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ABSTRACT 
 
Micromachining of nanocomposites is deemed to be a complicated process due to the anisotropic, 

heterogeneous structure and advanced mechanical properties of these materials associated with the 

size effects in micromachining.  It leads to poorer machinability in terms of high cutting force, low surface 

quality and high rate of tool wear. The review on the mechanical properties of nanocomposites with the 

aim to investigate their effects on the nanocomposites micro-machinability has been addressed in part 

1. In part 2 of this paper, the subsequent micro-machining processes are critically discussed based on 

relevant studies from both experimental and modelling approaches. The main findings and limitations 

of these micro-machining methods in processing nanocomposites have been highlighted together with 

future prospects. 

Keywords: nanocomposites; micromachining; manufacturing; materials; mechanical properties 

  
1. INTRODUCTION 

Part 1 of this review paper has addressed relevant methods to fabricate 

nanocomposites. Some main mechanical properties such as tensile strength, Young’s 

moudulus, fracture strength and fracture toughness seemed to be improved due to 

the addition of nano-fillers. The efficiency of these reinforcements was seen to depend 

on the nature of fillers and matrixes, filler size, filler content and farbricating methods. 

The reinforcement of nanofillers was also analyzed based on some main approaches 

such as strengthening and toughening mechanisms. Some typical methods to fabricate 

nanocomposites have been also discussed. However, these micromachining 

techniques are seemed to be incapable of producing a final product with sufficient 

quality in terms of surface quality, dimensional accuracy). Therfore, mechanical 

micromachining techniques such as micro-drilling, micro-milling have been potentially 

considered as post-processing methods to meet these manufacturing requirements. 

Some applications that employing mechanical micromachining of nanocomposites 
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have been mentioned in part 1 and therefore, a comprehensive review on the 

machinability when micromachining of nanocomposites is required. 

 Mechanical micromachining exhibits high capabilities in terms of surface 

quality, dimension accuracy and wide range of materials. However, the addition of 

reinforcements leads to the complex structure of nanocomposites (multiple phases, 

homogeneity, anisotropy, etc.) and their advanced mechanical properties (high tensile 

properties, hardness, wear resistance, etc.) could reduce the machinability of these 

materials. Moreover, micromachining also complicates the material removal process 

since it contains some basic differences from conventional machining such as cutting 

edge radius, minimum-uncut chip thickness (MUCT), micro-structure that are 

generally called size effects. All of those factors make micromachining of 

nanocomposites difficult to accomplish. Additionally, there is a scarcity of data related 

to the micromachining of nanocomposites. That is the reason for only a few reports 

on micromachining of nanocomposites available in providing in-depth analyses on 

micromachining of nanocomposites. 

2.  MICROMACHINING OF NANOCOMPOSITES 

2.1 Overview of micromachining 

The motivation of product miniaturization with high precision is to make 

multifunctional products with lightweight, high mobility, less energy consumption and 

higher efficiency. Along with the discovery of advanced materials (i.e. superalloys, 

composites, ceramics, etc.) with outstanding ratios of strength to weight, the 

development of advanced machining techniques with ultra-high precision makes the 

miniaturization of components feasible.   

Taniguchi [1]  has modified machining advancement by the achievement of 
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machining accuracy from conventional machining (1 to 100 µm) to ultra-precision 

machining (1 nm) (Figure 1Figure 1). In other perspectives, micromachining has been 

defined by its product dimensions (at least two dimensions ranging from 1 to 500 µm) 

that are extremely small to be fabricated by conventional machining [2]. The difference 

between precision machining and micromachining is identified by their own 

objectives. While the precision machining highlights the machining accuracy with the 

ratio of size to tolerance higher than 10,000:1, the intent of micromachining is to make 

micro-parts that are typically in the range of 1 to 100 µm [3]. Micromachining is also 

defined by the uncut chip thickness measurement when it becomes smaller than the 

mean value of grain size [4] or in the range of 0.1 to 200 µm [5]. However, with the 

continuous development of machining, this border would be narrowed. 

There are many micro-machining techniques with their own capabilities in 

terms of machining accuracy, part size, work-piece material and geometrical 

complexity. Classification in an attempt to identify the distinct principles between 

some basic micromachining process, generally based on whether micro-

electromechanical systems (MEMS) or non-MEMs mechanism. MEMS are 

manufactured by micromachining processes which use lithography-based techniques 

to make the near net shape in semiconductors such as sensors, transducers, actuator, 

and other electrical devices on a silicon substrate. MEMS-based techniques are usually 

employed to fabricate the products in the sizes ranging from 1 to 100 µm. The 

remarkable advantages of these kinds of micro-manufacturing are high accuracy of 

machined products without burr formation on the machined edges, low cost and 

feasible mass-producing applications due to their short processing time. However, 

their applications are limited by work-piece material, mostly silicon, a small range of 
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metals and ceramics because of high requirements of materials for MEMs such as 

deposition ability in thin films, high definition and reproduction. In addition, the 

geometrical complexity of micro-components is also a considerable disadvantage of 

MEMs-based micromachining whilst they can only be effectively managed with 2D or 

2.5D machined subjects. Micromechanical machining, on the other hand, is a 

miniaturized version of conventional machining that employs a geometrical micro 

cutting tool to remove material. Although MEMS can achieve smaller feature size, this 

adaption in micro-fabrication has high potential in terms of machining accuracy, 

surface quality, wide range of work-piece materials, and high complex geometry of 

products (3D). Moreover, the gap between macro and micro mechanical machining is 

also bridged while studying this approach [6, 7] by discussing size effect issues. 

2.2 Size effect in micromachining 
 

Although micromachining has the same principle with conventional machining 

in terms of material removal mechanism, there are, however, some critical differences 

due to size effects when adapting from macro to micro-scale machining. Size effects 

make the relationship between inputs (micromachining parameters) and outputs 

(surface quality, chip formation, cutting forces, tool wear) distinct to the conventional 

machining. Therefore, it could be seen that size effects are the key issues as well as the 

basis to explain the unusual aspects that micromachining processes have achieved [6, 

8-12]. Size effects are the results of extrapolated-value aberration from macro to 

micromachining. These effects are expressed by the dramatic, nonlinear increase of 

specific energy when the uncut chip thickness decreases [13]. Experimental results to 

support this phenomenon have been achieved when metal and alloys were cut taking 

into consideration the ratio between MUCT to cutting edge radius [14-16]. The specific 
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cutting forces (kc) in micro-milling are hyper-proportionally increased when micro-

milling at a feed per tooth (f) value lower than tool edge radius (re) [15], especially 

when reaching grinding levels (f/re=0.1), the specific cutting force could achieve 

maximum value of 70 GPa (Figure 2Figure 2). 

In general, size effects in micromachining are related to different aspects that are 

usually neglected in conventional machining including: 

• A dramatic non-linear increase of specific cutting force when the uncut chip 

thickness adapts the cutting edge radius 

• A consideration of the microstructure effect on the machining process when 

cutting parameters (depth of cut, feed rate) adapt grain size or strengthening 

effects. 

• A critical threshold so-called MUCT that sets the lowest limit for feasible 

cutting operation and decides the state of cutting mechanism (shearing, 

sliding or ploughing). 

• A complex analysis of cutting force and surface roughness due to high spindle 

speeds, tool deflection/chatter and run-out  [17].  

• Different design of the microtool to ensure the rigidity and stable, high tool 

wear and tool failure possibility when miniatures tool parameters. 

• Finally, the combination of those factors makes a comprehensive explanation 

for the differences in terms of surface generation between macro-machining 

and micromachining. 

Based on that the above, those aspects will be expressed in more details in the 

following sections. However, the influences of size effects on micromachining have 

been still unobvious and need more experimental investigation to support [8]. The 
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most specific exhibition of size effect is the higher specific cutting energy in 

micromachining compared to macro-machining (Figure 3Figure 3).  

2.2.1 Microstructure effect 
 

In macro machining, when the material volume or the removal rate of the 

material for once route is relatively high, the material structure, in that case, is 

considered homogenous and isotropic.  Although, it still has a certain tolerance in this 

assumption but could be acceptable due to the high ratio between tool edge radius 

and grain size. On the other hand, when micromachining using micro-tools, the tool 

edge radius approaches the grain size, homogenous and isotropic assumptions are no 

longer valid. Work-piece material structure is now considered as an assemblage of 

distinct grains with random distribution within the material system or anisotropic 

characteristic [9, 10, 18, 19]. Therefore, in this case, the cutting mechanism takes place 

by breaking each individual grain [9, 12, 16] that requires more specific cutting 

energies or forces and mean flow stress due to atom bonds (Figure 4Figure 4).  

The effect of microstructure when micromachining has been clearly exhibited 

especially in the case of multi-phase material. Vogler et al. [20] have studied a 

mechanistic force modelling which using micro-structure mapping for the micro-end 

milling multi-phase ductile iron. It is observed that more than 35% cutting energy 

increase due to microstructural effects when micro-end-milling multiphase ductile iron 

and higher frequency of cutting forces in comparison with macro-machining. The 

cutting forces, as well as other cutting conditions, vary when the cutting tool moves 

along two adjacent grains that have different mechanical properties. A ‘two-grain 

model’  has been used to study the grain boundary influences on cutting forces [21] or 

surface generation [22]. In addition, elastic recover in micromachining is also an 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            8 

important factor of microstructure effects [18]. Furukawa and Moronuki [23] gave 

some experimental results to support for the grain boundary effect on cutting force 

variation in single-phase and multiple-phase as well as in brittle and ductile materials 

(pure copper, aluminum alloy, PMMA, CaF2, and germanium). Mian et al. [24] have 

conducted a comparative study when micro-milling single-phase material (AISI 1005 

steel) and multi-phase material (AISI 1045 steel). They claimed that the surface quality 

after micro-milling AISI 1005 was better than AISI 1045 due to the minimization of the 

differential elastic recovery in single-phase material (Figure 5Figure 5). 

Micromachining of multi-phase materials also leads to the unbalance of plastic strain 

that contributes to low surface quality and high cutting force variation [25]. The burr 

formation at the grain boundary areas also leads to higher surface roughness when 

micromachining multi-phase material. This burr formation is due to chip formation 

interrupting when tool adapts the grain boundary [26] . Nevertheless, in general, the 

chip loads is recommended to be ten times higher than the grain size to obtain high 

surface quality [23].  

Furthermore, it could be seen that a homogenous and isotropic material is 

considered the ideal condition for achieving high surface quality. This grain size effect 

has been indicated by Uhlmann et al. [27] when high machined surface, as well as 

hardness, could be positively affected by the high levels of material homogeneous 

property (Figure 6Figure 6). However, the surface roughness when micro-milling W/Cu 

80/20 was still higher than W/Cu 75/25 that had a lower level of homogeneity. Popov 

et al. [28] have indicated that a remarkable improvement of surface quality can be 

feasible through the refinement of grain size to make higher homogeneity and isotropy 

and the grain size, in the case of micro-milling aluminum alloy, have a significant 
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influence on surface roughness. In details, with the decrease of the anisotropy and 

grain size of work-piece material from 100-200μm into 0.6μm, the surface roughness 

decreased more than three times compared to non-refinement material. They also 

suggested the optimal cutting condition with narrow grain distribution associated with 

certain cutting direction could achieve the highest quality of machined surface, but 

due to the limit of certain refinement process, this was still a target for further 

research. Lauro et al. [29] in the similar adaption, indicated that with the small grain 

size (39.9μm), the variation of surface roughness will be reduced to 2% compared to 

larger grain size (51.1% when using grain size of 497μm). Similar explanation about 

heterogeneous microstructure effect of multiphase material on surface roughness has 

been given by Weule et al. [18]. Therefore, it could be seen that reduce grain size tends 

to improve the machined surface quality and its role seems to be dominant in 

micromachining. Furthermore, the microstructure effect also exhibited by changing 

cutting directions and/or crystal orientation due to the anisotropic structure of 

materials when micromachining. Komanduri et al. [30] used a MD model to study 

cutting forces variation when specifically combining crystal orientation and cutting 

directions. To et al. [31] identified the higher surface quality can be achieved when 

micro-cutting single-crystal aluminum along (100) plane than (110) and (111) planes 

but Zhou and Ngoi [32] have claimed that the dominant factor was not cutting 

direction but the plastic behavior of single crystal. However, Moriwaki [19] neglected 

the effect of crystallographic orientation when micromachining polycrystalline copper. 

