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Abstract 29 

There is conflicting evidence on whether dietary nitrate supplementation can improve exercise 30 

performance. This may arise from the complex nature of nitric oxide (NO) metabolism which 31 

causes substantial inter-individual variability, within-person biological variation (CVB), and 32 

analytical imprecision (CVA) in experimental endpoints. However, no study has quantified the 33 

CVA and CVB of NO metabolites or the factors that influence their production. These data are 34 

important to calculate the critical difference (CD), defined as the smallest difference between 35 

sequential measurements required to signify a true change. The main aim of the study was to 36 

evaluate the CVB, CVA, and CD for markers of NO availability (nitrate and nitrite) in plasma 37 

and saliva before and after the ingestion of nitrate-rich beetroot juice (BR). We also assessed 38 

the CVB of nitrate-reducing bacteria from the dorsal surface of the tongue. It was hypothesised 39 

that there would be substantial CVB in markers of NO availability and the abundance of nitrate-40 

reducing bacteria. Ten healthy male participants (age 25 ± 5 years) completed three identical 41 

trials at least 6 days apart. Blood and saliva were collected before and after (2, 2.5 and 3 h) 42 

ingestion of 140 ml of BR (~12.4 mmol nitrate) and analysed for [nitrate] and [nitrite]. The 43 

tongue was scraped and the abundance of nitrate-reducing bacterial species were analysed 44 

using 16S rRNA next generation sequencing. There was substantial CVB for baseline 45 

concentrations of plasma (nitrate 11.9%, nitrite 9.0%) and salivary (nitrate 15.3%, nitrite 46 

32.5%) NO markers. Following BR ingestion, the CVB for nitrate (plasma 3.8%, saliva 12.0%) 47 

and salivary nitrite (24.5%) were lower than baseline, but higher for plasma nitrite (18.6%). 48 

The CD thresholds that need to be exceeded to ensure a meaningful change from baseline are 49 

25, 19, 37, and 87% for plasma nitrate, plasma nitrite, salivary nitrate, and salivary nitrite, 50 

respectively. The CVB for selected nitrate-reducing bacteria detected were: Prevotella 51 

melaninogenica (37%), Veillonella dispar (35%), Haemophilus parainfluenzae (79%), 52 

Neisseria subflava (70%), Veillonella parvula (43%), Rothia mucilaginosa (60%), and Rothia 53 
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dentocariosa (132%). There is profound CVB in the abundance of nitrate-reducing bacteria on 54 

the tongue and the concentration of NO markers in human saliva and plasma. Where these 55 

parameters are of interest following experimental intervention, the CD values presented in 56 

this study will allow researchers to interpret the meaningfulness of the magnitude of the 57 

change from baseline.   58 

Key Words: beetroot juice; nitrite; microbiome 59 

 60 

Highlights 61 

• Concentration of nitric oxide markers varies considerably between individuals 62 

• Nitric oxide markers are subject to substantial biological variation 63 

• Pharmacokinetics following nitrate supplementation can vary within individuals 64 

• Variation in bacteria only partly account for variability in nitric oxide markers   65 

• Critical difference values presented herein will aid interpretation of nitric oxide data 66 

  67 
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1. Introduction  68 

Dietary nitrate (NO3-) supplementation increases the concentration of nitric oxide (NO) 69 

metabolites within the blood (Kapil et al. 2010). Crucial to this process is the reduction of 70 

concentrated NO3- in saliva (Lundberg and Govoni 2004) to nitrite (NO2-) by facultative 71 

anaerobic bacteria in the oral cavity (Duncan et al. 1995). The importance of this mechanism 72 

to cardiovascular health is evident in the breadth of research showing that ingestion of 73 

inorganic NO3- acutely lowers blood pressure (Webb et al. 2008; Siervo and Lara 2013). 74 

Elevations in plasma NO2- have been associated with decreased cardiovascular risks factors 75 

and increased exercise capacity in healthy and chronically diseased cohorts (Kleinbongard et 76 

al. 2006; Allen et al. 2010; Totzeck et al. 2012). Dietary NO3- supplementation has also been 77 

shown to improve time trial (Lansley et al. 2011; Muggeridge et al. 2014) and intermittent 78 

(Wylie et al. 2013) exercise performance. However, some studies report no ergogenic effects 79 

(Peacock et al. 2012; MacLeod et al. 2015) and, taken as a whole, the effects of dietary NO3- 80 

supplementation on exercise performance outcomes appear to be equivocal (McMahon et al. 81 

2017). One hypothesis that may account for the lack of consensus across the literature is that 82 

individuals respond differently to NO3- supplementation (Porcelli et al. 2015). Indeed, there 83 

appears to be substantial inter-individual variability in plasma [NO3-] and [NO2-] 84 

pharmacokinetics before and after NO3- administration (James et al. 2015). For example, we 85 

have previously shown that the increase in plasma [NO2-] can range from 80 to 400 nM with a 86 

time-to-peak ranging from 1.5 to 6 h following ingestion of NO3- supplements (McIlvenna et 87 

al. 2017). 88 

 89 

Surprisingly, the within-individual variability in NO metabolites, either at basal concentrations 90 

or following ingestion of NO3-, has not been reported in the literature. This is important as there 91 
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are several potential factors that could affect both the intra- and inter-individual variability of 92 

circulating [NO3-] and [NO2-]. These factors include, but are not limited to: posture during 93 

blood collection (Liddle et al. 2018), prior sunlight exposure (Monaghan et al. 2018), the NO3- 94 

and  NO2- content of the diet (Bryan et al. 2007), the rate of endogenous NO synthesis, NO3- 95 

transport in the salivary glands (Lundberg 2012; Qin et al. 2012), the abundance of  NO3--96 

reducing bacteria in the mouth (Burleigh et al. 2018), salivary flow-rate (Webb et al. 2008), 97 

the rate of NO3- and NO2- reduction in the gut (Lundberg et al. 1994), urinary excretion rates 98 

(Pannala et al. 2003), and training status (Porcelli et al. 2015). Whilst it is impossible to control 99 

all of the factors that influence the concentration of circulating NO metabolites, it is important 100 

to understand the extent to which they can vary within the same individual and the analytical 101 

error (CVA) associated with their measurement.  102 

 103 

The within-individual or biological variation (CVB) establishes the inherent fluctuations around 104 

a homeostatic set-point of a measured variable (Harris 1970). The CVB can be used in 105 

combination with the CVA to calculate the critical difference (CD) which is defined as the 106 

change from baseline that must occur before a meaningful biological difference can be claimed 107 

