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    ABSTRACT In recent times, synthetic aperture radar (SAR) and multiple-input-multiple-output (MIMO) antenna 

systems with the capability to radiate waves in more than one pattern and polarization are playing a key duty in modern 

telecommunication systems. This review work presents a systematic and theoretical study of various decoupling 

techniques with a strong focus on metasurface (MTS), and metamaterial (MTM) approaches in SAR and MIMO 

antenna systems and their effects on the performances of the system. Enhancement in mutual coupling affects the 

antenna’s specifications significantly. Primarily, mutual coupling degrades the performance of the MIMO and SAR 

systems. While the performance of the system can be increased by calibrating out the interferences in the digital area, 

but it is more efficient to apply decoupling methods (from an antenna perspective) to dominate mutual coupling 

influences. Some simple and cost-effective approaches include the use of defected ground structure (DGS), parasitic or 

slot element, dielectric resonator antenna (DRA), complementary split ring resonator (CSRR), neutralization lines, 

decoupling networks, P.I.N or varactor diodes, electromagnetic bandgap (EBG) structures, metamaterials and 

metasurfaces that dominate the mutual coupling influences through means of physical realization. In this study, the 

mutual coupling reduction methods based on the MTSs and MTMs provide a higher level of isolation in a more simple 

and cost-effective configuration without affecting the structural physical dimensions and negligible effects on the 

bandwidth and radiation properties. An immense investigation based on various decoupling mechanism, their instances, 

and comparative review is yet scarce in the literature. Hence, various MIMO and SAR antenna design approaches and 

diverse decoupling methods (considering differing architectures and methodologies) are illustrated here using instances 

and comparisons of associated specifications. 
 

    INDEX TERMS Decoupling methods, metamaterial (MTM), metasurface (MTS), multiple-input-multiple-output 

(MIMO), synthetic aperture radar (SAR), isolation enhancement, array antennas. 
 

I. INTRODUCTION 

    SAR and MIMO [1] are arguably the state-of-the-art 

methodologies for enhancing the capacity of radio links 

via multiple transmitting and receiving antennas to have 

multipath scattering. Conventionally, MIMO and SAR 

systems are defined as practical techniques for 

transmitting and receiving signals stemming from 

multiple independent channels concurrently. This is 

typically implemented over the same radio channel with 

the aid of multiple antenna configurations without 

additional losses in radiation power in rich scattering 

surroundings. SAR and MIMO are also categorized under 

next generation wireless communication technologies due 
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to their marked potential to improve system credibility 

and channel capacity by means of multiple antennas [2]. 

MIMO was as a practical solution to the data rate 

restriction of single-input single-output (SISO) systems. 

MIMO and SAR are generally used on different networks, 

and they also improve the transmission velocity of data 

[3] by using the maximum content of wireless 

telecommunication devices. 

     In [4-5], various etched portable MIMO and SAR 

antenna apparatus are discussed. They are broadly applied 

in applications of mobile devices because of their 

adaptation with the system, better completeness, low cost, 

and simplicity of construction. The simplicity and 

genericity of the multi-antenna topology [6] utilized in the 

transmitting side and receiving side in MIMO and SAR 

systems allow for a more convenient implementation 

compared to other antenna array topologies. Also, such 

configurations reduce channel errors in communication 

systems to have enhanced data rates [7]. However, this 

may lead to multipath scattering due to the inherent high 

cohesion factor in the multi-signal distribution [8]. 

Additionally, the decreased distance between the antennas 

in array systems can potentially reduce the decoupling 

factor, which degrades the angle of arrival [9] in the 

estimation of carrier frequency offset [10] and signal to 

interference noise ratio [11]. It is good to note that the 

isolation between adjacent antennas decreases either by a 

huge flow of surface current from the stimulated ports or 

space radiation and surface waves. Also, the contrary 

influence of interferences on reflection coefficients cannot 

be ignored [12]. Hence, the main challenge in the 

implementation of antennas for MIMO and SAR 

applications is limiting the interferences between more 

recent compact etched antennas and other antenna 

configurations [13], [14]. Comprehensive studies based 

on models specifically designed to increase the isolation 

have been presented in recent times [15-22]. The basic 

approaches for enhancing isolation in multi-antenna 

systems typically involve the utilize of decoupling 

networks [17], neutralization lines [18], engraved 

parasitic elements [19], CSRRs [20], EBG architectures 

[21], and DGSs [22]. In [23], easy comparison of 

disparate decoupling approaches containing parasitic 

elements, utilize PIN and varactor diodes, and decoupling 

networks has provided. In addition, the efficacy of 

varying relative permittivity of layers on antenna 

parameters is presented and discussed. These methods 

allow for the manipulation of mutual coupling through 

weakening, resisting, or reducing the surface current flow. 

Antenna configurations such as reconfigurable, engraved, 

dielectric resonator, metasurface, and metamaterial are 

widely adopted to destroy the harmful outcome of the 

interferences [23-28]. 

    In the following survey, a comparative review on 

diverse MIMO and SAR antenna design approaches and 

isolation increment methods with a strong focus on the 

metasurface (MTS) and metamaterial (MTM) concepts is 

presented. In addition to this, different antenna models 

based on conventional decoupling techniques are 

analyzed to illuminate model alteration possibilities. The 

provided examples here are investigated and compared 

with a particular affirmation on fundamental antenna 

properties, i.e., frequency band, isolation level,  gain, and 

radiation efficiency. In essence, this survey highlights the 

practicality and constraints of various SAR and MIMO 

antenna structures available in the existing literature. 

Though in [23], [29-30] the theoretical aspects of SAR 

and MIMO antenna's isolation are comprehensively 

discussed, these articles do not characterize the various 

antenna topologies which provide a case for SAR and 

MIMO antenna's decoupling techniques. Also, the non-

existence of a complete overview of the design principles 

for the mutual coupling based on the MTS and MTM 

properties of SAR and MIMO antenna systems and 

associated examples remains a lacuna in this field of 

study. Hence, it is mandatory to fill this information gap 

in the area of MIMO and SAR antenna designs. This 

survey provides a complete discussion on several SAR 

and MIMO antenna systems and their comparative 

decoupling topologies based on the MTS and MTM 

principles in order to improve the understanding of the 

leading stage scholars, as well as, the expert antenna 

designers. 

II. INTRODUCTION MUTUAL COUPLING DEFINITION 

   In antenna array systems, the mutual coupling generally 

refers to the energy attracted through a nearby antenna 

when an antenna is operational. It changes the reflection 

coefficient(s), input impedance(s), and radiation 

pattern(s). To provide an analytical background for 

mutual coupling, some empirical models have been 

presented and discussed in [31], according to Equation (1) 

and Equation (2). 

          
    

 
       ,                   (1) 

      
 

 
                                           (2) 

where      represents the mutual coupling and the 

space between the mth and nth antennas is defined by    . 

The number of antennas and the parameter controlling the 

level of coupling are presented by N and  , respectively. 

    Practically, the isolation level pertains not only to the 

array topology but also on the stimulations of the array 

antennas and other factors. It is normally estimated 

applying the dB-valued S-parameter between the mth and 

nth antennas (i.e.,                ), and equivalently the 

isolation                  between them. 

   A detailed understanding of the isolation mechanism 

will invariably relate to the transmitting/receiving mode. 

The isolation mechanisms are discussed as follows, 

considering the transmitting and receiving modes 

independently. 

A. ISOLATION IN TRANSMITTING MODE 

   Fig.1 displays that the antennas “m" and “n” in a 

typical array are considered. A generator is considered to 

antenna “n”, the produced energy of the generator “1” 

radiates within area “2” and onto the mth antenna “3”. The 

portion of the energy arrived at the mth antenna re-scatters 

within area “4” and the residual energy moves in the 
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direction of the source “5”. A deduction of the re-

scattered energy “4” will be take-up by the nth antenna 

“6”. This mutual interplay is an ongoing procedure, and it 

is iterative. However, it is usually best to select the first 

few repetitions because the re-scattered energy reduces 

drastically after each repetition. The general far-field is 

derived from the vector summation of the re-scattered and 

radiated fields. Hence, the mutual coupling varies the 

pattern of the antenna. The wave “5” is added vectorially 

to the reflected wave and incident wave of the mth 

antenna. This enhances the standing wave and changes 

the mth antenna's input impedance. Mutual coupling varies 

both the self-impedance of the antenna and the mutual 

impedance. 

B. ISOLATION IN RECEIVING MODE 

   Assuming the plane wave “1” exceed toward the array 

reaching the mth antenna. It evolves a current in the mth 

antenna. The portion of the incident wave travels within 

the receiver as “2” and the remaining segment is re-

scattered within area “3”. Some of the re-scattered wave 

is conducted onto the nth antenna “4”, where it adds 

(vectorially) to the incident plane wave “5”. Thus, the 

received wave through an element is the vector 

summation of the direct waves and the coupled waves 

from other elements. To optimize the received energy 

(i.e., lowest re-scattered energy), the mth antenna's 

terminating impedance has to be selected. Therefore, the 

re-scattered wave “3” is annulled via the reflected wave 

“5”. 

    In a receiving mode, the antenna's performance under 

consideration can be evaluated through stimulating the 

antenna with the other antenna interrupted with a 50-ohm 

load. 

  

                           (a)                                                     (b) 

Fig.1. Investigation of mutual coupling architecture in (a) transmitting 

and (b) receiving modes [14]. 

III. VARIOUS DECOUPLING TECHNIQUES  

    In literature, several isolation enhancement approaches 

are available such as decoupling networks, parasitic 

element approach, slot etching and ground plane 

structures, neutralization lines, PIN diode, varactor diode 

and feeding structures, frequency-selective surface (FSS), 

characteristic modes, and EBG structures [13-14], [15-

16], [23], [28-30]. These approaches have been briefly 

discussed in this section. Additionally, due to some 

disadvantages and restrictions of the abovementioned 

methods, which have been discussed in details in the next 

part, the metasurface and metamaterial decoupling 

methods have been proposed and investigated in deep, 

which enable the designers to model SAR and MIMO 

antenna systems with minimized mutual coupling in a 

compact footprint area for mass production.   

 
A. DECOUPLING NETWORK APPROACH  

    Decoupling networks are applied to obtain enough 

isolation in MIMO and SAR antenna systems. They work 

on the methodology of the transformation of the cross-

admittance term to purely imaginary amount via step up 

transmission lines or through discrete elements. Eigen 

mode disintegration [32], manmade structure [33], 

coupled resonator [34], and inserted elements [35] are 

some examples of the isolating layouts. 

    Modeling the decoupling scheme between the antenna 

arrays is easy to implement [38-45]. Specified decoupling 

approaches provide mutual reduction at the cost of some 

ohmic losses. The isolating method annuls the original 

interference by producing a supplementary coupling 

route; therefore, the mutual coupling is reduced, and far-

field properties become better. 

    Similarly, the SAR and MIMO decoupling 

performance can be boosted through implementing an 

indistinct line and lumped components [46-48]. It is 

placed between the SAR and MIMO antenna arrays to 

increase gain and reduce the mutual coupling. The shunt 

component based decoupling network is applied to 

increment the performances to have acceptable 

decoupling between the antennas. 

    Various types of the decoupling network approaches to 

increment the decoupling between the array antennas 

have been presented and explained in the literature such 

as diamond-shaped patterned ground resonator (DSPGR)-

plane decoupling network [49], dummy load-based 

decoupling approaches [50], coupled resonator 

decoupling network (CRDN) [51], and multi-element 

pattern diversity based decoupling network [52]. Table I 

depicts a comparison of the characteristics of MIMO 

antennas using decoupling networks. In [52], the highest 

efficiency and the lowest mutual coupling of -32 dB are 

achieved utilizing the most straightforward configuration 

of dummy loads. The dual-band operations are exhibited 

in [51]. 

 

TABLE I. COMPARISON ON THE PERFORMANCE PARAMETERS OF DECOUPLING NETWORKS BASED MIMO AND SAR ANTENNAS 

Ref. [49] [50] [51] [52] 

Dimensions / Substrate 72.4 × 20 × 0.8  mm3 

Rogers RO4350B 

70 × 35 × 0.8 mm3 

FR-4 

112 × 55 × 1.6 mm3 

FR-4 

40 ×100 × 0.8 mm3 

FR-4 
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Isolation (dB)   -27.6 dB @ 

2.18  2.65 GHz 

  -32 dB @ 

3.45  3.55 GHz 

  -15 dB @ 

2.4  2.48 GHz 

  -15 dB @ 

5.15  5.35 GHz 

  -15 dB @ 

3.5  3.6 GHz 

 

Applied Approach Diamond-shaped pattern 

ground resonator 

Reactive dummy loads  Coupled resonator 

decoupling method  

Pattern diversity 

decoupling method 

Efficiency / Gain 66 70.5 % / 1.39dBi 82 % / -  66 75 % / -  50% / -  

No. of Ports / 

Applications 

Dual Ports / IMS Triple Ports / WiMAX Dual Ports / ISM and 

WLAN 

Eight Ports / WiMAX 

Remarks Complex layout and 

medium dimension 

Easy configuration Dual-band and Large 

dimension 

Easy configuration and 

maximum ports  

 

B. PARASITIC ELEMENT DECOUPLING APPROACH  

   Engraved slit or parasitic element antennas use two 

orthogonal modes to generate a broad frequency band via 

coupling in ground plane and/or in radiating patch [53]. In 

this method, the isolation between elements is optimized 

by producing an additional coupling route [54-55]. One of 

the two coupling routes opposes the signal arriving from 

the other coupling road, which causes an improvement in 

isolation level. Indirectly linked decoupling components 

such as folded shorting strip, meandered slot, and vertical 

parasitic strip are recognized as a parasitic element [56-

58]. Ease of implementation, size, and comfortable 

generation applying PCB technology and/or waveguides 

are the main benefits of the parasitic or slot antenna. The 

placement of parasitic elements has to be implemented 

meticulously, and it is not very straightforward. This 

procedure increases the performance parameters of the 

array antennas. 

    Various types of the parasitic element decoupling 

approaches based on the square ring slit [59], metal strip 

reflector [60-61], stepped feed-line and open-ended 

ground slit [62], and single-shared-radiation component 

and meandered feeding lines [63] to obtain lowest 

interference between the array elements have been 

proposed and illustrated in the literature. Table II 

mentions the studied specifications of parasitic or slot 

antennas. The maximum amount of gain and bandwidth is 

achieved in [59]. The structure in [60] provides optimum 

efficiency with an easy layout. The antenna in [61] 

presents the highest isolation value of -22dB. A new 

shared radiation element antenna is investigated in [63]. 

 

TABLE II. COMPARISON ON THE PERFORMANCE PARAMETERS OF SLIT OR PARASITIC ELEMENT BASED MIMO AND SAR 

ANTENNAS 

Ref. [59] [60] [62] [63] 

Dimensions / Material 66.25 × 66.25 ×1.6 mm3 

FR-4 

25 × 30 × 1.6 mm3 

FR-4 

42 × 25 × 1.6 mm3 

FR-4 

22 × 24.3 × 1.52 mm3 

Rogers TMM4 

Isolation Level (dB)   -20 dB @3.0  12.0 

GHz 

  -20 dB @3.1  10.6 

GHz 

  -22 dB @3.2  12.0 

GHz 

  -15 dB @3.0  10.6 

GHz 

Applied Approach Square ring slot and 

stepped feed line 

Two coplanar stripline-

feed staircase-shaped 

radiating elements 

Open-ended ground slot 

and stepped-slot feed 

line 

Meandered feed line and 

stub to ground linked 

through via 

Efficiency / Gain  60% / 5 8 dBi 90% / 5.2dBi  80% / 4dBi 82% / 1.5 5.8 dBi 

No. of Ports / 

Applications 

Dual Ports / UWB Dual Ports / UWB Quad Ports / Portable 

UWB 

Dual Ports / UWB 

portable devices 

Remarks Lowest ECC Simple manufacture and 

small dimension 

Low mutual coupling Maximum gain and 

expensive substrate 

 

C. DEFECTED GROUND STRUCTURE (DGS) 
DECOUPLING METHOD 

   DGS introduces the slits realized on the antenna's 

ground plane [64]. It is pursued as an appearing method 

for improving many parameters of MIMO and SAR 

antenna systems [65]. Also, it participates dramatically to 

increment the isolation. A general way is to create the slit 

in the ground plane. Howbeit, the slit can improve the 

isolation, it may also enhance the back radiation [66-68]. 

Various sorts of slits can be engraved on the ground 

(GND) as well as on the patch for decoupling 

improvement, shifting frequency, footprint area 

decrement, and multiband operation. The printed slit 

controls the flowing current flowing on the ground plane 

by repressing the interferences between the adjacent 

elements and behaves such a band-stop filter.  

    Various types of the DGS isolating mechanisms have 

been discussed in the literature. A few examples of the 

these isolating mechanisms are S-shaped DGS [69], 

square ring DGS [70], T-shaped metallic stub based DGS 

[71], electrically small meandered DGS [22], [72], ground 

plane loaded with complementary split ring resonator 

(CSRR) [20], concentric square ring patch with CSRR 

loaded GND [73], CSRR loaded GND [74], and slotted 

CSRR in GND [75]. Properties of several DGS antennas 

presented here are listed in Table III. This table explains 

that antenna in [69] has the largest size and thickness. The 

antenna in [69] also achieves the highest efficiency and 

isolation of -55 dB. Even though the antenna in [22] 

presents the largest bandwidth accompanying band notch 

property and small size, it depicts considerably higher 

isolation performance than [69]. 
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TABLE III. COMPARISON ON THE PERFORMANCE PARAMETERS OF DGS MIMO AND SAR ANTENNAS 

Ref. [69] [76] [71] [22] 

Dimensions / substrate 100 × 72 × 3.81 mm3 

Rogers TMM6 

60.2 × 60.2 × 1.6 mm3 

RF-4 

22 × 26 × 0.8 mm3 

RF-4 

50 × 160 × 0.8 mm3 

RF-4 

Isolation Level (dB)   -55 dB @ 

2.57 GHz 

  -25 dB @ 

2.45 GHz 

  -20 dB @ 

3.1 11.8 GHz 

  -20 dB @ 

0.7 1.0 GHz 

Applied Approach S-formed periodic DGS Square ring DGS Trident-shaped Strip and 

Ground plane open 

ended slit 

Open ended DGS-slit 

Efficiency / Gain  93 96% / -

1.79 3.75dBi 

81% / 2.1dBi 85% / 3.6 6dBi 80% / 2dBi 

No. of Ports/ 

Applications 

Quad Ports/ WLAN Quad Ports/ WLAN Dual Ports/ UWB, 

WLAN, X-band notched 

Quad Ports/ LTE 

Remarks Large thickness and 

high efficiency 

Miniature structure and 

simple construction 

Miniature structure and 

large bandwidth and 

filter 

Complex structure and 

controllable isolation 

 

Table IV shows the characteristics of the CSRR loaded 

ground plane antennas. For the antenna in [75], the 

highest efficiency at 86.62% and the most straightforward 

configuration with dual band properties is obtained. The 

antenna in [75] has higher isolation of -33 dB. Hence, it is 

more appropriate in comparison to other CSRRs. 

