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Abstract 

Biodesulphurisation (BDS) is an emerging technology that utilises 

microorganisms for the removal of sulphur from fossil fuels. Commercial-scale 

BDS needs the development of highly active bacterial strains which allow 

easier downstream processing. In this research, a collection of actinobacteria 

that originated from oil-contaminated soils in Russia were investigated to 

establish their phylogenetic positions and biodesulphurisation capabilities. 

The eleven test strains were confirmed as members of the genus 

Rhodococcus based on 16S rRNA and gyrB gene sequence analysis. Two 

organisms namely strain F and IEGM 248, confirmed as members of the 

species R. qingshengii and R. opacus, respectively based on the whole-

genome sequence based OrthoANIu values, exhibited robust 

biodesulphurisation of dibenzothiophene (DBT) and benzothiophene (BT), 

respectively. R. qingshengii strain F was found to convert DBT to 

hydroxybiphenyl (2-HBP) with DBTO and DBTO2 as intermediates. The DBT 

desulphurisation genes of strain F occur as a cluster and share high sequence 

similarity with the dsz operon of R. erythropolis IGTS8. Rhodococcus opacus 

IEGM 248 could convert BT into benzofuran. The BDS reaction of both strains 

follows the well-known 4S pathway of desulphurisation of DBT and BT. 

When cultured directly in a biphasic growth medium containing 10% (v/v) oil 

(n-hexadecane or diesel) containing 300 ppm sulphur, strain F formed a stable 

oil-liquid emulsion, making it unsuitable for direct industrial application despite 

the strong desulphurisation activity. Whereas the strain 248 formed distinct oil, 

biomass and aqueous phases which enabled easy extraction of the 

desulphurised oil with more than 80% reduction in total sulphur content, 

making it a potential candidate strain for the development of a robust BDS 

biocatalyst to upgrade crude oils and refinery streams at industrial scale. 

Whole-genome analysis of these strains also revealed the presence of a high 

copy number of various monooxygenases and sulphur metabolism related 

genes that occurred in clusters. These genes offer potential target sites for 

future mutation strategies to forestall sulphate induced repression of the 

desulphurisation genes which warrants future investigation. 
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Chapter 1 Literature Review 

Fossil fuels are used on a vast scale throughout the world as an energy source 

for domestic and industrial use, and for transportation. The dependency on 

these finite fossil fuels is so fundamental to the growth and development of 

nations that humankind continues to rely on this consumption despite knowing 

the seriously deleterious environmental and health impacts associated with 

their use. However, growing environmental awareness has resulted in 

increased regulation of fuel quality, particularly regarding the harmful 

components inherently present in them. Sulphur, one of the key elements 

present in fossil fuels, is released during combustion as sulphoxide gases that 

pose hazards to human health and the environment (WHO, 2007). With 

increasingly stringent legislation that limits the permitted levels of sulphur in 

fossil fuels, considerable effort has been made to research and develop 

methods to minimise or eliminate sulphur from fossil fuels (El-Gendy and 

Nassar, 2018b). Current desulphurisation technologies rely on energy-

intensive catalytic chemical processes such as hydrodesulphurisation (HDS), 

which is costly and ineffective against the desulphurisation of polycyclic 

aromatic compounds (PACs). This has necessitated exploration into 

alternative desulphurisation technologies. Biodesulphurisation (BDS) 

technology utilises microbial enzymatic processes to remove sulphur from 

fossil fuels, with the advantage of relatively lower pollution and operational 

costs. However, this is not a full-scale technology for commercial processing 

even though several microorganisms capable of BDS have been discovered.  

In this literature review, the compelling reasons for fossil fuel desulphurisation 

are presented along with a critical review of the technologies that are being 

used or developed to achieve the same. BDS technology and the mechanisms 

of BDS reaction are described, followed by a review of previously reported 

microorganisms capable of BDS activity. The existing body of research is 

critically examined to understand the significant challenges associated with 

the development of BDS technology on a commercial scale. Finally, potential 

avenues to address some of the crucial issues around the development of 

robust biocatalysts capable of efficient desulphurisation of fossil fuels are 

explored. With a clear understanding of the current research trends and 
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methodology used for the development of BDS catalysts, the priorities and 

specific aims of this research are defined at the end of the review. 

1.1 Overview of sulphur compounds present in crude oil 

Petroleum is a broad term that includes crude oil and petroleum products. 

Crude oil is a complex mixture of hydrocarbons, organic and inorganic 

compounds, with trace amounts of metals such as vanadium and nickel that 

exists as a liquid in underground geologic formations and remains a liquid 

when brought to the surface. Petroleum products can be produced by the 

processing of crude oil or other forms of fossil fuels such as natural gas or 

synthesised by blending different finished petroleum products. Liquids 

produced at natural gas processing plants are not included within the term 

crude oil. The chemical composition and physical properties of crude oil vary 

significantly based on the location, origin and the type of crude. After carbon 

and hydrogen elements, sulphur is the third most abundant element in crude 

oils and can account for 0.05% to 14% (w/w) (Hamme et al., 2003). Sulphur in 

crude oil exists as elemental sulphur, hydrogen sulphide, pyrites and organic 

forms like thiols, sulphides, disulphides, thiolanes and thiophenes such as 

benzothiophene (BT), dibenzothiophene (DBT) and their alkylated derivatives 

(Kilbane and Le Borgne, 2004; Kropp and Fedorak, 1998; Soleimani et al., 

2007) as shown in Figure 1.1. Crude oil containing high levels of sulphur – 

more than 0.5% are classified as ‘sour’, whereas those with relatively low 

levels of sulphur are termed ‘sweet'. Sweet crude is the preferred form of crude 

because it is safer to extract and transport, and easier to refine than sour 

crude, and yields a higher proportion of the more valuable final petroleum 

products (Fattouh, 2010). Estimates of the sulphur content in crude oil vary 

from 1000 to 30,000 ppm. Typical sulphur concentrations in ‘straight run’ diesel 

(produced by simple distillation of crude oil with reasonably low aromatic 

hydrocarbons) often exceed 5000 ppm (Monticello, 2000). Due to the corrosive 

nature of sulphur, sour crude causes more damage to machinery in refineries 

and thus results in higher maintenance costs over time. The Carbon-Sulphur 

(C-S) bonds contribute to the high molecular weight and the inherent viscosity 

which makes crude oil processing both energy-intensive and costly for 

transportation through pipelines (Alomair et al., 2015; Kirkwood et al., 2005).  
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Thiols Sulphides Disulphides 

Thiophenes 

Benzothiophene 

(BT) 

Dibenzothiophene 

(DBT) 

Alkylated DBT 

(alkyl DBT) 

 

   
  

R, R’ – Alkyl groups; Ph – Phenolic groups 

Figure 1.1 Various forms of organic sulphur compounds in crude oil 
 

After extraction from the oil wells, crude oil is transported to oil refineries for 

fractional distillation into petroleum products based on the range of boiling 

points, with each fraction containing different levels of sulphur compounds as 

shown in Table 1.1. The distillates are then subjected to ‘hydroprocessing’ to 

meet environmental specifications, followed by ‘catalytic cracking’ (breaking 

up of large hydrocarbon molecules into smaller molecules using a combination 

of heat and catalytic action) and the final step of ‘blending’ of the various 

hydrocarbons components as per customer requirements (Speight, 2014). 

Gas oil is the technical name for the same petroleum product, which is called 

diesel by consumers, but the difference is the government tax associated with 

them. Over the years of usage, diesel engines are known for high efficiency, 

durability, and reliability together with their low-operating cost, which makes 

them the most preferred engines especially for heavy-duty vehicles (Reşitoğlu 

et al., 2015). The popularity of the diesel engines results in ever increasing 

demand for middle distillate (diesel) fuels, with a share of 36.1% of the total 

global oil consumption in 2018 (BP, 2019). Among the petroleum products 

obtained from crude oil, the middle distillate fractions contain a significant 

amount of sulphur (Table 1.1). Sulphur present in fuels inhibits the proper 

functioning of after-treatment systems such as diesel particulate filters, lean 

NOx traps, and selective catalytic reduction that are designed to reduce 

tailpipe emissions in vehicles. 
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Table 1.1. Percentage distribution of sulphur compounds in crude oil 
with 1.2% total sulphur. 

Distillation range (°C) 

Sulphur 

content 

of the 

fraction 

(%) 

Sulphur compound distribution (%) 

Thiols Sulphides Thiophenes 
BT, DBT & their 

alkyl derivatives 

70–180 (light distillate, 

naphtha) 
0.02 50 50 Trace - 

160–240 (kerosene) 0.2 25 25 35 15 

230–350 (middle distillate, 

gas oil, diesel) 
0.9 15 15 35 35 

350–550 (vacuum gas oil) 1.8 5 5 30 60 

> 550 (vacuum residue) 2.9 Trace Trace 10 90 

The table, adapted from Javadli & Klerk (2012), shows the representative sulphur levels 
present in the various distillates (fractions) obtained from a sample of crude oil with 1.2% total 
sulphur content. Within each fraction, light distillates comprising of aviation and motor gasoline 
and naphtha have a low sulphur content occurring as mostly thiols and sulphides, and only 
trace levels of thiophenes. The popular middle distillate fractions have higher 0.9% sulphur 
content, the majority of which is contributed by thiophenes, BT, DBT and alkylated derivatives. 

 

1.2 Impact of sulphoxide emission 

Sulphur is released into the atmosphere by natural processes such as volcanic 

eruptions; however, anthropogenic activities are the primary source of 

atmospheric sulphur pollution. When naturally existing fossil fuels are burned, 

sulphoxide gases (SOx), primarily sulphur dioxide (SO2) and sulphur trioxide 

(SO3), are released. Sulphur dioxide is a colourless gas with a pungent, 

irritating odour and taste. Among the sulphoxides (SO, SO2, SO3), SO2 is the 

major component and draws the maximum concern, and so SO2 is used as 

the indicator in the literature to refer to all the sulphoxides. In the UK, fossil 

fuel combustion in energy and transformation industries accounted for 35.2% 

of total SO2 emissions in 2017, while that from manufacturing industries and 

transportation-related sources was 22.5% and 9.2%, respectively (NAEI, 

2018).  

Plants are very susceptible to SO2, with levels of 1-2 ppm causing immediate 

damages, possibly by inhibiting photosynthesis (Schmidt et al., 1973). In 

animals, the respiratory system and the eyes are the primary organs affected 

by air pollution. SO2 inhalation may produce an urgent irritant effect on the 
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respiratory mucosa, and overexposure can lead to inflammation of the 

respiratory epithelium, bronchoconstriction, dyspnoea and other respiratory 

tract infections which lead to poor health and ultimately increased healthcare 

costs (Balmes et al., 1987; Ghozikali et al., 2015; Ko et al., 2007; Medley et 

al., 2002). SO2 deposition also occurs as acid rain (wet deposition) and as gas 

and particles suspended in the atmosphere (dry deposition; Griffith, 2009). 

Acid rain accelerates the erosion of historical buildings, monuments and other 

artefacts exposed to the atmosphere and agricultural crops that have a direct 

impact on the economy (Bender and Weigel, 2011; Larssen et al., 2006). The 

acid is transferred to soil, where it damages foliage and agricultural crops, with 

a direct impact on the economy. Acid depresses the pH of lakes with low 

buffering capacity and endangers marine life (Breeze, 2017). Sulphuric acid 

deposition in areas where soils have been degraded due to deforestation 

depletes the levels of free Ca2+, Mg2+, and K+ cations which are essential 

nutrients for plants. Insoluble Aluminium compounds are leached and 

converted into soluble Al3+ and AlOH2+ ions under acidic conditions. These 

soluble ions are toxic to terrestrial plants and animals. As the forests and 

ponds are increasingly acidified by acid rain, the lifecycle of animals such as 

anurans dependent on them are also severely affected (Antal and Puttonen, 

2006). In mining areas, inadvertent cracks are on the aquiclude, through which 

acid rain percolates and may reduce the strength of the weakest rocks and 

consequently lead to landslides (Zhang and McSaveney, 2018). SO2 

combines with dust to form sulphate aerosols that caused haze problems in 

China and India (Li et al., 2017). Indeed, sulphate aerosols have been 

correlated to the reduction in sunlight reaching earth's surface causing a 

‘global dimming’ effect which influences the global climate and life on our 

planet (Stern, 2006; Wild, 2014).  

1.3 Standard sulphur limits in fuel 

When the legislation limiting sulphur levels was initially introduced, not all 

countries engaged readily with this change. It took multinational efforts and 

formation of international agencies to set the limits which have been made 

increasingly stringent over the period since their introduction. In Europe, a 

timeline for achieving lower sulphur levels in diesel fuels was established in 
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the 1999 Gothenburg Protocol that set emission targets to abate acidification. 

The Directive 1999/32/EC required the sulphur content in diesel to be 

decreased gradually from 2000 ppm in the year 1994 to 350 ppm in 2000 

(EURO III), and subsequently to <50 ppm in 2005 (EURO IV) and to <10 ppm 

in the year 2010 (EURO V). Because of its historical importance since the 

industrial revolution, monitoring of SO2 has been extensive in Europe, and a 

long-term database of 24-hour SO2 measurements is available. Most countries 

use the European (EURO) standards to measure sulphur in fuels but use 

different names to describe them. The current Ultra-Low Sulphur (ULS) fuel 

specification around the world include Bharat Stage 6 (BS-6) in India, China 

VI in China, Tier III in the US, AFRI 4 in Africa, among others. The latest 

environmental regulations, such as the TIER III and EURO V demand a 

maximum of 10 ppm total sulphur in diesel oils. In Japan sulphur limits were 

drastically reduced from 2,000 ppm in 1992 to 500 ppm in 1997, followed by a 

further 10 fold reduction in 2004, and by 2007 it was reduced to 10 ppm. As of 

2017, India required on-road diesel and gasoline nationwide to meet BS-4 

specifications (<50 ppm sulphur), which will tighten to BS-6 (<10 ppm sulphur) 

by 2020. The maximum of 10 ppm sulphur limit is also included in the Chinese 

norms GB 19147-2016 for diesel fuels deriving from the CHINA V 

environmental program which was fully implemented at the end of 2017. As of 

2017, 11 African countries Morocco, Mauritius, Kenya, Uganda, Tanzania, 

Rwanda, Burundi, Ghana, Mozambique, Malawi and Zimbabwe moved to low-

sulphur fuels (AFRI 4 - equivalent to EURO 4), with Morocco and Tunisia 

having implemented ULS fuels already. The push for lower-sulphur 

transportation fuels has also impacted the global shipping sector, as well. After 

years of unwillingness to implement stringent sulphur limits on marine fuels, 

the International Maritime Organization (IMO) made a landmark decision to 

limit sulphur from the current level of 3.5% to 0.5% in marine fuels globally 

from the year 2020 (IMO, 2016).  

1.4 Technologies for desulphurisation of crude oil-derived fuels 

Adhering to low-sulphur and ULS standards is capital-intensive for refiners, as 

it requires upgrades and new units to the existing refineries to meet Euro IV 

and Euro V standards. This has driven the need for improvements in 
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hydrodesulphurisation technology and the development of alternative 

desulphurisation technologies. 

1.4.1 Hydrodesulphurisation (HDS) 

Currently, Hydrodesulphurisation (HDS) in combination with carbon rejection 

technologies, such as coking and fluid catalytic cracking (FCC), is the most 

common technology in the petroleum industry to reduce the sulphur content of 

crude oil. In the HDS process, the fossil fuel and hydrogen gas are fed together 

to a fixed-bed reactor containing an HDS catalyst such as Nickel–Molybdenum 

(NiMo) or Cobalt–Molybdenum (CoMo) packed on an Al2O3 matrix, which under 

high temperature (200 - 455 °C) and pressure (150 - 3000 psi), remove sulphur 

from organosulphur compounds as H2S by hydrogenation or hydrogenolysis, 

respectively (Boniek et al., 2015). The hydrogenation and hydrogenolysis 

reactions depend on the size and structure of the individual S compound. In 

the case of DBT, HDS has been reported to follow two pathways. One is a 

direct hydrogenolysis pathway (DDS) where sulphur is removed without 

interfering with the aromatic ring, whereas in the hydrogenation 

desulphurisation (HYD) pathway, aromatic rings of DBT compounds are 

preferentially hydrogenated to 4H-or 6H-DBT intermediates that are 

subsequently desulphurised as shown in Figure 1.2. The DDS proceeds faster 

than the HYD pathway (Srivastava, 2012).  

As the number of rings and methyl substituents is increased, the HDS 

reactivity of the sulphur compounds is notably reduced as the substituents 

make it difficult for hydrogen to reach the sulphur atom. This is termed steric 

hindrance, which slows down the reaction rate. HDS of inorganic and aliphatic 

sulphur compounds such as thiols and sulphides, aliphatic acyclic sulphides 

(thioethers) and cyclic sulphides (thiolanes) is consequently more 

straightforward than desulphurisation of compounds that contain aromatic 

sulphur, such as thiophenics and its benzologs (e.g. benzothiophene (BT), 

dibenzothiophene (DBT), benzonaphthothiophene) (Gray et al., 1995). HDS 

becomes increasingly expensive, and the reaction becomes less efficient in 

handling sulphur removal as lower sulphur levels are reached in the fuel feed 

(Linguist and Pacheco, 1999), as illustrated in Figure 1.3 
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Figure 1.2: Pathways for the HDS of DBT at 300°C and 1500 psi 
catalysed by CoMo/Al2O3.  

Adapted from Houalla et al. (1980) 

The bulk of inorganic sulphurs and simple organic sulphurs can be removed 

by existing HDS technology, however up to 70% of the sulphur in crude oil is 

found as dibenzothiophene (DBT) and substituted DBTs which are particularly 

recalcitrant to removal by HDS (Borgne and Quintero, 2003). Under deep 

desulphurisation conditions in HDS, the reactivity of the sterically hindered 

alkyl DBTs is inhibited by different contaminants such as H2S, nitrogen-

containing compounds and aromatic molecules. Organic nitrogen compounds 

have stronger adsorptive strength for the catalyst’s active sites than that of 

sulphur-containing compounds. The resulting degree of inhibition depends on 

the type and concentration of the organic nitrogen compounds (Stanislaus et 

al., 2010). The average nitrogen content in straight-run light gas oil feeds is in 

the range of 100–300 ppm, whereas cracked distillate feeds (e.g. light cycle 

oil, coker gas oil), usually contain higher nitrogen levels (>500ppm). Reducing 
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the nitrogen content of diesel feeds increased HDS reactivity significantly 

(Yang et al., 2004). 

 

Figure 1.3 Relationship between HDS reactivity and the size of the 
model organosulphur compounds.  
Adapted from Song (2003) 

Thiophenic sulphur is resonance stabilised and resistant to removal by 

cracking. Hence extreme hydrogenation (deep desulphurisation) using a 

NiMo/Al2O3 catalyst under high temperature and pressure conditions is 

required for the HDS of refractory compounds such as DBT and 4,6-dimethyl 

dibenzothiophene (4,6-DMDBT) in order to achieve legally required levels of 

desulphurisation (Bataille et al., 2000). This increases the cost of HDS further, 

and it is not particularly effective against DMDBTs (Ma et al., 1994; Shafi and 

Hutchings, 2000). During deep desulphurisation, the HDS process releases 

metals (Ni, V) found in the fuels and large amounts of organic nitrogen 

compounds present in the diesel. These are deposited over time on the 

catalyst surface and lead to catalyst deactivation. Aromatic compounds in 

diesel burn out at a high temperature and are reduced to elemental carbon 

(coking) - this also leads to catalyst deactivation (Corma et al., 2001). 
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1.4.2 Other desulphurisation techniques 

HDS is an established method of industrial-scale desulphurisation, hence any 

feasible alternative desulphurisation method must prove more efficient and/or 

cost-effective than HDS. Oxidative desulphurisation (ODS), oxidation 

extraction desulphurisation (OEDS), and adsorptive desulphurisation (AD) are 

alternative desulphurisation technologies being explored to produce ultra-

clean fuels. However, these technologies also have potential drawbacks 

(Srivastava, 2012).  

The phenomenon that organosulphur compounds are more soluble than 

hydrocarbons in certain solvents has been exploited to develop solvent-

extraction based desulphurisation technology. This method does not require 

hydrogen gas and operates at ambient temperature (Babich & Moulijn 2003). 

Many research studies employing conventional solvents (e.g. ethanol, 

acetone, polyethylene glycol, acetonitrile, γ-butyrolactone, 

dimethylformamide), nitrogen-containing solvents (e.g. amines, pyrrolidones), 

or sulphur containing solvents (e.g. DMSO and sulpholane) for extracting the 

sulphur from fuels have been reported (Stanislaus et al., 2010). However, 

extraction using these solvents does not reduce the sulphur content to ultra-

low levels (<10 ppm). 

Extractive desulphurisation becomes less selective as the heaviness of the oil 

increases. Also, aromatic hydrocarbons may be co-extracted with the sulphur, 

which affects the calorific value of the fuel. Extractive desulphurisation 

methodologies are currently being developed using ionic liquids, salt-like 

materials that exist in a liquid state at room temperature up to 100°C. These 

are non-volatile, and their hydrophobic or hydrophilic nature can be modulated 

by modifying both cation and anion. Ionic liquids such as chloroaluminate, 

hexafluorophosphate and tetrafluoroborate have been shown to possess good 

selectivity for organosulphur compounds in crude oil (Bösmann et al., 2001). 

This technology is still in the development stage as there are several issues to 

be overcome, such as regeneration of ionic liquids for repeated cycles of 

extraction, reducing the number of cycles for efficient separation and the cost-

effectiveness of the process.  
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Oxidation based desulphurisation methods use oxidants (usually H2O2 or 

H2SO4) to convert sulphur compounds to sulphones with a high polarity that 

can subsequently be readily extracted using polar solvents. However, the 

oxidant is stoichiometrically consumed during the process, and it would require 

large quantities of the oxidant to treat heavy oils on an industrial scale, which 

would make the process very expensive (Javadli and Klerk, 2012). 

Desulphurisation of gas oil using an ultrasound-assisted catalytic oxidative 

process is reported to benefit from fast and mild operating conditions with high 

efficiency (Ja’fari et al., 2018). However, the operational factors such as time, 

temperature, the oxidizing agent, frequency, power, and catalyst must be 

studied in more detail before commercial application. 

Adsorption desulphurisation using biologically derived sorbent materials (e.g. 

carbonised material from date palm kernel) has been proposed as an 

economically attractive alternative technology (Zubaidy et al., 2013). The 

process is operated at ambient temperature and pressure, without 

consumption of hydrogen or oxygen. Building on this, several different kinds 

of adsorbents based on activated carbon, and agro-waste such as 

pomegranate leaf powder (Sadare and Daramola, 2018) and bamboo-derived 

porous biochar (Yang et al., 2018) based adsorbents have been explored by 

researchers for the desulphurisation of crude oil distillates, especially diesel. 

The operating cost of the process differs with the choice of the adsorbent used. 

It has been proposed that the activity of the adsorbents could be enhanced by 

molecular imprinting technology to create specific molecular recognition sites 

in polymers to identify sulphur-bearing template molecules (Yang et al., 2014). 

This approach is only in the early stages of the investigation. 

In addition to achieving the necessary ultra-low sulphur level fuels on a 

commercial scale, an ideal desulphurisation process should require minimal 

energy (operational costs) and involve straightforward means for the 

removal/extraction of the final oxidized sulphur product. Achieving efficient 

deep desulphurisation of fuels is the major challenge with current 

technologies. Hence, alternative methods that can solve this problem would 

be of enormous value and commercial importance. Biodesulphurisation, using 

microorganisms (bacteria or fungi), has been shown to solve the problem of 
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removing sulphur from the refractory organic compounds and therefore is a 

highly active area of research. The challenges outlined above for HDS and 

alternative chemical-based technologies mean that alternative, environment-

friendly and cheaper technologies for desulphurisation of refractory organic 

compounds found in fuels have been explored. 

1.5 Biodesulphurisation (BDS)  

Sulphur is an essential nutrient for growth and metabolic activity in all living 

organisms. It is a vital component of proteins through the amino acids cysteine 

and methionine, and the disulphide bonds that render the proteins their 3D 

structure. It is an active constituent of numerous coenzymes and prosthetic 

groups (e.g. iron sulphur centres, coenzyme-A, thiamine, lipoic acid, S-

adenosylmethionine, glutathione). In the case of bacteria, sulphur represents 

about 0.5–1% of their dry weight (Guobin et al., 2006). Inorganic sulphate is 

the preferred sulphur source for the growth of most microorganisms, including 

bacteria. However, inorganic sulphates are not prevalent in nature, whereas 

alternative sulphur sources such as sulphonates (R-C-SO3) and sulphonate 

esters are found as naturally occurring products or as xenobiotic compounds, 

making up over 95% of the sulphur content of most aerobic soils (Autry and 

Fitzgerald, 1990; Kertesz, 2000; Scherer, 2009). Bacteria have evolved ways 

to acquire sulphur from alternative sources available in the environment under 

sulphur-limiting conditions, by producing additional proteins that enable 

metabolism of sulphur sources available in the environment (Kertesz and 

Wietek, 2001; Kirkwood et al., 2005). These sulphate starvation-induced 

proteins could either be enzymes with catalytic functions or transport systems 

involved in scavenging and metabolising the alternative sulphur sources 

(Kertesz and Wietek, 2001; Kertesz, 2000). The ability of certain 

microorganisms to utilise the refractory organic compounds as their sulphur 

source could potentially be exploited for desulphurisation of sulphur-containing 

fuels (Kilbane II, 2006; Kilbane, 1989). 

In the higher boiling fractions of crude oil, more than 60% of the sulphur occurs 

as DBT and substituted DBT derivatives (Kropp and Fedorak, 1998). BT 

predominates in gasoline, and DBT and its alkylated derivatives predominate 

in the diesel fraction (Gupta et al., 2005; Ma, 2010; McFarland et al., 1998). 
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BT and DBT have the fundamental ring structure typical for all polycyclic 

aromatic compounds (PACs) found in fuel, and therefore, they have been 

historically used as ideal model compounds to test for BDS capability in the 

development stages of BDS research.  

Several bacteria, fungi and yeast have been shown to metabolise DBT. 

However, only the naturally existing microorganisms capable of extracting 

sulphur by non-destructive degradation of polycyclic aromatic organosulphur 

compounds are of value for BDS. Fungi such as Paecilomyces sp. TLi (Faison 

et al., 1991), Cunninghamella elegans (Crawford and Gupta, 1990), 

Aspergillus-like fungus (Acharya et al., 2005), Stachybotrys sp. WS4 

(Torkamani et al., 2008), white-rot fungus Trametes versicolor ATCC 200801 

and Phanerochaete chrysosporium ME 446 (Aytar et al., 2008), were 

previously reported to be capable of DBT oxidation without the formation of 

biphenyl. Yeast such as Rhodosporidium toruloides, Candida parapsilosis S1-

Y1 and Cryptococcus humicolus S1-Y2 (Bayoumi et al., 2009) and filamentous 

ascomycetes Exophiala spinifera (Elmi et al., 2015) and Stachybotrys bisbyi 

(Gherbawy et al., 2016) have been proposed for BDS recently, where the 

metabolism of DBT proceeds further beyond 2HBP to less toxic metabolites. 

In general, fungi only  e DBT effectively into DBT-sulphones. The metabolic 

pathway further downstream varies across fungal species and is not yet fully 

understood (Linder, 2018). On the other hand, metabolic pathways of DBT in 

bacterial systems are well established, and are more efficient than fungi, 

making bacteria the preferred microorganisms for the development of BDS 

technology. Collated and curated information about bacterial BDS pathways, 

enzymes and genes are available in specialised knowledge bases for 

microbial biocatalytic reactions and biodegradation pathways. The University 

of Minnesota Biocatalysis/Biodegradation Database (Eawag-BBD; Gao et al., 

2010) includes the DBT degradation (Kodama) pathway (http://eawag-

bbd.ethz.ch/dbt2/dbt2_map.html); DBT desulphurisation (4S) pathway 

(http://eawag-bbd.ethz.ch/dbt/dbt_map.html); and the BT desulphurisation 

pathway (http://eawag-bbd.ethz.ch/btp/btp_map.html). MetaCyc (SRI 

International, Canada) is another comprehensive database that provides a 

curated collection of metabolic pathways and enzymes from all domains of life; 

the MetaCyc Pathway code for DBT desulphurisation is PWY-681. The 4S 

http://eawag-bbd.ethz.ch/dbt2/dbt2_map.html
http://eawag-bbd.ethz.ch/dbt2/dbt2_map.html
http://eawag-bbd.ethz.ch/dbt/dbt_map.html
http://eawag-bbd.ethz.ch/btp/btp_map.html
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pathway is described up to the formation of 2-hydroxybiphenyl (2HBP). 

Interestingly, MetaCyc provides links to another metabolic pathway (PWY-

7008), by which 2HBP is metabolised into benzoate by Pseudomonas 

nitroreducens. 

1.6 Bacterial BDS Pathways 

Bacteria can metabolise organosulphur compounds for different nutritional 

requirements, including both carbon and sulphur source. When used as a 

carbon source, the hydrocarbon backbone of the organic compound is broken 

or destroyed. While early research on BDS technology (pre-1990) focussed 

on bacterial strains that were only capable of complete metabolism 

(degradation) of the organosulphur compounds in fuels, later investigations 

focussed on strains (both anaerobic and aerobic bacteria) with a non-

destructive sulphur-specific metabolic pathway. The efficiency of anaerobic 

BDS process was less than that of aerobic BDS process, and there is little 

evidence for the commercial potential of anaerobic desulphurisation owing to 

the high costs associated with maintaining culture conditions and supplying 

the hydrogen required for the anaerobic BDS process. Therefore, aerobic 

desulphurisation has been more widely considered (Gupta et al., 2005; Nazari 

et al., 2017). 

1.6.1 The Kodama pathway  

In the early stages of BDS research, bacteria that could metabolise DBT as 

their energy source were explored. A Japanese research team showed that 

microorganisms could attack thiophenic compounds in a series of oxidation 

steps, converting them into water-soluble compounds and termed this the 

‘Kodama pathway’ (Kodama et al., 1973). In this pathway, the peripheral 

aromatic ring of DBT is cleaved following 3 main steps - hydroxylation, ring 

cleavage and hydrolysis (Gupta et al., 2005; Mohebali and Ball, 2008; 

Soleimani et al., 2007) as shown in Figure 1.4. Members of several bacterial 

genera have been reported to follow this pathway for DBT utilisation, the 

predominant one being Pseudomonas (for example, P. alcaligenes and P. 

putida) (Hartdegen et al., 1984; Monticello and Finnerty, 1985).  
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The Kodama pathway is a destructive BDS pathway in which C-C bonds in the 

DBT molecule are broken, and sulphur is not selectively removed from the 

organic molecule, as shown in Figure 1.4. The end product, water-soluble 3-

hydroxy-2-formylbenzothiophene, is still a complex organic sulphur-containing 

compound but has a lower carbon content than DBT, and removal of this 

compound from the fuel undesirably reduces its overall hydrocarbon carbon 

content. Hence, due to its destructive nature, the Kodama pathway reduces 

the calorific value of the fuel that is being desulphurised.  

 

 
Figure 1.4: Kodama pathway of DBT metabolism 
Adapted from (Gupta et al., 2005; Soleimani et al., 2007) The pathway beyond HFBT are not 
precisely known. 

 

Ideally, bacterial strain considered suitable for application in an industrial 

desulphurisation process, should cleave only the C-S bonds, and leave the C-

C bonds to remain intact. This selectivity is necessary because it means that 

fuel can be desulphurised without affecting the calorific value (Mohebali and 

Ball, 2008). The majority of research in the past two decades has therefore 

focussed on strains that follow the ‘4S pathway’, an oxidative desulphurisation 

pathway that cleaves only the carbon-sulphur bond in DBT and leaves the 

hydrocarbon skeleton intact (Abin-Fuentes et al., 2013). 
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1.6.2 The 4S pathway  

The 4-step pathway of biodesulphurisation or the ‘4S pathway’ involves an 

oxidative cleavage of the C-S bond in DBT. This pathway was first described 

in 1988 by pioneers at Gas Technology Institute, USA (formerly, Institute of 

Gas Technology (IGT)) for the DBT desulphurisation mechanism of 

Rhodococcus erythropolis strain IGTS8 (Gallagher et al., 1993; Kilbane, 1990; 

Mohebali and Ball, 2008). The ‘4S pathway’ is a targeted desulphurisation 

pathway in which DBT is desulphurised and converted to 2-hydroxybiphenyl 

(2HBP). Through this pathway, shown in Figure 1.5, only the C-S bond in the 

DBT is specifically cleaved, and the hydrocarbon skeleton of DBT is released 

intact with no loss in the calorific value of the fuel. Hence the use of this 

pathway is proposed for the commercial desulphurisation of petroleum 

products in production fields and also refineries (McFarland, 1999; Monticello, 

2000). 