(Fraser and Fogarty 1989). In short, a researcher is able to use the CVB and the CVA to 108 

determine the typical “noise” in the variable of interest. The CD provides a single criterion 109 

threshold which, if exceeded, they can conclude a true change has occurred in response to any 110 

intervention.  For reference, it has been previously reported that serum cholesterol has a CVB 111 

of 7.6% and a CD of 17.2% (Fraser 2001). Blood glucose has been shown to have a CVB and 112 

CD of 7.2% and 14.9%, respectively (Widjaja et al. 1999). In the context of dietary NO3- 113 

supplementation researchers must first be confident that the intervention results in a true 114 

increase in NO availability if there is to be potential for any ergogenic effect.   115 
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To our knowledge, the CD values of NO3- and NO2- in plasma, saliva, and urine at baseline and 116 

in response to NO3- have not been previously reported. Likewise, despite recognition of the 117 

importance of NO3--reducing bacteria for the generation of NO through the NO3--NO2--NO 118 

pathway, no study has quantified the CVB in the abundance of these bacteria in the oral cavity. 119 

Therefore, the primary aim was to quantify the CVB and CD of the abundance of NO3--reducing 120 

bacteria, blood pressure, and plasma, saliva, and urine [NO3-] and [NO2-] before and after 121 

ingestion of NO3--rich beetroot juice (BR). A secondary aim was to determine whether the 122 

variation in these NO metabolites was associated with the abundance of NO3--reducing 123 

bacteria. It was hypothesised that there would be substantial CVB of the abundance of NO3--124 

reducing bacteria and the concentration of NO metabolites in plasma, saliva, and urine. Further, 125 

it was hypothesised that the variations in plasma and salivary [NO3-] and [NO2-] would be 126 

positively associated with the abundance NO3--reducing bacteria. 127 

 128 

2. Methods 129 

2.1. Participants 130 

Ten healthy and recreationally active male participants (age 25 ± 5 years, stature 177 ± 5 cm, 131 

and body mass 81 ± 11 kg) volunteered to participate in the study and provided written 132 

informed consent. The study was approved by the School of Science and Sport Ethics 133 

Committee at The University of the West of Scotland and all procedures were performed in 134 

accordance with the 1964 Declaration of Helsinki and its later amendments. 135 

 136 

 137 

 138 
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2.2. Study design 139 

Each participant attended the laboratory on three separate occasions with 6-10 days between 140 

each visit. Each trial comprised a 3.5 h period where participants lay supine and repeated 141 

samples of biological fluids were collected and blood pressure was measured. The experimental 142 

conditions were identical in each visit. Following the collection of baseline measurements, 143 

participants immediately ingested 2 x 70 ml of BR (Beet It SPORT, James White Drinks, UK; 144 

total of ~12.4 mmol NO3-). Participants were instructed to avoid caffeine, foods high in NO2- 145 

and NO3- (e.g. green leafy vegetables and cured meats), alcohol, and strenuous exercise in the 146 

24 h prior to the experiment. Participants were also asked to avoid mouthwash 7 days prior to 147 

the first trial and for the duration of the study. All participants confirmed that they were not 148 

using medication of any kind for a month before the first trial or at any point during the study 149 

period. Participants were also asked to refrain from brushing their teeth and tongue on the 150 

morning of each lab visit. Participants recorded dietary intake and the modality, frequency, and 151 

intensity of exercise undertaken 72 h prior to the first experimental trial and replicated this for 152 

the subsequent visits. Participants were provided access to bottled water (Strathrowan Scottish 153 

Mountain water, Aldi Stores Ltd, Ireland) to consume ad libitum during the first visit. The 154 

volume of water and the time of ingestion was recorded during the first visit and matched for 155 

subsequent trials.  156 

 157 

2.3. Procedures 158 

A schematic of the experimental procedures is provided in Figure 1. Following standard 159 

anthropometric measurements (stature and body mass), participants lay in a supine position to 160 

allow the insertion of a cannula into the antecubital vein. Following cannulation, participants 161 

continued to lay in a supine position for a total of 30 min before baseline samples of venous 162 
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blood and saliva were collected. Baseline blood pressure was then recorded in triplicate by 163 

using an automated oscillometric device (Omron 705IT, Omron Global. Hoofddorp, 164 

Netherlands). Mean arterial pressure (MAP) was calculated using the following equation: 165 

 166 

MAP = (2 x diastolic blood pressure + systolic blood pressure) / 3 167 

 168 

Venous blood (4 ml) was collected in EDTA vacutainers (BD vacutainer K2E 7.2mg, 169 

Plymouth, U.K.) and the cannula flushed with sterile 0.9% saline solution between samples to 170 

keep the line patent. The vacutainer was centrifuged (Harrier 18/80, Henderson Biomedical, 171 

UK) at 4000 rpm for 10 min at 4oC immediately after collection (Pelletier et al. 2006). Plasma 172 

was then separated, frozen at −80°C, and analysed within 4 months (Pinder et al. 2009) of 173 

initial collection for determination of [NO3-] and [NO2-].  Samples of unstimulated saliva were 174 

collected via a non-cotton polymer oral swab (Saliva Bio Oral Swab (SOS) Salimetrics, 175 

Pennsylvania, USA) placed under the tongue for 2 min. Swabs were then transferred to a 176 

collection tube (Sarstedt, Aktiengesellschaft & Co, Numbrecht, Germany) and centrifuged at 177 

4000 rpm for 10 min at 4°C. Samples were separated into two cryovials and immediately stored 178 

at −80⁰C for later analysis of [NO3-] and [NO2-]. Swabs were used to collect saliva samples in 179 

preference to the “passive drool” technique in an attempt to improve the consistency of saliva 180 

collection within and between participants.  181 

 182 

Participants were then instructed to sit up to allow for the collection of a bacterial sample from 183 

the posterior dorsal surface of the tongue using a sterile stainless-steel metal tongue cleaner 184 