They claimed that surface quality degradation is caused by the formation of the 

amorphous damaged layer due to ploughing effect when the uncut chip thickness is at 

0.1 μm. In general, the microstructure effects on the micro-machinability are indicated 
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by the inhomogeneity (grain size effect), anisotropic (different cutting directions) and 

structure (different phases) that lead to the variation of surface roughness, cutting 

forces and burr formations. 

2.2.2 Minimum uncut chip thickness (MUCT) and cutting edge radius 
 

The chip removal mechanism is among the principal differences between micro 

and conventional machining due to size effects. The contact between the cutting tool 

clearance face and work-piece surface is usually ignored and the tool edge is 

considered sharp in the case of macro-machining. It could be explained by the high 

ratio of the MUCT to cutting edge radius. When down-scaling into the micro-cutting 

mechanism, they become comparable to the tool edge radius and hence change the 

chip formation mechanism. 

In micromachining, the MUCT could range from submicron to a few microns 

and the depth of cut and feed-rate varies from a few microns to maybe 100μm, hence 

the cutting edge radius and the grain size become comparable [33]. In that case, tool 

edge radius becomes a dominant factor as well as feed-rate that affect the surface 

roughness. Moreover, the surface roughness tends to increase with the feed-rate 

decrease excesses a lower minimum chip thickness  [26] .  (Figure 7Figure 7). That 

means MUCT has an inverse effect on surface roughness in case of micro-machining. 

A decrease of UCT into below the magnitude of edge radius (10-60 nm) leads to a 

significant increase of surface roughness for various levels of cutting speeds (10 and 

150 m/min) [34]. In micromachining, shear stress increases around the cutting edge 

instead of along the shear plane [6, 9], and the work-piece is ploughed or elastically 

deformed rather than being sheared/cut [35, 36] when cutting depth and feed-rate 

below a threshold so-called ‘minimum uncut chip thickness’. It was defined as a lower 
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limit of minimum under form chip thickness that can be feasible to be removed [37] 

(Figure 8Figure 8). 

Another explanation for the negative effects of UCT on surface roughness is 

related to plastic deformation of materials during the machining process. It is observed 

that the surface quality is reduced when decreasing the ratio of UCT and edge radius 

is due to two reasons: first is the plastic accumulation of work-piece material on the 

tool surface [38] and the second reason is adhesive work-piece material on the 

machined surface [39] caused by material strengthening. Furthermore, the shear angle 

decreases along with the MUCT leading to deformation areas expanded and hence 

increasing the mean friction that negatively affects the surface quality. 

Furthermore, elastic deformation of materials in micromachining is also 

negatively affected the surface quality. When the cutting depth adapts to the tool edge 

radius magnitude, the effective rake angle of micro-cutting tool transforms from 

positive to zero or even negative. This transformation makes the cutting more stable 

but also leads to some negative effects, such as more elastic deformation due to shear 

zone expanding, higher stress, strain, cutting forces, and energy consumption. It also 

leads to a high ratio of ploughing/shearing in the cutting mechanism, making the 

cutting mechanism becomes less efficient (Figure 9Figure 9). Therefore, the 

identification of MUCT in micromachining is significantly important to attain an 

optimal machining process. L’vov [40] considered the influence of MUCT as a function 

of the tool edge radius and recommended that the depth of cut should be above 29.3% 

of the tool edge radius to avoid ploughing and elastic deformation when micro-cutting 

SAE 1045 steel. Other researchers identified the minimum chip thickness by studying 

the cutting mechanism along with various feed rate levels in micro-milling 360 brass, 
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and the minimum chip thickness is approximately 30% of the tool edge radius [41]. Liu 

et al. [42] provided experimental results when identifying the ratios of chip 

thickness/tool edge radius λn (normalized minimum chip thickness) of 0.35-0.4 for 

micro-end-milling Al 6082-T6 and 0.2-0.3 for micro-end-milling AISI 1018 steel over a 

range of cutting velocity (84,000 to 150,000 rpm) and feed-rate (0.5 to 4 µm/flute). 

In general, the size effects exhibited by the ratio of MUCT/cutting edge radius 

in the range of about 0.05 to 0.4 depending on materials and cutting parameters that 

have been supported by experimental, theoretical, and modelling results that were 

published in many studies when micromachining metals and alloys (Table 1Table 1). 

2.3 Micro-milling of nanocomposites 
 

Micromachining nanocomposites are significantly different from the process 

with metals, alloys. The low machinability due to their advanced mechanical 

properties and the extensive cutting conditions (extreme small MUCT and high cutting 

speed) are the main challenges when micromachining nanocomposites. In addition, 

the effects of heterogeneity, anisotropic of materials, volume fraction and distribution 

of nano-fillers make the cutting mechanism even more complicated. For example, 

Deng et al. [43] indicated that interface failure could contribute around 35% to cutting 

forces increase when micro-milling Al/45 vol.% SiC composites besides the shearing - 

ploughing factor. This part of the paper will be focused on the cutting mechanism when 

micromachining nanocomposites in terms of cutting forces, surface generation, chip 

morphology and tool wear. As mentioned, micromachining has been focused 

extensively on metals and their alloys while machining of nanocomposites, on the 

other hand, is still limited [44, 45]. The following sections will discuss in details the 

most common objectives of current researches related to micromachining of different 
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types of nanocomposites as well as their limitations. 

2.3.1 Micro-milling of CNT-based nanocomposites 
 

PMNCs are widely applied in micromachining due to their huge potential 

applications in industry. The mechanical, thermal and electrical properties of polymers 

are significantly improved when reinforcing with CNT that lead to the requirement of 

machinability investigation when micromachining these materials. In addition, the 

mechanical properties of CNT reinforced polymer nanocomposites (CNT/PMNCs) for 

instance: tensile strength, Young’s modulus or hardness are considered feasible for 

mechanical micromachining applications hence make this study area more adaptable. 

Cutting force, surface roughness, chip formation, and tool wear are the most common 

objectives that take the effects of nanomaterial properties and cutting parameters into 

account. 

Kumar et al. [46] have investigated the machinability when micro-milling 

PC/GNP/MWCNT nanocomposites in terms of cutting force, dimensional accuracy, 

chip morphology and surface roughness. Cutting forces were higher when micro-

milling PC/GNP/MWCNT than plain PC (~ 22% at 4 µm/tooth feed rate) that suggesting 

the dominant of strengthening effects due to higher mechanical properties and the 

decrease of thermal softening effect due to the thermal conductivity improvement 

when reinforcing PC with MWCNT (and GNP). 

The thermo-mechanical properties also lead to higher dimensional accuracy 

and surface quality (~197% at a feed rate of 3 µm/tooth) (Figure 10Figure 10) when 

micro-milling PC/GNP/MWCNT, especially at high feed rate where the effect of 

softening is minimized. These explanations were validated by the consideration of chip 

morphology with discontinuous forms when micro-milling PC/GNP/MWCNT that 
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reconfirmed the role of CNT in chip breakage. However, the effects of size effects, filler 

loading and cutting speed on the micro-machinability have not been addressed. 

The chip formation due to the presence of CNT has also been investigated by 

Samuel et al. [45] with different forms and explanations. Instead of being broken, the 

chip formation tends to be continuous and curly when micro-milling PC/CNT 

nanocomposites for the entire range of feed rates. It is possibly due to the good rake 

face lubrication [47] that could attain from reducing the friction coefficient of CNT 

along the rake face in comparison with plain PC [48]. In addition, the presence of 

adiabatic shear bands on plain PC chip surfaces as well as their absence in case of 

PC/CNT indicated the effect of thermal conductivity of materials on chip morphology 

(Figure 11Figure 11). 

Heat concentration at the cutting interface due to poor thermal properties also 

led to built-up-edge (BUE) formation on tool face, resulting in a poor surface finish in 

case of micro-milling plain PC as compared to PC/MWCNT nanocomposite (Figure 

12Figure 12). In addition, the infestation of CNT and polymer smearing on the 

machined surface also contributed to its high surface quality. The cutting forces when 

micromachining PC/CNT nanocomposites were also lower in this case due to the 

reduction of shear strength for failure than plain PC or the low-quality bonding of PC-

CNT [49], especially when high feed rates (shearing-dominated regime) were applied 

(Figure 13Figure 13). The lower friction coefficient of PC/CNT might also play a key role 

in cutting forces reduction [50] that has not been addressed by the authors. Mahmoodi 

et al. [51] also confirmed the important roles of thermal-mechanical properties and 

microstructure effects on cutting force variations. However, the experimental results 

showed higher cutting forces when micro-milling PC/MWCNT nanocomposite than 
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plain PC only when the feed rate (2 µm) was lower than edge radius (~ 3µm) as a result 

of ploughing dominance in cutting mechanism due to MUCT effects. Therefore, it could 

be seen that the strengthening effects seem to be dominant on cutting forces when 

size effects are taken into account. The effect of CNT orientation has been also 

investigated with the significant increase when micro-milling in the inflow direction as 

compared to the cross-flow direction (Figure 14Figure 14). It was explained based on 

strengthening-dominated effects due to higher thermos-mechanical properties of 

inflow nanocomposite. In addition, the surface quality of PC/MWCNT specimens after 

micro-milling seemed to be better than a plain PC. However, no experimental results 

or explanation related to surface roughness was given. 

Stress concentration and crack formation ahead the tooltip due to CNT 

agglomeration were indicated the main reasons for cutting force reduction of cross-

flow machining. The study has neglected the effects of filler content, cutting speed on 

the machinability when micromachining of nanocomposites as well as the 

investigation of chip formation that is necessary to support for the discussion. The 

influences of cutting speed on surface roughness when micromachining 

HDPE/MWCNT nanocomposites have been experimentally claimed less significant 

than feed rate [52] due to the obvious feed marks on the specimen surfaces but no 

detailed discussion was expressed. This has been reconfirmed by Zinati and Razfar [53] 

in an investigation on surface roughness with variations of cutting speed, feed rate and 

MWCNT content. The ANOVA analysis has also exhibited the least effect of filler 

loading on surface roughness generation. However, surface roughness variation, in this 

case, was only explained by tool-workpiece interaction when changing feed rates and 

cutting speeds without concerning about the thermo-mechanical properties of 
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PA6/MWCNT nanocomposites. 

The effect of filler loading on the micro-machinability of polymer/CNT 

nanocomposites has been only investigated by Samuel et al. [44]. The study 

highlighted the basic role of CNT addition in different chip formations as well as a 

cutting mechanism when micro-milling PC/CNT nanocomposite and plain PC. 

Reinforcing CNT changed the stress-strain behavior of PC based materials, exhibiting 

by the reduction in strain-to-failure that indicated a ductile-to-brittle transition when 

the CNT loading reached to 5 wt.%. When micro-milling at low feed rates were applied, 

the chips were still continuously formed even in extremely low feed rate (0.3 

µm/tooth) with high-content CNT nanocomposites (5 wt.%, 15 wt.%). The plain PC or 

PC/5 wt.% CNT, on the other hand, showed discontinuous chip formation. Therefore, 

it could be seen that the addition of CNT reduced the MUCTs of the PC/CNT 

nanocomposites that also indicated the size effects in micromachining. The 

improvement of machined surface quality associated with burr width reduction due to 

the addition of CNTs that leads to thermal conductivity improvement has been 

observed (especially at a high cutting speed of 130 m/min) with similar explanations 

as to their previous study [45] (Figure 15Figure 15). 

However, CNT content did not show considerable influence on cutting force in 

this case. Its effect became less dominant with the increase of cutting speed that 

indicated high sensitivity of strain rate (cutting speed) regarding cutting force variation 

instead (Figure 16Figure 16). Cutting force exhibited significant reduction when 

increasing cutting speed regardless of the filler content, but the reasons for those 

changes were different between PC, PC/1.75% MWCNT and PC/5%MWCNT, 

PC/15%MWCNT.  
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While the advancement of cutting speed leads to the thermal softening-

dominated regime of micromachining PC and the low-loading CNT, it is likely due to 

the interface failure or crack propagation from low interfacial bonding of CNT-PC when 

dealing with a higher content of CNT. The influence of heat transferring improvement 

due to the addition of CNT on cutting force when micromachining CNT reinforced 

polymer nanocomposites has been also investigated by Mahmoodi et al. [51]. Cutting 

force was considered as a function of cutting and edge coefficients in this case. The 

two main factors that were considered affecting these coefficients included: CNT 

content and CNT orientation. The radial and tangential have been considered as two 

components of cutting force (Figure 17Figure 17). 