The 4S pathway is a multi-enzymic process involving a sequential activity of 

two cytoplasmic flavin-dependent monooxygenases (DszC and DszA) and a 

desulfinase (DszB) that catalyse 4-step sequential reactions as illustrated in 

Figure 1.5. The reduced flavin (FMNH2) required for the activity of DszC and 

DszA is supplied by the concurrent activity of an NADH-dependent FMN 

oxidoreductase (DszD) (Gallagher et al., 1993; Gray et al., 2003, 1996). The 

enzyme DszC converts DBT into DBT-sulphoxide (step 1) and DBT-sulphone 

(step 2). The enzyme DszA converts DBT into 2′-hydroxybiphenyl-2-sulfinic 

acid (step 3), and as the final step 4, the enzyme DszB hydrolyzes 2′-

hydroxybiphenyl-2-sulfinic acid into 2-hydroxybiphenyl (2HBP) and sulphite 

(SO32-). These enzymes have been associated with the BDS activity of R. 

rhodochrous IGTS8 (Gray et al., 1996), R. erythropolis D-1 (Ohshiro et al., 

1997), and Paenibacillus sp. strain A11-2 (Konishi et al., 2000a). The structural 

and functional aspects of purified forms of these enzymes have been studied 

in detail (Duan et al., 2013; Hino et al., 2017; Lee et al., 2006a; Liu et al., 

2014b; Okai et al., 2017).  
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Figure 1.5: The 4S pathway of DBT desulphurisation 
Adapted from (Boniek et al., 2015; Soleimani et al., 2007; Gallagher et al., 1993; Javadli and 
Klerk, 2012)  

 

DszC or DBT monooxygenase - catalyses the conversion of DBT to DBT-

sulphone (DBTO2) in a two-step process with DBT sulfoxide (DBTO) being the 

intermediate compound. Isotopic labelling studies indicate that the two oxygen 

atoms needed for the reactions are molecular oxygen obtained from the air 

during the aerobic growth of the microorganism. The first step (DBT to DBTO) 

with a rate constant of 0.06 min−1 is 10 times slower than the second step 

(DBTO to DBTO2) with a rate constant of 0.5 min-1. DszC enzyme of R. 

rhodochrous IGTS8 shows homology to acyl coenzyme-A and is a 

homotetramer with a subunit molecular weight of 50 kDa. In the case of R. 

erythropolis D-1, this enzyme is a homohexamer with a subunit molecular 

weight of 45 kDa. This enzyme can act on the DBT and its derivatives such as 

4,6-dimethyl DBT, 2,8-dimethyl DBT, and 3,4-benzo-DBT but it does not show 

any activity on other polycyclic aromatic compounds with a structure similar to 

that of DBT, such as carbazole, dibenzofuran or fluorene. In these latter 

compounds, the sulphur atom is replaced by nitrogen, oxygen and hydrogen, 

respectively.  
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DszA or DBT-sulphone monooxygenase - oxidizes DBTO2 to 2-(2′-

hydroxyphenyl) benzene sulfinate (HPBS). It is a homodimer with a subunit 

molecular weight of 50 kDa, and the optimum pH and temperature for its 

function are pH 7.5 and 35°C, respectively. However, the DszA from 

thermophilic Paenibacillus sp. strain A11-2 is optimal at 45°C and stable up to 

60°C. Monooxygenase enzymes, in general, show a 1.7-fold higher activity 

towards 4,6-dimethyl-DBT-sulphone as compared to DBT-sulphone. The 

activity of the enzyme from R. erythropolis D-1 is inhibited by 50% in the 

presence of 1 mM EDTA or any other chelating agents but no inhibition is 

observed in the case of R. rhodochrous IGTS8 even in the presence of 10 mM 

EDTA (Gray et al., 1996; Ohshiro et al., 1997). 

Flavin dependant monooxygenases contain flavin as a prosthetic group and 

require NADP or NADPH as a coenzyme. Based on the chemical reactions 

catalysed by them, DszC and DszA are classified as  

• Oxidoreductases (EC 1) 

• Acting on paired donors, with incorporation or reduction of molecular 

oxygen (EC 1.14) 

• With reduced flavin or flavoprotein as one donor, and incorporation of 

one atom of oxygen into the other donor given enzyme commission 

numbers (EC 1.14.14) 

Unlike other monooxygenases which transfer a single oxygen atom to a 

carbon, DszC supplies two oxygen atoms sequentially to the sulphur atom of 

DBT. This makes DszC a unique member of the flavin monooxygenase family. 

The DszC and DszA have been assigned Enzyme Commission numbers EC 

1.14.14.21 and EC 1.14.14.22, respectively. These enzymes have been 

recorded to form a two-component system with NADH-dependent FMN 

reductase DszD with EC number 1.5.1.42, based on its reaction as an 

oxidoreductase (EC 1); acting on the CH-NH group of donors (EC 1.5), and 

with NAD+ or NADP+ as acceptor (EC 1.5.1). 

DszB or HPBS desulfinase - catalyses the conversion of 2’-hydroxybiphenyl-

2-sulfinate (HBPS) to 2-hydroxybiphenyl (2HBP) and sulphite. It is produced 

in relatively lower quantities than DszA and DszC, and therefore it is the rate-
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limiting enzyme of the 4S pathway. It is a monomer with a subunit molecular 

weight of 39 kDa (Lee et al., 2006b), and it is functional over a broad 

temperature range (25–50°C), the optimum being 35°C between a pH range 

of 6.0 – 7.5 in the case of Rhodococcus IGTS8 (Watkins et al., 2003). 

Interestingly, the enzyme has been shown to lose activity irreversibly when the 

only cysteine residue in its amino acid sequence was modified. The catalytic 

activity of DszB is inhibited by one of the reaction products 2HBP, but not by 

sulphite. Moreover, the DszB enzyme has a narrow substrate specificity: only 

HBPS and its derivates (Nakayama et al., 2002), and it was proposed to 

belong to a unique class of desulfinase enzymes based on its 3D structure 

(Ohshiro et al., 2007). DszB is not assisted by pyridoxal 5’-phosphate or any 

other cofactor, which further distinguishes it from the other enzymes that 

catalyse desulfination, (e.g. cysteine sulfinate desulfinase, L-aspartate β-

decarboxylase) (Geronimo et al., 2017). Based on the chemical reaction 

catalysed by DszB, it was classified as a 

• Hydrolase (EC 3) 

• Acting on carbon-sulphur bonds (EC 3.13) 

• Acting on carbon-sulphur bonds (only sub-subclass identified to date) 

(EC 3.13.1), 

and it remains as the only member of its class EC 3.13.1. 

The end product of the 4S pathway, 2-hydroxybiphenyl (2HBP) and its 

derivatives are often used as the indicator for a strong BDS reaction. It can be 

detected qualitatively by Gibbs assay (Kayser et al., 1993; Mohamed et al., 

2015; Mohebali et al., 2008; Wang et al., 2013a) or measured quantitatively 

using GC-MS (Khedkar and Shanker, 2015; Labana et al., 2005; Li et al., 

2005b) or HPLC (Calzada et al., 2012; Caro et al., 2007; Piddington et al., 

1995). Gibbs assay is a colourimetric method that is widely used to confirm 

the BDS of DBT. The test relies on the reaction between phenol formed as a 

result of DBT desulphurisation (2HBP) and the Gibbs reagent (2,6 

dichloroquinone-4-chloroimide) to form indophenol that is visualised as a deep 

blue colour (Gibbs, 1927; Pallagi et al., 1994; Svobodová et al., 1978). Gibbs 

assay is described in detail in section 3.1.2. The inhibitory effects of 2HBP on 

the growth and BDS activity of bacteria have been recognised since the early 
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days of BDS research (Akhtar et al., 2009) and it remains a significant problem 

(Kilbane II, 2017). The minimum amount of cytoplasmic 2HBP concentration 

to inhibit the activity of the enzymes DszA, DszB, and DszC by 50%, is 60, 

110 and 50 µM, respectively (Abin-Fuentes et al., 2013). 

1.6.3 Pathways of BT desulphurisation 

In contrast to DBT-desulphurising bacteria, little is known about the organisms 

that can desulphurise BT exclusively, both in terms of the enzymes and genes 

associated with the BT-desulphurisation pathway (Ma, 2010). Owing to the 

mutagenic and carcinogenic nature of benzothiophene derivatives, only those 

bacterial species that have developed tolerance to these compounds survive 

in oil-contaminated environments (Kropp and Fedorak, 1998). It has been 

proposed and widely understood that sulphur-specific degradation (the 

cleavage of carbon-sulphur bonds) in BT occurs by a mechanism similar to the 

4S pathway of dibenzothiophene desulphurisation (Gilbert et al., 1998; 

Kirimura et al., 2002). 

Figure 1.6 shows two divergent pathways (a & b) for BT desulphurisation, with 

the two different end products proposed to date (Kirkwood et al., 2007a). In 

both pathways, benzothiophene (BT) is first oxidized to benzothiophene-S,S-

dioxide in a two-step process with benzothiophene-S-oxide as intermediate. 

In the case of Gordonia desulfuricans 213E which exhibits pathway b, the 

sulfinate group is removed with oxygenation of the molecule, giving 2-(2’-

hydroxyphenyl)ethan-1-al (HPEal; Gilbert et al., 1998). In the case of 

Sinorhizobium sp. KT55 (pathway a), the final product is o-hydroxystyrene, 

produced through desulfination of the molecule, without the oxygenation of the 

carbon atom (Konishi et al., 2000b). Both end products were reported for BT 

desulphurisation by Rhodococcus sp. strain WU-K2R, where the HPEal was 

further converted to Benzofuran (Kirimura et al., 2002). Benzofuran was also 

reported as the end product in the case of Gordonia rubropertinctus T08 

(Matsui et al., 2001b) and Mycobacterium phlei WU-0103 (Ishii et al., 2005). 
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Figure 1.6: Proposed BT desulphurisation pathways 
a - BT desulphurisation pathway reported for Sinorhizobium sp. KT55 
b - BT desulphurisation pathway proposed for Gordonia sp. 213E 

 

1.7 Avenues for the improvement of BDS technology 

The ‘4S Pathway’ is a multi-enzyme process, involving the enzymes DszC and 

DszB that require a constant supply of FMNH2 as a co-substrate, and therefore 

it is desirable to have growing cells to sustain the BDS functionality and to 

develop continuous bioprocess (Lin and Tao, 2017; Setti et al., 1997). BDS 

research ultimately aims to develop a commercial process for petroleum 

desulphurisation. Mass production of biocatalysts with a broad substrate 

specificity and high BDS rates has been suggested as an effective way to 

decrease the bioprocessing costs. However, there are other inherent critical 

issues in terms of the bacterial biocatalysts used for the process. Despite 

being a very critical element for growth, sulphur is not required in high 

quantities by bacteria naturally (Kilbane, 1990). Therefore, natural dsz gene 

regulation in BDS strains, which is often based on the sulphur needs of the 

bacteria, results in lower levels of dsz gene expression than would be required 

for industrial application. Monticello (2000) estimated that consistent 

desulphurisation rate of over 1.2 mmol of DBT/g (dry cell weight)/hour of the 

catalyst was needed to achieve <15 ppm in fuels. To achieve current sulphur 

specification (<10 ppm), biocatalysts with a desulphurisation activity of 3 mmol 

of DBT/g (dry cell weight)/hour are required (Kilbane II, 2006; Mohebali and 

Ball, 2008). Furthermore, the BDS activity of various naturally occurring 

bacteria can be completely repressed by sulphate or other readily bioavailable 

sulphur sources, including methionine, cysteine, taurine, methanesulfonic acid 
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and Casamino acids. The sulphate induced repression of BDS activity is an 

ongoing challenge (El‐Gendy and Nassar, 2018; Mohebali and Ball, 2008).  

The main strategies to date for BDS technology improvement include process 

engineering optimisation and development of recombinant BDS strains with 

enhanced BDS activity, notwithstanding the search for new naturally occurring 

bacterial isolates with desired BDS characteristics naturally (Martínez et al., 

2016). In terms of strain enhancement, research has focussed on increasing 

dsz gene expression and elimination of natural gene repression. The dszABC 

operon of R. erythropolis IGTS8 (NCBI accession: L37363) described by 

Piddington and co-workers (1995) serves as the reference gene sequence for 

many genetic engineering and mutation studies in this field. The dsz operon 

of IGTS8 is a single plasmid-borne operon containing three open reading 

frames dszA, dszB and dszC, that encode three proteins, DszA, DszB, and 

DszC, respectively that are involved in the conversion of DBT to 2HBP. The 

dszD gene for DszD is not located near this cluster but occurs in the 

chromosomal DNA (Gray et al., 1996) (Oldfield et al., 1997). These dsz genes 

have been isolated, cloned, mutated and overexpressed by various genetic 

engineering strategies with the aim of generating recombinant BDS strains or 

enhancing the BDS capability of the native strains (Aliebrahimi et al., 2015; 

Gallardo et al., 1997; Li et al., 2008a; Li et al., 1996; Martínez et al., 2016; 

Meesala et al., 2008; Shavandi et al., 2009). The genetic engineering 

strategies (summarised in Table 1.2) included the rearrangement of the dsz 

gene cluster, increasing the copy number of the dsz genes, and the expression 

of heterogeneous equivalents of the FMN reductase (DszD). Cloning and 

expression of genes such as hpaC (encodes 4-Hydroxyphenylacetate 3-

monooxygenase for the oxidation of 4-hydroxyphenylacetate in E. coli; Galán 

et al., 2000), vbg (encodes Vitreoscella haemoglobin VHb; Mu et al., 2017; 

Xiong et al., 2007), FMN:NADPH oxidoreductase genes from Vibrio harveyi 

(Xi et al., 1997) and Photobacterium fischeri (Lei and Tu, 1996) have been 

shown to improve the activity of DszC and DszA. As an alternative approach, 

the dszABC genes cloned downstream of different promoters, e.g. 16S rRNA 

rrn promoter from Rhodococcus sp. strain T09 (Matsui et al., 2002); heat shock 

protein Hsp60 promoter from Mycobacterium sp. strain SP3 (Takada et al., 

2005); lac promoter from E. coli (Alves et al., 2007; Shavandi et al., 2009) have 
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been used to achieve constitutive expression of dsz genes even in the 

presence of sulphates. 

Table 1.2 Genetic engineering strategies for BDS strain enhancement 
Genetic Engineering 

Strategy 
Expression Host Organism Reference 

Rearranging the dsz gene 

cluster  

 

Rhodococcus sp. T09  Matsui et al., 2001a 

R. erythropolis KA2-5-1  Hirasawa et al., 2001 

R. erythropolis KA2-5-1 Kilbane II, 2006 

R. erythropolis DS-3 Li et al., 2008a 

E. coli DH10B Reichmuth et al., 2004 

Expression of 

heterogeneous or 

modified FMN reductase 

dszD gene 

 

E. coli and P. putida 
Galán et al., 2000; 

Reichmuth et al., 2000 

Pseudomonas sp. Galán et al., 2000 

E. coli BL21 Lei and Tu, 1996 

E. coli DH10B Reichmuth et al., 2004 

R. erythropolis LSSE8-1 Xiong et al., 2007 

R. erythropolis IGTS8 Kamali et al., 2010 

Altering the promoter 

sequence of dszABC 

operon  

R. erythropolis IGTS8 Rambosek et al., 1999 

Rhodococcus sp. T09 Matsui et al., 2002 

R. erythropolis KA2-5-1 Noda et al., 2003 

Mycobacterium sp. G3 Takada et al., 2005 

E. coli DH5α Alves et al., 2007 

Gordonia alkanivorans RIPI90A Shavandi et al., 2009 

E. coli BL21 Khosravinia et al., 2018 

The table shows the popular gene engineering strategies used to improve BDS activity. Some 
of the recombinant plasmids were expressed in E. coli which is not a suitable organism for 
BDS activity. This reflects the difficulty in genetic manipulation of rhodococci. Also, the 
success of the genetic manipulation does not necessarily translate into beneficial effects in 
real BDS application. 

 

In the case of heterologous hosts, the level of desulphurisation activity 

achieved by genetic manipulation is often limited by factors that are not clearly 

understood. A better understanding of the host factors that contribute to the 

functioning of the pathway is necessary in order to successfully develop 

genetically engineered strains with very high levels of expression of the dsz 

genes (Kilbane II, 2006). For technical (e.g. gene expression and codon usage 

preferences) and regulatory reasons, the use of original strains has been 

recommended (Monticello, 1998), and self-cloning is generally regarded as 
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more effective than heterologous recombination, as gene expression and DBT 

permeation are readily achieved (Hirasawa et al., 2001; Li et al., 1996; Matsui 

et al., 2001a). Directed evolution methods, e.g. DNA shuffling, chemostat 

enrichment have been applied on the wild-type BDS Rhodococcus strains to 

develop highly recombined genes and evolved enzymes with extended 

substrate range (gain of function) and improved (20 fold increased) activity of 

DszC (Arensdorf et al., 2002; Coco et al., 2001).  

The complexity of the 4S pathway enzyme system and its cofactors 

requirement prohibit the use of purified enzyme systems, and whole-cell 

biocatalysis is recommended for an efficient BDS process (Mohebali and Ball, 

2016; Setti et al., 1997). Fuel oils are complex mixtures of organic solvents 

which could be very toxic to microorganisms even at low concentrations. 

Therefore, solvent tolerance of the bacteria is the main factor influencing the 

suitability of the bacteria for the purpose and other process engineering 

parameters, e.g. fuel - culture medium ratio in the biphasic BDS process. The 

oil/water ratio is a critical parameter that influences operational costs 

associated with water handling, separation and disposal (Foght, 2004). 

Culturing oil-tolerant bacteria in biphasic systems (oil-aqueous), where the 

growing cells are presented along with the fuel to be desulphurised, has been 

shown as a more efficient approach than using resting cells, where non-

growing mature desulphurising cells are suspended in oil-phosphate buffer 

system to carry out the BDS reaction in their resting state (Adlakha et al., 2016; 

Tao et al., 2006). 

Many naturally occurring BDS strains do not have high solvent tolerance, the 

latter being a highly desirable feature for BDS on a commercial scale. The 

solvent tolerance of Gram-positive bacterial strains of the genera Bacillus, 

Rhodococcus and Arthrobacter is lower than that of the Gram-negative 

Pseudomonas strains (Sardessai and Bhosle, 2002). Therefore, recombinant 

Pseudomonas strains have been developed to exploit their high solvent 

tolerance and relatively higher growth rates.For example, by introducing the 

BDS gene cluster dszABCD from R. erythropolis XP into the solvent-tolerant 

strain P. putida Idaho, Tao and co-workers (2006) constructed Pseudomonas 

putida A4 strain which retained the BDS capability and a high solvent tolerance 
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(10% (v/v) p-xylene) for a biphasic reaction mixture. However, Caro et al. 

(2007) showed that a genetically modified strain P. putida CECT 5279 was 

more sensitive to DBT mass transfer limitation than R. erythropolis IGTS8 in 

biphasic systems with DBT and n-hexadecane, and therefore recommended 

the latter strain for application in commercial BDS process. Indeed, rhodococci 

have a high capability to uptake organic compounds from the oil interface 

because of their naturally highly hydrophobic cell membranes and the 

production of surface-active modules (Monticello, 2000). Kawaguchi et al. 

(2012) constructed a recombinant strain by introducing desulphurising genes 

from Rhodococcus erythropolis IGTS8 into an organic solvent-tolerant 

Rhodococcus opacus strain B-4, to avoid transcriptional inhibition by the 

sulphate end product. DBT consumption rates increased by 80% in oil (n-

hexadecane)/water biphasic reaction mixtures and resting cells were 

predominantly localized in the emulsion layer. This demonstrates that despite 

the solvent tolerant nature of Pseudomonas strains, rhodococci are the 

preferred type of organisms for BDS development; hence a selection of 

rhodococci were examined for their BDS capability in the current research. 

In terms of the bioprocess, the separation of the product (desulphurised fuel) 

is a challenge, particularly in the case of biphasic systems. Schilling and team 

(2002) proposed a continuous bioreactor system equipped with a settler 

device for the separation of the desulphurised oil from the aqueous phase. 

When BDS strains with high hydrophobicity such as Gordonia sp. strain 

CYKS1 were used, the bacteria adhered to the oil phase. In such cases, phase 

separation in BDS of diesel oil was optimised by the addition of ethanol as a 

de-emulsifier to produce a three-phase system (oil-biocatalyst-aqueous 

phase) in order to recover the biocatalyst (Choi et al., 2003). A microchannel 

reactor system for biodesulphurisation was developed by Noda et al., (2008), 

who reported that the rate of reaction in the oil/water phase of the 

microchannel reaction was more than nine-fold that in a batch (control) reactor. 

Alternatively, to avoid the problems associated with biphasic systems 

regarding the optimisation of the volumetric ratio between the organic and 

aqueous phases, triphasic systems (oil-bacteria-aqueous) such as 

immobilisation have been explored (Amin, 2011; Derikvand and Etemadifar, 

2014; Dinamarca et al., 2014a, 2014b, 2010; Li et al., 2005a; Naito et al., 2001; 
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Tang et al., 2012). The immobilised systems are proposed to be more 

straightforward downstream processing when compared to a continuously 

stirred tank bioreactor systems and more cost-effective than biphasic systems 

(Lee et al., 2008; Setti et al., 1997). Amin and team (2013) applied their 

expertise to a vertical rotating immobilised cell reactor design for BDS by 

developing a two-stage system that incorporated a surfactant producing 

Bacillus subtilis stage, followed by BDS active R. erythropolis. Nevertheless, 

strains that offered easy separation of the desulphurised oil phase from the 

aqueous growth phase naturally remain ideal for commercialisation, and 

therefore, this aspect was identified as an essential criterion for selecting 

candidate BDS strains in the current research study.  

However, after nearly three decades of research, the technology is yet to be 

made applicable for commercial oil biodesulphurisation. Kilbane II (2017) 

recognised that failure to develop superior biocatalysts whose BDS activity 

remains stable and uninhibited by the end product (2HBP) or sulphates in the 

culture system was a primary reason for this. As described in the literature 

review above, a variety of microorganisms have been shown to be capable of 

BDS, and there have been various reports of genetically engineered strains 

with enhanced BDS capabilities and bioprocess strategies that aim to improve 

the practical applicability of the technology for fossil fuel desulphurisation. The 

sulphate dependent repression of dsz gene expression has been addressed 

through genetic engineering. However, there are other major obstacles facing 

the commercialisation of BDS technology, viz, (i) biocatalyst activities are 

significantly lower than that required for BDS rates to match HDS rates 

(Kilbane II, 2006) and (ii) biocatalysts cannot maintain activity for an extended 

period of time. Genetic engineering strategies hitherto have focussed on the 

manipulation and monitoring of previously reported dsz genes, and have failed 

to consider other potential genes indirectly influencing the growth of the strains 

in a fossil fuel-rich medium and sulphur assimilation in general. Maass et al. 

(2015a) observed that the main goal in most BDS related research has been 

to determine the DBT degradation and 2HBP formation specific rates and to 

propose an empiric kinetic model that does not necessarily accurately describe 

the BDS process under different growth and operational conditions. 

Consequently, scaling up the BDS process with genetically modified BDS 
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organisms using real-world fuels has proven difficult. Therefore, rather than 

making several genetic modifications in an existing BDS strain to impart 

desired characteristics, research seeking new bacteria that exhibit many of 

such characteristics inherently remains a promising way forward. Recognising 

the challenges with genetic engineering-based strain enhancement, naturally 

occurring BDS bacteria are still considered as a viable means by which a 

commercial scale BDS technology may be achieved. Isolates from diverse 

genera of bacteria such as Achromobacter, Chelatococcus, Bacillus, 

Gordonia, Paenibacillus, Microbacterium, Mycobacterium and Rhodococcus 

have been reported to be capable of BDS activity, with Rhodococcus being 

the predominant group. Members of this genus are also found naturally in 

various oil-contaminated environments and are capable of oil degradation. 

Further, they are hydrophobic in nature and capable of the production of 

surface-active compounds to aid the breakdown of oil. 

In addition to the biocatalyst, an additional challenge to scale-up is the model 

growth system used for strain selection. The successful BDS outcomes 

achieved in laboratory-scale research have not been translated to commercial 

scale because most strain development-related work employs model 

organosulphur compounds (such as BT, DBT) and model oil (such as 

hexadecane), whereas fossil fuels, which require treatment in a full-scale 

commercial technology, are complex mixtures of several components. Hence, 

the findings from the resting cells systems in a laboratory setting using these 

model chemicals become less relevant for real-world scenarios where the 

feedstock composition is not strictly controlled, and the mass transfer 

dynamics are different.  

1.8 Scope of the thesis 

Biodesulphurisation technology offers several advantages over the current 

hydrodesulphurisation approach as a method to produce cleaner low-sulphur 

fuels. Indeed, it offers the possibility of a more environmentally sustainable 

process, with no reduction in the calorific value of fuel and the capability to 

reach ultra-low sulphur concentrations. However, the successful 

commercialisation of BDS technology depends on the application of superior 

biocatalysts either through the continued improvements in known BDS 
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organisms and/or through the discovery and identification of new strains with 

robust BDS activity and high tolerance to the solvent mixture in fuels (Nuhu, 

2013). Furthermore, laboratory-based studies must evaluate biocatalysts not 

only using model organosulphur compounds and model oils but fossil fuels 

directly. In this research, the latter route was taken for the development of BDS 

technology by looking for new BDS capable strains and testing their 

capabilities under real-world conditions.  

In the current study, research will focus on the investigation of naturally 

occurring strains for BDS capabilities using both model organosulphur 

compounds and diesel. A selection of putative rhodococci strains, previously 

isolated from oil-polluted environments, will be identified using phylogenetic 

analyses and screened for biodesulphurisation activity. The BDS activity 

spectrum of positive strains, (i.e. ability to desulphurise BT and/or DBT) will be 

determined, initially in a wholly aqueous growth medium. The strains with BDS 

activity will then be tested for their ability to grow and express BDS activity in 

a biphasic medium containing n-hexadecane (model oil) and with gas oil 

(diesel) obtained downstream of an HDS process and reconstituted with 

added thiophenes (BT and DBT), to simulate real-world fuel conditions. The 

strains that exhibit the most desirable culture characteristics for potential 

commercial application will be identified. A known benzothiophene 

desulphurising bacterium, G. desulfuricans 213ET will be used a reference 

strain and positive control for experiments wherever suitable. This strain has 

been used for a patented bio-devulcanisation process by Recircle Ltd., UK for 

the removal of sulphur from rubber tyres. Its 16S rRNA gene sequence 

(AF101416) and whole-genome sequence (NZ_BCNF00000000.1) are 

known. In addition, whole-genome sequence analysis will be used to identify 

putative genes involved in the desulphurisation pathway which may be the 

target of future strain modifications. The overall aim of the research study is to 

identify one or more naturally occurring bacterium with suitable BDS activity 

and growth characteristics for further development in a full-scale commercial 

BDS process. 
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Chapter 2 Phylogenetic study of putative rhodococci isolated 

from hydrocarbon-contaminated environments 
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2.1 Introduction 

Taxonomy is the study of identification, naming and classification of 

organisms. In this chapter, the complications in the taxonomy of the genus 

Rhodococcus is explained, which emphasizes the importance of establishing 

the taxonomic identity of the test strains used in the study given that they were 

isolated during the period when taxonomic lines were unclear. A brief review 

of the current standards followed in prokaryotic classification is described with 

a particular focus on genomic sequence based typing methods.  

2.1.1 Biology of Rhodococcus 

Rhodococci are Gram-positive (sometimes Gram-variable), obligate aerobes, 

catalase-positive, partially lysozyme sensitive, non-motile, non-endospore or 

non-conidia forming bacteria. They are chemoorganotrophic and have an 

oxidative type of metabolism. The cells appear as cocci during the early stages 

of growth, and as short rods as they mature, forming side projections or simple 

branching. These rod filaments usually undergo fragmentation to form the 

subsequent generations. Though few strains like R. hoagii require thiamine, 

most rhodococci can grow on standard cultivation media at 30°C, and visible 

colonies are formed in solid media between 1–3 days (Finnerty, 1992; 

Goodfellow et al., 1998). Rhodococci are known for diverse physiology, but in 

general, the cells have a thicker cell membrane dominated by the presence of 

an arabinogalactan cell wall polysaccharide and large 2-alkyl,3-hydroxy- 

branched-chain fatty acids (mycolic acids), which are covalently assembled 

into a peptidoglycan-arabinogalactan-mycolic acid matrix that renders them 

highly hydrophobic, which enables the bacteria to attach to oil/water interface 

while growing in aqueous–hydrocarbon environment (Borole et al., 2002; 

Sutcliffe, 1998). Mycolic acids consist of peptidoglycolipids, glycolipids and 

lipids (Nishiuchi et al., 2000). R. opacus has the unique ability to accumulate 

more than 50% of its dry cell mass as triacylglycerols (Fei et al., 2015; Holder 

et al., 2011; Kalscheuer et al., 2000).  

Although a few species are pathogenic, most of them are benign and thrive in 

a wide range of environmental niches, including soil, water, graves, plants and 

animals. The type strains of R. rhodochrous, R. ruber, R. opacus, R. 
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aetherivorans, R. percolatus, R. coprophilus, R. degradans, R. erythropolis, 

and R. lactis were isolated from activated sludge obtained from waste 

treatment or contaminated areas (Briglia et al., 1996; Goodfellow et al., 2004; 

Kumari et al., 2015; Rowbotham and Cross, 1977). R. jostii was isolated from 

a medieval grave (Takeuchi et al., 2002). R. kyotonensis, R. kunmingensis 

and R. pyschrotolerans were isolated from rhizosphere soil (Li et al., 2007a; 

Silva et al., 2017; Wang et al., 2008). The type strains of R. koreensis, R. 

pyridinivorans, R. phenolicus, and R. defluvii, were isolated from industrial 

wastewater (Kampfer et al., 2014; Rehfuss and Urban, 2005; Yoon et al., 

2000a, 2000b). Among the pathogenic rhodococci, R. cercidiphylli, R. 

gannanensis, and R. trifolli were isolated from plants (Kampfer et al., 2013; Li 

et al., 2008b; Ma et al., 2017), and R. hoagii, R. rhodnii, R. gordoniae, R. 

kronopolitis and R. triatomae were isolated from live animals (Goodfellow and 

Alderson, 1977; Jones et al., 2004; Liu et al., 2014a; Yassin, 2005). Whilst the 

moderately halophilic type strains of R. enclensis and R. marinonascens were 

isolated from marine sediments (Dastager et al., 2014; Helmke and Weyland, 

1984), the type strains of R. psychrotolerans, R. kroppenstedii, and R. 

baikonurensis isolated from cold regions occur as psychrotrophic organisms 

(Mayilraj et al., 2006; Silva et al., 2017; Yoon et al., 2010). 

Rhodococci isolated from anthropogenically contaminated environments that 

contain complex aromatic compounds have been studied for a wide range of 

metabolic capabilities, including degradation of hydrocarbons and 

desulphurisation of fossil fuels. (Ceniceros et al., 2017; McLeod et al., 2006). 

They have a variety of plasmids ranging from small cryptic, closed circular 

plasmids to large linear ones (Larkin et al., 2010; Matsui et al., 2007; Van Der 

Geize and Dijkhuizen, 2004), and hence they have evolved with a number of 

genes encoding a wide range of metabolic capabilities. The 3 large linear 

plasmids of R. jostii RHA1 contain genes responsible for the degradation of 

polychlorinated biphenyls (McLeod et al., 2006). The genes involved in the 

BDS activity of R. erythropolis IGTS8 occur in a large (150 kb) plasmid (Denis-

Larose et al., 1997). More about rhodococcal whole-genome sequence is 

described in section 4.1.1.  
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2.1.2 Role of polyphasic approaches in resolving rhodococcal 

systematics 

Presently, to describe a new bacterial species, the authors must describe the 

isolate in terms of multiple parameters involving traditional microbiology and 

molecular biology methods, analytical methods and bioinformatics. This is a 

polyphasic approach integrating phenotypic, chemotaxonomic (identification 

of specific metabolites such as fatty acids, polar lipids, cell wall composition 

and exopolysaccharides) and genotypic (comparison of a selection of marker 

genes sequences, DNA–DNA hybridisation, G+C content variation) 

information about an organism and delineates microbial species based on a 

consensus of available data (Konstantinidis and Stackebrandt, 2013). These 

properties of the new isolate are used to distinguish its uniqueness from other 

previously validly described strains by comparison with well-curated 

databases for protein and nucleic acid. Taxonomy is richly informed by 

phylogenetics – the study of the evolutionary history of species (Choudhuri 

and Choudhuri, 2014). In the context of prokaryotic systematics, the term 

phylogenetic analysis refers to the identification of the tree best representing 

the evolutionary distances between selected semantides. A phylogenetic tree 

is a diagram that illustrates the lines of evolutionary descent of various 

species, organisms, or genes from a common ancestor. 

However, it is not a surprise when the outcomes of the various methods in the 

polyphasic taxonomy toolbox do not entirely agree with the suggested 

description of the same isolate. The individual strains (isolates) can show 

variations in their phenotype and metabolic versatility despite tight genotypic 

clustering of strains, and vice versa. Organisms that pass the polyphasic 

approach are recognised as a validly published new species after their 

complete characterisation is described, their unique properties identified, and 

the etymology explained by publication in a recognised journal such as 

International Journal of Systematic and Evolutionary Biology (IJSEM).  

2.1.3 Use of genomic sequences in resolving rhodococcal taxonomy 

The idea of using sequence-based quantitative assessment of phylogenetic 

(evolutionary) relationships between representatives of the major known kinds 
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of organisms became popular in the late 1970s (Pace et al., 2012). The 

macromolecules that are common to all cells and that change very slowly in 

time, called sementides, are used for understanding the phylogeny. The 

taxonomic assignments were done by comparing the nucleotide (nt) sequence 

to previously submitted reference sequences in the database (Huse et al., 

2008; Liu et al., 2008; Wang et al., 2007b) or clustering-based methods that 

identify taxon-independent operational taxonomic units (OTUs) using a 

sequence similarity threshold (Huse et al., 2010; Schloss et al., 2009; Schloss 

and Handelsman, 2005). OTU refers to a terminal leaf in a phylogenetic tree 

and is defined by a nucleic acid sequence. As the OTUs are frequently defined 

by the comparison of the respective sequences between organisms, sequence 

identity <95% are not considered to form part of the same OTU (Achtman and 

Wagner, 2008; Konstantinidis et al., 2006).  

Ribosomal RNA (rRNA) genes have been used as standard phylogenetic 

markers in molecular taxonomic studies since the pioneering studies on the 

tree of life by Woese and Fox (1977). There are a variety of reasons why rRNA 

genes have been selected as standard genes for molecular taxonomy. First, 

rRNA is an essential constituent in all living organisms. Second, the existence 

of many conserved regions in the rRNA genes allows the alignment of their 

sequences derived from distantly related organisms, while their variable 

regions are useful for the distinction of closely related organisms. Furthermore, 

the horizontal transfer of rRNA genes is believed to be rare. 

With the 16S rRNA gene sequence becoming a standard molecular marker for 

the description of new species, NCBI maintains a curated bacterial and 

archaeal 16S rRNA dataset and allows a customised BLAST analysis over the 

‘16S ribosomal RNA sequences (Bacteria and Archaea)’ database (O’Leary et 

al., 2016), which, as of May 2018, included 19,213 reference sequences for 

the bacterial 16S ribosomal RNA, of which over 95% were from type strains. 

A homology of ≥97% across the entire 16S rRNA gene or some variable region 

of the gene is considered the same OTU (Claesson et al., 2010; Konstantinidis 

et al., 2006). There are several curated 16S rRNA gene databases such as 

SILVA rRNA database (https://www.arb-silva.de/); the Ribosomal Database 

Project, RDP (https://rdp.cme.msu.edu/); EzBioCloud 

https://www.arb-silva.de/
https://rdp.cme.msu.edu/
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(http://www.ezbiocloud.net/) that help steer clear of ambiguous unreviewed 

sequences and enable a faster approach to assign a new isolate to already 

known taxa, at least at the genus level (Oren and Garrity, 2014; Woo et al., 

2008).  