(Soul Genie, Health Pathways LLP, India). The tongue cleaner was scraped over the dorsal 185 

surface of the tongue 3-5 times or until there was a visible coating on the instrument. A sterile 186 
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collection swab (Deltalab, S.L. Barcelona, Spain) was then used to collect the bacteria from 187 

the tongue cleaner before being placed into a PowerSoil Bead Tube (MoBio Laboratories Inc., 188 

West Carlsbad, California) and immediately frozen at −80oC for later isolation of DNA, as per 189 

the manufacturer’s instructions. Participants were then requested to void their bladder and a 190 

sample of urine was frozen at −80 °C for later analysis of [NO3-]. The volume of all further 191 

bladder voids were recorded following ingestion of BR to allow for the calculation of total 192 

NO3- excretion using the following equation:  193 

 194 

Total NO3- excretion (g) = NO3- (M) * urine volume (L) 195 

 196 

Repeated measurements of blood pressure and collection of saliva, blood, and urine samples 197 

were collected at various subsequent time points as detailed in Figure 1. All blood samples 198 

were collected when participants were supine to allow plasma [NO2-] to stabilise following 199 

postural alterations. Blood pressure was also measured when participants were supine to 200 

ensure measurements were time-aligned with plasma [NO2-] and [NO2-].  201 
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 202 

 203 

Figure. 1.  Schematic of measurement time points for all trials. Dashed arrows depict optional 204 

urine collection.   205 

 206 

2.4. Plasma nitrate and nitrite analysis 207 

Measurements of [NO3-] and [NO2-] were conducted using ozone-based chemiluminescence 208 

(Rogers et al. 2005). For the measurement of plasma [NO3-], vanadium reagent (24 mg of 209 

vanadium tri-chloride and 3 ml of 1M Hydrochloric acid) and 100 μL of anti-foaming agent 210 

were placed into a customised glass purge vessel infused with nitrogen and heated to 95°C. 211 

This purge vessel was connected to an NO analyser (Sievers NOA 280i, Analytix, UK). A 212 

standard curve was produced by injecting 25 μL of NO3- solutions (100 μM, 50 μM, 25 μM, 213 

12.5 μM, and 6.25 μM) and a control sample containing deionised water. The area under the 214 

curve (AUC) for the latter was subtracted from the NO3- solutions to account for NO3- in the 215 

water used for dilutions. Plasma samples were thawed in a water bath at 37°C for 3 min and 216 

de-proteinised using zinc sulphate/sodium hydroxide solution (200 μL of plasma, 400 μL of 217 

zinc sulphate in deionised water at 10% w/v and 400 μL of 0.5M sodium hydroxide). The 218 
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samples were then vortexed for 30 s and remained at room temperature for 15 min before being 219 

spun at 4000 rpm for 5 min. Subsequently, 15-25 μL of the sample was injected into the purge 220 

vessel in duplicate. The concentration of NO cleaved during the reaction was then measured 221 

by the NO analyser. The AUC was calculated using Origin software (version 7) and divided 222 

by the gradient of the slope. 223 

 224 

For the measurement of plasma [NO2-], tri-iodide reagent (2.5 ml glacial acetic acid, 0.5 ml of 225 

18 Ω deionised water and 25 mg sodium iodide) and 100 μL of anti-foaming agent were placed 226 

into the glass purge vessel and heated to 50°C. A standard curve was produced by injecting 227 

100 μL of NO2- solutions (1000 nM, 500 nM, 250 nM, 125 nM, and 62.5 nM) and a control 228 

sample of deionised water. The AUC for the latter was subtracted from the NO2- solutions to 229 

account for NO2- in the water used for dilutions.  Following this, plasma samples were thawed 230 

in a water bath and 100 μL of the sample was injected into the purge vessel in duplicate and 231 

[NO2-] was determined via the AUC, as previously described.  232 

 233 

2.5. Salivary nitrite and nitrate analysis  234 

The same reagents used for plasma [NO3-] and [NO2-] analyses were used for the analysis of 235 

salivary metabolites. The standard curve for salivary [NO3-] was the same as described for 236 

plasma [NO3-]. The standard curve for salivary [NO2-] was produced by injecting 100 μL NO2- 237 

solutions up to 5 μM. For both metabolites, saliva samples were thawed as previously described 238 

and then diluted at a ratio of 1:100 with deionised water. Subsequently, 100 μL of the sample 239 

was injected for the measurement of [NO2-] and 10-25 μL for [NO3-]. Samples were injected 240 

into the purge vessel in duplicate and calculated as previously described before being corrected 241 

for the dilution factor. 242 
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2.6. Urinary nitrate analysis 243 

The same reagent and standard curve used for plasma [NO3-] analysis was used for the 244 

measurement of urinary [NO3-]. Urine samples were thawed and diluted at a ratio of 1:100 with 245 

deionised water. Following this, 15-25 μL of the sample was injected to the purge vessel in 246 

duplicate and [NO3-] calculated as previously described.  247 

 248 

2.7. Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS) 249 

DNA samples were transported to a commercial centre (HOMMINGS, The Forsyth Institute, 250 

Boston MA, USA) for sequencing analysis. A full description of the protocol is described by 251 

Caporaso et al. (2011). In brief, the V3-V4 region of the bacterial genomic DNA was amplified 252 

using barcoded primers; ~341F (forward [oligonucleotide] primer) 253 

AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTCCTACGGGAGGCA254 

GCAG and ~806R (reverse primer) 255 

CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNNNAGTCAGTCAGCCGGACT256 

ACHVGGGTWTCTAAT. Samples (10 – 50 ng) of DNA were amplified by polymerase chain 257 

reaction using V3-V4 primers and 5 PrimeHotMaster Mix and purified using AMPure beads. 258 

A small volume (100 ng) of each library was pooled, gel-purified, and quantified using a 259 

bioanalyser and qPCR. Finally, 12pM of the library mixture, spiked with 20% Phix, was 260 

analysed on the Illumina MiSeq (Illumina, San Diego, CA). 261 

 262 

2.8. 16s rRNA gene data analysis  263 

Quality filtered data received from the sequencing centre was further analysed for taxonomic 264 

classification and bacterial abundance using Qiime 1.8 (Caporaso et al. 2010). One sample with 265 

less than 5000 reads was discarded from further analysis. Sequences were clustered de novo 266 
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and binned into operational taxonomic units (OTU) based on 97% identity. Taxonomy was 267 

assigned using RDP classifier trained to the GreenGenes database (October 2013 release). 268 

