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Abstract

In this paper we consider the problem of
optimizing neural Referring Expression Gen-
eration (REG) models with sequence level
objectives. Recently reinforcement learning
(RL) techniques have been adopted to train
deep end-to-end systems to directly optimize
sequence-level objectives. However, there are
two issues associated with RL training: (1) ef-
fectively applying RL is challenging, and (2)
the generated sentences lack in diversity and
naturalness due to deficiencies in the generated
word distribution, smaller vocabulary size, and
repetitiveness of frequent words or phrases. To
alleviate these issues, we propose a novel strat-
egy for training REG models, using minimum
risk training (MRT) with maximum likelihood
estimation (MLE) and we show that our ap-
proach outperforms RL w.r.t naturalness and
diversity of the output. Specifically, our ap-
proach achieves an increase in CIDEr scores
between 23%-57% in two datasets. We further
demonstrate the robustness of the proposed
method through a detailed comparison with
different REG models.

1 Introduction

Referring expression generation (REG) aims at gen-
erating utterances that help anchoring an object
within an image. Such descriptions are called refer-
ring expressions (REs) (Krahmer and van Deemter,
2012). Early work focused on datasets with rela-
tively simple visual stimuli (Viethen et al., 2013;
Viethen and Dale, 2010; Mitchell et al., 2013)
utilizing synthesized images of objects in artifi-
cial scenes. The recently released datasets Ref-
CLEF, RefCOCO, RefCOCO+ and RefCOCOg
(Kazemzadeh et al., 2014; Yu et al., 2016; Mao
et al., 2016) which contain natural images of clut-
tered scenes, led to a surge of interest in using deep
neural networks for REG. Such approaches utilize
the encoder-decoder paradigm originally proposed

for machine translation (Sutskever et al., 2014; Cho
et al., 2014) and since have been widely used to
various other NLG sub-fields (Tan et al., 2017; Guo
et al., 2018; Vinyals and Le, 2015; Li et al., 2016;
Vinyals et al., 2015; Xu et al., 2015). The encoder-
decoder model consists of a deep convolutional
neural network (CNN) (Krizhevsky et al., 2012) to
encode the visual features into a fixed-size latent
representation, and a variation of recurrent neural
network (RNN) (Jain and Medsker, 1999), e.g. a
Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) network to generate the
output.

The encoder-decoder model is typically trained
to maximize the likelihood of a word given the
history of generated words so far. This training ap-
proach is referred to as “Teacher-Forcing” (Bengio
et al., 2015). Although intuitive to train a model on
token-level, during generation a model is evaluated
based on its ability to optimize towards sequence
level metrics resulting in a discrepancy between
training and testing objectives. Furthermore, a sec-
ond problem that stems from “Teacher-Forcing” is
that during training, the model uses the ground-
truth words to predict the next one, while during
testing uses its own predictions. This missmatch,
coined as exposure bias (Ranzato et al., 2016), re-
sults in error accumulation during generation.

Recently reinforcement learning (RL) (Sutton
and Barto, 2018) techniques have been adopted to
alleviate the exposure bias problem and directly
optimize the non-differentiable task specific met-
rics. For instance, Ranzato et al. (2016) propose
a method that builds upon the REINFORCE algo-
rithm to directly optimize the non-differential test
metrics and reports promising results in machine
translation, while Bahdanau et al. (2016) utilizes an
Actor-critic method, that involves the training of an
additional value network to normalize the reward.

However, training with RL is a non-trivial task



due to a number of limitations: (1) high variance
of the gradient (Rennie et al., 2017); (2) lack of
per-token advantage, i.e. the REINFORCE algo-
rithm makes the assumption that every token con-
tributes equally to the whole sequence (Wu et al.,
2016); and (3) reward configuration (Bahdanau
et al., 2016; Ranzato et al., 2016). Furthermore,
effectively applying RL to REG has not been ex-
plored, with the exception of (Yu et al., 2017) who
incorporate an additional module to reward discrim-
inative REs by updating the speaker with a policy
gradient algorithm. However, little is reported of
how the RL was configured. To the best of our
knowledge, this is the first work to thoroughly pro-
pose how to effectively train REG models with RL.

