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Edaphic factors and plants 
influence denitrification in soils 
from a long‑term arable 
experiment
Ian M. Clark  1, Qingling Fu1,2, Maïder Abadie1, Elizabeth R. Dixon3, Aimeric Blaud1,4 & 
Penny R. Hirsch  1*

Factors influencing production of greenhouse gases nitrous oxide (N2O) and nitrogen (N2) in arable 
soils include high nitrate, moisture and plants; we investigate how differences in the soil microbiome 
due to antecedent soil treatment additionally influence denitrification. Microbial communities, 
denitrification gene abundance and gas production in soils from tilled arable plots with contrasting 
fertilizer inputs (no N, mineral N, FYM) and regenerated woodland in the long-term Broadbalk field 
experiment were investigated. Soil was transferred to pots, kept bare or planted with wheat and after 
6 weeks, transferred to sealed chambers with or without K15NO3 fertilizer for 4 days; N2O and N2 were 
measured daily. Concentrations of N2O were higher when fertilizer was added, lower in the presence 
of plants, whilst N2 increased over time and with plants. Prior soil treatment but not exposure to 
N-fertiliser or plants during the experiment influenced denitrification gene (nirK, nirS, nosZI, nosZII) 
relative abundance. Under our experimental conditions, denitrification generated mostly N2; N2O was 
around 2% of total gaseous N2 + N2O. Prior long-term soil management influenced the soil microbiome 
and abundance of denitrification genes. The production of N2O was driven by nitrate availability and 
N2 generation increased in the presence of plants.

Sustainable agriculture for an increasing global population requires a balance between optimizing fertilizer 
inputs and minimizing adverse outcomes whilst increasing food production. Emissions of the greenhouse gas 
nitrous oxide (N2O) from agricultural soils due to bacterial denitrification make a significant contribution to 
global warming1. When soils are wet and O2 availability is limited but there is sufficient organic matter, a com-
mon condition in temperate agricultural soils, nitrate (NO3

−) can act as an alternative electron acceptor and is 
reduced to N2O by many different groups of facultatively anaerobic bacteria2,3. This occurs with different types of 
fertilizer, whether organic, biological (e.g. legumes), urea or inorganic ammonia/nitrate compounds4. Some bac-
teria can further reduce N2O to N2 which is not environmentally harmful but nevertheless reduces nitrogen use 
efficiency, wasting N fertilizer inputs. In a survey of genome-sequenced prokaryotes, 7% contained denitrification 
genes exemplified by the nitrite reductase gene nirK, the alternate gene nirS or the gene encoding nitrous oxide 
reductase, nosZ5. However, not all prokaryotes with a nitrite reductase gene carry nosZ and in others the gene 
is not active. Consequently, for these organisms, the final denitrification step is the release of N2O. Also, there 
are also a substantial number of bacteria that contain nosZ without nirK or nirS and are assumed to sequester 
and reduce N2O, emitting N2

6. Many soil fungi can also denitrify: their contribution is minor when compared 
to that of bacteria in agricultural systems and arable soil but increases post-harvest and after incorporation of 
organic residues7. Fungi form only a small proportion of the soil microbiome under growing crops, and fungal 
denitrifiers contain nirK but not nosZ thus do not reduce any N2O they generate to N2

8. N2O generated by other 
processes including nitrification is at relatively low levels compared to the activity of denitrifying bacteria in 
anoxic, fertilized agricultural soils9,10.

OPEN

1Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, Hertfordshire  AL5 2JQ, 
UK. 2College of Resources and Environment, Huazhong Agricultural University, Wuhan  430070, Hubei, People’s 
Republic of China. 3Computational and Analytical Sciences Department, Rothamsted Research, North Wyke, 
Devon  EX20 2SB, UK. 4Present address: School of Applied Sciences, Edinburgh Napier University, Sighthill 
Campus, Edinburgh EH11 4BN, UK. *email: penny.hirsch@rothamsted.ac.uk

http://orcid.org/0000-0002-1589-5420
http://orcid.org/0000-0002-5909-1934
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-72679-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16053  | https://doi.org/10.1038/s41598-020-72679-z

www.nature.com/scientificreports/

The alternate nitrous oxide reductase genes have been known for many years but the significance of carrying 
either nirK (encoding a Cu-containing enzyme) or nirS (encoding a cytochrome cd1) remains unclear11. The two 
forms can occur within different individual species of the same genus but (with rare exceptions) they are mutu-
ally exclusive12. Recent stable isotope probing experiments to identify denitrification genes in soil indicated that 
nirK was the most abundant and active, with greater sequence diversity than previously recognised13. The nosZ 
genes are also a diverse group and have been divided into two clades: nosZI in the Proteobacteria; nosZII in the 
Gemmatimodates, Bacteroidetes and Choroflexi14.

Whilst there have been many surveys of N2O fluxes from agricultural soils, some using intact or repacked soil 
cores under lab conditions, others made in the field, few have specifically investigated the role of crop plants or 
measured N2 emissions. Most are concerned with soil organic carbon (SOC), nitrogen and N-fertilizer forms and 
rates of application, soil moisture and temperature1,15,16. There is considerable information on the roles of these 
drivers but the effects of interaction between plant and soil factors including the microbiome on denitrification 
is less clear. A compilation of field data concluded that the presence of plants increased N2O emissions and also 
the ratio of N2:N2O17. Experiments in air-free systems with Argon or Helium replacing N2 have indicated that 
arable soils with young plants evolve more N2O and N2 than controls with no plants7,18. However, plants were 
also implicated in reduced soil moisture and less N fertilizer remaining in soil, leading to lower denitrification19. 
A review of 26 separate studies investigating cover crops in the field showed that 40% resulted in lower and 60% 
in higher emissions compared to control soils without cover crops20. Presence or absence of legumes, high soil 
N, rainfall and crop residues were all implicated in these differences. However, a more recent meta-analysis of 
129 publications indicated that the presence of cover crops significantly reduced N2O emissions compared to 
bare soil21. In an experiment using soil cores with artificial root exudates, no N2O was detected in the control 
soil in contrast to that receiving exudates22 whereas a field experiment comparing bare soil (chemical fallow) 
with non-legume cover crops found no significant difference in N2O emissions23. These contradictory results 
concerning N2O and N2 emissions from agricultural soil in the presence or absence of plants reinforce the need 
for a deeper understanding of the processes involved.