Until 1996, a valid publication of new Rhodococcus species did not involve the 

16S rRNA sequence based phylogenetic analysis, and the classification was 

based on numerical taxonomy involving their phenotypic characteristics, 

mycolic acid composition and the metabolic capabilities. The type strains of R. 

coprophilus, R. erythropolis, R. fascians, R. globerulus, R. hoagii, R. 

marinonascens, R. rhodochrous, R. rhodnii, and R. ruber were described 

before the year 1994, without their 16S rRNA gene information.  

Revision of classification is not uncommon in bacterial systematics. Even 

before 16S rRNA gene analysis was the norm, R. chlorophenolicus was 

reclassified as Mycobacterium chlorophenolicum based on mycolic acid 

analyses (Hagglblom et al., 1994). However, significant breakthroughs in the 

rhodococcal taxonomy happened as a result of 16S rRNA sequencing, and it 

started with the reclassification of the polychlorinated biphenyl-degraders 

Acinetobacter sp. P6 and Corynebacterium sp. MB 1 as Rhodococcus 

globerulus (Asturias et al., 1994). The trend to include 16S rRNA gene 

sequence data began with the valid publication of the nutritionally versatile 

species R. opacus (Klatte et al., 1994), and the type strain of R. percolatus 

MBS1T described soon after included the phylogenetic tree showing how the 

12 validly described rhodococci of that time clustered (Briglia et al., 1996). 

Interestingly, their report revealed high levels of 16S rRNA gene sequence 

similarity (95.1-99.3%) between the 13 rhodococci species.  

When the 16S rRNA gene sequence similarity is >98.7%, the species 

delineation was based by measuring the ability of the DNA fractions to form 

heteroduplexes under optimal conditions, usually 25°C below the melting 

temperature of the homoduplexes (with a maximum thermostability difference 

of 5°C). This method called DNA:DNA hybridisation (DDH) (Christensen et al., 

2000; De-Ley et al., 1970; Ezaki et al., 1989, 1988) was recognised as a way 

to resolve conflict in phylogenetic analysis (Murray et al., 1990; Vandamme et 

al., 1996). It has since been undertaken as a part of the polyphasic approach, 

http://www.ezbiocloud.net/
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and DDH is the current gold standard, and a DDH value of <70% is the 

prevailing norm for the delineation of new species (Klenk et al., 2014; Richter 

and Rossello-Mora, 2009). The type strain of R. zopfii T1T with toxicant 

degrading capabilities was described based on DDH but did not include 16S 

rRNA gene analysis (Stoecker et al., 1994). However, both approaches were 

included as a part of polyphasic taxonomy from then on, which led to several 

reclassifications of type strains across several genera and the genus 

Rhodococcus as follows, 

• Arthrobacter picolinophilus DSM 20665T was transferred to R. 

erythropolis (Koch et al., 1995) 

• R. maris was reclassified into a new genus, Dietzia (Rainey et al., 

1995b) 

• Tsukamurella wratislaviensis N805T was reclassified as Rhodococcus 

wratislaviensis (Goodfellow et al., 2002) 

• Despite being sourced from forest topsoil in the same region, the type 

strains of R. humicola and R. pedocola were distinguished by 33.05-

35.60% DDH value, based on which they were recognised as two novel 

species (Nguyen and Kim, 2016) 

The phylogenetic analysis of 10 Nocardia species and 22 strains of 16 

Rhodococcus species conducted by Rainey et al. (1995a) resolved the close 

relationship of Rhodococcus with Nocardia. With a significant bootstrap value 

of 71% determined for the branching point that separated Nocardia and 

Rhodococcus, they concluded that Nocardia does not appear to be a sister 

taxon of Rhodococcus but branches off from within the radiation of 

Rhodococcus, and hence its species can be considered to be derived from a 

Rhodococcus ancestor. Based on 16S rRNA sequence analysis, Oberreuter 

et al. (2002) assessed that the R. erythropolis strains have a low intraspecific 

diversity, which indicated that having fewer strains included in the database 

could represent this species adequately for reliable identification. 

When the number of sequences increases, evaluating the best fitting tree that 

reflects the phylogenetic relationship of the group becomes difficult, as the 

evaluation of each tree is a computationally-intensive process (Felsenstein, 

1978). Bootstrapping is a resampling technique that is often used to evaluate 
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the tree topology and increase the confidence that the inferred tree is correct, 

and it is usually performed with 1000 resamplings for bacterial phylogenetic 

analyses (Efron, 1979; Felsenstein, 1985). There are many programs that use 

heuristic algorithms to infer the potentially best tree, but they come with their 

own advantages and drawbacks (Zhou et al., 2018). The fastest and the most 

popularly cited phylogenetic method in systematics is the Neighbour-Joining 

(NJ) method, which uses a distance-based clustering program (Saitou and 

Nei, 1987; Van Noorden et al., 2014). NJ is a heuristic approach that does not 

guarantee to find the perfect result, but under normal conditions has a very 

high probability of doing so. It has excellent computational efficiency, making 

it well suited for large datasets. NJ method is still considered a good starting 

point for more sophisticated methods (Nguyen et al., 2015). However, 

statistical approaches, such as maximum likelihood (ML), produce more 

reliable results than distance and parsimony methods (Zhou et al., 2018). IQ-

TREE program is a fast ML-based phylogenetic program that offers ultrafast 

bootstrap approximation (UFBoot) to assess branch supports (Minh et al., 

2013). IQ-TREE explores the tree space efficiently and often achieves higher 

likelihoods than other programs like RAxML and PhyML (Nguyen et al., 2015; 

Trifinopoulos et al., 2016; Zhou et al., 2018). Until 2010, only NJ tree was 

presented on the species description papers to show the relationship between 

the new Rhodococcus species with other type strains of Rhodococcus. For the 

valid description of R. nanhaiensis SCSIO 10187T, phylogenetic trees were 

constructed using a combination of NJ and ML methods (Li et al., 2012), and 

it has become a norm ever since.  

16S rRNA gene sequences are now available for all rhodococcal type strains, 

and these are used as reference sequences for comparative analysis to 

determine the relatedness between strains. The lengths of these reference 

sequences range from 1,306 nt (for R. hoagii) to 1,537 nt (for R. soli). 

Actinobacteria constitute one of the most abundant and ancient taxonomic 

phyla within the domain bacteria and are well known for their secondary 

metabolites. Considerable variation in the metabolic properties, genome size 

and GC content of the members of this phylum have been observed. 

Therefore, the placement of new or existing species based on 16S rRNA gene 

sometimes becomes problematic due to the low congruence level (Barka et 
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al., 2016; Vandamme et al., 1996; Verma et al., 2013). Also, rRNA sequences 

do not discriminate well between closely related species or even genera, 

where only small numbers of substitutions occur between the compared rRNA 

sequences. 

DNA-DNA hybridisation method inherently suffers from non-reproducibility 

and cannot be used to build incremental databases (Achtman and Wagner, 

2008; Gevers et al., 2005). It is widely criticised as an expensive, laborious 

and time-consuming technique (Li et al., 2015; Whitman, 2015), that is not well 

standardised, and hence error-prone (Meier-Kolthoff et al., 2013; Schweizer, 

2008). Hence, research into describing alternative marker genes for bacterial 

identification are being explored.Where 16S rRNA gene sequence analysis is 

not sufficient, either the core genes that control functions such as cell division 

and metabolic activity (Gil et al., 2004) or the house-keeping genes that code 

for proteins with conserved functions maintain cellular function (Martens et al., 

2008), have been used as OTU to assess phylogenetic diversity. These 

protein-coding genes are ubiquitous among bacterial species, evolve at a 

higher rate than the rRNA gene, but are not frequently transmitted horizontally. 

Apart from the 16S rRNA gene, genes coding for beta-subunit of DNA gyrase 

(gyrB), catechol 1,2-dioxygenase (catA), alkane 1-monooxygenase (alkB), 

protein export pathway (secA), the beta-subunit of RNA polymerase (rpoB), 

the sigma 70 (sigma D) factor of RNA polymerase (rpoD), recombinase A 

(recA), the beta-subunit of ATP synthase F0F1 (atpD), translation initiation 

factor IF-2 (infB), tRNA modification GTPase ThdF or TrmE (thdF), the 

chaperonin GroEL (groEL), sporulation-specific cell division protein (ssgB), 

heat shock protein (grpE), preprotein translocase subunit (secY) have been 

used to establish phylogeny of certain groups like bifidobacteria, mycobacteria 

and Streptomyces (Girard et al., 2013; Táncsics et al., 2015, 2014; Verma et 

al., 2013). The phylogenies produced using single gene are unstable. 

Therefore, an integrative approach must be adopted where the phylogenetic 

information from individual markers are combined, and decisions are made 

from the consensus data. 
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The average base-substitution rate of 16S rRNA genes was 1% per 50 million 

years, while that of gyrB at the synonymous sites was estimated to be 0.7 - 

0.8% per one million years (Yamamoto and Harayama, 1996). Therefore, 

some species with entirely identical 16S rRNA gene sequences can be 

differentiated by using their gyrB gene sequences (Kasai et al., 1998; Peeters 

and Willems, 2011; Takeda et al., 2010; Yamamoto et al., 1999; Yamamoto 

and Harayama, 1995; Yáñez et al., 2003). The divergence of 16S rRNA gene 

sequences among the members of Nocardia, Gordonia and Rhodococcus 

species is too low to satisfy taxonomic analyses. The usefulness and limits of 

the gyrB gene as an alternative marker for phylogenetic studies of these 

genera is discussed below.  

After studying a number of protein-coding genes, Kasai et al. (1998) PCR-

amplified the 1.2 kb-long gyrB segments from about 1,000 bacterial species 

using degenerate primers and determined their nucleotide sequences to 

establish a database. They proposed that the gyrB gene could be used as a 

potential taxonomic marker. Since then, many scientists have used it for 

further resolution of organisms to the species level as listed in Table 2.1. 

Following the suggestion of previous researchers, Shen et al. (2006b) 

developed new primer sets for the gyrB gene so as to identify, compare and 

assess diversity among members of the genus Gordonia based on the gyrB 

gene as a taxonomic marker. They observed that gyrB gene sequence greatly 

resolved to distinguish between the strains within G. amicalis and G. terrae, 

where the 16S rRNA gene sequences shared a high (>99.5%) sequence 

similarity with their respective type strains. However, in the case of 4 strains 

of G. alkanivorans isolated from oil-contaminated soil but from different 

geographic regions, i.e., DSM 44369T, DSM 44187, DSM 44499 and CC-

JG39, and 2 clinical strains of G. rubripertincta, i.e., DSM 43248 and JCM 

3199, there was almost 100% similarities in both gyrB gene and 16S rRNA 

gene sequences, indicating the limitations in the use of gyrB as a taxonomic 

marker. They attribute the higher conservation (homogeneity) of gyrB genes 

in G. alkanivorans to environmental stress or natural selection pressure, and 

broad strain diversity among G. terrae strains to the natural ecosystems with 

minimum anthropogenic disturbance or from minimally contaminated 

environments from where they were isolated. They observed 16S rRNA gene 
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sequence similarities between 29 Gordonia species ranged from 93.1% to 

99.8%, gyrB gene sequence similarities between 23 Gordonia species ranged 

from 77.5% to 97.3%. They later recommended using alkane hydroxylase 

gene (alkB) as an additional molecular marker for improved resolution (Shen 

et al., 2010). However, gyrB sequence analysis is regularly undertaken for new 

Godonia species (G. iterans, G. hongkongensis, G. phthalatica) described 

from 2014 onwards (Chan et al., 2016; de Menezes et al., 2016; Jin et al., 

2017; Kang et al., 2014). 

As in the case of the polluted environment derived Gordonia strains, there was 

a high (>98.5%) gyrB gene homology between the type strains of R. 

qingshengii and R. erythropolis that were also isolated from polluted 

environments (Táncsics et al., 2014). Rhodococcus species are well-known 

for their ability to degrade monoaromatic pollutants, and commonly possess 

catechol 1,2-dioxygenase (catA) genes in their chromosomes, which Táncsics 

et al. (2008) suggested as potential biomarkers. 

Kang et al. (2009) gyrB gene showed the highest interspecies variability for 

Gordonia, and the next best separation was obtained using secA1 gene 

analysis (whose similarity range is 81.9–98.0%). Takeda et al. (2010) 

analysed the phylogenetic relationship of 56 type species of Nocardia based 

on gyrB gene sequences and reported an interspecies similarity range of 

82.4–99.9 % for Nocardia gyrB gene sequences, corresponding to nucleotide 

differences of 270–2 nt, against an interspecies similarity range of 94.4–100.0 

% for the 16S rRNA sequences, corresponding to nucleotide differences of 

75–0 nt. They reported that gyrB sequence clearly distinguished between the 

type strains of N. paucivorans, N. brevicatena, N. carnea and N. flavorosea 

that otherwise showed a high >99% similarity between their 16S rRNA gene 

sequences. However, discrepancies were observed in the phylogenetic 

positions of N. exalbida, N. miyunensis and N. vaccinii based on gyrB or 16S 

rRNA gene sequences. 

Kirby et al. (2010) observed that the 390-nt sequence of the gyrB gene of a 

Kribbella isolate was enough to assess whether a strain is likely to represent 

a new species before time and effort is invested in the polyphasic taxonomic 

characterisation of the isolate. The genus Flavobacterium contained 33 
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extreme psychrophilic species occurring in Antarctica which show an 

interspecies 16S rRNA gene sequence similarity of 97.2–98.7%, whereas the 

gyrB similarity range within the genus was 79.1-94.9%, which showed its 

higher discriminatory power than the 16S rRNA gene (Peeters and Willems, 

2011). Recently, it was reported that gyrB could be used successfully 

alongside the 16S rRNA gene to determine the species composition of food 

microbiota with improved resolution (Poirier et al., 2018).  

Table 2.1 Use of gyrB gene as a taxonomic marker for bacterial 
identification 

Organism genus / group Reference 

Pseudomonas putida strains Yamamoto and Harayama, 1995 

Acinetobacter Yamamoto et al., 1999 

Aeromonas Yáñez et al., 2003 

Salmonella, Shigella, E. coli Fukushima et al., 2002 

Bacillus cereus strains Bavykin et al., 2004 

Gordonia 
Chan et al., 2016; Kang et al., 2014; le Roes et al., 2008; 

Li et al., 2014; Liu et al., 2011; Shen et al., 2006a, 2006b 

Bacillus subtilis strains Wang et al., 2007a 

Kribbella Kirby et al., 2010 

Nocardia Takeda et al., 2010 

Rhodococcus sp. Táncsics et al., 2014 

 

DDH involves only pairwise comparisons of two prokaryotic genomes, and the 

individual specimens cannot be comparatively analysed with a database using 

a defined set of standards. As the speed and costs of whole-genome 

sequencing have become more favourable, in silico methods based on the 

comparison of wholly sequenced genomes, have been suggested as an 

alternative to DDH for the identification of microorganisms (Auch et al., 2010; 

Deloger et al., 2009; Konstantinidis and Tiedje, 2005). This topic is described 

in detail in sections 4.1.4 and 4.2.3. The concept of obtaining average 

nucleotide identity (ANI) values between sequenced genome of bacterial 

species is actively endorsed as the future of bacterial taxonomy (Borriss et al., 

2011; De Vos et al., 2017; Kim et al., 2014; Konstantinidis et al., 2006; Li et 

al., 2015; Rodriguez-R and Konstantinidis, 2014). 
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2.1.4 Current phylogenetic structure of the genus Rhodococcus 

The genus name Rhodococcus was first proposed by Zopf in the year 1891 

and presently positioned under the phylum and class of Actinobacteria, the 

order of Actinomycetales, and family of Nocardiaceae (Goodfellow, 2014). In 

their review article, Goodfellow et al. (1998) clarify the twists and turns in the 

taxonomic history of the genus Rhodococcus and its nomenclature until the 

end of the twentieth century. In the past, 16S rRNA gene sequence based 

phylogenetic analysis confirmed the close relationship between the genera 

Corynebacterium, Mycobacterium, Nocardia and Rhodococcus and showed 

that these taxa formed a suprageneric group within the evolutionary radiation 

encompassed by actinomycetes. It supported the view that Rhodococcus 

species could be assigned to two aggregate groups each of which merited 

generic status and led to the revival of the genus Gordonia Tsukamura 1971 

(Stackebrandt et al., 1988) and proposal of the genus Tsukamurella (Collins 

et al., 1988) containing members reclassified from genus Rhodococcus. At the 

end of the year 1996, there were 13 species described under Rhodococcus 

namely rhodochrous (type species), erythropolis, equi, fascians, coprophilus, 

rhodnii, ruber, marinonascens, globerulus, opacus, zopfii, wratislaviensis, and 

percolatus. Ever since the taxonomy of Rhodococcus has witnessed dramatic 

changes and developments thanks to the application of 16S rRNA and 

additional house-keeping genes to establish the phylogeny of these organisms 

and to identify and classify members of this and related groups. There are 40 

new Rhodococcus species validly published since the year 2000, totalling 53 

validly described species to date. The list of all validly described Rhodococcus 

species names is presented in Appendix 7.3. 

Based on the phylogeny of 16S rRNA gene sequences, the members have 

been categorised into three subclades R. erythropolis, R. equi (R. hoagii) and 

R. rhodochrous. The members of the R. erythropolis subclade are used for 

many biotransformation and remediation applications. R. erythropolis was the 

first characterised bacteria in its subclade, while R. jostii was the first to have 

its genome sequenced (McLeod et al., 2006). DNA-DNA hybridisation values 

revealed that type strains of R. equi and Corynebacterium hoagii were closely 

related. Because the oldest epithet, hoagii (Morse, 1912), had priority these 
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species were renamed in combination as Rhodococcus hoagii (Kampfer et al., 

2014; Sangal et al., 2015; Tindall, 2014). It should be noted that "Rhodococcus 

australis" (Ferreira and Tracey 1984) was not effectively published.  

2.1.5 Background information about the identity of the test strains  

The strains used in this study were received from the Laboratory of 

Alkanotrophic Microorganisms at the Institute of Ecology and Genetics of 

Microorganisms (IEGM) that hosts a vast collection of non-pathogenic 

bacterial strains isolated from extremely diverse ecological regions in Russia. 

The IEGM is included in the World Federation for Culture Collections (acronym 

IEGM, WFCC#768; http://www.iegm.ru/iegmcol). The IEGM collection has a 

particular interest in maintaining microorganisms that oxidize natural and 

anthropogenic hydrocarbons and thus participate in the biogeochemical 

processes of the biosphere (Ivshina and Kuyukina, 2013). Rhodococcus 

strains that are predominant among the hydrocarbon-oxidizing 

microorganisms have been the core of the collection (Ivshina et al., 1994; 

Ivshina and Kuyukina, 2018). Rhodococcus species held by the IEGM 

collection are represented not by single strains (often only type strains) but by 

numerous natural isolates from various habitats. The selected non-pathogenic 

strains of rhodococci with active oxygenase complexes are excellent targets 

for screening of new producers of valuable substances, degraders, and 

transformers of complex organic compounds and designing new effective 

technologies, production of fodder from unconventional sources (propane, n-

butane), enzymatic transformation of carbon compounds, oil and gas 

prospecting, optimisation of secondary oil recovery, control and clean-up of 

hydrocarbon contamination of air and water, and bioremediation of oil-

contaminated soils. The first strain of bacteria with a successful BDS activity 

was R. erythropolis strain IGTS8 developed by Institute of Gas Technology, 

USA (Kilbane and Jackowski, 1992). Rhodococci isolated from oil-polluted 

regions are preferred over other BDS strains as they have a broad substrate 

range and exhibit deep desulphurising activity (Ma, 2010). Therefore, 11 IEGM 

rhodococci strains (listed in Table 2.2) that were previously isolated from 

hydrocarbon-contaminated environments were chosen to study their potential 

http://www.iegm.ru/iegmcol
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for biodesulphurisation (BDS) activity. The rationale for selecting rhodococci 

strains is discussed in detail in section 3.1.4.  

The identity of the strains as received from IEGM was inferred from three 

sources – IEGM catalogue (http://www.iegm.ru/iegmcol/strains/index.html) 

available online, a printed version of the catalogue authored by Prof. Nick 

Christofi (1998), and a published research article by Bell et al. (1999). 

Nevertheless, between these 3 sources of information, the strain identity 

details concurred for strains 20, 60, 87, 213, 369, and 505; and differed for 

strains 208, 248, 488, and 508. Among the 11 test strains, 4 strains (20, 208, 

213, 505) were classified as R. erythropolis, 2 strains (87, 369) were classified 

as R. ruber, and 1 strain (248) was classified as R. opacus. However, the 

species identity of 3 other strains (60, 488, 508) was ambiguous, and one 

strain was unknown (strain F).  

At IEGM, for the purpose of cataloguing, Rhodococcus strains isolated from 

natural samples at sites with high anthropogenic loads are characterised by 

emulsifying and biodegrading abilities towards individual hydrocarbons and 

petroleum products, increased resistance to heavy metals (Cd, Cr, Cu, Mo, Ni, 

Pb, V, Zn), and maintenance of their activity under extreme acidity (pH 2.0–

6.0) and salinity (2–6% NaCl). Even in the PCR based classification of IEGM 

strains by Bell et al. (1999) only a partial region of the 16S rRNA gene was 

targeted for amplification, and the species were assigned based on the 

strength of the amplification achieved by the species-specific primers 

developed by them. They had developed primers specific for R. erythropolis 

(Re), R. ruber (Ru), R. globerulus (Rg), and R. opacus (Ro), and used them 

primarily to verify the classification of strains determined by IEGM. In some 

cases, only weak amplification was observed leading to inconclusive results, 

e.g. primer Ro and strain 60. They reported slight cross-reactivity between 

primer Rr and R. ruber strains and primer Ro and R. erythropolis strains. The 

taxonomic identification of these test strains has not been updated to current 

standards which could be attributed to the operational difficulties faced by 

IEGM (Ivshina, 2012; Ivshina and Kuyukina, 2018, 2013). Clearly, the IEGM 

did not use the standard polyphasic approach for the classification of these 

strains, whereas prokaryotic systematics have progressed very much since.  

http://www.iegm.ru/iegmcol/strains/index.html


44 
 

The freeze-dried vials of the test strains used in the study were prepared in 

the early 1990s. The phylogenetic structure of the genus has changed since. 

Owing to the addition of several new closely related species with high 16S 

rRNA gene similarity, and because of the non-standard grounds on which the 

test strains were previously classified, there is a need to revisit their taxonomic 

classification and confirm the identity of the test strains based on currently 

recommended practices in phylogenetic analysis. It is essential to establish 

the taxonomic positions of the test strains prior to any investigation and future 

potential commercial application. This will help in choosing the right growth 

medium, precautions to be taken in terms of safety, choice of reference strains 

for comparative analysis, and their biotechnological capability could be 

attributed accurately. 
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2.1.6 Aim 

To identify the test strains isolated from various hydrocarbon-contaminated 

environments to species level. 

Objectives 

1. To establish that the morphological and phenotypical properties of the 

reactivated strains that have been in long-term storage are in 

accordance with the previous description. 

2. To determine whether the test strains contain mycolic acid in the cell 

membrane, and therefore belong to the suborder Corynebacterineae. 

3. To determine the species identity of the test strains by phylogenetic 

analysis based on 16S rRNA and gyrB gene sequences. 
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2.2 Materials and Methods 

2.2.1 Test strains  

In this study, 11 naturally occurring bacterial isolates that were sourced from 

oil-polluted environments and deposited as various members of the genus 

Rhodococcus in the Regional Specialized Alkanotrophic Microorganism 

Collection of the Institute of Ecology and Genetics of Microorganisms (IEGM), 

Russia, were examined to confirm their taxonomic identity (Table 2.2). The 

validly described species Gordonia desulfuricans 213ET, a benzothiophene 

biodesulphurising organism with a known 16S rRNA gene sequence 

(NR_028734) was used as a positive control. The 11 test strains were received 

as lyophilised biomass from Recyclatech Group Ltd., UK. Additional type 

strains of the genera Corynebacterium, Dietzia, Gordonia, Mycobacterium, 

Nocardia, Rhodococcus and Tsukamurella were obtained as -80°C 

cryopreserved cultures from the mycolic acid-containing actinomycete culture 

collection held at Edinburgh Napier University.  

2.2.2 Cultivation, maintenance and preservation of test strains 

Glass vials containing freeze-dried bacterial biomass were cut-open using a 

diamond cutter. About 0.5 - 1 ml of nutrient broth was added under sterile 

conditions and each pellet allowed to rehydrate for 30 seconds at room 

temperature. Each bacterial suspension was gently mixed and transferred to 

10 ml of nutrient broth (NB) (Oxoid, UK) or Glucose Yeast Extract (GYE; 

Gordon & Mihm, 1962) medium (NCIMB growth media catalogue: 486) and 

incubated at 30°C with orbital shaking at 180 rpm (New Brunswick™ Innova® 

44/44R, Eppendorf) for 3-4 days. A small aliquot of each bacterial suspension 

was streaked using sterile disposable loops (10µl) on the surface of Nutrient 

Agar (NA) (Oxoid, UK) plates and incubated, inverted at 30°C for 3-4 days to 

obtain single colonies. Liquid cultures were subsequently streaked for single 

colonies on NA and GYEA plate and incubated as above to check for purity by 

visual examination and Gram-stained smears (Hucker and Conn, 1923). All 

pure test strains were as plates or slopes at room temperature for no more 

than 2 weeks.  
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Preparation of glycerol stocks of the cultures 

The glycerol suspensions were also prepared from 1 or 2 loopful of biomass 

scraped, using sterile disposable loops, from GYEA plates streaked for single 

colonies and incubated at 30°C for 5 days. Inocula were transferred to 2.5 ml 

cryo-vials and emulsified in approximately 1.5 ml of sterile glycerol solution 

(50% v/v) in order to obtain an even suspension of cells. Working frozen 

glycerol stocks provided a source of inocula and replica stocks served as a 

means of long-term preservation. Working inocula were obtained by thawing 

the glycerol suspensions at room temperature and transferring a small sample 

of the suspended biomass to GYEA plates before promptly returning the vials 

to the freezer.  
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Table 2.2. Isolation and classification details of the 11 test strains obtained from IEGM  

Lab Code 
IEGM 
strain 
code 

Species 
Geographical origin and isolation 

substrate 
Classified 
based on 

Known 
biotechnologically 

relevant traits 

20 IEGM 20 
Rhodococcus 
erythropolis 

oil-polluted soil, Ukraine 
Immuno 
PCR 

Biosurfactants0F1 

60 IEGM 60 
Rhodococcus sp. 
– could be R. opacus 

oil-polluted soil, oilfield, Ukraine PCR1F2 
Biosurfactants1; 
transforms 
thioanisole 

87 IEGM 87 Rhodococcus ruber 
core sample 39 m deep, Uljanovsk 
region, Russia 

PCR  

208 IEGM 208 
Rhodococcus 
erythropolis 

oil-polluted soil, Ukraine 
Immuno 
PCR2F3 

 

213 IEGM 213 
Rhodococcus 
erythropolis 

sewage, Kharbin, China PCR 
drotaverine 
hydrochloride-
resistant 

248 IEGM 248 Rhodococcus opacus 
soil from a lavsan (polyether fibre) 
production facility, Belarus 

PCR  

369 IEGM 369 Rhodococcus ruber 
oil-polluted water, Sverdlovsk oilfield 
region, Russia 

PCR 
16S rRNA gene3F4 

Biosurfactants4F5  

Source: List of Species and Strains of IEGM Collection (http://www.iegm.ru/iegmcol/strains/index.html; accessed on 01/12/2017). 

 
1 Produced biosurfactants when grown on n-alkanes (C10-C16) 
2 PCR using R. opacus specific primers Ro1 and Ro2, performed at the lower annealing temperature of 62 °C, gave weak positive signal 
3 gives a positive PCR with R. opacus specific primers even though it is still mentioned as R. erythropolis 
4 16S rRNA gene sequence data is not available because it was published in Russian (Novoselova et al., 2011), and not deposited in public databases  
5 Produced biosurfactants when grown on n-alkanes (C12-C17) 

 

http://www.iegm.ru/iegmcol/strains/rhodoc/eryth/r_eryth20.html
http://www.iegm.ru/iegmcol/strains/rhodoc/sp/r_sp60.html
http://www.iegm.ru/iegmcol/strains/rhodoc/ruber/r_ruber87.html
http://www.iegm.ru/iegmcol/strains/rhodoc/eryth/r_eryth208.html
http://www.iegm.ru/iegmcol/strains/rhodoc/eryth/r_eryth213.html
http://www.iegm.ru/iegmcol/strains/rhodoc/opac/r_opac248.html
http://www.iegm.ru/iegmcol/strains/rhodoc/ruber/r_ruber369.html
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Lab Code 
IEGM 
strain 
code 

Species 
Geographical origin and isolation 

substrate 
Classified 
based on 

Known 
biotechnologically 

relevant traits 

488 IEGM 488 
Rhodococcus 
erythropolis – could be R. 
opacus 

oil-polluted water, Unva river, oil-
extracting enterprise area, Perm 
region, Russia 

PCR4  

505 IEGM 505 
Rhodococcus 
erythropolis 

oil-polluted water, Nozhovskoe 
oilfield, Perm region, Russia 

PCR  

508 IEGM 508 Rhodococcus opacus N/A   

F N/A Rhodococcus sp. N/A   

213E N/A 
Gordonia desulfuricans 
213T 

the soil in the vicinity of an oil shale 
spoil heap, West Calder, West 
Lothian, Scotland, UK 

16S rRNA gene 
(AF101416) 

Benzothiophene 
desulphurisation 

Gordonia desulfuricans 213ET is not listed in the IEGM catalogue. It was obtained from the culture collection at Recyclatech Group Ltd., UK. 

 

Immuno: The strain demonstrated the reaction of complete identity with a polyclonal antiserum against Rhodococcus erythropolis IEGM 7T – original article 
Ivshina et al., 1986  
PCR: species-specific primers suggested by (Bell et al., 1999) 
Strain 488 – not found in IEGM online index (http://www.iegm.ru/iegmcol/strains/index.html) 
Strain 505 – not mentioned in the printed ‘IEGM CATALOGUE OF STRAINS’ published by Prof. Nick Christofi (1998) 
Strain 508 – mentioned only in (Bell et al., 1999) and not listed in the web catalogue 
Strain F     – the label of the vial containing the lyophilised bacteria read “Rhodococcus sp.” and did not include the species name 

http://www.iegm.ru/iegmcol/strains/rhodoc/eryth/r_eryth505.html
http://www.iegm.ru/iegmcol/strains/index.html)
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2.2.3 Colony and micromorphology characteristics 

 NA and GYEA plates were streaked for single colonies and incubated at 30°C 

for 3-4 days. The colony features of the test strains were examined after 4 and 

6 days by both eye and using a binocular zoom plate microscope (Leica Stereo 

Microscope MDG41 using PLANAPO 1.0X objective). The colonies were 

examined for size and shape, elevation, margin, pigmentation, surface 

appearance, and for the development of substrate mycelium and aerial 

hyphae.  

Air-dried smears prepared from 3, 4 and 5-day old cultures were Gram-stained 

(modified from Hucker & Conn, 1923) and their acid-fastness was studied 

(modified of the Zeihl-Neelson method). The stained preparations were viewed 

by bright-field microscopy under oil immersion using an x100 objective 

(Olympus BX51). Cell shape and the presence of hyphae and primary and 

secondary branching were noted. 

2.2.4 Chemotaxonomy 

2.2.4.1 Extraction and detection of mycolic acids 

In this study, the validly described species Corynebacterium amycolatum 

S160T (negative control); Dietzia maris N1015T, Gordonia bronchialis DSM 

43247T, Mycobacterium peregrinum M6T, Nocardia brasiliensis N318T, 

Rhodococcus rhodochrous DSM 43241T and Tsukamurella paurometabola 

DSM 20162T were used as reference strains to study the mycolic acid profiles 

by Thin Layer Chromatography (TLC). Single colonies grown on GYEA plates 

incubated at 30ºC for 3 days were transferred to screw-capped conical flasks 

containing 150 ml of GYE broth. Dietzia maris was cultured in NB as it did not 

grow well in GYE. The caps of flasks were not tightly screwed, and the flasks 

were incubated with shaking at 180 rpm in an orbital incubator at 30ºC for 5 

days. After incubation, Gram-stained smears were examined for purity, and 

the cultures harvested by centrifugation at 3200 x g for 20 minutes and washed 

three times with sterile distilled water. Harvested biomass was esterified by 

acid or alkaline methanolysis to derive extracts with mycolic acid and fatty acid 

methyl esters. 
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2.2.4.2 Acid methanolysis 

The bacterial lipids were extracted and the mycolic acids and fatty acids 

derivatised to methyl esters using a modification of the whole-organism 

methods previously described (Hamid et al., 1993; Minnikin et al., 1980). Dried 

biomass (ca. 50 mg) of each test strain was transferred to 8.5 ml Corning glass 

test tubes fitted with PTFE lined screw caps (Corning, UK) containing 3 ml of 

methanolic sulphuric acid solution (methanol-toluene-concentrated sulphuric 

acid; 30:15:1, v/v/v). The test tubes were tightly closed, sealed with parafilm 

to prevent evaporation and methanolysis performed overnight in a covered 

water bath held at 75°C. After cooling to room temperature, 2 ml of n-hexane 

was added to each preparation, and the contents were shaken vigorously for 

5 minutes to extract the methyl esters, prior to centrifugation at low speed 

(2000 rpm) for 5 minutes to separate the two layers. The upper organic layers, 

which contained the hexane extract, were transferred to clean tubes using a 

Pasteur pipette. A further 2 ml of n-hexane was added to each of the initial 

preparations, and the extraction process repeated. The upper organic layers 

were removed and combined with the first extracts. The pooled extracts were 

then transferred to small glass vials and evaporated under a stream of nitrogen 

gas at room temperature for approximately 20 minutes to concentrate the 

samples. Once dried, the crude methyl ester residues were redissolved in 

approximately 50 µl of petroleum ether and stored at 4ºC until further 

separation by thin-layer chromatography.  

