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Abstract

Internet of Things (IoT) is fast growing. Non‐personal
computer devices under the umbrella of IoT have

been increasingly applied in various fields and will

soon account for a significant share of total Internet

traffic. However, the security and privacy of IoT

and its devices have been challenged by malware,

particularly polymorphic worms that rapidly self‐
propagate once being launched and vary their

appearance over each infection to escape from the

detection of signature‐based intrusion detection sys-

tems. It is well recognized that polymorphic worms

are one of the most intrusive threats to IoT security.

To build an effective, strong defense for IoT networks

against polymorphic worms, this study proposes a

machine intelligent system, termed Gram‐Restricted
Boltzmann Machine (Gram‐RBM), which automati-

cally generates generic fingerprints/signatures for the

polymorphic worm. Two augmented N‐gram‐based
methods are designed and applied in the derivation

of polymorphic worm sequences, also known as

fingerprints/signatures. These derived sequences are

then optimized using the Gaussian–Bernoulli RBM

dimension‐reduction algorithm. The results, gained
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from the experiments involved three different types of

polymorphic worms, show that the system generates

accurate fingerprints/signatures even under “noisy”
conditions and outperforms related methods in terms

of accuracy and efficiency.
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1 | INTRODUCTION

The recent advancement of Internet of Things (IoT) technologies has turned our world more
closely connected, and has begun to transform manufacturing, healthcare, transportation, and
many other businesses. This revolutionary transformation will soon change the way we live,
work, study, and entertain. However, data collected and stored on IoT devices tend to be
sensitive personal information, which has always been in favor of cybercriminals. Attacks
against IoT devices have seen a drastic increase since 2016. The outbreak of the VPNFilter
malware1–4 in 2018 resulted in serious damage to IoT infrastructure, and breach of sensitive
data. The Mirai worm, for another example, has posed an active threat to the Internet
infrastructure and IoT applications via its signatured massive Distributed Denial‐of‐Service
(DDoS) attacks. Protecting IoT and its devices from being compromised by malware, therefore,
is not only critical to assure the quality of services but also challenging due to the distributed,
pervasive nature of IoT.

The 2019 Internet security threat report shows that the targets of ransomware attacks have
shifted from consumers to enterprises, and the infection rate of enterprises in 2019 increased by
12% compared with the figure of 2018, which led to immeasurable economic loss. Meanwhile,
worms have been used to attack IoT devices, with 75% of the intrusions targeting routing
devices and 25% on connected cameras. Polymorphic worms are the height of sophistication in
computer malware. They have been extensively studied and found posing the most damaging
threats to IoT and its applications.5 Polymorphic worms can easily evade detection through
changing their appearance, such as altering their byte sequence or varying their payload via
compression, encryption, among other methods required no human intervention.6 Replicating
themselves to appear differently in each infection makes polymorphic worms survive longer in
a network. As polymorphic worms posing greater threats to the Internet infrastructures, the
need for Internet service providers to secure their assets and protect their customers is growing.
Fast detection and prevention against polymorphic worms have become more imperative.5,7,8

Researchers have been working hard to develop defensive methods against them, for
example, signature‐based detection, statistical‐based detection, behavior‐based detection, and
for forth. Generating reliable signatures to detect polymorphic worms is one of such means.9,10

Signature‐based detection methods are easy to implement and incorporate into firewalls,
Network Intrusion Detection Systems (NIDSs) or antivirus software. At the initial stage of
polymorphic worm discovery research, signatures were mostly generated by domain experts or
at least with human intervention. The manual signature generation methods are slow and
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hence fail to keep up with the rate of propagation of polymorphic worms. Therefore, we need to
automate the generation of signatures for newly found polymorphic worms to reduce the
aforementioned time lag. Traditional automated signature generation approaches rely mainly
on algorithm‐generated tokens or regular expressions,1,9,11 capturing the critical sequence
segments of known polymorphic worms. Although signature‐based detection methods are
suited for real‐time detection, most of the traditional ones fail to recognize unseen variants of
polymorphic worms as they reshape themselves over each propagation. The sequence segments
found in new variants tend to be different from those previously obtained from older versions.
As such, the detection systems based on these traditional automated signature generation
methods suffer from a high false‐negative rate,12 and they are prone to new polymorphic
worms.

Due to the above issues, more research in the polymorphic worm detection is yet to be
carried out to find a suitable method to automate the generation of robust signatures. Some
research has attempted to approach the problem by adopting machine learning frameworks to
solve the corresponding mass malicious events. However, the re‐active mechanism will never
bring us a victory in the war with polymorphic worms. To win this battle, we need to
proactively gain a good understanding of how the worms mutate themselves. A recent research
proposed to use a Recurrent Neural Network (RNN) to predict and generate new variants of
known polymorphic worms.13 This new invention was shown to be effective in contributing
synthetic signatures of new predicted variants and providing a means of assessing the detection
ability of NIDSs. However, this and other major related work still follow traditional weight‐
based and regular‐matched automatic generation methods that do not take semantics‐derived
characteristics of worm payloads into account. So, they cannot predict the deformation of
polymorphic worms.