 

TABLE IV. COMPARISON ON THE PERFORMANCE PARAMETERS OF CSRR MIMO AND SAR ANTENNA 

Ref. [20] [73] [74] [75] 

Dimensions / substrate 23 × 29 × 1.524 mm3 

Rogers TMM4 

60 × 60 × 1.6 mm3 

FR-4 

100 × 50 × 0.8 mm3 

FR-4 

70 × 100 × 1.6 mm3 

Rogers4003 

Isolation Level (dB)   -15 dB @ 

3  12 GHz 

  -22 dB @ 

2.2  2.7 GHz 

  -18 dB @ 

2.4 2.5 GHz 

  -20 dB @2.45 GHz & 

  -33 dB @5 GHz 

Applied Approach Stub and GND SCRR 

and  

GND CSRR and 

concentric square ring 

patch and  

GND and bottom plane 

CSRR 

Slotted CSRR in GND 

Efficiency / Gain 82% / 5.9dBi 72.57% / 4dBi 29% / -0.8dBi 86.64% / 4.025dBi 

No. of Ports/ 

Applications 

Dual Ports/ UWB Quad Ports/ ISM Quad Ports/ ISM Dual Ports/ WLAN 

Remarks Large bandwidth and 

small structure 

Horizontal and vertical 

polarized, easy layout 

Large size and thinner 

thickness 

Lowest mutual coupling, 

dual-band, and easy 

layout 

 

D. NEUTRALIZATION LINE DECOUPLING APPROACH 

     Neutralization lines [77] are utilized to transit 

electromagnetic waves from one antenna to another via a 

metallic slot or lumped component. They create a 

contrary coupling which lowers the interferences at given 

frequencies between the elements. Neutralization lines 

have considered as particular isolation approaches, which 

annul the interferences via presenting a second road with 

an inverse phase and equal amplitude. Consequently, the 

utmost of neutralization lines accessible in literature are 

narrowband [78], [79]. The neutralization line is more 

appropriate for the SAR and MIMO systems with a low 

number of antenna arrays. In MIMO and SAR antenna 

models, the difficulty of matching is quite evident. A 

neutralization line is a metallic structure with a thin 

thickness that dissolves the obstacle of matching and 

suppresses the coupling between antennas. The form, 

dimensions, and orientation of the neutralization line are 

related to the antenna components. However, finding the 

neutralization path is not very straightforward. 

   Various implementations of the neutralization line 

decoupling approach to reduce the array antenna's mutual 

coupling such as thin printed neutralization lines [80], 

pair of crossed neutralization lines [81], neutralization 

lines together with LC matching network [18], and 

neutralization lines between ground planes [82] have been 

presented and investigated in the literature. Table V 

describes the neutralization-based MIMO and SAR 

antenna properties. A couple of crossed neutralization 

lines is investigated in [81] with the thinnest substrate 

thickness and proper gain amounts. However, the 

antenna's layout is not simple. The antenna operates on 

multiple frequency bands and presents a minimum mutual 

coupling amount of -23 dB. 

TABLE V. COMPARISON ON THE PERFORMANCE PARAMETERS OF NEUTRALIZATION LINES MIMO AND SAR ANTENNAS 

Ref. [80] [81] [18] [82] 

Dimensions / Material 36 × 65 × 1 mm3 

FR-4 

135 × 80 × 0.8 mm3 

FR-4 

50 × 40 × 1.6 mm3 

FR-4 

4 cm × 4 cm × 1.6 mm 

FR-4 

Isolation Level (dB)   -15 dB @ 

2.4  2.5 GHz 

  -23 dB @ 750, 850, 

2000, 2500 MHz 

  -20 dB @ 

2.45 and 5.8 GHz 

  -21 dB @ 

3.1  11 GHz 

Applied Approach Neutralization line Crossed neutralization 

line with integrated 

inductors 

Neutralization line with 

couple of inductor and 

capacitor 

Stepped neutralization 

line 
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Efficiency / Gain 81% / 2.1dBi 31.86 61.73% /  

-1.79 3.75 dBi 

78 85% / - - / 3.28 4dBi 

No. of Ports / 

Applications 

Dual Ports / WLAL 

USB-Dongle 

Dual Ports / LTE, GSM, 

WLAN 

Dual Ports / WLAN Quad Ports / UWB 

Remarks Small structure and easy 

configuration 

Complex layout and 

minimum isolation 

high efficiency and easy 

layout 

Large dimension, largest 

bandwidth, and simple 

configuration 

 

E. PIN DIODE, VARACTOR DIODE, AND FEEDING 
STRUCTURE DECOUPLING APPROACH  
    PIN diode, varactor diode, and feeding structures are 

also applied to suppress the mutual coupling effects [83]. 

PIN diode in antenna models generates dynamic radiation 

patterns. The implementation of PIN diode in MIMO and 

SAR antenna arrays results to enlarge the link capacity 

controls the antenna's length, and also increments 

decoupling. This attribute ensures the reconfigurability of 

the antenna’s radiation [84].  

    Several switching-based decoupling methods where 

MEMS switches, p-i-n and varactor diodes are applied to 

expand the working frequency band and degrade the 

coupling have been proposed in the literature [85]. Some 

of them are based on back-to-back MEMS switches [86], 

slot-based P-I-N diodes [87, 88], planar inverted-F P-I-N 

diodes [89], and microstrip loop and slit frequency 

reconfigurable [90]. Table VI lists the characteristics of 

the mentioned approaches. The antenna illustrated in [89] 

is not simple because of the presence of a shorting plate 

and a vertical corrected feed line. It has the maximum 

amount of gain. Also, it has the highest isolation amount 

of -47 dB. However, the antenna structure in [90] shows 

the optimum efficiency and gain of 92% and 5 dBi, 

respectively.  
TABLE VI. COMPARISON ON THE PERFORMANCE PARAMETERS OF FREQUENCY RECONFIGURABLE BASED MIMO AND SAR 

ANTENNAS 

Ref. [86] [87] [89] [90] 

Dimensions / Material 46 × 20 × 1.6 mm3 

FR-4 

120 × 60 × 1.5 mm3 

RO-4350 

90 × 50 × 0.8 mm3 

FR-4 

150 × 150 × 0.8 mm3 

FR-4 

Isolation Level (dB)   -18 dB @2.39  2.48 

GHz and 5.15  6.4 GHz 

(Off state) 

  -12 dB @1.77  2.51 

GHz 

  -25 dB @0.75  7.65 

GHz 

  -47 dB @2.3  2.4 GHz 

(for D1 and D2 On-state),   

-30.8 dB @3.4  3.6 GHz 

(for D3 On-state),   -43 dB 

@2.5  2.7 GHz (for D1 and 

d4 On-state) 

  -20 dB @1.6  1.9 

GHz (Off state) 

  -20 dB @2.2  2.96 

GHz (On state) 

Applied Approach RF MEMS Switches Biasing network and 

varactor diodes per 

component 

DC biasing network and pin 

diodes and  

Biasing network and pin 

diodes switches  

Efficiency / Gain  83% / 2.9dBi 65 81 % / 0.5 3.2 dBi 48.43 73.1% / 

1.99 2.78dBi 

55 83 % (Lower band) 

75 92 % (Upper band)  

/ 3 5dBi 

No. of Ports / 

Applications 

Quad Ports / WLAN Five Ports / UWB and 

cognitive radio (CR) 

Quad Ports / WiMAX Triple Ports / LTE and 

portable wireless DTV 

media players 

Remarks Complex layout Expensive substrate 

Complex layout  

Highest isolation  Optimum efficiency and 

gain 

 

F. FREQUENCY-SELECTIVE SURFACE (FSS) 
DECOUPLING METHOD 

   FSS approaches can efficiently improve the isolation. 

However, they are discordant with low-profile structures, 

and they affect the radiation pattern [91]. This technique 

can be applied between the dielectric resonator antennas 

(DRA). This is obtained by accommodating an FSS 

between the DRAs that have been placed in the H-plane. 

The FSS contains an array of SRR cells that are 

embedded onto the E-plane. The SRR formation is 

modeled to achieve band-stop functionality inside the 

antenna frequency band. 

G. ELECTROMAGNETIC BANDGAP (EBG) 
DECOUPLING STRUCTURE 

    An EBG structure blocks electromagnetic waves of a 

certain frequency or plays as a region to pass 

electromagnetic waves [92]. Various stop-band, pass-

band, and band-gap frequencies can be recognized [93]. 

The EBG is a periodic adjustment of dielectric or metallic 

materials. Structure's periodicity and singular resonance 

of the elements can produce many band-gaps [94]. EBG 

presents parasitic inductance and capacitance. Thus, the 

phase constant of an electromagnetic wave distributing 

under the patch will be much greater than the transverse 

electromagnetic mode. As a result, the EBG element 

operates in a slow-wave medium with a wavelength 

shorter than the transverse electromagnetic mode. 

Conventionally, the EBG structure is located between the 

antenna arrays. While, for isolation improvement, the 

antenna array is enclosed via the EBG.  

    In the recent literature, several types of the EBG 

decoupling structures have been presented and discussed 

to improve decoupling between the array antennas in 

MIMO and SAR systems such as the mushroom type 

EBG [95], dual-layer multi-element EBG [96], periodic 

Z-formed EBG [97], and 1-D and SRR EBG [98]. Table 

VII provides an overview of the presented EM band-gap 

technique-based MIMO and SAR antennas. Simplest 

structure with easy manufacture providing the highest 

isolation in order of -53.7 dB has been presented in [97]. 
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The maximum efficiency of applying SRR and EBG has been presented in [98]. 

 

TABLE VII. COMPARISON ON THE PERFORMANCE PARAMETERS OF ELECTROMAGNETIC BANDGAP BASED MIMO AND SAR 

ANTENNAS 

Ref. [95] [96] [97] [98] 

Dimensions / Substrate 95 × 95 × 2.284 mm3 

Rogers RO4350B 

35 × 40 × 1.6 mm3 

FR-4 

90 × 45 × 1.6 mm3 

FR-4 

60 × 57 × 1.2 mm3 

FR-4 

Isolation Level (dB)   -25 dB @ 

2.395  2.42 GHz 

  -28 dB @ 

2.45  2.55 GHz 

  -30.35 dB @ 

5.59 GHz 

  -53.7 dB @ 

2.43  2.54 GHz 

 

Applied Approach Vias and S-EBG Dual layer mushroom 

EBG 

8 Z-formed EBG  SRR and EBG 

Efficiency / Gain 56.57% / 5.12dBi 64.42 66.94 %  

4.55 4.92 dBi 

NG / 2.42dBi 82% / NG 

No. of Ports / 

Applications 

Quad Ports / IMS Dual Ports / IMS Dual Ports / WLAN Dual Ports / ISM 

Remarks Complex layout Sorely complex layout 

and compact dimension 

Simple layout and large 

dimension  

High efficiency and 

simple layout 

 

   

All the approaches discussed above are summarized in 

Table VIII. From this table, most of them present 

isolation in order of 15dB, whereas the neutralization line 

method has the lowest isolation of 12dB. The benefits and 

drawbacks of several methods are listed in Table IX. The 

isolation value corresponds to the sort of antennas and the 

adopted ground plane. 

 

 

TABLE VIII. COMPSRISON AMONG VARIOUS DECOUPLING MECHANISM WITH PERFORMANCE PARAMETERS 

Ref. Isolation technique Isolation shape Frequency Isolation Gain Size 

[70] Decoupling network 

 

Two section 

transmission line 

746–787 MHz 23 dB 3 dBi 55×110 mm2 

[41] Decoupling network 

 

T-shaped strip 1.65-1.9 GHz 

and 2.68-6.25 

GHz 

10 and 

15 dB 

1.35 and 

4.22 dBi 

55×110 mm2 

[42] Decoupling network 

 

Tunable and 

coupling network 

2.4 GHz 20 dB - 90 × 72 mm2 

[45] Decoupling network 

 

Tunable and 

coupling network 

2.2-2.7 and 

4.9-5.9 GHz 

15 dB 2.9-4.5 dBi 40 × 40 mm2 

[46] Decoupling network 

 

Structure with 

lumped element 

770 MHz 16 dB -3.8 dBi 120×50 mm2 

[58] Parasitic elements Structure 

between antenna 

2.4-2.485 GHz 

3.2–3.5 GHz 

5.15-5.85 GHz 

16 dB - 100×60 mm2 

[99] Parasitic elements Branch 

element/resonator 

3–8.5 GHz 15 dB 5.75 dBi 26×40.5 mm2 

[100] Parasitic elements Branch 

element/resonator 

800–2700 MHz 36 dB 3.2 dBi - 

[101] DGS Slotting 2.4-2.484 GHz 17.8 dB 3 dB 39.5×20 mm2 

[102] DGS Defected ground 

plane/partial 

ground 

2.0–7.31 GHz 17 dB 3.67 dBi 54.82 × 96.9 

mm2 

[78] Neutralization lines Simple line 2.4 GHz 19 dB 2.1 dBi 30 × 65 mm2 

[103] Neutralization lines Branch 

line/suspended 

line 

760 MHz 12 dB 0.9 dBi 46 × 85 mm2 

 

TABLE IX. BENEFITS AND DRAWBACKS OF ISOLATION TECHNIQUES 

Ref. Techniques Benefit Drawback 

[32] – [52] Decoupling network - Easy decoupling structure 

- Enhance far-field properties 

- Sometimes additional space is needed 

- Generate ohmic losses 

[53] – [63] Parasitic elements - Control the isolation 

- Suitable DG 

- Shift in frequency due to parasitic 

elements 

[64] – [75] Defected ground structure 

(DGS) 

- Small antenna dimension 

- Proper diversity 

- usually not suited for mobile 

applications 

- Low gain 
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[77] – [82] Neutralization lines - Acceptable impedance matching 

- Proper diversity with DG 

- Lower frequency band  

- Shorter bandwidth when compared 

with upper frequency band 

[83] – [90] PIN diode, Varactor diode 

and feeding arrangement 

- Appropriate isolation  

- High gain 

- Losses due to component 

- Short frequency band 

- Complex configuration 

[92] – [98] Electromagnetic Bandgap 

(EBG) 

- Easy layout  

- Acceptable isolation  

- Short bandwidth 

- Low gain 

 

IV. HIGH EFFICIENT DECOUPLING TECHNIQUE 
BASED ON THE METASURFACE AND 
METAMATERIAL PROPERTIES  

   The results presented in Section II and listed in Tables I 

- IX show that the abovementioned decoupling 

approaches are just presented for a limited number of the 

array elements. In addition, the design process of some of 

them is complex and far way to practical realizations. 

Most of them are working at a specific range of frequency 

with low gain and efficiency, and they have affected the 

total physical size of the array antennas. In addition, they 

are not applicable for a wide range of design possibilities, 

and they have an asymmetric configuration which enables 

them for mass production. Therefore, as the main part of 

this review study, the efficient decoupling approach based 

on the metasurface and metamaterial concepts have been 

presented in bellow with providing an efficient number of 

examples and various type of designs. The main 

advantages of the following designs are their simple 

prototypes with ease of manufacture process, low cost, 

high isolation level between the array elements, as well 

as, not being limited to small number of array elements, 

being applicable for a wide range of frequency band, 

having very negligible effects on the performance 

parameters when keeping constant of physical 

dimensions, and having symmetrical layouts which enable 

them for mass production. 

A. METASURFACE (MTS) AND (METAMATERIAL 
(MTM) DECOUPLING METHOD APPLICABLE IN SAR 
AND MIMO ANTENNA SYSTEMS WITH WIDE RANGE 
OF DESIGN POSSIBILITIES 

    Waveguide slot array (WSA) antennas propose 

favorable properties that contain moderate cost, low-loss, 

and high power-handling ability [104]. While, the major 

disadvantage of the WSA is the interferences between the 

slit antennas that reduce the bandwidth, gain, and recurves 

the radiation pattern. To employ WSA antennas in next 

generation SAR and MIMO systems, a low degree of 

coupling is required [105]. Several methods have been 

implemented to increase isolation [106-121]. Some 

commonly used methods include coplanar strip walls 

between the antennas [122-123] and frequency selective 

surfaces [124]. However, these methods diminish the 

radiation pattern. This happens because a coplanar strip 

wall or an FSS wall does not have a good matching 

condition. Consequently, the radiation pattern is degraded 

because of reflected waves from the integrated wall 

between the antennas. 

In the following examples, the new approaches are 

introduced to increment isolation between WSA antennas. 

These primarily involve placing an MTS between the 

waveguide slit antennas. Proposed techniques are 

exhibited to significantly repress the mutual coupling and 

increase the gain and working frequency band. They are 

effective and simple to implement. 

     In [106], a novel mechanism has been presented to 

suppress the interferences between WSA antennas based 

on the MTS concept. This is obtained by locating an MTS 

bulkhead between the antennas, as depicted in Fig.2. The 

antenna's performance is displayed to improve when 

compared to the same reference structure with no MTS. 

The implemented antennas have a physical dimension of 

40 mm × 20 mm × 5 mm and operate over a bandwidth of 

1.7 GHz to 3.66 GHz, which relates to a practical 

bandwidth of 73.13%. The reference WSA antennas 

present an average isolation of -20 dB, while, with an 

MTS bulkhead, the decoupling is depicted to enhance to -

36.5 dB. Furthermore, the bandwidth expands by ~10%, 

and the gain increases by 14.66%. This mechanism will 

be very suitable for SAR and MIMO antenna systems 

where low coupling between adjacent radiation elements 

is necessary to improve the specifications of the structure 

and minimize array phase errors, as a necessity to 

increment the performance of the system. 

 

         

                           (a)                                                       (b)                                                                                         (c) 

Fig.2. (a) Reference structure, (b) WSA antennas with MTS bulkhead, (c) reflection and transmission coefficients. WO and W represent without and 

with MTS bulkhead, respectively [106]. 

     In [107], it is investigated that substrate integrated 

waveguide longitudinal slotted array antenna (SIWLSAA) 

that is loaded with metal fences shows low mutual 

coupling throughout VHF/UHF bands. A reference 

SIWLSAA implemented for comparison aim includes 

3×6 slotted arrays designed on the top-side, and the 

bottom-side of the FR-4 layer has the lowest mutual 

coupling of -63 dB between its slits. Suppression in 
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mutual coupling is discussed by applying an easy, 

innovative way based on locating a metal fence between 

each row of the slit arrays. The mutual coupling is 

exhibited to better than -83 dB entire 0.2-1.0 GHz with a 

gain more than 1.5dBi, and a side-lobe level less than -40 

dB. The presented SIWLSAA shown in Fig.3 is compact 

and has a physical dimension of 40 mm × 10 mm × 5 mm 

(0.026λ0 × 0.006λ0 × 0.002λ0, where λ0 is defined at 200 

MHz). The proposed SIWLSAA will be very suitable for 

MIMO and radar system applications.   

     

                             (a)                                                      (b)                                                                                    (c) 

Fig.3. (a) Reference structure (WO), (b) proposed structure with metal fences (W), and (c) S-parameter performances [107]. 