2.2.4.3 Analytical thin-layer-chromatography 

The mixtures of fatty acid methyl esters (FAMES) and mycolic acid methyl 

esters (MAMES) were separated by one-dimensional ascending thin-layer-

chromatography (TLC), as described by O'Donnell et al. (1982). Aluminium 

backed silica gel TLC sheets (Merck) (20 cm x 20 cm) were cut down to 10 cm 

x 20 cm in size. The samples were redissolved in 50 µl n-hexane then applied 

in small volumes (ca. 5µl), using a capillary pipette, to a line marked 1 cm from 

the base of each sheet. Spots were immediately dried using a hand-held hair 

dryer to prevent excessive spreading. Each TLC plate was loaded with 7 of 

the methanolysate samples from the reference strains and those prepared 

from the test strains. The aluminium plates loaded with samples were 
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developed in glass tanks containing light petroleum ether and acetone (92:8, 

v/v). The plates were removed when the solvent front approached the top, and 

the chromatogram air-dried then developed a second time in the same 

direction. The chromatograms were sprayed with a 5% solution of ethanolic 

molybdophosphoric acid (molybdophosphoric acid [10%, w/v] in ethanol [95%. 

v/v] (Sigma-Alrich, UK)) and immediately dried in an oven at 180°C for 5 

minutes. The positions of the separated FAMES and MAMES were revealed 

as dark blue/black spots on a pale green background. The MAMES of the test 

strains separate according to chain length and were identified according to 

their relative mobilities described as Retention factor (Rf) values by 

comparison against those derived from the reference strains. 

Majidzadeh & Fatahi-Bafghi (2018) reported that TLC had been used as a tool 

to assign strains to one of 3 genus groupings based on the retention factor 

(Rf): group 1 with Rf ≥ 0.6 which consists of Tsukamurella and Mycobacterium; 

group 2 with 0.2 < Rf < 0.6 which consists of Nocardia, Gordonia, and 

Rhodococcus; and group 3 with Rf ≤ 0.2 which consists of Corynebacterium. 

2.2.5 Genomic DNA extraction and purification 

Various methods for the isolation of bacterial genomic DNA were applied and 

assessed using all the test strains. A standard DNA extraction procedure 

(Sambrook et al., 1989) involving phenol:chloroform extraction and ethanol 

precipitation yielded poor-quality DNA from all the test strains. Subsequently, 

the ISOLATE II Genomic DNA Kit (Bioline, UK), which involves a similar 

chemical lysis method was tested, but this did not improve the quality or yield 

of the genomic DNA significantly. Further optimisation involving the addition of 

lysozyme (20 mg.ml-1) to the kit lysis solution did not improve results.  

To improve cell lysis, a kit incorporating physical lysis (bead-beating) was 

chosen. The PowerLyzer® PowerSoil® DNA Isolation Kit (MO BIO 

Laboratories Inc, Canada) designed to extract DNA from soil samples resulted 

in higher yields of gDNA from most strains, but the harsh steps in the protocol 

meant the DNA samples were prone to shearing.  

Finally, the desired chemically enhanced bead beating process was achieved 

by using UltraClean® Microbial DNA Isolation Kit (MO BIO Laboratories Inc., 
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Canada), which involves steps that lyse the bacterial cells using a combination 

of heat, detergent, and mechanical force with specialised beads. The test 

strains were grown in nutrient broth for 48 hours, and the genomic DNA was 

isolated following the manufacturer’s protocol. To facilitate lysis without 

shearing, the preps were heated at 65°C for 10 minutes with occasional bump 

vortexing for a few seconds every 2-3 minutes. The isolated genomic DNA 

was suspended in 50 µl of 10 mM Tris, pH 8, and the concentration and purity 

were determined by Nanovue (NanoVue™ UV/Visible Spectrophotometers, 

GE Healthcare, UK) before storing at 4°C for further use. 

2.2.6 PCR amplification of the 16S rRNA gene and gyrB gene 

The genomic DNA extracts from the 11 putative rhodococci, and Gordonia 

desulfuricans 213ET were used as templates for the PCR amplification of the 

16S rRNA gene. Primers for PCR amplification were purchased at the 200 

nmol scales from Eurofins Genomics, UK, as dry, partially purified, precipitated 

DNA, and resuspended in PCR grade water (Bioline, UK) to provide primer at 

a 100 pmol.µl-1 stock concentration. The primer stocks were stored at -20°C, 

and they were used to prepare working stocks solutions with a concentration 

of 10 pmol.µl-1.  

The melting temperature (Tm) of each primer used for PCR amplification was 

estimated from the base content of each oligonucleotide sequence using a 

formula for oligonucleotides up to 25 bases in length (Thein & Wallace, 1986): 

Tm (ºC) = 2(A + T) + 4(G + C) 

The optimum annealing temperature was obtained by subtracting 5ºC from the 

estimated Tm value. The lowest temperature value of the two primers used in 

the PCR was selected as a starting annealing temperature from which PCR 

conditions were then optimised, where necessary. 

The universal primers 27F (forward) and 1525R (reverse), used widely in the 

literature for the amplification of the 16S rRNA gene (Weisburg et al., 1991) 

were selected. For the PCR amplification of the gyrB gene, TancF (forward) 

and TancR (reverse) primers were used. These were originally designed by 

Táncsics and co-workers (2014), by comparing the conserved domains in the 

amino acid sequence of gyrB protein found in Rhodococcus jostii RHA1 
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(CP000431), R. opacus B4 (AP011115), R. equi 103S (FN563149) and R. 

erythropolis PR4 (AP008957) and reverse transcribing them to matching 

nucleotide sequences. The forward primer TancF was a 20-mer 

oligonucleotide corresponding to GGKFDSD (R. erythropolis PR4 gyrB amino 

acid position 109–115). The reverse primer TancR was a 23-mer 

oligonucleotide targeting the amino acid sequence KIINVEKA (R. erythropolis 

PR4 gyrB amino acid position 486–493). The expected length of the amplified 

gyrB gene fragment using this primer set is 1,154 bp. The primers used in the 

study are listed in Table 2.3 below. 

Table 2.3 Primers for the amplification of the 16S rRNA gene and gyrB 
gene 

Primer Sequence 5’ – 3’ 
Length 

(bp) 

Binding siteb 
Tm (°C) GC% 

5’ – 3’ 

27F AGAGTTTGATCATGGCTCA 19 8 - 27 52.4 42.1 

1525Ra AAGGAGGTGWTCCARCC 17 1544 - 1525 54.0 55.9 

TancF GGCGGCAAGTTCGACTTCGA 20 325-375 61.4 60 

TancR GCCTTCTCGACGTTGATGATC 21 1457-1478 59.8 52.4 

The primers 27F and 1525R were used to amplify the 16S rRNA gene, and the primers TancF 
and TancR were used for gyrB gene amplification. 

aDegeneracy in the 1525R primer sequence according to Weisburg et al., (1991): W = A:T; 

bBinding site on the 16S rRNA molecule is the numbered according to the Escherichia coli 
numbering system (Brosius et al., 1978) and the binding site on the gyrB gene sequence of 
Rhodococcus erythropolis PR4 known from its whole genome sequence available in the NCBI 
database (AP008957.1: 10128-12164) 
 

PCR based amplification was carried out in 200 µl thinly walled PCR microfuge 

tubes containing BioMix™ Red (Bioline) a 2x reaction mix containing ultra-

stable Taq DNA polymerase with Taq polymerase, deoxyribonucleotides 

(dNTPs), buffer and MgCl2 (5 mM). Approximately 10ng of purified genomic 

DNA template was added to the PCR tube. In each PCR run, multiple samples 

were amplified, including negative controls lacking gDNA. PCR reagents were 

stored separately from nucleic acid samples at -20ºC.  
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The PCR mixture composition for both 16S rRNA gene and gyrB amplification 

was prepared as follows: 

Component Volume Final concentration 

BioMix™ Red (Bioline) x2 25 µl   

Forward Primer (10 pmol.l-1) 5 µl 1 pmol.l-1 

Reverse Primer (10 pmol.l-1) 5 µl 1 pmol.l-1 

Bacterial DNA template Varies per sample 10 ng 

PCR grade water Varies per sample  

Total volume 50 µl  

 

PCR amplification was performed in a peqSTAR 96X Universal Gradient 

thermocycler (PEQLAB Biotechnologie GmbH, Germany) under the following 

conditions. 

PCR Condition 16 rRNA gene gyrB gene 

Heat Lid 110°C 

Initial denaturation 95°C for 2 minutes 

Amplification cycles 30 

-dsDNA Denaturation 95°C for 1 minute 

-Annealing 45°C for 30 sec 52°C for 30 sec 

-Extension  72°C for 1.5 minutes 

Final extension 72°C for 5 minutes, 1 cycle 

Store indefinitely 4°C, hold 

 

For each test strain, the 16S rRNA and gyrB genes were amplified from the 

DNA template in four separate reactions and subjected to gel electrophoresis. 

After confirming the amplification and integrity, the amplicons from the 4 

repetitions were pooled and subjected to gel electrophoresis once again. The 

successful amplification of the 16S rRNA gene was visualised by the 

appearance of an apparent single band in line with the 1,500 bp marker band. 

The gyrB gene was visualised as a bright single band between the 1,000 bp 

and 1,500 bp marker bands, but closer to the 1,000 bp marker band. This 

approach reduced the effects of base insert error that occurs in PCR and 
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provided amplified product for purification and sequencing purposes. PCR 

products were stored at -20°C, ready for purification and sequencing. 

2.2.7 Detection of DNA and integrity check 

The presence and integrity of the extracted genomic DNA were checked by 

agarose gel electrophoresis to ensure that DNA samples were not excessively 

sheared or fragmented during the extraction procedure. Agarose gel (1%, w/v) 

was prepared by dissolving 1 g of agarose in 100 ml of 1x TAE buffer in a 250 

ml conical flask. The mixture was dissolved by heating in a microwave oven in 

a 20-sec burst with gentle mixing until the solution became clear. Care was 

taken to avoid boiling the solution. The molten agarose was cooled to ~50°C 

in by placing the flask on a rotary shaker (150 rpm), and SYBR Safe™ DNA 

gel stain (Invitrogen) added to a final concentration of 0.5 µg.ml-1 before 

casting the gel in acrylic gel tray (15 x 15 cm) fitted with a comb to provide ca. 

10 µl volume capacity wells and allowed to set.  

The gel was immersed into the electrophoresis tank containing 1x Tris-

acetate-EDTA (TAE) buffer, and the comb was removed. The 1x TAE buffer 

contained 40 mM Tris, 20 mM acetic acid, and 1 mM EDTA at pH 8.0. Genomic 

DNA (2 µl) from each test strain was transferred to a 200 µl microcentrifuge 

tube containing 6 µl of PCR grade water and 2 µl of 5X gel loading buffer 

(Bioline) and mixed to give 10 µl sample, of which 5 µl was used to load into 

each submersed well. Five µl of DNA molecular size marker (1 kb 

Hyperladder; Bioline) was added to the first well. The DNA samples were then 

electrophoresed at a constant voltage (50 mV) for 90 minutes or until the 

marker dye approached the end of the gel.  The gel was briefly exposed to UV 

light from a UV transilluminator (ChemiDoc™ XRS+ System, Bio-Rad) and 

visualised in the computer using Image Lab™ Software (Bio-Rad). The 

genomic DNA samples appeared as slowly migrated samples close to the 

loading wells. Sheared DNA appeared as a smear along the track of the 

sample lane, in which case the sample was rejected and necessitated 

modification of the DNA extraction procedure.  

The purity and quantity of genomic DNA were also determined by 

spectrophotometry (NanoVue Plus Spectrophotometer, GE Healthcare). The 
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machine was set to measure DNA, and about 2 µl of the DNA sample was 

pipetted directly onto the sample plate. After the measurement, the sample 

was discarded by wiping the sample plate clean for the next measurement. 

Absorbance values were determined at 230, 260 and 280 nm, using the final 

elution buffer from the kit as blank. Examination of sample spectra was used 

to confirm the purity of the samples. NanoVue Plus displayed both individual 

absorbance values and absorbance ratios (260/280 and 260/230) on the 

screen, along with the sample concentration value.  

The corresponding reading at 230 nm measured any contamination by small 

molecules such as polysaccharides and a ratio between the readings at 

260nm and 230nm (A260/A230) in the range of 2.0–2.2 was indicative of a 

carbohydrate-free sample. The 260/230 values for “pure” nucleic acid are 

often higher than the respective 260/280 values. The reading at 280 nm 

provided an indication of protein contamination, and a ratio of A260/A280 of 

about 1.8 indicated a protein-free sample (Sambrook et al., 1989). DNA 

samples with low ratio values were subjected to a further clean-up step so as 

to avoid any interference from residual phenol from nucleic acid extraction or 

residual guanidine (often used in column-based kits). 

PCR products were obtained using Biomix-Red PCR mix (Bioline) and already 

contained an additional inert red dye that permitted easy visualisation and 

direct loading to 1% w/v agarose gels. Five µl of PCR product was loaded to 

each well directly, and the remaining steps in the electrophoresis performed 

as described above. The PCR amplicons appear as migrated bands in line 

with the correspondingly sized marker band Appendix 7.2. Any additional or 

unexpected bands along the track of the sample lane indicated the presence 

of non-target amplicons and necessitated either PCR optimisation or carefully 

avoiding the unwanted bands while proceeding with PCR product clean-up by 

gel slicing. 

2.2.8 Sequencing of purified 16S rRNA and gyrB gene 

The pooled amplicons were cleaned up using Wizard® SV Gel and PCR 

Clean-Up System (Promega) following the manufacturer procedure. In the 

case of the 16S rRNA gene amplicon, the PCR product was subjected to clean 
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up directly using the kit. In the case of gyrB gene amplicon, the pooled 

amplicon was run on 1% agarose gel, and the bands corresponding to the 1.2 

kb marker were sliced out using an x-tracta gel extraction tool (Sigma-Aldrich, 

UK), and the amplicon was recovered from gel slice using the kit. The clean 

PCR products were run on 1% agarose gel to check for purity. 

The clean PCR products were prepared for sequencing by Eurofins Genomics, 

UK following the procedure described for their PlateSeq Service. The samples 

were prepared by mixing 2 µl of the primer (10 pmol.µl-1 primer concentration) 

with 15 µl of purified PCR product (10 ng.µl-1 DNA template) in 1.5 ml 

microcentrifuge tubes or into wells of a custom-designed microtitre plate. The 

concentration of primers with wobble bases was calculated according to the 

following formula: nX * 10 pmol.µl-1, where n = number of bases within a wobble 

according to IUPAC code; X = number of wobbles within the primer sequence. 

In the case of the 16S rRNA gene, the internal primers listed in Table 2.4 were 

included for sequencing purposes. Internal sequencing primers were not used 

in the case of gyrB sequencing owing to the lack of data on conserved regions 

of the gene sequence across a broad group of bacteria.  

Table 2.4 Internal primers used for 16S rRNA gene sequencing  

Primer Sequence 5’ – 3’ 

Region covered 

on the nucleotide 

sequence of 16S 

rRNA gene 

Concentration used 

in the sequencing 

sample 

(pmol.µl-1) 

27F AGAGTTTGATCMTGGCTCAG 1-27 20 

MG4f* AATTCCTGGTGTAGCGGT 600-610 10 

782r* ACCAGGGTATCTAATCCTGT 710-720* 10 

MG5f* AAACTCAAAGGAATTGACGG 840-850 10 

1525R AAGGAGGTGWTCCARCC 14 40 

*internal primers 

The nucleotide sequences were obtained in both FASTA format and as a 

tabulated form in spreadsheets. The quality of the sequencing results was 

cross-checked with the corresponding chromatograms. The quality report is 

the trace file in *.pdf format in which the quality value of every single base is 

shown in colour code below every single peak. Different colours represent the 

four specified quality ranges. 
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2.2.9 Consolidation of sequencing data 

The reliability of the nucleotide sequence data for the 16S rRNA gene and 

gyrB gene, obtained from Eurofins Genomics, UK was checked. The 

sequences obtained were assembled using the CAP3 Assembler programme 

(Huang, 1999) (http://doua.prabi.fr/software/cap3) to check for overlapping 

regions and to assemble the sequence fragments into a single full gene 

sequence. The fully assembled sequences were analysed. 

The 16S rRNA gene sequences were subjected to BLAST® analysis using the 

‘blastn’ suite over the subset of all 16S ribosomal RNA gene sequences in the 

NCBI database, to look at the degree of alignment with previously reported 

bacterial 16S rRNA sequences. The gyrB gene sequences were subjected to 

‘blastn’ analysis over the entire non-redundant nucleotide sequences available 

in the NCBI database to look for highly similar sequences.  

The near-complete 16S rRNA gene sequences for the 11 strains and 

corresponding sequences of the type strains of 51 validly described 

Rhodococcus species and 13 type species representing the other genera 

(Corynebacterium, Dietzia, Gordonia, Millisia, Skermania, Hoyosella, 

Mycobacterium, Nocardia, Rhodococcus, Smaragdicoccus, Segniliparus, 

Tsukamurella, Williamsia) of the Order Corynebacteriales retrieved from the 

EMBL-GenBank-DDBJ (Benson et al., 2000) and the RDP (Ribosomal 

Database Project; Maidak et al., 1997) databases were aligned using the 

algorithms MUSCLE (Edgar, 2004) and MAFFT (Katoh et al., 2002; Katoh and 

Standley, 2013) and pairwise evolutionary distance matrices calculated. The 

MUSCLE alignment of the sequences was further used to construct the 

phylogenetic trees. The almost complete gyrB gene sequences (around 1,020 

bp) for the 11 strains were aligned with corresponding sequences of the type 

strains of 22 validly described Rhodococcus species.  

2.2.10 Construction of phylogenetic trees 

After aligning the sequences using MUSCLE algorithm, the phylogenetic trees 

were reconstructed based on the neighbour-joining (Saitou and Nei, 1987) and 

maximum-likelihood (Felsenstein, 1981) tree-mapping algorithms using Mega 

7 suite (Caspermeyer, 2016) and the Species Delimitation plugin (Masters et 

http://doua.prabi.fr/software/cap3
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al., 2011) of the Geneious software suite (Biomatters Ltd 

http://www.biomatters.com). Tree topologies were evaluated based on 

bootstrap analysis of 1000 datasets. 

The MUSCLE aligned sequences were subjected to phylogenetic analysis 

using IQ-Tree (Nguyen et al., 2015) which is a fast and effective stochastic 

algorithm to infer phylogenetic trees by maximum likelihood with similar 

computing time as RAxML and PhyML packages. The relationships between 

the test strains and the reference strains were obtained in terms of percentage 

similarity and number of different nucleotides. 

http://www.biomatters.com/
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2.3 Results 

The 11 bacterial test strains used in this research were initially isolated from 

oil-polluted soils in Russia in the early 1990s. These alkanotrophic organisms 

are biotechnologically important bacterial cultures involved in the degradation 

of oil hydrocarbons (including gaseous n-alkanes) and other natural and 

synthetic organic compounds. They have been preserved as members of the 

genus Rhodococcus at the IEGM, Russia. The basis of their taxonomical 

classification has remained vague, and the only verifiable source of 

information regarding their classification is the PCR based detection method 

developed by Bell et al. (1999) who had designed a set of species-specific 

primers targeting the 16S rRNA gene to obtain partially amplified sequences. 

Since 1999, several closely related new species have been described within 

the genus Rhodococcus. Therefore, it was essential to ensure the validity of 

the imprecise classification of the test strains using the 16S rRNA gene and 

gyrB phylogeny and other micromorphological and chemotaxonomical 

characteristics.  

2.3.1 Mycolic acid profile of the test strains 

Mycolic acids were extracted by acid methanolysis and analysed according to 

the protocol of Minnikin et al. (1980). The patterns obtained following one-

dimensional thin-layer chromatography of whole organism methanolysates of 

the 11 strains revealed the general mycolic acid composition of these 

organisms as multi-spot patterns that correspond to the different types of 

mycolates found in them, as shown in Figure 2.1. The components with Rf 

values of 0.1-0.5 usually correspond to mycolic acid methyl esters (MAMES) 

methyl esters of mycolic acids, whereas those with higher Rf values (0.8-1.0) 

are attributable to non-hydroxylated fatty acid methyl esters (FAMES). Longer 

carbon chains have low polarity, resulting in faster migration on the plates. The 

expected order of migration distance of the MAMES bands for the samples 

used in this research is Mycobacterium > Tsukamurella > Gordonia > Nocardia 

> Rhodococcus > Dietzia > Corynebacterium.  
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Figure 2.1 TLC of whole organism methanolysates of the 11 test strains 
and the reference strains from other genera under the order 
Corynebacteriales 
Whole-cells of the test strains were lyophilised, and the mycolic acids were extracted using 

the acid-methanolysis method. The mycolic acid methyl esters (MAMES) and fatty acid 

methyl esters (FAMES) in the methanolysate extracts of (C) Corynebacterium amycolatum 

S160T (negative control), (D) Dietzia maris N1015T, (G) Gordonia bronchialis DSM 43247T, 

(M) Mycobacterium peregrinum M6T, (N) Nocardia brasiliensis N318T, (R) Rhodococcus 

rhodochrous DSM 43241T and (T) Tsukamurella paurometabola DSM 20162T and test 

strains 20, 60, 87, 208, 213, 248, 369, 488, 505, 508, G. desulfuricans 213ET and strain F 

were detected by one-dimensional thin layer chromatography using solvent petroleum ether 

and acetone (92:8, v/v) and after development with spray solvent 5% solution of ethanolic 

molybdophosphoric acid and developed at 180 °C for 5 mins. The strain 639 shown on the 

chromatogram is not a part of this research. 
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The chromatogram also revealed the non-standardisation of the quantity of 

sample loaded on the baseline, especially in the case of samples such as 

Nocardia, Tsukamurella, 60 and 208 that were clearly overloaded, which 

subsequently reduced the resolution and caused band overlaps. The absence 

of well-defined bands in the case of samples Gordonia, Dietzia, Rhodococcus, 

369, 488, 505, 639 and 213E indicates that the samples were too dilute. 

Although the appearance of FAMES band was expected in the case of the 

negative control (Corynebacterium amycolatum), the chromatogram shows a 

weak MAMES band which advocates revisiting the authenticity of the strain 

received. The relative front (Rf) value of each mycolic acid spot was compared 

with those of the reference strains included on each chromatogram. The 

methanolysates of all the test strains produced MAME spots with Rf values 

~0.5 which corresponded most closely with the MAMES of the reference 

strains Gordonia bronchialis DSM 43247T, Nocardia brasiliensis N318T and 

Rhodococcus rhodochrous DSM43241T. Although the migration of the bands 

is not clearly visualised precisely in the TLC plate images (Figure 2.1), the 

observations confirmed the presence of mycolic acid methyl esters in all the 

test strains, indicating that they are mycolic acid-containing actinomycetes and 

hence belong to the suborder Corynebacterineae. 

2.3.2 Phylogeny of the strains based on 16S rRNA gene and gyrB gene 

sequence analyses 

BLASTn analysis 

The 16S rRNA gene nucleotide sequences obtained for the 11 strains (coded 

20, 60, 87, 208, 213, 248, 369, 488, 505, 508 and F) were at least 1,495 bp 

long. These sequences were compared with the entire non-redundant 

nucleotide sequence database (45,538,299 sequences available as on 

07/12/2017), and with the curated database of all 16S ribosomal RNA 

sequences from bacteria and archaea available at the NCBI (19,573 

sequences available as on the date 07/12/2017), using the Basic Local 

Alignment Search Tool programme, optimised for Highly Similar Sequences 

(megablast). Additionally, the BLAST settings were adjusted to include only 

reference 16S rRNA gene sequences of type strains. BLAST finds regions of 
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similarity between nucleotide sequences and calculates the statistical 

significance of these. The gyrB nucleotide sequences for the 11 strains were 

at least 1,066 bp long. These sequences were compared with the entire non-

redundant nucleotide sequence database, using BLAST analyses. The top hits 

from the BLAST analysis for the 16S rRNA gene and gyrB sequences of the 

test strains are shown in Table 2.5, and results obtained for each strain is 

presented in Appendix 7.4. The 16S rRNA gene sequence of R. degradans 

CCM 4446T was not included in the curated 16S rRNA database for type 

strains available at the NCBI. However, it was available in the general non-

redundant nucleotide database (accession number: JQ776649) which was 

used in the detailed phylogenetic analysis conducted later in the study. 

Therefore, the blast results presented in Table 2.5 do not include the R. 

degradans strain, and instead, Nocardia coeliaca DSM 44595 is presented as 

the top hit. Based on the revised 16S rRNA gene sequences of the type strains 

of N. coeliaca and N. globerula, Kampfer et al. (2014) suggested the 

reclassification of these species into the Rhodococcus genus. 
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Table 2.5 Top hits from the NCBI nucleotide database obtained for the BLASTn analysis of 16S rRNA gene and gyrB 
sequences of the test strains 

Strain 

Test strain 

16S rRNA 

gene 

length (bp) 

Top BLAST hit from the 

curated 16S rRNA sequence 

database for the 16S rRNA 

gene sequence 

Accession 

code of the 

16S rRNA 

gene of the 

top hit 

% 

similarity 
 

Test strain 

gyrB gene 

length (bp) 

BLAST hit from the entire non-

redundant nucleotide collection 

for gyrB gene sequence 

Accession 

code of 

gyrB gene 

of the top 

hit 

% 

similarity 

20 1494 +Nocardia coeliaca DSM 44595 NR_104776 99  1066 R. erythropolis ATCC 47072 AB014272 99 

60 1499 R. rhodochrous 372 NR_037023 99  1076 *R. rhodochrous NCTC 10210 LT906450 99 

87 1502 R. ruber DSM 43338 NR_026185 100  1073 *R. ruber IFO 15591 (DSM 4338) AB014174 100 

208 1492 R. jostii IFO 16295 NR_024765 99  1079 *R. erythropolis DSM 1069 AB014111 90 

213 1493 N. coeliaca DSM 44595 NR_104776 99  1070 R. globerulus ATCC 21506 AB014251 99 

248 1495 R. wratislaviensis NCIMB 13082 NR_026524 99  1080 R. erythropolis DSM 1069 AB014111 99 

369 1501 R. ruber DSM 43338 NR_026185 100  1077 *R. ruber IFO 15591 (DSM 4338) AB014174 99 

488 1460 R. koreensis DNP505 NR_114500 99  1076 *R. erythropolis DSM 1069 AB014111 90 

505 1495 N. coeliaca DSM 44595 NR_104776 99  1070 R. erythropolis JAM 1484 AB014172 99 

508 1495 R. jostii IFO 16295 NR_024765 99  1078 *R. erythropolis DSM 1069 AB014111 90 

F 1495 N. coeliaca DSM 44595 NR_104776 99  1066 R. erythropolis JCM 2892 AB355724 99 

The blastn output obtained for the 16S rRNA and gyrb gene sequences of the test strains showed multiple sequences in the database with high pairwise similarity 
(>98%) with the query sequence. The top hit for each gene's sequence was selected on the basis of high max score, % query cover values, i.e. how much of the 
query sequence is covered by the target sequence, and high % identity values. In the case of gyrB gene sequence, the hits from whole-genome sequencing 
projects and unclassified Rhodococcus species were excluded. 

*There were other sequences with equally high similarity values. However, the top hit was selected based on concurrency with 16S rRNA gene BLAST results. 
+Reclassification of Nocardia coeliaca into the genus Rhodococcus has been proposed (Kampfer et al., 2014). The 16S rRNA gene sequence of N. coeliaca shares 
that of R. degradans CCM 4446 (NR_145886.1) that was included in the curated 16S rRNA gene database for type material on a later date.
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Phylogenetic trees  

Unrooted phylogenetic trees were constructed using the Neighbour-Joining 

(Figure 2.2) and IQ-TREE (Figure 2.3) methods. It is evident from both 

phylogenetic trees that the 11 strains examined in this study are located within 

the evolutionary radiation encompassed by validly described members of the 

genus Rhodococcus, which confirms the original genus assignment of these 

strains. Further, the 11 strains formed independent lines of descent 

representing several distinct species. Strains 208, 488 and 508 formed a tight 

cluster in both the NJ and IQ-TREE based methods trees, supported by 

bootstrap values of 99% in both cases. Strains 20, 213, 505 and F also formed 

a tight cluster that included R. degradans in both trees (bootstrap values of 

64% and 99%, respectively). Strains 87 and 369 are most closely related and 

cluster with R. ruber in both trees (bootstrap values of 97% and 100%, 

respectively). Strains 60 and 248 formed single lines of descent in distinct 

parts of the Rhodococcus phylogenetic tree. 

Unrooted phylogenetic trees based on the gyrB gene were constructed using 

the NJ (Figure 2.4) and IQ-TREE (Figure 2.5) methods. The 11 strains were 

positioned/located within the evolutionary radiation encompassed by the 

validly described Rhodococcus species for which the gyrB gene sequence 

data were published, in agreement with the results of the 16S rDNA analysis. 

The clustering of the gyrB gene sequences followed similar trends as 

observed in the case of 16S rRNA gene sequences such that the strains 208, 

488 and 508 formed an independent cluster, strains 87 and 369 formed 

clustered with R. ruber, strains 60 and 248 formed single lines of descent in 

distinct parts of the Rhodococcus phylogenetic tree that included R. 

rhodochrous and R. wratislaviensis, respectively. Strains 20, 213, 505 and F 

also formed a tight cluster that included R. degradans, R. erythropolis and R. 

qingshengii. 
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Figure 2.2 NJ-TREE based on the 16S rRNA gene sequences 
Neighbour-joining tree showing the 16S rRNA gene sequence based phylogenetic relationship of the 11 test strains 
with 51 type strains of genus Rhodococcus and type species from 13 genera belonging to Order Corynebacteriales. 
Numbers at nodes indicate bootstrap support values based on 1000 resampled dataset. Bar, 1 nt substitution per 100 
nt. The test strains are highlighted in yellow. 
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Figure 2.3 IQ-TREE based on 16S rRNA gene sequences 
The output from the web-based IQ-TREE program showing the 16S rRNA gene sequence based phylogenetic 
relationship of the 11 test strains with 51 type strains of genus Rhodococcus and type species from 13 genera 
belonging to Order Corynebacteriales. Numbers at nodes indicate bootstrap support values based on 1000 
resampled dataset. Bar, 5 nt substitutions per 100 nt. The tree is UNROOTED although outgroup taxon 
Corynebacterium diphtheriae DSM 44123 (X84248) is drawn at the root. Numbers at the nodes are SH-aLRT 
support (%) / ultrafast bootstrap support (%). Bar, 5 nt substitutions per 100 nt. The test strains are highlighted in 
yellow. 
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Examination of the NJ and IQ Tree topologies reveals that members of the 

genus Rhodococcus form a distinct clade within the suborder 

Corynebacterineae, which is made up of several deep-rooted subclades but is 

distinct from the type species of the other genera and supported by high 

bootstrap values. Phylogenetic examination of the 51 validly described 

species of the genus Rhodococcus reveals that the percentage similarity of 

16S rRNA gene sequences amongst the type strains range from a maximum 

of 99.78% between R. baikonurensis A1-22 (AB071951) and R. degradans 

CCM 4446 (JQ776649) and a minimum of 87.77% between R. tukisamuensis 

Mb8 (AB067734) and R. lactis DW151B (KP342300), with a mean value of 

95.63%, which corresponds to nucleotide (nt) differences of 3 to 170, with a 

mean difference of 62 nt. Across all the 14 type species under the order 

Corynebacteriales, the type strain of the type species of the genus Millisia (M. 

brevis J81T) was observed as the closest relative of the type strain of the type 

species of the genus Rhodococcus (R. rhodochrous DSM 43241T) with 

94.79% similarity (Table 2.6). Members of the genus Rhodococcus show lower 

percentage similarities with the valid representative species belonging to the 

other genera under the order Corynebactyeriales. Therefore, on the basis of 

the 16S rRNA gene sequences the eleven test strains used in this study could 

be reliably classified under the genus Rhodococcus. For further resolution in 

their identification at the species level, gyrB gene-based phylogenetic 

analyses were undertaken. 
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Table 2.6 Percentage similarity between the 16S rRNA gene sequence 
of Rhodococcus rhodochrous DSM 43241T and other type species 
belonging to various genera under the Order Corynebacteriales 

Type species belonging to various genera under Order 

Corynebacteriales (16S rRNA accession code) 

% similarity with 

R. rhodochrous DSM 

43241T (X79288) 

Corynebacterium diphtheriae DSM 44123T (X84248) 91.47 

Dietzia maris DSM 43672T (X79290) 94.49 

Tsukamurella paurometabola DSM 20162T (NR 074458) 94.44 

Millisia brevis J81T (AY534742) 94.79 

Nocardia asteroides DSM 43757T (AF430019) 93.58 

Gordonia bronchialis DSM 43247T (NR 074529) 94.44 

Williamsia muralis MA140-96TT (Y17384) 94.52 

Smaragdicoccus niigatensis DSM 44881T (AB243007) 94.37 

Skermania piniformis IFO 15059T (Z35435) 93.88 

Segniliparus rotundus CDC 1076T (AY608918) 93.06 

Hoyosella altamirensis OFN S31T (FJ179485) 93.05 

Mycobacterium tuberculosis H37RvT (NR 102810) 91.61 

Turicella otitidis DSM 8821T (X73976) 85.92 

Parvopolyspora pallida DSM 43888T (AB006157) 89.03 

The table shows the percentage similarity between the 16S rRNA gene sequence of type 
species of genus Rhodococcus (R. rhodochrous DSM 43241T) and the type species of 
various genera under order Corynebacteriales. Based on the multiple sequence alignment of 
the 16S rRNA using MUSCLE algorithm, Millisia brevis J81T was found as the closest 
relative of the type species of genus Rhodococcus.  
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Figure 2.4 NJ-TREE based on gyrB gene sequences 
The neighbour-joining tree is showing the gyrB gene sequence based phylogenetic 
relationship of the 11 test strains with 20 type strains of genus Rhodococcus. Numbers at 
nodes indicate bootstrap support values based on 1000 resampled dataset. Bar, 2 nt 
substitutions per 100 nt. 
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Figure 2.5 IQ-TREE based on gyrB gene sequences 
The output from the web-based IQ-TREE program showing the gyrB gene sequence based phylogenetic relationship 
of the 11 test strains with 20 type strains of genus Rhodococcus. The tree is UNROOTED although outgroup taxon 
Rhodococcus fascians JCM 10002 (AB075563) is drawn at the root. Numbers at the nodes are SH-aLRT support (%) 
/ ultrafast bootstrap support (%). Bar, 6 nt substitutions per 100 nt. The test strains are highlighted in yellow, and the 
BDS strains among them are highlighted in green. 