In this paper, we report on a glasshouse experiment designed to measure production of N2O and N2 in soils 
taken from plots with contrasting long-term treatments which were anticipated to alter microbial communities 
with potential consequences for the relative abundance of denitrification genes. Furthermore, we aimed to exam-
ine the impact of growing plants and of applying KNO3 fertilizer on gas production. The soils were taken from 
the long-term Broadbalk Winter Wheat experiment at Rothamsted Research (UK), where different fertilizers 
and N-rates have been applied, resulting in soils with distinctly different edaphic properties. Using conditions 
designed to promote denitrification, soils from different long-term treatments, in pots with or without wheat 
plants, were treated with 15N-labelled fertilizer, control soils receiving no fertilizer and sealed in chambers with 
ambient air. The plants had been grown to the stem elongation stage where root exudation is at a maximum24 
and the roots had colonised the pots so all soil was “rhizosphere”, for comparison with unplanted controls. The 
concentrations of N2 and N2O in these sealed chambers were measured daily over 4 days to provide a snapshot 
of denitrification activity in the rhizosphere and the control bulk soil; soil DNA and mRNA were extracted at 
this point to assess the abundance and activity of denitrification genes. From this we show the relative impor-
tance of antecedent soil treatments that influence edaphic factors including the soil microbiome, crop plants and 
N-fertilizer in promoting denitrification.

Material and methods
Soils.  In the Broadbalk Experiment, running since 1843 at Rothamsted Research (UK), different fertilizers 
and N-rates have been applied consistently to winter wheat. In 1882, one section (previously referred to as “wil-
derness”) was taken out of cultivation and left to regenerate to woodland25,26. We chose plots that received farm-
yard manure (FYM) at 35 t ha−1, no N fertilizer (N0) or 288 kg N ha−1 annually (N6), together with the woodland 
soil (Wood). Table 1 shows the soil properties and annual fertilizer applications of the four arable treatments and 
the plot converted to woodland.

Broadbalk is not fully replicated since it was set up before the advent of modern statistical design, hence 
each plot to be sampled was subdivided into three equally sized pseudoreplicates, each 9.3 m × 6 m in the arable 
plots and 9.3 m × 4 m in the FYM plot. The woodland area (80 m × 15 m) was also subdivided into equally sized 
pseudoreplicates. Ten soil cores (top 20 cm) were collected and pooled from each area in May 2014, generating 

Table 1.   Fertilizer applications and soil properties for Broadbalk plots. N-fertilizer is ammonium nitrate, 
applied as a single dose in April; FYM is applied in autumn at 35 T ha−1. a Andy Gregory & Chris Watts, 
personal communication (bulk density is expressed as g cm−3 oven-dried soil). b pH in H2O. c Mean annual N 
content in 35 T FYM ha−1 (Andy Macdonald, personal communication).

Treatments

Fertilizer year−1 Soil propertiesa

N kg ha−1 Other % SOC % total N % clay % silt % sand Bulk density pHb

N0 None PKMg 0.93 0.10 24.6 57.1 18.3 1.2 8.2

N6 288 PKMg 1.2 0.13 33.4 39.2 27.4 1.2 7.1

FYM 246c FYM 3.21 0.31 23.3 50.9 25.8 1.1 7.8

Woodland None None 6.23 0.48 29.0 52.0 15.0 0.9 7.7
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three replicate soil samples for each of the four plots. Soil was sieved to 4 mm and stored at 4 °C for 14 days before 
transferring to pots; weighed subsamples were dried overnight at 80 °C to estimate the soil dry weight (dw).

Plants and pots.  A total of 48 pots were set up: three soil replicates from each of the 4 plots, with four treat-
ments (+ /− wheat; + /− N fertilizer). Each Ø 10 cm pot contained 350 ml vol. soil; 24 pots were planted with 
4 pre-germinated wheat seeds (Triticum aestivum cv Cadenza) per pot, grown 6 weeks and given foliar feed if 
required (diagnosed by slight yellowing of leaves) and watered as normal with tap water. At 6 weeks post ger-
mination, wheat root exudation is at a maximum24; previous experiments showed wheat roots to fill the pots at 
this stage. The 24 unplanted pots were set up and kept in glasshouse alongside those with wheat in a randomised 
block design and were watered at the same time as the plants to maintain soil moisture. Soil bulk and particle 
density had been measured previously in the source soils27 and was used to calculate the pore space. This enabled 
subsequent manipulation of the water-filled pore space (wfps).

Chambers.  When plants reached stem elongation but pre-flowering (c. 6 weeks post germination), the soils 
were adjusted to 95–100% wfps to create the anaerobic conditions conducive to denitrification, by adding sterile 
deionised water (sd H2O), or a solution of K15NO3 (99% atom enrichment) in sd H2O as to give equivalent to 
100 kg N ha−1 (i.e. 40 µg N g−1 dw soil) in each pot. Immediately after adding water or fertiliser, a 2 L polycarbon-
ate bottle with the base removed was placed over each pot with a SubaSeal at the top, as shown in Supplementary 
Fig. S1, creating closed chambers containing air for the 4 day sampling period.