     

In [108], a decoupling structure based on MTS that is 

constructed of a square-wave slot pattern with overstated 

corners realized on a rectangular microstrip presents low 

mutual coupling between neighbor antennas for array 

systems. The 1×2 symmetric antenna array embedded 

with the proposed decoupling structure, which is 

exhibited in Fig.4, is modeled to work at ISM bands of X, 

Ku, K, and Ka. As demonstrated in Fig.4, the surface 

current distributions indicate that the isolation structure 

compounded of the square-wave slit soaks up the surface 

waves that would otherwise couple with the adjoining 

radiating parts. With this mutual coupling suppression 

technique, the following are observed: (i) the average 

isolations in the respective ISM bands mentioned above 

are 7, 10, 5, and 10 dB; and (ii) the center-to-center 

distance between the neighbor parts is decreased to 10mm 

(0.28λ). The average gain increment with the MTS 

decoupling is 2 dBi. 

 

                   

                                                  (a)                                                                    (b)                                                           (c) 

     

                                                 First Band                                                                                  Second Band 

      

                                              Third Band                                                                                    Fourth Band 

(d) 
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(e)  

Fig.4. Configuration of (a) reference array antennas (WO), (b) proposed structure applying the MTS isolating sheet (W), (c) circuit diagram, (d) S-

parameters, and (e) surface current distributions at 19.5 GHz (when one port is stimulated, the other one is matched to a 50-ohm load) [108]. 

     

An innovative approach to increase the isolation between 

the radiating parts of a waveguide slot array antenna has 

been proposed and elaborated in [109]. It has obtained by 

realizing slits between the waveguide oval-formed slits, as 

shown in Fig.5. The reference array has been 

implemented with an organization of 3×5 oval-formed 

slots. With embedding linear slits between the radiating 

oval-formed slots in both vertical and horizontal 

directions, major increment in isolation has obtained to 

have values of 24, 20, and 32 dB over the bands of 12.95 

to 13.75 GHz (Ku-band), 15.45 to 16.85 GHz (Ku-band), 

and 18.85 to 23.0 GHz (K-band), respectively. The study 

on the surface current distributions displays that the slits 

act as an isolating architecture that soaks up the surface 

waves, which would be coupled with the adjacent 

elements. The center-to-center gap between the slits is 

0.2λ that is at least two times less than the traditional 

array structures. Using the slit decouplings, the lowest and 

highest gains increase by 53.5% and 25.5%. Furthermore, 

the radiation patterns are unchanged. This technique is 

easy for employment and inexpensive for mass 

production. 

  

 

        

                                 (a)                                                   (b)                                                                     (c)                                             

  

First band, 12.95 - 13.75 GHz (Ku-band) 

  

Second band, 15.45 - 16.85 GHz (Ku-band) 

 

Third band, 18.85 - 23 GHz (K-band) 

(d) 

Fig.5. (a) Reference structure (WO), (b) proposed structure with (W) linear slot isolators, (c) surface current distributions at 22.5 GHz (when one port 

is stimulated, the others are matched to a 50-ohm load), and (d) S-parameters [109]. 

     

An electromagnetic technique to suppress the coupling 

between array antennas applying MTM EBG is presented 

and discussed in [110]. Fig.6 shows that the proposed 

configuration can be considered for a full-duplex array 

antenna system with short distances between the array 

elements (0.33λ0) without any decay in the radiation 

pattern. By implementing this way, the decoupling is 

exhibited to increment by >30 dB in the array structure 
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containing three patches modeled to work over 9.7 - 12.3 

GHz. To more in-depth discernment, the E-field 

magnitude profiles without and with the MTM-EBG 

isolating structure are displayed in Fig.6. Obviously, the 

distributing E-field is not permitted to be coupled to the 

neighbor elements that affirms the efficiency of the 

presented method in decreasing surface waves. A 

parametric evaluation was utilized to maximize the 

isolation performances. The array structure has the 

physical and electrical sizes of 65 mm × 22.5 mm ×1.6 

mm and 2.16  × 0.75   × 0.053  , respectively, where 

   is defined at the mid-band of 10 GHz.  

 

                 
    

                                             (a)                                                             (b)                                                                    (c)                                                         

     

    
(d) 

      

(e) 

Fig.6. (a) Reference antenna array, (b) antenna array with single MTM-EBG decoupling slabs, (c) proposed antenna array with array of MTM-EBG 

decoupling slabs, (d) S-parameters performances, (e) distributed surface currents at resonance frequency of 10 GHz [110]. 

 

    

A novel sort of decoupling approach is realized to an 

MTM substrate integrated waveguide (SIW) slotted 

antenna array in [111]. Fig.7 shows that the circular 

formed reference SIW antenna array is built from an 

Alumina layer with a physical size of 40 mm × 5 mm × 

1.5 mm. Integrated into the reference structure are 38 slits 

with the same size, i.e., 2 mm × 1 mm × 1.5 mm. This 

structure workes across X-band to Ku-band, providing an 

average mutual coupling of about -10dB. The mutual 

coupling was suppressed through embedding metal fence 

decouplings between the radiation slits, which degraded 

the interferences by an average of 13dB. Furthermore, the 

impedance matching bandwidth is improved without 

decay in the radiation patterns. By utilizing the metal 

fence decouplings, the optimum obtained gain enhances 

by ~10%. The proposed approach is easy to realize, and it 

has been presented for SAR and MIMO systems.

 

 

                                                                                       

                                                                                      (a)                                                             (b)                                                 

    
                                    First band                                                               Second band                                                       Third band 
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                                     Fourth band                                                             Fifth band                                                            Sixth band  

(c) 

Fig.7. Geometries of (a) the reference structure (WO) and (b) the proposed structure with MFIs (W), and (c) S-parameter responses [111]. 

     

In [112], an efficient decoupling method is illustrated for 

a phased array. It is obtained via placing a MTM 

superstrate patch between the radiation parts of the phased 

array, as shown in Fig.8. The patch is implemented 

through integrating slits within the patch, where the slits 

are organized in a 2×3 array. This technique is applied to 

an FR-4 layer. An average isolation improvement of 5dB 

is obtained throughout its working bandwidth. This 

approach is: (i) easy to realize; (ii) suitable for planar 

antenna designs; (iii) simply applicable in practice; (iv) 

resilient and dominates the deficiencies of poor front-to-

back ratio already presented in literature; and (v) 

appropriate for densely packed microstrip. Additionally, 

the presented method is exceptionally versatile for many 

applications having precise performance necessities.

 

            

                               (a)                                                       (b)                                                                                 (c)                                                    

Fig.8. Layout of the antenna (a) without and (b) with MTM decoupling super substrate, and (c) S-parameters [112]. 

    

Modern MIMO and SAR need a frequency band which is 

larger than 1 GHz. Waveguide slot antennas are popularly 

utilized in MIMO and SAR systems because of their 

intrinsic benefits, namely power handling ability and high 

efficiency. However, these antennas have a confined 

frequency band. While the frequency band of slot 

antennas can be expanded through applying ridge 

waveguides, this way presents fabricating intricacy and is 

not cost-effective. An innovative solution has been 

proposed in [113] to implement a wide frequency band 

via applying a 2×3 array structure with the isolation 

between the antenna incremented by embedding a 

decoupling wall between the radiating antennas, as shown 

in Fig.9. The decoupling wall contains three intercoupled 

U-shaped microstrip transmission lines. By this method, 

the frequency band is wider than 2 GHz within the X-

band and Ku-band.

 

                  

                                                                    (a)                                                              (b)                                          (c)    
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(d) 

Fig.9. (a) Reference array antennas without isolation wall, (b) proposed array antennas with isolator wall, (c) isolator wall, (d) S-parameters [113]. 

     

An easy and feasible mechanism for increasing the 

isolation between neighbor antennas is proposed and 

applied in [114]. Fig.10 shows that this is achieved by 

placing a smaller patch with MTM isolating structure 

between the antennas. The antenna structures are circular 

patches and the MTM decoupling structure is designed 

from a hexagonal slot resonator. The direct effect of 

realizing the MTM decoupling structure is 60% 

improvement in isolation between the closely spaced 

elements, 200% enhancement in impedance match, and 

369% enhancement in the practical bandwidth. Because 

GND is unchanged, the front-to-back ratio is unaltered as 

well. The method is simply feasible and is efficiently 

applicable in beam scanning systems. 

 

 

                
                                                 (a)                                                                    (b)                                                    (c) 

     

         
(d) 

 

Fig.10. (a) MTM isolation sheets, (b) structure without MTM isolation sheet, (c) with multiple MTM isolation sheet, and (d) S-parameters [114]. 

 

V. COMBINED ISOLATION TECHNIQUES     In this section, to achieve high and stable isolation 

between the radiation elements throughout the operating 

frequency band without affecting other performance 
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parameters such as array’s dimensions, bandwidth, and 

radiation properties, new array antennas based on 

combined isolation techniques are proposed, designed and 

manufactured. In other words, the proposed decoupling 

slabs located between the radiation elements for these 

new array antennas are realized based on the combination 

of the metasurface and metamaterial and electromagnetic 

bandgap concepts. As a result, high and stable isolations 

over entire bandwidths are achieved. The proposed works 

are discussed as follows. 

 A. INTERFERENCE REDUCTION BETWEEN CLOSELY 
PLACED ANTENNAS APPLYING EBG MTM FRACTAL 
LOADING 

    In [115], an efficient method is investigated to increase 

the isolation between the closely spaced antennas. It has 

been obtained by incorporating a fractal decoupling slab 

between the radiating patches, as displayed in Fig.11. The 

fractal isolating sheet is an EBG frame based on MTM. 

By adopting this way, the space between the patches has 

decreased to 0.65λ for isolation improvement at amounts 

up to 37, 21, 20, and 31dB at the X-, Ku-, K-, and Ka-

bands, respectively, without decay in the radiation 

patterns. Two-element antennas are exhibited to work 

across a large frequency band, i.e., 8.7 to 11.7 GHz, 11.9 

to 14.6 GHz, 15.6 to 17.1 GHz, 22 to 26 GHz, and 29 to 

34.2 GHz. An optimum gain increment in order of 71% 

has been achieved. The current density distributions 

demonstrate that the surface currents are decreased by 

presenting the fractal load between the adjacent elements. 

This affirms the realized decoupling structure behaves as 

an efficient isolation frame. The specifications of the 

antenna have been validated by experimental results. This 

approach can be used in several of the previously 

mentioned applications, and it is also suitable for adjacent 

antennas in arrays found in Radar, MIMO, and RFID 

systems. 

     

                       (a)                                        (b)                                                           (c)                                                                 (d) 

    

               

(d)  

Fig.11. (a) reference array (WO), (b) proposed array with EBG fractal decoupling sheet (W), (c) equivalent circuit diagram, (d) measured S-

parameters, and (d) surface current distribution at 29.9 GHz [115]. 

 

B. STUDY ON MUTUAL COUPLING REDUCTION 
BETWEEN ADJACENT ARRAY ANTENNAS WITH 
REALIZATION OF FRACTAL MTM EBG 
ARCHITECTURE 

    The abovementioned technique presented in [115] was 

further developed and extended to a 2×2 antenna array 

with radiation elements in [116]. In [116], a decoupling 

MTM geometry based on fractal EBG frame, as displayed 

in Fig.12, considerably suppresses the coupling between 

the antennas. The assemblage of the MTM-EBG layout is 

cross-formed with fractal-formed slits engraved in each 

arm of the cross. The fractals are compounded of four 

interjoined-‘Y-formed slits, which have separated with an 

inverted-‘T-formed slit. The MTM-EMBG frame is 

located between the singular elements in a 2×2 array 

antennas. The experimental data illustrate the average 

isolation improvement across the operating bandwidth is 

17, 37, and 17 dB between the antennas 1 and 2, 1 and 3, 

and 1 and 4, respectively. For this mechanism, metallic-

via-holes are not required. The antenna array supports the 

bandwidth of 8 - 9.25 GHz for X-band operations, which 

relates to a practical bandwidth of 14.5%. The center-to-

center distance between the neighbor antennas has 

decreased to 0.5λ0 without decay in the radiation patterns. 

The empirical gain changes between 4 and 7 dBi, and the 

radiation efficiency alters from 74.22% to 88.71%. This 

technique is feasible in the realization of neighbor antenna 

arrays applied in MIMO and SAR devices. 

Page 14 of 60

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



                                                                                  M. Alibakhshikenari, and et al., 
 

                                
 

                                (a)                                             (b)                                                (c)                                                         (d) 
 

    
                                                                                (e)                                                                                                            (f)  

 

Fig.12. (a) reference 2×2 antenna array, (b) crossed-shaped fractal decoupling structure, (c) proposed 2×2 array antennas with fractal isolator loading, 

(d) equivalent circuit diagram, (e) empirical S-parameters, (f) surface current density distributions at 8.85 GHz [116]. 

 

C. INTERACTION BETWEEN CLOSELY PACKED 

ARRAY ANTENNAS APPLYING MTS FOR MIMO AND 

SAR SYSTEMS 

    An efficient method to repress the interference between 

adjacent patches that is usual in densely packed antenna 

arrays has been proposed and demonstrated in [117]. 

These antennas provide frequency beam-steering ability 

required in MIMO and SAR systems. Fig.13 shows that 

the proposed technique applies an MTM decoupling slab 

that is incorporated between the radiating patches to 

increase the decoupling between the antennas that would 

otherwise reduce the performance parameters. The MTM 

decoupling slab composed of mirror imaged E-formed 

slots etched on a patch with an inductive stub. 

Experimental data affirms that the average mutual 

coupling (S12) is -27dB over 9 - 11 GHz without MTM 

decoupling slab. However, with the adoption of the MTM 

decoupling slab, the average mutual coupling decreases to 

-38dB. The distance between the antenna has decreased to 

0.66λ0, where λ0 is defined at 10GHz. Additionally, the 

employment of this method provides a 15% extension in 

the working frequency band. Furthermore, the decoupling 

influences are remarked through imagining the surface 

current distributions curves entire the antenna array. With 

the adoption of the MTM decoupling slab, powerful 

currents are induced on the patches that obviously 

investigates the effects of the MTM decoupling slab in 

reducing surface current wave interaction between the 

elements. At 9.95 and 10.63 GHz the gain value is 4.52 

dBi and 5.40 dBi, respectively. Additionally, this way 

omits poor front-to-back ratio occurred in other isolating 

approaches, and it is comparatively easy to realize. 

Supposing sufficient distance is existing between the 

neighbor elements, the MTM decoupling slab can be 

embedded with available antenna arrays, which makes 

this technique versatile. 
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                                               (a)                                                (b)                                                                         (c)       

          

                        (d)                                                                                                             (e)       

Fig.13. Antenna array (a) before apply MTM isolator shield and (b) after apply MTM isolator shield, (c) circuit of two patches with MTM-DS, (d) S-

parameter responses, (e) surface current densities at 10.65 GHz [117]. 
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D. ISOLATION IMPROVEMENT UTILIZING 
INTEGRATED MTM EBG DECOUPLING SLAB 
FOR DENSELY PACKED ARRAY ANTENNAS 
 

     In [118], the work presented in [117] is further 

developed and extended from 1×2 linear array 

antennas, which consist of two radiation elements, 

to 2×2 matrix array antenna configurations, which 

consist of four radiation antennas. An innovative 

method to suppress the mutual coupling in adjacent 

antennas array by incorporating an MTM EBG 

frame in the distance between the patches to reduce 

surface currents that would otherwise participate in 

interferences between the array antennas is 

developed and investigated. This MTM EBG 

decoupling frame is a cross-formed microstrip 

transmission line on which two outward facing E-

formed slots are imprinted as shown in Fig.14. 

Inverse other MTM prototypes, it is via free. The 

highest experimental decoupling obtained between 

the four-element array antennas is 60dB at 9.18 

GHz. Throughout the empirical working band of 

9.12 - 9.96 GHz, the lowest experimental coupling 

between each element is -34.2dB at 9.48 GHz, and 

without any decay in radiation patterns. The 

average experimental mutual coupling across the 

bandwidth is -47dB. Current density distributions 

explain that the MTM EBG decoupling frame soaks 

up the fringing fields that would otherwise couple 

with the neighbor radiating patches. The results 

shown in Fig.14 affirm this method is proper for 

applications in MIMO and SAR systems.

 

 

                   
                            (a)                                    (b)                                 (c)                                                                  (d) 

    

                           (e)                                                                                                         (f) 

 

Fig.14. (a) Reference array antenna, (b) array structure with embedded simple isolator sheet, (c) array structure with embedded MTM based 

EBG isolator sheet, (d) current densities at 9.6 GHz, (e) circuit model, and (f) measured S-parameter responses[118]. 

E. CRLH MTM-BASED LEAKY-WAVE ARRAY 

ANTENNA WITH LOW MUTUAL COUPLING 

REALIZED ON SIW WITH ±30
o
 FREQUENCY 

BEAM-SCATTERING ABILITY  

    A practical investigation to implement a novel 

MTM leaky-wave antenna (LWA) applied in the 

making of a 1×2 array that is built utilizing SIW 

methodology for millimeter-wave beam-scanning 

applications is discussed in [119]. As shown in 

Fig.15, the array structure is composed of two 

LWAs with MTM unit-cells printed on the top 

surface of the SIW. The MTM unit-cell that is an E-

formed transverse slit, leads leakage loss and 

disconnects the current flow across the SIW to 

increase the performance parameters of the array. 

The physical dimension of the LWA is 40 mm × 10 

mm × 0.75 mm. The isolation level between the 

array antennas is boosted through integrating an 

MTM sheet between the elements. The LWA works 

throughout the bandwidth of 55 - 65 GHz that 

corresponds to 16.66% feasible bandwidth. The 

structure is depicted to display beam-scanning of 

±30° across the bandwidth. Backward (−30°), 

broadside (0°), and forward (+30°) gain are 8.5, 

10.1, and 9.5 dBi, respectively. The isolator shield 

is exhibited to have a minimized influence on the 

impedance bandwidth and radiation properties. 

After applying the MTM-sheet an average 

improvement of ~25 dB, ~1 dBi, and ~13% have 

been achieved on the isolation, gain, and efficiency, 

respectively. The surface current density 

distributions illustrate that the MTM-sheet is an 

efficient electromagnetic band-gap frame that 

significantly obstacles surface currents from 

electromagnetic waves interacting with the closely 

radiation antennas in the array structure. The 
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ruinous effects of surface currents in the array are 

remarkably repressed from affecting the array 

antenna's far-field. 

       

                                 (a)                                                         (b)                                                                          (c) 

             
                                  (d)                                              (e)                                                                            (f)                                                

Fig.15. (a) reference array antenna, (b) proposed antenna array with MTM-shield, (c) S-parameters, (d) gain, (e) efficiency, and (f) 

surface current density distributions at 60 GHz [119]. 