To leverage the semantics‐derived characteristics, a natural‐language processing (NLP)
algorithm, N‐gram, is adopted in this paper. The N‐gram algorithm has a strong binding force
that retains correlation between words. As the data format of most polymorphic worm traffic
(including Hypertext Transfer Protocol [HTTP] request methods, proxy information, data
content, etc) is relatively fixed during their propagation and the worms are comprised of
different sequence segments, each of which is with a different meaning, the N‐gram can help
extract semantics‐derived characteristics between segments to derive more accurate polymor-
phic worm signatures. However, the N‐gram algorithm might ignore some reasonable words,
resulting in a zero probability phenomenon. The N‐gram smoothing techniques can not only
eliminate the zero probability problem but also make the probability of prediction words more
uniform. So, we improve it through some smoothing methods until it is suitable to generate
signatures of polymorphic worms with high efficiency. Besides, we investigate the dimension‐
reduction algorithm—Gaussian–Bernoulli Restricted Boltzmann Machine (Gaussian–Bernoulli
RBM) and combine it with N‐gram to improve the accuracy of signature generation. Finally, the
system does not only classify many kinds of polymorphic worms but also generates new
polymorphic worm sequences, which are used to verify the effectiveness of the proposed
system. Experiment results show that Gram‐RBM achieves better performance even under
noisy condition.

The rest of this paper is organized as follows. Section 2 gives the background to this study
and presents a review of related work. Section 3 presents the automated signature generation
scheme for polymorphic worms with subsections that discuss our smoothing N‐gram algorithm
as well as explain and implement the Gaussian Bernoulli RBM algorithm. Section 4 presents
our experimental results supporting our theoretical analysis. It describes how the signatures are
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generated, and the processes involved in classifying some types of polymorphic worms. Finally,
Section 5 concludes this paper.

2 | RELATED WORK

Polymorphic worms can identify potentially vulnerable hosts, launch directed attacks against
such targets, and destroy the Internet infrastructure and target services. In the IoT
environment, polymorphic worms are even more dangerous and destructive. As signature‐
based detection is easy to implement, signature generation for polymorphic worms has been
extensively studied over the past decade.14–16 The accuracy of worm detection mainly depends
on the quality and quantity of worm signatures. Most related research works relied mainly on
manual or semiautomated methods.17 However, due to their polymorphism and harms to
network participants and infrastructure, polymorphic worms need to be studied promptly once
being discovered to mitigate their propagation and minimize losses. Automated signature
generation methods or systems have been increasingly studied in recent years. In this section,
some important related automated signature generation methods for polymorphic worms
based on invariant bytes or other signatures are emphasized. The approaches of signature
generation for polymorphic worms can be classified into four categories, which are as follows:
content‐based, multiple‐sequence‐alignment‐based, simplified‐regular‐expression‐based, and
natural‐language‐processing‐based signature generation.

2.1 | Content‐based signature generation

Content‐based detection relies on tokens as worm signatures to detect worm traffic. The term
“token” refers an independent substring that appears in at least K out of n samples in a pool of
suspects. When the byte pattern of a given network traffic flow matches the token(s), the traffic
is identified as worm traffic. Since polymorphic engines protect the payload of worms, the
semantics of worm traffic does not change in nature over each infection, which makes content‐
based signature generation possible. Newsome et al. proposed the polygraph to automatically
detect polymorphic worms for the first time.14 For a given suspicious traffic pool, the polygraph
generated three types of tokens: conjunction signature, token‐subsequence signature, and
Bayes signature. Combined with the above three types of tokens, the polygraph generated
complicated signatures using hierarchical clustering methods. However, the polygraph
probably generates wrong signatures under noisy condition.18 On the basis of polygraph,
Li et al. presented the HAMSA to improve the accuracy of the generated signatures of
polymorphic worms even under noisy conditions.15 Moreover, compared with the polygraph,
the HAMSA is fast and resilient to attack. The HAMSA takes the frequency of token
occurrences as a part of the signature, and uses the score function to determine the set of
tokens as the final signature to detect polymorphic worms, which could cause unmatched
signatures, and lead to a higher false‐positive rate. Moreover, the HAMSA is also sensitive to
suspicious pool size. Thus, to detect unknown worms, it is best to enlarge the suspicious pool
size. Bar et al. used the Markov chain model to capture diverse vulnerability‐based polymorphic
worms.19 They found that it was difficult to obtain such tokens. The reason is that the signature
could not work properly if there was not a return address. These content‐based signatures
might not be generic enough and could be evaded by other exploits.
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2.2 | Multiple‐sequence‐alignment‐based signature generation

Inspired by bioinformatics, the Multiple‐Sequence Alignment (MSA) technique converts every
worm sample to a DNA‐like sequence, and adopts Needleman–Wunsch and Smith–Waterman
algorithms to compute the similarity between two proteins or multiple proteins. Using MSA, Ki
et al. identified malicious functions in different types of malware and turned them into an
Application Programming Interface (API) call sequence.20 This method adopts dynamic
information of API call sequence patterns instead of malware's static information, such as file
size, process, and it can even be used to detect new unknown malware. Kim et al. used MSA
to generate malware behavioral “feature‐chain” patterns.21 To deal with some obfuscation
techniques, such as encoding, antivirtualization, and encapsulation, used by polymorphic worms,
Kim et al. implemented a detection system using API and MSA,22 which achieved higher
performance in terms of precision, accuracy, and false positive. The main drawback of these
methods is that they need a huge amount of memory and have a high computational complexity.

2.3 | Simplified‐regular‐expression‐based signature generation

Building simplified‐regular expressions to match patterns of malicious content is a common
approach of detecting polymorphic worms. Accurate regular expressions can efficiently match
the critical content in a polymorphic worm traffic sequence, thus distinguishing polymorphic
worms from normal traffic. Aljawarneh et al. proposed a polymorphic worm detection method
based on regular expressions and pointed out the feasibility of using a simplified‐regular
expression matching method in the signature generation of polymorphic worms.11 Their
method takes the distance constraint of polymorphic worm traffic sequences into consideration
and generates separate signatures for different polymorphic worms, which leads to low
efficiency and a high false‐negative rate in detecting polymorphic worms. Eskandari et al.
remedied the aforementioned issues and proposed an extended regular expression signa-
ture extraction method, referred to as ERES.23 However, the signature generation system of
polymorphic worm based on regular expression matching is complicated in designing, and the
traditional matching algorithm needs to adjust when it is used in variants of polymorphic
worms.