Optimization of instantaneous force method has been applied to identify the 

cutting force coefficient. Based on that, it could be seen that when micro-milling at 

feed rates below MUCT, cutting forces were much higher than that of higher feed rates 

due to the much higher values of ploughing coefficients than cutting coefficients. 

However, the experimental results from this study did not exhibit the same trend as 

expected with low cutting forces at a low feed rate (ploughing-dominated regime at 

feed rates below 2 µm). The influence of CNT orientation on cutting force has also been 

exhibited with slight reductions of cutting coefficients when changing from in-flow to 

cross-flow cutting that indicated lower values of cutting forces. However, there was 

also no experimental result to validate this propose. In general, the effect of CNT 

addition on micro-machinability in terms of improving thermo-mechanical properties 

of CNT based polymer nanocomposites has been seen as the most important factor. 

Associated with MUCT and microstructure effects, CNT addition influences the cutting 

mechanism and chip formation, hence affecting cutting force, surface roughness and 
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dimensional accuracy. However, recent studies have still exhibited different results 

(outputs) and the dominances of various input factors with distinct explanations (Table 

2Table 2) that reconfirmed the high complexity when micromachining 

nanocomposites. In addition, most of those researches have been only focused on the 

effect of feed rate while the roles of CNT type, filler content, fiber orientation and a 

cutting tool were almost neglected. In terms of machinability, no study has addressed 

about tool wear that is a highly important criterion, especially in micromachining 

nanocomposites.  

2.3.2 Micro-milling of graphene-based nanocomposites 
 

Although graphene has high potential in terms of reinforcing various matrix 

materials such as polymers, metals or ceramics, it has been seen that few studies have 

investigated these graphene-based nanocomposites recently. One of the early studies 

about micro-machinability of graphene-based nanocomposite has employed 

graphene platelets (GPL) as the secondary filler [49]. The main objective of this study 

is to consider the differences in micromachining responses between two-phase-

composite (epoxy/GF) and three-phase composite (epoxy/GF/GPL). The addition of 

GPL has remarkably revealed a better micro-machinability of hierarchical composite in 

terms of lower cutting forces, surface roughness and tool wear than the baseline 

composite. It was explained by the improvement of thermal conductivity of epoxy 

when adding GPL and also the reduction of friction along with the tool-chip interface 

that reducing BUE of polymer and tool wear subsequently. This explanation is similar 

to that of the micromachining polymer/CNT nanocomposites that have been 

aforementioned. Moreover, the influences of GPL on reducing surface roughness have 

been also analyzed by considering the concept of effective fiber length (Figure 
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18Figure 18). It was explained by the enhancement of interfacial strength of GPL- 

epoxy, making a longer effective fiber length and subsequent shearing-dominated 

cutting regime. In the case of baseline composite (epoxy/glass), glass fiber tended to 

bend and extrude on chips and machined surfaces indicating the lower effective fiber 

length, subsequent bending-dominated regime. The effects cutting speed on 

machined surface roughness have also been concerned with preferable high cutting 

speed for both materials to attain low cutting forces and surface roughness but no 

explanation has been given. The effect of feed rate on the micro-machinability, 

however, has been not concerned (Figure 19Figure 19). The reduction of cutting force 

due to the effect of strain rate (cutting velocity) and MUCT because of GPL addition 

has been also investigated by Arora et al. [54] with similar discussion to the case of 

micro-milling PC/MWCNT [45]. The alternation of thermal softening and strain 

hardening due to ductile-to-brittle transition associating with minimum chip thickness 

effects have been applied to explain the cutting force variations when increasing 

cutting speed. However, a different trend in terms of cutting force variation could be 

seen between the two studies. From Figure 20figure 20, it was observed that there 

were some fluctuations of cutting force when micro-milling epoxy and epoxy/GPL (0.1 

wt.%) at low cutting speeds (7.5 – 17.5 mm/min) while they constantly decreased in 

case of PC/MWCNT. This difference comes from the different natures between epoxy 

(thermoset) and PC (thermoplastic) and the applied range of cutting speeds. In such 

low cutting speed, the thermal softening mechanism has not still taken effect on 

reducing cutting forces yet, especially with thermoset polymers (epoxy) that have 

higher heat resistance than thermoplastics (PC). Therefore, the ploughing cutting 

mechanism is now dominated at low feed rate (3 µm) instead that contributed to 
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cutting force increase. The lack of rising portion in case of epoxy/GPL (0.2 wt.%) might 

be due to the reduction of minimum chip thickness leading to the dominance of 

ploughing at lower cutting speeds (<7.5 mm/min). The highest cutting forces at 0.2 

wt.% GPL were also due to the highest improvement in the mechanical properties of 

the nanocomposite. Tool wear has also been investigated in this study with the 

optimum when micro-milling at 0.2 wt.% of GPL due to the lubricant nature of GPL and 

its role in reducing the elastic recovery of the matrix phase. At higher loading of GPL, 

their agglomerations were considered to accelerate the tool wear [55]. 

However, the effect of graphene addition on dimensional accuracy when 

micromachining polymer-based nanocomposites have not been considered 

sufficiently. Among relevant studies, only Kumar et al. [46] discussed the improvement 

of dimensional accuracy when micro-milling PC/MWCNT in comparison with the plain 

matrix. The effect of thermo-mechanical properties is again the main reason for this 

phenomenon that leading to the strengthening-dominated mechanism when cutting 

CNT-based polymer nanocomposite instead of the thermal softening regime in that of 

its plain counterpart. In addition, an elevation of cutting force has been observed in 

this case that was different from the aforementioned studies. While adding graphene 

[49] or CNTs [45] have in polymer matrix have been indicated the main factor for 

cutting forces reduction due to two reasons: reduce friction coefficient in tool-chip 

interaction that lead to superior rake face lubrication and low interfacial failure 

strength between polymers and nano-fillers, this study, however, differently claimed a 

high specific surface area of GPL increasing tool-GPL interaction associated with its 

rough/wrinkled morphology enhancing mechanical interlock within PC matrix were 

two reasons that leading to cutting forces rise. 
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The strain-hardening-dominated effect when adding GPL into a polymer matrix 

that leads to high cutting force has also been confirmed by Arora et al. [54] at 0.2 wt.% 

GPL. Highest cutting forces confirm the most effective reinforcement of mechanical 

properties at a certain threshold of graphene content that if exceed this limit, the 

influence of filler agglomeration will accelerate crack propagation or reduce shear 

strength to failure of polymer-graphene bonding [56]. These different trends of cutting 

force variation in a consideration of graphene loading can be seen in Figure 21Figure 

21. Similar to micromachining-polymer/CNT studies, the most common objectives of 

that in polymer/graphene are also about cutting force, surface roughness and chip 

formation. 

 
On the other hand, tool wear has been received more attention in case of 

micromachining polymer/graphene nanocomposites [49, 54, 56] that indicated its 
importance as a machinability indicator. By discussing aforementioned studies, it could 
be seen that effects of graphene addition associated with cutting speed and feed rate 
have been considered changing the thermos-mechanical properties of the based 
polymer matrix, hence affecting the cutting mechanism, chip formation and 
subsequent cutting force, surface roughness and tool wear. However, the effect of 
material and geometry of micro-tool has not been investigated ( 

Table 3Table 3). 

 Other gaps related to micromachining of graphene-based nanocomposites 

proposing through the discussion of relevant studies are the lack of attention in 

micromachining metal matrix and ceramic matrix-based material. Only Gao and Jia 

[57] has proposed simulated results in terms of the standardized effects of various 

inputs (depth of cut, cutting speed, tool rake angle, edge radius, graphene content and 
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size) on cutting force only without sufficient explanations (Figure 22Figure 22). 

2.3.3 Micromachining of nano-ceramic based nanocomposites 
 

When polymer-based matrix nanocomposites have mostly been applied in 

micromachining that employing CNTs and graphene as nano-fillers, metallic materials, 

on the other hand, are the most common matrices that have received more attention 

in terms of their micro-machinability when reinforcing with nano-ceramic particles. It 

comes from the requirement to fabricate high-toughness, corrosion than their metallic 

counterparts. One of the early studies that have investigated the micro-machinability 

of metal/ceramic nanocomposites was published by  [58] with the considerations of 

cutting force variations as a function of filler loading, feed rate and cutting speed while 

micro-milling Mg/SiC nanocomposites. Interestingly, the size effect has been applied 

to explain the non-linear correlation between specific cutting forces and feed rates 

with larger ploughing zone in case of micromachining Mg/SiC nanocomposite (Figure 

23Figure 23). It is totally different from the case of micromachining polymer-based 

nanocomposites. The main reason is the predominance of thermal softening due to 

the reduction of thermal conductivity when micro-milling Mg/SiC at low feed rates. In 

addition, its high specific cutting energies in ploughing zone and high cutting forces 

also indicated the influences of strengthening and microstructure effects when 

micromachining inhomogeneous materials. Those influences also exhibited on the 

complex profiles of cutting force variations when micromachining Mg/SiC 

nanocomposite. The effect of filler content has been significantly affected cutting 

forces at 5-10 vol % of SiC due to its highest efficiency of reinforcement at this certain 

level [59] (Figure 24Figure 24) that was similar to some experimental results in case of 

micromachining of polymer/CNT [44] and polymer/GNP [54, 56]. The complex cutting 
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mechanisms in micro-range parameters due to other factors such as tool deflection or 

microstructure effect neglected the role of feed rate on surface roughness as well as 

leading unobvious correlations between filler content-cutting speed and surface 

roughness.  

With micromachining of metal/ceramic nanocomposites, tool wear has been 

received more attention than that of CNT and graphene-based polymer 

nanocomposite. It is possibly due to the high improvement of corrosion resistance and 

mechanical properties of those nanocomposites due to the presence of nano-ceramic 

particles. Teng et al. [60], in a comparative study of micro-machinability between 

Mg/TiB2 and Mg/Ti, have claimed the effect of nano-filler additions on tool wear as 

well as cutting force and surface quality. The roles of thermo-mechanical properties 

due to the presence of nano-fillers in micro-machinability of particle reinforced metal-

based nanocomposites seem to be similar to polymer/CNT and polymer/graphene 

nanocomposites. It exhibited by the higher tool wear rate when micro-milling Mg/TiB2 

with tool coating peeling in comparison with that of Mg/Ti. Due to size effect, the 

associated effects of depth of cut (DoC) and feed rate on cutting force increase were 

only available in the shearing region. On the other hand, thermal softening-dominated 

effect when increasing cutting speed and DoC has been claimed the main reason for 

surface roughness variations. In addition, the high ductility of Mg/Ti led to more chip 

adherence on tool surface that increasing cutting forces and subsequent surface 

roughness. However, no explanation related to thermal softening or strain hardening 

effects was given as compared to [59] (Figure 25Figure 25). However, Xiong et al. [61] 

have claimed that feed rate had the most dominant effects on cutting force when 

micro-milling Al/TiB2 instead of filler content or cutting speed due to their influences 
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on increasing shear angle and decreasing friction angle while Pramanik et al. [62] 

confirmed that the increase of material removal rate (MRR) at high feed rates 

contributed to cutting force escalation.  

 From the mentions of relevant studies above, it could be seen that the 

application of micromachining or the investigation of micro-machinability of 

nanocomposites mostly focused on three main materials: CNTs or graphene reinforced 

polymer matrix and nano-ceramic-particles reinforced MMNCs. While micromachining 

the first two materials have similar features due to the similarities between CNTs and 

graphene properties, the last one exhibited different trends of micro-machinability, 

especially chip formation and cutting force. A summary of relevant studies of 

micromachining of nano- ceramic-particles MMNCs is given in Table 4table 4. In 

addition, while chip formation has been extensively concerned in case of 

micromachining polymer-based nanocomposites, cutting force variation, on the other 

hand, was the main objective of micromachining metal matrix based nanocomposites. 

Those aforementioned differences are possibly due to the different natures between 

polymer and metal matrices as well as the distinct reinforcement nature of nano-

ceramic particles as compared to CNTs or graphene (geometry, thermos-mechanical 

properties). For instance, it made the role of thermal conductivity in case of 

micromachining metal matrix less dominant than polymer matrix while the role of 

strengthening mechanism become more significant. It is also necessary to be 

mentioned that mechanical micromachining on ceramic-based nanocomposites have 

not been applied recently although there was one study has mentioned about 

micromachining SiO2/GNPs nanocomposite using EDM [63]. It possibly due to 

advanced mechanical properties of ceramic-based nanocomposites that lead to 
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extreme low micro-machinability (high tool wear, cutting force or low surface quality) 

or severity cutting operations.  