Gas sampling and measurement of N2 and N2O.  The first samples (day 0) were taken immediately 
after sealing the chambers following the addition of K15NO3 fertilizer or water. Subsequently, the chambers were 
sampled at 24 h intervals for the next 3 days (day 1, day 2, day 3, day 4), with two ambient air samples taken at 
each sampling time. A single 22.5 ml air sample was taken at each timepoint for N2O analysis; for 15N isotope 
ratio sampling, a second 12 ml air sample was taken from each treatment fertilized with K15NO3 to measure 
15N2-N and 15N atom% in N2O. The total (chamber plus pore space) volume and the soil dry weight in each pot 
was used to calculate N2O-N and 15N2-N g−1 dw soil for each replicate.

The N2O was measured using gas chromatography with an electron capture detector and an automated sample 
injection system; a TG2 trace gas analyser (Europa Scientific, now Sercon, Crewe, UK) interfaced to a Sercon 
20–22 isotope ratio mass spectrometer (IRMS) was used to measure 15N enrichment of N2. Solutions of 6 and 30 
atom% ammonium sulphate ((NH4)2SO4) were prepared and used to generate 6 and 30 atom% N2O28 and used 
as reference and quality control standards. Atmospheric air, with natural abundance 15N (0.3663 atom%) was 
used as the reference for N2. The N2 concentration in each sample was calculated from the ratios of the intensity 
of ion beams at mass to charge ratios 28, 29 and 30, using the equations of Stevens and Laughlin29,30.

DNA and RNA extraction and amplicon sequencing.  After 4 days, the chambers were removed. Soil 
samples were processed within 5 min to preserve the integrity of the RNA and DNA. In pots with wheat, the 
roots had spread throughout the soil and soil adhered to the roots at sampling. This soil was shaken off and 
mixed, similarly for unplanted pots, soil was mixed, a subsample taken, sieved to 2 mm and frozen in liquid 
N2 for subsequent DNA and RNA extraction using the RNA PowerSoil® isolation kit and RNA PowerSoil® DNA 
Elution Accessory Kit (MO BIO Laboratories, Inc) following manufacturer’s instructions31. RNA samples were 
DNAse treated to remove DNA contamination using the DNase Max Kit (Qiagen, Manchester, UK), following 
the manufacturer’s protocol. Direct PCRs and gel electrophoresis were carried out on DNAse treated RNA to 
confirm all contaminating DNA had been removed. The quantity and quality of extracted DNA and DNAse-
treated RNA were analysed by fluorometer Qubit® 2.0 dsDNA and RNA BR Assay Kits and Nanodrop microvol-
ume spectrophotometer (Thermo Fisher Scientific).

The bacterial and archaeal diversity was determined from the 12 samples taken at the time of field sampling 
by amplicon sequencing of 16S rRNA genes using the primers 515F/806R, sequenced on Illumina’s MiSeq plat-
form and analysed to phylum (sub-phylum for Proteobacteria) level and to OTU (97% sequence identity) using 
the QIIME 1.8 pipeline. The method was described in detail previously32. The amplicon sequence data for this 
study have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under accession number 
PRJEB36852 (https​://www.ebi.ac.uk/ena/brows​er/view/PRJEB​36852​).

Quantification of bacterial and denitrification gene abundance.  The primers used to detect the 
16S rRNA genes, the alternative genes for nitrite reductase (nirK and nirS) and the nitrous oxide reductase 
gene nosZ clades I and II are shown in supplementary Table S1. Quantitative-PCR (qPCR) amplifications were 
performed in 10 µl volumes containing 5 µl QuantiFast SYBR Green PCR Master Mix for DNA and QuantiFast 
SYBR Green RT-PCR Master Mix for RNA (Qiagen, Manchester, UK), 0.1 µl of each primer (1 µM), 0.1 µl of 
QuantiFast RT Mix for RT-qPCR, 2 µl of template DNA at 5 ng µl−1 or 2–4 µl of RNA at 10 ng µl−1 and nuclease-
free water (Severn Biotech, Kidderminster, UK) up to 10 µl, using a CFX384 Touch™ Real-Time PCR Detection 
System (Bio-Rad, Hemel Hempstead, UK). The standards for each molecular target were obtained using a tenfold 
serial dilution of PCR products amplified from an environmental reference DNA and purified by gel extraction 
using the Wizard® SV Gel and PCR Clean Up System (Promega, Southampton, UK) following the manufacturer’s 
instruction then quantified by fluorometer Qubit® 2.0 dsDNA BR Assay Kit (Thermo Fisher Scientific). Standard 
curve template DNA and the negative/positive controls were amplified in triplicate. Amplification conditions 
for all qPCR assays consisted of an initial denaturation at 95 °C for 5 min followed by 40 (two step) cycles; 95 °C 
for 10 s and 60 °C for 30 s. The RT-qPCR program had an initial reverse-transcription step at 50 °C for 10 min. 
Each amplification was followed by melt curve analysis (60 °C to 95 °C, with incremental readings every 0.5 °C) 

https://www.ebi.ac.uk/ena/browser/view/PRJEB36852
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to confirm the specificity of each assay. Efficiency of amplification for each primer set was > 82% with r2 ≥ 0.996 
(Supplementary Table S2). Results are expressed as gene copies g−1 dw soil.

Soil properties.  At the end of the pot trial, samples from each pot were oven-dried as described above, to 
measure moisture and estimate the final wfps. Extracts (1:5 soil dw:2 M KCl, shaken for 2 h at 300 rpm, 20 °C) 
were analysed for nitrite (NO2

−), nitrate (NO3
−) and ammonia (NH4

+) using a Skalar colorimetric continuous 
flow Analyzer. Results are given as μg g−1 dw soil.