2.4 | Natural‐language‐processing‐based signature generation

N‐gram is an important concept in NLP. The N‐gram algorithm can be used to evaluate the
difference between two strings. In recent years, researchers have used the N‐gram algorithm in
worm detection and worm signature generation. Lim proposed an approach to represent
malicious behaviors of software with API functions,24 which combined the N‐gram algorithm
with API sequences to detect unknown malware. However, the model was relatively simple so
that it did not involve in generating the signature of unknown malware. Due to quite predictable
behaviors in IoT devices, An et al. presented a naive anomaly classifier for home router based on
the N‐gram algorithm.25 This classifier detected abnormal behaviors by investigating the
Probability Mass Function (PMF) difference of bi‐grams between clean traces and those of
infected traces, and the system can detect Mirai three variants. Experiment results show that the
naive anomaly classifier based on N‐grams outperforms the Principal Components Analysis

WANG ET AL. | 5



(PCA)‐based anomaly detector. Zhao et al. proposed a feature selection method of hybrid N‐gram
with joint cross entropy.26 On the basis of the dynamic behavior tracking and feature analysis of
native API in virtual environment, the method is of adaptive variable lengthN‐gram. In the paper,
N‐gram method is used to distinguish malicious behaviors.

We can find, most literatures use N‐gram algorithm to distinguish the abnormal from the
normal traffic; few papers use N‐gram algorithm to generate a worm signature. Moreover,
smoothing N‐gram algorithm is rarely involved in worm detection and generating the signature
of the polymorphic worm. Meanwhile, the smoothing N‐gram algorithm has achieved better
effect in NLP.27,28 Inspired by the payload of a polymorphic worm being a string sequence and
the better performance of the smoothing N‐gram algorithm in NLP, in this paper, we propose a
novel system of signature generation for polymorphic worms, named Gram‐RBM, in which the
N‐gram model is improved according to data characteristics of polymorphic worm traffic and
combined with the Gaussian–Bernoulli RBM algorithm.

3 | AN AUTOMATED SIGNATURE GENERATION SYSTEM
FOR POLYMORPHIC WORM

To reduce the losses caused by polymorphic worms in IoT, overcome the drawbacks of current
methods and generate more accurate signatures of such worms, we propose an automated
signature generation system based on NLP. First, we use two smoothing N‐gram algorithms to
generate invariant sequences. Second, we transform invariant sequences into a matrix. Finally,
we use Gaussian–Bernoulli RBM to reduce the dimension for generating accurate lower‐
dimensional polymorphic worm signatures. Our proposed automated signature generation
system for a polymorphic worm is shown in Figure 1, which consists of seven components:
N‐gram algorithms, selection of N‐gram algorithm, invariant extraction, transforming the
invariants into a matrix, dimension reduction, signature generation, and classification, which
are briefly explained below and detailed in Sections 3.1–3.6.

• Smoothing N‐gram algorithms: This comprises the Laplace N‐gram algorithm and the Good‐
Turing N‐gram algorithm. These two algorithms are based on traditional N‐gram, and they
have different performances for different types of polymorphic worms.

• Selection of an optimal N‐gram algorithm: We use the degree of perplexity to evaluate two
N‐gram smoothing algorithms, which are more suitable for invariant extraction of a specific
type of polymorphic worm.

• Invariant extraction: After a suitable smoothing N‐gram algorithm is selected, it is used to
generate multiple invariant sequences.

FIGURE 1 The flowchart of an automated signature generation system for polymorphic worm
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• Transforming the invariants into a matrix: In this step, invariant sequences are transformed
into a matrix using Term Frequency‐Inverse Document Frequency (TF‐IDF), because RBM
can only deal with numeric matrix in the standard format.

• Dimension reduction: Although the Bernoulli‐RBM algorithm is well suited for training small‐
sample data sets, it retains noise in the processing of signature extraction. Gaussian–Bernoulli
RBM can solve this problem; therefore the signature accuracy is improved.

• Signature generation: In this part, Gaussian–Bernoulli RBM is used to generate signatures.
• Classification: The generated signatures are then used to classify new instances of polymorphic
worms.

3.1 | Smoothing N‐gram algorithms

The advantage of the N‐gram algorithm lies in its strong constraint, which can contain
enormous word information. In the transmission process of a polymorphic worm, each small
signature sequence has its meaning, which enables the N‐gram algorithm to generate worm
signatures through strongly constrained static analysis.

However, the N‐gram algorithm has its disadvantages: complicated calculation, sparsity,
and high dimensionality. In the following sections, we will use smoothing N‐gram algorithms
to avoid these problems. The presentation of the principle of the basic N‐gram model will help
understand the smoothing N‐gram methods. So we will introduce the principle of basic N‐gram
in the following section.

3.1.1 | The principle of the basic N‐gram model

The N‐gram algorithm is based on the Markov assumption29 and uses the Maximum Likelihood
Estimation (MLE) as a conditional probability. The N‐gram algorithm builds the context
characteristics of sentences by the comparison of sentence similarity, the query of ambiguity, the
analysis of sentence rationality, and finally produces signatures. The basic N‐gram model is easy to
implement and improve. So, it has gained popularity and is one of the most commonly used language
models in NLP. As a special “language” traffic signatures can be extracted by the N‐gram algorithm.