Furthermore, beside the aforementioned limita-
tions of RL methods there is another problem that
is often overlooked. While directly optimizing the
evaluation metrics one can achieve higher scores,
the generated text lacks diversity due to repeated n-
grams (Wang and Chan, 2019). Our analysis shows
that RL trained models are strongly biased towards
frequent REs leading to smaller vocabulary and
deficiencies in the generated word distribution.

To address these issues we propose the use of
minimum risk training (MRT) (Och, 2003) as an
alternative way of optimizing REG systems on
sequence level. Minimum risk training aims at
minimizing the expected loss over training data by
taking automatic evaluation metrics into consider-
ation. The MRT objective has the following ad-
vantages over MLE. First, it can directly optimize
sequence level objectives that are not necessarily
differentiable. Second, while MLE maximizes the
likelihood of the training data, MRT introduces a
notion of ranking amongst candidate sequences by
discriminating between sequences. Thus, by min-
imizing the risk, we expect to find a distribution
that approximates well the ground-truth distribu-
tion. Furthermore, the MRT objective is similar
to the REINFORCE algorithm in a sense that both
maximize an expected reward or cost. However,
there are two fundamental advantages of the MRT
over RL: (1) the REINFORCE algorithm typically
utilizes one sample in order to approximate the
expectation, whereas the MRT objective consid-
ers multiple sequences making it sample and data
sufficient; and (2) the MRT objective intuitively
estimates the expected risk over a set of candidate
sequences, whereas the REINFORCE algorithm
typically relies on the baseline reward to determine

effectively the sign of the gradient.
Therefore, our main contributions are as fol-

lows: Firstly, we conduct an extensive analysis
and benchmarking of RL training strategies for
REG, by exploring how different aspects such as
the reward and the baseline reward configuration
affect REG models (Section 8.1). Our experiments
reveal how to best train REG models using rein-
forcement learning. Secondly, we show that models
optimised for CIDEr also achieve higher scores in
all other metrics (BLEU etc.) even when compared
to models directly optimised on them. Although
our RL approach outperforms the state-of-art, RL
still suffers from the limitations discussed earlier.
Therefore, we propose a novel training strategy
for REG which combines MRT with MLE and we
show its effectiveness in comparison to a number
of RL training strategies w.r.t naturalness, diversity
and informativeness (Section 8.2). Our approach
achieves improvements between 33.5%-38.7% and
23.4%-57.8% in terms of CIDEr on RefCOCO and
RefCOCO+ respectively compared to previously
proposed approaches. Finally, a detailed analysis
shows that when a REG model is trained with the
proposed approach, uses a larger vocabulary, pro-
duces longer referring expressions and generates
more uni-grams and bi-grams.

2 Related Work

Early work in referring expression generation can
be dated back to the early 1970s (Winograd, 1972).
The traditional view of REG is a two step proce-
dure where the REG model accounts for the content
selection and determination of the referential form
(Krahmer and van Deemter, 2012). However, the
large body of work in REG focuses on the determi-
nation of content for definite descriptions (Krahmer
and van Deemter, 2012). Algorithms such as the
full brevity and the incremental algorithm (Dale
and Reiter, 1995) have as foundation the Gricean
maxims (Grice, 1975), that provide insights of how
people behave in different communication scenar-
ios (Krahmer and van Deemter, 2012).

Recently due to the availability of larger and
more complex natural image datasets, such as Ref-
COCO (Yu et al., 2016; Mao et al., 2016) there is
a surge of interest in applying deep learning meth-
ods. Neural REG approaches rely on incorporating
contextual information by using visual features,
appearance attributes (Liu et al., 2017), location
features (Yu et al., 2016) and global image features



as target object representation. In their seminal
work, Mao et al. (2016) use a convolutional neural
network to extract visual features and an LSTM to
generate the expression trained on Maximum Mu-
tual Information objective. Yu et al. (2016) propose
a unified framework where a speaker module gen-
erates REs, a listener module comprehends REs,
and a reinforcer module provides guidance towards
informative REs. Lastly, Zarrieß and Schlangen
(2018) examine the impact that variations of beam
search have in the length of REs.