Statistical analyses.  GenStat 17th Edition (VSN International Ltd, Hemel Hempstead, UK) was used to 
perform ANOVA with soil origin, sampling date (i.e. time of incubation), presence or absence of plant and addi-
tion or not of fertilizer as factors, to compare values obtained from soil and gas analyses and from qPCR estima-
tions of gene and transcript copy numbers. To check that each set of measured values met the assumptions of 
ANOVA and were normally distributed, residuals were plotted. If they did not show normal distribution, data 
was log-transformed and again checked for normal distribution of residuals. Where ANOVA results were sig-
nificantly different (P < 0.05), means were further tested using Tukey’s post-hoc method in the GenStat multiple 
comparison menu with 95% confidence. Where appropriate, standard errors of difference of means (s.e.d.) are 
indicated. When only two treatments were compared, Student’s t-test in the Excel data package was used. The 
statistics package PAST v. 3.1633 was used to analyse the relative abundance of 16S rRNA amplicons using: SIM-
PER to determine the percentage contribution of each phylum to each treatment; non-metric multidimensional 
scaling (NMDS) analysis at the OTUs level based on the Bray–Curtis similarity index; PERMANOVA to assess 
the significance of the NMDS plot and Spearman’s rank correlations of gene abundance, soil properties and gas 
emissions. Unless otherwise indicated, statistically significant differences are assumed to occur at P ≤ 0.05 and 
are referred to as “significant” throughout the text; results with no significant differences are referred to as NSD.

Results
Soils and their microbial communities.  The soil properties shown in Table 1 indicate variation in soil 
texture across the Broadbalk field, with less clay in the N0 and FYM plots, situated on the north side of Broadbalk 
field compared to N6 and woodland towards the south side. The soil pH ranged from 7.1 to 8.2, lowest in the 
mineral-nitrogen fertilized soil N6 and highest in the N0 soil that received no N fertilizer. The bulk density of 
woodland soil is much lower and the % SOC much higher compared to other soils; the FYM soil has lower bulk 
density and higher % SOC than the other arable soils. The ratio of SOC:total N was approximately 10:1 in the 
arable soils and 13:1 in the woodland soil.

The community structure of bacteria and archaea revealed by 16S rRNA amplicon sequencing of metagenomic 
DNA extracted from the soil samples, at collection from the field, shows significant differences, and distinct 
separation on a NMDS plot (Fig. 1). Of the 14 phyla (sub-phyla for the Proteobacteria) comprising > 0.1% of the 
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Figure 1.   Relative mean abundance of prokaryotic phyla/sub-phyla in soils of origin on collection from 
the field. Phyla with at least 0.1% of the total community present in at least one soil treatment are included. 
Proteobacteria sub-phyla: a = alpha, b = beta, d = delta, g = gamma; s.e.d. for each group is shown; letters 
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community in at least one of the soils, only the δ-Proteobacteria did not show significantly different (P ≤ 0.05) 
mean abundance in at least one soil, according to ANOVA (Fig. 1). For example, the woodland soil has more 
α-Proteobacteria and Verrucomicrobia but fewer Thaumarchaeota (archaea) and β-Proteobacteria than the other 
treatments. Both the FYM and woodland soil have more γ-Proteobacteria and fewer Gemmatimonadetes; the 
FYM soil has more Firmicutes than the other soils (Fig. 1).

16S rRNA and denitrification gene abundance.  At the end of the experiment, DNA was extracted 
and amplified from all samples but sufficient RNA for further analysis was obtained only from the FYM and 
woodland soils which contained more organic matter and larger microbial communities. ANOVA comparing 
the abundance for each set of genes and transcripts measured using qPCR showed that the soil of origin had a 
significant influence in all cases (Table 2). However, other factors (presence/absence of wheat and addition or 
not of N-fertilizer) and interactions between them were not significant, except for nosZI which was significantly 
influenced by the plant. Bacterial abundance indicated by 16S rRNA gene copy number was 2 × 109 g−1 soil in the 
N0 and N6 soils and significantly higher in the FYM and woodland soil, 5 × 109 and 7 × 109 copies g−1, respec-
tively (Fig. 2). This pattern of relative abundance was seen for nirK (7 × 108–4 × 109 copies), nosZI (5 × 107–2 × 108 
copies) and nosZII (4 × 106–1 × 107 copies g−1 soil). The exception was nirS where N0, N6 and woodland soil had 
similar gene abundance (1 × 107 copies g−1 soil) and FYM significantly more with 4 × 107 copies g−1soil (Fig. 2). 
The ratio nirK:nirS gene copies in the woodland soil was 300:1, significantly more than the mean of 55:1 in the 
arable soils (F3,32 = 102.63, P < 0.001). Woodland also had a significantly higher ratio of nir:nosZ genes, 20:1 com-
pared to 13:1 in the arable soils (F3,32 = 10.97, P < 0.001). This was influenced only by the origin of the soil, not the 
plant or fertilizer treatment (supplementary Fig. S2, Supplementary Table S3).

Table 2.   ANOVA for soil edaphic factors and gene abundances.

d.f.