Singleton reads were removed from the dataset. In order to calculate alpha diversity metrics, 269 

the OTU table was sub-sampled to 14870 reads per sample and repeated 5 times. The mean 270 

values were then calculated across the 5 sub-sampled OTU tables and used to calculate alpha 271 

diversity metrics. Alpha diversity metrics were calculated using the Shannon diversity 272 

equation, which accounts for the richness and evenness of species in a sample. The smallest 273 

number of reads associated with any one sample was 14870 reads. These analyses enabled the 274 

calculation of the abundance of bacteria at the specific genus and species level that have been 275 

previously reported to reduce NO3- in the oral cavity (Doel et al. 2005; Hyde et al. 2014a). The 276 

sum of the abundance of NO3--reducing bacteria was also calculated and used in further 277 

analysis.  278 

 279 

2.9. Statistical analysis 280 

All analyses were carried out using the Statistical Package for Social Sciences, Version 22 281 

(SPSS Inc., Chicago, IL, USA). GraphPad Prism version 7 (GraphPad Software Inc., San 282 

Diego, USA) was used to create the figures. Data are expressed as the mean ± standard 283 

deviation (SD). The distribution of the data were tested using the Shapiro-Wilk test. A two-284 

way repeated-measures ANOVA was used to assess the main effects of time and visit and the 285 

time x visit interaction for [NO3-], [NO2-], and blood pressure variables. A one-way repeated 286 

measures ANOVA was used to determine whether there were differences in the abundance of 287 

each genus of bacteria across the three trials. The between trial differences in the Shannon 288 

diversity index was assessed using a Friedman’s rank test. Post-hoc analysis was conducted 289 

following a significant main effect or interaction using paired samples t-tests with Bonferroni 290 
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correction for multiple pairwise comparisons. Correlation coefficients (Pearson’s for normally 291 

distributed data and Spearman’s Rho for non-normally distributed data) were used to assess 292 

the association between the concentration of NO metabolites and the abundance of species 293 

specific NO3--reducing bacteria. Using the same analyses, associations of between-trial 294 

differences (Δ) in these parameters were also analysed. Statistical significance was declared 295 

when P<0.05.  296 

 297 

2.9.1. Inter-individual variation 298 

The inter-individual coefficient of variation (CVI) was calculated using the pooled mean ± SD 299 

of the three-trial average using the following equation: 300 

CVI (%) = 100 – (SD/mean) 301 

Where SD = the between participant standard deviation  302 

Where mean = the average of all participant  303 

 304 

2.9.2. Analytical variation 305 

The CVA was calculated using the pooled mean ± SD of each duplicate/triplicate measure using 306 

the following equation: 307 

CVA (%) = 100  ̶  (SD/mean) 308 

Where SD and mean are the standard deviation and the mean duplicate/triplicate measures of 309 

the same time point, respectively. 310 

 311 

 312 
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2.9.3. Biological variation 313 

The CVB for all measured variables was calculated using the mean ± SD of three samples from 314 

each participant at each time point of the experiment using the following equation: 315 

CVB (%) = 100  ̶  (SD/mean) 316 

Where SD and mean are the standard deviation and mean of repeated measures of the same 317 

time point of separate laboratory visits. 318 

 319 

2.9.4. Intra-individual variation 320 

The within subject coefficient of variation (CVW) was calculated using the following equation:   321 

CVW (%) = CVB – CVA 322 

 323 

2.9.5. Critical difference 324 

The CD was assessed using the equation of Fraser and Fogarty (1989): 325 

CD = k√CVA2 + CVW2 326 

Where k = Constant determined by the probability level (2.77 at P<0.05) 327 

 328 

3. Results 329 

3.1. Nitrate and nitrite in biological fluids   330 

The three-trial mean ± SD, CVI, CD, and residuals (CVA and CVB) for each measurement are 331 

displayed in Tables 1 and 2. Inter-individual data and group mean ± SD are presented in Figure 332 

2 and 3 for plasma and saliva, respectively. The CVA for the measurement of [NO3-] (range 1.0 333 
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– 4.1%) and [NO2-] (range 1.2 – 3.9%) indicates good precision for these analyses. There was 334 

a significant main effect of ‘time’ (P<0.01) but no effect of ‘visit’ or a ‘time x visit’ interaction 335 

(P>0.05) for plasma and salivary [NO3-] and [NO2-]. Post-hoc analyses showed that baseline 336 

values were significantly lower (all P<0.01) than at all other time points that followed the 337 

ingestion of BR. Plasma [NO3-] was significantly higher at the 2 h measurement point 338 

compared to 2.5 and 3 h post ingestion (both P<0.05).  339 

 340 

Within-participant comparisons demonstrate that total urinary NO3- excretion did not differ 341 

between the three laboratory visits (P>0.05) (Table 1). The CVB for salivary, plasma, and 342 

urinary [NO3-] variables ranged from 3.8 to 15.3% (Table 1). There was a greater degree of 343 

heterogeneity in saliva and plasma [NO2-] which ranged from 9 to 32.5 % (Table 2). The CD 344 

values were also considerable for [NO3-] variables (8.4 – 37.9%) and [NO2-] variables (19.3 – 345 

86.5%). Between-participant comparisons reveal that, as expected, the CVI was substantial, 346 

with [NO3-] variables ranging from 18.6 to 49.1% and [NO2-] from 29.9 to 73.5%.  347 

 348 

3.2. Abundance of nitrate-reducing bacteria 349 

After quality filtering the data and removal of singleton reads, tongue scrapings of 9 350 

participants over three separate trials were included in the analysis. Alpha diversity metrics 351 

revealed that the Shannon diversity index for the whole group across all three visits was 5.4 ± 352 

0.4 with 1356 ± 171 observed species. The Shannon diversity index did not differ between 353 

trials (P=0.50). There were 117 genera of bacteria detected in the samples. The only genera of 354 

bacteria where the abundance changed significantly was Peptostreptoccocus which was more 355 

abundant in visit one compared to visit two (P=0.03). Previous research has shown that 356 