Although there are not published attempts on op-
timizing neural REG systems on a sequence level,
we will review a number of works from the wider
field of natural language generation. Ranzato et al.
(2016) were the first to adopt the REINFORCE al-
gorithm in order to optimize the encoder-decoder
model. The discovery that baselines can effectively
reduce the variance of the gradient estimation led
to a significant body of work in NLG. Murphy et al.
(2017) used fully connected layers to predict the
baseline and used Monte Carlo rollouts to approxi-
mate the state-action value. Bahdanau et al. (2016)
utilize an actor-critic framework and combine it
with temporal difference learning. The state-action
value was modelled by a separate RNN. Rennie
et al. (2017) propose the utilization of the output
of the model at the test time to normalize the re-
ward. Although MRT has a long history in training
linear model for structured predictions, it has only
be used in neural machine translation (Shen et al.,
2016; Edunov et al., 2018) as an alternative to MLE
training. In this work, however, we apply MRT to
REG as an alternative to RL and we compare the
output of those two training strategies in terms of
naturalness and diversity.

3 REG model

As this work focuses primarily on the training ob-
jectives for neural REG models, we adopt a stan-
dard encoder-decoder architecture language model
similar to (Rennie et al., 2017; Vinyals et al., 2015).
The encoder is a CNN network that extracts the
representation of the target object. Then this repre-
sentation is embedded through a linear projection
layer WI . The words are represented as one-hot
vector, projected to the same space as the visual
representation through a linear embedding layer.
The start of each sequence is denoted by a special
BOS token, while the special stop token EOS de-
notes the end of the sequence. The decoder, which
is responsible for the generation of REs is modeled

as an LSTM network. The image features are used
only as an input to t = 0 in order to initialize the
LSTM based on the visual contents. Then, at each
time step t, its output depends on the previously
generated words and on the hidden state, which
encodes the knowledge of the observed input up to
this time step.

The parameters θ of the model are learned by
maximizing the likelihood of the observed se-
quence. Specifically, given N training pairs the
training objective is defined as:

Lθ =
1
N

N∑
n=1

log p(yn|on, Inθ)

=
1
N

N∑
n=1

Tn∑
t=1

log p(yn
t |y

n
1:t−1, o

n, Inθ) (1)

where on is the n’th object in the In image,
yn = (yn

1, . . . , y
n
Tn

) is the ground truth referring ex-
pression of the n’th object and N is the total number
of training examples.

4 Training REG with Reinforcement
Learning

The generation process can be cast into a reinforce-
ment learning process as first described in (Ranzato
et al., 2016). Within the classic reinforcement learn-
ing paradigm, an agent performs an action under a
specific policy π. The nature of the policy is appli-
cation dependent. Within REG the language model
can be seen as an agent that interacts with its envi-
ronment (i.e. the previously generated words and
the visual features at each time step t). The param-
eters θ of the agent define a policy πθ. The agent
selects an action, which is a candidate token from
the vocabulary under the policy, until it generates
the EOS token. Once the agent reaches the end of
the sequence it observes a terminal reward r, which
is the score for generating a RE ŷn given an object
o and a ground truth referring expression (or a set
of referring expressions) y. The reward is a scalar
produced by any evaluation metric such as CIDEr.
Therefore, the training aims at parameterizing the
agent in order to maximize the reward as follows:

Lθ =

N∑
n=1

Eŷ∼πθ(ŷn |on,yn)r(ŷn|on, yn)

=

N∑
n=1

∑
ŷ∈Y

πθ(ŷ|on, yn)r(ŷn|on, yn),

(2)



where N is the number of examples in the train-
ing set and Y denotes the entire space of all possible
output referring expressions, which is intractable
to enumerate or score with a model. Instead, RE-
INFORCE allows to optimize the gradient of the
expected reward by sampling ŷ from the policy
p(y|o, ) during training. Thus, it aims to maximize
the following objective:

Lθ =

N∑
n=1

r(ŷn|on, yn), ŷn ∼ πθ(ŷ|on, yn) (3)

An inherent challenge of the REINFORCE al-
gorithm is that typically leads to highly unstable
training due to the noise in gradient estimation and
reward computation (Rennie et al., 2017; Ranzato
et al., 2016). Thus, in the next sections we explore a
number of methods that have been proposed in liter-
ature that stabilize training. Specifically, for reward
computation we study: (1) how to sample the candi-
date samples; (2) which reward function to use; and
(3) whether reward sampling is beneficial. Further-
more, as a variance reduction technique we explore
the applicability of self-critical training proposed
for image captioning (Rennie et al., 2017). Lastly,
we explore whether the combination of MLE train-
ing with RL improves the diversity and naturalness
of the output.