F. ISOLATION IMPROVEMENT BETWEEN 

ANTENNA ARRAYS BASED ON MTS-WALL 

FOR TERAHERTZ BAND 

    A new two-dimensional MTS wall to 

suppress the interference between in antennas 

in array working ate terahertz band of 139 to 

141 GHz applicable for security screening, 

medical and communications systems have 

been proposed in [120]. The MTS unit-cell 

contains connected twin ‘Y-formed’ 

microstrip structures that are inter-digitally 

incorporated with each other to generate the 

MTS wall. The MTS wall does not have via 

holes, and it includes a shorten ground plane 

to simplifying the manufacturing process. As 

shown in Fig.16, the MTS wall is located 

firmly between the elements to increase the 

decoupling and suppress the surface-waves. 

To achieve the lowest coupling, the wall is 

implemented upright to the antennas. Over the 

terahertz frequency bandwidth, the gain and 

isolation of the array antennas are 9.0 dBi and 

less than -63 dB, respectively. This method 

obtains isolation improvement of higher than 

10dB across a large frequency band (2 GHz) 

than obtained to date. The decoupling effects 

are remarked through imagining the surface 

current curves throughout the array structure. 

The surface current density distribution shows 

that without MTS wall and when element #1 is 

stimulated, the electromagnetic signal is 

transferred to element #2, and contrariwise. 

However, when the MTS wall is located 

between the elements, it remarkably obstructs 

the electromagnetic signal from element #1 

being transferred to element #2. By applying 

this approach, the edge-to-edge space between 

the radiation patch has decreased to 2.5mm. 

The size of the antennas and GND are 5 mm × 

5 mm and 9 mm × 4.25 mm when realized on 

a 1.6 mm thick traditional layer. 
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          (a)                 (b)                                                                              (c)                                        

           

(d) 

Fig.16. Antenna array (a) without and (b) with MTS wall isolator, (c) surface current distributions at 140 GHz, and (d) S-parameters. [120]. 

Page 17 of 60

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



                                                                                  M. Alibakhshikenari, and et al., 
 
 

G. ISOLATION IMPROVEMENT ACROSS BROAD 
FREQUENCY BAND APPLYING INTEGRATED 
PERIPHERY SLOT FOR ANTENNA ARRAYS 

    A new mechanism to increase the isolation 

between closely spaced radiating patches has 

been proposed and modeled in [121]. This 

method enabled the implementation of low-

profile construction of extremely compact 

antenna geometries needful in MIMO and 

SAR communication devices. Contrary to 

other traditional approaches of reduction 

interferences where an isolator sheet is placed 

between the antennas, this method is easier 

and just needs integrating linear slits close the 

periphery of the radiating element, as shown 

in Fig.17. The main properties of this way are 

(i) substantial suppression in the minimum 

coupling between the neighbor patches by -

26.7dB in X-band and >-15dB in Ku and K-

bands; (ii) decrement in the center-to-center 

distance between the elements up to 10 mm 

(0.37λ); and (iii) more than 40% gain 

increment across specified angular directions 

that changes between 4.5 and 8.2 dBi. The 

investigation of the surface current 

distribution shows that the slits act like an 

isolating frame that soak up the surface-waves 

that would otherwise couple with the adjacent 

patches. The proposed technique is easy and 

inexpensive.

 

           

                                  (a)                                                                  (b)                                                              (c) 

   

                                                                                                           (c) 

              

 (d) 

Fig.17. (a) Reference array, (b) proposed slotted array, (c) S-parameters, and (d) surface current distributions at 11.37GHz [121]. 

H. SURFACE-WAVE SUPPRESSION IN 

ARRAY ANTENNAS APPLYING MTS 

CONTENT FOR SAR AND MIMO 

APPLICATIONS 

    An efficient approach for isolation 

improvement between closely spaced antennas 

which is based on MTS decoupling for MIMO 

and SAR applications, is presented in [125]. It 

has accomplished by constraining the surface 

current waves induced across the antenna 

through the insertion of a cross-formed MTS 

structure between the antennas, as shown in 

Fig.18. This MTS minimizes the influences of 

electromagnetic coupling coming from space-

wave and the near-field. Each arm of the 

cross-formed structure establishing the MTS 

has a meander-line slit (MLS) etching. The 

MTS's effectiveness is investigated for a 2×2 

antenna array that works throughout six 

frequency sub-bands in X, Ku, and K-bands. 

In the X-band, the antenna’s applications are 

wideband global satellite communication 

systems (WGS) and military communication. 

In the Ku-band, the antenna’s applications are 

radar and terrestrial microwave, particularly, 
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in police traffic speed-detectors. In the K-

band, the antenna’s applications are found in 

airport surface detection equipment (ASDE). 

Fig.18 illustrates that with this method, the 

optimum increment obtained in improving 

isolation between adjacent radiation patches 

is: 8.5dB (8 to 8.4 GHz), 28dB (9.6 to 10.8 

GHz), 27dB (11.7 to 12.6 GHz), 7.5dB (13.4 

to 14.2 GHz), 13dB (16.5 to 16.8 GHz) and 

22.5dB (18.5 to 20.3 GHz). The results are 

provided in Table X. Also by employing the 

presented way, minimal edge-to-edge space 

between the elements is achieved up to 0.26λ0, 

where λ0 is specified at 8.0 GHz, the utilize of 

defected ground plane becomes inessential, 

apply of via-holes are refrained, the challenge 

of poor front-to-back ratio is addressed and 

integration to existing arrays becomes 

possible. 

                          

                         (a)                                                      (b)                                                                                        (c) 

            

                                                                                                                    (c) 

            

(d) 

Fig.18. (a) Manufactured prototypes of the reference and proposed structures before (WO) and after (W) apply MTS decoupling shield, (b) 

surface current distributions at 8.15 GHz, (c) measured S-parameters, and (d) radiation patterns [125]. 

TABLE X. ISOLATION IMPROVEMENT WITH METASURFACE 

Frequency        () 

Min., Max., Ave. 

      (dB) 

Min., Max., Ave. 

      (dB) 

Min., Max., Ave. 

I:    8 to 8.4 GHz 7.5 , 8.5 , 8 dB 2 , 8.5 , 6 dB - , 3 , - dB 

II:    9.6 to 10.8 GHz 2.5 , 3.5 , 3 dB 5 , 28 , 17 dB 7 , 18 , 12.5 dB 

III:  11.7 to 12.6 GHz 3.5 , 13 , 9.5 dB 8 , 27 , 18 dB 5 , 5 , 5 dB 

IV:  13.4 to 14.2 GHz 5.5 , 7.5 , 6.5 dB - , 4 , 2 dB - , 6.5 , 3.5 dB 

V:  16.5 to 16.8 GHz - , 3.5 , 2 dB 2 , 5.5 , 4 dB 7 , 13 , 10.5 dB 

VI:  18.5 to 20.3 GHz 4.5 , 22.5 , 13.5 dB 2.5 , 7.5 , 5.5 dB 5.5 , 20 , 13 dB 
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I. STUDY ON INTERFERENCES REDUCTION 

AND RADIATION BEHAVIOURS OF A 34×34 SIW 

AND MTS-BASED ARRAY ANTENNAS FOR 

APPLICATIONS ACROSS 0.125-0.3 THz 

    In [126], the possibility of a perceptual model of 

a 34×34 array antenna for working throughout 

0.125 to 0.3 THz, which relates to a feasible 

bandwidth of 82.35% is described. Fig.19 shows 

that, each of the radiation elements which constitute 

the array comprises of a square patch having a 

physical dimension of 2 × 2 mm2 and stimulated via 

a matched microstrip line. Each element has 

separated from each other by via-holes that are 

realized based on the SIW method. This approach is 

exhibited to efficiently improve the isolation 

between closely spaced antennas that can otherwise 

disturb the radiation properties. The periphery of 

each patch is integrated with circular dielectric slits 

that are implemented based on the MTS principle to 

improve the radiation performances. By employing 

these methods, the isolation has improved on 

average by 25dB across the working bandwidth, 

and the array's effective aperture area has enlarged 

with keeping constant its dimensions. The array 

structure shows a variation on gain and radiation 

efficiency of 7.51 dBi to 40.08 dBi, and 70.51% to 

90.11%, respectively. The data are listed in Table 

XI. It is clear that after implementing the MTS slits, 

almost 60% and 30% increments in gain and 

efficiency have been accomplished. The 34 × 34 

antennas array is a suitable candidate to apply in 

wireless telecommunication apparatus at THz 

region. 

   
 

                   (a)                                                 (b)                                                           (c)                                                        (d)  

                  

                                            (e)                                                                     (f)                                                                   (g) 

 
(h) 

 
          (i) 
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 (j) 

Fig.19. (a) reference 1×2 array antenna, (b) feeding structure, (c) layout of whole 34×34 array antennas, (d) zoomed view to depict two 

central antennas, (e) S-parameter responses, (f) gain curve, (g) efficiency curve, (h) 3-D radiation diagrams, (i) co- and cross-polarized 

radiation gain patterns, and (j) surface current density distribution at 250 GHz for two central antennas [126]. 

 

TABLE XI. RADIATION PERFORMANCES 

Gain (dBi) 

Min. with no metasurface slits 3.96  

Min. with metasurface slits 7.51  

Improvement 3.55  
  

Gain (dBi) 

Max. with no metasurface slits 30.71  

Max. with metasurface slits 40.08  

Improvement 9.37  
  

Efficiency (%) 

Min. with no metasurface slits 50.96 

Min. with metasurface slits 70.51 

Improvement 19.55 
  

Efficiency (%) 

Max. with no metasurface slits 75.71 

Max. with metasurface slits 90.11 

Improvement 14.40 

J. DECOUPLING IMPROVEMENT OF 

ADJACENT ARRAY ANTENNAS WITH 

PERIODIC MTM PBG FOR MIMO AND SAR 

APPLICATIONS 

    In [127] an MTM photonic bandgap (PBG) 

periodic structure is utilized as an isolator slab 

to repress the mutual coupling in densely 

packed array antenna for SAR and MIMO 

applications as displayed in Fig.20. By this 

method, the MTM PBG layout is exhibited to 

efficiently reduce surface-wave distributions 

between the patch arrays by an average of 

12dB, see Table XII. MTM PBG layer 

contains a periodic organization of dielectric 

circles printed in the cross-formed microstrip 

sheet that is incorporated between the 

antennas. It obstacles the distribution of 

surface-waves on the patches to increment 

decoupling between the elements. Surface 

current distribution depicted in Fig.20 

provides deeper discernment of how the 

surface currents are decreased. It is clear that 

the cross-formed MTM PBG isolator shield 

dramatically interacts with the surface currents 

to obstacle them from affecting neighbor 

antennas in the array configuration. Ruinous 

influences of surface currents in the antenna 

are considerably repressed from effecting the 

antenna array's far-field. The equivalent circuit 

diagram of the proposed array structure is 

presented in Fig.20. Contrary to the existing 

techniques in the literature, the attributes of 

this method are: (i) easiness; (ii) inexpensive; 

and (iii) can be retrofitted in available array 

structures. This structure has fabricated to 

work across a wide bandwidth of 9.25 to 11 

GHz with a feasible bandwidth of 17.28%. By 

this mechanism (i) the side-lobes have 

decreased; (ii) there is a negligible influence 

on the radiation performances; and (iii) the 

shortest center-to-center distance between 

neighbor antennas has decreased to 0.15λ at 

9.25 GHz. Input impedance calculated 

utilizing CST software and circuit diagram has 

been presented in Fig.20. Since the circuit 

model parameters have extracted applying 

optimization approach in CST throughout a 

specific bandwidth, a perfect match between 

the results achieved by the circuit model and 

CST has occurred. The gain and efficiency 

plots have displayed in Fig.20. There is an 

excellent agreement between the simulated 

and experimented curves. After apply MTM 

PBG, a maximum empirical gain and 

efficiency of 7.85 dBi and 92.78% have 

obtained at 10.6 GHz. So, before applying the 

proposed method, the highest amount of these 

parameters were 7.38 dBi and 88.05% at the 

same frequency. This explains that the 
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radiation specifications are not intensely 

influenced by realizing the MTM PBG 

decoupling frame. 

                 

                 (a)                                      (b)                                                                     (c) 
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(j) 

Fig.20. (a) Reference structure (WO), (b) proposed structure with periodic MTM-PBG (W), (c) surface current distributions at 9.25 GHz, (d) 

S-parameters of the MTM PBG isolator, (e) empirical S-parameters of the arrays, (f) input impedances (Ω) after apply the periodic MTM-

PBG isolator, (g) circuit model including MTM-PBG isolator sheet, (h) gain, (i) efficiency, and (j) experimental radiation patterns [127]. 

 

TABLE XII. DECOUPLING IMPROVEMENT APPLYING THE PERIODIC MTM PBG TECHNIQUE  

S11 9.25 – 11 GHz,  

FBW = 17.28% 

Max. increment of matching: ~15 dB 

S12 (T/R) Max. reduction:  

5dB @ 10.98 GHz 

Ave. reduction: 4dB 

S13 (T/T) Max. reduction:  

6 dB @9.25GHz 

Ave. reduction: 3 dB 

S14 (T/R) Max. reduction:  

14 dB @ 10.97 GHz 

Ave. reduction: 10 dB 

S34 (T/R) Max. reduction:  

10dB @ 10.25 GHz 

Ave. reduction: 8dB 

S35 (T/T) Max. reduction:  

10dB @ 10.5 GHz 

Ave. reduction:5dB 

S36 (T/R) Max. reduction: 

19 dB @ 10.07 GHz 

Ave. reduction: 7 dB 

 

    

Table XIII shows comparisons in the 

performance parameters of the 

abovementioned techniques relative to the 

studied literature in terms of the mutual 

coupling reduction techniques, maximum 

isolation improvement, number of applied 

elements in the array structure, design 

complexity and simplicity, impact on the size 

after applying the technique, and 

augmentation and development of the array 

after applying the technique. Results show that 

the papers discussed in this section, which are 

based on combined isolation techniques such 

as metamaterials, metasurfaces, and EM 

bandgaps, showcase higher performance 

parameters with simpler design structures.

 TABLE XIII. PERFORMANCE COMPARISON OF DECOUPLING MECHANISMS BASED MIMO AND SAR ANTENNAS 

 

Refs. 

 

Approaches 

Max. 

decoupling 

improvement 

(dB) 

 

Number 

of 

Elements 

 

Symmetricity  

Impact on the 

Size after 

apply 

Technique 

Altering and 

developing 

(DGS) 

 

Complexity 

[128] UC-EBG 10  2 (1×2) NO Yes Yes Yes 

[129] Slot in Ground plane 40  2 (1×2) NO Yes Yes Yes 

[130] EBG 4  2 (1×2) NO Yes Yes Yes 

[131] Compact EBG 17  2 (1×2) NO Yes Yes Yes 

[132] DGS 17.43  2 (1×2) NO Yes Yes Yes 

[133] U-shaped resonator 10  2 (1×2) NO Yes Yes Yes 

[134] Slotted Meander 

Line Resonator 

16  2 (1×2) NO Yes Yes Yes 

[135] I-shaped resonator 30  2 (1×2) NO Yes Yes Yes 

[136] SCSRR 10  2 (1×2) NO Yes Yes Yes 

[137] SCSSRR 14.6  2 (1×2) NO Yes Yes Yes 

[138] Waveguide MTM 20  2 (1×2) NO Yes Yes Yes 

[139] Waveguide MTM 18  2 (1×2) NO Yes Yes Yes 

[140] Meander line resonator 10  2 (1×2) NO Yes Yes Yes 

[141] Fractal load with DGS 16  2 (1×2) NO Yes Yes Yes 

[142] Antenna Interference 

Cancellation 

Chip (AICC) 

15  2 (1×2) Yes No No Yes 

[143] 3-D Metamaterial 

Structure (3DMMS) 

18  2 (1×2) Yes Yes No No 

[115] Metamaterial fractal 37  2 (1×2) Yes NO NO NO 

Page 23 of 60

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



                                                                                  M. Alibakhshikenari, and et al., 
 

load 

[116] Fractal metamaterial 

electromagnetic 

bandgap 

17 for S12 

37 for S13 

17 for S14 

4 (2×2) Yes NO NO NO 

[117] Metamaterial 57  2 (1×2) Yes NO NO NO 

[118] Metamaterial 40 for S12 

~7 for S13 

11 for S14 

4 (2×2) Yes NO NO NO 

[119] Metamaterials and 

Substrate Integrated 

Waveguide 

42.5  2 (2×1) Yes NO NO NO 

[120] Metasurface wall 

isolator 

13.5  2 (1×2) Yes NO NO NO 

[121] Slots >26  2 (1×2) Yes NO NO NO 

[125] Metasurface 32 (X-band) 

27 (Ku-band) 

26 (K-band) 

4 (2×2) Yes NO NO NO 

[126] SIW & Metasurface 50  1156 

(34×34) 

Yes NO NO NO 

[127] MTM-PBG 10 for S34 

14 for S14 

19 for S36 

 

6 (3×2) 

Yes NO NO NO 

 

 
V. CONCLUSION 

    This survey provides a comprehensive study and 

investigations on several isolation improvement 

approaches considered for MIMO and SAR antenna 

designs that are available in the literature. It is 

exhibited that interferences vary the self- and 

mutual- impedances of array structures. 

Consequently, the matching and radiation 

properties of the antennas are affected. 

   Although several isolation improvements 

approaches are existing in literature, most of them 

are confined to two-port antennas. This review 

work discusses diverse promising decoupling 

methods for MIMO and SAR antennas. 

Comprehensive comparisons on the performance 

parameters have provided for many MIMO and 

SAR antennas. Here, decoupling approaches 

applied by scholars in many papers to obtain the 

lowest mutual coupling is the key comparison 

parameter. This study indicates that by employing 

CSRR and DGS approaches, broad bandwidth is 

obtained in MIMO and SAR antennas. 

Additionally, straight neutralization lines provide 

easy configurations with a substantial suppression 

in mutual coupling and parasitic or slot elements 

construct the antenna small with increased 

efficiency. The EBG structure contains a intricate 

periodic organization of metallic or dielectric 

architecture with a lower bandwidth. 

Reconfigurable antennas and decoupling networks 

propose an easy structure with better performances. 

DRAs are unqualified in terms of footprint area of 

their physical geometry and non-simple structures 

compared to printed structures.  

  As a result, all of the abovementioned decoupling 

approaches have major drawbacks, especially for 

mass productions, since, due to asymmetric layouts, 

it is impossible to use them for practical 

applications. Most of the suffers from narrow 

bandwidth, and they will improve the isolation in 

some points over the frequency band. Therefore, 

several examples of innovative mutual coupling 

suppressions based on the metamaterials- and 

metasurfaces-based antennas have been presented. 

The proposed structures with symmetric layouts are 

very simple to implement, hence, the manufacturing 

costs are affordable. In addition, they can provide 

high isolation between the array antennas without 

affecting the other performance parameters. It is 

shown that by combining metamaterial, 

metasurface, and EBG techniques, a remarkable 

improvement in decoupling performances has been 

obtained. It was confirmed by various design 

examples.  

  Interference suppression is an important field of 

research that has a straight impact on the growth of 

the next generation of wireless communication 

systems, such as 5G, 6G, and massive MIMO. 