 

Phylogenetic analysis of the 20 published gyrB gene sequences of the validly 

described Rhodococcus species reveal that the percentage similarity of 16S 

rRNA gene sequences amongst the type strains ranges from a maximum 

99.14% (9/1275 nt differences) shared between R. qingshengii JCM 15477 

(KF374699) and R. degradans CCM 4446 (KP663665). The lowest 

percentage similarity of 73.15% (290/1275 nt differences) is observed 

between R. degradans CCM 4446 (KP663665) and R. corynebacterioides IFO 

14404 (AB014109). 
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There were other general trends observed in the relatedness among the 

Rhodococcus type strains. It was observed that R. fascians JCM 10002 

(AB075563) and R. corynebacterioides IFO 14404 (AB014109) were the most 

distantly related to other rhodococci type strains in terms of gyrB gene 

sequences. The closest type strains were observed to be R. erythropolis 

ATCC 25544 (AB014245), R. degradans CCM 4446 (KP663665), R. 

qingshengii JCM 15477 (KF374699) with at least 98.34% similarity (a 

maximum of 20/1275 nt differences) among them. Second set of closely 

related species were R. rhodochrous ATCC 13808 (AB014173) and R. 

pyridinivorans JCM 10940 (AB088665) with 97.07% similarity (37/1275 nt 

differences) between them, while R. jostii IFO 16295 (AB088664), R. 

koreensis JCM 10743 (AB075566), R. wratislaviensis JCM 9689 (AB014315) 

formed the third set of closely related cluster with at least 94.3% similarity (a 

maximum of 72/1275 nt differences) among them. 

The closest species assignment for each of the strains based on both the 16S 

rDNA and gyrB gene sequence analyses generated in this study is provided 

(Table 2.7) and the data supporting each assignment described in more detail 

in the following sections.  
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Table 2.7 Confirmed identity of each strain and closest species identity based on phylogenetic analyses of 16S 
rDNA and gyrB gene sequences undertaken in this study. 

 

Strain code 

 

Species assignment based 
on IEGM catalogue (printed 

or online versions). 

 

Species assignment based 
on Bell et al. (1999) 

 

Closest identities based on phylogenetic analyses in the 
current study* 

16S rRNA gene-based gyrB gene-based 

Strain group A** 

208 Rhodococcus erythropolis Rhodococcus opacus Rhodococcus sp. Rhodococcus sp. 

488 Rhodococcus erythropolis  Rhodococcus opacus Rhodococcus sp. Rhodococcus sp. 

508 NA Rhodococcus opacus Rhodococcus sp. Rhodococcus sp. 

Strain group B 

20 Rhodococcus erythropolis Rhodococcus erythropolis Rhodococcus degradans Rhodococcus degradans 

Rhodococcus qingshengii 
213 Rhodococcus erythropolis Rhodococcus erythropolis Rhodococcus degradans Rhodococcus degradans 

505 Rhodococcus erythropolis Rhodococcus erythropolis Rhodococcus degradans Rhodococcus degradans 

F Rhodococcus sp. Rhodococcus sp. Rhodococcus degradans Rhodococcus degradans 

Strain group C 

87 Rhodococcus ruber Rhodococcus ruber Rhodococcus ruber Rhodococcus ruber 

369 Rhodococcus ruber Rhodococcus ruber Rhodococcus ruber Rhodococcus ruber 

Single strains 

60 NA Rhodococcus opacus* Rhodococcus rhodochrous Rhodococcus rhodochrous 

248 Rhodococcus erythropolis Rhodococcus opacus Rhodococcus wratislaviensis Rhodococcus wratislaviensis 

NA, Information not available. 

*, Species identification based on similarity matrices and phylogenetic position in evolutionary trees generated using MUSCLE alignment distance 

matrix, and Neighbour-Joining and IQ-TREE tree algorithms. 
**Putatively novel based on % nt difference; strains with nt differences greater than 2% from closest validly described species may be novel. 
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2.3.3 Identification of strains 208, 488 and 508 

At the time of receipt, strains 208 and 488 were listed as R. erythropolis in the 

IEGM online catalogue; no information was available for strain 508. These 

strains were classified as R. opacus based on PCR by Bell (1999). These 

strains formed a distinct clade within the genus Rhodococcus in the present 

study which is closely related to neither R. erythropolis nor R. opacus. The 

following section provides details of the 16S rDNA and gyrB phylogenetic data 

upon which the closest species assignments for these strains are based, along 

with descriptions of the cell and colony characteristics.  

Colony, micromorphology and staining properties of strains 208, 488 

and 508.  

The cell morphology of strains 208, 488 and 508 was observed to be 

consistent with their assignment to the genus Rhodococcus. The cells were 

aerobic, Gram-positive, weakly acid-fast, non-spore-forming and non-motile. 

Observation by light microscopy at x1000 magnification under oil immersion 

revealed the cells were thin and filamentous during the early growth phase (up 

to 48 h) and most cells appeared as fragmented filaments rod or coccoid 

shaped when sampled at later stages. 

Colonies of strain 208 appeared smooth, whitish-pale grey in colour, irregular 

in form and were flat with lobate edges when grown on NA plates and 

umbonate in elevation with irregular edges when grown on GYEA, after 3 days 

of incubation at 28°C (Figure 2.6 a). Strains 488 formed very similar-looking 

colonies to strain 208 when grown on NA plates. They appeared dull, with a 

raised elevation and some folding in the centre of the colony after 3 days at 

28°C incubation. But when grown on GYEA, they were no longer similar as 

the colonies of 488 were often cream to peach in pigmentation with undulated 

edges and more irregular contoured surface when grown on GYEA (Figure 2.6 

d). Strain 508 colonies appeared similar as that of strains 208 and 488 when 

grown on NA plates with colonies that were whitish-pale grey, irregular in form 

with lobate edges, raised elevation, smooth surface and dull appearance. 

These colonies were also whitish-grey in pigment on GYEA plates but were 

round in form, flat and with irregular edges (Figure 2.6 f).
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a) Strain 208 on NA  b) Strain 208 on GYEA 

 

 

 

c) Strain 488 on NA  d) Strain 488 on GYEA 

 

 

 

e) Strain 508 on NA  f) Strain 508 on GYEA 

Figure 2.6 Colonies of strains 208, 488 and 508 
Colonies of strains 208 (a & b), 488 (c & d) and 508 (e & f) growing as macroscopically visible 
colonies on nutrient agar (NA) and glucose yeast-extract agar (GYEA) plates, respectively 
after incubation for 3 days at 28ºC. Bar [500 µm].
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Phylogenetic identification of strains 208, 488 and 508 based on the 16S 

rRNA gene and gyrB trees.  

In the current study, the 16S rRNA gene sequences of these strains clustered 

together in both the NJ (Figure 2.2) and IQ-TREE/maximum likelihood (IQ/ML) 

phylogenetic trees (Figure 2.3). In both trees, these strains formed a distinct 

clade that did not include any valid Rhodococcus species with 99% bootstrap 

values. The 16S rRNA gene nucleotide similarity values and the number of 

nucleotide differences between the three strains and the valid Rhodococcus 

species recovered in these clades (NJ and IQ trees) are shown in Table 2.8. 

The three strains assigned to this clade share a high 16S rRNA gene 

sequence similarity of 99.66% which corresponds to 5/1520 nucleotide (nt) 

difference. The most closely related valid species to this clade, R. koreensis 

DNP505 (AF124342), shared the highest similarity (98.91%;16/1520 nt 

differences) with strain 208 and 508, and (98.76%;18/1520 nt differences) with 

488. R. jostii IFO 16295 (AB046357), the next most similar valid species to 

members of this clade, shares the highest similarity of 98.37% with strain 508 

in this clade. 

The gyrB gene sequences of these strains also formed a distinct cluster with 

100% bootstrap values, as seen in Figure 2.4 and Figure 2.5. From Table 2.9, 

it could be noted that the closest validly described species was R. 

wratislaviensis JCM 9689 (AB014315) with more than 89.24% (116/1078 nt 

differences) similarity with these strains, closely followed by R. koreensis JCM 

10743 (AB075566) with more than 89.06% (118/1078 nt differences), although 

R. jostii IFO 16295 (AB088664) showed a high similarity of more than 88.68% 

corresponding to 120/1078 nt differences. 

These results show that strains 208, 488 are neither R. erythropolis nor R. 

opacus as previously assigned. The identity of the strains 208, 488 and 508 

based on 16S rDNA and gyrB gene sequence could be confirmed only to the 

genus level and could potentially be novel. 
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Table 2.8 Distance matrix for the phylogenetic analysis of the 16S rRNA sequence of strains 208, 488 and 508 
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R. tukisamuensis Mb8 (AB067734) 

 

69 88 84 48 86 86 88 85 77 76 76 83 77 75 76 76 

R. maanshanensis M712 (AF416566) 94.85 

 

40 46 34 40 40 40 41 37 37 31 37 33 29 29 31 

R. nanhaiensis SCSIO 10187 (JN582175) 93.34 97.13 

 

45 44 38 38 40 36 30 26 31 48 39 37 37 37 

R. globerulus DSM 43954 (X80619) 93.83 96.75 96.79 

 

27 16 21 17 41 39 37 37 38 26 27 27 29 

R. erythropolis DSM 43066 (X79289) 96.42 97.46 96.65 98.02 

 

11 11 14 41 42 38 30 43 34 30 30 32 

R. degradans CCM 4446 (JQ776649) 93.65 97.17 97.29 98.91 99.24 

 

5 3 43 43 39 33 44 32 31 31 33 

R. qingshengii djl-6 (DQ090961) 93.73 97.17 97.29 98.57 99.24 99.66 

 

3 48 48 44 38 50 37 37 38 38 

R. baikonurensis A1-22 (AB071951) 93.47 97.01 96.97 98.74 99.01 99.78 99.78 

 

45 45 41 34 45 34 33 33 35 

R. imtechensis RKJ300 (AY525785) 93.8 97.1 97.43 97.22 96.96 97.08 96.75 96.66 

 

17 10 34 39 27 30 30 29 

R. opacus DSM 43205 (X80630) 94.38 97.4 97.88 97.37 96.9 97.09 96.76 96.68 98.87 

 

7 24 31 25 23 24 24 

R. wratislaviensis DSM 44107 (Z37138) 94.39 97.38 98.14 97.48 97.19 97.35 96.99 96.96 99.32 99.54 

 

24 31 23 20 20 22 

R. marinonascens 3438W (X80617) 94.45 97.82 97.8 97.5 97.81 97.76 97.43 97.5 97.71 98.41 98.38 

 

32 23 19 20 20 

R. jostii IFO 16295 (AB046357) 93.98 97.41 96.6 97.44 96.83 97.04 96.65 96.69 97.44 97.96 97.92 97.89 

 

26 26 25 27 

R. koreensis DNP505 (AF124342) 94.31 97.66 97.21 98.23 97.49 97.83 97.47 97.48 98.17 98.32 98.44 98.45 98.26 

 

16 16 18 

208 16S rRNA gene (1492bp) 94.49 97.95 97.36 98.17 97.79 97.9 97.48 97.55 97.99 98.46 98.64 98.73 98.3 98.91 

 

5 5 

508 16S rRNA gene (1495bp) 94.43 97.95 97.36 98.17 97.79 97.9 97.42 97.55 97.99 98.4 98.64 98.66 98.37 98.91 99.66 

 

5 

488 16S rRNA gene (1460bp) 94.29 97.79 97.36 97.99 97.6 97.72 97.36 97.36 98.02 98.36 98.48 98.63 98.17 98.76 99.66 99.66 

 
Percentage similarity  

The table shows the pairwise similarity values (%) and the number of nucleotide differences found between the 16S rRNA gene sequences of strains 
208, 488 and 508, and closely related type strains of validly described Rhodococcus species recovered in the same clade on the NJ-TREE and IQ-
TREE. Darker shades indicate high similarity and low number of nucleotide differences between the sequence pair. 
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Table 2.9 Distance matrix for the phylogenetic analysis of the gyrB sequence of strains 208, 488, 508 
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R. tukisamuensis JCM 11308 
(AB262518) 

 
249 211 211 212 222 206 207 

R. marinonascens IFO 14363 
(AB014115) 

80.52 
 

156 155 156 161 155 142 

gyrB_208 (1079bp) 80.73 85.56 
 

0 2 121 119 115 

gyrB_508 (1078bp) 80.71 85.63 100 
 

2 120 118 114 

gyrB_488 (1076bp) 80.6 85.53 99.81 99.81 
 

122 120 116 

R. jostii IFO 16295 (AB088664) 82.63 87.25 88.8 88.88 88.68 
 

72 54 

R. koreensis JCM 10743 
(AB075566) 

83.88 87.73 88.98 89.06 88.87 94.3 
 

52 

R. wratislaviensis JCM 9689 
(AB014315) 

83.8 88.76 89.35 89.43 89.24 95.72 95.88 
 

Percentage similarity  

  

The table shows the pairwise similarity values (%) and the number of nucleotide differences found between the gyrb gene sequences of strains 208, 
488 and 508, and closely related type strains of validly described Rhodococcus species recovered in the same clade on the NJ-TREE and IQ-TREE. 
Darker shades indicate high similarity and low number of nucleotide differences between the sequence pair. 
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2.3.4 Identification of strains 20, 213, 505 and F 

The tests strains 20, 213, 505 and F, that were previously classified as 

members of the validly described species Rhodococcus erythropolis (Gray 

and Thornton 1928) in the IEGM catalogue (online/printed) and confirmed as 

the same by Bell et al. (1999), were found in the present study to be most 

highly related to another species R. degradans. The following section 

provides details of the 16S rRNA gene and gyrB gene sequence based 

phylogenetic data upon which the closest species assignment for these 

strains is based, along with descriptions of the cell and colony characteristics 

of each strain. 

Colony, micromorphology and staining properties of strains 20, 213, 505 

and F.   

The cell morphologies of strains 20, 213, 505 and F were observed to be 

consistent with their assignment to the genus Rhodococcus. The cells were 

aerobic, Gram-positive, weak to non-acid fast, non-spore-forming and non-

motile. Observation by light microscopy revealed a typical rod–coccus 

developmental cycle. Cells were rods which then fragmented into short rods 

or cocci (48–60 h) into the stationary phase (72 h) which is a typical rod–

coccus cycle of the members of the genus Rhodococcus. 

Strain 20 formed smooth, pale-white, convex, and opaque colonies with 

undulated edges on NA plate, while similar-looking colonies but with a pale-

orange colouration were observed on GYEA plates after 3 days of incubation 

at 28°C (Figure 2.7 a & b). 

Strain 213 formed smooth and shiny, raised irregularly shaped colonies with 

undulated margins on an NA plate, and on GYEA plates strain 213 formed 

smooth but dull surfaced, round-shaped colonies with umbonate elevation 

and undulated margin (Figure 2.7 c & d). 

Strain 505 formed smooth, circular, raised, pale white colonies on NA plate 

(Figure 2.7 e). When grown on GYEA, strain 505 formed pale-beige coloured 

colonies with a smooth surface, a round-entire margin and crateriform 

elevation after 3 days of incubation at 28°C (Figure 2.7 f). Strain F grew as 

smooth and shiny colonies with round-entire margins, convex, sticky and 
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opaque colonies with regular edges when grown on NA and GYEA plates. 

The colouration was pale white on NA plates, while cream-coloured on GYEA 

plates. Among all the test strains that were used in this study, strain F 

exhibited uniquely mucoidal sticky colonies (Figure 2.7 g & h).  
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a) Strain 20 growing in NA  b) Strain 20 on GYEA 

 

 

 

c) Strain 213 on NA  d) Strain 213 on GYEA 

 

 

 

e) Strain 505 on NA  f) Strain 505 on GYEA 

 

 

 

g) Strain F on NA  h) Strain F on GYEA 

Figure 2.7 Colonies of strains 20, 213, 505 and F 
Strains 20 (a & b), 213 (c & d), 505 (e & f) and F (g,h) growing as macroscopically visible 
colonies on nutrient agar (NA) and glucose yeast-extract agar (GYEA) plates, respectively 
after incubation for 3 days at 28ºC. 
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Phylogenetic identification of strains 20, 213, 505 and F based on the 16S 

rDNA and gyrB trees. 

The 16S rRNA gene sequences of these four strains formed a tight cluster 

together with four validly described Rhodococcus species in both the NJ-

TREE (Figure 2.2) and IQ-TREE (Figure 2.3). The 16S rRNA gene 

sequences of the four strains shared between 99.53% (strains 20 and F) and 

99.87% (strains 505 and F) similarity and average similarity of 99.7% with 

each other, and differed by between 2 to 7 nucleotides (Table 2.10). All four 

strains shared identical 16S rRNA gene sequences (100% sequence 

homology) with the type strain of R. degradans CCM 4446T (1,473 bp). R. 

baikonurensis A1-22T shared the next highest similarity of 99.78% (3/1348 

nucleotide differences) with the four strains in this clade (Table 2.10). 

The NJ and IQ TREE  (Figure 2.4 and Figure 2.5) show tight clustering among 

20, 505, and F with more than 99.44% similarity among each other. Strain 

213 formed a loose member of this cluster with 98.78% similarity with strain 

20, 505 and F. The gyrB of R. degradans CCM 4446T was the closest (Table 

2.11). Based on the similarities observed in the 16S rRNA gene and gyrB 

gene sequence analysis, it could be concluded that the strains 20, 213, and 

505 should be classified as members of R. degradans rather than their 

original classification as R. erythropolis, along with the unknown rhodococcal 

strain F. During this analysis, it was also observed that the gyrB sequence of 

R. erythropolis ATCC 25544T (AB014245), R. qingshengii JCM 15477T 

(KF374699), and R. degradans CCM 4446T (KP663665) shared an average 

of 98.4% similarity among themselves, which indicated the close relationship 

of the type strains. 
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Table 2.10 Distance matrix for the phylogenetic analysis of the 16S rRNA sequence of strains 20, 213, 505 and F 
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R. koreensis DNP505 (AF124342) 
 

26 34 38 32 32 32 32 32 34 

R. globerulus DSM 43954 (X80619) 98.23 
 

27 22 16 16 16 16 16 17 

R. erythropolis DSM 43066 (X79289) 97.49 98.02 
 

11 11 11 11 11 11 14 

R. qingshengii djl-6 (DQ090961) 97.41 98.51 99.24 
 

10 10 9 7 6 3 

20 16S rRNA gene (1494bp) 97.83 98.91 99.24 99.32 
 

5 6 7 0 3 

213 16S rRNA gene (1493bp) 97.83 98.91 99.24 99.32 99.67 
 

4 3 0 3 

505 16S rRNA gene (1495bp) 97.83 98.91 99.24 99.39 99.6 99.73 
 

2 0 3 

F 16S rRNA gene (1495bp) 97.83 98.91 99.24 99.53 99.53 99.8 99.87 
 

0 3 

R. degradans CCM 4446 (JQ776649) 97.83 98.91 99.24 99.59 100 100 100 100 
 

3 

R. baikonurensis A1-22 (AB071951) 97.48 98.74 99.01 99.78 99.78 99.78 99.78 99.78 99.78 
 

Percentage similarity 

The table shows the pairwise similarity values (%) and the number of nucleotide differences found between the 16S rRNA gene sequences of strains 
20, 213, 505 and F, and closely related type strains of validly described Rhodococcus species recovered in the same clade on the NJ-TREE and IQ-
TREE. Darker shades indicate high similarity and low number of nucleotide differences between the sequence pair. 
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Table 2.11 Distance matrix for the phylogenetic analysis of the gyrB sequence of strains 20, 213, 505 and F 
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R. globerulus IFO 14531 (AB014114) 
 

198 160 169 140 162 141 145 144 145 

R. tukisamuensis JCM 11308 (AB262518) 84.05 
 

142 157 137 149 138 139 140 139 

R. baikonurensis DSM 44587 (KF374698) 86.8 88.27 
 

18 14 20 13 18 20 18 

R. erythropolis ATCC 25544 (AB014245) 86.33 87.53 98.51 
 

20 17 12 19 19 21 

gyrB_213 (1070bp) 86.99 87.27 98.67 98.13 
 

15 11 13 13 13 

R. qingshengii JCM 15477 (KF374699) 86.63 87.7 98.34 98.59 98.57 
 

9 10 13 12 

R. degradans CCM 4446 (KP663665) 86.76 87.03 98.75 98.87 98.96 99.14 
 

10 8 7 

gyrB_20 (1066bp) 86.5 87.05 98.29 98.22 98.78 99.05 99.06 
 

6 4 

gyrB_505 (1070bp) 86.62 86.99 98.1 98.23 98.79 98.76 99.24 99.44 
 

4 

gyrB_F (1066bp) 86.5 87.05 98.29 98.03 98.78 98.86 99.34 99.62 99.63 
 

Percentage similarity 

The table shows the pairwise similarity values (%) and the number of nucleotide differences found between the gyrb gene sequences of strains 20, 
213, 505 and F, and closely related type strains of validly described Rhodococcus species recovered in the same clade on the NJ-TREE and IQ-
TREE. Darker shades indicate high similarity and low number of nucleotide differences between the sequence pair. 
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2.3.5 Identification of strains 87 and 369 

Strains 87 and 369 were classified as members of the species Rhodococcus 

ruber in the IEGM catalogue. The following section provides details of the 16S 

rDNA and gyrB phylogenetic data upon which the closest species assignments 

for these strains are based, along with descriptions of the cell and colony 

characteristics. 

Colony, micromorphology and staining properties of strains 87 and 369  

The cell morphologies of strains 87 and 369 were observed to be consistent 

with their assignment to the genus Rhodococcus. The cells were aerobic, 

Gram-positive, weak to non-acid fast, non-spore-forming and non-motile. 

Observation by light microscopy revealed a typical short rod–coccus 

developmental cycle after 3 days of growth. 

Both strains 87 and 369 exhibited highly similar colony characteristics when 

grown on NA and GYEA plates. On NA plates, they appeared as round 

colonies with a smooth and shiny surface, a convex elevation and reddish-

orange in colour. On GYEA plates, they grew as irregular shaped colonies with 

undulated margin and a crateriform surface. The colouration ranged from a 

yellowish central region to pale-yellowish towards the edge, as shown in 

Figure 2.8. 
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(a)  Strain 87 on NA (b) Strain 87 on GYEA 

  

(b) Strain 369 on NA (d) Strain 369 on GYEA 

Figure 2.8 Colonies of strains 87 and 369 
Strains 87 (a & b) and 369 (c & d) growing as macroscopically visible colonies on nutrient agar 
(NA) and glucose yeast-extract agar (GYEA) plates, respectively after incubation for 3 days 
at 28ºC. 

Phylogenetic identification of strains 87 and 369 based on the 16S rDNA 

and gyrB trees 

The 16S rRNA gene sequence of strains 87 and 369 clustered together with a 

bootstrap value of 97/100 in NJ and IQ/ML trees, respectively and formed a 

tight cluster with two validly described Rhodococcus species in NJ (Figure 2.2) 

and IQ-TREE (Figure 2.3). The 16S rRNA gene sequences of strains 87 and 

369 shared 99.87% similarity (2/1501 nucleotide differences), and both of 

them share 99.73% similarity with R. ruber DSM 43338T (X80625) which 

corresponds to 4/1481 nucleotide differences also occurring at the ends of the 

type strain. They cluster together with R. aetherivorans, which shared high 

99.42% similarity (8/1409 nucleotide difference between 1096 – 1103 

positions) with R. ruber, as shown in Table 2.12. A similar trend was observed 

in the case of gyrB gene sequences (Table 2.13), where the strains 87 and 

369 shared 99.91% similarity (1/1073 nucleotide difference) which occur at the 
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872nd position on the gene sequence and clustered together with R. ruber in 

the gyrB phylogenetic tree (Figure 2.4 and Figure 2.5). Again, R. ruber DSM 

43338 (X80625) shares 99.44% and 99.54% similarity with strains 87 and 369, 

respectively, which corresponds to 6/1266 and 5/1266 nucleotide differences, 

respectively. The gyrB gene sequence of the type strain of R. aetherivorans 

was not available to further support the findings of the 16S rRNA gene 

sequence analysis. Therefore, R. zopfii ATCC 51349 (AB014176) was 

observed as the second closest relative, which showed an average of 86.8% 

similarity with strains 87 and 369. The findings prove that the original 

classification of strains 87 and 369 as R. ruber is correct and it has been 

confirmed through 16S rRNA and gyrB phylogeny. 
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Table 2.12 Distance matrix for the phylogenetic analysis of the 16SrRNA sequence of strains 87 and 369 
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R. zopfii T1 (AF191343) 
 

34 30 30 30 

R. aetherivorans 10bc312 (AF447391) 97.56 
 

11 10 8 

369 16S rRNA gene (1501bp) 97.97 99.22 
 

2 4 

87 16S rRNA gene (1502bp) 97.97 99.29 99.87 
 

4 

R. ruber DSM 43338 (X80625) 97.96 99.42 99.73 99.73 
 

                                          Percentage similarity 

The table shows the pairwise similarity values (%) and the number of nucleotide differences found between the 16S rRNA gene sequences of strains 
87 and 369, and closely related type strains of validly described Rhodococcus species recovered in the same clade on the NJ-TREE and IQ-TREE. 
Darker shades indicate high similarity and low number of nucleotide differences between the sequence pair. 
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Table 2.13 Distance matrix for the phylogenetic analysis of the gyrB sequence of strains 87 and 369 
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R. coprophilus ATCC 29080 (AB014271) 
 

152 154 182 217 191 187 165 164 

R. pyridinivorans JCM 10940 (AB088665) 87.97 
 

37 190 204 170 179 164 163 

R. rhodochrous ATCC 13808 (AB014173) 87.81 97.07 
 

185 199 169 173 156 156 

R. hoagii IFO 14956 (AB014110) 85.59 84.96 85.35 
 

182 181 165 156 155 

R. maanshanensis JCM 11374 (AB262519) 82.82 83.85 84.24 85.56 
 

206 200 189 188 

R. zopfii ATCC 51349 (AB014176) 84.88 86.54 86.62 85.67 83.69 
 

156 143 142 

R. ruber DSM 43338 (AB014174) 85.19 85.83 86.3 86.9 84.13 87.65 
 

6 5 

gyrB_87 (1073bp) 84.67 84.76 85.5 85.5 82.39 86.71 99.44 
 

1 

gyrB_369 (1077bp) 84.81 84.91 85.56 85.65 82.54 86.85 99.54 99.91 
 

Percentage similarity  

The table shows the pairwise similarity values (%) and the number of nucleotide differences found between the gyrb gene sequences of strains 87 
and 369, and closely related type strains of validly described Rhodococcus species recovered in the same clade on the NJ-TREE and IQ-TREE. 
Darker shades indicate high similarity and low number of nucleotide differences between the sequence pair.



91 
 

2.3.6 Species identification of strain 60 

The identity of the test strain 60 was not precisely known. Whilst it is listed as 

a member of the genus Rhodococcus in the IEGM catalogue, its species 

classification had not been delineated. Moreover, Bell et al. (1999) had 

described that their species-specific primers for R. opacus gave a weak 

positive signal for this strain. In the present study, strain 60 was shown to be 

only distantly related to this species and instead fell within a distinct clade 

containing several other Rhodococcus species. The following section provides 

details of the 16S rDNA and gyrB phylogenetic data upon which the closest 

species assignment(s) for this strain is/are based, along with descriptions of 

the cell and colony characteristics. 

Colony, micromorphology and staining properties of strain 60  

The cell morphology of strain 60 was consistent with its assignment to the 

genus Rhodococcus. The cells were aerobic, Gram-positive, weakly acid-fast, 

non-spore-forming and non-motile. Under the microscope, the cells appeared 

as cocci occurring as clusters and occasionally arranged as filaments. On NA 

plate, the colonies of strain 60 appeared as circular colonies with round-entire 

margin, having a raised elevation and pale-orange coloured after 3 days of 

incubation at 28°C. The colonies were smaller and convex when cultured in 

GYEA Figure 2.9. 

 

  

(a) Strain 60 growing on NA (b) Strain 60 growing on GYEA 

Figure 2.9 Colonies of strain 60 
Strain 60 growing as macroscopically visible colonies on (a) nutrient agar (NA) and (b) glucose 
yeast-extract agar (GYEA) plates, respectively after incubation for 3 days at 28ºC. 
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Phylogenetic identification of strain 60 based on the 16S rDNA and gyrB 

trees.  

In this research, the 16S rRNA gene of this strain exhibited a 99.59% similarity 

to Rhodococcus rhodochrous DSM 43241 (X79288). This corresponded to 

6/1474 nucleotide differences – 4 of which occurred at the ends. They 

occurred as a tight cluster with a bootstrap value of 81/91 in NJ (Figure 2.2) 

and IQ-TREE (Figure 2.3), respectively. The IQ tree grouped the above strains 

under R. gordoniae W4937 (AY233201) subclade that included R. lactis 

DW151B (KP342300), R. biphenylivorans TG9 (KJ546454) and R. 

pyridinivorans PDB9 (AF173005) which had 97.97%, 98.6%, 98.85% similarity 

with strain 60, respectively. It is clear from the phylogenetic trees and by the 

nucleotide similarity values (Table 2.14) that strain 60 can be distinguished 

from representatives of all the validly described Rhodococcus species.   

The NJ and IQ/ML trees obtained using the gyrB gene sequence of strain 60 

(Figure 2.4 and Figure 2.5) showed that it clustered with that of R. rhodochrous 

ATCC 13808 (AB014173) with 100/100 bootstrap values. The latter strain 

shares 97.07% similarity with R. pyridinivorans JCM 10940 (AB088665), and 

it could be noted that R. pyridinivorans is the second closest to strain 60 with 

85.06% similarity Table 2.15. From these results, it could be concluded that 

strain 60 should be classified as a member of R. rhodochrous, thus resolving 

its unclear taxonomic identification.
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Table 2.14 Distance matrix for the phylogenetic analysis of the 16S rRNA sequence of strain 60 
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R. artemisiae YIM 65754 (LN867321) 
 

32 36 43 45 30 26 

R. gordoniae W4937 (AY233201) 97.72 
 

21 23 23 11 13 

R. rhodochrous DSM 43241 (X79288) 97.56 98.49 
 

6 27 11 15 

60 16S rRNA gene (1499bp) 97.13 98.36 99.59 
 

29 21 17 

R. lactis DW151B (KP342300) 96.86 98.31 98.11 97.97 
 

17 24 

R. biphenylivorans TG9 (KJ546454) 98.02 99.22 99.25 98.6 98.81 
 

8 

R. pyridinivorans PDB9 (AF173005) 98.24 99.07 98.98 98.85 98.32 99.46 
 

Percentage similarity 

The table shows the pairwise similarity values (%) and the number of nucleotide differences found between the 16S rRNA gene sequences of strain 
60 and closely related type strains of validly described Rhodococcus species recovered in the same clade on the NJ-TREE and IQ-TREE. Darker 
shades indicate high similarity and low number of nucleotide differences between the sequence pair. 
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Table 2.15 Distance matrix for the phylogenetic analysis of the gyrB sequence of strain 60  
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R. ruber IFO 15591 (AB014174) 
 

159 197 315 177 301 173 

R. zopfii ATCC 51349 (AB014176) 87.43 
 

192 312 169 298 166 

R. coprophilus ATCC 29080 (AB014271) 84.44 84.83 
 

282 152 283 154 

gyrB_639 (1079bp) 74.39 74.63 77.02 
 

213 61 208 

R. pyridinivorans JCM 10940 (AB088665) 86.02 86.65 87.97 82.64 
 

183 37 

gyrB_60 (1076bp) 75.49 75.73 76.9 94.34 85.06 
 

150 

R. rhodochrous ATCC 13808 (AB014173) 86.33 86.89 87.81 83.05 97.07 87.76 
 

                              Percentage similarity 

 

 

The table shows the pairwise similarity values (%) and the number of nucleotide differences found between the gyrb gene sequences of strain 60 and 
closely related type strains of validly described Rhodococcus species recovered in the same clade on the NJ-TREE and IQ-TREE. Darker shades 
indicate high similarity and low number of nucleotide differences between the sequence pair. 
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2.3.7 Identification of strain 248 

Strain 248, previously classified as R. erythropolis in the printed version of 

IEGM catalogue, was identified as a member of the validly described species 

Rhodococcus opacus by Bell et al. (1999). It is currently listed as R. opacus in 

the IEGM online catalogue, but in the present study, it was shown to be highly 

related to both R. opacus and R. wratislaviensis and more distantly related to 

R. erythropolis. The following section provides details of the 16S rRNA gene 

and gyrB phylogenetic data upon which the closest species assignment for 

this strain is based, along with descriptions of the cell and colony 

characteristics. 

Colony, micromorphology and staining properties of strain 248.  

The cells of strain 248 were aerobic, weakly Gram-positive, non-acid-fast, non-

spore-forming and non-motile. Observation by light microscopy revealed a 

typical rod–coccus like arrangement of the cells. After 3 days of incubation at 

28°C, the GYEA and NA plates gave rise to irregularly shaped colonies with 

highly undulated margins. The colonies on NA plates were pale-white coloured 

with contoured surface elevation, whereas on GYEA plates the colonies were 

pale-beige in colour with a characteristic crateriform elevation in the centre, 

and contoured towards the edge as shown in Figure 2.10. 

  

(a) Strain 248 on NA (b) Strain 248 on GYEA 

Figure 2.10 Colonies of strain 248 
The colony of strain 248 growing as macroscopically visible colonies on (a) nutrient agar (NA) 
and (b) glucose yeast-extract agar (GYEA) plates, respectively after incubation for 3 days at 
28ºC 
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Phylogenetic identification of strain 248 based on the 16S rDNA and gyrB 

trees.   

The NJ Tree (Figure 2.2) and IQ-TREE (Figure 2.3) obtained using the 16S 

rRNA gene sequences show that strain 248 forms a distinct position that 

included R. opacus DSM 43205 (X80630), R. percolatus MBS1 (X92114), R. 

imtechensis RKJ300 (AY525785) and R. wratislaviensis DSM 44107 (Z37138) 

under its subclade (bootstrap value 52). The type strain of R. wratislaviensis 

N805T (DSM 44107) also shared high similarity with the type strain of R. 

imtechensis that was validly published later (Ghosh et al., 2006). 