4.1 Reward Configuration
The standard training for REG poses two uncom-
mon challenges for RL. First, the action space
in REG problems is a high-dimensional discrete
space that it is intractable, while in the classic RL
paradigm the common scenario is a smaller discrete
action space (e.g. games (Mnih et al., 2015)), or
a relatively low dimension continuous space of ac-
tions (e.g. robotics (Lillicrap et al., 2016)). Hence,
the first important factor is the search strategy for
generating the sequence of actions. Secondly, the
reward for REG is naturally sparse since each to-
ken of the training sequence is assigned the same
reward value. Note that, the reward is observed
when the full sequence is produced. Thus, we ex-
plore whether a cumulative reward is better than the
terminal reward. This process is known as reward
shaping (Ng et al., 1999).

We consider two search strategies for generat-
ing sequences. The first is beam search, that finds
the most likely sequence by performing a greedy
breadth-first search over a limited search space.
Specifically, each candidate sequence is expanded

from left to right selecting all possible tokens from
the vocabulary at a time. From this set, the top − k
candidate sequences with the highest probabilities
are selected, and the beam search process contin-
ues until the top − k candidates with the highest
probability are returned. The second strategy is
random sampling, which randomly samples from
the model’s distribution at every time-step until the
end of the sequence token is produced.

Balancing between exploration and exploitation
is a major challenge in RL. For instance, it may be
required for an agent to pick an action associated
with the highest expected reward (i.e. exploitation).
However, in this scenario it may fail to learn more
rewarding actions. Therefore exploration, that is
the choice of new actions and the visit of new states,
may also be beneficial. Beam search focuses on
producing high probability sequences and therefore
is considered as an exploitation strategy, while ran-
dom sampling introduces more diverse sequences
and thus contributes towards the exploration of the
action states. However, due to the fact that the
actions are being sampled from the model being
optimized the exploration is de facto limited.

Although we aim to optimize a REG system to
produce sequences that maximize a sequence level
metric, simply awarding this score at the last step of
a complete episode (sequence generation) provides
naturally a sparse training signal. An agent how-
ever picks a number of actions in order to produce a
sequence (dependent on the length of the sequence).
In other words, assigning a terminal reward to the
entire sequence is equivalent to a uniform token-
level reward. Dense rewards can be easier to learn
from, thus we explore the use of reward shaping
(Ng et al., 1999) as proposed in (Bahdanau et al.,
2016). Specifically, given the sequence of actions
(i.e. words) y1...yt−1 executed by the agent until
time step t, the intermediate reward is calculated as:
rt(ŷt, y) = r(ŷ1...t, y)− r(ŷ1...t−1, y) by comparing the
incomplete sequence with the ground truth. Thus,
at time step t the model’s parameters are updated
based on the cumulative reward.

4.2 Variance Reduction with Self-Critical
Training

Another important weakness of the REINFORCE
algorithm is that it exhibits high variance that
leads to unstable training without proper context-
dependent normalization. An intuitive way to re-
duce the variance is to reduce the magnitude of



the learning signal by subtracting a quantity, called
a baseline. It can be any value as long as it is
independent of the parameters of the agent. For
instance, one can sample N sequences of actions
and update the gradient by averaging over the N
sequences. In this case, the baseline could be the
mean of the rewards of the N sequences.

As another solution to reduce the variance of the
gradient estimator, Rennie et al. (2017) proposed a
self-critical training scheme. In order to calculate
the baseline reward under this training strategy, two
independent sequences are produced: ŷ, which is
obtained by sampling from the policy, and ŷg, the
baseline output, obtained by performing greedy
search. Thus, the training aims to minimize the
following objective:

Lθ =

N∑
n=1

(r(ŷ|on, yn) − r(ŷg|on, yn)) (4)

The minimization of Lθ is analogous of maxi-
mizing the conditional likelihood of the sampled
sequence ŷ if it obtains a higher reward than the
baseline ŷg, thus increasing the reward expectation.