To better describe the principle of the N‐gram algorithm, we follow the functions and
notations of Reference [23] throughout this paper. Let us take the Apache‐knacker worm as an
example. The probability P x( ) of each word x in a sentence serves as a reference for the
imitation statement. Taking the Apache‐knacker worm14 as an example, which has the
following three related HTTP requests.

S1: GET HTTP r n r nHost… 1.1\ \ …\ \ …∕

S2: GET HTTP r n r nHost… 1.1\ \ …\ \ …∕

S3: POST HTTP r n r nHost… 1.1\ \ …\ \ …∕

Given S1 treated as a statement of length n, its probability is computed using (1) and
denoted as P S P x x x( 1) = ( , , …, )n1 2 , where xi (  i n1 ) refers to the ith word in S1. This
results in a conclusion that the word x1 = “POST” in S3 is a typo, as the probabilities of HTTP
requests S1, S2, and S3 show the following relationship: P S P S P S( 1) ( 2) > ( 3) . Conse-
quently, “GET” will be selected as the word appearing at x1 .
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P S p x x x( ) = ( , , …, ).n1 2 (1)

According to the formula of conditional probability, the joint probability of a long sequence
S is the product of the probabilities of individual word xi in S= x x x{ , , …, }n1 2 :

  P x x x P x P x x P x x x P x x x x( , , …, ) = ( ) ( ) ( , ) ( , , …, ).n n n1 2 1 2 1 3 1 2 1 2 −1 (2)

However, (2) is difficult to compute in practice, we use the Kolmogorov and Markov
hypothesis to reduce the computational complexity and deduce the general form. Supposing
that each word xi (  i n1 ) is related to the first m − 1 ( m n+) finite words, we obtain the
following equation:

 P x x x x P x x x x( , , …, ) = ( , …, , …, ).n n n n m i n1 2 −1 − +1 −1 (3)

Now, let N be the number of elements in the gram algorithm. When N = 1, the algorithm is
called as Uni‐gram, also known as the context‐free model. When N = 2, it is called Bi‐gram,
and When N = 3, it is called ternary grammar (Tri‐gram). The length of N determines the
computational complexity. Considering the required resource for calculation, N usually takes a
smaller value in practice. The common N‐gram algorithm is as follows:

Uni‐gram: P x x x P x( , , …, ) = ( )n i
n

i1 2 =1 .
Bi‐gram:  P x x x P x x( , , …, ) = ( )n i

n
i i1 2 =1 −1 .

Tri‐gram:  P x x x P x x x( , , …, ) = ( , )n i
n

i i i1 2 =1 −2 −1 .

N‐gram is very complicated to calculate, so MLE is used to reduce computational complexity.

3.1.2 | Maximum likelihood estimation

MLE22 is a statistical method used to find the parameters of the probability density function of a
sample set. In general, the N‐gram model is constructed by calculating the MLE. Meanwhile,
MLE solves the problem of complicated calculation and sparsity. The most critical problems to
be solved after constructing the basic N‐gram algorithm are to estimate the conditional
probability of the next word appearing and calculate the occurrence probability P x( )i of the
word xi (  i N1 ). Assuming that C x( )i is the number of occurrences of the word xi
occurrence in the polymorphic worm data set used to train the model, the following equation is
derived according to different values of N :

Uni‐gram:

P x
C x

( ) =
( )

Total words in data sets
.i

i
(4)

Bi‐gram:

P x x
C x x

C x
( ) =

( , )

( )
.i i

i i

i
−1

−1

−1
(5)
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Tri‐gram:

P x x x
C x x x

C x x
( , ) =

( , , )

( , )
.i i i

i i i

i i
−2 −1

−2 −1

−2 −1
(6)

N‐gram:

P x x x
C x x

C x x
( , …, ) =

( , …, )

( , …, )
.i i n i

i n i

i n i
− −1 −1

− −1

− −1 −1
(7)

In the processing of calculation, in many cases, the probability estimated from the training
set is likely to be zero, which leads to useless output. To avoid zero probability problems, most
N‐gram models use some smoothing algorithms. More importantly, the smoothing technologies
can improve the accuracy of MLE and can find more reliable estimations that help extract the
signature of a polymorphic worm. The algorithm implementation is shown in Algorithm 1.

Algorithm 1. Pseudocode for N‐gram algorithm.

Input: N , polymorphic worm data sets

Output: Signatures of polymorphic worm

1: Confirming the number N 1;

2: Preprocessing the data sets, deleting special characters, such as \ and space;

3: Testing data for formatting problem;

4: Forming the new data set NEW_Data according to the optimal N‐gram algorithm and training it;

5: Getting the total word count of NEW_data and creating a dictionary of word combinations by the optimal
N‐gram algorithm;

6: If the training sets are changed, appending words to the dictionary;

7: Building N‐gram model according to Equation (7);

8: Generating signature using the MLE.