From the distance matrix of the 16S rRNA gene sequence (Table 2.16), it 

could be noted that strain 248 shared 99.73% with R. wratislaviensis DSM 

44107 (Z37138) which is the closest validly described strain, followed by R. 

opacus DSM 43205 (X80630) with 99.14% similarity and R. imtechensis 

RKJ300 (AY525785) with 98.53% similarity in order. These percentage 

similarity values correspond to 4/1474, 13/1481 and 22/1495 nucleotide 

differences, respectively. The close relationship of strain 248 with R. 

wratislaviensis JCM 9689 (AB014315) is also supported by the high 97.41% 

similarity between their gyrB gene sequences (Table 2.17) and the tight 

clustering observed between 248 and R. wratislaviensis in the NJ and IQ-

TREE (Figure 2.4 and Figure 2.5). Based on the similarities observed in the 

16S rRNA gene and gyrB sequence analysis, it could be concluded that strain 

248 should be classified as a member of R. wratislaviensis rather than an R. 

opacus strain. 
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Table 2.16 Distance matrix for the phylogenetic analysis of the 16S 
rRNA sequence of strain 248 
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R. nanhaiensis SCSIO 10187 
(JN582175) 

 
31 50 36 30 27 26 

R. marinonascens 3438W (X80617) 97.8 
 

39 34 24 26 24 

R. percolatus MBS1 (X92114) 96.61 97.54 
 

40 26 35 28 

R. imtechensis RKJ300 (AY525785) 97.43 97.71 97.5 
 

17 22 10 

R. opacus DSM 43205 (X80630) 97.88 98.41 98.43 98.87 
 

13 7 

248 16S rRNA gene (1495bp) 98.07 98.25 97.83 98.53 99.14 
 

4 

R. wratislaviensis DSM 44107 (Z37138) 98.14 98.38 98.27 99.32 99.54 99.73 
 

Percentage similarity 

 

The table shows the pairwise similarity values (%) and the number of nucleotide differences 
found between the 16S rRNA gene sequences of strain 248 and closely related type strains 
of validly described Rhodococcus species recovered in the same clade on the NJ-TREE and 
IQ-TREE. Darker shades indicate high similarity and low number of nucleotide differences 
between the sequence pair. 
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Table 2.17 Distance matrix for the phylogenetic analysis of the gyrB 
sequence of strain 248 
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R. marinonascens IFO 14363 (AB014115) 
 

161 155 137 142 

R. jostii IFO 16295 (AB088664) 87.25 
 

72 49 54 

R. koreensis JCM 10743 (AB075566) 87.73 94.3 
 

48 52 

gyrB_248 (1080bp) 87.33 95.47 95.56 
 

28 

R. wratislaviensis JCM 9689 (AB014315) 88.76 95.72 95.88 97.41 
 

Percentage similarity 

 

The table shows the pairwise similarity values (%) and the number of nucleotide differences 
found between the gyrb gene sequences of strain 248 and closely related type strains of validly 
described Rhodococcus species recovered in the same clade on the NJ-TREE and IQ-TREE. 
Darker shades indicate high similarity and low number of nucleotide differences between the 
sequence pair. 
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2.4 Discussion 

Most microbiologists concur with the idea that a microbial species is an 

independently evolving population, whose evolution is sculpted within the 

group by a variety of events leading to gaps between species that allow their 

differentiation (De Vos et al., 2017). The ultimate goal of taxonomy is to 

construct a classification that is of operative and predictive use for any 

discipline in microbiology, and that is also inherently stable (Richter and 

Rossello-Mora, 2009). New technologies allowing high-throughput genomic 

data acquisition have improved bacterial classifications significantly and have 

led to a database-based taxonomy centred on portable and interactive data 

(Rosselló-Móra et al., 2017). Among currently used methods available for the 

classification and identification of prokaryotes, the analysis of 16S rRNA gene 

sequences offers a reproducible and technically easy procedure that is also 

scalable. 

Taxonomic identity of bacterial strains, especially ones with high commercial 

value, is important to ensure proper communication and to avoid confusion in 

legal matters such as patents. Several species of Rhodococcus are well 

known for their metabolic versatility. With the test strains used in this study 

being rhodococci, and the research focussed on exploiting one of their 

metabolic pathways (biodesulphurisation of organosulphur compounds) for a 

potential commercial application, it is essential to clear out any confusion in 

their taxonomic identity. The work presented in this chapter was purposed 

towards confirming the identity of the test strains based on their morphological 

and staining characteristics, together with the use of recently recommended 

phylogenetic approaches. Given the complicated taxonomic history of the 

genus Rhodococcus, this aspect gains even more interest. 

It is not uncommon for taxonomic classification of bacterial strains to be 

revisited and updated. In the past, several naturally occurring BDS strains 

have witnessed revisions in their taxonomy. The BDS isolates that were 

reported as Pseudomonas delafieldii, Mycobacterium phlei, Desulfobacterium 

anilini, and Gordonia nitida are currently reclassified as Acidovorax delafieldii 

(Willems et al., 1990), Mycolicibacterium phlei (Gupta et al., 2018), 

Desulfatiglans anilini (Suzuki et al., 2014), and Gordonia alkanivorans 
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(Arenskotter et al., 2005), respectively. Even the original desulphurising strain 

IGTS8, initially described as Rhodococcus rhodochrous, was later reclassified 

as R. erythropolis, and it is available in the culture collections as ATCC 53968, 

BCRC 16363, CCRC 16363, and CECT 5044.  

Until 1996, which is the latest year of isolation for the test strains used in this 

study, only 13 Rhodococcus species were described. Since then, there has 

been a considerable increase in the number of new species described under 

this genus, with current count at 55 (as of December 2019). When the DDH 

method was used for taxonomical classification, the minimum recommended 

% homology values to be classified as one species was 70% (Wayne et al., 

1987). However, Briglia et al. (1996) recognised that the type strains of the 

species R. opacus and R. percolatus showed distinguishing phenotypic 

characteristics despite sharing a DNA–DNA similarity value above the 70% 

cut-off point and suggested that classification should not be based solely on 

the genomic similarities. Later, a DDH homology value above 80% was 

recommended for species-level kinship in the genus Rhodococcus (Sukhoom, 

1999). On the basis of 16S rRNA, gyrB and catA gene sequence comparisons 

and reaffirmed DNA–DNA hybridisation, R. jialingiae was confirmed as a later 

synonym of R. qingshengii (Táncsics et al., 2014).  

The original classification of the test strains used in this study was based on 

morphological features, their metabolic ability to utilise alkanes as carbon 

source and partial amplification of 16S rRNA gene achieved through species-

specific primers developed by Bell et al. (1999). The partial 16S rRNA 

sequence analysis is no longer the reliable means to distinguish the identity of 

closely related species that tend to share more than 99.5% similarity (Fox et 

al., 1992; Novoselova et al., 2011; Woo et al., 2008). In the context of the 

complexity existing in the taxonomy of genus Rhodococcus and the need for 

refinement of the taxonomy of the organisms within the IEGM culture collection 

(as highlighted by Ivshina, 2012), it becomes imperative to resolve the species 

identity of the test strains. 

The mycolic acid profiles, as well as the BLASTn analyses using 16S rRNA 

gene and gyrB sequences, show unambiguously that the test strains used in 

this study are affiliated to the genus Rhodococcus. It should be noted that the 
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16S rRNA sequences for R. qingshengii and R. jialingiae were shown to have 

0.2% difference, which was later not found when 1525R primer was used 

(Táncsics et al., 2014). This was because the variable sequence stretch 

upstream of the 1492R primer site did not exist in the original 16S rRNA gene 

sequence obtained by Wang et al. (2010). Therefore, to avoid any misleading 

outcomes, primers 27F and 1525R were used in this study to reveal the 

sequence stretch upstream of the 1492R primer site. For each strain, the top 

20 highest sequence matches, percentage homology, sequence length 

compared, and corresponding E-values revealed that the 16S rRNA gene 

sequences of the test strains matched to strains identified by the database as 

members of the genus Rhodococcus. In the case of strains 20, 213, 505 and 

strain F, there was a high similarity with the type strain of Nocardia globerula 

DSM 44596 amongst other rhodococci in the top 10 list, indicating a closer link 

between the two genera.  

The choice of alternative marker depends on the genus under investigation 

and the richness of the sequence data in the database. In the case of 

Rhodococcus, at the time of writing there were gyrB and alkB sequences for 

20 and 30 type strains, respectively with the similarity ranges of (73.15-

99.14%) and (59.23-99.16%), respectively. In the analysis of both genes, the 

type strains of R. baikonurensis, R. globerulus, R. qingshengii, R erythropolis 

formed a close cluster, and the type strains of R. pyridinivorans and R. 

rhodochrous formed another distinct closely related cluster. In the alkB gene-

based phylogenetic analysis, R. opacus, R. percolatus, R. imtechensis and R. 

wratislaviensis, R. jostii and R. koreensis formed a loose cluster. For the type 

strain of R. degradans, the alkB sequence was not available, and only the gyrB 

sequence was available, which shared a high similarity (99.14%) with that of 

R. qingshengii which corresponded to 9/1059 nucleotide differences. The 16S 

rRNA gene analysis suggested R. degradans as the closely related species to 

strain 20, 213, 488 and strain F. Based on these observations, the gyrB gene 

was chosen to provide further resolution in the phylogeny.  

The gene sequences were aligned by MUSCLE and MAFFT algorithms, both 

of which produced similar similarity matrices. Therefore, MUSCLE aligned 

sequences were used to obtain the phylogenetic trees through the popular NJ-
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Treeing algorithm and the recently developed IQ-Tree method, with the latter 

providing a higher resolution than the former.  

In the 16S rRNA gene-based phylogenetic analysis, strain 87 and 369 

clustered along with R. ruber. This observation indicated that they are indeed 

R. ruber strains as previously classified by Bell et al. (1999). In the case of 

strains 20, 213, 505 and F, determination of pairwise 16S rRNA gene 

sequence similarity showed that their previous classification as R. erythropolis 

could be correct. The phylogenetic trees based shown in Figure 2.2 and 2.3, 

show that the strains 20, 213, 505 and F fell within the R. erythropolis clade 

encompassing R. degradans and R. qingshengii. Strain F (initially received as 

Rhodococcus sp.) and strains 20, 213 and 505 (received initially as R. 

erythropolis) grouped closely with R. degradans, whose type strain CCM 

4446T, was recently reclassified from the R. erythropolis group based on catA 

and gyrB gene analysis (Švec et al., 2015).  

The identity of strains 208, 488 and 508 differed in the IEGM web-catalogue, 

the printed catalogue, and the findings by Bell et al. (1999).  In the 16S rRNA 

and gyrB phylogenetic trees obtained in this study, they occur together as a 

distinct cluster in the phylogenetic analysis indicating that they are highly likely 

to be potentially new species. Strain 248 was received as R. opacus, and it 

was found closely related to R. wratislaviensis (99.73% similarity) as per 16S 

rRNA gene sequence-based phylogenetic analysis and the BLASTn results 

obtained in this research. As per the taxonomic history, the type strain R. 

wratislaviensis N805T was reclassified from the genus Tsukamurella which 

was earlier described as closely related to R. opacus and R. percolatus 

(Goodfellow et al., 2002). The high pairwise similarity of 16S rRNA gene 

sequence of strain 248 with R. opacus (99.54%) could not be resolved using 

gyrB gene sequence analysis owing to the lack of a validated gyrB gene 

sequence for R. opacus type strain. 

This study supports original genus classification of all strains but highlights the 

inaccuracies in the IEGM classification and the limitations of the study by Bell 

and team, based on diagnostic PCR using species-specific primers. The 

present study reveals 1 or 2 new lines of descent representing one or two 

possible previously undescribed species found in hydrocarbon-contaminated 
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soil. Besides reinforcing the value of 16S rRNA gene sequence analysis to 

establish the phylogenetic position of unknown strains, the study showed the 

gyrB gene-based phylogenetic analyses offered only a limited level of 

resolution, affected mainly by the lack of reference sequences for all the type 

strains. However, the results of the phylogenetic analysis of gyrB were broadly 

congruent with 16S rRNA. 

The micro- and macromorphology features of the test strains observed in this 

research were compared with the species description available in the Bergey’s 

Manual Vol.5 (Goodfellow et al., 2012). Among the Corynebacteriales, the 

main distinguishing morphological features for rhodococci is the ability of most 

strains to form hyphae that fragment into rods and cocci, although they do 

show considerable heterogeneity. Elementary branching prior to 

fragmentation was observed in the case of strains 20, 213, 505 and strain F, 

which is also a characteristic feature among R. erythropolis. The growth of 

these colonies on NA plates, (flat, circular colonies with whole margins and 

pale salmon-pink pigment concurs with the description of R. degradans 

colonies growing on the same medium and therefore, they could be 

reclassified as R. degradans. In this study, the strains 208, 488 and 508 also 

showed elementary branching prior to fragmentation, as observed in the case 

of R. erythropolis strains. But unlike the smooth edges of R. erythropolis 

colonies, these strains formed cream-coloured, opaque, convex colonies with 

irregular edges. This observation, together with the clustering observed in the 

phylogenetic trees, indicates that they could potentially be a different new 

species altogether. Strains 87 and 369 formed rough, pink to red colonies on 

GYEA which matched the morphological description of R. ruber species, also 

supporting the observations made from the phylogenetic trees. The 

macromorphology of colonies of strain 248 (cream-coloured colonies with an 

entire margin and a rough surface; a depressed centre after several days of 

incubation as seen in Figure 2.10) is more concordant with the species 

description for R. opacus than the other strains. 

Apart from the 11 test strains, it could be noted from the IQ-TREE (Figure 2.3) 

that the type species of four other mycolic acid-containing genera also appear 

to fall within the evolutionary span encompassed by members of the genus 
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Rhodococcus; the type strain of Williamsia muralis MA140-96T, Nocardia 

asteroides DSM43757T, Segniliparus rotundus CDC1076T and 

Smaragdicoccus niigatensis DSM44881T. These type species of different 

genera fall within a distinct, deep-rooted subclade containing 6 validly 

described Rhodococcus species. Segniliparus species were reported to fall 

within the phylogenetic radiation encompassed by Rhodococcus species, and 

most closely with the type strain of R. equi, in the original description paper by 

Butler et al. (2005). However, these were distinguished from this species and 

the genus Rhodococcus based on DDH and other chemotaxonomic data. It 

should be noted that the 6 valid Rhodococcus species in this subclade were 

described subsequent to the description of Segniliparus (Butler et al., 2005) 

and Smaragdicoccus (Adachi et al., 2007). The present study also reveals the 

high degree of homology of the 16S rRNA gene sequence among rhodococci 

despite the diverse polluted soil environments from where R. erythropolis, R. 

rhodochrous and R. ruber (all isolated from soil from activated sludge), R. 

opacus (soil around a defective town gas pipe), R. degradans (a soil 

contaminated by organic pollutants) and R. qingshengii (a carbendazim-

contaminated soil) were originally isolated. 
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Chapter 3 Biodesulphurisation of benzothiophene and 

dibenzothiophene present in aqueous medium and diesel oil 

by new rhodococci strains 
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3.1 Introduction 

The metabolic abilities of several species under the genus Rhodococcus have 

found a wide range of biotechnological applications. They are applied for the 

degradation of a variety of environmental pollutants and transformation or 

synthesis of compounds with possible useful applications. Biodesulphurisation 

(BDS) is one of their mainstream applications. In this chapter, the importance 

of natural bacterial isolates for the development of the BDS technology and 

the methodology followed for their identification are described. Based on the 

current challenges in BDS technology, the ideal characteristics of a 

commercially applicable strain are recognised. The high suitability of 

rhodococci for biodesulphurisation is then established, followed by 

examination of the test strains for BDS activity in a wholly aqueous medium, 

and subsequently in an oil-water biphasic medium in order to select the 

candidate BDS strains for future scaling up.  

3.1.1 Development of bacterial catalysts for BDS  

In the early period of development, most of the environmental isolates and 

enrichment cultures of mixed bacterial populations that were tested for BDS 

activity exhibited metabolisation of organosulphur compounds by initiating 

biodegradation at the C-C bond. However, there was a mixed culture growing 

in a medium enriched with thiophene as its sole source of sulphur, which 

exhibited C-S bond cleavage for about 20% of its products (Yamada et al., 

1968). The most successful microorganism for sulphur utilisation from 

organosulphur compounds was Pseudomonas isolated from enrichment 

cultures employing DBT as the sole source of sulphur. The organism, 

however, used DBT as a carbon substrate as well (Stoner et al., 1990). Thus, 

an unnatural, selective mutation process was utilised to develop a 

microorganism having selective sulphur metabolism. A mixture of bacterial 

isolates sourced from oil-contaminated soils was subjected to directed 

evolution by exposing the isolates to the mutagen NTG -1 methyl-3-nitro-1-

nitrosoguanidine in a continuous flow bioreactor at the Institute of Gas 

Technology (IGT), USA. As a result, a mixed culture of 7 mutant strains with 

capabilities for sulphur specific C-S bond cleavage was developed (Kilbane, 

1990, 1989). This group of microorganisms was code-named IGTS7. Among 
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these strains, Rhodococcus rhodochrous IGTS8 and Bacillus sphaericus 

IGTS9 were found to be highly capable of BDS (Kayser et al., 1993; Kilbane 

and Jackowski, 1992). The development of IGTS8 led to significant 

improvements in the field of biodesulphurisation such as the description of the 

metabolic pathway (the 4S pathway) of the sequential enzymatic 

desulphurisation of DBTand the genes encoding the enzymes (Denome et al., 

1994; Oldfield et al., 1997; Piddington et al., 1995). The important criterion for 

a candidate BDS strain is the ability to assimilate sulphur from the organic 

compounds without destroying the carbon skeleton of the compound (Boniek 

et al., 2015; Izumi et al., 1994; Labana et al., 2005; Mohebali and Ball, 2016, 

2008; Stanislaus et al., 2010; Xu et al., 2009). This is essential to preserve the 

calorific value of the fuel. This is a primary differentiating factor between BDS 

strains and others that are capable of biodegradation of oil, in which case CO2 

is the desired product. In general, the anaerobic processes were slower and 

poorly efficient, and hence microorganisms that follow an aerobic process 

were preferred (Debabov, 2010; Setti et al., 1997). Although successful BDS 

organisms have been identified from both Gram-positive and Gram-negative 

types, there have been only a few reported cases of the latter (Gunam, 2013). 

The naturally occurring desulphurising strains were often sourced from oil-

polluted environments and were isolated by selective enrichment culturing 

techniques (Ahmad et al., 2014; Bhatia and Sharma, 2010; Chauhan et al., 

2015; Chen et al., 2008; Davoodi-Dehaghani et al., 2010; Gilbert et al., 1998; 

Gunam et al., 2006; Izumi et al., 1994; Khedkar and Shanker, 2015; Kilbane 

II, 2006; Kirkwood et al., 2005; Labana et al., 2005; Li et al., 2005b; Papizadeh 

et al., 2010; Rhee et al., 1998; Song and Ma, 2003; Tanaka et al., 2001; Wu 

et al., 2011; Yang and Marison, 2005). Since the description of the first BDS 

strain IGTS8, many researchers have isolated new naturally occurring bacteria 

from diverse taxonomic groups capable of BDS of BT and/or DBTas listed in 

Appendix 7.5. Screening for bacterial strains with BDS activity is widely done 

by enrichment culturing in a chemically defined Mineral Salts Medium (MSM) 

devoid of any easily assimilable sulphur sources (like sulphates). The MSM is 

supplemented with the polycyclic aromatic sulphur compound of interest as 

the sole sulphur source. Benzothiophene (BT) and Dibenzothiophene (DBT) 

are the widely used model polycyclic aromatic sulphur compounds to study 
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bacterial desulphurisation, whilst some authors include alkyl derivatives of 

DBT (alkyl-DBT) and asymmetric structural isomers of DBT such as 

naphthothiophene in their studies to show the broader substrate range of the 

BDS strains (Table 3.1).  

Table 3.1 Naturally occurring bacterial strains capable of BDS of alkyl 
derivatives of BT and DBT 

Bacterium alky-DBT substrate Reference 

Achromobacter sp. 4-methyl DBT Bordoloi et al., 2014 

Chelatococcus sp. 4,6-dimethyl DBT Bordoloi et al., 2016 

Bacillus subtilis WU-S2B 

2,8-dimethyl DBT 

4,6-dimethyl DBT 

3,4-benzo DBT 

Kirimura et al., 2001 

Gordonia sp. HS126-4N 2,8-dimethyl DBT Akhtar et al., 2018 

Paenibacillus sp. A11-2 
Methyl, ethyl, dimethyl, 

trimethyl and propyl DBTs 
Onaka et al., 2001b 

Microbacterium sp. ZD-M2 4,6-dimethyl DBT Li et al., 2005b 

Mycobacterium sp. G3 

4,6-dibutyl DBT 

4,6-dipentyl DBT 
Okada et al., 2002 

4,6-dimethyl DBT 

4,6-diethyl DBT 
Nomura et al., 2005 

Mycobacterium sp. ZD-19 4,6-dimethyl DBT Chen et al., 2008 

Rhodococcus sp. ECRD-1 4,6-diethyl DBT Lee et al., 1995 

Rhodococcus sp. SA11 

1-methyl DBT, 4-methyl DBT, 

2,3-dimethyl DBT, and 4,6-

dimethyl DBT 

Mohamed et al., 2015 

R. erythropolis IGTS8* C1 and C2 substituted DBTs Kaufman et al., 1999 

R. erythropolis H-2 

2,8-dimethyl DBT 

4,6-dimethyl DBT 

3,4-benzo DBT 

Ohshiro, 1996 

R. erythropolis KA2-5-1 
Methyl, ethyl, dimethyl, 

trimethyl DBTs 
Kobayashi et al., 2000 

R. erythropolis XP 

4-methyl DBT 

4,6-dimethyl DBT 

Benzonaphthothiophene 

Yu et al., 2006a 

Strain RIPI-S81 
4-methyl DBT 

4,6-dimethyl DBT 
Rashidi et al., 2006 

Although it is known that DBT desulphurising strains can implicitly exhibit the BDS of alkyl-
derivatives of DBT also, some authors studied the latter activity explicitly. All the strains 
listed in the table can desulphurise DBT also.  
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A majority of BDS strains can desulphurise either DBTs or BTs, while only a 

few species are capable of desulphurising both (Bachmann et al., 2014; 

Khedkar and Shanker, 2015). The majority of reported BDS bacteria that are 

capable of desulphurising the symmetric heterocyclic sulphur in DBT are not 

reported to desulphurise the asymmetric heterocyclic sulphur in BT and its 

derivatives (Mohamed et al., 2015; Soleimani et al., 2007; Srivastava, 2012). 

Table 3.2 shows examples of naturally occurring bacterial isolates with 

different range of substrates for desulphurisation exhibiting different levels of 

BDS activity. It should be noted that there is a lack of a standardised way of 

reporting the BDS activity in the literature to make meaningful comparisons. 

Gordonia desulfuricans 213E (NCIMB 40816) (Gilbert et al., 1998), 

Rhodococcus sp. T09 (Matsui et al., 2000) and Sinorhizobium sp. KT55 

(Tanaka et al., 2001), are some of the strains reported to desulphurise BT only. 

A few bacteria, such as Paenibacillus sp. A11-2 (Ishii et al., 2000; Konishi et 

al., 2000b), Mycobacterium goodii X7B (Li et al., 2005a) and Gordonia 

alkanivorans RIPI90A (Shavandi et al., 2009) harbouring DBT 

desulphurisation genes or their homologs are capable of the 

biodesulphurisation of both DBT and BT. Gordonia sp. IITR100 desulphurised 

thianthrene, which is a non-thiophenic sulphur compound, alongside DBT 

(Ahmad et al., 2014). Some bacteria such as Bacillus subtilis WU-S2B 

(Kirimura et al., 2001), Paenibacillus sp. A11-2 (Konishi et al., 2000b), and 

Mycobacterium phlei WU-F1 (Furuya et al., 2001), exhibited thermophilic BDS 

of DBT and its alkyl derivates, at 50 °C. Interestingly, desulphurising bacteria 

sourced from the same location may not have the same desulphurisation 

spectrum. It was observed that Rhodococcus sp. SA11, Stenotrophomonas 

sp. SA21 and Rhodococcus sp. SA31 that were isolated from the same area 

had similar capabilities for desulphurising DBT and its alkylated homologs, but 

only the SA11 strain could use BT as a sulphur source (Mohamed et al., 2015).  
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Table 3.2 Naturally occurring bacterial isolates and their BDS activity 
Desulphurisation organism Substrate BDS activity Reference 

Corynebacterium sp. SY1 DBT 17% Omori et al., 1992 

Gordonia alkanivorans 1B DBT, methyl-DBT 77% (168 h) Alves et al., 2008 

G. alkanivorans RIPI90A DBT 182 µM h-1 Mohebali et al., 2007 

G. desulfuricans 213E BT, DBT N/A Gilbert et al., 1998 

Gordonia sp. ZD-7 DBT 93% (48 h) Li et al., 2006 

Lysinibacillus sphaericus 

DMT-7 
DBT 60% (360 h) Bahuguna et al., 2011 

Microbacterium sp. NISOC-

06 
DBT 94.8% (336 h) Papizadeh et al., 2010 

Microbacterium ZD-M2 
DPS, DBT, dimethyl-

DBT, TH, BT 
70–100% (70 h) Li et al., 2005b 

Mycobacterium goodie X7B 
DBT, 

Lianing crude oil 

59% (24 h), 

99% (72 h) 
Li et al., 2007b 

Mycobacterium phlei WU-

0103 

BT 

Naphtho [2, 1-b] TH 
52% (72 h) Ishii et al., 2005 

Mycobacterium sp. ZD-19 
TH or BT, 

DBT or 4,6-DMDBT 

100% (10h or 42 h) 

100% (50h or 56 h) 
Chen et al., 2008 

Pantoea agglomerans D23W3 DBT, alkyl-DBT 93% (24h) 
Bhatia and Sharma, 

2010 

Pseudomonas stutzeri TCE3 DBT N/A Dinamarca et al., 2010 

R. erythropolis FSD-2 Diesel 97% (12 h) Zhang et al., 2007 

R. erythropolis LSSE8-1 DBT 79.4% (24 h) Li et al., 2009 

R. erythropolis SHT87 

DBT, 

DBT-sulphone, 

TH, alkyl-TH 

100% (10 h) 
Davoodi-Dehaghani et 

al., 2010 

R. erythropolis XP 
Jilian FCC gasoline, 

SR gasoline 
30–85% (12 h) Yu et al., 2006a 

Rhodococcus sp. JVH1 BT, methyl-BT Varied significantly Kirkwood et al., 2007a 

Rhodococcus sp. 1awq DBT 0.26 μmol g-1 min-1 Ma et al., 2006 

Shewanella putrefaciens 

NCIMB8768 
DBT 

43.5 mmol/L HBP 

(72 h) 
Ansari et al., 2007 

Sphingomonas subarctica 

T7b 
BT, alkyl-DBT, 41% (36 h) Gunam et al., 2006 

TH – thiophenes; BT - benzothiophene; DBT – dibenzothiophene; DPS - diphenylsulphide 

The BDS activity of the strains is presented in the table, as reported in the original research 
article. In some publications, the activity BDS is represented in terms of % reduction in sulphur 
levels observed for a certain time of reaction/incubation. In other articles, the BDS activity is 
reported in terms of the amount of substrate utilised or product formed. There is no 
standardised way of reporting BDS activity in the literature. The different ways of presenting 
BDS activity makes it difficult to make meaningful comparisons between the performances of 
different BDS strains. 
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As a result of desulphurisation, thiophenes are converted into corresponding 

monohydroxy biphenyls (phenolic end products) that are later detected using 

the Gibbs assay (described in section 3.1.2). Following the successful BDS 

activity exhibited by the growing cells in an oil-free aqueous growth medium, 

they are prepared as resting cell systems (which are non-growing live cells 

that retain most of the enzyme activities of growing cells, collected at the late 

exponential phase and resuspended in phosphate buffer at a high cell density). 

The resting cells are then mixed with fuels to assess their oil desulphurisation 

capability. There are also reports where the BDS strains were grown directly 

in an oil-water biphasic medium to achieve desulphurisation of the oil. The oil 

phase could be laboratory reagent grade solvents (model oil) or naturally 

sourced crude oil or fossil fuels obtained downstream of the HDS process. The 

antimicrobial action of a solvent is correlated to its hydrophobicity and can be 

measured as the logarithm of the octanol-water partition coefficient (log P 

values). Hydrophobic solvents, with a log P value > 4, accumulate in the 

membrane, but will not reach a high membrane concentration and are not toxic 

because of their low water solubility, whereas the highly water-soluble solvents 

with log P value < 4 are toxic to most organisms (de Bont, 1998). Solvents 

such as n-hexadecane, n-tetradecane, n-dodecane, and n-octane which have 

log P values of 8.8, 7.2, 7.0, and 4.5, respectively have been frequently used 

as model oils, and the optimal oil-water ratios for BDS activity are studied. 

Some components of fossil fuels, such as cycloalkanes and naphthalenes, are 

toxic to microorganisms (Sikkema et al., 1995; Tao et al., 2006). Therefore, 

only the microorganisms that are inherently or adaptively tolerant to petroleum-

based solvents could be used for the BDS of fossil fuels (Table 3.3). Higher oil 

content causes mass transfer limitations and also limits the oxygen supply, 

and therefore, the ratio of oil/water in the biphasic medium must be optimised 

(Adlakha et al., 2016). 
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Table 3.3 Desulphurisation of real-world petroleum by naturally 
occurring bacterial isolates 

Desulphurising bacteria Desulphurisation yield References 

Rhodococcus erythropolis 

I-19 

67% desulphurisation of 

petroleum 
Folsom et al., 1999 

Rhodococcus sp. ECRD-1 
669 p.p.m desulphurisation 

middle distillate oil 
Grossman et al., 2001 

Rhodococcus sp. and 

Athrobacter sulphurcus 

50% desulphurisation of diesel 

oil 
Labana et al., 2005 

R. erythropolis XP 
94.5% desulphurisation of 

diesel oil 
Yu et al., 2006a 

R. globerulus DAQ3 
1580 ppm desulphurisation of 

diesel oil 
Yang and Marison, 2005 

Gordonia sp. CYKS1 

Reduction of sulphur from 

0.15% (wt/wt) to 0.06% (wt/wt) 

of middle distillate unit feed 

(MDUF) 

Rhee et al., 1998 

P. delafieldii R-8 
313 mg.L-1 desulphurisation 

from 591 mg.L-1 of diesel oil 
Guobin et al., 2006 

Nocardia sp. CYKS2 
0.3 - 0.24 wt.% 

desulphurisation of diesel oil 
Chang et al., 2000 

Mycobacterium phlei WU-

0103 

52% desulphurisation gas oil 

fraction from 1000 to 475 ppm 
Ishii et al., 2005 

Mycobacterium goodii X7B 86% desulphurisation diesel oil Li et al., 2003 

Mycobacterium goodii X7B 

59% desulphurisation of 

Liaoning crude oil from 3600 to 

1478 ppm 

Li et al., 2007b 

Mycobacterium goodii X7B 

immobilised cells of strain X7B 

the total sulphur content 

significantly decreased, from 

227 to 71 ppm at 40 °C. 

Li et al., 2005a 

The table shows examples of research where BDS strains were used for the desulphurisation 
of real-world fuels. The ability of the organisms to survive the solvent (fuel) environment is an 
important trait that determines the suitability for industrial process. There is no standard across 
BDS research in terms of the feedstock specification to use for validating the fuel 
desulphurisation activity.  
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Additionally, when biphasic (oil-water) or tri-phasic (oil-water-microorganisms) 

systems are used, it is critical to use strains that offer efficient separation and 

uncomplicated downstream processing because the many oil tolerant BDS 

strains form emulsions which make product recovery difficult (Derikvand and 

Etemadifar, 2014; Naito et al., 2001; Todescato et al., 2017). The 

biotransformation of organic compounds using growing cells is usually 

conducted in complex growth media. The growth of the bacteria results in a 

complicated mixture of metabolites produced in the culture system. Konishi et 

al., (1997) factored this into account and mentioned the potential interference 

that these components could pose while measuring the desulphurising activity, 

and therefore for the purpose of quantification, they resorted to using whole 

resting cells. This method is popular ever since and widely reported in the 

literature. Nevertheless, they also indicated that using growing cells for 

studying biodesulphurisation has the advantage that the growth of bacterial 

cells can be a reliable indicator of their utilisation of the chemicals as their 

essential nutritional components. 

Following successful desulphurisation, the sulphur levels in the sample are 

quantified and presented as the percentage reduction in the total sulphur 

content of the feed. There are current ASTM methods specifying Induction 

Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) for the 

quantification of a variety of elements in similar matrices (given in 

parentheses), such as D7151-15 (insulating oils), D7111-16 (middle distillate 

fuels), D5185-13e1 (lubricating oils and base oils), and D4951-14 (lubricating 

oils). Measuring the sulphur levels in aqueous solutions using ICP-OES is a 

straightforward procedure, whereas careful considerations are needed in the 

sample preparation step when analysing unstable systems like emulsions and 

oils (Amais et al., 2014; Young et al., 2011). The authors, who proposed xylene 

diluted solutions of petroleum crude oil, also emphasized the importance of 

sample introduction system and torch maintenance to avoid memory effects 

and remove carbon deposits in the system (Fabec and Ruschak, 1985). They 

also used a base oil in the calibration solutions to minimise viscosity 

differences. 
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3.1.2 Gibbs assay 

Gibbs (1927) reported that dihalogen substituted quinone-chloroimides such 

as 2,6-dichloroquinonechloroimide and 2,6-dibromoquinonechloroimide 

formed stable, measurable intense blue coloured indophenols when they react 

with phenols. This reaction came to be known as the Gibbs assay for the 

detection of phenols, and it works for phenols without para-substitution. In the 

case of para-substituted phenols, the specific product depends on the 

substituent and affects the colour development and hence the absorbance 

values. 

 

This reaction is very sensitive – can detect phenol 1 part in 20,000,000, and 

colour development is favoured between pH 8-10 (pH 9.4 preferred), and the 

readings are measured at 610 nm, the peak of the absorption band for 

indophenol. However, complete colour development requires up to 24 hours. 

Additionally, the wavelength of maximum extinction varies depending on the 

type of phenol studied (Ettinger and Ruchhoft, 1948). 

Gibbs assay has been used to monitor the desulphurisation activity of bacteria 

since the first desulphurising strain R. rhodochrous IGTS8 was reported 

(Kayser et al., 1993). Ever since, Gibbs assay has become one of the routine 

techniques in the field of biodesulphurisation research that uses BT or DBT 

and their derivatives as the target model organosulphur compounds (Alkhalili 

et al., 2017; Ansari et al., 2007; Castorena et al., 2002; Chauhan et al., 2015; 

Gherbawy et al., 2016; Gilbert et al., 1998; Gunam et al., 2006; Kayser et al., 

1993; Kirkwood et al., 2005; Mohamed et al., 2015; Peng and Zhou, 2016; 

Rashidi et al., 2006; Yu et al., 2006a, 2006b).  
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3.1.3 Adaptation of Gibbs reaction for the development of newer 

methods 

The Gibbs reaction mechanism of detecting phenolics has been exploited to 

develop biosensors and for other extended applications. In most cases, Gibbs 

reaction was used for quicker qualitative and quantitative measurements to 

eschew time consuming and expensive chromatographic methods like HPLC. 