Soil properties Gene copy number from qPCR

wfps NO3
–N NH4

+-N 16S nirK nirS nosZI nosZII

Soil F3, 32
P

9.58
 < .001

12.8
 < .001

46.75
 < .001

61.0
 < .001

124.6
 < .001

47.66
 < .001

145.4
 < .001

25.5
 < .001

Fertilizer F1, 32
P NS 321.5

 < .001 NS NS NS NS NS NS

Plant F1, 32
P

17.05
 < .001

444.4
 < .001

25.69
 < .001 NS NS NS 8.18

 = 0.007 NS

Soil × fertilizer F3, 32
P NS 11.09

 < .001 NS NS NS NS NS NS

Soil × plant F3, 32
P

9.09
 < .001

21.91
 < .001 NS NS NS NS 7.56

 < .001 NS

Fertilizer × plant F1,32
P NS 8.84

 = 0.006 NS NS NS NS NS NS

Soil × plant × fertilizer F3, 32
P NS 3.84

 = 0.019 NS NS NS NS 3.43
 = 0.028 NS
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Figure 2.   Gene abundance from qPCR at the end of the experiment, pooling all treatments for each soil of 
origin (n = 12); letters denote significantly different values within each set of genes (P = 0.05) according to 
Tukey’s post-hoc test in ANOVA; s.e.d. = standard errors of difference of means; note that 16S and nirK are 
plotted as 10–9, the other genes as 10–6 copies g−1 dw soil.
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The mean number of 16S rRNA transcripts overall in the woodland soil, 5.3 × 108 copies g−1, was significantly 
higher (t22 = 2.23, P = 0.02) than the FYM soil with 1.8 × 108 copies g−1. The same pattern was seen with nirK 
transcripts: 2.4 × 105 copies in the woodland; 1.2 × 105 copies in the FYM soil (t22 = 3.75, P < 0.001). There was no 
significant difference between the two soils for nosZI transcripts which were much less abundant, mean 6 × 103 
copies g−1 soil.

Soil properties at the end of the experiment.  The concentration of soil NO2
−-N at the end of the 

experiment was below the limit of detection in most samples and is not included. The NH4
+-N followed the 

same trend as the % N and bacterial abundance, significantly higher in the woodland soil (Fig. 3a). According 
to ANOVA, it was influenced by the presence of plants but not K15NO3-fertilizer additions (Table 2). This was 
confirmed using t-tests: the mean NH4

+-N concentration for all soils with plants was 2.6 μg g−1 soil, significantly 
higher (t46 = 2.6, P = 0.007) than 1.6 μg g−1 for bare soils. The NH4

+-N is around tenfold less than the NO3
−-N in 

unfertilized soils, indicating nitrifier activity in the aerobic soils prior to setting up the chambers whereby soil 
pore saturation to create anaerobic conditions is predicted to reduce nitrification rates.

ANOVA showed the NO3
–-N concentration to vary significantly between soils and to be influenced by both 

K15NO3 fertilizer additions and the presence of plants (Table 2). The NO3
–-N concentration remaining in soils 

receiving no K15NO3 was significantly higher for woodland and N6 than for the N0 and FYM soils (Fig. 3b) and 
the overall mean in bare soil was 16.6 μg g−1, significantly higher (t22 = 3.0, P = 0.006) than in the presence of 
plants (0.36 μg g−1 soil). Where K15NO3 was applied, differences due to soil of origin was not significant (Fig. 3b) 
but the mean value for unplanted soils was 49.9 μg g−1, significantly higher (t22 = 6.0, P > 0.001) than where plants 
were present (5.4 μg g−1).

The % water-filled pore space (wfps), set at an estimated 95% at the start of the experiment, had fallen to 
60–80% in most soils by the end, and to 40% for the woodland soils with wheat (Fig. 3c, Table 2). Water had 
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Figure 3.   Soil properties at the end of the experiment. (a) concentration of NH4
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drained from the pot into the tray and had also been redistributed around the sides of the chambers as condensa-
tion; plants but not K15NO3 fertilizer addition had a significant influence (Table 2). The overall mean wfps in all 
bare soil soils 72.6% was significantly higher (t46 = 3.3, P < 0.001) than 61.0% for all planted soils.

Gas production.  Gas measurements made immediately after adding K15NO3 fertilizer or water and sealing 
the chambers (day 0) were similar to ambient values and were not included in subsequent analyses (e.g. mean 
N2O-N from 48 chambers was 0.27 ppm, s.e.d. 0.0035; ambient N2O in 10 glasshouse air samples was 0.28 ppm, 
s.e.d. 0.0048). Subsequent samples were taken at 24 h intervals (day 1–4) until the experiment concluded, the 
chambers were dismantled, and the soil was sampled. ANOVA indicated that the presence/absence of plants and 
K15NO3 had a significant effect on N2O-N but not the sampling date either alone or in combination with the 
other factors; in contrast, CO2 levels were additionally influenced by sampling date (Table 3). For this reason, 
each day was treated as a repeat sampling for N2O (Fig. 4a). In unfertilized soil, mean N2O-N from unplanted 
soil was 5.2 ng g−1, significantly higher (t22 = 3.0, P = 0.003) than with plants (1.1 ng g−1 soil). However, where 
K15NO3 was applied, the mean N2O-N was NSD in bare and planted soil. Over all treatments, the N2O-N meas-
urements were highly variable with NSD between most means and overall differences due to the soil of origin 
were also NSD (Table 3.) The exception was significantly higher N2O-N in woodland compared to FYM soil 
where K15NO3 was applied and no plants were growing (Fig. 4a).

The mean CO2 measured was 1 µg g−1 dw soil for all soils whether plants were growing or not, with or without 
K15NO3 application. The exception was bare woodland soil, with a mean of 25 mg g−1 dw soil (Supplementary 
Fig. S3). This indicates a similar rate of production and consumption by soil and plants for soils taken from 
the long term arable treatments, with only the woodland soil with high SOC and microbial biomass producing 
significantly more CO2 than the system could consume, peaking at 48 h (Supplementary Fig. S4).

Measurement of 15N was only possible in the K15NO3-fertilized plots. The proportion present in N2O, indi-
cated by the 15N atom% (Fig. 4b), varied significantly between soils of origin. The sampling date and presence/
absence of plants did not have a significant influence according to ANOVA (Table 4) but the mean value for all 
times and samples in bare soil, 11.7% was significantly (t94 = 2.0, P = 0.02) less than the mean value where plants 
were present (16.8%). The data was used together with N2O-N measurements to show that the proportion of 15N 
in N2O-N was significantly less from the woodland soil when wheat was present (Fig. 4c). This could be because 
the more open pore structure of the woodland soil (demonstrated by the drop in wfps at the end of the experi-
ment) resulted in better root growth and proportionally greater uptake of the 15N-labelled fertilizer by the wheat.

