (v/v), ionization 455 

might occur to a lower extent and the contribution electrostatic and hydrophobic forces in the 456 

whole separation mode is plausibly unbalanced slightly in favour of the latter.  With this regards, 457 

n-octanol/water lipophilicity of the neutral species of antipyrine (log PN) and of the distributions at 458 

both pH 5.0 and 7.4 (log D5.0 and logD7.4) is greater for antipyrine than for atenolol.  459 

 460 

3.4 Biopharmaceutical implications  461 

 462 

So far, we have discussed the separation only from an analytical point of view, however much 463 

attention has been paid in developing an analytical method that allowed the affinity index to 464 
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retain relevance also from a biopharmaceutical perspective. From Figure 5, it is evident that all the 465 

compounds located in the same area (blue frame) have intestinal effective permeability higher 466 

than 1 * 10-4  cm * s-1 , except for furosemide and (±)-fexofenadine, behaving as outliers. Actually, 467 

furosemide was reported to be a substrate of a saturable active efflux transport system [50]. 468 

Consistently, the basolateral-apical apparent permeability of (±)-fexofenadine, estimated in Caco-2 469 

monolayers, markedly reduced in the presence of increasing concentration of P-glycoprotein 470 

inhibitors, suggesting that this efflux protein carrier is the main transport route for this 471 

therapeutic [51].  The active uptake of xenobiotics requires ATP hydrolysis and occurs via specific 472 

recognition of structural motifs that both the exploited separation modes cannot possibly depict. 473 

However, it is relevant that all the compounds having intestinal absorption greater than a 474 

threshold –  except the two analytes above discussed – populate a specific region of the 2D plot. 475 

We are aware that the size of the dataset may be relatively limited, however as already 476 

highlighted in the introduction, these intestinal effective permeability experiments are hardly 477 

performed due to ethical reasons and the criticism these human testing methodologies are 478 

increasingly facing from the general public. Additionally, pooling biological activity data from 479 

different sources might then transpire in a misleading exercise in the light of the aspect that 480 

significant interlaboratory variability (sometimes even higher than 80%) has occasionally been 481 

reported [52].  For this reason, we decided to select biological activity data from a single 482 

bibliographic source. Moreover, one of the advantages of this screening platform is that the 483 

results can be evaluated by simple visual inspection, while statistical modelling often requires 484 

technical expertise and a sound background to be properly assessed.   485 

However, some conventional modelling by calculating the affinity indexes on each dimension by 486 

using Eq. (2) was still envisaged. We took into account the separation displayed in Figure 3 and 487 

conducted by applying the conditions detailed in 2.5 because it is necessary that the bioaffinity 488 
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indexes are achieved in the same thermodynamic conditions to allow fair comparison. The affinity 489 

data in each dimension, along with log PN, log D7.4, clog D5.0, Peff  values and supplier are reported 490 

in Table 1. Chemical structures are instead reported in Table S2. Interestingly, when the 491 

partitioning values were plotted against biological data, no significant relationship was achieved in 492 

all cases (Figure 6).  493 

However, 3D scatterplots studying both HSA and IAM bioaffinity vs “classical” n-octanol/water 494 

partition coefficients of the neutral species and of the neutral/ionized distribution both at blood, 495 

i.e. 7.4, and at duodenum pH, i.e. 5.0 were then generated. These 3D scatterplots are represented 496 

in Figure 7 and (B) and (C) could be considered as a simulation a 3D LC experiments in in which the 497 

3D is exploited on a neutral hydrophobic phase, such as C18 or C8, and the aqueous eluent are 498 

buffered at pH 7.4 and 5.0 respectively. In fact, retention on stationary phases based on 499 

hydrocarbons has been proved to be driven by the lipophilicity of the distribution coefficients at 500 

the experimental pH, although some secondary interactions can take place due to the free silanol 501 

groups [53]. A further complication is that the in vivo intestinal mucosa features various degrees of 502 

leakiness as a consequence of the different expression of tight junctions and this may allow some 503 

paracellular passage. Pearce et al. demonstrated that the expression of certain tight junction 504 

proteins varied with cell type, with occludin and tricellulin levels being high in both intestinal stem 505 

cells (ISCs) and Paneth cells, and claudin-1, -2, and -7 expression being enhanced in Paneth cells, 506 

ISCs, and enterocytes, respectively [54]. The paracellular passage pathway is likely for small 507 

hydrophilic molecules, having sizes compact enough to slip through the cell-to-cell gaps. To 508 

distinguish any possible involvement of paracellular passage, we deliberately split our dataset in 509 

two subsets: compounds having mass weight (MW) inferior than 200 Da, for which a relevant 510 

contribution of paracellular passage can be reasonably hypothesized, and analytes heavier than 511 