Petcu and team (2004) developed a new fast and reliable test based on 

molecular imprinting (MIP) techniques for the rapid quantification of propofol 

(anaesthetic) in blood based on Gibbs reaction. Bhuiya and Liu (2009) 

developed a convenient and cost-effective assay method for measuring the 

catalytic properties of enzymatic transmethylation of phenolics using Gibbs 

reagent where the catalytic activity of the enzymes was measured as colour 

changes that happened during the regiospecific methylation reaction 

catalysed by enzymes. Bashir and Liu (2009) developed an α-

cyclodextrin/Gibbs reagent biosensor on Platinum-sputtered glass slide, in 

which the Gibbs reagent was held trapped in the α-cyclodextrin. When the 

phenol molecule is in close proximity to the Gibbs reagent, charge transfer 

happens between the two molecules that make up the ‘detecting element’ 

entrapped within a sol-derived type matrix. The charge transfer led to a colour 

change that was detected colourimetrically or cyclic voltammetrically. This 

modification had advantages such as high substrate selectivity, lower cost of 

analysis per sample, miniaturization and simplicity. Arip and team (2013) 

developed an optical chemical sensor for rapid detection of permethrin (a 

protectant for wood against termite attack) based on the reaction between 

permethrin and Gibbs reagent. In this research, deriving inspiration from 

above-described exemplar studies where Gibbs reaction principle was used 

to develop high-throughput sensors, a modified Gibbs test methodology was 

attempted aimed at direct detection of Gibbs positive bacterial colonies 

growing on solidified medium. If successful, this methodology can be adopted 

to detect and isolate a single colony of BDS bacteria from a mixed population. 

3.1.4 Rhodococci used for BDS of fossil fuels 

Members of Rhodococcus are well known for their metabolic versatility and 

with proven tolerance and degrading ability against organic solvents (Kim et 



116 
 

al., 2018). For example, tolerance to high levels of benzene was exhibited by 

Rhodococcus strain 33 (Paje et al., 1997). Rhodococcus opacus has been 

shown to be tolerant of toluene, styrene, xylene, octane, decane (Na et al., 

2005) and Rhodococcus was the dominant genus of polychlorinated biphenyls 

degrading bacteria (Leigh et al., 2006). R. erythropolis strains have exhibited 

tolerance to acetonitrile (Langdahl et al., 1996). The rhodococcal extracellular 

polysaccharides act as a natural barrier protecting Rhodococcus species from 

toxic aromatics like n-hexadecane (Iwabuchi et al., 2000) and have been 

reported as the cause for emulsification, moisture retention and adsorption, 

and thickening (Urai et al., 2007). The high tolerance to solvents and toxic 

chemicals indicate that rhodococci are appropriate microorganisms for use in 

the BDS process (Stancu, 2014; Todescato et al., 2017). The highly 

hydrophobic nature of the rhodococci cell membrane is an added advantage 

as it increases the contact between the cell and the sulphur compounds in the 

fuels (Monticello, 2000). In a biphasic medium, rhodococci preferentially exist 

at the oil-water interface reaction which naturally facilitated the uptake of DBT 

occurring in the oil phase. The strain SY1 has been shown to desulphurise 

dibenzyl sulphoxide to benzyl alcohol and toluene (Omori et al., 1995), and the 

strain IGTS8 can utilise 1-chloroethyl sulphide as the sole sulphur source, 

indicating a potential application in the detoxification of warfare agent mustard 

(2,2′ dichlorodiethyl sulphide) (Kilbane II and Jackowski, 1996). 

The recovery of the desulphurised oils and the short life of biocatalysts were 

major hindrances in developing free whole-cell systems. Pacheco et al. (1999) 

proposed that the reaction time and longevity of cells should be of 1 and 400 

hours, respectively, for a cost-effective BDS process. Immobilisation of the 

cells improved longevity and oil recovery. When R. erythropolis KA2-5-1 was 

immobilised by entrapping them with calcium alginate, agar, photo-cross-

linkable resin prepolymers, the BDS activity was sustained repeatedly in n-

tetradecane containing DBT for more than 900 h with reactivation. However, 

the average desulphurisation rate was lower than that in an n-

tetradecane/water/cells triphasic system with the same bacterial strain (Naito 

et al. 2001). Calcium alginate immobilisation in combination with coating the 

surface of cells with superparamagnetic Fe3O4 nanoparticles, resulted in the 

easy separation and reuse of Rhodococcus erythropolis LSSE8-1 by growing 
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in an n-dodecane/water biphasic medium (Li et al., 2009). This strategy was 

adopted by Dai et al. (2014) who reported that desulphurising activities of 

immobilised and free cells of Brevibacterium lutescens CCZU12-1 exhibited 

the similar time courses (8 hours), and the combination of magnetic Fe3O4 

nanoparticles enabled easy recovery and reuse of the immobilised biocatalyst 

up to 4 times, but with subsequent batches taking a longer time to achieve 

complete desulphurisation. Encapsulation of R. erythropolis R1 in calcium 

alginate beads with a combination of nano γ-Al2O3 resulted in a very effective 

BDS characterised by increased DBT consumption. The nanoparticles were 

adsorbed on the cells creating additional surface area and pores for enhanced 

DBT capture. The viability of the immobilised cells was 86%, whereas that of 

the free growing cells was 98%. Although the 12% reduction in the viability of 

the cells was acceptable, due to nanoparticles adsorption, some of the 

endproduct (2HBP) remained at the cell surface and was not released entirely 

into the medium (Derikvand and Etemadifar, 2014). Thus it is clear that 

immobilisation of biocatalysts helps in easy separation and reusability. 

However, the mass transfer resistance is enhanced compared to that in free-

cell systems, mainly due to internal mass transfer limitations (León et al., 

1998). Therefore, biphasic reaction systems are the ones to be applied in the 

real industry, enhancing the solubility and availability of hydrophobic 

substrates to the biocatalyst and limiting biocatalyst inhibition by hampering 

the accumulation of 2-HBP, which is recovered into the oil phase from the 

aqueous phase.  

Based on this understanding, Yu et al. (2006a) studied the BDS of methylated 

benzothiophene (3-M-BT) present in gasoline by Rhodococcus erythropolis 

XP grown free cells in a biphasic medium and reported its ability to take up 

high concentrations of 3-M-BT from n-octane. Yang et al. (2007) reported that 

the BDS efficiency of whole growing cells of Rhodococcus globerulus DAQ3 

was higher in a fed-batch system (200 ppm sulphur removal) than in a batch 

system (120 ppm sulphur removal). Maass et al. (2015a) reported DBT-BDS 

by the R. erythropolis ATCC 4277 in a batch reactor using a biphasic system; 

DBT dissolved in n-dodecane/water of different ratios 20, 80, and 100 % (v/v), 

recording BDS efficiencies of 93.3, 98.0, and 95.5 %. Free growing cells of the 
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strain ATCC 4277 also helps to achieve other desirable effects such as 

denitrogenation, besides the desulphurisation (Maass et al., 2015b). 

There are more than 90 naturally occurring bacterial BDS strains belonging to 

diverse genera reported until December 2017 (Appendix 7.5), and 

Rhodococcus predominates the list, especially R. erythropolis strains (El-

Gendy and Nassar, 2018; Xu et al., 2009). Since the development of the first 

BDS strain IGTS8, other strains of R. erythropolis with BDS capability have 

been isolated, such as SY1 (identified initially as a Corynebacterium sp.) 

(Omori et al., 1995, 1992); D-1 (Izumi et al., 1994); N1-36, N1-43, Q1a-22 

(Wang and Krawiec, 1996); I-19 (Folsom et al., 1999); T09 (Matsui et al., 

2000); KA2-5-1 (Onaka et al., 2001a); KT462 (Y. Tanaka et al., 2002); XP (Yu 

et al., 2006b, 2006a); ATCC 4277 (Maass et al., 2015b); PD1 (Derikvand et 

al., 2015); AF21875 (Parravicini et al., 2016). These naturally occurring strains 

were all isolated from polluted soil environments and are very closely related 

based on their 16S rRNA gene sequence similarity but differed in terms of their 

BDS activity. Strain T09 exhibited BDS of BT only, whereas original strains 

KA2-5-1 exhibited BDS of DBT only, and the strains KT462 could desulphurise 

both model compounds. Only a few other naturally occurring BDS strain 

belonging to other species under genus the Rhodococcus have been reported. 

R. fascians Eu-32 isolated from the roots of a eucalyptus tree and R. ruber 9C 

isolated from coal contaminated soil are the only other naturally occurring non-

erythropolis Rhodococcus strain with BDS activity (Akhtar et al., 2015; Mishra 

et al., 2017). There are many other naturally occurring rhodococci isolates 

whose species identity remains unresolved to date, and several recombinant 

rhodococci strains with enhanced BDS activity have been developed. 

Nevertheless, genetically engineered R. opacus ROD2-8 (modified from a 

non-BDS strain B-4) and strain ATCC 17039; and Rhodococcus ruber G3 were 

developed to take advantage of their relatively higher solvent tolerance nature 

compared to R. erythropolis species (Franchi et al., 2003; Kawaguchi et al., 

2012; Pan et al., 2013). Therefore, it would be a sensible approach to look for 

new naturally occurring BDS capable strains among metabolically versatile 

members of genus Rhodococcus such as R. erythropolis, R. opacus, and R. 

ruber, that were primarily isolated from oil-contaminated regions and study 

their BDS activity as growing cells in a biphasic medium. 



119 
 

3.1.5 Aim 

The aim of this study is to investigate the biodesulphurisation capabilities 

amongst the rhodococci isolates obtained from oil-polluted environments and 

identified to species level in Chapter 2. The aim extends further into 

identification of one or more candidate BDS strains that can be applied for 

commercial biodesulphurisation of diesel fuels. Such strains(s) must possess 

stable desulphurisation activity, grow in a low-cost culture medium, and exhibit 

culture characteristics that will readily allow downstream separation when 

grown in a biphasic growth medium containing diesel oil. 

Objectives 

1) To identify strains, from the bank of 11 rhodococci isolates, that 

demonstrate BDS capabilities when grown on mineral salts medium 

(MSM) containing benzothiophene (BT) or dibenzothiophene (DBT) as 

the sole source of sulphur, using Gibbs detection test. 

 

2) To identify and assess the BDS activity of strains when grown in an 

MSM containing minimal ingredients, for the purpose of ensuring its 

robustness and also minimising the cost of the growth medium for future 

commercial development. 

 

3) To investigate the growth properties and desulphurisation activity of 

candidate rhodococcal strains when grown as resting cell suspensions 

and as growing cells in a biphasic medium containing BT and/or DBT 

dissolved in either a model oil (n-hexadecane) or in diesel.  

 

4) To develop a modified Gibbs test methodology for the rapid detection 

of BDS capable bacterial colonies from a mixed population of primary 

isolates and/or mutant libraries grown on a solid medium. 
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3.2 Materials and Methods 

3.2.1 Preparation of the test strains for BDS study 

The bacteria were revived from their respective glycerol stocks for studying 

their BDS capability. About 100 µl of glycerol stock was inoculated into 250 ml 

shake flasks containing 100 ml of nutrient broth (NB) medium and incubated 

at 28ºC over a period of 4 days, with orbital shaking at 180 rpm (Infors HT 

Ecotron, Bottmingen, Germany). The increase in biomass was confirmed by 

turbidity measurements (Jenway 6320D, Techne, UK). The cells were 

harvested by centrifugation at 3250 x g for 5 minutes and resuspended in 5 ml 

of sterilised quarter-strength Ringer’s solution, which is an isotonic diluent for 

bacterial cells. 

It was imperative to avoid the carryover of any nutrients, especially sulphur 

components from the richer NB medium into the mineral salts medium (MSM) 

used for studying the BDS activity. Therefore, the cells were washed thrice 

using Ringer’s solution before inoculation into the enrichment medium (Ansari 

et al., 2007). The cell washing cycle involved centrifugation of the cell 

suspension at 3250 x g for 5 minutes (Hettich Mikro 200, Andreas Hettich 

GmbH & Co. KG, Germany) and resuspension of the pellets in fresh Ringer’s 

solution (5 ml) at every cycle. After the third wash cycle, the washed cell pellets 

were resuspended in 1 ml Mineral Salts Solution (MSS) and used to inoculate 

the MSM medium with an initial cell concentration of 0.1 optical density at 600 

nm (O.D600) to study the desulphurisation activity.  

3.2.2 Identification of the test strains with BDS capability 

The sequence of experiments conducted to identify the strains with BDS 

activity from the 11 test strains, and the approach used to develop a rapid 

screening method is illustrated in Figure 3.1.  
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Figure 3.1 Workflow followed in this research to study the growth and BDS of test strains 
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3.2.2.1 Media for testing the BDS activity 

The enrichment of the test strains was performed in mineral salts medium 

(MSM) whose composition was broadly based on Hutner’s mineral medium 

which was originally developed for organisms like Euglena but subsequently 

used for algae such as Chlamydomonas and recommended for the cultivation 

of Gram-negative bacteria (e.g. Pseudomonas, Halomonas, 

Ancalomicrobium, Ancyclobacter, Prosthecomicrobium) (Hutner et al., 1950, 

Cohen-Bazire et al., 1957). The metal-sulphate salts in the Hutner’s basal salts 

solution and “Metals 44” solution (Atlas, 2010) were replaced by respective 

metal-chlorides salts to make up the sulphur-free mineral salts solution (MSS). 

The modified MSS consisted of Na2HPO4, KH2PO4, NH4Cl, as the primary 

mineral nutrients and trace levels of other mineral salts such as MgCl2.6 H2O, 

CaCl2.2 H2O, (NH4)6Mo7O24.4 H2O, FeCl3.6 H2O, EDTA, ZnCl2, FeCl3.6 H2O, 

MnCl2.4 H2O, CuCl2.2 H2O, Co(NO3)2.6 H2O, Na2B4O7.10 H2O as additional 

nutrients. The sources of the chemicals used in the study are listed in 

Appendix 7.1 and the composition of the different solution components of the 

MSS is presented in Table 3.4. 

Table 3.4 Composition of various components of Mineral Salts Medium 
 

Mineral Salts Solution (MSS) 

Chemical Mol. mass (g/mol) 
Quantity 

(per litre) 

Final Molarity in the 

medium (mM) 

Na2HPO4 141.96 7.2 g 50.36 

KH2PO4 136.09 6.4 g 47.02 

NH4Cl 53.49 1.88 g 35.14 

Modified Hutner’s basal salts solution 10 ml  

After the addition of carbon source (Sucrose) to MSS, it was referred to as Mineral 

Salts Medium (MSM). Other than for culturing purposes, the MSS was used for 

resuspending the cell pellets and making dilutions, where needed. At this 

composition, the MSM had a pH 6.8-7.0 at 20 °C. 
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Modified Hutner’s basal salts solution 

Chemical 
Mol. mass 

(g/mol) 
Quantity 
(per litre) 

Molarity in the 
solution (mM) 

Nitrilotriacetic acid* 191.14 10 g 52.31 

MgCl2.6H2O 203.30 24.4 g 120.02 

CaCl2.2H2O 147.01 3.34 g 22.71 

(NH4)6Mo7O24.4H2O 1235.85 0.009 g 0.008 

FeCl3.6H2O 270.30 0.1088 g 0.4 

Modified “Metals 44” solution 
 

50 ml  

*Nitriloacetic acid was first dissolved in approximately 600ml of distilled water by heat 
stirring the water. After cooling down to obtain a clear solution, 7.3g KOH was added 
to neutralise the pH. Hutner’s basal salts solution was filter sterilised (Sterile Syringe 
Filter 0.2 µm, VWR Europe) rather than autoclaving to avoid precipitation of the salts.  

 

Modified “Metals 44” solution  

Chemical 
Mol. mass 

(g/mol) 
Quantity 
(per litre) 

Molarity in the 
solution (mM) 

EDTA 292.24 2.50 g 8.55 

ZnCl2 136.28 5.20 g 38.15 

FeCl3.6H2O 270.30 4.89 g 18.09 

MnCl2.4H2O 197.91 2.00 g 10.1 

CuCl2.2H2O 170.48 0.30 g 1.75 

Co(NO3)2.6HO 291.03 0.25 g 0.85 

Na2B4O7.10H2O 381.3 0.20 g 0.52 
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Throughout this research, sucrose was used as the carbon source. The MSM 

was sterilised by autoclaving at 121 °C for 20 minutes, and after cooling down 

to room temperature, the organosulphur compounds (BT or DBT) were added 

to the MSM prior to inoculation. Owing to the low solubility of BT (0.13 g.L-1) 

and DBT (0.0015 g.L-1), the stock solutions of BT and DBT were prepared by 

dissolving in ethanol. The BT or DBT stock solution was added to the sterile 

MSM to achieve final concentrations as required by the experiment, usually 

0.2 mM final concentration which equated to 26.8 mg.L-1 of BT or 36.8 mg.L-1 

of DBT. This composition of MSM used in the preliminary stages of the 

research is referred to as Recipe 1 in this thesis. 

3.2.2.2 Growth conditions for testing the BDS capability 

For BT DBT desulphurisation experiments, shake-flask cultures consisting of 

50 ml of MSM containing 0.2 mM final concentration of the sulphur source in 

the medium was used. In this thesis, the MSM containing BT as the sole 

sulphur source is reported as MSMBT, and when DBT is the sole sulphur 

source, it is written as MSMDBT. When the MSM contains both BT and DBT as 

the sulphur source, it is denoted as MSMBD. 

The composition of the complete MSM-Recipe 1 was altered by reduction or 

elimination of some ingredients to obtain recipes 2, 3 & 4. This was based on 

the MSM-Recipe 1 components that are not prevalently reported in then 

literature describing the growth media used to study BDS activity, thereby 

making it cheaper.  

Recipe 1 – MSM based on Hutner’s mineral medium 

Recipe 2 – Recipe 1 without Nitriloacetic acid 

Recipe 3 – Recipe 1 without Nitriloacetic acid and “Metals 44 solution”  

Recipe 4 – Recipe 3 containing reduced levels of sucrose (2 g.l-1 instead of 6 

g.l-1)  

Recipe 1 is the richer medium among 4 compositions, while Recipe 4 was the 

most minimal medium used in the study. 
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The growth and desulphurisation of the test strains in each of the modified 

MSMs were assessed with a view to determining the strain which can exhibit 

growth and sustain a stable desulphurisation activity in a minimal most MSM, 

and to study the growth phase-dependent nature of BDS activity as observed 

in the case of several previously reported BDS strains. 

Abiotic controls contained sterile MSM supplemented with the same amounts 

of the sulphur compounds. A culture of Gordonia desulfuricans 213E was used 

as a positive control. 

3.2.2.3 Measurement of growth by optical density 

The bacteria were incubated for a period of 7 days with periodical sampling, 

during which the strains with BDS capability converted the BT or DBT into 

phenolic compounds. About 1.5 ml aliquots of the culture samples were 

collected in 1.5 ml microcentrifuge tubes at periodic intervals to measure the 

growth and desulphurisation activity. From every sample, 200 µl of the sample 

was transferred to a disposable spectrophotometer cuvette with 1800µl of 

distilled water (10x diluted), to measure the cell growth through 

spectrophotometry at 600 nm wavelength (JENWAY 6300). The remaining 1.3 

ml of the samples were stored tubes at -20ºC for carrying out Gibbs test on 

them at the end of the incubation period to measure the phenols formed at 

each sampling point. The growth of the bacteria was inferred from the increase 

in the turbidity of the culture medium (O.D600nm). Samples were collected every 

12 hours during the seven days of incubation to determine the growth and BDS 

activity.  

In this research, growth of the 12 strains (i.e. the 11 test strains plus the 

positive control) during the screening stages (grown in MSM-Recipe 1 & 2) 

was estimated by visual observation, and not every passage was consistently 

quantified by spectrophotometry, because the primary interest was to identify 

the strains with BDS activity, and moreover, other than the 3 BDS strains, they 

exhibited a varying degree of non-homogenous culture characteristics after 

day 3. However, the BDS strains exhibited a homogenous growth in all the 

recipes, and their growth in MSM-Recipe 3 & 4 was measured as described 

above. 
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3.2.2.4 Measurement of growth by dry cell weight  

The growth of bacteria was measured by dry cell weight (DCW) measurements 

using the traditional filter paper method with a view to understanding the 

correlation between the DCW and the turbidity measurements. Three 5 ml 

aliquots of the culture were taken at periodic time points during growth and 

filtered through pre-weighed (Fisherbrand PS-200) 0.45 μm nanopore filter 

membrane discs (Sartorius Stedium cellulose nitrate filter) using a manual 

vacuum apparatus. The filter papers loaded with bacteria were dried at 60ºC, 

and the decrease in weight was periodically monitored until the value was 

constant. The difference between the weight of the dried filter discs and its 

original weight was taken as the dry cell weight per 5 ml, from which the dry 

cell weight in grams per litre (DCW.g.L-1) was calculated. 

3.2.3 Gibbs test for detection of phenolic compounds in the culture 

Gibbs reagent reacts with aromatic hydroxyl groups, such as phenol (and its 

ortho or meta-substituted derivatives), at a pH 8.0 to form a deep blue coloured 

indophenol complex that can be monitored spectrophotometrically at 610 nm 

(Kayser et al., 1993). A freshly prepared solution of Gibbs reagent (1% w/v) 

dissolved in ethanol was used for the test. Aliquots (approx. 1.5 ml) of current 

MSM culture or the thawed MSM culture aliquot were centrifuged at 9400 g for 

5 minutes to obtain cell-free culture supernatants (CFCS) which contain the 

phenolic compounds produced by BT or DBT desulphurisation. As reported 

previously in the literature, the phenolic compound formed is 2-

hydroxybiphenyl (2HBP) in the case of DBT and 2-(2’-hydroxyphenyl)ethan-1-

al or o-hydroxystyrene in the case of BT. 

Approximately 1 ml of the CFCS was transferred to a clean cuvette, and the 

pH was adjusted to 8.0 - 9.0, by adding 200 µl of the 1M NaHCO3 solution. 

Finally, 20 µl of the freshly prepared Gibbs reagent was added and mixed 

thoroughly by gentle vortexing. After 30 minutes of incubation in darkness at 

room temperature, a positive reaction between the Gibbs reagent and the 

phenolic compound in the transparent CFCS was viewed as the development 

of deep blue colour. This colour change was measured for absorbance at 610 

nm, where required. Maximum accuracy was achieved in the Gibbs assay by 



127 
 

precisely controlled conditions of pH and time of incubation/colour 

development (30 minutes) (Kayser et al., 1993). 

In this study, 0.1 mM solution of 2-hydroxybiphenyl (2HBP) dissolved in 

ethanol and diluted in ultra-pure water was used as a positive control for Gibbs 

reaction, and uninoculated MSM that was incubated alongside the bacterial 

cultures was used as a negative control. 

3.2.4 Preparation of resting cells for desulphurisation n-hexadecane 

The Rhodococcus strain 248 was cultivated in 2L of MSMBT in a 5L flask. After 

culturing for 5 days, the culture was concentrated by centrifugation for 5 

minutes at 3026 x g (Eppendorf Centrifuge 5800R). A potassium phosphate 

buffer (0.1 M, pH 7) prepared by mixing KH2PO4 (39 ml of 0.2 M solution) and 

K2HPO4 (61 ml of 0.2 M solution) was used to wash and resuspend the cell 

pellets to a high cell density of 15 (O.D600). Hexadecane containing BT (2 mM) 

was added to the cell suspension in the oil/water ratio of 1:1, 1:2 and 1:9 in 

triplicates.  

3.2.5 Preliminary BDS studies in a biphasic medium 

In order to identify the strains capable of accessing the BT or DBT dissolved 

in diesel oils and selectively desulphurising them, they were cultured in a 

biphasic MSM containing n-hexadecane (model oil). The MSM-Recipe 4 was 

prepared without the addition of ethanolic solutions of BT or DBT. It was 

supplemented with n-hexadecane containing dissolved BT (1258.1 mg.Kg-1) 

or DBT (1726.8 mg.Kg-1) which equate to 300 mg.Kg-1 (ppm by weight) of final 

sulphur content in the oil phase. In this thesis, the MSM containing n-

hexadecane is denoted as MSMHex. The strains that were previously grown in 

MSMBD were used for inoculating the fresh MSMHex. The growth of the strains 

in MSMHexBT and MSMHexDBT was monitored. Owing to the non-homogenous 

nature of growth exhibited by the bacteria, their growth was not measured by 

turbidity measurements. However, their BDS activity was tested by Gibbs 

assay. The strains that exhibited BDS activity against the BT or DBT dissolved 

in oil were considered as potential candidate strains for the BDS of fuel oil. 
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3.2.6 Biodesulphurisation of BT and DBT in gas oil by growing cells 

3.2.6.1 Testing the oil tolerance of the test strains 

The successful candidate BDS strains identified through the preliminary 

biphasic medium based BDS study described above were further grown in 

biphasic medium with various oil/water ratios of 1%, 2%, 5%,10%, 20% and 

50% (v/v), to determine the optimal ratio for the strain. The growth of the strains 

was negatively affected at 20% and 50% (v/v) levels of n-hexadecane, while 

at 1%, 2% and 5%, it was difficult to distinguish between the oil, biomass and 

aqueous phases visually. Therefore, further growth experiments using 

biphasic medium were carried out at 10% (v/v) oil in the aqueous MSM. The 

model oil was replaced with actual gas oil (diesel) obtained downstream of the 

HDS process at the Petroineos refinery, Grangemouth, UK, as the oil phase 

to make MSMDiesel. The HDS gas oil which contained less than 10 ppm sulphur 

content was supplemented with equimolar amounts of BT and DBT to obtain 

~300 ppm sulphur content in the fuel, before being used for the experiments 

(MSMD300). 

3.2.6.2 Growth conditions for BDS activity 

The BDS strains were cultured in 100 ml of MSMBD in 250 ml Erlenmeyer flasks 

at 28 °C with shaking at 180 rpm. After 3 days of growth, their BDS activity 

was confirmed by Gibbs assay. The cells were pelleted by centrifugation and 

washed once by resuspending them in 5 ml of sterile MSS to remove any 

carryover of nutrients or metabolites. The washed cells were used to inoculate 

1 litre of MSMHex containing 10% (v/v) n-hexadecane with 300 ppm Sulphur 

content. In this medium, the only source of sulphur is the dissolved BT or DBT 

present in the oil phase. The cultures were maintained in triplicates alongside 

another triplicate set of entirely aqueous MSM supplemented with 0.2 mM BT 

or DBT (ethanolic solutions) for comparative studies between the oil-free 

aqueous and biphasic MSMs. In the case of strain 248 and Gordonia 

desulfuricans 213E, MSMBT and MSMHexBT were used for the growth and BDS 

studies. In the case of strain F, MSMDBT and MSMHexDBT were used. The 

growth of the BDS strains was measured by turbidimetry and dry cell weight 

methods in the case of Aqueous MSM. Owing to the non-homogenous nature 
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of growth in the presence of oil, the growth of the strains in the case of MSMHex 

was measured by weight methods only. 

3.2.7 Determination of the metabolic intermediates by GC-MS 

Gas chromatography-mass spectrometry (GC-MS) was conducted to 

elucidate the molecular identity of metabolites of BT and DBT desulphurisation 

occurring in the MSMBT and MSMDBT cultures of the BDS strains. The richer 

MSM (Recipe 2) was used in this study to allow for the fullest expression of 

BDS activity. 

3.2.7.1 Sample preparation for GC-MS 

The BDS strains 248, F and G. desulfuricans 213E were cultured in MSMBT, 

MSMDBT and MSMBD. The cell-free culture supernatant (CFCS) of the 5-day 

old culture was tested to confirm the presence (formation) of phenol by the 

Gibbs test. Gibbs positive cultures were selected for further GC-MS analysis 

to identify the phenol and other metabolic intermediates formed as a result of 

biodesulphurisation of BT and DBT by the bacteria. Day 0 cultures were used 

as controls to confirm the presence of only BT or DBT and the absence of 

phenols at the start of the cultures and to identify the retention time of BT and 

DBT. 

About 25 ml of the bacterial culture was taken in 50 ml falcon tubes and 

acidified by gradually adding 6 N HCl, up to pH 2.0 at 20 °C. To the acidified 

culture, an equal volume of HPLC grade ethyl acetate (Sigma-Aldrich, USA) 

was added and shaken on a Vortex-Genie (Scientific Industries Inc., USA) for 

thorough mixing. After allowing to fractionate into layers for 5 minutes, the ethyl 

acetate layer was extracted and used for further GC-MS analysis. Ethyl 

acetate extract of MSM without BT or DBT was used to check for background 

peaks in the chromatogram caused by the solvents used in the procedure, and 

the ethyl acetate solution of 1 mM 2HBP was used to generate reference 

chromatogram for identification of its retention time. 
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3.2.7.2 Analytical conditions for qualitative GC-MS analysis of the ethyl 

acetate extracts 

The qualitative analysis of the ethyl acetate extracts was performed using GC-

MS scan mode. The analysis was performed by Thermo Scientific Trace 

Ultra™ GC (equipped with a split/splitless injector connected with a Thermo 

Scientific DSQ quadruple mass spectrometer). The metabolites were 

separated on a 30 m long x 0.25 mm I.D. ZB-SemiVolatiles column 

(Phenomenex, USA) with 0.25 m film thickness. Each sample was injected 

at 1 l using splitless mode. The temperature conditions were set by taking 

into consideration the physical properties of ethyl acetate solvent. The inlet 

temperature was set at 280 C. The carrier gas (helium) was set at 2 ml.min-1 

throughout the run. The temperature was 60 C with 0.2 minutes isothermal, 

then increased at the rate of 10 C to 325 C hold for 5 minutes. The total run 

time was 31.5 minutes. The mass spectrometer was set for the full scan from 

mass 50 to 550 amu at the scan rate of 500 amu s-1. Transfer line and ion 

source temperatures were set at 325 and 230 C, respectively. 

The chromatograms obtained were scanned manually for the peaks of interest 

and the corresponding mass spectra corresponding to the peaks were 

searched against the NIST MS Search database (version 2.3) to identify the 

intermediates of 4S pathway such as Dibenzothiophene-5-oxide, 

Dibenzothiophene-5,5-dioxide (Dibenzothiophene sulphone) and the final 

phenolic end product 2-hydroxybiphenyl (2HBP), whose mass spectral data 

are presented in Appendix 7.6. The peaks conserved in all the chromatograms 

obtained for the day 0 samples and the day 5 samples were eliminated.  

3.2.8 Determination of sulphur content in aqueous samples by ICP-OES 

Since the BT and DBT have a very low solubility in water, as the bacteria grew 

in the MSM, they metabolised the BT and DBT into more soluble and hence 

assimilable forms of sulphur. The amount of dissolved sulphur present in the 

culture system at various stages of bacterial growth was measured with a view 

to understanding the quantity of sulphur remaining in the culture medium after 

assimilation by the bacteria.  The BDS strains were grown in MSMBT (for strain 

248) and MSMDBT (for strain F) as the sole sulphur source. The CFCS was 
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collected on days 0, 3, 5 and 7 of incubation, and filtered through 0.45 µm 

syringe filters (Millex) before being used for the determination of the dissolved 

concentrations of sulphur by ICP-OES (Thermo Scientific iCAP 6200 Duo View 

ICP Spectrometer, Thermo Fisher Scientific, Cambridge, UK). The aqueous 

samples were analysed directly using standard sample injection system 

consisted of Mira Mist nebuliser and glass cyclonic mixing chamber. 

Instrument operation conditions and emission intensity used for the 

measurement are given in Appendix 7.7. Thermo iTEVA Analyst software 

(version 2.4.0.81) was used for instrument operation and for data handling and 

processing. The wavelengths for minimum interference were 180.73 and 

182.03 nm (Amais et al., 2014; Kirkbright et al., 1972; Yang and Marison, 

2005). Sulphur calibration standards of 0.01, 0.1, 1 and 10 ppm were prepared 

from a Sulphur standard solution of 1000 ppm concentration (ThermoFisher 

Scientific, Cambridge, UK), and the dilutions were prepared in ultra-pure de-

ionised water (resistivity of 18.2 MΩ cm, Direct Q3 Millipore Water Purifier, 

Millipore, USA). A solution of 5 ppm Yittrium in 0.5% nitric acid was used as 

the internal standard. The 0.2 and 2 ppm analytical quality control (AQC) 

solutions were used to check for elemental recovery and drift in the 

measurement during analysis. The check using AQCs was done at the 

beginning of the sequence run, every 10 samples thereafter and at the end of 

the experiment. Analytical precision (RSD) was typically 1-5% (n=3). The 

instrument was calibrated, and the spiked blank was analysed, and the 

recovery calculated. A detection limit study was carried out by analysing the 

calibration blank with ten replicates and multiplying the standard deviation of 

this analysis by three. This was repeated three times, and the average values 

for sulphur detection limits were calculated as 0.06 ppm. 

3.2.9 Determination of sulphur content in oil samples by ICP-OES 

3.2.9.1 Preparation of oil samples for the ICP-OES 

For the analysis of diesel oil and hexadecane samples, the oil phase of the bi-

phasic culture system was extracted and subjected to ICP-OES. As there was 

no ASTM published for the measurement of sulphur content of oil by ICP-OES, 

the methodology recommended by the manufacturer (Beauvir, 2016) for 

lubricating oil elemental analysis was followed with modification. All solvents 
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and standards were purchased from Conostan® (SCP SCIENCE, Baie-D’Urfé, 

Canada). Silicon was used as the internal standard, and PremiSolv™ was 

used as the base solvent. Unlike the aqueous samples, the internal standard 

was not introduced into the system through a separate line in the case of oil 

sample analysis. The internal standard (Si) was added to the base solvent to 

obtain a 10 mg.L-1 solution used for all further dilutions.  

The organic samples to be analysed included n-hexadecane and diesel oils in 

their pure form and as recovered from the bacterial cultures. Therefore, to 

minimise the differences in viscosity, the final solution was ensured to always 

contain 10% oil, by adding CONOSTAN 75cSt Blank Oil (which has a 

kinematic viscosity of 75 x 10-6 m2 s-1) to the sample and standards prior to the 

addition of the diluent. The oil samples were always mixed with the diluent 

containing the internal standard (Silicon) and blank oil. 

3.2.9.2 Measurement of sulphur content in oil samples by ICP-OES  

The sample introduction system in the ICP-OES equipment was fitted with Duo 

Volatile Organic Sample Introduction Kit (Thermo Fisher Scientific, UK) and 

the operational settings were changed for oil analysis as described in 

Appendix 7.7. Sulphur calibration standards of 3, 5 and 50 ppm were prepared 

from a stock sulphur standard solution of 5000 ppm concentration. A 10 ppm 

analytical quality control (AQC) solution was used to check for elemental 

recovery and drift in the measurement during analysis. The samples were 

introduced manually without an autosampler. During the analysis, the system 

was rinsed using the diluent between every sample to flush out any remnant 

sulphur from the system. The check using AQCs was done at the beginning of 

the sequence run, at the end of the experiment samples thereafter and at the 

end of the experiment. Analytical precision (RSD) was typically 1-5% (n=3). 