The N2-N measured in the K15NO3-fertilized plots showed that the date of sampling as well as soil of origin 
and plant had significant influences (Table 4). The presence of plants appeared to increase N2 production over 
time (supplementary Fig. 5), in contrast with total N2O-N production which showed no significant changes. 
The overall mean for all soils and times with plants was 533 ng g−1 N2-N, significantly more (t47 = 2.8, P = 0.004) 
than without plants (239 ng g−1 N2-N). In the absence of plants there was NSD between the mean N2-N in the 
different soils but when plants were present, N6 produced significantly more N2 than the FYM and woodland 
soils (Fig. 4d). The total gaseous N (15N2-N + N2O-N) was dominated by N2-N with an overall mean of 390 ng g−1 
soil compared to 4 ng g−1 for N2O-N. However, the relative abundance showed a significantly higher % N2O-N 
in bare N6 and woodland soils compared to those with wheat (Fig. 4e) and the presence of plants had an overall 
significant effect according to ANOVA (Table 4).

Relating edaphic and microbiological factors with gas production.  To investigate factors influenc-
ing gaseous emissions, Spearman’s rank correlation was derived for gas, soil and microbial parameters for all 48 
pots where N2O was measured (supplementary Table S4A) and the 24 pots where K15NO3 fertilizer was added 
and 15N2-N and 15N atom% in N2O-N was measured (Supplementary Table S4B). Mean values of gas concentra-
tions from all four sampling times were used. Overall, N2O-N was moderately correlated to wfps and strongly 

Table 3.   ANOVA for gaseous losses from all soils and treatments.

ANOVAs

d.f. N2O CO2All soils

Date F3,128
P NS 11.26

 < .001

Soil F3,128
P

2.46, NS
 = 0.065

109.15
 < .001

Fertilizer F1, 128
P

22.33
 < .001

9.24
 = 0.003

Plant F1, 128
P

39.9
 < .001

61.94
 < .001

Soil × fertilizer F3,128
P

3.43
 = 0.019 NS

Soil × plant F3, 128
P

9.04
 < .001

20.35
 < .001

Fertilizer × plant F1, 128
P

12.68
 < .001 NS

Soil × fertilizer × plant F3, 128
P NS NS



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16053  | https://doi.org/10.1038/s41598-020-72679-z

www.nature.com/scientificreports/

ab
ab

a

b

a
ab ab

a a

ab

ab

ab

a a a a
0

2

4

6

8

10

12

N0 N6 FY
M

w
oo

d N0 N6 FY
M

w
oo

d N0 N6 FY
M

w
oo

d N0 N6 FY
M

w
oo

d

s.e
.d

.

soil wheat soil wheat

N-fer�lizer no fer�lizer .

ng
 N

2O
-N

 g
 -1

 d
w

 so
il

a

bcd bcd

abc
ab

bcd

d

cd

a
0

5

10

15

20

25

30

35

N0 N6 FY
M

w
oo

d N0 N6 FY
M

w
oo

d

s.e
.d

.

soil wheat

at
om

 %
 15

N 
in

 N
2O

-N

b

b b b
b b b b

a
0

2

4

6

8

10

12

14

N0 N6 FY
M

w
oo

d N0 N6 FY
M

w
oo

d

s.e
.d

.

soil wheat

N 2
O-

N 
 n

g 
g-1

 so
il 

in
di

ca
�n

g 
%

 15
N 

c N2O-N

15N-atom%

ab
a a

ab

bc

c

a ab

0

200

400

600

800

1000

1200

N0 N6 FY
M

w
oo

d N0 N6 FY
M

w
oo

d

s.e
.d

.

soil wheat

ng
 N

2-N
 g

-1
dw

 so
il

d

ab

b

ab

b

ab a

ab

a

0

1

2

3

4

5

N0 N6 FY
M

w
oo

d N0 N6 FY
M

w
oo

d

s.e
.d

.

soil wheat

N 2
O-

N 
as

 %
 (N

2O
-N

 +
 N

2-N
)

e

Figure 4.   Mean gas production over 4 days. (a) N2O-N, all treatments (48 pots); (b–e) K15NO3-fertilized 
treatments only (24 pots). (b) 15N atom % measured in N2O; (c) N2O-N indicating %15N (upper s.e.d. relates to 
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correlated to NO3
–-N, factors both known to support denitrification. However, in the fertilized soils the NO3

–-N 
relationship was not apparent, presumably because the relatively high NO3

–-N was not limiting. The N2O-N 
from fertilized treatments was positively correlated moderately with N2-N and highly with the 15N atom% in 
N2O-N. N2O-N as a % of (N2-N + N2O-N) and 15N atom% showed moderate negative correlation with NH4

+-N 
(Supplementary Table S4b). There was no correlation between either N2O-N or N2-N and the total bacterial 
community indicated by 16S rRNA gene numbers, or with any of the denitrification genes although there was 
a moderate negative correlation between N2O-N and the nir:nos ratio in the subset of K15NO3-fertilized soils. 
Abundance of all the denitrification genes was strongly correlated with 16S rRNA indicating the relationship 
between SOC and microbial abundance, except for nirS. This relationship was supported further by a strong 
positive correlation of the 16S rRNA and denitrification genes with NH4

+-N, derived from the mineralization 
of soil organic matter. There was no significant correlation between nirS and nirK although both correlated with 
nosZI and nosZII abundance. The ratio nirK:nirS showed weak negative correlation with the soil wfps, strong 
positive correlation with NH4

+-N and moderate correlation to CO2 (positive) and, in the 15N-fertilized pots, 
15N atom% (negative). The nir:nos ratio showed similar trends and additionally showed moderate negative cor-
relation to N2O-N and, in the 15N-fertilized fertilized pots, to N2O-N as a % of (N2-N + N2O-N). Neither ratio 
showed significant correlation with N2-N. There were no statistically significant correlations between nosZI and 
nirK mRNA abundance and gaseous emissions.