3.1.3 | Laplace‐smoothing N‐gram algorithm

This smoothing technique is used to solve the sparsity problem in a data set. According to the
N‐gram model with MLE, a Laplace‐smoothing parameter V is added to adjust the smoothness
in the probability calculation. On the one hand, the problem of zero probability is solved by
parameter V . On the other hand, Laplace smoothing introduces a substantial allocation of the
probability space for words or word pairs in the corpus missing from the observed next
sentences. To improve computational efficiency, we use a distinct parameterV for every type of
polymorphic worms to adjust the smoothing problem in the probability calculation. The
Laplace‐smoothing N‐gram conditional probability is now defined as

P x x x
C x x V

C x V
( , …, ) =

( , …, ) +

( ) +
.i i n i

i n i

i
− −1 −1

− −1
(8)
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To further improve the Laplace‐smoothing performance, Equation (8) is improved as
follows according to Reference [15]:

 
C x x

C x x V

C x V
*( , …, ) =

( , …, ) +

( ) +
.i n i

i n i

i
− −1

− −1
(9)

Therefore, the Laplace‐smoothing algorithm can be expressed as

P x x x
C x x V

C x V
( , …, ) =

*( , …, ) +

( ) +
.i i n i

i n i

i
− −1

− −1
(10)

In our experiment, the range of V is [0.0001, 1] . The performance of the Laplace‐smoothing
N‐gram algorithm with respect to different smoothing parameters is observed.

3.1.4 | Good‐Turing smoothing N‐gram algorithm

The Good‐Turing smoothing is a statistical technique for estimating the probability of
encountering an N‐gram from an unseen piece of text, given a set of past observations of
N‐grams from different pieces of text. The principle of Good‐Turing is to smooth the frequency
by using the category information and finally solve the sparsity problem. The smoothing
improvement is useful in small‐sample data sets. In the real world, because polymorphic worm
data is scarce compared with normal traffic, it is essential to use a small amount of data to
generate the invariants of polymorphic worms.

According to the literature,30 the Good‐Turing N‐gram smoothing model with MLE can be
expressed as

P x
N

C x N

N
( ) =

1 ( ( ) + 1)
,i

r

i C x

C x

( )+1

( )

i

i

(11)

where N C x N C x= Σ ( ) , ( )r C x i C x i( ) ( )i i
is the number of occurrences of the word xi occurrence,

NC x( )i denotes the number of N‐grams that occurred C x( )i times.
Now we have two smoothing algorithms, which are Laplace‐smoothing and Good‐Turing

Smoothing N‐gram algorithm, respectively. To achieve a better smoothing effectiveness, we use
different smoothing techniques for different training data sets.

3.2 | Selection of N‐gram algorithms

Perplexity measures how well a probability distribution/model that predicts a sample. It can be
used to evaluate probability models. A lower perplexity indicates the probability distribution is
better at predicting the samples.31 Perplexity can also be interpreted as the weighted average
branching factor of a language. The branching factor of a language is the number of possible
next words that can follow any word.

The perplexity, also known as PP, of a language model on a test set is a function of the
probability that the language model assigns to the test set. For a test set W w w w= … N1 2 , the
perplexity is the probability of the test set, normalized by the number of words:
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PP W P w w w
P w w w

( ) = ( … ) =
1

( … )
.N N

N
1 2

− 1

1 2

N (12)

We can use the chain rule to expand the probability ofW :

 PP W
P w w w w

( ) =
1

( … )
.

i

N

i i=1 1 2 −1

N (13)

Minimizing perplexity is equivalent to maximizing the test set probability according to the
language model.

The different N‐gram algorithms will achieve different perplexities on a polymorphic
worm data set. The degree of perplexity is a key criterion for selecting the algorithm. As
such, we select a proper N‐gram algorithm for every data set involved in this study work
according to its perplexity, as illustrated in Figure 2, in which two smoothing methods are
for consideration, each is evaluated against Uni‐gram, Bi‐gram, Tri‐gram, respectively. Each
of these smoothed N‐gram algorithms, where N= [1, 2, 3], is used to evaluate against
different polymorphic worm data sets and obtain a perplexity value. The algorithm
achieving the lowest perplexity is selected in accordance with the principle that the lower
perplexity of a probability model, the less optional invariants and more accurate
fingerprints it provides. In Section 4, we will demonstrate how an N‐gram algorithm is
selected according to its perplexity.

3.3 | Invariant extraction

After the optimal N‐gram algorithm is selected for a type of polymorphic worm, it is then used
to generate invariant sequences of the polymorphic worm.

The sequence of invariants generated will increase gradually over time. With
the increase of generated sequences, the frequency of certain words increases. The words
that occur frequently can distinguish different types of polymorphic worms. These
words can be roughly identified as signatures. However, to further confirm whether
these words are signatures of a given polymorphic worm, there is a need for conversion
from multiple sequences to a matrix for further dimension reduction in the training
process.

FIGURE 2 Selection of N‐gram algorithms
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3.4 | Transforming the invariants into a matrix

In Section 3.3, some invariant sequences which we have achieved may be very long and have
many signatures. To find the signatures of polymorphic worms, we transform these sequences
into a matrix, then use a dimension‐reduction algorithm to exactly confirm the signatures of
polymorphic worms.

The TF‐IDF Vectorizer functions in the framework of scikit‐learn are used in signature
transformation; finally, invariants are transformed into a matrix.

3.5 | Dimension reduction

Neither the smoothing Laplace N‐gram algorithm nor the smoothing Good‐Turing N‐gram
algorithm solves the dimension explosion issue. To solve this problem, first we observed
Bernoulli RBM algorithm, then its improvement—Gaussian–Bernoulli RBM is utilized to
address the dimension curse. Before the Gaussian–Bernoulli RBM algorithm is used, we need
to generate multiple invariant sequences by selecting proper smoothing N‐gram algorithm, and
then transform them into a matrix.