Peptostreptoccocus species do not have NO3- reductase activity (Smith et al. 1999). 357 
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All of the genera that have previously been implicated in NO3- reduction (Hyde et al. 2014a) 358 

were detected in our analyses (Table 3). Prevotella was the most abundant genera and had the 359 

lowest CVB (22.7%) whilst Haemophilus, the fourth most abundant NO3--reducing genera, had 360 

the highest CVB (77.6%). Seven of the bacterial species previously implicated in NO3- 361 

reduction (Doel et al. 2005; Hyde et al. 2014a) were detected in the samples and the variation 362 

in the relative abundance of these species were analysed across the three visits (Fig. 4). Further 363 

analyses at the species level showed that the sum of the NO3--reducing bacteria had a CVB of 364 

19.5%. The CVB of individual species showed that Rothia dentocariosa and Haemophilus 365 

parainfluenzae were the most variable (132.1 and 78.6%, respectively, Table 4). The two most 366 

abundant species, Prevotella melaninogenica and Veillonella dispar, had the lowest CVB of 37 367 

and 35.1 %, respectively.  368 

 369 

3.3. Blood pressure 370 

Blood pressure data are presented alongside the variability metrics in Table 5. The CVA for the 371 

measurement of systolic blood pressure (range 1.3 – 3.8%), diastolic blood pressure (range 2.5 372 

– 3.6%), and MAP (range 2.2 – 3.7%) indicates good precision for these parameters. There was 373 

a significant main effect of ‘time’ for systolic blood pressure (P<0.01), diastolic blood pressure 374 

(P=0.04), and MAP (P<0.01) but no ‘time x visit’ interaction (all P>0.05). There was no main 375 

effect of ‘visit’ for systolic blood pressure or MAP (P>0.05) but there was an effect of ‘visit’ 376 

on diastolic blood pressure (P=0.02). Post-hoc analyses showed that systolic blood pressure 377 

was significantly lower at all measurement points following BR ingestion (all P<0.05). 378 

Diastolic blood pressure was not different between measurement points or individual visits (all 379 

P>0.05). MAP was not different to baseline after 2 h (P=0.08) but was lower than baseline at 380 

2.5 and 3 h post BR ingestion (both P<0.05). Measurements of systolic blood pressure (range 381 
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2.0 – 3.4%) and MAP (range 2.9 – 3.9%) had minimal CVB. The CVB for diastolic blood 382 

pressure was greater, ranging from 4.2 to 6.0%. Values of CD ranged from 5.3 to 11.9% for all 383 

blood pressure markers and values of CVI ranged from 4.7 to 8.1%.  384 

 385 

3.4. Association between nitrate and nitrite in biological fluids and the abundance of nitrate-386 

reducing bacteria  387 

The sum of the NO3--reducing bacteria was not associated with measurements of [NO2-] at any 388 

time point (all P>0.2). Individual species analysis showed that the abundance of Neisseria 389 

subflava was negatively associated with peak salivary [NO2-] (R=-0.43, P=0.03, Fig. 5) and 390 

plasma [NO2-] (R=-0.43, P=0.03, Fig. 5). There were no other associations between the 391 

concentration of NO metabolites and the abundance of all other individual species of NO3--392 

reducing bacteria (all P>0.07). The between-trial Δ in salivary [NO2-] following BR and the 393 

between-trial Δ Rothia mucilaginosa abundance were significantly associated (R=0.49, 394 

P=0.01, Fig. 6). The between-trial Δ Haemophilus parainfluenzae abundance was negatively 395 

associated with the between-trial Δ plasma [NO2-] at 3 h post BR ingestion (R=-0.4, P=0.04, 396 

Fig. 6). There were no other relationships between the variation in [NO2-] variables and the 397 

abundance of NO3- reducing species (all, P>0.09).  398 

 399 

 400 

 401 

 402 

 403 
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Table 1. Three-trial mean ± SD, analytical variation (CVA), biological variation 404 

(CVB), critical difference (CD), and inter-individual variability (CVI) for plasma, 405 

salivary and urinary [NO3-] at each measurement point. * denotes significant difference 406 

compared to baseline (P<0.001).  407 

Parameter Mean ± SD 
 

CVA (%) CVB (%) CD (%) CVI (%) 

Plasma baseline 33.2 ± 7.6 μM 4.1 11.9 24.4 

 

22.8 

Plasma 2 h 452.1 ± 83.9 μM* 1.0 3.8 8.4 18.5 

Plasma 2.5 h 415.0 ± 92.2 μM* 1.2 4.7 10.3 22.2 

Plasma 3 h 391.6 ± 99.2 μM* 1.8 8.8 19.9 25.3 

Saliva baseline 0.5 ± 0.2 mM 2.1 15.3 37.1 30.7 

Saliva 2.5 h 8.5 ± 2.1 mM* 1.4 12.0 29.7 24.1 

Urine total  1.7 ± 0.3 g (x10-4) 1.7 15.3 37.9 49.1 

 408 

Table 2. Three-trial mean ± SD, analytical variation (CVA), biological variation 409 

(CVB), critical difference (CD), and inter-individual variability (CVI) for plasma and 410 

salivary [NO2-] at each measurement point. * denotes significant difference compared 411 

to baseline (P<0.001). 412 

Parameter Mean ± SD CVA (%) CVB (%) CD (%) CVI (%) 

Plasma baseline 124.2 ± 48.8 nM 2.5 9.0 19.3 39.3 

Plasma 2 h 284.9 ± 83.5 nM* 2.1 19.3 47.9 29.3 

Plasma 2.5 h 278.6 ± 73.9 nM* 2.4 18.6 45.4 26.5 

Plasma 3 h 323.9 ± 94.1 nM* 2.2 20.6 51.3 29.0 

Saliva baseline 135.7 ± 99.8 μM 1.2 32.5 86.5 73.5 

Saliva 2.5 h 903.6 ± 267.6 μM* 3.9 24.5 58.1 29.6 

 413 
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 414 

Figure 2. Group mean ± SD and inter-individual variation across the three identical trials for 415 

plasma [NO3-] at baseline (A), 2 h (B), 2.5 h (C), and 3 h (D), and for plasma [NO2-] at baseline 416 

(E), 2 h (F), 2.5 h (G), and 3 h (H). All post supplementation time points for plasma [NO3-] and 417 

[NO2-] were significantly elevated compared to baseline concentrations (all P < 0.01). 418 
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 419 