Based on the discussion of relevant studies, it could be seen that 

micromachining of nanocomposites is a complicated process with the associations of 

many factors such as microstructure effects, MUCT, cutting edge radius or the thermo-

mechanical properties of nanocomposites (Figure 26Figure 26).  

In general, the influences of nano-fillers on micro-machinability of 

nanocomposites have been confirmed while feed rate, cutting speed, depth of cut 

have exhibited some different effects on machinability of nanocomposites from 

conventional machining in some specific cases due to size effect. However, the number 

of studies in terms of micromachining nanocomposites have been limited, mostly 

focus on CNTs or graphene reinforced polymer matrix or nano-ceramic particles 

reinforced MMNCs. It leads to a lack of sufficient information to analyze the micro-

machinability variations of these materials. 

2.4 Other processes for micromachining nanocomposites  
 

Unlike micro-milling, the investigations of micro-manufacturing of 

nanocomposites using other techniques have been less extensive. There were few 

studies discussed micromachining of nanocomposites that employing micro-drilling, 

micro-EDM and laser micromachining. The exiting literature provided insufficient 

details to have a comprehensive evaluation of these techniques when machining of 

nanocomposites. For example, micro-drilling of composites has only concerned about 

drilling delamination and thermal damage in polymer nanocomposites.  Li et al. [64] 

claimed that the inter-laminar fracture toughness of microwave cured 

MWCNT/CF/Epoxy was higher than that of the tradition cured CF/Epoxy composites. It 
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also led to a reduction of delamination factor (16%). Regarding the thermal damage 

during the micro-drilling process, the experimental results showed a maximum 

temperature of 23oC which was lower than that of the traditional composites and 

below the glass transition temperature of the epoxy matrix. It led to the minimization 

of thermal damage during machining process due to the addition of MWCNT. A similar 

improvement of laminar stiffness and reduction of delamination factor could be found 

in [65] when micro-drilling carbon nano-fiber reinforced with CFRP nanocomposites 

compared to its conventional composites (without CNF). In addition, Bello et al. [66] 

also investigated the exposures of nano-fibers during micro-drilling CNT-hybrid 

nanocomposites using multiple real-time instruments to characterize. In general, most 

of the aforementioned relevant studies only engaged in micro-drilling of hybrid 

nanocomposites in which the additional of nano-fillers were considered as hierarchical 

reinforcement to support for the reduction of delamination of conventional CFRPs. 

For laser micromachining, the most common objective was material ablation 

as a function of laser fluency. Lu et al. [67] conducted some experiments using laser 

micromachining to fabricate micro-holes (diameter of 40 µm) from HPDE/CNF 

nanocomposite. They claimed that the addition of CNFs significantly enhanced the 

polymer decomposition, hence improving the ablation process. The additional of CNT 

also led to grain size refinement, thermal conductivity enhancement and reduction of 

light transmittance of ceramic-based nanocomposites. Therefore, the ablation depth 

and machined surface integrity were significantly improved. Das et al. [68] also showed 

that laser micromachining of epoxy/BaTiO3 nanocomposites could generate suitable 

surfaces from multifunctional capacitor applications when a frequency-tripled Nd: Y 

AG laser operating at 355 nm wavelength. The available literature on relevant studies 
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of micromachining of nanocomposites using micro-drilling, laser micromachining and 

micro-EDM are given in Table 5table 5. 

 
3. MODELLING OF MICROMACHINING OF NANOCOMPOSITES 
 

There are various models available to analyze the machinability of 

nanocomposites using micromachining. Those models include analytical [69, 70], 

mechanistic models [20], finite element models [71] and MD models [72, 73]. The 

analytical models simulate the machining responses based on analytical solutions of 

mathematical modelling [70, 74] however their results are not really accurate. The 

mechanistic models provide the machine responses by investigated material [75, 76], 

however, require validations from experiments that more complex with various 

content of nano-fillers. MD simulations are applied in micromachining [77, 78] 

however due to limitations of time/length-scale, computational effort, and complex 

formulas, they seem to be unsuitable for a high number of atom models [79]. On the 

other hand, finite element (FE) is one of the most common methods that has been 

applied in micromachining [80, 81]. The different materials of both tool and work-piece 

are capable to be assigned. Furthermore, this method is also suitable for multi-phase 

material (e.g. nanocomposites) in predicting cutting forces, stress, strain, temperature 

distribution, chip formation and tool wear.  

A microstructure-level model to simulate the micromachining process of 

polycarbonate reinforced with CNT has been applied by DeVor and Kapoor [82] 

appeared to accurately predict cutting forces (error 8%), thrust force (error 13.4%) and 

chip thickness ( error 10%). In general, the material structure was separated into main 

phases: matrix (PC) and reinforcing (CNT) phase. Based on the TEM images of the 
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nanocomposites, the CNT distribution within the matrix would be characterized for 

length, curvature, slope, and orientation [83]. Similarly, the failure modes were also 

separately identified for two phases. Plastic stretch was applied as the ductile failure 

and hydrostatic tension was employed for brittle failure [84-87] in the matrix phase 

while a simple strain-to-fracture was used for CNT failure. 

The results of chip formations, subsurface damage of the simulation can be 

seen in Figure 27figure 27. Based on that, Jiang et al. [88] have developed a new 

microstructure–level model in micromachining polymer reinforced CNT 

nanocomposite. The principal difference was that they indicated the failure 

mechanism of the micromachining process was primarily affected by the CNT- polymer 

interface. This idea was supported by subsequent numerical and experimental results 

from [89, 90]. Therefore, this polymer-CNT interface should be modelled as a third 

phase in nanocomposite structure related to the load transfer from matrix to 

reinforcing phase [83, 91]. They also showed that the characterization of the interface 

properties was based on two main parameters: strength and fracture energy. Some 

nano-indentation tests have been conducted to identify these values. Figure 28Figure 

28 shows the simulation results of this model. Other similar adaption in terms of 

simulation of micromachining polymer reinforced CNT has been conducted by Kumar 

et al. [46] in an attempt to investigate the heterogeneity of polymer-based 

nanocomposite with the addition of graphene. The PC matrix properties were 

characterized by Johnson-Cook (JC) constitutive material model [92] with the 

consideration of flow stress at high temperature and high strain rates. 

 The value of JC coefficients was provided by Dwivedi et al. [93]. The failure 

mode of the PC matrix was ductile damage for material separation and chip formation. 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            29 

The filler (GNP) was considered isotropic [94]. The mechanical characterization was 

identified from the experimental validation of Tiejun et al. [95]. From the simulation, 

the chip formation and cutting forces seemed to be similar to the experimental results. 

Discontinuous chip due to the presence of GNP seemed to appear in the PC-GNP 

interface that was supposed to be the weakest location. In addition, the strengthening 

effect due to the addition of GNP led to higher cutting force when micro-milling 

PC/GNP nanocomposites. Although there were some differences between simulated 

and experimental results due to various filler distributions, the model was indicated to 

be able to simulate the chip morphology and the trend of cutting forces accurately 

(Figure 29Figure 29). Teng et al. [71] have developed other FE model that employed 

the same filler (nano Sic particles) of 1.5 vol% when considering the effect of uncut 

chip thickness and cutting edge radius on cutting force and chip morphology. It was 

concluded that the cutting forces in simulation increased along with the uncut chip 

thickness. However, the percentage error seemed to be higher at low uncut chip 

thickness and only improved when its value exceeded 0.1 µm. The lower values of 

simulated results in terms of cutting force were due to the assumptions such as sharp 

cutting edge, rigid cutting tool and without tool wear consideration. Similarly, the chip 

formation was also different while changing the uncut chip thickness. When the uncut 

chip thickness was from 0.1 to 0.2 µm, the chip formation could not take place due to 

ploughing with elastic deformation. Exceed that limit, the chip was formed irregularly 

that could be seen as the minimum chip thickness at about 0.5 µm (0.5R) (Figure 

30Figure 30). In their later work [96], two FE models were established to comparing 

the machinability between micro-particles and nano-particles reinforced MMCs in 

terms of stress/strain distribution within work-piece, chip formation, surface 
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generation and tool wear. It was found that the particles reinforced within matrix act 

as a barrier restricting the stress propagation during the machining process (Figure 

31Figure 31). The nano-particles were found to be intact during the machining process 

which is different from the micro-sized reinforced counterpart. It was explained by the 

better mobility of nano-particles caused by the significantly reduced particle size which 

bear evenly distributed stress and less kinetic energy. 

4. CONCLUSIONS 

 
Based on the relevant studies that have been aforementioned, it has been 

observed that although most nanocomposites fabrication and characterization have 

been conducted and discussed in part 1, their applications and machinability 

investigations in micromachining have still been limited, predominantly to the polymer 

matrix and metal matrix and nanocomposites reinforced by CNTs, graphene or ceramic 

nano-particle reinforced. It is possibly due to some main reasons including their 

micromachining applications, material integrity/defect, micromachining feasibility 

(tool wear, vibration, etc.) and most importantly, the high complexity of 

micromachining nanocomposites. 

 Micromachining nanocomposite materials are more challenging compared to 

conventional machining process and bulk materials (e.g. metals, alloys and 

composites). The associations of many factors prominently effect of microstructure 

(homogeneity, anisotropic, grain size), improvements of thermo-mechanical 

properties (filler distribution, loading) of nanocomposites and size effects of 

micromachining complicate the manufacturing process as well as significantly 

decrease the machinability of these materials.  In the case of fiber reinforcement, the 
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distribution of nano-fiber (e.g. CNT) and fiber/cutting orientation were also important 

factors in micromachining. Subsequently, the intricate micromachining process leads 

to unobvious relations between variable inputs such as feed rate, cutting speed and 

corresponding outputs (e.g. cutting force, surface roughness, chip formation) with 

different explanations. In some cases, the cutting parameters showed the inverse 

influences on the machinability compared to other conventional machining processes. 

Most studies have been concerned about the effects of filler content, feed rate and 

cutting speed on chip formation, cutting force and surface roughness. However, the 

effects of micro-cutting tool (material, geometry) and tool wear on micro-

machinability of nanocomposites have been less investigated. In addition, the analysis 

of size effect when micromachining nanocomposites have been still under-researched 

although it has been addressed extensively when micromachining metals and alloys. 

Nevertheless, through the discussion of both mechanical properties and 

mechanical micromachining of nanocomposites, a general view about their micro-

machinability has been given. It would be the basic knowledge for further studies in 

this area in future. However, the gap of knowledge has also led to the requirement for 

more efforts for collecting quantitative data and sufficient information on this area.  

The future research trends may suggest that micromachining of ceramic matrix 

nanocomposites should be addressed. Moreover, despite micromachining of 

nanocomposites has huge potentials to apply in industry, the state of the art in this 

field has shown very limited applications and most of them were in the prototyping 

stage. Therefore, the future researches could also focus on commercial applications of 

micromachining of nanocomposites.  

 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            32 

 

 

REFERENCES 

[1] N. Taniguchi, "Current status in, and future trends of, ultraprecision machining and ultrafine 
materials processing," CIRP Annals-Manufacturing Technology, vol. 32, pp. 573-582, 1983. 

[2] G. Byrne, D. Dornfeld, and B. Denkena, "Advancing cutting technology," CIRP Annals-
Manufacturing Technology, vol. 52, pp. 483-507, 2003. 

[3] M. P. Groover, D. Belson, A. Kusiak, J. M. Sánchez, J. W. Priest, L. J. Burnell, et al., "Handbook of 
design, manufacturing and automation," 1994. 

[4] A. Simoneau, E. Ng, and M. Elbestawi, "Chip formation during microscale cutting of a medium 
carbon steel," International Journal of Machine Tools and Manufacture, vol. 46, pp. 467-481, 
2006. 

[5] T. Masuzawa and H. Tönshoff, "Three-dimensional micromachining by machine tools," CIRP 
Annals-Manufacturing Technology, vol. 46, pp. 621-628, 1997. 

[6] J. Chae, S. Park, and T. Freiheit, "Investigation of micro-cutting operations," International 
Journal of Machine Tools and Manufacture, vol. 46, pp. 313-332, 2006. 

[7] D. Huo, Micro-cutting: fundamentals and applications: John Wiley & Sons, 2013. 
[8] A. Mian, N. Driver, and P. Mativenga, "Identification of factors that dominate size effect in 

micro-machining," International Journal of Machine Tools and Manufacture, vol. 51, pp. 383-
394, 2011. 