5 Minimum Risk Training for Referring
Expression Generation

Beside the aforementioned problems, there are
two other limitations that are often overlooked.
First, while these methods can directly optimize
the non-differentiable rewards and improve the per-
formance of evaluation metrics, the generated text
suffers from lack of diversity due to repetition of
common n-grams. The second limitation is that the
approximation of the reward is based on one sam-
ple which is data and sample inefficient. To address
these limitations we explore a principled alterna-
tive to the REINFORCE algorithm, the minimum
risk training (Och, 2003).

Minimum risk training (MRT) minimizes the
value of a given task-specific cost function, i.e. risk,
over the training data at sequence level. Specifi-
cally, let x denote a fixed-size representation of the
input, then the setY(x(s)) denotes the set of all pos-
sible referring expressions generated by the model
with parameters θ. For a given candidate sequence
y′ and ground truth referring expression y, MRT
defines a cost function ∆(y′, y) which is the seman-
tic distance between y′ and the standard y. The
cost function can be any function that captures the
discrepancy between the model’s prediction and
the ground truth. Formally, the objective function

of MRT is the following:

LMRT =

N∑
n=1

EY(x)∆(y′, y(n)). (5)

where EY(x) denotes the expectation over the set of
all possible candidate sequences Y(x(n)). However,
as previously mentioned enumerating and scoring
candidate sequences over the entire space is in-
tractable. Instead, we sample a subset S(x) ⊂ Y(x)
to approximate the probability distribution, and for-
malize the objective function as:

LMRT =

S∑
s=1

∑
y′∈S(x(s))

p(y′|x(s))∑
y∗∈S(x(s)) p(y∗|x(s))

∆(y′, y(s)) (6)

The MRT objective minimizes the expected
value of a cost function which enables us to op-
timize REG models with respect to specific evalu-
ation metrics of the task. In this work we explore
the use of various REG evaluation metrics such
as CIDEr and BLEU and combination of those.
Furthermore, for the construction of the subset of
the candidate sequences we consider online set-
ting, specifically we regenerate the candidate set
for each training sample. Again we consider ran-
dom sampling and beam search as search strategies
(see Section 4.1). Moreover, we also considered
offline generation, that is the candidate sequences
are generated before training and never refreshed.
However, we found that it leads to inferior perfor-
mance and thus was not included.

6 Combined objectives

We also experiment with combining the MLE train-
ing objective either RL or MRT. The motivation
of the loss combination is to maintain good token-
level accuracy while optimizing on the sequence-
level. In other words, using an evaluation metric as
a reward can suppress the probability of the words
that do not increase the metric score, and thus con-
centrate the distribution to a single point. Thus,
we explore a combined objective in order to scale
the peakiness of the output distribution. Specifi-
cally, the weighted combination of MLE (Equation
1) with RL objective (Equation 4 ) is defined as
follows:

LweighedRL = (1 − α) ∗ Lmle + α ∗ L̂rl, (7)

Equivalently, combing the MRT objective (Equa-
tion 6 ) with MLE we have:

LweighedMRT = (1 − α) ∗ Lmle + α ∗ L̂MRT , (8)



where α is a scaling factor controlling the differ-
ence in magnitude between the combined objec-
tives.

7 Experimental Setup

7.1 Datasets

We trained our models on RefCOCO and Ref-
COCO+ (Yu et al., 2016). Although both datasets
contain similar images since they are built upon
the MSCOCO dataset (Lin et al., 2014), the textual
properties of their expressions are different due to
different data collection objectives. In particular,
for ReFCOCO+, the use of absolute location words
(e.g. top right, bottom left, etc.) was not allowed
and thus the RE are appearance focused, while for
the RefCOCO the use of location is essential in
order for the target object to be successfully indi-
vidualized. Furthermore, for each dataset different
test splits are provided. The predefined test splits
for both datasets are divided between person vs ob-
ject splits. In particular, images containing people
are in “TestA” and images that contain all other
object categories are in “TestB”.