200 Da, for which a pure transcellular migration is instead highly likely. Recent scientific reports 512 
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[55] suggest that molecular size and O plus N atom count and OH plus NH count of newly designed 513 

drugs are steadily but constantly increasing, while molecular lipophilicity has remained relatively 514 

unchanged. Therefore, since it might be challenging for pharma chemists dealing with rational 515 

drug design to comply to a 200 Da MW constrain, predicting passive transcellular permeability is 516 

much more valuable, especially if we consider that there might be a huge variation in the degree 517 

of leakiness of intestinal cells among individuals. While plots (B) and (C) show a quite 518 

homogeneous distribution of the subsets, interestingly most of the compounds having fair and 519 

good effective intestinal permeability populate a specific area of plot (A), displayed in a red 520 

square, with the exception of one datapoint, i.e. furosemide. The characteristics of this analytes 521 

have already been discussed above.  522 

Although further studies should be undertaken, these results seem extremely relevant and might 523 

assist – alone or in combination with other methodologies – pharmaceutical chemists in screening 524 

therapeutics for their intestinal absorption potential without sacrificing/distressing animals and/or 525 

running complex and sometime resource-intensive statistical modelling.     526 

 527 

 528 

4.0 Concluding remarks  529 

 530 

A 2D comprehensive LC-based biomimetic platform has been for the first time developed and 531 

validated as a screening tool for drug diffusion studies. The separation modes were based on 532 

biological structures that are crucial for both drug absorption and distribution processes. 533 

Specifically, a stationary phase embedding HSA, the most abundant plasma protein in humans, 534 

was exploited in 1D. An IAM phase, aimed at mimicking the lipoidal composition of plasma 535 

membranes, was instead operated in 2D.  536 
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This set-up allowed a good and orthogonal separation of 30 model drugs, whose Peff, assayed on 537 

humans, was known from a single bibliographic source. Moreover, if we except two compounds 538 

whose uptake is protein carrier- mediated, all the compounds populating the same area of the 2D 539 

plots have Peff  greater than than 1 * 10-4  cm * s-1 . This implies that in order for a drug to be 540 

successfully up taken, its affinity for these crucial biostructures has to lie in specific affinity ranges.   541 

In addition, these bioaffinities were also studied vs classical n-octanol/water partitioning data and 542 

visualized in 3D scatterplots. When the logarithm of the n-octanol/water partition coefficient of 543 

the neutral species is plotted on the z axis (and HSA and IAM values on the x and y axis), again the 544 

solutes having favourable Peff and – for which an involvement of any paracellular passage 545 

contribution is rationally unlikely – concentrate  in the same region of the plots.  546 

We acknowledge that these must be seen as preliminary results and further studies are needed to 547 

further confirm this evidence. However, we also believe this design paves an entirely new way to 548 

profile pharmaceutically relevant compounds for their in vivo absorption and distribution 549 

potential.    550 
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Table 1 555 

Compound log kHSA log kIAM log PN log D7.4  clog D5. 0[30] Peff[31] (10−4 cm · s−1) Supplier 
acetaminophen  -0.221 -1.487 0.34[28] 0.34[28] 0.34[29] 1.76 Merck 
amiloride 0.034 -0.320 -0.26[28] -1.53[28] -0.12 1.63 TCI 
antipyrine 0.000 -0.403 0.56[28] 0.26[28] 1.61 4.45 TCI 
(±)-atenolol -0.221 0.294 0.22[28] -2.01[28] -3.31 0.21 Merck 
carbamazepine 0.833 0.204 2.45[28] 2.45[28] 3.22 4.30 Merck 
cimetidine 0.000 0.226 0.48[28] 0.34[28] -1.27 0.44 Merck 
creatinine -0.167 -0.934 0.54[30] 0.53[30] -0.05 0.30 Merck 
cyclosporin A 0.415 0.632 1.40[29] 3.38[30] 3.38 1.63 TCI 
desipramine 0.914 0.653 3.79[28] 1.38[28] 0.05 4.45 Merck 
enalapril -0.221 -1.218 0.16[28] -1.75[28] 0.38 1.57 TCI 
enalaprilat -0.886 -2.332 -0.13[28] -2.74[28] -2.27 0.20 Sanbio 
(+)-fexofenadine 1.108 

0.184 5.68[30] 2.48[30] 2.45 0.47 Sanbio 
(-)-fexofenadine 1.057 
(+)-fluvastatin 1.165 

0.219 4.17[28] 1.14[28] 3.27 2.38 Sanbio (-)-fluvastatin 1.128 
furosemide 1.094 0.002 2.56[28] -0.24[28] 0.84 0.25 Acros 
(+)-griseofulvin 0.893 0.331 2.20[28] 2.20[28] 2.20[29] 1.14 Acros 
hydrochlorothiazide 0.532 0.043 -0.03[28] -0.18[28] -0.16 0.12 TCI 
(+)-ketoprofen 1.246 