Figure 3. Group mean ± SD and inter-individual variation across the three identical trials for 420 

salivary [NO3-] at baseline (A), and 2.5 h (B), and for salivary [NO2-] at baseline (C), and 2 h 421 

(D). Following supplementation salivary [NO3-] and [NO2-] were significantly elevated 422 

compared to baseline concentrations (all P < 0.01). 423 

 424 

 425 

 426 
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 427 

Figure 4. A comparison of the relative abundance of NO3--reducing species between three 428 

identical trials taken at baseline during each laboratory visit. Data are presented as group means 429 

with SD excluded for clarity.  430 

 431 

 432 

433 

Figure 5. Correlations between Neisseria subflava and peak concentration plasma [NO2-] (A) 434 

and salivary [NO2-] (B).  * denotes significant difference.  435 
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 436 

Figure 6. Correlations between ∆ plasma [NO2-]/∆ Haemophilus parainfluenzae (A) and ∆ 437 

salivary [NO2-]/∆ Rothia mucilaginosa (B).  * denotes significant difference. 438 

 439 

Table 3. Relative abundance of genera previously implicated in NO3- 440 

reduction and the corresponding biological variation (CVB) and inter-441 

individual variability (CVI). 442 

OTU ID Mean ± SD (%)   CVB (%) CVI (%) 

Prevotella 35.6 ± 13.5 22.7 38.6 

Veillonella 14.7 ± 7.2 33.4 50.1 

Fusobacterium 9.5 ± 9.3 54.5 97.8 

Haemophilus 6.5 ± 11.1 77.6 145.0 

Leptotrichia 6.4 ± 3.6 52.7 56.1 

Streptococcus 2.0 ± 1.9 45.7 96.8 

Neisseria 1.8 ± 2.5 67.9 130.7 

Porphyromonas 1.6 ± 1.8 76.1 119.4 

Actinomyces 1.0 ± 0.8 64.5 82.8 

Rothia 0.2 ± 0.2 57.7 108.6 

Granulicatella 0.1 ± 0.2 72.0 122.9 

 443 
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Table 4. Relative abundance of species previously implicated in NO3- reduction and 444 

the corresponding biological variation (CVB) and inter-individual variability (CVI). 445 

Species Mean ± SD (%)   CVB (%) CVI (%) 

Prevotella melaninogenica 23.8 ± 6.4 37.0 26.9 

Veillonella dispar 13.0 ± 4.0 35.1 30.7 

Haemophilus parainfluenzae 6.5 ± 5.9 78.6 90.7 

Neisseria subflava  1.7 ± 1.0 70.0 57..7 

Veillonella parvula 0.9 ± 0.4 43.2 44.3 

Rothia mucilaginosa  0.2 ± 0.1 60.0 41.0 

Rothia dentocariosa <0.01 ± <0.01 132.1 118.4 

 446 

  447 
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Table 5. Three-trial mean ± SD, analytical variation (CVA), biological 448 

variation (CVB), critical difference (CD), and inter-individual variability 449 

(CVI) for blood pressure parameters at each measurement point. * 450 

denotes significant difference compared to baseline (P<0.05). 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

4. Discussion 462 

The present study demonstrates that, as hypothesised, the concentration of NO3- and conversion 463 

to NO2- in biological fluids varies substantially within individuals across repeated laboratory 464 

visits under the same conditions. Likewise, the CVB for the abundance of NO3--reducing 465 

bacteria were also profound, suggesting substantial heterogeneity in these measurements. The 466 

CD values for NO metabolites at baseline suggest that large relative changes in these 467 

parameters are required before a meaningful difference can be concluded following an 468 

intervention. On the other hand, measurements of blood pressure at baseline demonstrated 469 

Blood Pressure Mean ± SD 

(mmHg) 

CVA (%) CVB (%) CD (%) CVI (%) 

Systolic baseline 126 ± 7 1.9 2.0 5.3 5.9 

Systolic 2 h 121 ± 7* 1.3 3.1 6.1 6.1 

Systolic 2.5 h 120 ± 7* 3.8 3.4 10.6 6.4 

Systolic 3 h 122 ± 7* 3.3 3.2 10.1 5.8 

Diastolic baseline 70 ± 5 3.4 4.8 10.2 7.7 

Diastolic 2 h 67 ± 5 3.0 4.9 9.9 8.1 

Diastolic 2.5 h 67 ± 4 3.6 4.2 10.2 5.4 

Diastolic 3 h 67 ± 4 2.5 6.0 11.9 6.2 

MAP baseline 88 ± 5 2.7 3.9 8.1 5.4 

MAP 2 h 85 ± 5 2.2 3.4 7.0 5.9 

MAP 2.5 h 85 ± 4* 3.7 3.1 10.4 5.0 

MAP 3 h  85 ± 4* 3.1 2.9 8.5 4.7 
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much lower CVB across repeated trials. The relative abundance of Neisseria subflava on the 470 

tongue was negatively associated with [NO2-] in the saliva and plasma following ingestion of 471 

BR. The variation in salivary [NO2-] following BR between repeated trials was also associated 472 

with the variation in the abundance of Rothia mucilaginosa and the between-trial variation in 473 

peak plasma [NO2-] was negatively associated with the variation in the abundance of 474 

Haemophilus parainfluenzae. These data suggest that, contrary to our hypothesis, the CVB of 475 

NO metabolites is only partly accounted for by the CVB in the abundance of NO3--reducing 476 

bacterial species.  477 

 478 

4.1. Variability of the tongue microbiome of healthy humans 479 

There were 1356 ± 171 observed species of bacteria in the tongue scrape samples across the 480 

three trials which is comparable with some (Li et al. 2014; Burleigh et al. 2018) and 481 

considerably higher than others (Hyde et al. 2014a). The Shannon Diversity Index, which 482 

accounts for both richness and evenness of OTUs, was also similar to previous reports in 483 

healthy humans (Zaura et al. 2009; Hyde et al. 2014a; Burleigh et al. 2018). Veillonella is 484 

commonly reported to be the most abundant of the taxa that are specifically implicated in NO3- 485 

reduction  (Doel et al. 2005; Hyde et al. 2014a). In the present study, however, Prevotella were 486 

found to be more than twice as abundant as Veillonella. These dissimilarities are likely 487 

explained by inter-individual differences in study cohorts as corroborated by the profound CVI 488 

across all genera previously implicated in NO3- reduction (Table 3). In line with our previous 489 

work (Burleigh et al. 2018), Prevotella melaninogenica and Veillonella dispar were the most 490 

abundant species of NO3--reducing bacteria in all three trials.  491 

 492 
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The inter-individual diversity and temporal dynamics of tongue microbiota in the oral cavity 493 

has previously been investigated by Hall and colleagues (2017) who collected samples daily, 494 

weekly, and monthly from 10 healthy participants. There was significant drift in the 495 

composition of the microbiome over both short and long time scales, the magnitude of which 496 

varied between subjects. Nevertheless, several species were consistently observed (≥ 95% 497 

samples) at all measurement points, including several species that have been implicated in 498 