7.2 Implementation Details

Visual Features The visual representation used
is a 4101-dimensional vector that is a concatena-
tion of: (1) a 2048-dimensional vector of the tar-
get object region; (2) a 2048-dimensional vector
representation of the whole image that serves as
context features and (3) object location features
as presented in (Yu et al., 2016). As main feature
extractor we used ResNet-152 (He et al., 2016). In
more detail, for the object region features, the as-
pect ratio of the region was kept constant and was
scaled to 224 × 224 resolution. The margins were
padded with the mean pixel value, following (Mao
et al., 2016).

Training For our language model, we set the di-
mension of LSTM hidden state, image feature em-
beddings, and word embeddings to 512. The batch
size is set to 128 images. The learning rate is initial-
ized to be 5× 10−4, and then annealed by shrinking
it by a factor of 0.8 for every three epochs. Both the
RL and MRT models are trained according to the
following scheme: We first pretrain the language
model using MLE, optimized with Adam (Kingma
and Ba, 2014). At each epoch, we evaluate the
model on the validation set and select the model
with the best CIDEr score as an initialization for

RL and MRT training. We then run RL or MRT
training initialized with the MLE model to opti-
mize the CIDEr metric using ADAM with a fixed
learning rate 5 × 10−5.

7.3 Evaluation

For evaluation we opt for automatic metrics. Specif-
ically, in order to measure the naturalness of refer-
ring expressions we use the standard automatic met-
rics that have been used in REG (Mao et al., 2016;
Zarrieß and Schlangen, 2018; Yu et al., 2016) that
compare the generated referring expression with
the human ones: BLEU1 for unigrams, CIDEr and
METEOR. In order to evaluate the diversity, we re-
port: (1) the average length of referring expressions
(ASL) (2) the number of unique words of the gen-
erated corpus; (Voc) and (3) the average number
of unique bigrams per 1000 bigrams (TTR). (van
Miltenburg et al., 2018).

8 Results & Discussion

8.1 Evaluating different RL training
strategies

We first explore a number context-dependent nor-
malization factors that affect the RL training de-
scribed in Section 4. Regarding the reward con-
figuration (see Section 4.1) we explore: (1) which
reward function to use to evaluate the sequences;
(2) which search strategy will be used to sample
the actions from the policy; and (3) whether reward
normalization further stabilizes the training.

Reward Function: First we compare various
evaluation measures as reward functions, namely
CIDEr, BLEU and METEOR as well as metrics
combinations. A summary of the results is given in
Table 1, where RL stands for the REINFORCE
algorithm. We present the performance of the
MLE model we used for the initialization of the
RL training. As expected, optimizing towards a
particular evaluation metric during training leads to
an increase on that particular metric during test-
ing. However, the benefits are not comparable
with those gained when optimizing CIDEr. Specifi-
cally, CIDEr optimization leads to improvements
in scores for all other metrics as opposed to di-
rectly optimize them. A notable exception is the
combination of CIDER+BLEU where BLEU score
is higher compared to optimizing only for CIDEr.
Therefore, for the rest of the paper, all RL models
are based on CIDEr optimization.



testA testB
Method BLEU METEOR CIDEr BLEU METEOR CIDEr
MLE 0.542 0.200 0.841 0.614 0.258 1.507
RL + CIDER 0.569 0.222 0.954 0.625 0.277 1.564
RL + BLEU 0.557 0.210 0.860 0.616 0.261 1.510
RL + METEOR 0.533 0.205 0.834 0.586 0.260 1.508
RL + CIDER + BLEU 0.579 0.221 0.945 0.625 0.271 1.532
RL + CIDER + METEOR 0.563 0.219 0.947 0.607 0.266 1.523

Table 1: Performance of different reward functions on RefCOCO dataset (the same trend applies to RefCOCO+

and thus omitted). RL stands for the REINFORCE algorithm. Optimizing the training for the CIDEr metric
increases all evaluation metrics significantly. All models were decoded using greedy decoding. The performance
of the seed model is also reported. The best overall values for each metric are emphasized with bold.