A Bernoulli RBM can be used for dimension reduction, classification, and signature
extraction. It is suited for training small‐sample data sets, however, it retains noise in
signature extraction. With the increasing number of polymorphic worm data sets, it is
difficult for the Bernoulli RBM algorithm to make a more detail division of the eigenvalues,
which tend to be the same because the worm sequences are more irregular than natural
language. To better classify the characteristics of polymorphic worms and improve the
accuracy of signature generation, this paper adopts the precision matrix to parameterize the
Gaussian distribution.32

The Gaussian–Bernoulli RBM algorithm, which is an improvement of Bernoulli RBM,
reduces effectively the dimension curse that may be caused by noise interference of the
smoothing N‐gram algorithm in the detection system, which results in a large number of
useless signatures in the detection system and affects classification accuracy. Its advantages are
as follows. First, compared with PCA and other algorithms, the Gaussian Bernoulli RBM
algorithm can retain the invariant of polymorphic worms for training, so it can improve the
accuracy of signature generation. Second, the Gaussian Bernoulli RBM is easy to implement
and can quickly generate polymorphic worm signatures.

The processes of using the Gaussian–Bernoulli RBM algorithm to generate signatures are as
follows. First, the visible unit is used as a conditional distribution by Gaussian distribution,
which reduces noise interference. Second, the accuracy of signature extraction is improved
through the use of an accuracy matrix. Finally, we evaluate the experimental results to
ascertain improvement feasibility.

3.6 | Signature generation

The invariant sequence with polymorphic worm signatures is converted into a vector matrix
and then put into the Gaussian–Bernoulli RBM. First, the hidden layer converts the vector
matrix to a weight matrix. Then, to obtain the invariants, the visible layer divides the weight
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matrix according to the threshold which is gotten from the training processing. The subtrings
whose weights are higher than the threshold are considered as invariants. Finally, the
invariants are sorted in a descending order of frequency and the signatures of the polymorphic
worm are determined by the reduced dimensions generated from RBM. Compared with the
Bernoulli RBM algorithm, the signatures generated by Gaussian–Bernoulli RBM are more
accurate. We classify the new‐coming polymorphic worms under noisy conditions according to
the signatures generated by different species of polymorphic worms. We then compare the
performance of several algorithms and evaluate the effectiveness of the Gaussian–Bernoulli
RBM algorithm in generating signatures for polymorphic worms.

4 | EXPERIMENT RESULTS AND ANALYSIS

4.1 | Data sets

We evaluate the feasibility of our proposed N‐gram algorithm in this section. The experiments are
carried out on a Windows 7 machine with a maximummemory space of 2GB. The original data sets
used in the experiment are all from real polymorphic worm traffic, and the whole data set includes
13,292 records, which consists of three families of polymorphic worms: Apache‐knacker, ATPhttpd,
and BIND‐TSIG. Noisy data is collected from legitimate traffic of the real environment.

4.2 | Signature generation under noise‐free condition

4.2.1 | Invariants extraction by N‐gram algorithm

To test the effectiveness of the N‐gram algorithm in processing large‐scale polymorphic worm
data, this paper first considers the signature extraction problem in noise‐free conditions. Three
types of polymorphic worms are selected and 2000 pieces of data are randomly selected for each
type of worm. Thereafter, the data is divided into a training set and a test set according to the
ratio of 8:2. The training process is done using unsupervised learning. The running time of
each N‐gram smoothing improvement algorithm is shown in Table 1. LS and GTS represent
Laplace_Smoothing, Good‐Turing_Smoothing, respectively.

TABLE 1 Running time of each algorithm

Worm type Method Parameter (V ) Uni‐gram (S) Bi‐gram (S) Tri‐gram (S)

Apache‐knacker LS 0.0001–0.1 2.53 3.46 7.72

GTS NA 2.84 3.72 >60

ATPhttpd LS 0.0001–0.1 3.34 4.10 9.94

GTS NA 4.36 3.61 >60

BIND‐TSIG LS 0.0001–0.1 2.78 3.82 9.27

GTS NA 3.44 4.27 >60

Abbreviations: LS, Laplace_Smoothing; GTS, Good‐Turing_Smoothing.
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As can be seen from Table 1, different smoothing algorithms with different parameters need
different running times. Without considering the accuracy, the Uni‐gram Laplace‐smoothing is
the most time‐efficient regardless of the model and polymorphic worm family. We also notice
that the Tri‐gram Laplace‐smoothing takes a significantly longer time compared with the other
two algorithms. The reason is that Tri‐gram needs to retrieve three words at a time as a
combination, and the semantics of polymorphic worm sequences are very complex. So multiple
combinations are generated, thus the complexity of prediction is increased. Since it takes a too
long time, Tri‐gram is not suitable for fast, automatic polymorphic worm signature extraction.
Thus, this paper does not consider the comparison of Tri‐gram Good‐Turing smoothing
algorithm with others.

We also find from Table 1, the Bi‐gram takes a longer time than the Uni‐gram, however, less
than the Tri‐gram, that is, showing a relatively eclectic performance. Therefore, based on the
running time of the algorithms, it is impossible to determine which algorithm is better suited
to deal with multifamilies polymorphic worm signatures extraction. To further assess the
performance of each method, the perplexity is used to evaluate each algorithm. Figure 3
demonstrates that the relation between the Laplace‐smoothing parameters and the different
perplexity values generated by the algorithm under different Laplace‐smoothing parameters.
The lower the perplexity is, the less the predicted word number is, and the more accurate the
signatures of the polymorphic worm is. On the contrary, if the algorithm has larger perplexity,
it means that the algorithm can choose a large number of words, and thus the algorithm cannot

FIGURE 3 Perplexity of each algorithm for each type of polymorphic worm
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accurately predict the sequence format of this kind of worm, so the signature extraction of
polymorphic worm is not accurate. Therefore, N‐gram algorithms can implement preliminary
invariants extraction.