The CO2 emissions (prominent only in woodland soil without plants) correlated with NO3
−-N; 16S rRNA, 

nirK and nosZI gene abundance; and with N2-N in the K15NO3 fertilized subset.

Discussion
The role of microbial diversity and abundance.  Microbial diversity was influenced by previous long-
term treatment of the different plots, resulting in the distinctly different microbiome composition revealed by 
amplicon sequencing. These contrasting treatments: arable management with N-fertilizer (N6); no N (N0); 
organic FYM; and the woodland soil left untilled and unamended, provide very different scenarios and each 
appears to favour divergent combinations of phyla and subphyla as shown in Fig.  1. The overall size of the 
microbial biomass (also related to SOC) indicated by 16S rRNA gene abundance was related to the abundance 
of the denitrification genes nirK and nosZI, which did not appear to be increased by the regular application of 
N fertilizer. The denitrification genes are relatively common across different phyla, and it is likely that although 
the community composition varied, gene abundance was not limiting in these experiments. In contrast to the 
production of CO2, N2 and N2O did not show statistically significant correlation to 16S rRNA gene abundance, 
nor to any of the denitrification genes although there was a moderate negative correlation between nir:nos ratio 
and N2O-N, N2O%, and 15N atom%. This indicated that as the proportion of nitrous oxide reductase genes 
(nosZI + nosZII) increased compared to nitrite reductase genes (nirK + nirS), there was proportionally less N2O 
in the chambers as it was converted to N2.

The biogeography of denitrifying bacteria and their genes, and differences in their relative abundances22,34, 
is one reason for the lack of consensus between different studies which attempt to define the most important 
genes. Edaphic factors such as pH are known to influence soil microorganisms: changing soil pH in different 
plots caused significant differences in denitrification gene abundance35. The relative abundance of nirK and nirS 
reported elsewhere appears to depend on soil properties and management: relatively more copies of nirS were 
reported in unfertilized bare fallow compared to nitrate or FYM-fertilized soil, where nirK was more abundant36. 
Our results, from different soils and treatments, are not directly comparable with these but are consistent with 
previous measurements in Broadbalk soil25. The relatively higher abundance of nosZI compared to nosZII is 
consistent with reports that nosZI occurs in Proteobacteria14 which together form the most abundant phyla in 
all Broadbalk soils. Recently, changes in the diversity and abundance of nirK and nosZ genes expressed in soil 
microcosms have been related to N2 and N2O emissions37. In our experiments, we could measure transcription 
of nirK and nosZI only in FYM and woodland soil and there were twice the number of copies of nosZI per nirK 
in FYM compared to woodland soil which could explain the lower N2O and N2O:N2 measured in the FYM 
compared to woodland soil in the absence of plants although correlations were not significant. When plants are 
present, differences in the uptake of the added 15N fertilizer that limit the amount left in soil as a denitrification 
substrate may change this relationship (see below). We were surprised that 16SrRNA gene abundance was not 
found to be significantly lower in bare soil compared to planted pots containing rhizosphere soil. Bacterial cell 
numbers are higher in the rhizosphere than bulk soil38 but the qPCR assays in our study were probably insuf-
ficiently sensitive to detect this, compared to the much larger differences due to the source of the soil.

Table 4.   ANOVA for gas measurements in K15NO3-fertilized soils only.

d.f. N2-N Total N2-N + N2O-N N2O-N as % total N d.f. 15N atom% 15N2O-N

Date F3,57
P

4.15
 = 0.01

4.1
 = 0.011

2.96
 = 0.04 F3,64 NS NS

Soil F3,57
P

8.13
 < .001

8.24
 < .001 NS F3,64

P
33.26
 < .001

10.7
 < .001

Plant F1, 57
P

15.62
 < .001

14.83
 < .001

15.89
 < .001 F1, 64 NS NS

Soil × plant F3, 57
P

10.24
 < .001

10.23
 < .001

4.56
 = 0.006

F3, 64
P

10.67
 < .001

9.1
 < .001



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16053  | https://doi.org/10.1038/s41598-020-72679-z

www.nature.com/scientificreports/

The importance of plants in gas production.  In water-saturated conditions conducive to denitrifica-
tion, both nitrate fertilizer and plants had a major influence on N2O production. This agrees with the findings 
of a recent meta-analysis where fertilizer quantity and the presence of crops were the most important drivers 
influencing N2O emissions21. The relative abundance of the various genes involved in NO2

− and N2O reduction 
did not appear to drive the gasses measured in our experiments, indicating that denitrification was not con-
strained by abundance of nirK, nirS, nosZI and nosZII in the arable soils although differences in relative abun-
dances (nirK:nirS; nir:nosZ) might explain the significantly greater N2O production in bare, fertilized woodland 
compared to FYM soil. The relatively low N2O-N measured in woodland soils where wheat was grown could 
reflect the drop to 40% wfps, conditions less conducive to denitrification. The proportion of 15N in N2O-N in 
bare woodland soil was lower than in the arable soils, and significantly lower where wheat was growing, indicat-
ing that some of the “extra” N2O in woodland soil arose from NO3

−resulting from nitrification of NH4
+ derived 

from the larger total N pool. The NH4
+-N is likely to be a product of SOM mineralisation rather than a legacy of 

previous fertilization regimes; the results indicate that plants can stimulate the soil microbiome to increase this 
mineralisation. Nitrifying bacteria, archaea and fungi in soil can oxidize NH4 to NO2

− and subsequently NO3
−, 

especially in aerobic conditions.
In our experiments, the most N2O was produced when fertilizer was added to bare soil, and least in unfer-

tilized soil with wheat, and the concentration measured in the chambers did not change significantly over the 
sampling period. In contrast, N2 increased over time, with more produced when plants were present. The 15N 
atom% in N2O was also higher in soil with plants. The increase in N2 indicates that N2O was being actively 
reduced during the experiment, that production and consumption of N2O was in equilibrium, and full denitri-
fication from NO3