testA testB testA+ testB+

Method BLEU METEOR CIDEr BLEU METEOR CIDEr BLEU METEOR CIDEr BLEU METEOR CIDEr
MLE 0.542 0.200 0.841 0.614 0.258 1.507 0.481 0.179 0.715 0.409 0.173 0.829
RL+ RS 0.569 0.222 0.954 0.625 0.277 1.564 0.469 0.185 0.745 0.286 0.163 0.913
RL + BS 0.561 0.217 0.946 0.617 0.270 1.549 0.465 0.184 0.743 0.277 0.160 0.901
RL + RS+ Shaping 0.574 0.223 0.957 0.628 0.278 1.567 0.473 0.181 0.752 0.279 0.162 0.915
RL + BS+ Shaping 0.565 0.219 0.948 0.618 0.272 1.552 0.468 0.155 0.749 0.275 0.161 0.904
SCTS+RS 0.593 0.231 1.012 0.638 0.290 1.607 0.481 0.194 0.809 0.282 0.165 0.942
SCTS+GD 0.583 0.227 0.995 0.635 0.279 1.585 0.461 0.185 0.761 0.276 0.163 0.934

Table 2: Results of different search strategies for reward computation and variance reduction. “RS” stands for
random sampling, while “BS” refers to beam search and “GD” for greedy decoding. “SCTS” refers to self-critical
training. Shaping denotes that we used reward shaping.

Action sampling strategy: So far we sampled
the words using random sampling. Next, we com-
pare beam search and random sampling as search
strategies to sample the words. The results are
shown in Table 2. Although beam search (with
width of 2) has been the de facto decoding strategy
for neural REG systems, it produces inferior results
when compared to random sampling. We hypothe-
size due to the deterministic nature of beam search,
the sampled sequences are often duplicates and thus
uninformative for the gradient estimation, while the
stochasticity of sampling generates sequences with
exploratory usefulness for the gradient estimation
and it results in more natural-sounding expressions.

Self-critical training for REG: We next inves-
tigate, whether the inclusion of a baseline is an
effective way of stabilizing the training by reduc-
ing the variance of the gradient. We follow the
self-critical training strategy that utilizes the out-
put of the greedy decoding to normalize the re-
wards. We further investigate random sampling
and greedy decoding as search strategies. Table 3
depicts the results. Self-critical training improves
over the REINFORCE algorithm, which indicates
that the variance of the gradient is significant in
neural REG. However, we notice that instead of us-
ing the greedy decoding that is originally proposed
in (Rennie et al., 2017) random sampling is a better
choice.

Combining MLE with RL: Next we evaluate
the combination of self-critical objective with MLE.

Figure 1: Validation set CIDEr scores for different val-
ues of α for combining MLE with either RL objective
(see Equation 7 ) or MRT objective (see Equation 8 ).
Best viewed in color.

Figure 1 shows the results on the validation set. The
best trade-off between MLE and RL objectives in
our experiment is when α = 0.9 . Table 3 depicts
the results on the test set where we observe that
the weighed combination of MLE and SCTS objec-
tive further improves the quality of the generated
expressions.

8.2 Evaluating Minimum Risk Training for
REG

In this subsection, we report the results for training
a REG model with minimum risk training and we
compare it with MLE. Training with MRT requires
generating and scoring multiple candidate referring
expressions for each input. Thus, we explore two
factors: (1) which search strategy should be used



testA testB testA+ testB+

Method CIDEr BLEU ASL Voc TTR CIDEr BLEU ASL Voc TTR CIDEr BLEU ASL Voc TTR CIDEr BLEU ASL Voc TTR
MLE 0.841 0.542 2.685 121 0.28 1.507 0.614 2.65 158 0.443 0.715 0.481 2.50 148 0.289 0.829 0.409 3.20 229 0.458
SCTS 1.012 0.593 2.610 76 0.20 1.607 0.638 2.37 104 0.388 0.809 0.481 2.47 73 0.196 0.942 0.282 1.44 99 0.520
MRT 0.952 0.569 2.476 124 0.32 1.614 0.632 2.35 161 0.473 0.773 0.483 1.92 127 0.296 0.935 0.413 2.21 217 0.548
MLE+ SCTS 1.032 0.593 2.693 100 0.24 1.700 0.658 2.43 128 0.431 0.816 0.483 2.36 91 0.224 0.975 0.302 1.49 132 0.570
MLE+MRT 1.075 0.603 2.640 141 0.33 1.763 0.692 2.73 198 0.494 0.821 0.513 2.77 176 0.337 0.907 0.430 3.37 288 0.708
(Yu, 2007) 0.775 - - - - 1.320 - - - - 0.520 - - - - 0.735 - - -