[9] X. Sun and K. Cheng, "Micro-/Nano-Machining through Mechanical Cutting," 
Micromanufacturing Engineering and Technology, pp. 24-38, 2010. 

[10] D. Dornfeld, S. Min, and Y. Takeuchi, "Recent advances in mechanical micromachining," CIRP 
Annals-Manufacturing Technology, vol. 55, pp. 745-768, 2006. 

[11] M. C. Shaw, "The size effect in metal cutting," Sadhana, vol. 28, pp. 875-896, 2003. 
[12] M. Câmara, J. C. Rubio, A. Abrão, and J. Davim, "State of the art on micromilling of materials, a 

review," Journal of Materials Science & Technology, vol. 28, pp. 673-685, 2012. 
[13] F. Vollertsen, "Categories of size effects," Production Engineering, vol. 2, p. 377, 2008. 
[14] I. Kang, J. Kim, and Y. Seo, "Investigation of cutting force behaviour considering the effect of 

cutting edge radius in the micro-scale milling of AISI 1045 steel," Proceedings of the Institution 
of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 225, pp. 163-171, 
2011. 

[15] F. B. de Oliveira, A. R. Rodrigues, R. T. Coelho, and A. F. de Souza, "Size effect and minimum chip 
thickness in micromilling," International Journal of Machine Tools and Manufacture, vol. 89, 
pp. 39-54, 2015. 

[16] A. Aramcharoen and P. Mativenga, "Size effect and tool geometry in micromilling of tool steel," 
Precision Engineering, vol. 33, pp. 402-407, 2009. 

[17] X. Lu, Z. Jia, S. Liu, K. Yang, Y. Feng, and S. Y. Liang, "Chatter Stability of Micro-Milling by 
Considering the Centrifugal Force and Gyroscopic Effect of the Spindle," Journal of 
Manufacturing Science and Engineering, vol. 141, 2019. 

[18] H. Weule, V. Hüntrup, and H. Tritschler, "Micro-cutting of steel to meet new requirements in 
miniaturization," CIRP Annals-Manufacturing Technology, vol. 50, pp. 61-64, 2001. 

[19] T. Moriwaki, "Machinability of copper in ultra-precision micro diamond cutting," CIRP Annals-
Manufacturing Technology, vol. 38, pp. 115-118, 1989. 

[20] M. P. Vogler, R. E. DeVor, and S. G. Kapoor, "Microstructure-level force prediction model for 
micro-milling of multi-phase materials," Journal of Manufacturing Science and Engineering, 
vol. 125, pp. 202-209, 2003. 

[21] S. Venkatachalam, O. Fergani, X. Li, J. G. Yang, K.-N. Chiang, and S. Y. Liang, "Microstructure 
effects on cutting forces and flow stress in ultra-precision machining of polycrystalline brittle 
materials," Journal of Manufacturing Science and Engineering, vol. 137, p. 021020, 2015. 

[22] S. Shimada, N. Ikawa, H. Tanaka, and J. Uchikoshi, "Structure of micromachined surface 
simulated by molecular dynamics analysis," CIRP Annals-Manufacturing Technology, vol. 43, 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            33 

pp. 51-54, 1994. 
[23] Y. Furukawa and N. Moronuki, "Effect of material properties on ultra precise cutting processes," 

CIRP Annals-Manufacturing Technology, vol. 37, pp. 113-116, 1988. 
[24] A. J. Mian, N. Driver, and P. T. Mativenga, "A comparative study of material phase effects on 

micro-machinability of multiphase materials," The International Journal of Advanced 
Manufacturing Technology, vol. 50, pp. 163-174, 2010. 

[25] A. Simoneau, E. Ng, and M. Elbestawi, "Surface defects during microcutting," International 
Journal of Machine Tools and Manufacture, vol. 46, pp. 1378-1387, 2006. 

[26] M. P. Vogler, R. E. DeVor, and S. G. Kapoor, "On the modeling and analysis of machining 
performance in micro-endmilling, part I: surface generation," J. Manuf. Sci. Eng., vol. 126, pp. 
685-694, 2004. 

[27] E. Uhlmann, S. Piltz, and K. Schauer, "Micro milling of sintered tungsten–copper composite 
materials," Journal of Materials Processing Technology, vol. 167, pp. 402-407, 2005. 

[28] K. B. Popov, S. S. Dimov, D. T. Pham, R. Minev, A. Rosochowski, and L. Olejnik, "Micromilling: 
material microstructure effects," Proceedings of the Institution of Mechanical Engineers, Part 
B: Journal of Engineering Manufacture, vol. 220, pp. 1807-1813, 2006. 

[29] C. H. Lauro, S. L. M. Ribeiro Filho, A. L. Christoforo, and L. C. Brandão, "Influence of the austenite 
grain size variation on the surface finishing in the micromilling process of the hardened AISI 
H13steel," Matéria (Rio de Janeiro), vol. 19, pp. 235-246, 2014. 

[30] R. Komanduri, N. Chandrasekaran, and L. Raff, "MD Simulation of nanometric cutting of single 
crystal aluminum–effect of crystal orientation and direction of cutting," Wear, vol. 242, pp. 60-
88, 2000. 

[31] S. To, W. Lee, and C. Chan, "Ultraprecision diamond turning of aluminium single crystals," 
Journal of materials processing technology, vol. 63, pp. 157-162, 1997. 

[32] M. Zhou and B. Ngoi, "Effect of tool and workpiece anisotropy on microcutting processes," 
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering 
Manufacture, vol. 215, pp. 13-19, 2001. 

[33] X. Liu, R. E. DeVor, S. Kapoor, and K. Ehmann, "The mechanics of machining at the microscale: 
assessment of the current state of the science," Journal of manufacturing science and 
engineering, vol. 126, pp. 666-678, 2004. 

[34] C. K. Ng, S. N. Melkote, M. Rahman, and A. S. Kumar, "Experimental study of micro-and nano-
scale cutting of aluminum 7075-T6," International Journal of Machine Tools and Manufacture, 
vol. 46, pp. 929-936, 2006. 

[35] F. Ducobu, E. Rivière-Lorphèvre, and E. Filippi, "Chip formation in Micro-cutting," J Mech Eng 
Autom, vol. 3, pp. 441-448, 2013. 

[36] K. Woon and M. Rahman, "Extrusion-like chip formation mechanism and its role in suppressing 
void nucleation," CIRP Annals-Manufacturing Technology, vol. 59, pp. 129-132, 2010. 

[37] N. Ikawa, S. Shimada, and H. Tanaka, "Minimum thickness of cut in micromachining," 
Nanotechnology, vol. 3, p. 6, 1992. 

[38] K. Liu and S. N. Melkote, "Finite element analysis of the influence of tool edge radius on size 
effect in orthogonal micro-cutting process," International Journal of Mechanical Sciences, vol. 
49, pp. 650-660, 2007. 

[39] G. Bissacco, H. N. Hansen, and L. De Chiffre, "Size effects on surface generation in micro milling 
of hardened tool steel," CIRP Annals-Manufacturing Technology, vol. 55, pp. 593-596, 2006. 

[40] N. L’vov, "Determining the minimum possible chip thickness," Machines & Tooling, vol. 4, p. 45, 
1969. 

[41] C.-J. Kim, J. R. Mayor, and J. Ni, "A static model of chip formation in microscale milling," 
Transactions of the ASME-B-Journal of Manufacturing Science and Engineering, vol. 126, pp. 
710-718, 2004. 

[42] X. Liu, R. DeVor, and S. Kapoor, "An analytical model for the prediction of minimum chip 
thickness in micromachining," Journal of manufacturing science and engineering, vol. 128, pp. 
474-481, 2006. 

[43] B. Deng, L. Zhou, F. Peng, R. Yan, M. Yang, and M. Liu, "Analytical model of cutting force in 
micromilling of particle-reinforced metal matrix composites considering interface failure," 
Journal of Manufacturing Science and Engineering, vol. 140, 2018. 

[44] J. Samuel, A. Dikshit, R. E. DeVor, S. G. Kapoor, and K. J. Hsia, "Effect of carbon nanotube (CNT) 
loading on the thermomechanical properties and the machinability of CNT-reinforced polymer 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            34 

composites," Journal of Manufacturing Science and Engineering, vol. 131, p. 031008, 2009. 
[45] J. Samuel, R. E. DeVor, S. G. Kapoor, and K. J. Hsia, "Experimental investigation of the 

machinability of polycarbonate reinforced with multiwalled carbon nanotubes," Journal of 
Manufacturing Science and Engineering, vol. 128, pp. 465-473, 2006. 

[46] M. N. Kumar, M. Mahmoodi, M. TabkhPaz, S. Park, and X. Jin, "Characterization and micro end 
milling of graphene nano platelet and carbon nanotube filled nanocomposites," Journal of 
Materials Processing Technology, vol. 249, pp. 96-107, 2017. 

[47] J. Horne, "A new model for initial chip curl in continuous cutting," International Journal of 
Mechanical Sciences, vol. 20, pp. 739-745, 1978. 

[48] K. Enomoto, T. Yasuhara, S. Kitakata, H. Murakami, and N. Ohtake, "Frictional Properties of 
Carbon Nanofiber Reinforced Polymer Matrix Composites," New Diamond and Frontier Carbon 
Technology, vol. 14, pp. 11-20, 2004. 

[49] B. Chu, J. Samuel, and N. Koratkar, "Micromilling responses of hierarchical graphene 
composites," Journal of Manufacturing Science and Engineering, vol. 137, p. 011002, 2015. 

[50] H. Gopalakrishna, J. S. Rao, S. N. Kumar, V. V. Shetty, and K. Rai, "Effect ofFriction onthe Cutting 
Forces in High Speed Orthogonal Turning of Al 6061-T6." 

[51] M. Mahmoodi, M. Mostofa, M. Jun, and S. S. Park, "Characterization and micromilling of flow 
induced aligned carbon nanotube nanocomposites," Journal of Micro and Nano-
Manufacturing, vol. 1, 2013. 

[52] Y. Gong, Y.-J. Baik, C. P. Li, C. Byon, J. M. Park, and T. J. Ko, "Experimental and modeling 
investigation on machined surfaces of HDPE-MWCNT polymer nanocomposite," The 
International Journal of Advanced Manufacturing Technology, vol. 88, pp. 879-885, 2017. 

[53] R. F. Zinati and M. Razfar, "Experimental and modeling investigation of surface roughness in 
end-milling of polyamide 6/multi-walled carbon nano-tube composite," The International 
Journal of Advanced Manufacturing Technology, vol. 75, pp. 979-989, 2014. 

[54] I. Arora, J. Samuel, and N. Koratkar, "Experimental investigation of the machinability of epoxy 
reinforced with graphene platelets," Journal of Manufacturing Science and Engineering, vol. 
135, p. 041007, 2013. 

[55] A. Marcon, S. Melkote, K. Kalaitzidou, and D. DeBra, "An experimental evaluation of graphite 
nanoplatelet based lubricant in micro-milling," CIRP annals, vol. 59, pp. 141-144, 2010. 

[56] I. Shyha, G. Y. Fu, D. H. Huo, B. Le, F. Inam, M. S. Saharudin, et al., "Micro-Machining of Nano-
Polymer Composites Reinforced with Graphene and Nano-Clay Fillers," in Key Engineering 
Materials, 2018, pp. 197-205. 

[57] C. Gao and J. Jia, "Factor analysis of key parameters on cutting force in micromachining of 
graphene-reinforced magnesium matrix nanocomposites based on FE simulation," The 
International Journal of Advanced Manufacturing Technology, vol. 92, pp. 3123-3136, 2017. 

[58] J. Liu, J. Li, Y. Ji, and C. Xu, "Investigation on the effect of SiC nanoparticles on cutting forces for 
micro-milling magnesium matrix composites," in ASME 2011 International Manufacturing 
Science and Engineering Conference, 2011, pp. 525-536. 

[59] J. Li, J. Liu, and C. Xu, "Machinability study of SiC nano-particles reinforced magnesium 
nanocomposites during micro-milling processes," in ASME 2010 International Manufacturing 
Science and Engineering Conference, 2010, pp. 391-398. 

[60] X. Teng, D. Huo, E. Wong, G. Meenashisundaram, and M. Gupta, "Micro-machinability of 
nanoparticle-reinforced Mg-based MMCs: an experimental investigation," The International 
Journal of Advanced Manufacturing Technology, vol. 87, pp. 2165-2178, 2016. 