To further assess the performance of each method, we calculate the perplexity value
of unsmoothing and each algorithm, shown in Table 2. Table 2 gives the optimal perplexity
values corresponding to Laplace‐smoothing and Good‐Turing smoothing algorithm. As seen
from Table 2, Laplace‐smoothing and Good‐Turing smoothing algorithms are better than the
unsmoothing algorithm. Relatively, the Bi‐gram algorithm has an average performance in
terms of its operation time and perplexity values. In general, each algorithm has its advantages
and disadvantages. In this section, the invariant extraction of the three types of polymorphic
worms is mainly based on the optimal perplexity. Therefore, more accurate polymorphic worm
invariants are generated. Under noise‐free conditions, two optimal algorithms are selected for
the invariant extraction experiment, and the results are shown in Table 3.

The invariant extraction process of the smoothing N‐gram algorithm is as follows. Take the
Apache‐knacker worm, for example, when the signature set is {“GET,” “HTTP/1.1\r\n,” “\r
\nHost”}, the traffic data is normal. Since the training set consists of noise‐free worm data sets,
the smoothing N‐gram algorithm carries out probability distribution based on the

TABLE 2 Perplexity comparison of unsmoothing, LS, and GTS

LS

Type
N‐gram
algorithm

Unsmoothing
perplexity V Perplexity GTS perplexity

Apache‐knacker Uni‐gram 88.9275 1.0000 88.9284 72.4946

Bi‐gram 134.8406 0.0015 59.6890 34.3630

Tri‐gram 421.5418 0.0102 141.2369 NA

ATPhttpd Uni‐gram 101.9952 1.0000 102.0265 89.0469

Bi‐gram 137.1170 0.0011 54.8025 34.2018

Tri‐gram 379.1658 0.0047 103.1268 NA

BIND‐TSIG Uni‐gram 82.4154 0.5025 82.3783 91.0920

Bi‐gram 237.3715 0.0001 39.0999 42.4032

Tri‐gram 675.1257 0.0001 15.6948 NA

Abbreviations: LS, Laplace_Smoothing; GTS, Good‐Turing_Smoothing.

TABLE 3 Invariants under noise‐free condition

Best algorithm Apache‐knacker ATPhttpd BIND‐TSIG

Good‐Turing
smoothing
(Bi‐gram)

“GET,” “HTTP/1.1\r\n,”
“\r\nHost,” “nHost:,”
“xff\xbf,” “x*f~,” “x^$~”

“GET/,” “HTTP/1.1\r
\n,” “xff\xbf,”
“x*f~,” “Accept:”

“\x00\x00~,” “\x00\xF,” “xFF
\xBF,” “xdf~,” “xFF
\x**,” “xee:”

Laplace‐smoothing
(Tri‐gram)

“GET,” “HTTP/1.1\r\n,”
“\r\nHost,” “nHost:,”
“xff\xbf,” “\r
\n,” “nGET”

“GET/,” “HTTP/1.1\r
\n,” “xff\xbf,”
“nGET\1.1\r\n”

“\x00\x00~,” “~\x00\xFA,”
“\xFF\xBF,” “.\xx00**”
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characteristics of polymorphic worm, so the suspicious Apache‐knacker sequence segments are
inferred as the characteristics of this kind of worm. Take Good‐Turing smoothing and Laplace‐
smoothing as examples, the set of Apache‐knacker worm characteristics inferred from Good‐
Turing smoothing is {“GET,” “HTTP/1.1\r\n,” “\r\nHost,” “xff\xbf”}. Since the signature “xff
\xbf” is abnormal traffic data, and this signature “xff\xbf” appears frequently in the data set, it
can be considered as worm signature. Because the polymorphic worms change their
appearance, the other invariant set may be {“GET,” “HTTP/1.1\r\n,” “\r\nHost,” “xff\xbf,”
“x^$~”}, and “x^$~” represents the morphological deformation of polymorphic worm caused by
the nonoperation instruction or encryption. In terms of Laplace‐smoothing invariant
extraction, although the set {“GET,” “HTTP/1.1\r\n,” “\r\nHost,” “xff\xbf”} containing worm
signatures are generated, the polymorphism of Apache‐knacker results in false inference of
worm signatures, such as “nGET.”

Although the smoothing N‐gram algorithm can sometimes make wrong inferences on
invariants, such as “nGET” in the training stage, its invariant inference method is still very
effective to find potential signatures of polymorphic worms. Thus, the algorithm does not only
extract the invariants of known polymorphic worms but also continuously infer the possible
deformation invariants of worms. However, this step might extract a huge number of invariants
of polymorphic worms, which causes the problem of dimension curse and increases the
difficult of defending against polymorphic worms.

4.2.2 | Signature generation by Gaussian–Bernoulli RBM

The Gaussian–Bernoulli RBM is used to prevent effectively the dimension curse caused by the
smoothing N‐gram algorithms. It determines whether the generated invariants by smoothing
N‐gram algorithm are polymorphic worm signatures through dimension reduction, so the
accuracy of worm signatures is improved. To better present the validity of the Gaussian–Ber-
noulli RBM algorithm, the results of signature generation are compared with those of the
Bernoulli RBM algorithm. The experiment is based on the invariant sequence of Apache‐
knacker worm inferred by the Good‐Turing smoothing Bi‐gram algorithm. To better show the
experimental results in the form of thermal map, 100 invariant sequences are selected and
divided into a training set and a test set by a ratio of 5:5. And two dimension‐reduction
algorithms are adopted for signature extraction. The extraction results of Apache polymorphic
worm are shown in Figures 4 and 5.