Thus, a broad range of design feasibilities has been 

introduced here to clarify the suppression of mutual 

coupling. To the best of our knowledge, this is not 

readily accessible in literature. Therefore, this 

review study serves as a comprehensive reference 

in the research field of contemporary MIMO and 

SAR antennas by providing a wide overview of 

both primary stage scholars and specialist antenna 

designers. 
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    ABSTRACT In recent times, synthetic aperture radar (SAR) and multiple-input-multiple-output (MIMO) antenna 
systems with the capability to radiate waves in more than one pattern and polarization are playing a key duty in modern 
telecommunication systems. This review work presents a systematic and theoretical study of various decoupling 
techniques with a strong focus on metasurface (MTS), and metamaterial (MTM) approaches in SAR and MIMO 
antenna systems and their effects on the performances of the system. Enhancement in mutual coupling affects the 
antenna’s specifications significantly. Primarily, mutual coupling degrades the performance of the MIMO and SAR 
systems. While the performance of the system can be increased by calibrating out the interferences in the digital area, 
but it is more efficient to apply decoupling methods (from an antenna perspective) to dominate mutual coupling 
influences. Some simple and cost-effective approaches include the use of defected ground structure (DGS), parasitic or 
slot element, dielectric resonator antenna (DRA), complementary split ring resonator (CSRR), neutralization lines, 
decoupling networks, P.I.N or varactor diodes, electromagnetic bandgap (EBG) structures, metamaterials and 
metasurfaces that dominate the mutual coupling influences through means of physical realization. In this study, the 
mutual coupling reduction methods based on the MTSs and MTMs provide a higher level of isolation in a more simple 
and cost-effective configuration without affecting the structural physical dimensions and negligible effects on the 
bandwidth and radiation properties. An immense investigation based on various decoupling mechanism, their instances, 
and comparative review is yet scarce in the literature. Hence, various MIMO and SAR antenna design approaches and 
diverse decoupling methods (considering differing architectures and methodologies) are illustrated here using instances 
and comparisons of associated specifications.

    INDEX TERMS Decoupling methods, metamaterial (MTM), metasurface (MTS), multiple-input-multiple-output 
(MIMO), synthetic aperture radar (SAR), isolation enhancement, array antennas.

I. INTRODUCTION
    SAR and MIMO [1] are arguably the state-of-the-art 
methodologies for enhancing the capacity of radio links 
via multiple transmitting and receiving antennas to have 
multipath scattering. Conventionally, MIMO and SAR 
systems are defined as practical techniques for 
transmitting and receiving signals stemming from 

multiple independent channels concurrently. This is 
typically implemented over the same radio channel with 
the aid of multiple antenna configurations without 
additional losses in radiation power in rich scattering 
surroundings. SAR and MIMO are also categorized under 
next generation wireless communication technologies due 
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to their marked potential to improve system credibility 
and channel capacity by means of multiple antennas [2]. 
MIMO was as a practical solution to the data rate 
restriction of single-input single-output (SISO) systems. 
MIMO and SAR are generally used on different networks, 
and they also improve the transmission velocity of data 
[3] by using the maximum content of wireless 
telecommunication devices.

     In [4-5], various etched portable MIMO and SAR 
antenna apparatus are discussed. They are broadly applied 
in applications of mobile devices because of their 
adaptation with the system, better completeness, low cost, 
and simplicity of construction. The simplicity and 
genericity of the multi-antenna topology [6] utilized in the 
transmitting side and receiving side in MIMO and SAR 
systems allow for a more convenient implementation 
compared to other antenna array topologies. Also, such 
configurations reduce channel errors in communication 
systems to have enhanced data rates [7]. However, this 
may lead to multipath scattering due to the inherent high 
cohesion factor in the multi-signal distribution [8]. 
Additionally, the decreased distance between the antennas 
in array systems can potentially reduce the decoupling 
factor, which degrades the angle of arrival [9] in the 
estimation of carrier frequency offset [10] and signal to 
interference noise ratio [11]. It is good to note that the 
isolation between adjacent antennas decreases either by a 
huge flow of surface current from the stimulated ports or 
space radiation and surface waves. Also, the contrary 
influence of interferences on reflection coefficients cannot 
be ignored [12]. Hence, the main challenge in the 
implementation of antennas for MIMO and SAR 
applications is limiting the interferences between more 
recent compact etched antennas and other antenna 
configurations [13], [14]. Comprehensive studies based 
on models specifically designed to increase the isolation 
have been presented in recent times [15-22]. The basic 
approaches for enhancing isolation in multi-antenna 
systems typically involve the utilize of decoupling 
networks [17], neutralization lines [18], engraved 
parasitic elements [19], CSRRs [20], EBG architectures 
[21], and DGSs [22]. In [23], easy comparison of 
disparate decoupling approaches containing parasitic 
elements, utilize PIN and varactor diodes, and decoupling 
networks has provided. In addition, the efficacy of 
varying relative permittivity of layers on antenna 
parameters is presented and discussed. These methods 
allow for the manipulation of mutual coupling through 
weakening, resisting, or reducing the surface current flow. 
Antenna configurations such as reconfigurable, engraved, 
dielectric resonator, metasurface, and metamaterial are 
widely adopted to destroy the harmful outcome of the 
interferences [23-28].

    In the following survey, a comparative review on 
diverse MIMO and SAR antenna design approaches and 
isolation increment methods with a strong focus on the 
metasurface (MTS) and metamaterial (MTM) concepts is 
presented. In addition to this, different antenna models 
based on conventional decoupling techniques are 
analyzed to illuminate model alteration possibilities. The 

provided examples here are investigated and compared 
with a particular affirmation on fundamental antenna 
properties, i.e., frequency band, isolation level,  gain, and 
radiation efficiency. In essence, this survey highlights the 
practicality and constraints of various SAR and MIMO 
antenna structures available in the existing literature. 
Though in [23], [29-30] the theoretical aspects of SAR 
and MIMO antenna's isolation are comprehensively 
discussed, these articles do not characterize the various 
antenna topologies which provide a case for SAR and 
MIMO antenna's decoupling techniques. Also, the non-
existence of a complete overview of the design principles 
for the mutual coupling based on the MTS and MTM 
properties of SAR and MIMO antenna systems and 
associated examples remains a lacuna in this field of 
study. Hence, it is mandatory to fill this information gap 
in the area of MIMO and SAR antenna designs. This 
survey provides a complete discussion on several SAR 
and MIMO antenna systems and their comparative 
decoupling topologies based on the MTS and MTM 
principles in order to improve the understanding of the 
leading stage scholars, as well as, the expert antenna 
designers.

II. INTRODUCTION MUTUAL COUPLING DEFINITION
   In antenna array systems, the mutual coupling generally 
refers to the energy attracted through a nearby antenna 
when an antenna is operational. It changes the reflection 
coefficient(s), input impedance(s), and radiation 
pattern(s). To provide an analytical background for 
mutual coupling, some empirical models have been 
presented and discussed in [31], according to Equation (1) 
and Equation (2).

,                (1)𝑀𝐶𝑚𝑛 = exp ( ―
2𝑑𝑚𝑛

𝜆 (𝛼 + 𝑗𝜋)) 𝑚 ≠ 𝑛

                                 (2)𝑀𝐶𝑚𝑛 = 1
1
𝑁∑

𝑚
∑

𝑚 ≠ 𝑛𝑀𝐶𝑚𝑛

where  represents the mutual coupling and the space 𝑀𝐶𝑚𝑛
between the mth and nth antennas is defined by . The 𝑑𝑚𝑛
number of antennas and the parameter controlling the 
level of coupling are presented by N and , respectively.𝛼

    Practically, the isolation level pertains not only to the 
array topology but also on the stimulations of the array 
antennas and other factors. It is normally estimated 
applying the dB-valued S-parameter between the mth and 
nth antennas (i.e., ), and equivalently the 20log 10 (|𝑆𝑚𝑛|)
isolation  between them.- 20log 10 (|𝑆𝑚𝑛|)

   A detailed understanding of the isolation mechanism 
will invariably relate to the transmitting/receiving mode. 
The isolation mechanisms are discussed as follows, 
considering the transmitting and receiving modes 
independently.

A. ISOLATION IN TRANSMITTING MODE
   Fig.1 displays that the antennas “m" and “n” in a 
typical array are considered. A generator is considered to 
antenna “n”, the produced energy of the generator “1” 
radiates within area “2” and onto the mth antenna “3”. The 
portion of the energy arrived at the mth antenna re-scatters 

Page 33 of 60

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



                                                                                  M. Alibakhshikenari, and et al.,

within area “4” and the residual energy moves in the 
direction of the source “5”. A deduction of the re-
scattered energy “4” will be take-up by the nth antenna 
“6”. This mutual interplay is an ongoing procedure, and it 
is iterative. However, it is usually best to select the first 
few repetitions because the re-scattered energy reduces 
drastically after each repetition. The general far-field is 
derived from the vector summation of the re-scattered and 
radiated fields. Hence, the mutual coupling varies the 
pattern of the antenna. The wave “5” is added vectorially 
to the reflected wave and incident wave of the mth 
antenna. This enhances the standing wave and changes 
the mth antenna's input impedance. Mutual coupling varies 
both the self-impedance of the antenna and the mutual 
impedance.

B. ISOLATION IN RECEIVING MODE
   Assuming the plane wave “1” exceed toward the array 
reaching the mth antenna. It evolves a current in the mth 
antenna. The portion of the incident wave travels within 
the receiver as “2” and the remaining segment is re-
scattered within area “3”. Some of the re-scattered wave 
is conducted onto the nth antenna “4”, where it adds 
(vectorially) to the incident plane wave “5”. Thus, the 
received wave through an element is the vector 
summation of the direct waves and the coupled waves 
from other elements. To optimize the received energy 
(i.e., lowest re-scattered energy), the mth antenna's 
terminating impedance has to be selected. Therefore, the 
re-scattered wave “3” is annulled via the reflected wave 
“5”.

    In a receiving mode, the antenna's performance under 
consideration can be evaluated through stimulating the 
antenna with the other antenna interrupted with a 50-ohm 
load.

 

                           (a)                                                     (b)

Fig.1. Investigation of mutual coupling architecture in (a) transmitting 
and (b) receiving modes [14].

III. VARIOUS DECOUPLING TECHNIQUES 

    In literature, several isolation enhancement approaches 
are available such as decoupling networks, parasitic 
element approach, slot etching and ground plane 
structures, neutralization lines, PIN diode, varactor diode 
and feeding structures, frequency-selective surface (FSS), 
characteristic modes, and EBG structures [13-14], [15-
16], [23], [28-30]. These approaches have been briefly 
discussed in this section. Additionally, due to some 
disadvantages and restrictions of the abovementioned 
methods, which have been discussed in details in the next 
part, the metasurface and metamaterial decoupling 
methods have been proposed and investigated in deep, 
which enable the designers to model SAR and MIMO 
antenna systems with minimized mutual coupling in a 
compact footprint area for mass production.  

A. DECOUPLING NETWORK APPROACH 
    Decoupling networks are applied to obtain enough 
isolation in MIMO and SAR antenna systems. They work 
on the methodology of the transformation of the cross-
admittance term to purely imaginary amount via step up 
transmission lines or through discrete elements. Eigen 
mode disintegration [32], manmade structure [33], 
coupled resonator [34], and inserted elements [35] are 
some examples of the isolating layouts.

    Modeling the decoupling scheme between the antenna 
arrays is easy to implement [38-45]. Specified decoupling 
approaches provide mutual reduction at the cost of some 
ohmic losses. The isolating method annuls the original 
interference by producing a supplementary coupling 
route; therefore, the mutual coupling is reduced, and far-
field properties become better.
    Similarly, the SAR and MIMO decoupling 
performance can be boosted through implementing an 
indistinct line and lumped components [46-48]. It is 
placed between the SAR and MIMO antenna arrays to 
increase gain and reduce the mutual coupling. The shunt 
component based decoupling network is applied to 
increment the performances to have acceptable 
decoupling between the antennas.

    Various types of the decoupling network approaches to 
increment the decoupling between the array antennas 
have been presented and explained in the literature such 
as diamond-shaped patterned ground resonator (DSPGR)-
plane decoupling network [49], dummy load-based 
decoupling approaches [50], coupled resonator 
decoupling network (CRDN) [51], and multi-element 
pattern diversity based decoupling network [52]. Table I 
depicts a comparison of the characteristics of MIMO 
antennas using decoupling networks. In [52], the highest 
efficiency and the lowest mutual coupling of -32 dB are 
achieved utilizing the most straightforward configuration 
of dummy loads. The dual-band operations are exhibited 
in [51].

TABLE I. COMPARISON ON THE PERFORMANCE PARAMETERS OF DECOUPLING NETWORKS BASED MIMO AND SAR ANTENNAS

Ref. [49] [50] [51] [52]
Dimensions / Substrate 72.4 × 20 × 0.8  mm3

Rogers RO4350B
70 × 35 × 0.8 mm3

FR-4
112 × 55 × 1.6 mm3

FR-4
40 ×100 × 0.8 mm3

FR-4
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Isolation (dB)  -27.6 dB @≥
2.18 2.65 GHz~

 -32 dB @≥
3.45 3.55 GHz~

 -15 dB @≥
2.4 2.48 GHz~

 -15 dB @≥
5.15 5.35 GHz~

 -15 dB @≥
3.5 3.6 GHz~

Applied Approach Diamond-shaped pattern 
ground resonator

Reactive dummy loads Coupled resonator 
decoupling method 

Pattern diversity 
decoupling method

Efficiency / Gain 66 70.5 % / 1.39dBi~ 82 % / - 66 75 % / - ~ 50% / - 
No. of Ports / 
Applications

Dual Ports / IMS Triple Ports / WiMAX Dual Ports / ISM and 
WLAN

Eight Ports / WiMAX

Remarks Complex layout and 
medium dimension

Easy configuration Dual-band and Large 
dimension

Easy configuration and 
maximum ports 

B. PARASITIC ELEMENT DECOUPLING APPROACH 
   Engraved slit or parasitic element antennas use two 
orthogonal modes to generate a broad frequency band via 
coupling in ground plane and/or in radiating patch [53]. In 
this method, the isolation between elements is optimized 
by producing an additional coupling route [54-55]. One of 
the two coupling routes opposes the signal arriving from 
the other coupling road, which causes an improvement in 
isolation level. Indirectly linked decoupling components 
such as folded shorting strip, meandered slot, and vertical 
parasitic strip are recognized as a parasitic element [56-
58]. Ease of implementation, size, and comfortable 
generation applying PCB technology and/or waveguides 
are the main benefits of the parasitic or slot antenna. The 
placement of parasitic elements has to be implemented 
meticulously, and it is not very straightforward. This 

procedure increases the performance parameters of the 
array antennas.

    Various types of the parasitic element decoupling 
approaches based on the square ring slit [59], metal strip 
reflector [60-61], stepped feed-line and open-ended 
ground slit [62], and single-shared-radiation component 
and meandered feeding lines [63] to obtain lowest 
interference between the array elements have been 
proposed and illustrated in the literature. Table II 
mentions the studied specifications of parasitic or slot 
antennas. The maximum amount of gain and bandwidth is 
achieved in [59]. The structure in [60] provides optimum 
efficiency with an easy layout. The antenna in [61] 
presents the highest isolation value of -22dB. A new 
shared radiation element antenna is investigated in [63].

TABLE II. COMPARISON ON THE PERFORMANCE PARAMETERS OF SLIT OR PARASITIC ELEMENT BASED MIMO AND SAR 
ANTENNAS

Ref. [59] [60] [62] [63]
Dimensions / Material 66.25 × 66.25 ×1.6 mm3

FR-4
25 × 30 × 1.6 mm3

FR-4
42 × 25 × 1.6 mm3

FR-4
22 × 24.3 × 1.52 mm3

Rogers TMM4
Isolation Level (dB)  -20 dB @3.0 12.0 ≥ ~

GHz
 -20 dB @3.1 10.6 ≥ ~

GHz
 -22 dB @3.2 12.0 ≥ ~

GHz
 -15 dB @3.0 10.6 ≥ ~

GHz
Applied Approach Square ring slot and 

stepped feed line
Two coplanar stripline-
feed staircase-shaped 

radiating elements

Open-ended ground slot 
and stepped-slot feed 

line

Meandered feed line and 
stub to ground linked 

through via
Efficiency / Gain 60% / 5 8 dBi~ 90% / 5.2dBi 80% / 4dBi≤ 82% / 1.5 5.8 dBi~

No. of Ports / 
Applications

Dual Ports / UWB Dual Ports / UWB Quad Ports / Portable 
UWB

Dual Ports / UWB 
portable devices

Remarks Lowest ECC Simple manufacture and 
small dimension

Low mutual coupling Maximum gain and 
expensive substrate

C. DEFECTED GROUND STRUCTURE (DGS) 
DECOUPLING METHOD
   DGS introduces the slits realized on the antenna's 
ground plane [64]. It is pursued as an appearing method 
for improving many parameters of MIMO and SAR 
antenna systems [65]. Also, it participates dramatically to 
increment the isolation. A general way is to create the slit 
in the ground plane. Howbeit, the slit can improve the 
isolation, it may also enhance the back radiation [66-68]. 
Various sorts of slits can be engraved on the ground 
(GND) as well as on the patch for decoupling 
improvement, shifting frequency, footprint area 
decrement, and multiband operation. The printed slit 
controls the flowing current flowing on the ground plane 
by repressing the interferences between the adjacent 
elements and behaves such a band-stop filter. 

    Various types of the DGS isolating mechanisms have 
been discussed in the literature. A few examples of the 
these isolating mechanisms are S-shaped DGS [69], 
square ring DGS [70], T-shaped metallic stub based DGS 
[71], electrically small meandered DGS [22], [72], ground 
plane loaded with complementary split ring resonator 
(CSRR) [20], concentric square ring patch with CSRR 
loaded GND [73], CSRR loaded GND [74], and slotted 
CSRR in GND [75]. Properties of several DGS antennas 
presented here are listed in Table III. This table explains 
that antenna in [69] has the largest size and thickness. The 
antenna in [69] also achieves the highest efficiency and 
isolation of -55 dB. Even though the antenna in [22] 
presents the largest bandwidth accompanying band notch 
property and small size, it depicts considerably higher 
isolation performance than [69].
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TABLE III. COMPARISON ON THE PERFORMANCE PARAMETERS OF DGS MIMO AND SAR ANTENNAS

Ref. [69] [76] [71] [22]
Dimensions / substrate 100 × 72 × 3.81 mm3

Rogers TMM6
60.2 × 60.2 × 1.6 mm3

RF-4
22 × 26 × 0.8 mm3

RF-4
50 × 160 × 0.8 mm3

RF-4
Isolation Level (dB)  -55 dB @≥

2.57 GHz
 -25 dB @≥

2.45 GHz
 -20 dB @≥

3.1 11.8 GHz~
 -20 dB @≥

0.7 1.0 GHz~
Applied Approach S-formed periodic DGS Square ring DGS Trident-shaped Strip and 

Ground plane open 
ended slit

Open ended DGS-slit

Efficiency / Gain 93 96% / -1.79~ ~
3.75dBi

81% / 2.1dBi 85% / 3.6 6dBi~ 80% / 2dBi

No. of Ports/ 
Applications

Quad Ports/ WLAN Quad Ports/ WLAN Dual Ports/ UWB, 
WLAN, X-band notched

Quad Ports/ LTE

Remarks Large thickness and 
high efficiency

Miniature structure and 
simple construction

Miniature structure and 
large bandwidth and 

filter

Complex structure and 
controllable isolation

Table IV shows the characteristics of the CSRR loaded 
ground plane antennas. For the antenna in [75], the 
highest efficiency at 86.62% and the most straightforward 

configuration with dual band properties is obtained. The 
antenna in [75] has higher isolation of -33 dB. Hence, it is 
more appropriate in comparison to other CSRRs.