NO3- reduction (Haemophilus parainfluenzae, Neisseria subflava, and Rothia dentocariosa). 499 

In the present study, the CVB for seven of the bacteria previously implicated in NO3- 500 

reduction are reported for the first time. Here, we show that there is profound within-501 

participant variation at both the level of genera (23 – 78%) and species (35 – 132%) at three 502 

controlled measurement points over a 15-21 day period. This may be reasonably expected 503 

given that the mouth is exposed to  the external environment and regularly subjected to 504 

brushing, flossing, and nutrient intake (Hall et al. 2017) which may consequently influence 505 

pH (Krulwich et al. 2011). It has been shown previously that 7 days of sodium NO3- 506 

supplementation (Hyde et al. 2014b) and 10 days (Vanhatalo et al. 2018) or 6 weeks 507 

(Velmurugan et al. 2016) of BR supplementation  results in significant alterations to the oral 508 

microbiome, including species of NO3--reducing bacteria. Our study demonstrates that 509 

despite standardising diet, physical activity, mouthwash, teeth brushing, and tongue 510 

cleaning before each trial, the abundance of these bacteria vary considerably. Quantifying 511 

the magnitude of this variation provides useful metrics which will aid researchers to interpret 512 

the meaningfulness of changes to the oral microbiome following an intervention.   513 

 514 

 515 

 516 
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4.2. Variability in the measurements of nitric oxide metabolites 517 

Values of plasma and salivary [NO2-] and [NO3-] at baseline and following the ingestion of BR 518 

are broadly in line with those reported in the literature (e.g. James et al. 2015; Liddle et al. 519 

2018; Woessner et al. 2016). Some of the subtle differences between studies may be partly 520 

explained by dissimilarities in methodology and study control (Bryan et al. 2007; Feelisch et 521 

al. 2010; Liddle et al. 2018). Inter-individual differences between participants in each cohort 522 

will also likely underpin some of the variation in basal NO metabolite concentration and NO 523 

pharmacokinetics following the ingestion of BR (Muggeridge et al. 2014; James et al. 2015; 524 

McIlvenna et al. 2017). This is highlighted profoundly by the CVI values in the current data set 525 

which were 19 – 31% for salivary and plasma NO3- and 27 – 74% for NO2-. Porcelli and 526 

colleagues (2015) have demonstrated that physical fitness appears to affect the response to 527 

NO3- supplementation whereby the increase in plasma [NO2-] is suppressed in individuals with 528 

better aerobic fitness. Alternatively, other factors which may influence endogenous production 529 

of NO (Luiking et al. 2010) or differences in the oral (Burleigh et al. 2018) and gut microbiota 530 

(Flint et al. 2012) may also account for some of the inter-cohort variations. For example, we 531 

have recently demonstrated that individuals with a higher abundance of NO3--reducing bacteria 532 

generate more NO2- in the saliva and at a faster rate (Burleigh et al. 2018).  533 

 534 

Given the exponential rise in research exploring the health promoting and ergogenic effects of 535 

BR it is perhaps surprising that the CVB for the physiological responses to this supplementation 536 

regimen have not previously been reported. Particularly where it is argued that changes in any 537 

outcome should be interpreted within the boundaries of CD  in order to quantify a meaningful  538 

difference (Fraser and Fogarty 1989). At baseline, there was moderate CVB in plasma markers 539 

(9 and 12% for NO2- and NO3-, respectively) although the variation was more substantial in 540 

salivary measures (33 and 15% for NO2- and NO3-, respectively). Following the ingestion of 541 
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BR, the CVB of NO3- ranged from 4 – 9% in plasma and 12 – 15% in saliva which was 542 

considerably lower than the CVB of NO2- markers (19 – 21% in plasma and 25 – 33% in saliva). 543 

Urinary excretion of NO3- was also shown to have a large CVB (15%) and CVI (49%).  The CD 544 

values demonstrate that substantial changes in NO markers in biological fluids are required at 545 

baseline or following the ingestion of BR to be deemed biologically meaningful (Fraser and 546 

Fogarty 1989).  547 

 548 

4.3. Association between nitrate-reducing bacteria and nitric oxide metabolites 549 

The oral microbiome is known to be a crucial component of the NO3--NO2--NO pathway. 550 

Abolishing oral bacterial species with anti-bacterial mouthwash, for example, has been shown 551 

to substantially interrupt oral reductase capacity (Kapil et al. 2013; Bondonno et al. 2015; 552 

McDonagh et al. 2015; Woessner et al. 2016). Given the oral microbiome is exceptionally 553 

sensitive and modifiable within individuals, it is plausible that intra-individual variations in the 554 

abundance of NO3--reducing bacteria would influence circulating levels of NO2- and NO 555 

metabolite pharmacokinetics following the ingestion of BR. A large CVB in [NO2-] values 556 

would, therefore, be reasonably expected given the large CVB in the abundance of NO3--557 

reducing bacteria. Further analyses of our data reveals that variation in oral microbiota do 558 

influence the CVB of the NO metabolites, at least to some extent. The relative abundance of 559 

Neisseria subflava on the tongue was negatively associated with the peak [NO2-] in the saliva 560 

and plasma following ingestion of BR. The Δ in salivary [NO2-] following BR between 561 

repeated trials was also positively associated with the between-trial Δ in Rothia mucilaginosa. 562 