The performance of the two RBM algorithms is shown in the form of thermal diagram. The
importance of signatures generated can be observed by the combination of signature weights.
In the thermal map, the darker the points are, the more important the invariants are. In this
paper, we show the thermal diagram of the Apache‐knacker worm. As can be seen from the
figures, there are more points in Figure 4 than those in Figure 5, which indicates that the
signatures generated by the Gaussian Bernoulli RBM are more accurate than those generated
by the Bernoulli RBM. In Figure 4, the colors of the points are relatively dark and there is not
an obvious difference, which means that Bernoulli regards many invariants as important
signatures, which leads to the decline of classification accuracy. In Figure 5, the color of the
points can be clearly distinguished, which means that Gaussian–Bernoulli RBM can distinguish
important signatures and implement accurate classification. In Figure 5, the darker points
correspond to the verifiable signatures of Apache‐knacker worm, and the lighter points might
be the signatures produced by some polymorphic worm deformation, which can be considered
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as alternative signatures. Alternative signatures can provide support for a more accurate
classification of worms. The signatures produced by the Gaussian–Bernoulli RBM algorithm
are shown in Table 4.

As seen from Table 4, the verifiable signatures after dimension reduction are more accurate,
and alternative signatures can distinguish and detect polymorphic worm deformation more
effectively. In Section 4.3, we further study the worm signature generation problem with noisy
condition.

4.3 | Signature generation under noisy condition

This section mainly discusses the signature generation of three types of polymorphic worms
by Gram‐RBM algorithm in a noisy environment and applies the worm signatures to the
classification of polymorphic worms. To evaluate the classification performance of the Gram‐
RBM system, Apache‐knacker, ATPhttpd, or BIND‐TSIG worms are randomly selected as test
data sets. Thereafter, 1000, 5000, and 9000 normal sequences as noisy traffic are mixed with the
worm data, and the total number of test data is 10,000 pieces of sequence, with other
parameters remaining the same as the previous experiment setting in Section 4.2. The final
classification results are shown in Table 5.

In Table 5, the “Normal” indicates that the model considers such sequences as the normal
sequences. It can be seen from Table 5 that the system model can effectively classify unknown
worm accurately after it is trained on multiple worm data sets through unsupervised learning
under noise‐free conditions. With the increase of noise, it can be observed that the detection
model can still discover malicious worms from the noise data set and accurately classify them,
however, the accuracy is slightly reduced. The reason may be that as the number of normal
traffic increases, the model may underfit the classification of worms due to the small number of
worm training samples. In the face of appearance changes of polymorphic worms, the
smoothing N‐gram algorithm can partially infer their appearance, so it can extract deep‐hidden
worm sequences, preventing the invasion of polymorphic worms. To verify the effectiveness of

FIGURE 4 Bernoulli Restricted Boltzmann Machine
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our proposed system model, we compare it with the works of References [16,23,33], and the
findings are summarized in Table 6.

In Table 6, FP represents the proportion of normal sequences that are misclassified as
malicious, called the false positive. FN represents the proportion of polymorphic worm
sequences that are misclassified as normal traffic, called the false negative. As seen from
Table 6, our proposed system achieves better performance than other works. Due to the
similarity of Apache‐knacker and ATPhttpd worm sequences, the model generates a false‐
positive classification with the increase of noise. However, FP is relatively low, so we think that
our model can still accurately extract the signatures of the two types of polymorphic worms

FIGURE 5 Gaussian–Bernoulli Restricted Boltzmann Machine

TABLE 4 Signatures from Gaussian–Bernoulli RBM

Type Verifiable signature Alternative signature

Apache‐knacker “GET,” “HTTP/1.1\r\n,” “\r\nHost,”
“nHost:,” “xff\xbf”

“x*f~,” “x^$~,” “xff\xbf=,” ” “x**?/,”
“xe*/xff”

ATPhttpd “GET/,” “HTTP/1.1\r\n,” “xff\xbf” “x*f~,” “Accept:,” “xf*/xbf,” “xcc/?~,”
“x9d=~,” “x86&”

BIND‐TSIG “\x00\x00\xFA,” “\x00,” “\XFF\XBF” “.\xx00**,” “x04/xb7,” “\xx**\~”

Abbreviation: RBM, Restricted Boltzmann Machine.

TABLE 5 Classification accuracy under different numbers of noise

Number of noise Apache‐knacker (%) ATPhttpd (%) BIND‐TSIG (%) Normal (%)

1000 100 100 100 99.7

5000 100 99.89 100 99.62

9000 99.63 99.71 100 99.51
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under noisy conditions. Therefore, compared with other algorithms, our automatic signature
extraction model of polymorphic worms has better robustness.

5 | CONCLUSIONS AND FUTURE DIRECTIONS

To solve the problem of automatic signature generation of polymorphic worms and detect
worm‐type malware in IoT, this paper presents two smoothing N‐gram algorithms which can
effectively extract signatures of various types of polymorphic worms, and improves the
accuracy of polymorphic worm signature extraction through Gaussian–Bernoulli RBM
algorithm. The proposed system is particularly useful in accurately extracting polymorphic
worm signatures under noisy settings. The Gram‐RBM system can also generate worm
sequences according to the different worm signatures to predict possible variants of
polymorphic worms. This method can not only dig out the potential variants of polymorphic
worms, but also provide the support for the scalability of the model, which will help mitigate
and prevent the emerging IoT cyberthreats.
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