TABLE IV. COMPARISON ON THE PERFORMANCE PARAMETERS OF CSRR MIMO AND SAR ANTENNA

Ref. [20] [73] [74] [75]
Dimensions / substrate 23 × 29 × 1.524 mm3

Rogers TMM4
60 × 60 × 1.6 mm3

FR-4
100 × 50 × 0.8 mm3

FR-4
70 × 100 × 1.6 mm3

Rogers4003
Isolation Level (dB)  -15 dB @≥

3 12 GHz~
 -22 dB @≥

2.2 2.7 GHz~
 -18 dB @≥

2.4 2.5 GHz~
 -20 dB @2.45 GHz ≥

&  -33 dB @5 GHz≥
Applied Approach Stub and GND SCRR 

and 
GND CSRR and 

concentric square ring 
patch and 

GND and bottom plane 
CSRR

Slotted CSRR in GND

Efficiency / Gain 82% / 5.9dBi 72.57% / 4dBi 29% / -0.8dBi 86.64% / 4.025dBi
No. of Ports/ 
Applications

Dual Ports/ UWB Quad Ports/ ISM Quad Ports/ ISM Dual Ports/ WLAN

Remarks Large bandwidth and 
small structure

Horizontal and vertical 
polarized, easy layout

Large size and thinner 
thickness

Lowest mutual coupling, 
dual-band, and easy 

layout

D. NEUTRALIZATION LINE DECOUPLING APPROACH
     Neutralization lines [77] are utilized to transit 
electromagnetic waves from one antenna to another via a 
metallic slot or lumped component. They create a 
contrary coupling which lowers the interferences at given 
frequencies between the elements. Neutralization lines 
have considered as particular isolation approaches, which 
annul the interferences via presenting a second road with 
an inverse phase and equal amplitude. Consequently, the 
utmost of neutralization lines accessible in literature are 
narrowband [78], [79]. The neutralization line is more 
appropriate for the SAR and MIMO systems with a low 
number of antenna arrays. In MIMO and SAR antenna 
models, the difficulty of matching is quite evident. A 
neutralization line is a metallic structure with a thin 
thickness that dissolves the obstacle of matching and 
suppresses the coupling between antennas. The form, 
dimensions, and orientation of the neutralization line are 

related to the antenna components. However, finding the 
neutralization path is not very straightforward.

   Various implementations of the neutralization line 
decoupling approach to reduce the array antenna's mutual 
coupling such as thin printed neutralization lines [80], 
pair of crossed neutralization lines [81], neutralization 
lines together with LC matching network [18], and 
neutralization lines between ground planes [82] have been 
presented and investigated in the literature. Table V 
describes the neutralization-based MIMO and SAR 
antenna properties. A couple of crossed neutralization 
lines is investigated in [81] with the thinnest substrate 
thickness and proper gain amounts. However, the 
antenna's layout is not simple. The antenna operates on 
multiple frequency bands and presents a minimum mutual 
coupling amount of -23 dB.

TABLE V. COMPARISON ON THE PERFORMANCE PARAMETERS OF NEUTRALIZATION LINES MIMO AND SAR ANTENNAS

Ref. [80] [81] [18] [82]
Dimensions / Material 36 × 65 × 1 mm3

FR-4
135 × 80 × 0.8 mm3

FR-4
50 × 40 × 1.6 mm3

FR-4
4 cm × 4 cm × 1.6 mm

FR-4
Isolation Level (dB)  -15 dB @≥  -23 dB @ 750, 850, ≥

2000, 2500 MHz
 -20 dB @≥

2.45 and 5.8 GHz
 -21 dB @≥
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2.4 2.5 GHz~ 3.1 11 GHz~
Applied Approach Neutralization line Crossed neutralization 

line with integrated 
inductors

Neutralization line with 
couple of inductor and 

capacitor

Stepped neutralization 
line

Efficiency / Gain 81% / 2.1dBi 31.86 61.73% / ~
-1.79 3.75 dBi~

78 85% / -~ - / 3.28 4dBi~

No. of Ports / 
Applications

Dual Ports / WLAL 
USB-Dongle

Dual Ports / LTE, GSM, 
WLAN

Dual Ports / WLAN Quad Ports / UWB

Remarks Small structure and easy 
configuration

Complex layout and 
minimum isolation

high efficiency and easy 
layout

Large dimension, largest 
bandwidth, and simple 

configuration

E. PIN DIODE, VARACTOR DIODE, AND FEEDING 
STRUCTURE DECOUPLING APPROACH 
    PIN diode, varactor diode, and feeding structures are 
also applied to suppress the mutual coupling effects [83]. 
PIN diode in antenna models generates dynamic radiation 
patterns. The implementation of PIN diode in MIMO and 
SAR antenna arrays results to enlarge the link capacity 
controls the antenna's length, and also increments 
decoupling. This attribute ensures the reconfigurability of 
the antenna’s radiation [84]. 

    Several switching-based decoupling methods where 
MEMS switches, p-i-n and varactor diodes are applied to 
expand the working frequency band and degrade the 

coupling have been proposed in the literature [85]. Some 
of them are based on back-to-back MEMS switches [86], 
slot-based P-I-N diodes [87, 88], planar inverted-F P-I-N 
diodes [89], and microstrip loop and slit frequency 
reconfigurable [90]. Table VI lists the characteristics of 
the mentioned approaches. The antenna illustrated in [89] 
is not simple because of the presence of a shorting plate 
and a vertical corrected feed line. It has the maximum 
amount of gain. Also, it has the highest isolation amount 
of -47 dB. However, the antenna structure in [90] shows 
the optimum efficiency and gain of 92% and 5 dBi, 
respectively. 

TABLE VI. COMPARISON ON THE PERFORMANCE PARAMETERS OF FREQUENCY RECONFIGURABLE BASED MIMO AND SAR 
ANTENNAS

Ref. [86] [87] [89] [90]
Dimensions / Material 46 × 20 × 1.6 mm3

FR-4
120 × 60 × 1.5 mm3

RO-4350
90 × 50 × 0.8 mm3

FR-4
150 × 150 × 0.8 mm3

FR-4
Isolation Level (dB)  -18 dB @2.39 2.48 ≥ ~

GHz and 5.15 6.4 GHz ~
(Off state)

 -12 dB @1.77 2.51 ≥ ~
GHz

 -25 dB @0.75 7.65 ≥ ~
GHz

 -47 dB @2.3 2.4 GHz ≥ ~
(for D1 and D2 On-state), 

 -30.8 dB @3.4 3.6 ≥ ~
GHz (for D3 On-state),  -≥
43 dB @2.5 2.7 GHz (for ~

D1 and d4 On-state)

 -20 dB @1.6 1.9 ≥ ~
GHz (Off state)

 -20 dB @2.2 2.96 ≥ ~
GHz (On state)

Applied Approach RF MEMS Switches Biasing network and 
varactor diodes per 

component

DC biasing network and pin 
diodes and 

Biasing network and pin 
diodes switches 

Efficiency / Gain 83% / 2.9dBi 65 81 % / 0.5 3.2 dBi~ ~ 48.43 73.1% / 1.99~ ~
2.78dBi

55 83 % (Lower band)~
75 92 % (Upper band) ~

/ 3 5dBi~
No. of Ports / 
Applications

Quad Ports / WLAN Five Ports / UWB and 
cognitive radio (CR)

Quad Ports / WiMAX Triple Ports / LTE and 
portable wireless DTV 

media players
Remarks Complex layout Expensive substrate 

Complex layout 
Highest isolation Optimum efficiency and 

gain

F. FREQUENCY-SELECTIVE SURFACE (FSS) 
DECOUPLING METHOD
   FSS approaches can efficiently improve the isolation. 
However, they are discordant with low-profile structures, 
and they affect the radiation pattern [91]. This technique 
can be applied between the dielectric resonator antennas 
(DRA). This is obtained by accommodating an FSS 
between the DRAs that have been placed in the H-plane. 
The FSS contains an array of SRR cells that are 
embedded onto the E-plane. The SRR formation is 
modeled to achieve band-stop functionality inside the 
antenna frequency band.

G. ELECTROMAGNETIC BANDGAP (EBG) 
DECOUPLING STRUCTURE

    An EBG structure blocks electromagnetic waves of a 
certain frequency or plays as a region to pass 
electromagnetic waves [92]. Various stop-band, pass-
band, and band-gap frequencies can be recognized [93]. 
The EBG is a periodic adjustment of dielectric or metallic 
materials. Structure's periodicity and singular resonance 
of the elements can produce many band-gaps [94]. EBG 
presents parasitic inductance and capacitance. Thus, the 
phase constant of an electromagnetic wave distributing 
under the patch will be much greater than the transverse 
electromagnetic mode. As a result, the EBG element 
operates in a slow-wave medium with a wavelength 
shorter than the transverse electromagnetic mode. 
Conventionally, the EBG structure is located between the 
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antenna arrays. While, for isolation improvement, the 
antenna array is enclosed via the EBG. 

    In the recent literature, several types of the EBG 
decoupling structures have been presented and discussed 
to improve decoupling between the array antennas in 
MIMO and SAR systems such as the mushroom type 
EBG [95], dual-layer multi-element EBG [96], periodic 

Z-formed EBG [97], and 1-D and SRR EBG [98]. Table 
VII provides an overview of the presented EM band-gap 
technique-based MIMO and SAR antennas. Simplest 
structure with easy manufacture providing the highest 
isolation in order of -53.7 dB has been presented in [97]. 
The maximum efficiency of applying SRR and EBG has 
been presented in [98].

TABLE VII. COMPARISON ON THE PERFORMANCE PARAMETERS OF ELECTROMAGNETIC BANDGAP BASED MIMO AND SAR 
ANTENNAS

Ref. [95] [96] [97] [98]
Dimensions / Substrate 95 × 95 × 2.284 mm3

Rogers RO4350B
35 × 40 × 1.6 mm3

FR-4
90 × 45 × 1.6 mm3

FR-4
60 × 57 × 1.2 mm3

FR-4
Isolation Level (dB)  -25 dB @≥

2.395 2.42 GHz~
 -28 dB @≥

2.45 2.55 GHz~
 -30.35 dB @≥
5.59 GHz

 -53.7 dB @≥
2.43 2.54 GHz~

Applied Approach Vias and S-EBG Dual layer mushroom 
EBG

8 Z-formed EBG  SRR and EBG

Efficiency / Gain 56.57% / 5.12dBi 64.42 66.94 %  4.55~ ~
4.92 dBi

NG / 2.42dBi 82% / NG

No. of Ports / 
Applications

Quad Ports / IMS Dual Ports / IMS Dual Ports / WLAN Dual Ports / ISM

Remarks Complex layout Sorely complex layout 
and compact dimension

Simple layout and large 
dimension 

High efficiency and 
simple layout

   

All the approaches discussed above are summarized in 
Table VIII. From this table, most of them present 
isolation in order of 15dB, whereas the neutralization line 
method has the lowest isolation of 12dB. The benefits and 

drawbacks of several methods are listed in Table IX. The 
isolation value corresponds to the sort of antennas and the 
adopted ground plane.

TABLE VIII. COMPSRISON AMONG VARIOUS DECOUPLING MECHANISM WITH PERFORMANCE PARAMETERS

Ref. Isolation technique Isolation shape Frequency Isolation Gain Size
[70] Decoupling network Two section 

transmission line
746–787 MHz 23 dB 3 dBi 55×110 mm2

[41] Decoupling network T-shaped strip 1.65-1.9 GHz
and 2.68-6.25

GHz

10 and
15 dB

1.35 and
4.22 dBi

55×110 mm2

[42] Decoupling network Tunable and 
coupling network

2.4 GHz 20 dB - 90 × 72 mm2

[45] Decoupling network Tunable and 
coupling network

2.2-2.7 and
4.9-5.9 GHz

15 dB 2.9-4.5 dBi 40 × 40 mm2

[46] Decoupling network Structure with 
lumped element

770 MHz 16 dB -3.8 dBi 120×50 mm2

[58] Parasitic elements Structure 
between antenna

2.4-2.485 GHz
3.2–3.5 GHz

5.15-5.85 GHz

16 dB - 100×60 mm2

[99] Parasitic elements Branch 
element/resonator

3–8.5 GHz 15 dB 5.75 dBi 26×40.5 mm2

[100] Parasitic elements Branch 
element/resonator

800–2700 MHz 36 dB 3.2 dBi -

[101] DGS Slotting 2.4-2.484 GHz 17.8 dB 3 dB 39.5×20 mm2

[102] DGS Defected ground
plane/partial 

ground

2.0–7.31 GHz 17 dB 3.67 dBi 54.82 × 96.9 
mm2

[78] Neutralization lines Simple line 2.4 GHz 19 dB 2.1 dBi 30 × 65 mm2

[103] Neutralization lines Branch 
line/suspended 

line

760 MHz 12 dB 0.9 dBi 46 × 85 mm2

TABLE IX. BENEFITS AND DRAWBACKS OF ISOLATION TECHNIQUES
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Ref. Techniques Benefit Drawback
[32] – [52] Decoupling network - Easy decoupling structure

- Enhance far-field properties
- Sometimes additional space is needed

- Generate ohmic losses
[53] – [63] Parasitic elements - Control the isolation

- Suitable DG
- Shift in frequency due to parasitic 

elements
[64] – [75] Defected ground structure

(DGS)
- Small antenna dimension

- Proper diversity
- usually not suited for mobile 

applications
- Low gain

[77] – [82] Neutralization lines - Acceptable impedance matching
- Proper diversity with DG

- Lower frequency band 
- Shorter bandwidth when compared 

with upper frequency band
[83] – [90] PIN diode, Varactor diode

and feeding arrangement
- Appropriate isolation 

- High gain
- Losses due to component

- Short frequency band
- Complex configuration

[92] – [98] Electromagnetic Bandgap 
(EBG)

- Easy layout 
- Acceptable isolation 

- Short bandwidth
- Low gain

IV. HIGH EFFICIENT DECOUPLING TECHNIQUE 
BASED ON THE METASURFACE AND 
METAMATERIAL PROPERTIES 
   The results presented in Section II and listed in Tables I 
- IX show that the abovementioned decoupling 
approaches are just presented for a limited number of the 
array elements. In addition, the design process of some of 
them is complex and far way to practical realizations. 
Most of them are working at a specific range of frequency 
with low gain and efficiency, and they have affected the 
total physical size of the array antennas. In addition, they 
are not applicable for a wide range of design possibilities, 
and they have an asymmetric configuration which enables 
them for mass production. Therefore, as the main part of 
this review study, the efficient decoupling approach based 
on the metasurface and metamaterial concepts have been 
presented in bellow with providing an efficient number of 
examples and various type of designs. The main 
advantages of the following designs are their simple 
prototypes with ease of manufacture process, low cost, 
high isolation level between the array elements, as well 
as, not being limited to small number of array elements, 
being applicable for a wide range of frequency band, 
having very negligible effects on the performance 
parameters when keeping constant of physical 
dimensions, and having symmetrical layouts which enable 
them for mass production.

A. METASURFACE (MTS) AND (METAMATERIAL 
(MTM) DECOUPLING METHOD APPLICABLE IN SAR 
AND MIMO ANTENNA SYSTEMS WITH WIDE RANGE 
OF DESIGN POSSIBILITIES

    Waveguide slot array (WSA) antennas propose 
favorable properties that contain moderate cost, low-loss, 
and high power-handling ability [104]. While, the major 
disadvantage of the WSA is the interferences between the 
slit antennas that reduce the bandwidth, gain, and recurves 
the radiation pattern. To employ WSA antennas in next 
generation SAR and MIMO systems, a low degree of 

coupling is required [105]. Several methods have been 
implemented to increase isolation [106-121]. Some 
commonly used methods include coplanar strip walls 
between the antennas [122-123] and frequency selective 
surfaces [124]. However, these methods diminish the 
radiation pattern. This happens because a coplanar strip 
wall or an FSS wall does not have a good matching 
condition. Consequently, the radiation pattern is degraded 
because of reflected waves from the integrated wall 
between the antennas.

In the following examples, the new approaches are 
introduced to increment isolation between WSA antennas. 
These primarily involve placing an MTS between the 
waveguide slit antennas. Proposed techniques are 
exhibited to significantly repress the mutual coupling and 
increase the gain and working frequency band. They are 
effective and simple to implement.

     In [106], a novel mechanism has been presented to 
suppress the interferences between WSA antennas based 
on the MTS concept. This is obtained by locating an MTS 
bulkhead between the antennas, as depicted in Fig.2. The 
antenna's performance is displayed to improve when 
compared to the same reference structure with no MTS. 
The implemented antennas have a physical dimension of 
40 mm × 20 mm × 5 mm and operate over a bandwidth of 
1.7 GHz to 3.66 GHz, which relates to a practical 
bandwidth of 73.13%. The reference WSA antennas 
present an average isolation of -20 dB, while, with an 
MTS bulkhead, the decoupling is depicted to enhance to -
36.5 dB. Furthermore, the bandwidth expands by ~10%, 
and the gain increases by 14.66%. This mechanism will 
be very suitable for SAR and MIMO antenna systems 
where low coupling between adjacent radiation elements 
is necessary to improve the specifications of the structure 
and minimize array phase errors, as a necessity to 
increment the performance of the system.

        

                           (a)                                                       (b)                                                                                         (c)
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Fig.2. (a) Reference structure, (b) WSA antennas with MTS bulkhead, (c) reflection and transmission coefficients. WO and W represent without and 
with MTS bulkhead, respectively [106].

     In [107], it is investigated that substrate integrated 
waveguide longitudinal slotted array antenna (SIWLSAA) 
that is loaded with metal fences shows low mutual 
coupling throughout VHF/UHF bands. A reference 
SIWLSAA implemented for comparison aim includes 
3×6 slotted arrays designed on the top-side, and the 
bottom-side of the FR-4 layer has the lowest mutual 
coupling of -63 dB between its slits. Suppression in 
mutual coupling is discussed by applying an easy, 

innovative way based on locating a metal fence between 
each row of the slit arrays. The mutual coupling is 
exhibited to better than -83 dB entire 0.2-1.0 GHz with a 
gain more than 1.5dBi, and a side-lobe level less than -40 
dB. The presented SIWLSAA shown in Fig.3 is compact 
and has a physical dimension of 40 mm × 10 mm × 5 mm 
(0.026λ0 × 0.006λ0 × 0.002λ0, where λ0 is defined at 200 
MHz). The proposed SIWLSAA will be very suitable for 
MIMO and radar system applications.  