0.145 3.16[28] -0.11[28] 2.31 8.45 Merck 
(-)-ketoprofen 1.226 
lisinopril  -0.301 -1.218 -1.01[29] -4.30[30] -4.25 0.33 Sanbio 
losartan  1.017 0.422 1.19[29] 4.03[30] 5.24 1.14 Sanbio 
L-phenylalanine -0.398 -1.487 -1.38[29] -1.67[30] -1.67 4.07 Merck 
(±)-metoprolol 0.000 0.380 1.95[28] -0.24[28] -2.08 1.16 Merck 
nifedipine 0.881 0.555 3.17[28] 3.17[28] 3.17[29] 4.40[32] Sanbio 
piroxicam 1.153 0.087 1.98[28] 0.00[28] 0.56 7.06 Sanbio 
(±)-propranolol 0.764 0.596 3.48[28] 1.41[28] -1.07 2.82 Merck 
ranitidine 0.205 0.373 0.45[28] -0.53[28] -1.87 0.37 Merck  
salicylic acid  1.000 -0.485 2.19[28] -1.68[28] -0.27 2.67 Merck 
terbutaline 0.069 -0.699 -0.08[28] -1.35[28] -2.40 0.30 Merck 
valacyclovir -0.699 -1.487 -0.30[29] -1.26[30] -3.35 1.66 Sanbio 
(+)-verapamil 0.820 

0.342 4.33[28] 2.51[28] 0.79 
6.18 

Merck (-)-verapamil 0.858 6.21 

 556 

 557 

 558 

 559 

 560 
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Figure 1.  561 
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Figure 2 587 
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Figure 3 605 
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Figure 4 607 
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Figure 5 616 
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Figure 6 621 
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Figure 7 631 

 632 



 33 

Captions 633 

 634 

Table 1. Logarithms of chromatographic retention coefficients on the HSA (log kHSA) and IAM (log 635 

kIAM) stationary phases, of the n-octanol/water partition coefficients of the neutral forms of the 636 

analytes (log PN), of the distribution coefficients at 7.4 (log D7.4) and 5.0 (clog D5.0) pH, intestinal 637 

effective permeability values (* 10-4 * cm * s-1) and supplier of the considered analytes.    638 

 639 

Figure 1. IAM chromatograms showing four consecutive runs performed after flushing 20 column 640 

volumes. A 25 µg mL-1 solution of the compounds carbamazepine (A), desipramine (B), naproxen 641 

(C) and a mixture of acetaminophen, antipyrine, carbamazepine and naproxen (D) was injected. 642 

Further details are reported in 2.0 of the supporting information.  643 

 644 

Figure 2. Contour plot at 254 nm obtained for the HSA × IAM separation of a test mixture for 645 

competitive binding and HSA Site I occupancy assessment purposes. Further experimental details 646 

are reported in 2.4 of the main body of the manuscript.  647 

 648 

Figure 3. Contour plot at 220 nm obtained for the HSA × IAM separation of a dataset for bioaffinity 649 

measurements, in which the fixed gradient elution program is applied in 2D for the whole duration 650 

of the run. Further experimental details are reported in 2.5 of the main body of the manuscript.  651 

 652 

Figure 4. Contour plot at 220 nm obtained for the HSA × IAM separation of a dataset for bioaffinity 653 

measurements, in which a segmented gradient elution program is applied in 2D. Further 654 

experimental details are reported in 2.5 of the main body of the manuscript.  655 

 656 
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Figure 5. Contour plot at 220 nm obtained for the HSA × IAM separation of a dataset for Bioaffinity 657 

measurements, in which a mixed gradient elution program is applied in 2D. The region in which 658 

compounds feature favourable intestinal effective permeability is represented in a blue square. 659 

The outliers are instead displayed in a yellow triangle.  660 

    661 

Figure 6. Scatterplots in which the intestinal effective permeability is studied vs the logarithms of 662 

chromatographic retention coefficients on the HSA (log kHSA, top left), IAM (log kIAM, top right) 663 

stationary phases, the n-octanol/water partition coefficients of the neutral forms of the analytes 664 

(log PN, middle left), of the distribution coefficients at pH 7.4 (log D7.4, middle right) and 5.0 pH 665 

(clog D5.0, bottom). 666 

 667 

Figure 7. 3D scatterplot studying both HSA and IAM affinities vs the n-octanol/water partition 668 

coefficient of the neutral forms of the analytes (log PN), of the distribution coefficient at 7.4 (log 669 

D7.4) and 5.0 (clog D5.0) pH. Compounds with mass weight lower than 200 Da are pictured in 670 

triangles, whereas those heavier than 200 Da are circle shaped. The colors of the datapoints refer 671 

to a good (green), medium (yellow) and poor (red) extent of intestinal effective permeability.  672 

 673 
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