Additionally, the between-trial Δ in plasma [NO2-] at 3 h post BR ingestion was negatively 563 

associated with the between-trial Δ in Haemophilus parainfluenzae. Whilst it is possible that 564 

these species may be particularly important for NO3- reduction, it must be acknowledged that 565 

all statistically significant associations were only “moderate” in strength (R = 0.40 – 0.49), are 566 
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likely underpowered, and do not necessarily imply “cause-effect”. Furthermore, while the 567 

dorsal surface of tongue is the area of the oral cavity in which the majority of NO3- reduction 568 

activity occurs (Doel et al. 2005), our sampling of the oral microbiome was not comprehensive. 569 

For example, NO3- reduction is also reported to occur directly in the saliva (Goaz and Biswell 570 

1961) and in other areas of the mouth. It is also recognised that some species of bacteria are 571 

capable of reducing NO2- to NO in the saliva and the abundance of these microbiota may be 572 

considered to influence plasma [NO2-]. However, NO2-  reduction via bacterial enzymatic 573 

activity is a slow process (Doel et al. 2005) and, given the rapid extrusion of NO2-  through 574 

continuous swallowing, the abundance of these microbiota are likely to be less relevant.   575 

 576 

While the relevant abundance of the oral microbiome seems to contribute towards the 577 

regulation of NO bioavailability (Burleigh et al. 2018), it does not fully account for the large 578 

CVB in basal [NO2-] and [NO3-] and the variable response to ingested inorganic NO3-. Indeed, 579 

the metabolic activity of the NO3--reducing bacteria may be more important than the relevant 580 

abundance (Hyde et al. 2014a). Alternatively, CVB of other factors including the 581 

aforementioned abundance and activity of gut bacteria, stomach pH (Lundberg et al. 1994; 582 

Montenegro et al. 2017), rates of gastric emptying and intestinal absorption (Leiper 2015), or 583 

the availability of sialin, a NO3- transporter in the saliva (Qin et al. 2012), may also contribute 584 

towards a high CVB in NO metabolism. There also seems to be circadian variation in 585 

endogenous NO production (Antosova et al. 2009). Furthermore, while participants were 586 

requested to replicate their diet prior to each trial, the NO3- content of regularly consumed 587 

vegetables is known to vary considerably (Lidder and Webb 2013). Non-compliance with these 588 

instructions also cannot be ruled out although all participants gave verbal assurances on this 589 

point. Exposure to different doses of sunlight has also been shown to influence circulating 590 

levels of NO2- (Monaghan et al. 2018). However, the latter mechanism may have had minimal 591 
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influence in the present study as data were collected in the autumn/winter months. Establishing 592 

the independent contribution of each of these factors to NO bioavailability will be a difficult 593 

task due to a lack of gold-standard measurements or challenges in isolating each as an 594 

independent variable rather than a covariate.  595 

 596 

4.4. Variability in the blood pressure response to nitrate supplementation 597 

Ingestion of BR resulted in significant reductions in systolic blood pressure and MAP which 598 

supports findings from a recent meta-analysis showing a mean reduction in systolic blood 599 

pressure of 4.4 mmHg (Siervo and Lara 2013). Novel data in this study shows that the reduction 600 

in blood pressure markers is consistently observed in response to NO3- supplementation and, 601 

in contrast to NO metabolites, the CVB for these measurements are relatively low (all <5%). 602 

This contrasts with previous research which reports the visit-to-visit variation is larger (>8%) 603 

for systolic and diastolic blood pressure in various clinical cohorts (Marshall 2004; Howard 604 

and Rothwell 2009). In absolute terms, baseline systolic blood pressure (mean 126 ± 7 mmHg) 605 

varied by 2.5 mmHg across the three trials of the present study compared to 14.7 mmHg (mean 606 

147 ± 18.4 mmHg) in patients who had suffered a minor transient ischemic attach or minor 607 

ischemic stroke (Howard and Rothwell 2009). This suggests that cohorts with a higher blood 608 

pressure will also have an increased CVB for this metric. Indeed, an increased variability CVB 609 

may also have some prognostic value as it has been associated with the development, 610 

progression, and severity of cardiac, vascular, and renal damage and with an increased risk 611 

of cardiovascular events and mortality (Parati et al. 2013). It is important to highlight that 612 

the participants in the present study were all from a homogenous cohort; namely they were 613 

all healthy Caucasian males from a relatively narrow age range. It is likely that CVB and CD 614 

for all measured outcomes would increase in a more heterogonous group of healthy 615 

participants which included females and older adults.    616 
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Webb and colleagues (2008) have previously reported that ingestion of BR reduces systolic 617 

blood pressure by up to ~10 mmHg in healthy participants. Notably, the magnitude of this 618 

reduction in systolic blood pressure exceeds the baseline CD reported here (6.7 mmHg, 5.3 %) 619 

which confirms that this is a meaningful change in this parameter. In contrast, the BR-induced 620 

reduction in blood pressure reported in this study and more widely across the literature in 621 

healthy normotensive participants (Siervo and Lara 2013) are typically smaller and do not 622 

exceed the CD threshold. In patients with stage 1 hypertension, a single dose of NO3--rich BR 623 

reduced systolic blood pressure by 11 mmHg (7.3%) (Ghosh et al. 2013) suggesting the effects 624 

of BR are more pronounced in those with an elevated blood pressure. However, given that a 625 

high blood pressure will also elevate the CVB, researchers should be cautious about using CD 626 

values generated from healthy participants to interpret data in hypertensive or diseased cohorts. 627 

While this does not rule out a therapeutic effect of inorganic NO3- supplementation in 628 

hypertensive patients, the potential influence of CVA and CVB on experimental outcomes 629 

should be duly considered when interpreting the data.   630 

 631 

5. Conclusion  632 

The data in the current study demonstrates that there is profound intra-individual variability in 633 

the measurement of NO metabolites in plasma and saliva, both at basal levels and when 634 

elevated following ingestion of BR. While the change in the abundance of certain species of 635 

NO3--reducing bacteria appears to account for some of this variation, other biological and 636 

experimental factors are also likely to contribute. Markers of blood pressure were consistently 637 

reduced on three separate occasions following the ingestion of BR but the magnitude of the 638 

change was small and did not exceed the CD. The data presented in this manuscript presents 639 
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metrics which facilitate a more meaningful interpretation of changes in key physiological 640 

variables following dietary NO3- supplementation. 641 
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