    
                             (a)                                                      (b)                                                                                    (c)

Fig.3. (a) Reference structure (WO), (b) proposed structure with metal fences (W), and (c) S-parameter performances [107].

     

In [108], a decoupling structure based on MTS that is 
constructed of a square-wave slot pattern with overstated 
corners realized on a rectangular microstrip presents low 
mutual coupling between neighbor antennas for array 
systems. The 1×2 symmetric antenna array embedded 
with the proposed decoupling structure, which is 
exhibited in Fig.4, is modeled to work at ISM bands of X, 
Ku, K, and Ka. As demonstrated in Fig.4, the surface 
current distributions indicate that the isolation structure 

compounded of the square-wave slit soaks up the surface 
waves that would otherwise couple with the adjoining 
radiating parts. With this mutual coupling suppression 
technique, the following are observed: (i) the average 
isolations in the respective ISM bands mentioned above 
are 7, 10, 5, and 10 dB; and (ii) the center-to-center 
distance between the neighbor parts is decreased to 10mm 
(0.28λ). The average gain increment with the MTS 
decoupling is 2 dBi.

                  

                                                  (a)                                                                    (b)                                                           (c)

    

                                                 First Band                                                                                  Second Band

     

                                              Third Band                                                                                    Fourth Band
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(d)

                  

(e) 
Fig.4. Configuration of (a) reference array antennas (WO), (b) proposed structure applying the MTS isolating sheet (W), (c) circuit diagram, (d) S-

parameters, and (e) surface current distributions at 19.5 GHz (when one port is stimulated, the other one is matched to a 50-ohm load) [108].

     
An innovative approach to increase the isolation between 
the radiating parts of a waveguide slot array antenna has 
been proposed and elaborated in [109]. It has obtained by 
realizing slits between the waveguide oval-formed slits, as 
shown in Fig.5. The reference array has been 
implemented with an organization of 3×5 oval-formed 
slots. With embedding linear slits between the radiating 
oval-formed slots in both vertical and horizontal 
directions, major increment in isolation has obtained to 
have values of 24, 20, and 32 dB over the bands of 12.95 
to 13.75 GHz (Ku-band), 15.45 to 16.85 GHz (Ku-band), 

and 18.85 to 23.0 GHz (K-band), respectively. The study 
on the surface current distributions displays that the slits 
act as an isolating architecture that soaks up the surface 
waves, which would be coupled with the adjacent 
elements. The center-to-center gap between the slits is 
0.2λ that is at least two times less than the traditional 
array structures. Using the slit decouplings, the lowest and 
highest gains increase by 53.5% and 25.5%. Furthermore, 
the radiation patterns are unchanged. This technique is 
easy for employment and inexpensive for mass 
production. 

 

       
                                 (a)                                                   (b)                                                                     (c)                                            

 

First band, 12.95 - 13.75 GHz (Ku-band)

 

Second band, 15.45 - 16.85 GHz (Ku-band)

Third band, 18.85 - 23 GHz (K-band)

(d)

Fig.5. (a) Reference structure (WO), (b) proposed structure with (W) linear slot isolators, (c) surface current distributions at 22.5 GHz (when one port 
is stimulated, the others are matched to a 50-ohm load), and (d) S-parameters [109].

     

An electromagnetic technique to suppress the coupling 
between array antennas applying MTM EBG is presented 

and discussed in [110]. Fig.6 shows that the proposed 
configuration can be considered for a full-duplex array 
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antenna system with short distances between the array 
elements (0.33λ0) without any decay in the radiation 
pattern. By implementing this way, the decoupling is 
exhibited to increment by >30 dB in the array structure 
containing three patches modeled to work over 9.7 - 12.3 
GHz. To more in-depth discernment, the E-field 
magnitude profiles without and with the MTM-EBG 
isolating structure are displayed in Fig.6. Obviously, the 

distributing E-field is not permitted to be coupled to the 
neighbor elements that affirms the efficiency of the 
presented method in decreasing surface waves. A 
parametric evaluation was utilized to maximize the 
isolation performances. The array structure has the 
physical and electrical sizes of 65 mm × 22.5 mm ×1.6 
mm and 2.16 × 0.75  × 0.053 , respectively, where  𝜆0 𝜆0 𝜆0 𝜆0
is defined at the mid-band of 10 GHz.  

                
   

                                             (a)                                                             (b)                                                                    (c)                                                        

    

   
(d)

     
(e)

Fig.6. (a) Reference antenna array, (b) antenna array with single MTM-EBG decoupling slabs, (c) proposed antenna array with array of MTM-EBG 
decoupling slabs, (d) S-parameters performances, (e) distributed surface currents at resonance frequency of 10 GHz [110].

    
A novel sort of decoupling approach is realized to an 
MTM substrate integrated waveguide (SIW) slotted 
antenna array in [111]. Fig.7 shows that the circular 
formed reference SIW antenna array is built from an 
Alumina layer with a physical size of 40 mm × 5 mm × 
1.5 mm. Integrated into the reference structure are 38 slits 
with the same size, i.e., 2 mm × 1 mm × 1.5 mm. This 
structure workes across X-band to Ku-band, providing an 
average mutual coupling of about -10dB. The mutual 

coupling was suppressed through embedding metal fence 
decouplings between the radiation slits, which degraded 
the interferences by an average of 13dB. Furthermore, the 
impedance matching bandwidth is improved without 
decay in the radiation patterns. By utilizing the metal 
fence decouplings, the optimum obtained gain enhances 
by ~10%. The proposed approach is easy to realize, and it 
has been presented for SAR and MIMO systems.

                                                                                      

                                                                                      (a)                                                             (b)                                                

   
                                    First band                                                               Second band                                                       Third band
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                                     Fourth band                                                             Fifth band                                                            Sixth band 

(c)
Fig.7. Geometries of (a) the reference structure (WO) and (b) the proposed structure with MFIs (W), and (c) S-parameter responses [111].

     

In [112], an efficient decoupling method is illustrated for 
a phased array. It is obtained via placing a MTM 
superstrate patch between the radiation parts of the phased 
array, as shown in Fig.8. The patch is implemented 
through integrating slits within the patch, where the slits 
are organized in a 2×3 array. This technique is applied to 
an FR-4 layer. An average isolation improvement of 5dB 
is obtained throughout its working bandwidth. This 

approach is: (i) easy to realize; (ii) suitable for planar 
antenna designs; (iii) simply applicable in practice; (iv) 
resilient and dominates the deficiencies of poor front-to-
back ratio already presented in literature; and (v) 
appropriate for densely packed microstrip. Additionally, 
the presented method is exceptionally versatile for many 
applications having precise performance necessities.

           

                               (a)                                                       (b)                                                                                 (c)                                                   

Fig.8. Layout of the antenna (a) without and (b) with MTM decoupling super substrate, and (c) S-parameters [112].

    
Modern MIMO and SAR need a frequency band which is 
larger than 1 GHz. Waveguide slot antennas are popularly 
utilized in MIMO and SAR systems because of their 
intrinsic benefits, namely power handling ability and high 
efficiency. However, these antennas have a confined 
frequency band. While the frequency band of slot 
antennas can be expanded through applying ridge 
waveguides, this way presents fabricating intricacy and is 
not cost-effective. An innovative solution has been 

proposed in [113] to implement a wide frequency band 
via applying a 2×3 array structure with the isolation 
between the antenna incremented by embedding a 
decoupling wall between the radiating antennas, as shown 
in Fig.9. The decoupling wall contains three intercoupled 
U-shaped microstrip transmission lines. By this method, 
the frequency band is wider than 2 GHz within the X-
band and Ku-band.

                 

                                                                    (a)                                                              (b)                                          (c)   
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(d)

Fig.9. (a) Reference array antennas without isolation wall, (b) proposed array antennas with isolator wall, (c) isolator wall, (d) S-parameters [113].

     
An easy and feasible mechanism for increasing the 
isolation between neighbor antennas is proposed and 
applied in [114]. Fig.10 shows that this is achieved by 
placing a smaller patch with MTM isolating structure 
between the antennas. The antenna structures are circular 
patches and the MTM decoupling structure is designed 
from a hexagonal slot resonator. The direct effect of 

realizing the MTM decoupling structure is 60% 
improvement in isolation between the closely spaced 
elements, 200% enhancement in impedance match, and 
369% enhancement in the practical bandwidth. Because 
GND is unchanged, the front-to-back ratio is unaltered as 
well. The method is simply feasible and is efficiently 
applicable in beam scanning systems.

               
                                                 (a)                                                                    (b)                                                    (c)
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(d)

Fig.10. (a) MTM isolation sheets, (b) structure without MTM isolation sheet, (c) with multiple MTM isolation sheet, and (d) S-parameters [114].

V. COMBINED ISOLATION TECHNIQUES

    In this section, to achieve high and stable isolation 
between the radiation elements throughout the operating 
frequency band without affecting other performance 
parameters such as array’s dimensions, bandwidth, and 
radiation properties, new array antennas based on 
combined isolation techniques are proposed, designed and 
manufactured. In other words, the proposed decoupling 
slabs located between the radiation elements for these 
new array antennas are realized based on the combination 
of the metasurface and metamaterial and electromagnetic 
bandgap concepts. As a result, high and stable isolations 
over entire bandwidths are achieved. The proposed works 
are discussed as follows.

 A. INTERFERENCE REDUCTION BETWEEN CLOSELY 
PLACED ANTENNAS APPLYING EBG MTM FRACTAL 
LOADING

    In [115], an efficient method is investigated to increase 
the isolation between the closely spaced antennas. It has 
been obtained by incorporating a fractal decoupling slab 

between the radiating patches, as displayed in Fig.11. The 
fractal isolating sheet is an EBG frame based on MTM. 
By adopting this way, the space between the patches has 
decreased to 0.65λ for isolation improvement at amounts 
up to 37, 21, 20, and 31dB at the X-, Ku-, K-, and Ka-
bands, respectively, without decay in the radiation 
patterns. Two-element antennas are exhibited to work 
across a large frequency band, i.e., 8.7 to 11.7 GHz, 11.9 
to 14.6 GHz, 15.6 to 17.1 GHz, 22 to 26 GHz, and 29 to 
34.2 GHz. An optimum gain increment in order of 71% 
has been achieved. The current density distributions 
demonstrate that the surface currents are decreased by 
presenting the fractal load between the adjacent elements. 
This affirms the realized decoupling structure behaves as 
an efficient isolation frame. The specifications of the 
antenna have been validated by experimental results. This 
approach can be used in several of the previously 
mentioned applications, and it is also suitable for adjacent 
antennas in arrays found in Radar, MIMO, and RFID 
systems.

    
                       (a)                                        (b)                                                           (c)                                                                 (d)

   

              

(d) 

Fig.11. (a) reference array (WO), (b) proposed array with EBG fractal decoupling sheet (W), (c) equivalent circuit diagram, (d) measured S-
parameters, and (d) surface current distribution at 29.9 GHz [115].

B. STUDY ON MUTUAL COUPLING REDUCTION 
BETWEEN ADJACENT ARRAY ANTENNAS WITH 
REALIZATION OF FRACTAL MTM EBG 
ARCHITECTURE

    The abovementioned technique presented in [115] was 
further developed and extended to a 2×2 antenna array 
with radiation elements in [116]. In [116], a decoupling 

MTM geometry based on fractal EBG frame, as displayed 
in Fig.12, considerably suppresses the coupling between 
the antennas. The assemblage of the MTM-EBG layout is 
cross-formed with fractal-formed slits engraved in each 
arm of the cross. The fractals are compounded of four 
interjoined-‘Y-formed slits, which have separated with an 
inverted-‘T-formed slit. The MTM-EMBG frame is 
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located between the singular elements in a 2×2 array 
antennas. The experimental data illustrate the average 
isolation improvement across the operating bandwidth is 
17, 37, and 17 dB between the antennas 1 and 2, 1 and 3, 
and 1 and 4, respectively. For this mechanism, metallic-
via-holes are not required. The antenna array supports the 
bandwidth of 8 - 9.25 GHz for X-band operations, which 

relates to a practical bandwidth of 14.5%. The center-to-
center distance between the neighbor antennas has 
decreased to 0.5λ0 without decay in the radiation patterns. 
The empirical gain changes between 4 and 7 dBi, and the 
radiation efficiency alters from 74.22% to 88.71%. This 
technique is feasible in the realization of neighbor antenna 
arrays applied in MIMO and SAR devices.

                               
                                (a)                                             (b)                                                (c)                                                         (d)

   
                                                                                (e)                                                                                                            (f) 

Fig.12. (a) reference 2×2 antenna array, (b) crossed-shaped fractal decoupling structure, (c) proposed 2×2 array antennas with fractal isolator loading, 
(d) equivalent circuit diagram, (e) empirical S-parameters, (f) surface current density distributions at 8.85 GHz [116].

C. INTERACTION BETWEEN CLOSELY PACKED 
ARRAY ANTENNAS APPLYING MTS FOR MIMO AND 
SAR SYSTEMS

    An efficient method to repress the interference between 
adjacent patches that is usual in densely packed antenna 
arrays has been proposed and demonstrated in [117]. 
These antennas provide frequency beam-steering ability 
required in MIMO and SAR systems. Fig.13 shows that 
the proposed technique applies an MTM decoupling slab 
that is incorporated between the radiating patches to 
increase the decoupling between the antennas that would 
otherwise reduce the performance parameters. The MTM 
decoupling slab composed of mirror imaged E-formed 
slots etched on a patch with an inductive stub. 
Experimental data affirms that the average mutual 
coupling (S12) is -27dB over 9 - 11 GHz without MTM 
decoupling slab. However, with the adoption of the MTM 
decoupling slab, the average mutual coupling decreases to 

-38dB. The distance between the antenna has decreased to 
0.66λ0, where λ0 is defined at 10GHz. Additionally, the 
employment of this method provides a 15% extension in 
the working frequency band. Furthermore, the decoupling 
influences are remarked through imagining the surface 
current distributions curves entire the antenna array. With 
the adoption of the MTM decoupling slab, powerful 
currents are induced on the patches that obviously 
investigates the effects of the MTM decoupling slab in 
reducing surface current wave interaction between the 
elements. At 9.95 and 10.63 GHz the gain value is 4.52 
dBi and 5.40 dBi, respectively. Additionally, this way 
omits poor front-to-back ratio occurred in other isolating 
approaches, and it is comparatively easy to realize. 
Supposing sufficient distance is existing between the 
neighbor elements, the MTM decoupling slab can be 
embedded with available antenna arrays, which makes 
this technique versatile.

                            

L f1 L f2

Rp1 Rp2

Cp1
Cp2CDS

RDS LDSLp1
Lp2

KDS1 KDS2

Feed-
line #1

Patch #1 Patch #2MTM-DS

Feed-
line #2

                                               (a)                                                (b)                                                                         (c)      
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                        (d)                                                                                                             (e)      

Fig.13. Antenna array (a) before apply MTM isolator shield and (b) after apply MTM isolator shield, (c) circuit of two patches with MTM-DS, (d) S-
parameter responses, (e) surface current densities at 10.65 GHz [117].
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D. ISOLATION IMPROVEMENT UTILIZING 
INTEGRATED MTM EBG DECOUPLING SLAB 
FOR DENSELY PACKED ARRAY ANTENNAS

     In [118], the work presented in [117] is further 
developed and extended from 1×2 linear array 
antennas, which consist of two radiation elements, 
to 2×2 matrix array antenna configurations, which 
consist of four radiation antennas. An innovative 
method to suppress the mutual coupling in adjacent 
antennas array by incorporating an MTM EBG 
frame in the distance between the patches to reduce 
surface currents that would otherwise participate in 
interferences between the array antennas is 
developed and investigated. This MTM EBG 
decoupling frame is a cross-formed microstrip 

transmission line on which two outward facing E-
formed slots are imprinted as shown in Fig.14. 
Inverse other MTM prototypes, it is via free. The 
highest experimental decoupling obtained between 
the four-element array antennas is 60dB at 9.18 
GHz. Throughout the empirical working band of 
9.12 - 9.96 GHz, the lowest experimental coupling 
between each element is -34.2dB at 9.48 GHz, and 
without any decay in radiation patterns. The 
average experimental mutual coupling across the 
bandwidth is -47dB. Current density distributions 
explain that the MTM EBG decoupling frame soaks 
up the fringing fields that would otherwise couple 
with the neighbor radiating patches. The results 
shown in Fig.14 affirm this method is proper for 
applications in MIMO and SAR systems.

                  
                            (a)                                    (b)                                 (c)                                                                  (d)

   

                           (e)                                                                                                         (f)

Fig.14. (a) Reference array antenna, (b) array structure with embedded simple isolator sheet, (c) array structure with embedded MTM based 
EBG isolator sheet, (d) current densities at 9.6 GHz, (e) circuit model, and (f) measured S-parameter responses[118].

E. CRLH MTM-BASED LEAKY-WAVE ARRAY 
ANTENNA WITH LOW MUTUAL COUPLING 
REALIZED ON SIW WITH ±30o FREQUENCY 
BEAM-SCATTERING ABILITY 

    A practical investigation to implement a novel 
MTM leaky-wave antenna (LWA) applied in the 
making of a 1×2 array that is built utilizing SIW 
methodology for millimeter-wave beam-scanning 
applications is discussed in [119]. As shown in 
Fig.15, the array structure is composed of two 
LWAs with MTM unit-cells printed on the top 
surface of the SIW. The MTM unit-cell that is an E-
formed transverse slit, leads leakage loss and 
disconnects the current flow across the SIW to 
increase the performance parameters of the array. 
The physical dimension of the LWA is 40 mm × 10 
mm × 0.75 mm. The isolation level between the 

array antennas is boosted through integrating an 
MTM sheet between the elements. The LWA works 
throughout the bandwidth of 55 - 65 GHz that 
corresponds to 16.66% feasible bandwidth. The 
structure is depicted to display beam-scanning of 
±30° across the bandwidth. Backward (−30°), 
broadside (0°), and forward (+30°) gain are 8.5, 
10.1, and 9.5 dBi, respectively. The isolator shield 
is exhibited to have a minimized influence on the 
impedance bandwidth and radiation properties. 
After applying the MTM-sheet an average 
improvement of ~25 dB, ~1 dBi, and ~13% have 
been achieved on the isolation, gain, and efficiency, 
respectively. The surface current density 
distributions illustrate that the MTM-sheet is an 
efficient electromagnetic band-gap frame that 
significantly obstacles surface currents from 
electromagnetic waves interacting with the closely 
radiation antennas in the array structure. The 
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ruinous effects of surface currents in the array are 
remarkably repressed from affecting the array 

antenna's far-field.

      
                                 (a)                                                         (b)                                                                          (c)

            
                                  (d)                                              (e)                                                                            (f)                                               

Fig.15. (a) reference array antenna, (b) proposed antenna array with MTM-shield, (c) S-parameters, (d) gain, (e) efficiency, and (f) 
surface current density distributions at 60 GHz [119].