Table 3: System results: CIDEr and BLEU scores; average sentence length (ASL); vocabulary size (Voc); mean-
segmented bigram ratio (TTR); SCTS denotes self-critical training with random sampling as baseline; MRT de-
notes minimum risk training with candidate size of 5 for RefCOCO and size of 8 for ReFCOCO+.

Figure 2: Validation set CIDEr scores for different can-
didate set sizes for the MRT model. Best viewed in
color.

to generate the candidate sequences; (2) and how
many sequences we should generate for one input.
We found that random sampling performs better
than beam search both in terms of CIDEr score and
is considerably faster. Thus, Figure 2 compares dif-
ferent set sizes on the validation set when random
sampling is used. For RefCOCO we choose candi-
date set size of 5, while for RefCOCO+ 8. Table 3
presents the results on the test set. Optimizing the
REG model with MRT improves both CIDEr and
BLEU by several figures over the MLE.

8.3 Comparison of MRT to RL training

Our final experiment compares MRT to RL training
w.r.t naturalness and diversity. Table 3 shows all
sequence level optimization methods used. When
analyzing the effect that different training methods
have on naturalness and diversity of the referring
expressions a few clear patterns can be observed:
(1) SCTS has the lowest diversity and naturalness
(i.e. BLEU score) and highest repetition among all
models; (2) Out of the 4 different test sets, SCTS
has the highest accuracy CIDEr scores when com-
pared to MLE and MRT training; (3) combining
the SCTS loss with MLE improves sightly the ac-
curacy, naturalness and diversity of the produced

referring expressions. Still, however, the diversity
is considerably lower than MLE and MRT. (4) Min-
imum risk training improves over MLE in all tests
sets. However, when compared to SCTS it only
produces higher CIDEr in only one case (i.e. Re-
fCOCO testB); (5) MRT has the highest diversity
and naturalness compared to the other two training
strategies; (6) combing the MRT loss with MLE
further improves the diversity and naturalness of
the generated referring expressions. In particular,
as can be seen in Table 3, the MLE + MRT loss
achieves the highest scores in all categories, ex-
cept in testB+ where the combination of two losses
produces inferior results in terms of CIDEr.

Examples of generated REs are illustrated in
Figure 3. In all images presented in Figure 3, we
observe that the proposed MLE + MRT model im-
proves over all compared training objectives in
inferring more pragmatically adequate referring
expressions by using, for example, precise appear-
ance and location attributes (e.g. “man with hand
on chin” and “left side of pic brown thing in front”)
or negations (e.g “cat no reflection”)

9 Conclusion

In this work we considered the problem of optimiz-
ing referring expression generation models with
sequence level objectives. Specifically, we firstly
provide a comprehensive comparison of different
aspects of configuring REG models with RL train-
ing. We found that (1) random sampling is a better
search strategy than beam search; (2) we showed
that using random sampling with self-critical train-
ing improves CIDEr scores; (3) incorporating re-
ward shaping improves the performance; (4) we
showed that combining RL objectives with MLE is
beneficial to the training, resulting in higher CIDEr
scores and diversity. However, there is a consider-
able gap between MLE and RL methods w.r.t. to
diversity. Thus, as an alternative to RL we proposed
the use of minimum risk training. We showed that
MRT combined with MLE produces superior re-



Figure 3: Examples of objects and expressions drawn from both RefCOCO and RefCOCO+ datasets. The target
object is highlighted with a red box.

sults in terms of naturalness and diversity of the
referring expressions compared to both MLE and
RL training. While we have focused on analyzing
the performance of the presented models with au-
tomated evaluation metrics, we intend to further
verify these results in a human evaluation.
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