[61] Y. Xiong, W. Wang, R. Jiang, and K. Lin, "A study on cutting force of machining in situ TiB2 
particle-reinforced 7050Al alloy matrix composites," Metals, vol. 7, p. 197, 2017. 

[62] A. Pramanik, A. Basak, Y. Dong, S. Shankar, and G. Littlefair, "Milling of nanoparticles reinforced 
Al-based metal matrix composites," Journal of Composites Science, vol. 2, p. 13, 2018. 

[63] F. Zeller, C. Müller, P. Miranzo, and M. Belmonte, "Exceptional micromachining performance of 
silicon carbide ceramics by adding graphene nanoplatelets," Journal of the European Ceramic 
Society, vol. 37, pp. 3813-3821, 2017. 

[64] N. Li, Y. Li, J. Zhou, Y. He, and X. Hao, "Drilling delamination and thermal damage of carbon 
nanotube/carbon fiber reinforced epoxy composites processed by microwave curing," 
International Journal of Machine Tools and Manufacture, vol. 97, pp. 11-17, 2015. 

[65] I. P. T. Rajakumar, P. Hariharan, and I. Srikanth, "A study on monitoring the drilling of polymeric 
nanocomposite laminates using acoustic emission," Journal of Composite Materials, vol. 47, 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            35 

pp. 1773-1784, 2013. 
[66] D. Bello, B. L. Wardle, J. Zhang, N. Yamamoto, C. Santeufemio, M. Hallock, et al., 

"Characterization of exposures to nanoscale particles and fibers during solid core drilling of 
hybrid carbon nanotube advanced composites," International journal of occupational and 
environmental health, vol. 16, pp. 434-450, 2010. 

[67] Y. Lu, D. Shao, and S. Chen, Nanoparticle-enhanced laser micromachining of polymeric 
nanocomposites: Society of Manufacturing Engineers, 2000. 

[68] R. N. Das, F. D. Egitto, J. M. Lauffer, and V. R. Markovich, "Laser micromachining of 
nanocomposite-based flexible embedded capacitors," in 2007 Proceedings 57th Electronic 
Components and Technology Conference, 2007, pp. 435-441. 

[69] E. Lee and B. Shaffer, The theory of plasticity applied to a problem of machining: Division of 
Applied Mathematics, Brown, 1949. 

[70] M. E. Merchant, "Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 
chip," Journal of applied physics, vol. 16, pp. 267-275, 1945. 

[71] X. Teng, D. Huo, W. Chen, E. Wong, L. Zheng, and I. Shyha, "Finite element modelling on cutting 
mechanism of nano Mg/SiC metal matrix composites considering cutting edge radius," Journal 
of Manufacturing Processes, vol. 32, pp. 116-126, 2018. 

[72] Z. Huang, Z. Guo, X. Chen, T. Yue, S. To, and W. Lee, "Molecular dynamics simulation for ultrafine 
machining," Materials and Manufacturing Processes, vol. 21, pp. 393-397, 2006. 

[73] R. Komanduri, M. Lee, and L. Raff, "The significance of normal rake in oblique machining," 
International Journal of Machine Tools and Manufacture, vol. 44, pp. 1115-1124, 2004. 

[74] M. Field and M. E. Merchant, "Mechanics of formation of the discontinuous chip in metal 
cutting," Trans. ASME, vol. 71, p. 421, 1949. 

[75] H.-J. Fu, R. DeVor, and S. Kapoor, "A mechanistic model for the prediction of the force system 
in face milling operations," Journal of engineering for industry, vol. 106, pp. 81-88, 1984. 

[76] R. DeVor and W. Kline, "A mechanistic model for the force system in end milling with 
application to machining airframe structures," in Manufacturing Engineering Transactions and 
North American Manufacturing Research Conference, 8 th, 1980, pp. 297-303. 

[77] K. Maekawa and A. Itoh, "Friction and tool wear in nano-scale machining—a molecular 
dynamics approach," Wear, vol. 188, pp. 115-122, 1995. 

[78] Z.-C. Lin and J.-C. Huang, "A nano-orthogonal cutting model based on a modified molecular 
dynamics technique," Nanotechnology, vol. 15, p. 510, 2004. 

[79] M. M. Shokrieh and R. Rafiee, "On the tensile behavior of an embedded carbon nanotube in 
polymer matrix with non-bonded interphase region," Composite Structures, vol. 92, pp. 647-
652, 2010. 

[80] S. Park, S. G. Kapoor, and R. E. DeVor, "Microstructure-level model for the prediction of tool 
failure in WC-Co cutting tool materials," Journal of manufacturing science and engineering, vol. 
128, pp. 739-748, 2006. 

[81] L. Chuzhoy, R. DeVor, S. Kapoor, and D. Bammann, "Microstructure-level modeling of ductile 
iron machining," Journal of manufacturing science and engineering, vol. 124, pp. 162-169, 
2002. 

[82] R. DeVor and S. Kapoor, "Microstructure-Level Machining Simulation of Carbon Nanotube 
Reinforced Polymer Composites—Part I: Model Development and Validation," Urbana, vol. 51, 
p. 61801, 2008. 

[83] A. Dikshit, "A microstructure-level finite element-based model for simulation of machining of 
carbon nanotube reinforced polymer composites," University of Illinois at Urbana-Champaign, 
2007. 

[84] R. P. Nimmer and J. T. Woods, "An investigation of brittle failure in ductile, notch-sensitive 
thermoplastics," Polymer Engineering & Science, vol. 32, pp. 1126-1137, 1992. 

[85] H. Nied, V. Stokes, and D. Ysseldyke, "High-Temperature large-strain behavior of polycarbonate, 
polyetherimide and poly (butylene terephthalate)," Polymer Engineering & Science, vol. 27, pp. 
101-107, 1987. 

[86] A. Argon and M. Salama, "The mechanism of fracture in glassy materials capable of some 
inelastic deformation," Materials Science and Engineering, vol. 23, pp. 219-230, 1976. 

[87] D. Legrand, "Crazing, yielding, and fracture of polymers. I. Ductile brittle transition in 
polycarbonate," Journal of applied polymer science, vol. 13, pp. 2129-2147, 1969. 

[88] L. Jiang, C. Nath, J. Samuel, and S. G. Kapoor, "An enhanced microstructure-level finite element 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            36 

machining model for carbon nanotube-polymer composites," Journal of Manufacturing 
Science and Engineering, vol. 137, 2015. 

[89] F. Müller and J. Monaghan, "Non-conventional machining of particle reinforced metal matrix 
composite," International Journal of Machine Tools and Manufacture, vol. 40, pp. 1351-1366, 
2000. 

[90] D. C. Kyritsis, S. Roychoudhury, C. S. McEnally, L. D. Pfefferle, and A. Gomez, "Mesoscale 
combustion: a first step towards liquid fueled batteries," Experimental Thermal and Fluid 
Science, vol. 28, pp. 763-770, 2004. 

[91] A. Pramanik, L. Zhang, and J. Arsecularatne, "An FEM investigation into the behavior of metal 
matrix composites: Tool–particle interaction during orthogonal cutting," International Journal 
of Machine Tools and Manufacture, vol. 47, pp. 1497-1506, 2007. 

[92] G. R. Johnson, "A constitutive model and data for metals subjected to large strains, high strain 
rates and high temperatures," in Proceedings of the 7th International Symposium on Ballistics, 
The Hague, Netherlands, 1983, 1983. 

[93] A. Dwivedi, J. Bradley, and D. Casem, "Mechanical response of polycarbonate with strength 
model fits," DYNAMIC SCIENCE INC ABERDEEN MD2012. 

[94] J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, "Mechanical properties of graphene 
nanoplatelet/epoxy composites," Journal of Applied Polymer Science, vol. 128, pp. 4217-4223, 
2013. 

[95] W. Tiejun, K. Kishimoto, and M. Notomi, "Effect of triaxial stress constraint on the deformation 
and fracture of polymers," Acta Mechanica Sinica, vol. 18, p. 480, 2002. 

[96] X. Teng, W. Chen, D. Huo, I. Shyha, and C. Lin, "Comparison of cutting mechanism when 
machining micro and nano-particles reinforced SiC/Al metal matrix composites," Composite 
Structures, vol. 203, pp. 636-647, 2018. 

[97] Z. Yuan, W. Lee, Y. Yao, and M. Zhou, "Effect of crystallographic orientation on cutting forces 
and surface quality in diamond cutting of single crystal," CIRP Annals-Manufacturing 
Technology, vol. 43, pp. 39-42, 1994. 

[98] M. Malekian, M. Mostofa, S. Park, and M. Jun, "Modeling of minimum uncut chip thickness in 
micro machining of aluminum," Journal of Materials Processing Technology, vol. 212, pp. 553-
559, 2012. 

[99] D. Lucca, R. Rhorer, and R. Komanduri, "Energy dissipation in the ultraprecision machining of 
copper," CIRP Annals-Manufacturing Technology, vol. 40, pp. 69-72, 1991. 

[100] A. Dikshit, J. Samuel, R. DeVor, and S. G. Kapoor, "Microstructure-level machining simulation of 
carbon nanotube reinforced polymer composites—Part II: Model interpretation and 
application," Journal of manufacturing science and engineering, vol. 130, 2008. 

[101] P. Basuray, B. Misra, and G. Lal, "Transition from ploughing to cutting during machining with 
blunt tools," Wear, vol. 43, pp. 341-349, 1977. 

[102] Z. Yuan, M. Zhou, and S. Dong, "Effect of diamond tool sharpness on minimum cutting thickness 
and cutting surface integrity in ultraprecision machining," Journal of Materials Processing 
Technology, vol. 62, pp. 327-330, 1996. 

[103] S. Shimada, N. Ikawa, H. Tanaka, G. Ohmori, J. Uchikoshi, and H. Yoshinaga, "Feasibility study 
on ultimate accuracy in microcutting using molecular dynamics simulation," CIRP Annals-
Manufacturing Technology, vol. 42, pp. 91-94, 1993. 

[104] S. Filiz, C. M. Conley, M. B. Wasserman, and O. B. Ozdoganlar, "An experimental investigation 
of micro-machinability of copper 101 using tungsten carbide micro-endmills," International 
Journal of Machine Tools and Manufacture, vol. 47, pp. 1088-1100, 2007. 

[105] K. Kwang-Ryul, C. Byoung-Deog, Y. Jun-Sin, C. Sung-Hak, C. Yong-Ho, S. Dong-Soo, et al., "Laser 
micromachining of CNT/Fe/Al2O3 nanocomposites," Transactions of Nonferrous Metals Society 
of China, vol. 19, pp. s189-s193, 2009. 

[106] Y. Wan, D. Kim, Y.-B. Park, and S.-K. Joo, "Micro electro discharge machining of 
polymethylmethacrylate (PMMA)/multi-walled carbon nanotube (MWCNT) nanocomposites," 
Advanced Composites Letters, vol. 17, p. 096369350801700401, 2008. 