F. ISOLATION IMPROVEMENT BETWEEN 
ANTENNA ARRAYS BASED ON MTS-WALL 
FOR TERAHERTZ BAND

    A new two-dimensional MTS wall to 
suppress the interference between in antennas 
in array working ate terahertz band of 139 to 
141 GHz applicable for security screening, 
medical and communications systems have 
been proposed in [120]. The MTS unit-cell 
contains connected twin ‘Y-formed’ 
microstrip structures that are inter-digitally 
incorporated with each other to generate the 
MTS wall. The MTS wall does not have via 
holes, and it includes a shorten ground plane 
to simplifying the manufacturing process. As 
shown in Fig.16, the MTS wall is located 
firmly between the elements to increase the 
decoupling and suppress the surface-waves. 
To achieve the lowest coupling, the wall is 
implemented upright to the antennas. Over the 
terahertz frequency bandwidth, the gain and 

isolation of the array antennas are 9.0 dBi and 
less than -63 dB, respectively. This method 
obtains isolation improvement of higher than 
10dB across a large frequency band (2 GHz) 
than obtained to date. The decoupling effects 
are remarked through imagining the surface 
current curves throughout the array structure. 
The surface current density distribution shows 
that without MTS wall and when element #1 is 
stimulated, the electromagnetic signal is 
transferred to element #2, and contrariwise. 
However, when the MTS wall is located 
between the elements, it remarkably obstructs 
the electromagnetic signal from element #1 
being transferred to element #2. By applying 
this approach, the edge-to-edge space between 
the radiation patch has decreased to 2.5mm. 
The size of the antennas and GND are 5 mm × 
5 mm and 9 mm × 4.25 mm when realized on 
a 1.6 mm thick traditional layer.

      

0
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0

4.08

16.9
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32.6
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104.9

          (a)                 (b)                                                                              (c)                                       

          
(d)

Fig.16. Antenna array (a) without and (b) with MTS wall isolator, (c) surface current distributions at 140 GHz, and (d) S-parameters. [120].
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G. ISOLATION IMPROVEMENT ACROSS BROAD 
FREQUENCY BAND APPLYING INTEGRATED 
PERIPHERY SLOT FOR ANTENNA ARRAYS

    A new mechanism to increase the isolation 
between closely spaced radiating patches has 
been proposed and modeled in [121]. This 
method enabled the implementation of low-
profile construction of extremely compact 
antenna geometries needful in MIMO and 
SAR communication devices. Contrary to 
other traditional approaches of reduction 
interferences where an isolator sheet is placed 
between the antennas, this method is easier 
and just needs integrating linear slits close the 
periphery of the radiating element, as shown 
in Fig.17. The main properties of this way are 

(i) substantial suppression in the minimum 
coupling between the neighbor patches by -
26.7dB in X-band and >-15dB in Ku and K-
bands; (ii) decrement in the center-to-center 
distance between the elements up to 10 mm 
(0.37λ); and (iii) more than 40% gain 
increment across specified angular directions 
that changes between 4.5 and 8.2 dBi. The 
investigation of the surface current 
distribution shows that the slits act like an 
isolating frame that soak up the surface-waves 
that would otherwise couple with the adjacent 
patches. The proposed technique is easy and 
inexpensive.

          

                                  (a)                                                                  (b)                                                              (c)

  

                                                                                                           (c)

             

 (d)

Fig.17. (a) Reference array, (b) proposed slotted array, (c) S-parameters, and (d) surface current distributions at 11.37GHz [121].

H. SURFACE-WAVE SUPPRESSION IN 
ARRAY ANTENNAS APPLYING MTS 
CONTENT FOR SAR AND MIMO 
APPLICATIONS

    An efficient approach for isolation 
improvement between closely spaced antennas 
which is based on MTS decoupling for MIMO 
and SAR applications, is presented in [125]. It 
has accomplished by constraining the surface 
current waves induced across the antenna 
through the insertion of a cross-formed MTS 
structure between the antennas, as shown in 

Fig.18. This MTS minimizes the influences of 
electromagnetic coupling coming from space-
wave and the near-field. Each arm of the 
cross-formed structure establishing the MTS 
has a meander-line slit (MLS) etching. The 
MTS's effectiveness is investigated for a 2×2 
antenna array that works throughout six 
frequency sub-bands in X, Ku, and K-bands. 
In the X-band, the antenna’s applications are 
wideband global satellite communication 
systems (WGS) and military communication. 
In the Ku-band, the antenna’s applications are 
radar and terrestrial microwave, particularly, 
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in police traffic speed-detectors. In the K-
band, the antenna’s applications are found in 
airport surface detection equipment (ASDE). 
Fig.18 illustrates that with this method, the 
optimum increment obtained in improving 
isolation between adjacent radiation patches 
is: 8.5dB (8 to 8.4 GHz), 28dB (9.6 to 10.8 
GHz), 27dB (11.7 to 12.6 GHz), 7.5dB (13.4 
to 14.2 GHz), 13dB (16.5 to 16.8 GHz) and 
22.5dB (18.5 to 20.3 GHz). The results are 

provided in Table X. Also by employing the 
presented way, minimal edge-to-edge space 
between the elements is achieved up to 0.26λ0, 
where λ0 is specified at 8.0 GHz, the utilize of 
defected ground plane becomes inessential, 
apply of via-holes are refrained, the challenge 
of poor front-to-back ratio is addressed and 
integration to existing arrays becomes 
possible.

                         

                         (a)                                                      (b)                                                                                        (c)

           

                                                                                                                    (c)

           

(d)

Fig.18. (a) Manufactured prototypes of the reference and proposed structures before (WO) and after (W) apply MTS decoupling shield, (b) 
surface current distributions at 8.15 GHz, (c) measured S-parameters, and (d) radiation patterns [125].

TABLE X. ISOLATION IMPROVEMENT WITH METASURFACE

Frequency   ()|S12|
Min., Max., Ave.

 (dB)|S13|
Min., Max., Ave.

 (dB)|S14|
Min., Max., Ave.

I:    8 to 8.4 GHz 7.5 , 8.5 , 8 dB 2 , 8.5 , 6 dB - , 3 , - dB
II:    9.6 to 10.8 GHz 2.5 , 3.5 , 3 dB 5 , 28 , 17 dB 7 , 18 , 12.5 dB
III:  11.7 to 12.6 GHz 3.5 , 13 , 9.5 dB 8 , 27 , 18 dB 5 , 5 , 5 dB
IV:  13.4 to 14.2 GHz 5.5 , 7.5 , 6.5 dB - , 4 , 2 dB - , 6.5 , 3.5 dB
V:  16.5 to 16.8 GHz - , 3.5 , 2 dB 2 , 5.5 , 4 dB 7 , 13 , 10.5 dB
VI:  18.5 to 20.3 GHz 4.5 , 22.5 , 13.5 dB 2.5 , 7.5 , 5.5 dB 5.5 , 20 , 13 dB
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I. STUDY ON INTERFERENCES REDUCTION 
AND RADIATION BEHAVIOURS OF A 34×34 SIW 
AND MTS-BASED ARRAY ANTENNAS FOR 
APPLICATIONS ACROSS 0.125-0.3 THz

    In [126], the possibility of a perceptual model of 
a 34×34 array antenna for working throughout 
0.125 to 0.3 THz, which relates to a feasible 
bandwidth of 82.35% is described. Fig.19 shows 
that, each of the radiation elements which constitute 
the array comprises of a square patch having a 
physical dimension of 2 × 2 mm2 and stimulated via 
a matched microstrip line. Each element has 
separated from each other by via-holes that are 
realized based on the SIW method. This approach is 
exhibited to efficiently improve the isolation 
between closely spaced antennas that can otherwise 
disturb the radiation properties. The periphery of 

each patch is integrated with circular dielectric slits 
that are implemented based on the MTS principle to 
improve the radiation performances. By employing 
these methods, the isolation has improved on 
average by 25dB across the working bandwidth, 
and the array's effective aperture area has enlarged 
with keeping constant its dimensions. The array 
structure shows a variation on gain and radiation 
efficiency of 7.51 dBi to 40.08 dBi, and 70.51% to 
90.11%, respectively. The data are listed in Table 
XI. It is clear that after implementing the MTS slits, 
almost 60% and 30% increments in gain and 
efficiency have been accomplished. The 34 × 34 
antennas array is a suitable candidate to apply in 
wireless telecommunication apparatus at THz 
region.

  

                   (a)                                                 (b)                                                           (c)                                                        (d) 

                 
                                            (e)                                                                     (f)                                                                   (g)

(h)

          (i)
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 (j)

Fig.19. (a) reference 1×2 array antenna, (b) feeding structure, (c) layout of whole 34×34 array antennas, (d) zoomed view to depict two 
central antennas, (e) S-parameter responses, (f) gain curve, (g) efficiency curve, (h) 3-D radiation diagrams, (i) co- and cross-polarized 
radiation gain patterns, and (j) surface current density distribution at 250 GHz for two central antennas [126].

TABLE XI. RADIATION PERFORMANCES

Gain (dBi)
Min. with no metasurface slits 3.96 

Min. with metasurface slits 7.51 
Improvement 3.55 

Gain (dBi)
Max. with no metasurface slits 30.71 

Max. with metasurface slits 40.08 
Improvement 9.37 

Efficiency (%)
Min. with no metasurface slits 50.96

Min. with metasurface slits 70.51
Improvement 19.55

Efficiency (%)
Max. with no metasurface slits 75.71

Max. with metasurface slits 90.11
Improvement 14.40

J. DECOUPLING IMPROVEMENT OF 
ADJACENT ARRAY ANTENNAS WITH 
PERIODIC MTM PBG FOR MIMO AND SAR 
APPLICATIONS

    In [127] an MTM photonic bandgap (PBG) 
periodic structure is utilized as an isolator slab 
to repress the mutual coupling in densely 
packed array antenna for SAR and MIMO 
applications as displayed in Fig.20. By this 
method, the MTM PBG layout is exhibited to 
efficiently reduce surface-wave distributions 
between the patch arrays by an average of 
12dB, see Table XII. MTM PBG layer 
contains a periodic organization of dielectric 
circles printed in the cross-formed microstrip 
sheet that is incorporated between the 
antennas. It obstacles the distribution of 
surface-waves on the patches to increment 
decoupling between the elements. Surface 
current distribution depicted in Fig.20 
provides deeper discernment of how the 
surface currents are decreased. It is clear that 
the cross-formed MTM PBG isolator shield 
dramatically interacts with the surface currents 
to obstacle them from affecting neighbor 
antennas in the array configuration. Ruinous 
influences of surface currents in the antenna 
are considerably repressed from effecting the 
antenna array's far-field. The equivalent circuit 

diagram of the proposed array structure is 
presented in Fig.20. Contrary to the existing 
techniques in the literature, the attributes of 
this method are: (i) easiness; (ii) inexpensive; 
and (iii) can be retrofitted in available array 
structures. This structure has fabricated to 
work across a wide bandwidth of 9.25 to 11 
GHz with a feasible bandwidth of 17.28%. By 
this mechanism (i) the side-lobes have 
decreased; (ii) there is a negligible influence 
on the radiation performances; and (iii) the 
shortest center-to-center distance between 
neighbor antennas has decreased to 0.15λ at 
9.25 GHz. Input impedance calculated 
utilizing CST software and circuit diagram has 
been presented in Fig.20. Since the circuit 
model parameters have extracted applying 
optimization approach in CST throughout a 
specific bandwidth, a perfect match between 
the results achieved by the circuit model and 
CST has occurred. The gain and efficiency 
plots have displayed in Fig.20. There is an 
excellent agreement between the simulated 
and experimented curves. After apply MTM 
PBG, a maximum empirical gain and 
efficiency of 7.85 dBi and 92.78% have 
obtained at 10.6 GHz. So, before applying the 
proposed method, the highest amount of these 
parameters were 7.38 dBi and 88.05% at the 
same frequency. This explains that the 
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radiation specifications are not intensely 
influenced by realizing the MTM PBG 

decoupling frame.
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(j)

Fig.20. (a) Reference structure (WO), (b) proposed structure with periodic MTM-PBG (W), (c) surface current distributions at 9.25 GHz, (d) 
S-parameters of the MTM PBG isolator, (e) empirical S-parameters of the arrays, (f) input impedances (Ω) after apply the periodic MTM-
PBG isolator, (g) circuit model including MTM-PBG isolator sheet, (h) gain, (i) efficiency, and (j) experimental radiation patterns [127].

TABLE XII. DECOUPLING IMPROVEMENT APPLYING THE PERIODIC MTM PBG TECHNIQUE 

S11 9.25 – 11 GHz, 
FBW = 17.28%

Max. increment of matching: ~15 dB

S12 (T/R) Max. reduction: 
5dB @ 10.98 GHz

Ave. reduction: 4dB

S13 (T/T) Max. reduction: 
6 dB @9.25GHz

Ave. reduction: 3 dB

S14 (T/R) Max. reduction: 
14 dB @ 10.97 GHz

Ave. reduction: 10 dB

S34 (T/R) Max. reduction: 
10dB @ 10.25 GHz

Ave. reduction: 8dB

S35 (T/T) Max. reduction: 
10dB @ 10.5 GHz

Ave. reduction:5dB

S36 (T/R) Max. reduction:
19 dB @ 10.07 GHz

Ave. reduction: 7 dB

    

Table XIII shows comparisons in the 
performance parameters of the 
abovementioned techniques relative to the 
studied literature in terms of the mutual 
coupling reduction techniques, maximum 
isolation improvement, number of applied 
elements in the array structure, design 
complexity and simplicity, impact on the size 

after applying the technique, and 
augmentation and development of the array 
after applying the technique. Results show that 
the papers discussed in this section, which are 
based on combined isolation techniques such 
as metamaterials, metasurfaces, and EM 
bandgaps, showcase higher performance 
parameters with simpler design structures.

 TABLE XIII. PERFORMANCE COMPARISON OF DECOUPLING MECHANISMS BASED MIMO AND SAR ANTENNAS

Refs. Approaches
Max. 

decoupling 
improvement 

(dB)

Number 
of 

Elements

Symmetricity 
Impact on the 

Size after 
apply 

Technique

Altering and 
developing 

(DGS)
Complexity

[128] UC-EBG 10 2 (1×2) NO Yes Yes Yes
[129] Slot in Ground plane 40 2 (1×2) NO Yes Yes Yes
[130] EBG 4 2 (1×2) NO Yes Yes Yes
[131] Compact EBG 17 2 (1×2) NO Yes Yes Yes
[132] DGS 17.43 2 (1×2) NO Yes Yes Yes
[133] U-shaped resonator 10 2 (1×2) NO Yes Yes Yes
[134] Slotted Meander

Line Resonator
16 2 (1×2) NO Yes Yes Yes

[135] I-shaped resonator 30 2 (1×2) NO Yes Yes Yes
[136] SCSRR 10 2 (1×2) NO Yes Yes Yes
[137] SCSSRR 14.6 2 (1×2) NO Yes Yes Yes
[138] Waveguide MTM 20 2 (1×2) NO Yes Yes Yes
[139] Waveguide MTM 18 2 (1×2) NO Yes Yes Yes
[140] Meander line resonator 10 2 (1×2) NO Yes Yes Yes
[141] Fractal load with DGS 16 2 (1×2) NO Yes Yes Yes
[142] Antenna Interference 

Cancellation
Chip (AICC)

15 2 (1×2) Yes No No Yes

[143] 3-D Metamaterial 
Structure (3DMMS)

18 2 (1×2) Yes Yes No No
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[115] Metamaterial fractal 
load

37 2 (1×2) Yes NO NO NO

[116] Fractal metamaterial 
electromagnetic 

bandgap

17 for S12
37 for S13
17 for S14

4 (2×2) Yes NO NO NO

[117] Metamaterial 57 2 (1×2) Yes NO NO NO
[118] Metamaterial 40 for S12

~7 for S13
11 for S14

4 (2×2) Yes NO NO NO

[119] Metamaterials and 
Substrate Integrated 

Waveguide

42.5 2 (2×1) Yes NO NO NO

[120] Metasurface wall 
isolator

13.5 2 (1×2) Yes NO NO NO

[121] Slots >26 2 (1×2) Yes NO NO NO
[125] Metasurface 32 (X-band)

27 (Ku-band)
26 (K-band)

4 (2×2) Yes NO NO NO

[126] SIW & Metasurface 50 1156 
(34×34)

Yes NO NO NO

[127] MTM-PBG 10 for S34
14 for S14
19 for S36

6 (3×2)
Yes NO NO NO

V. CONCLUSION
    This survey provides a comprehensive study and 
investigations on several isolation improvement 
approaches considered for MIMO and SAR antenna 
designs that are available in the literature. It is 
exhibited that interferences vary the self- and 
mutual- impedances of array structures. 
Consequently, the matching and radiation 
properties of the antennas are affected.
   Although several isolation improvements 
approaches are existing in literature, most of them 
are confined to two-port antennas. This review 
work discusses diverse promising decoupling 
methods for MIMO and SAR antennas. 
Comprehensive comparisons on the performance 
parameters have provided for many MIMO and 
SAR antennas. Here, decoupling approaches 
applied by scholars in many papers to obtain the 
lowest mutual coupling is the key comparison 
parameter. This study indicates that by employing 
CSRR and DGS approaches, broad bandwidth is 
obtained in MIMO and SAR antennas. 
Additionally, straight neutralization lines provide 
easy configurations with a substantial suppression 
in mutual coupling and parasitic or slot elements 
construct the antenna small with increased 
efficiency. The EBG structure contains a intricate 
periodic organization of metallic or dielectric 
architecture with a lower bandwidth. 
Reconfigurable antennas and decoupling networks 
propose an easy structure with better performances. 
DRAs are unqualified in terms of footprint area of 
their physical geometry and non-simple structures 
compared to printed structures. 
  As a result, all of the abovementioned decoupling 
approaches have major drawbacks, especially for 
mass productions, since, due to asymmetric layouts, 
it is impossible to use them for practical 
applications. Most of the suffers from narrow 

bandwidth, and they will improve the isolation in 
some points over the frequency band. Therefore, 
several examples of innovative mutual coupling 
suppressions based on the metamaterials- and 
metasurfaces-based antennas have been presented. 
The proposed structures with symmetric layouts are 
very simple to implement, hence, the manufacturing 
costs are affordable. In addition, they can provide 
high isolation between the array antennas without 
affecting the other performance parameters. It is 
shown that by combining metamaterial, 
metasurface, and EBG techniques, a remarkable 
improvement in decoupling performances has been 
obtained. It was confirmed by various design 
examples. 
  Interference suppression is an important field of 
research that has a straight impact on the growth of 
the next generation of wireless communication 
systems, such as 5G, 6G, and massive MIMO. 
Thus, a broad range of design feasibilities has been 
introduced here to clarify the suppression of mutual 
coupling. To the best of our knowledge, this is not 
readily accessible in literature. Therefore, this 
review study serves as a comprehensive reference 
in the research field of contemporary MIMO and 
SAR antennas by providing a wide overview of 
both primary stage scholars and specialist antenna 
designers.
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