– to N2 was more efficient in the presence of plants despite their competition for NO3
–-N. Most 

microbes are more active in the presence of plants, stimulated by the energy-rich root exudates, and this may 
explain both increased 15N atom% in N2O and increased reduction of N2O to N2. In addition, this high degree of 
conversion of N2O to N2 may arise from the closed experimental system causing denitrifying microorganisms to 
remain in contact with N2O for longer than in open soil in the field, where N2O is likely to be rapidly lost to the 
atmosphere. In contrast to other experiments measuring the effect of small plants in enclosed chambers7,18, we 
used mature plants resulting in all soil being in contact with roots, effectively rhizosphere soil, for comparison 
to bulk soil in unplanted pots. This would have enhanced the plant effect, explaining the much higher conver-
sion of N2O to N2 that we observed together with the reduction in soil NO3

−-N which was rapidly assimilated by 
plants. The abundance of nosZ is reported to be influenced by resource availability, with relatively fewer copies 
detected in nutrient-poor environments and an increased proportion present in rhizosphere communities34. 
The relevance of other differences such as the presence of more copies of nirS in FYM soil, are unclear since they 
did not result in significant differences in gaseous emissions, although it should be acknowledged that the gene 
abundance was measured only at the end of the experiment and could have varied over the preceding 4 days.

Soil factors driving denitrification.  Emissions of N2O and N2 are known to fluctuate and much greater 
replication is needed to demonstrate which factors apart from NO3

− and wfps are driving denitrification. The 
closed design of our experiment with daily gas sampling did not allow measurement of gas fluxes but result 
indicate that the peak concentration of N2O was reached by 24 h and did not increase significantly after this time 
because it was being reduced to N2, which in contrast, increased each day in most treatments. Our observations 
that most N2O produced in soil is further reduced to N2 by active denitrifying bacteria is consistent with many 
reports. However, less N2 than N2O was measured in planted soil fertilized with KNO3 in a sealed system with 
He7 although the converse was observed in an earlier experiment with Ar18; fertilizer type and water satura-
tion also influenced denitrification in these studies. Our system, in contrast, was designed to have an enhanced 
rhizosphere effect and growth of plants in a normal atmosphere. The maximum amount of K15NO3-N converted 
to N2 over the 4 days of our experiment was 4%, in the N6 soil, where 1.6 µg 15N2-N g−1 dw soil was detected 
after 4 days, derived from 40 µg K15NO3-N g−1 dw soil added when the chambers were sealed. With plants, ~ 5 
µg NO3

−-N g−1 soil remained after 4 days, suggesting that much more was taken up by the wheat than was avail-
able for denitrification. In other studies, N2O-N comprised 7% of (N2O-N + N2-N) emitted from cores of wet 
agricultural soil39 and 25% in saturated soils amended with artificial root exudates40. There are several reports 
that the ratio of N2O:N2 increases with the concentration of NO3

− in soil7,29,41 but the concentration of K15NO3 
in our experiments, 40 μg N g dw soil−1 equivalent to 100 kg N ha−1, was relatively modest (and decreased by 
85% over 4 days in the presence of plants) compared with many other studies in vitro. For example, the in vitro 
study40 with model root exudate applied 100 μg N g dw soil−1 and application rates cited in field surveys were 
160–300 kg N ha−1 year−129 and 200–500 kg N ha−1 year−141, respectively. In our pots, NO3

− was more evenly dis-
tributed throughout the soil than in field applications, so avoiding localised high concentration activity hotspots. 
High concentrations of NO3

− are reported to inhibit nitrous oxide reductase and hence the reduction of N2O to 
N2

42,43. In soil microcosms amended with with 50 μg NO3
–-N g dw soil−1, N2O comprised > 1% (N2O + N2) after 

48 h whereas adding 500 μg NO3
–-N g dw soil−1 diminished N2 emissions by 38–90%42. Another study44 found 

fungal denitrification dominated initially, after high levels of straw and nitrate (200 mg NO3
–-N g−1) were added 

to soil but when NO3
–-N fell to 40 mg g−1 soil, N2 evolution dominated.

The constraints on measuring de novo N2 production in the presence of 78% N2 in air, make it difficult to 
design experiments without adding isotopically labelled N fertilizer and plants reportedly do not flourish when 
N2 in air is replaced by Ar or He. The acetylene inhibition method previously used to prevent conversion of 
N2O to N2 has many disadvantages45. Our experiment was designed to determine the effect of well-developed 
wheat plants at peak root exudation on denitrification, and on the bacterial genes involved, following satura-
tion of the soil, rather than following the development of the plant and denitrification rates over time. We were 
constrained by the need to sample gas from the chambers manually: future experiments using repeat robotic 
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gas sampling would offer great advantages. Over the short 4 days enclosure, we observed that plants decreased 
soil NO3

− and moisture levels and increased CO2, all of which may influence effect denitrification and could be 
investigated further.

It would be interesting to attribute the denitrification genes that we detected to the organisms from which 
they originated. Further studies to sequence amplicons may reveal whether different groups are present and 
(with improved mRNA extraction) active in the different soils, coupled with estimates of gene abundance over 
time (within 24 h and over days), and improved monitoring of gaseous emissions may help to explain the high 
variability observed. Nevertheless, our work reported here confirms that N-substrate (nitrate) availability is the 
main driver for N2O production in water-saturated soils and furthermore, it shows that the presence of plants 
promotes further reduction of N2O to N2, which is the major denitrification product. The relative abundance 
of the various genes implicated in denitrification did not play a major role in these experiments although long-
term pre-treatment of soils had generated significant differences in the composition of their soil microbiomes.
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