 
 
 
 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            37 

 
 
 
 

Figure Captions List 
 
Figure 1 

Fig. 1 

The development of achievable machining accuracy (Reprinted from 

[2]The development of achievable machining accuracy (Reprinted from 

[2] Copyright 2003, with permission from CIRP) 

Figure 2 

Fig. 2 

Size effects in micro-milling metals and alloys (Reproduced from [14-

16])Size effects in micro-milling metals and alloys (Reproduced from [14-

16]) 

Figure 3 

Fig. 3 

Size effect on specific cutting energy in micro-milling as compared to 

macro-machining (Reproduced from [15]Size effect on specific cutting 

energy in micro-milling as compared to macro-machining (Reproduced 

from [15]) 

Figure 4 

Fig. 4 

The schematic representing the differences between macro and 

micromachining in terms of microstructure ( Reprinted from [97] 

Copyright 1994, with permission from CIRP)The schematic representing 

the differences between macro and micromachining in terms of 

microstructure ( Reprinted from [97] Copyright 1994, with permission 

from CIRP) 

Figure 5 

Fig. 5 

Effect of microstructure on surface quality when micro-milling steel 

(Reproduced from [24]Effect of microstructure on surface quality when 

micro-milling steel (Reproduced from [24]) 

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font color: Auto, Do not check spelling or

grammar

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font color: Auto

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font color: Red

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font color: Auto, Do not check spelling or

grammar

Formatted: Font: Italic



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            38 

Figure 

6Fig. 6 

Grain size effect on surface roughness and hardness  when 

micromachining W/Cu composite (Reproduced from [27])Grain size 

effect on surface roughness and hardness  when micromachining W/Cu 

composite (Reproduced from [27]) 

Figure 7 

Fig. 7 

Tool edge radius and feed-rate effects on surface roughness in micro-

milling (Reproduced from [16, 26])Tool edge radius and feed-rate effects 

on surface roughness in micro-milling (Reproduced from [16, 26]) 

Figure 8 

Fig. 8 

MUCT effects on the cutting mechanism in micromachining (Reprinted  

from [98] Copyright 2011, with permission from Elsevier)MUCT effects 

on the cutting mechanism in micromachining (Reprinted  from [98] 

Copyright 2011, with permission from Elsevier) 

Figure 9 

Fig. 9 

Effects of MUCT on the shear angle of materials in micromachining 

(Reprinted from [99] Copyright 1991, with permission from CIRP)Effects 

of MUCT on the shear angle of materials in micromachining (Reprinted 

from [99] Copyright 1991, with permission from CIRP) 

Figure 

10 Fig. 

10 

Various surface roughness with different nano-fillers and feed rate in 

micro-milling PC-based nanocomposites (Reproduced from [46])Various 

surface roughness with different nano-fillers and feed rate in micro-

milling PC-based nanocomposites (Reproduced from [46]) 

Figure 

11 Fig. 

11 

Effect of CNT addition on chip formation of PC/MWCNT nanocomposite 

(Reprinted with permission from [45]. Copyright 2006 by ASME)Effect of 

CNT addition on chip formation of PC/MWCNT nanocomposite 

(Reprinted with permission from [45]. Copyright 2006 by ASME) 

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font: Not Italic, Check spelling and

grammar



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            39 

Figure 

12 Fig. 

12 

Comparison of surface roughness when micro-milling PC/ 15 wt.% 

MWCNT nanocomposite and plain PC (Reproduced from 

[45])Comparison of surface roughness when micro-milling PC/ 15 wt.% 

MWCNT nanocomposite and plain PC (Reproduced from [45]) 

Figure 

13 Fig. 

13 

Comparison of the resultant cutting forces for plain PC and PC/CNT 

nanocomposites (Adapted from [45, 51])Comparison of the resultant 

cutting forces for plain PC and PC/CNT nanocomposites (Adapted from 

[45, 51]) 

Figure 

14 Fig. 

14 

Effect of CNT orientation on cutting force when micro-milling PC/5 wt.% 

MWCNT nanocomposites (Reproduced from [51])Effect of CNT 

orientation on cutting force when micro-milling PC/5 wt.% MWCNT 

nanocomposites (Reproduced from [51]) 

Figure 

15 Fig. 

15 

Effects of CNT loading and feed rate on surface roughness and burr width 

when micro-milling PC/MWCNT nanocomposites at cutting speed = 130 

m/min (Reproduced from [44])Effects of CNT loading and feed rate on 

surface roughness and burr width when micro-milling PC/MWCNT 

nanocomposites at cutting speed = 130 m/min (Reproduced from [44]) 

Figure 

16 Fig. 

16 

Effects of MUCT (feed rate), cutting speed (strain rate) and CNT loading 

on cutting force when micro-milling PC/MWCNT nanocomposites 

(Reproduced from [44])Effects of MUCT (feed rate), cutting speed (strain 

rate) and CNT loading on cutting force when micro-milling PC/MWCNT 

nanocomposites (Reproduced from [44]) 

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Border: : (No border)

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font: Not Italic, Check spelling and

grammar



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            40 

Figure 

17 Fig. 

17 

Schematic of micro-milling CNT-based nanocomposite (Reprinted with 

permission from [51] . Copyright 2013 by ASME)Schematic of micro-

milling CNT-based nanocomposite (Reprinted with permission from [51] 

. Copyright 2013 by ASME) 

Figure 

18 Fig. 

18 

Influence of the matrix-fiber bond’s strength to the chip formation and 

surface generation (Reprinted with permission from [49]. Copyright 2015 

by ASME)Influence of the matrix-fiber bond’s strength to the chip 

formation and surface generation (Reprinted with permission from [49]. 

Copyright 2015 by ASME) 

Figure 

19 Fig. 

19 

Effect of cutting speed on cutting force and surface roughness when 

micromachining epoxy/0.8 vol.% GF and epoxy/0.8 vol.% GF/0.2 wt.% 

GPL composites (Reproduced from [49])Effect of cutting speed on 

cutting force and surface roughness when micromachining epoxy/0.8 

vol.% GF and epoxy/0.8 vol.% GF/0.2 wt.% GPL composites (Reproduced 

from [49]) 

Figure 

20 Fig. 

20 

Effect of cutting speed and filler content on cutting force when micro-

milling different polymer nanocomposites at feed rate = 3 µm/tooth 

(Reproduced from [44, 54])Effect of cutting speed and filler content on 

cutting force when micro-milling different polymer nanocomposites at 

feed rate = 3 µm/tooth (Reproduced from [44, 54]) 

Figure 

21 Fig. 

21 

Different trends of cutting forces as a function of graphene addition 

when micromachining graphene reinforced PMNCs (Reproduced from 

[49, 54, 56])Different trends of cutting forces as a function of graphene 

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font color: Auto, Do not check spelling or

grammar

Formatted: Font color: Auto

Formatted: Font: Not Italic, Check spelling and

grammar

Formatted: Font: Not Italic, Check spelling and

grammar



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            41 

addition when micromachining graphene reinforced PMNCs 

(Reproduced from [49, 54, 56]) 

Figure 

22 Fig. 

22 

Quantitative comparison of the standardized effects of various 

parameters on cutting forces for Mg/Graphene nanocomposites 
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Figure 

27 Fig. 

27 

Micro-structure-level machining of CNT reinforced polycarbonate 

(Reprinted with permission from [100]  Copyright 2008 by ASME)Micro-

structure-level machining of CNT reinforced polycarbonate (Reprinted 

with permission from [100]  Copyright 2008 by ASME) 

Figure 

28 Fig. 

28 

Micro-structure-level machining of CNT reinforced PVA nanocomposite 

(Reprinted with permission from [88] . Copyright 2014 by ASME)Micro-

structure-level machining of CNT reinforced PVA nanocomposite 

(Reprinted with permission from [88] . Copyright 2014 by ASME) 

Figure 

29 Fig. 

29 

Finite element analysis of micro-milling PC and PC reinforced GNP 

nanocomposite: (a) Chip formation of PC/GNP, (b) Cutting forces in 

simulation and experiment (Reprinted from [46] Copyright 2017, with 

permission from Elsevier)Finite element analysis of micro-milling PC and 

PC reinforced GNP nanocomposite: (a) Chip formation of PC/GNP, (b) 

Cutting forces in simulation and experiment (Reprinted from [46] 

Copyright 2017, with permission from Elsevier) 

Figure 

30Fig. 

30 

Finite element analysis of micro-milling Mg reinforced  by 1.5 vol.% SiC 

nanocomposite (Reprinted from [71] Copyright 2018, with permission 

from The Society of Manufacturing Engineers)Finite element analysis of 

micro-milling Mg reinforced  by 1.5 vol.% SiC nanocomposite (Reprinted 

from [71] Copyright 2018, with permission from The Society of 

Manufacturing Engineers) 
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Figure 

31Fig. 

31 

Effect of nano-particles on shear zone propagation: (a) direction of shear 

zone propagation, (b) distorted stress contour caused by particle 

restricting behavior (Reprinted from [96] Copyright 2018, with 

permission from Elsevie)Effect of nano-particles on shear zone 

propagation: (a) direction of shear zone propagation, (b) distorted stress 

contour caused by particle restricting behavior (Reprinted from [96] 

Copyright 2018, with permission from Elsevie) 
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Figure 1: The development of achievable machining accuracy (Reprinted from [2] 

Copyright 2003, with permission from CIRP) 

 

 

 

 

 

 

 

 

 

 

 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            46 

 

 

 

 
 

Figure 2: Size effects in micro-milling metals and alloys (Reproduced from [14-16]) 
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Figure 3: Size effect on specific cutting energy in micro-milling as compared to macro-

machining (Reproduced from [15]) 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            48 

 
 

Figure 4: The schematic representing the differences between macro and 

micromachining in terms of microstructure ( Reprinted from [97] Copyright 1994, with 

permission from CIRP) 
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Figure 5: Effect of microstructure on surface quality when micro-milling steel 

(Reproduced from [24]) 
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Figure 6: Grain size effect on surface roughness and hardness  when micromachining 

W/Cu composite (Reproduced from [27]) 
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Figure 7: Tool edge radius and feed-rate effects on surface roughness in micro-milling 

(Reproduced from [16, 26]) 
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Figure 8: MUCT effects on the cutting mechanism in micromachining (Reprinted  from 

[98] Copyright 2011, with permission from Elsevier) 
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Figure 9: Effects of MUCT on the shear angle of materials in micromachining (Reprinted 

from [99] Copyright 1991, with permission from CIRP) 
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Figure 10: Various surface roughness with different nano-fillers and feed rate in micro-

milling PC-based nanocomposites (Reproduced from [46]) 
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Figure 11: Effect of CNT addition on chip formation of PC/MWCNT nanocomposite 
(Reprinted with permission from [45]. Copyright 2006 by ASME) 
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Figure 12: Comparison of surface roughness when micro-milling PC/ 15 wt.% MWCNT 

nanocomposite and plain PC (Reproduced from [45]) 
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Figure 13: Comparison of the resultant cutting forces for plain PC and PC/CNT 

nanocomposites (Adapted from [45, 51]) 
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Figure 14: Effect of CNT orientation on cutting force when micro-milling PC/5 wt.% 

MWCNT nanocomposites (Reproduced from [51]) 
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Figure 15: Effects of CNT loading and feed rate on surface roughness and burr width 

when micro-milling PC/MWCNT nanocomposites at cutting speed = 130 m/min 

(Reproduced from [44]) 
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Figure 16: Effects of MUCT (feed rate), cutting speed (strain rate) and CNT loading on 

cutting force when micro-milling PC/MWCNT nanocomposites (Reproduced from [44]) 
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Figure 17: Schematic of micro-milling CNT-based nanocomposite (Reprinted with 

permission from [51] . Copyright 2013 by ASME) 
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Figure 18: Influence of the matrix-fiber bond’s strength to the chip formation and 

surface generation (Reprinted with permission from [49]. Copyright 2015 by ASME) 
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Figure 19: Effect of cutting speed on cutting force and surface roughness when 

micromachining epoxy/0.8 vol.% GF and epoxy/0.8 vol.% GF/0.2 wt.% GPL composites 

(Reproduced from [49]) 
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Figure 20: Effect of cutting speed and filler content on cutting force when micro-milling 

different polymer nanocomposites at feed rate = 3 µm/tooth (Reproduced from [44, 

54]) 
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Figure 21: Different trends of cutting forces as a function of graphene addition when 

micromachining graphene reinforced PMNCs (Reproduced from [49, 54, 56]) 

 

 

 

 

 

 

 

 

 

 

 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            66 

 
 

Figure 22: Quantitative comparison of the standardized effects of various parameters 

on cutting forces for Mg/Graphene nanocomposites (Reproduced from [57]) 
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Figure 23: Specific cutting energy when micro-milling Mg and Mg/10 vol.% SiC 

nanocomposite (Reproduced from [58]) 
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Figure 24: Effect of SiC content on cutting force when micro-milling Mg/SiC 

nanocomposite (Reproduced from [59]) 
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Figure 25: Effect of feed rate on cutting force when micromachining Mg/ceramic 

nanocomposites (Adapted from [59, 60]) 
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Figure 26: Schematic showing the correlations between micro-machinability of 

nanocomposites and some basic factors 
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Figure 27: Micro-structure-level machining of CNT reinforced polycarbonate 

(Reprinted with permission from [100]  Copyright 2008 by ASME) 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Manufacturing Science and Engineering 

MANU-19-1410, Shyha                                                                                                                            72 

 
 
Figure 28: Micro-structure-level machining of CNT reinforced PVA nanocomposite 

(Reprinted with permission from [88] . Copyright 2014 by ASME) 
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Figure 29: Finite element analysis of micro-milling PC and PC reinforced GNP 

nanocomposite: (a) Chip formation of PC/GNP, (b) Cutting forces in simulation and 

experiment (Reprinted from [46] Copyright 2017, with permission from Elsevier) 
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Figure 30: Finite element analysis of micro-milling Mg reinforced  by 1.5 vol.% SiC 

nanocomposite (Reprinted from [71] Copyright 2018, with permission from The 

Society of Manufacturing Engineers) 
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Figure 31: Effect of nano-particles on shear zone propagation: (a) direction of shear 

zone propagation, (b) distorted stress contour caused by particle restricting behavior 

(Reprinted from [96] Copyright 2018, with permission from Elsevie) 
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Table 1: The MUCT effects in micromachining – Relevant researches 

Approach Remarks Ref. 

Micro-milling 

lead, aluminum, 

and mild steel. 

The critical depth of cut ranging from 0.1 to 0.23 mm 

along with different edge radius (from 0.025 into 0.06 

in), and a neutral point angle 37.60 at cutting speed of 

240 mm/min. 

[101] 

Ultra-precision 

turning aluminum 

alloys 

The MUCT is 0.05-0.2 µm while the cutting edge 

radius is 0.2-0.6 µm 
[102] 

MD simulation  

turning 

aluminum, 

cooper 

MD simulation of chip formation in copper/ aluminum 

cutting at 200m/s with cutting edge of 5nm exhibited 

the MUCT of 0.2 nm 

[103] 

FE simulation 

micro-milling 

ductile iron 

The estimated MUCT/edge radius ratios of pearlite 

and ferrite are 0.2 and 0.35 respectively at the cutting 

speed of 110,000 rpm. 

[20] 

Micro-milling 

pure copper 101 

Various cutting speed (40, 80, and 120m/min), feed-

rate (0.75, 1.5,3, and 6 µm/flute), and DoC of 30 µm. 

Highest burr formation, largest tool wear and cutting 

forces were shown at the lowest ratio of feed 

rate/edge radius (approximately 0.4). 

[104] 
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Table 2: Summary of micromachining CNT reinforced polymer matrix nanocomposites 

Inputs Outputs 

Ref. CNTs 
Cutting 

condition Tool Chip 
Cutting 
force 

Surface 
roughness 

Dimension 
accuracy 

Tool 
wear 

Burr 

Type Loading Direction Feed Speed 

- - - - - - X - - - - X X X X - - - - 

[46] 

Conclusions Reasons 

High cutting force, dimensional accuracy and 
surface roughness when micro-milling PC/CNT with 
discontinuous chip forms, especially at high feed 
rates. 

The improvement of thermo-mechanical properties due 
to the presence of CNT leading to strengthening-
dominated and thermal-softening-neglected regimes 
when micro-milling PC/CNT nanocomposite. 

- - - - - - X - - - - X X X - - - - - - 

[45] 

Conclusions Reasons 

Continuous, curly and smooth chip forms when 
micro-milling PC/CNT nanocomposites as 
compared to broken forms with adiabatic shear 
bands in case of plain PC chips 

Adding CNT reduce friction coefficient along the rake 
face and the effect of thermal softening in contrast with 
BUE formations due to poor thermal conduction of plain 
PC 

High surface quality when micro-milling PC/CNT 
nanocomposite 

Improvement of thermo-mechanical properties due to 
the addition of CNT into the PC matrix. CNT infestation 
and polymer smearing on machined surfaces 

Low cutting force when micro-milling PC/CNT 
nanocomposite, especially at high feed rates 

Low-quality bonding of PC-CNT leading to the reduction 
of failure shear strength along with the interface areas 

- - - - X X - - - - - - X - - - - - - - - 

[51] 
 

Conclusions Reasons 

Higher cutting forces when micro-milling 
PC/MWCNT nanocomposite than that of plain PC 
only  at low feed rate (2 µm) 

Strengthening-dominated and microstructure effects 
associated with ploughing cutting mechanism when 
micro-milling PC/CNT below MUCT. 

Significant increase of cutting force when micro-
milling in inflow direction in comparison with that 
of cross-flow direction 

Stress concentration and crack formation ahead of the 
tooltip  due to CNT agglomeration 

- - - - - - X X - - - - - - X - - - - - - 

[52] 

Conclusions Reasons 

Surface roughness decreased as cutting speed 
decreased and feed rate decreased with the more 
dominant effect of feed rate when micro-milling 
HDPE/MWCNT 

Visco-elasticity nature  of HDPE matrix and feed marks 

- - X - - X X - - X X X - - - - X 

[44] 

Conclusions Reasons 

The feasible chip formation when micro-milling 
PC/CNT nanocomposites at low feed rate (below 
tool edge radius). 

Reinforcing CNT changed the stress-strain behavior of 
PC based materials, exhibiting by the reduction in 
strain-to-failure that indicated a ductile-to-brittle 
transition 

High surface quality and low burr width when 
micro-milling PC/CNT nanocomposite. 

Addition of CNTs that leads to thermal conductivity 
improvement of nanocomposite 

Cutting force exhibited significant reduction when 
increasing cutting speed regardless of the filler 
content 

The thermal softening-dominated regime of 
micromachining PC, low-loading CNT nanocomposites 
and crack propagation from low interfacial bonding of 
CNT-PC when adding higher loading of CNT. 
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Table 3: Summary of micromachining graphene reinforced polymer matrix 

nanocomposites 

Inputs Outputs Ref. 

Graphene Cutting 
condition 

Tool Chip Cutting 
force 

Surface 
roughness 

Dimension 
accuracy 

Tool 
wear 

Burr 

Type Loading Feed Speed 

-- X X X -- X X X -- X --  
 
 
 
[54] 

Conclusions Reasons 

Reduction of MCT with GPL addition Ductile-to-brittle transition when adding GPL into epoxy 

Highest cutting forces at 0.2 wt.% GPL Most effective reinforcement of GPL in terms of 
mechanical properties 

Cracks and debris on the machined 
surface at high content of GPL 

Agglomeration of GPL, low interfacial interaction of GPL-
epoxy leading to a strength-to-failure reduction 

Optimum tool wear at 0.2 wt.% GPL Lubricant effect of GPL at the tool-chip interface and its role 
in minimizing sliding of polymer chains, subsequently 
reducing rubbing on the tool clearance face. 

-- -- X X -- X X X -- X --  
 
 
[49] 

Conclusions Reasons 

Low cutting force, surface roughness and 
tool wear when adding GPL into 
Epoxy/GF system 

Improvement of thermal conductivity and lubrication at 
the tool-chip interface lead to BUE reduction and tool wear 
Shearing-dominated regime due to superior interface 
strength of GPL-epoxy, leading to low glass fiber extrusion 
on the machined surface. 

The sensitive influence of cutting speed 
on surface quality improvement 
regardless of the material types 

The dominance of strain hardening effect at high cutting 
speeds 

X -- X -- -- X X X X -- --  
[46] Conclusions Reasons 

Discontinuous chip formation, high 
surface quality and cutting forces when 
micro-milling PC/GPL 

Reduction of BUE due to  the improvement thermo-
mechanical properties when adding GPL filler into PC 
matrix 

-- X X X -- -- X X -- X --  
 
[56] 

Conclusions Reasons 

Highest cutting forces at 0.5wt.% GPL 
with the dominance of feed rate instead 
of cutting speed. 

Most effective reinforcement of GPL in terms of 
mechanical properties of epoxy/GPL leads to mechanical 
strengthening dominance when micro-milling epoxy/GPL 
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Table 4: Summary of micromachining nano-ceramic-particles reinforced metal matrix 

nanocomposites 

Inputs Outputs  
Ref Material Filler 

loading 
Cutting condition Tool Chip Cutting 

force 
Surface 

roughness 
Dimension 
accuracy 

Tool 
wear 

Burr 

Feed Speed DoC 

Mg/SiC X X X -- -- -- X -- -- -- --  
 
 
 
 
[58] 

Conclusions Reasons 

Non-linear increase of specific cutting energy when 
reducing feed rate below MUCT. 

Size effect in micromachining 

Wider ploughing zone when micro-milling Mg/SiC 
indicates higher MUCT with more SiC content 

The predominance of thermal softening due to the 
reduction of thermal conductivity when micro-milling 
Mg/SiC at low feed rates 

Higher specific cutting forces when micro-milling 
Mg/SiC in ploughing zone  

Strengthening effect and microstructure effect of 
inhomogeneous nanocomposite 

Highest cutting forces when micro-milling Mg/SiC (10 
vol %). 

Improvement of yield strength and fracture strength due to 
SiC addition 

Complex force profiles of micro-milling Mg/SiC  Microstructure effect 

Mg/SiC X X X -- -- -- X X -- -- --  
 
 
[59] 
 

Conclusions Reasons 

The predominance of filler contents on cutting forces, 
especially at 5-10 vol% of SiC 

Improvement of mechanical properties when adding more 
SiC in Mg matrix 

Unremarkable effect of feed rate on surface roughness 
while unobvious correlations between filler content-
cutting speed and surface roughness were seen. 

Complex micro-cutting mechanism while tool deflection 
and microstructure are also dominant 

Mg/TiB2 

Mg/Ti 
-- X X X -- -- X X -- X --  

 
 
 
 
[60] 

Conclusions Reasons 

High tool wear rate when micro-milling Mg/TiB2 with 
tool coating peeling 

High mechanical properties and thermal load of Mg/TiB2 

Higher cutting force when micro-milling Mg/Ti than 
Mg/TiB2 

Chip adherence effect in case of micro-milling Mg/Ti 

Higher surface quality when micro-milling Mg/TiB2 
than Mg/Ti 

Lower cutting forces when micro-milling Mg/TiB2 

In the shearing region, cutting forces increased with 
DoC and feed rate 

More resistance on tool-chip interface due to higher 
contacting surface 

Cutting speed and DoC have more dominant effects on 
surface roughness than the feed rate 

The thermal softening effect when changing cutting speed 
and DoC 

Al/TiB2 -- X X X -- -- X -- -- -- --  
[61] Conclusions Reasons 

Feed rate has the most dominant effects on cutting 
force when micro-milling Al/TiB2 

Shear angle increase and friction angle decrease when 
increasing feed rate 

Al/SiC -- X X -- -- X X X -- -- --  
 
 
[62] 

Conclusions Reasons 

Unobvious effect of nano-filler addition on machined 
surface quality 

The absence of particle pull-out or failure when micro-
milling Al/SiC 

The low predominance of feed rate effect on the 
surface finish at high cutting speed 

Thermal softening effect 

No obvious trend of cutting speed-cutting force was 
seen 

The dominated-regime alternation between thermal 
softening and strain hardening when changing cutting 
speed 
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Table 5: Summary of micromachining of nanocomposites employing other micro-

fabrication techniques 

Micromachining 
techniques 

Nanocomposites Remarks Ref. 

Micro-drilling Epoxy/CF/MWCNT 

- The drilling-induced delamination was significantly 
reduced due to the addition of MWCNT. MWCNT provided 
better inter-laminar fracture toughness (>66%) and 
lowered delamination fracture (16%) compared to 
Epoxy/CF. 
-Thermal damage when micro-drilling was also reduced 
due to the high thermal conductivity improvement of 
nanocomposites due to the presence of MWCNT. 

[64] 

Micro-drilling Epoxy/CF/CNF 

- Reduction of thrust force when using high contents of 
CNF reinforcement. 
- Increasing CNF content also led to a reduction of 
delamination factor since it provided better inter-laminar 
bond strength with the matrix. 
- Thrust force and delamination increased when increasing 
the feed and reducing the speed. Therefore, a combination 
of high cutting speed and low feed was recommended to 
minimize delamination. 

[65] 

Laser 
micromachining 

HDPE/CNF 
- The additional of CNFs significantly enhanced the 
polymer decomposition, hence improving the ablation 
process. 

[67] 

Laser 
micromachining 

Epoxy/BaTiO3 
- Suitable surfaces of thin-film based Epoxy/BaTiO3 
nanocomposites could be manufactured using laser 
micromachining at a wavelength of 355 nm. 

 

Laser 
micromachining 

Fe/Al2O3/CNT 

-High thermal conductivity, small grain size and low light 
transmittance of high-CNT-content nanocomposites 
provided good machinability in terms of machined surface, 
microstructural integrity.  

[105] 

Micro-EDM PMMA/MWCNT 

- Micro-EDM using PMMA/MWCNT nanocomposite at 10-
35 wt.% nano-filler was feasible with proper machining 
conditions. 
- Low MWCNT loadings and high input voltage were 
recommended to achieve high dimensional accuracy as 
well as surface roughness. 

[106] 

 

 

 