The instrument was calibrated, and the spiked blank was analysed, the 

recovery calculated. A detection limit study was carried out by analysing the 

calibration blank with ten replicates and multiplying the standard deviation of 

this analysis by three. This was repeated three times, and the average 

detection limit was calculated as 0.13 ppm of sulphur. 
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3.2.10 Modified Gibbs test on solidified medium 

In order to develop a method of detecting phenolic compounds produced by 

colonies, the MSM (Recipe 2) was solidified using agar (1%, 1.5%, 2% w/v) as 

the gelling agent. Although solidification was attempted initially using agars of 

different quality grades, Noble Agar was chosen to ensure most minimal 

sulphur contaminants. After autoclaving, the molten AgarMSM was poured 

aseptically into 90 mm sterile disposable Petri dishes and allowed to cool and 

solidify for about 1 hour. The surface of the solidified MSM was coated with 

200 µl of BT or DBT (100 mM stock solutions BT and DBT) using a sterile L-

rod. After allowing to sit for 30 minutes, a loopful of washed cells were streaked 

onto the AgarMSM plates. Alternatively, MSM was solidified using Gelrite™ 

(0.75%), which is a gellan gum-based solidifying agent to obtain clear gels 

rather than the brownish coloured gels obtained using Agar. The above 

procedure was repeated using the GelriteMSM plates. 

After 4 days of incubation, the plates were sprayed with sodium bicarbonate 

solution and Gibbs reagent was introduced to the colonies of G. desulfuricans 

213E on the plates either directly (2 µl drops on the colonies). Alternatively, 

filter paper (6 cm diameter) soaked with 200 µl 1M sodium bicarbonate solution 

and 20 µl Gibbs reagent was laid over the colonies. Any colour development 

occurring around the colonies over a period of 12 hours was noted. 

3.3 Results 

3.3.1 Identification of the stable BDS activity of strain 248 and strain F 

The 11 rhodococci test strains and the control strain G. desulfuricans 213E 

were grown in MSM-Recipe 1 containing either BT or DBT as the sole sulphur 

source. Increase in biomass was observed in all the cultures, with the strains 

growing as a homogenous cell suspension with various degrees of growth. As 

the primary objective of the study was to identify strains that exhibited BDS 

activity, the growth of the test strains was not monitored periodically, and only 

the BDS activity of the test strains was checked on days 3 and 7 of incubation 

by Gibbs assay. The strains with BDS capability (BDS strains) converted the 

BT and DBT into a phenolic product that was detected using the Gibbs 

reagent, where the presence of phenol (positive reaction) was indicated by the 
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development of a blue colour. The preliminary screening study using MSM-

Recipe 1 showed that the CFCS obtained from the MSMBT culture of strain 

248, and the MSMDBT cultures of strains 248, 488, 508 and strain F exhibited 

the characteristic blue colour development in the Gibbs assay, like that of the 

known BDS strain G. desulfuricans 213E, which indicated their BDS capability 

and the intensity of the blue colour was assessed visually. The intensity of the 

blue colouration was interpreted as higher amounts of phenols produced, 

indicating an intense BDS activity. 

Exclusion of the nitriloacetic acid from MSM-Recipe 2 did not change the 

growth and BDS characteristics of the test strains. However, when the ‘Metals 

44’ solution, was removed from the medium composition, the growth of strains 

20, 60, 87, 213, 369, 505 and 639 was affected, whereas the growth of strains 

208, 248, 488, 508, strain F and G. desulfuricans 213E was not affected, 

indicating that 5 of the test strains could thrive in the minimal MSM-Recipe 3 

(data not shown). However, changes were observed in their BDS 

characteristics when repeatedly subcultured in MSM-Recipe 3, such that the 

DBT desulphurisation activities of strains 488 and 508 were unstable, as 

indicated by the less intense blue colour development in subsequent passages 

and three passages thereafter, the BDS activity (blue colour development) was 

not observed. 

In the case of strain 248, repeated subculturing in minimal MSM resulted in 

the loss of BDS activity against DBT, whereas in the case of strain F, it resulted 

in the loss of BDS activity against BT. However, the strain 248 and strain F 

exhibited stable desulphurisation activity against BT and DBT, respectively, 

even in the minimal MSM, indicating they are predominantly BT and DBT 

desulphurising strains, respectively. The control strain G. desulfuricans 213E, 

which is a known BT desulphurising organism, followed the same BDS trend 

as strain 248 when grown in minimal MSM-Recipe 3. 

Based on the sustainment of BDS activity in a minimal MSM, strains 248, F 

and G. desulfuricans 213E were selected as candidate BDS strains. In the 

case of MSMBD cultures, a positive Gibbs reaction was obtained for all the 3 

BDS strains. But as the medium contained both BT and DBT, it could not be 

ascertained at this stage as to what extent the respective phenols produced 
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from the desulphurisation of BT and DBT contributed to the blue colour 

formation. However, this indicated that the presence of a less preferred 

organosulphur compound in the medium did not affect the growth of the cells.  

3.3.2 Elucidation of the biodesulphurisation pathway of the test strains 

The ethyl acetate extracts of the CFCS obtained from the 5-day old cultures 

of strains 248, F and G. desulfuricans 213E grown in MSMBT, MSMDBT and 

MSMBD (Recipe 1) were subjected to GC-MS analysis to study the metabolic 

intermediates and the phenolic end products formed as the results of BT DBT 

desulphurisation. The 5 days of incubation allows significant utilisation of BT 

or DBT, and hence substantial metabolic intermediates and end product 

(phenol) formation. According to the established 4S pathway, the phenolic end 

product of DBT desulphurisation is 2-hydroxybiphenyl (2HBP) with 

Dibenzothiophene-5,5-dioxide (Dibenzothiophene sulphone) as one of the 

intermediates.  

In the gas chromatography carried out in this study, BT and DBT were 

observed at the retention times of 6.65 and 13.62 minutes, respectively as 

observed in (Figure 3.2 A), (Figure 3.3 A), and (Figure 3.4 A). The significant 

conserved peaks were observed in all the MSMBT samples at retention times 

7.33, 15.63, and 19.24 minutes referred to non-relevant compounds. The peak 

corresponding to BT was observed as the predominant peak only in the case 

of uninoculated MSMBT (Figure 3.2 A), whereas in all other chromatograms 

(Figure 3.2 B, C &D), this peak was very much diminished indicating BT 

metabolisation by the bacteria. Interestingly, in the case of strain 248 (Figure 

3.2 B) and G. desulfuricans 213E (Figure 3.2 D), a peak was observed at 11.98 

minutes, whose mass spectra corresponded to benzofuran which is a 

metabolic by-product of BT desulphurisation by the 4S pathway (Gilbert et al., 

1998; Kirimura et al., 2002). It has been suggested that 2-

Hydroxyphenylacetaldehyde was recovered as benzofuran due to the extreme 

dehydration caused by the addition of acid while preparing the cultures for 

ethyl acetate extraction (Kirkwood et al., 2007a). However, the peak 

corresponding to benzofuran was not observed in the case of strain F (Figure 

3.2B). This concurred with the previous observation that strain F was 

predominantly a DBT desulphurising strain.   
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A) 

Uninoculated 
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B) 

Strain 248 in 

MSMBT  

 

C) 

Strain F in 

MSMBT 

 

D) 

G. 

desulfuricans 

213E in MSMBT  

 

Figure 3.2 GC-MS profile of MSMBT cultures after 5 days of incubation 
 

The chromatograms obtained by the gas chromatography of the ethyl acetate extracts of 
MSMBT cultures of strains 248, F, G. desulfuricans 213E and uninoculated (control) after 5 
days of incubation is presented where the peak observed at the retention time of 6.65 minutes 
corresponds to benzothiophene (BT). The uninoculated sample (Fig 3.2 A) has a significant 
BT peak. In the case of strain 248 (Fig 3.2B) and 213E (Fig 3.2D), the end product benzofuran 
was detected at 11.98 minutes. The GC profile of strain F (Fig 3.2C) does not reveal any 
known end product of BT BDS pathway by scanned chromatograms, indicating that it is a DBT 
desulphurising strain. 
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In the case of MSMDBT cultures, the peaks corresponding to DBT, the 

intermediate DBT-sulphone and the final phenolic compound 2HBP were 

obtained at a retention time of 13.62, 16.19 and 10.82 minutes, respectively 

for all culture samples as presented in Figure 3.3 A, B, C & D. These results 

confirmed that the BDS activity of strains 248, F and 213E followed the 

established 4S pathway of DBT desulphurisation.  

Gordonia desulfuricans 213E was initially published as a BT desulphurising 

bacteria. In this research, the DBT desulphurising activity of strain 213E was 

evidenced through Gibbs assay and the GC-MS chromatogram which shows 

the peak for 2HBP (Figure 3.3 D). However, along with 2HBP, significant levels 

of DBT were also detected (Figure 3.3 D). This meant that the conversion was 

not so significant as strain 248 or strain F, where relatively lower levels of DBT 

remained as indicated by the insignificant peak at RT 13.62 minutes (Figure 

3.3 B & C). This result, together with the benzofuran detected in the MSMBT 

cultures of strain 213E (Figure 3.2 D) concurs with the original description of 

G. desulfuricans 213E by Gilbert et al. (1998) as a BT desulphurising strain. 
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Figure 3.3 GC-MS profile of MSMDBT cultures after 5 days of incubation 
The chromatograms obtained by the gas chromatography of the ethyl acetate extracts of 
MSMDBT cultures of strains 248, F, G. desulfuricans 213E and uninoculated (control) after 5 
days of incubation is presented where the peak observed at the retention time of 13.62 
minutes corresponds to dibenzothiophene (DBT). The uninoculated sample (Fig 3.3A) has a 
significant DBT peak. In the case of strain 248 (Fig 3.3B), strain F (Fig 3.3C) and 213E (Fig 
3.3D), the end product 2-hydroxybiphenyl (2HBP) and the intermediate DBT-sulphone were 
detected at 10.82 and 16.19 minutes, respectively, indicating that these organisms followed 
the 4S pathway of DBT desulphurisation. 
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Using Gibbs assay, it was known that the 5-day old MSMBD cultures of strains 

248, F and 213E were all Gibbs positive, but it was unknown as to what 

phenolic end product in the culture caused the positive reaction (blue colour 

formation), i.e. if it was the 2HBP formed as result of DBT desulphurisation or 

another phenolic end product formed as a result of BT desulphurisation or a 

combination of both. The MSMBD cultures were started with same levels of BT 

and DBT, and the GC chromatogram of uninoculated MSMBD collected at the 

end of the 5 days of incubation, confirmed the presence of both thiophenes as 

shown in Figure 3.4 A. The strain F exhibited efficient metabolism of DBT into 

2HBP, which is indicated by the diminished DBT peak at RT 13.62 minutes 

and presence of a significant 2HBP peak at RT 10.82 minutes (Figure 3.4 C). 

In the case of strain F MSMBD cultures, the BT peak at RT 6.65 minutes was 

also diminished, but the corresponding phenolic compound could not be 

detected. Both BT and DBT were utilised by strain 248 (Figure 3.4 B) and G. 

desulfuricans 213E (Figure 3.4 D), but not entirely. The phenolic end product 

of DBT desulphurisation (2HBP) was detected at RT 13.63 minutes, but the 

phenolic end product of BT desulphurisation (benzofuran) which was detected 

in the MSMBT cultures of these strains (Figure 3.2 B & D) was not found in the 

MSMBD cultures. However, the diminished BT peak indicated their preference 

for BT over DBT when the thiophenes were presented together. Interestingly, 

MSMBD cultures of strain 248 and 213E showed a small peak at RT 29.77 

minutes (Figure 3.4 B & D) which corresponds to dibenzyl ketoxime, which is 

a phenolic compound (Smith, 2003). Also, the strain 213E presented a peak 

at RT 16.85 minutes (Figure 3.4 D) that corresponded to dibenzofuran possibly 

produced by the activity of the enzymes that produced the benzofuran when 

MSMBT was used. The differences in the GC-MS profile of strain 248 and 213E 

reveal the differences in their metabolism. 
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Figure 3.4 GC-MS profile of MSMBD cultures after 5 days of incubation 
The chromatograms obtained by the gas chromatography of the ethyl acetate extracts of 
MSMBD cultures of strains 248, F, G. desulfuricans 213E and uninoculated (control) after 5 
days of incubation is presented where the peak observed at the retention time (RT) of 6.65 
and 13.62 minutes corresponds to benzothiophene (BT) and dibenzothiophene (DBT), 
respectively. The uninoculated sample (Fig 3.4A) has a significant BT & DBT peaks. In the 
case of strain 248 (Fig 3.4B), strain F (Fig 3.4D) and 213E (Fig 3.4D), the end product 2-
hydroxybiphenyl (2HBP) was detected at 10.82, indicating that these organisms followed the 
4S pathway of DBT desulphurisation. A peak corresponding to dibenzyl ketoxime (DBK) was 
observed at RT 29.77 minutes in the MSMBD cultures of 248 and 213E, while the latter strain 
also showed a peak at RT 16.85 minutes corresponding to dibenzofuran (DBF) 
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The GC-MS results confirmed the presence of 2HBP in the cultures when DBT 

was used as a sulphur source in the medium (MSMDBT and MSMBD) which 

indicates the strains 248, F and 213E exhibited the 4S pathway of DBT 

desulphurisation. The end product of BT desulphurisation is not definitely 

known, and it has been reported to vary between BDS organisms. When 

grown in MSMBT, benzofuran was detected in the case of strain 248 and 213E, 

but no peaks corresponding to any known phenolic end product were detected 

in the case of strain F. 

3.3.3 Growth and biodesulphurisation of BT by strains 248 and F 

growing in aqueous MSMBT 

When cultured in MSMBT the strain 248 exhibited growth as presented in 

Figure 3.5 A, where after a short initial lag phase for 24 hours, the bacteria 

exhibited exponential growth, reaching a peak of 2.7 O.D600nm just at the end 

of the second day of incubation. The growth continued for the next 4 days of 

incubation, although at a slower rate. The turbidity of the culture was 

homogeneous throughout the period of incubation, as shown in Figure 3.6. 

The sulphur level of pure MSMBT medium was 0.63 ppm. Upon incubation, the 

levels of dissolved sulphur initially raised to 2.52 ppm on day 2 and recorded 

3.37 ppm at the end of 7 days of incubation, as shown in Figure 3.8. When 

cultured in MSMBT, G. desulfuricans 213E exhibited a growth trend as shown 

in Figure 3.5 B, where the bacteria exhibited an exponential growth after a 

short initial lag phase for 24 hours, which reached a peak 3.5 O.D600nm just 

after the second day of incubation, 56 hours approximately. The growth 

plateaued beyond that point and remained at the stationary phase for the next 

2 days of incubation, after which the turbidity declined. In both strains, the 

curve for the Gibbs reaction attained the peak levels just after the late 

exponential phase. The gradual increase in the sulphur levels of the aqueous 

medium with the time of incubation, as shown in Figure 3.8, is because of the 

accumulation of the sulphates released into the medium as a result of 

desulphurisation of BT by strains 248 and 213E. The poorly soluble BT is 

converted into soluble sulphates that are released into the aqueous medium. 
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A) 

 

B) 

 

Figure 3.5 Growth and BDS activity of strain 248 and Gordonia 
desulfuricans 213E grown in MSMBT 
The figure shows the growth (green line) and desulphurisation activity (blue line) of strain 248 
(A) and Gordonia desulfuricans 213E (B) grown in MSM with BT as a sole sulphur source. 
The MSM was supplied with an ethanolic solution of BT as the sole sulphur source (0.2 mM 
final concentration) and inoculated with 0.1 O.D600nm of bacteria at the beginning of the culture. 
Samples were collected every 12 hours, and the turbidity of the culture owing to biomass 
increase was measured by spectrophotometry. The BDS activity was measured by Gibbs 
reaction, and the intensity of the blue colouration was measured by spectrophotometry at 
O.D610nm. Results were reported as mean calculated from triplicates experiments with ± 
standard deviation from the mean indicated as errors bars. 
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Figure 3.6 Comparison of culture characteristics of strain 248 growing 
in aqueous MSM and biphasic growth medium 
The image shows the homogenous nature of the culture of 248 when grown in a wholly 
aqueous MSM observed as a turbid culture (left flask), and the non-homogenous dispersion 
of cells in the presence of oil (n-hexadecane) observed as a biomass rich layer and less dense 
aqueous layer (right flask). The clumped nature of the growth in the biphasic medium resulted 
in inconsistent sampling, and hence, the growth could not be measured using optical density 
or dry weight measurements. 

 

3.3.4 Growth and biodesulphurisation of DBT by strain F growing in 

aqueous MSMDBT 

When cultured in MSMDBT, strain F exhibited a growth as presented in Figure 

3.7, where the strain showed an exponential growth after a short initial lag 

phase for 24 hours, which reached a peak 3.5 O.D600nm just at the end of the 

second day of incubation, followed by a short stationary phase for 12 hours. 

The strain F exhibited a further exponential phase of growth for the next 4 days 

of incubation. Whilst the primary rapid growth phase was accompanied by an 

increase in the accumulation of phenolic product (in this case, the phenolic 

product is 2HBP), the secondary growth phase saw a decrease in the 

concentration of the phenolic product.  
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Figure 3.7 Growth and BDS activity of strain F grown in wholly aqueous 
MSMDBT 
The figure shows the growth (green line) and desulphurisation activity (blue line) of strain F 
grown in MSM with DBT as a sole sulphur source. The MSM was supplied with an ethanolic 
solution of DBT as the sole sulphur source (0.2 mM final concentration) and inoculated with 
0.1 O.D600nm of bacteria at the beginning of the culture. The values represented the mean of 
three replicates, and the standard deviations were shown as error bars. The BDS activity was 
measured by Gibbs reaction, and the intensity of the blue colouration was measured by 
spectrophotometry at O.D610nm. Results were reported as mean calculated from triplicates 
experiments with ± standard deviation from the mean indicated as errors bars. 

 

At the start of the culture, the sulphur content of the MSMBT and MSMDBT were 

measured as 0.63 ppm and 4.53 ppm, respectively. These values are lower 

than the expected value of 26 ppm (corresponding to 0.2 mM). A potential 

reason for the low initial reading could be because of the poor solubility and 

non-homogeneous dispersion of BT and DBT in the aqueous medium. 

However, as the biodesulphurisation occurred during incubation, the sulphates 

were produced, which dissolved and dispersed homogeneously in the 

aqueous environment, and the accumulation of soluble sulphates was 

observed, as shown in Figure 3.8. 
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Figure 3.8 Sulphur content of the aqueous MSM cultures of the BDS 
strains 
The graph shows the sulphur levels measured in the CFCS of MSM cultures sampled at 
various stage of incubation, by ICP-OES technique. BT and DBT were supplied as ethanolic 
solutions at a starting concentration of 0.2mM (26 ppm) of BT or DBT, which corresponds to 
6 ppm sulphur content. The variation in the levels on Day 0 (start of culture) is because of the 
difference in the level of solubility, volatility and density of BT and DBT. In the case of MSMBT 
cultures, immediately after addition, the BT moved to the surface level of the aqueous MSM, 
which resulted in little BT getting picked during sampling and hence a lower initial value. In 
the case of MSMDBT culture, immediately after addition, the DBT was dispersed throughout 
the aqueous MSM, which resulted in the realistic sampling and hence an appropriate sulphur 
content (4.58 ppm) value was measured. The BT and DBT were adsorbed to the cell surface 
on Day 1, leading to a decrease in the measured sulphur levels. The sulphates produced as 
a result of BDS reaction are released into the aqueous MSM subsequent days of incubation, 
as reflected in the increase in measured sulphur content.  

 

3.3.5 BDS activity of growing cells in biphasic medium containing n-

hexadecane & diesel 

When grown in a biphasic medium, all the strains exhibited a non-homogenous 

culture, as shown in Figure 3.9, which made the sampling inconsistent. So, 

their growth could not be tracked by optical density measurements or dry cell 

weight measures. The HDS gas oil (diesel) was reconstituted with added BT 

and DBT to make MSMDiesel. When dealing with solvents like n-hexadecane 

and gas oil, volatile substances like BT and DBT, inaccuracies are prone to 

occur. The MSMD300 was prepared to contain 300 ppm of sulphur, but its 

sulphur content measured as 292 ppm by ICP-OES. The shaking effect during 

incubation caused a natural loss of these volatile compounds, as indicated by 

the sulphur content of uninoculated systems which measured a slightly lower 
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273 ppm after 7 days of incubation. Most of this decrease was caused by the 

loss of BT (melting point 32°C), rather than DBT (melting point 100°C). The 

reduction in the sulphur content of the oil phase was measured using ICP-OES 

as presented in Table 3.5, where it is seen that all the strains offered a 

significant (> 80%) reduction in the sulphur levels over 7 days of incubation. 

However, they differed in the amount of diesel recoverable after incubation 

owing to the different levels of emulsification observed in the biphasic culture 

as presented in Figure 3.9, where it can be seen that 213E culture is 

completely emulsified (Figure 3.9 D). Upon allowing to stand and fractionate 

into phases naturally, the MSMD300 culture of strain 248 formed distinct 

aqueous, biomass and oil phases as shown in Figure 3.10, from which about 

85% of the original volume of oil phase (desulphurised diesel) was recovered 

from the culture. The MSMD300 culture of strain F formed an emulsified 

biomass-oil layer and a relatively clear aqueous layer (Figure 3.10). By 

centrifugation of the emulsified layer, about 50% of the original volume of oil-

phase was recovered. The sulphur content of the recovered desulphurised 

diesel phases was measured by ICP-OES. When grown in MSMD300, strains 

248 and F achieved 84.5% and 87.2% reduction in sulphur levels, respectively, 

as presented in Table 3.5. 

 

Table 3.5 Biodesulphurisation of oil by growing cells of strain 248 and F 

Sample 
Total sulphur content 

(ppm) 

Reduction 

(%) 

 Day 0 Day 7  

Uninoculated MSMD300 292 273 6.5 

248 grown in MSMD300 296 45.86 84.5 

248 grown in MSMHexBT 355.4 38.8 89 

Strain F grown in MSMD300 293 37.4 87.2 

The table shows the decrease in the sulphur content of the oil phase achieved by strains 248 
and F over 7 days of incubation in the respective biphasic medium. The slight decrease 
observed in the uninoculated sample shows the natural loss due to volatility of the thiophenes. 
The BDS activity of G. desulfuricans 213E was not quantified because the oil phase was not 
recoverable. The 89% BDS activity of 248 grown in MSMHexBT indicates that it is a robust BT 
desulphurising bacteria. 
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Figure 3.9 Strains 248, 213E and F growing in a biphasic medium 
containing Diesel 
The image shows cultures of strain 248 (b), F (c) and 213E (d) growing in a biphasic medium 
containing 10% (v/v) HDS gas oil with ~300ppm sulphur content (MSMD300). The uninoculated 
flask (a) was used as control.  

 

 

Figure 3.10 Fractionation of biphasic cultures of strain 248 and strain F 
When allowed to stand for 12 hours, oil-water phases of the biphasic cultures of strains 248 
and F clearly fractionated. In the case of strain 248 (left), a distinct biomass layer was formed, 
which enabled easy extraction of the desulphurised fuel. The oil phase fuel was significantly 
emulsified in the case of strain F (right), and therefore only a limited volume was recoverable. 

3.3.6 BDS activity of the colonies growing on solidified medium 

When grown on solidified MSM (AgarMSM or GelriteMSM), Gordonia 

desulfuricans 213E produced visible colonies after 48 hours. The Gibbs test 

procedure was modified to study the in situ BDS activity of the 4-day old 

colonies. When Gibbs reagent was added directly over the colonies, no blue 

colour development was observed. However, when the filter paper pre-wetted 

with Gibbs reagent was laid over the colonies grown on solidified AgarMSMBD, 

Strain 248 
Strain F 
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a blue colouration was observed over regions with the clustered colonies, but 

only sporadically over single colonies as shown in Figure 3.11. Colour 

development appeared patchy and smudged around clustered colonies, i.e. 

not confined to a single colony.  

A B C 

   

Figure 3.11 Gibbs Test conducted on G. desulfuricans 213E colonies 
growing on solidified MSM 
The image shows the colour development observed 4 hours after the Gibbs reagent was 
introduced to the colonies of G. desulfuricans 213E growing on AgarMSMBT(A), AgarMSMDBT (B 
& C). A filter paper pre-soaked in Gibbs reagent and applied over the 4-day old 213E colonies 
grown on solidified MSM. Plates without any bacteria and incubated for the same number of 
days were used as the negative control, where no colour development was observed (image 
not is shown). 

The reaction mixture dispersed through the solidified medium and resulted in 

a transient and poorly visualised blue colour. The diffusion was not prevented 

even when the porosity of the gels was decreased by increasing the 

concentration of agar (1-5%) or Gelrite (0.75-2%). Moreover, increasing the 

agar concentration led to an even darker coloured gel which hindered 

visualisation of the colour development, where the Gibbs reaction mixture that 

appeared deep blue on clear plastic is seen pale blue-greenish on an AgarMSM 

plate as shown in Figure 3.12. Therefore this approach was considered 

unreliable and not explored further in this research. 

 

Figure 3.12 Gibbs reaction of 2-hydroxybiphenyl taken on AgarMSM  
The figure shows the comparative visualisation of the blue colour developed by the Gibbs 
reaction of 2-hydroxybiphenyl on an agar gel matrix (left) and over a clear plastic (right). 
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3.4 Discussion 

This study presents the screening of soil actinomycete bacteria previously 

isolated from oil-contaminated soil and classified as members of genus 

Rhodococcus, for biodesulphurisation capabilities and assessment of their 

activity.  

3.4.1 Stable BDS activity in the minimal most MSM  

The primary aim of the study was to identify strains with BDS activity, and so 

the test strains were cultured in mineral salts medium containing BT or DBT 

as the sole sulphur source. Whole living bacterial cells were used as 

biocatalysts in this study rather than resting cell suspensions, and so the 

growth of the organism was crucial to the biodesulphurisation (BDS) activity. 

In general, the growth of bacteria is affected by the nutrient composition of the 

growth medium, due to cofactor requirements of many enzymes involved in 

the BDS biochemical pathway. However, the Gordonia and Rhodococcus 

strains used for BDS have not been reported to require special additives for 

their growth, and they could synthesize all the essential precursor metabolites 

from pure elemental sources in a medium (Arenskotter et al., 2004; Finnerty, 

1992). Only in a few cases, trace amounts of thiamine were added to the 

medium (Denome et al., 1994; Gallardo et al., 1997; Omori et al., 1992).  

A defined enrichment mineral salts medium (MSM) containing the vital 

inorganic nutrients that were commonly used in the mineral medium 

compositions widely used as in the literature was designed. The composition 

of the mineral salts medium (MSM) initially used in the research was based on 

the Hutner’s mineral medium (Cohen-Bazire et al., 1957; Hutner et al., 1950). 

The same composition was used in the original description paper of the type 

strain G. desulfuricans 213E and subsequently used by Recylatech Group Ltd, 

for growing the bacteria for their bio-devulcanisation process. In its 

composition, it included Hutner’s Basal Salts (HBS) solution, which contains 

several metal salts and involves tedious preparatory steps. To maintain 

consistency across several batches, growth medium (MSM) for commercial-

scale application is prepared concentrated, and it is diluted as required for the 

batch. Precipitation of mineral salts occurs when mineral-rich medium contains 
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calcium and iron salts. Therefore, the recipe was changed to identify the 

minimal medium that supported the growth and BDS activity whilst being 

cheaper to make and easy to handle. 

In the fourth edition of the Handbook of Microbiological Media (Atlas, 2010), 

there are several undefined and defined growth media recommended for the 

culturing of actinomycetes bacteria. Among the recommended defined media, 

especially for Rhodococcus strains, are Medium K (Kievskaya Broth) and 

Raymond’s medium which contained salts of K, P, N, Na, Mg, Ca and Fe ions 

as the necessary components. Based on this observation, the MSM 

composition was altered gradually to contain only the essential elements.  

Fluctuations in the pH affect the growth of the R. erythropolis and hence their 

BDS activity, and therefore, the medium was formulated to have a neutral pH 

at the beginning and during the course of incubation. This was a crucial 

determinant in the choice of carbon source because it was reported that citrate 

and glutamic acid as carbon sources led to a gradual increase in the pH of the 

culture and yielded lower biomass than glucose (del Olmo et al., 2005; Martin 

et al., 2005). To achieve higher biomass, and hence more biocatalyst that 

would be ideal for BDS, sucrose was used as the carbon source in the final 

MSM, as it was previously reported to yield higher biomass (Borgne and 

Quintero, 2003). Acetic acid and glycerol are other widely used carbon sources 

in BDS research, but they were not used in this study to keep the cost of the 

medium minimal. As the growth of the BDS strains was conserved in all the 

MSM recipes, the MSM-Recipe 4, which has the advantage of being a cheaper 

medium for commercial application, was used routinely in this study. 

Moreover, this version of MSM contained all minerals commonly found in the 

biodesulphurisation medium widely used in the literature. 

For a commercially successful BDS technology, it is necessary to have 

bacteria with stable activity. The reproducibility of the results has been a 

problem since the beginning of BDS research (Kilbane, 1989). The use of 

repeated subculturing in the BT or DBT containing enrichment medium 

ensured the selection of organisms with stable BDS functionality (Kobayashi 

et al., 2000; Wang et al., 2017; Yoshikawa et al., 2002). Based on this 

observation, the strains tested in this study were subjected to repeated 
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subculturing in the MSMBT and MSMDBT to allow for adaptive selection of the 

test strain with stable BDS activity. 

It has been reported that growth on n-alkanes ranging in length from C20 to 

C36 could be challenging to determine due to poor solubility of n-alkanes in 

water. Growth in MSM containing a medium-chain alkane like n-hexadecane 

is a crucial indicator for the ability to grow in medium containing fossil fuels 

(Zampolli et al., 2014). An increase of microbial DBT desulphurisation activity 

was observed when R. erythropolis strain H-2 was cultured in biphasic media 

containing tetradecane (70%) was also observed by Ohshiro et al. (1995). 

Patel et al. (1997) reported similar trends when Rhodococcus strain IGTS8 

was cultured with 50% (v/v) hexadecane. It was suggested that this positive 

effect might be due to the extraction of the growth-inhibiting product 2HBP into 

the organic phase (Monticello, 2000), coupled with improved DBT availability 

and oxygen transfer in the presence of hexadecane (Abbad-Andaloussi et al., 

2003). In this study, the ability of the strains to grow in a biphasic (oil-water) 

medium was tested using n-hexadecane, a 16 carbon (C16) alkane and the 

primary hydrocarbon in diesel (Caro et al., 2008; Rhee et al., 1998). All the 

test strains survived growth in biphasic medium containing 1% n-hexadecane 

(data not shown). When grown in a biphasic medium, the test strains 

assembled themselves into flocs concurring with previous observations by 

Dorobantu et al., (2004). Mohebali et al. (2007) reported that increasing cell 

concentrations led to a decrease in dibenzothiophene degradation by the 

formation of cellular flocs due to the hydrophobic nature of desulphurising 

bacteria. This phenomenon was observed when the strains were cultured in 

the biphasic medium. It was also reported that the level of desulphurisation 

activity varies with the kind of fossil fuel derivatives used. The wild-type strain 

Rhodococcus sp. strain IGTS8 did not result in a significant decrease in the 

total sulphur content of crude oil, whereas the BDS activity was better when 

refined products such as gasoline and diesel oil were used (Kaufman et al., 

1999). Therefore, two different biphasic systems containing 10% n-

hexadecane and HDS-gas oil were used to study the BDS activity of strains 

248, F and 213E.  
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3.4.2 Growth phase-dependent biodesulphurisation activity of the 

growing cells in a wholly aqueous medium 

The BDS activity of all the strains was a growth-dependent process. In the 

case of strain 248, the BDS activity improved with an increase in biomass, with 

a peak level of accumulation occurring during the late exponential phase. The 

concentration of phenolic stopped as the growth reached the stationary phase. 

In the case of G. desulfuricans 213E, after continuing in the stationary phase, 

the biomass started to decline, indicating a death phase after 6 days of 

incubation. Interestingly, strain F showed a renewed growth phase after a 

short stationary phase, which was accompanied by a decrease in the 

concentration of the phenolic compound. A possible explanation for this could 

be that strain F utilised the sucrose as a carbon source during the primary 

growth phase and then adapted to using the phenol as a substrate leading to 

a second growth phase. The periodic dry cell weight measurements (DCW) of 

the culture samples followed a similar trend as the optical density values until 

day 4 (data not shown). In this research, DCW values were conducted to 

confirm if the increase in O.D. measurements were contributed by the actual 

increase in biomass and not because of turbidity caused by any emulsifying 

metabolites produced by the bacteria during growth. 

3.4.3 Desulphurisation pathway of strains 248, 213E and F 

The detection of phenols in the cultures using Gibbs reagent indicated that the 

3 BDS strains might follow the 4S pathway. A limitation of the Gibbs reaction-

based approach for detection of phenols is that the absorption peak is not very 

sensitive to the substitution of the phenol, which makes it ideal for determining 

the total phenol content in a sample, but not in distinguishing between specific 

substituted phenols (Mistry and Wenthold, 2018). Moreover, Ettinger and 

Ruchhoft (1948) indicated that standard phenolic curves are not repeatable 

but show a linear relationship up to 100 ppb, with the temperature and time 

being critical factors influencing reproducibility. Gibbs assay was mainly used 

in this research to study the formation of phenolic end products qualitatively, 

and the spectrometric measurements obtained to track the accumulation were 

relied upon only to understand the trend of BDS activity along with growth 

measurements. Therefore, GC-MS was performed to confirm the identity of 
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the phenolic end products produced by strains 248, 213E and F. As the DBT 

desulphurisation pathway and its intermediates are well known, and their 

spectral data were readily available, it was easy to detect them by GC-MS. 

The reaction intermediates of BT desulphurisation are not unambiguously 

established and their spectral data are not available for analysis. Therefore, 

only the end product of BT metabolism (benzofuran) was detected. 

When presented with a mixture of aromatic sulphur compounds, even broad-

spectrum BDS bacteria tend to be preferential for either BTs or DBTs, even 

though they can use any of the aromatic compounds as a sulphur source. 

Rhodococcus sp. WU-K2R preferred BT when presented with a 

BT/naphthothiophene mixture (Kirimura et al., 2002). Rhodococcus sp. K1bD 

preferred DBT over 1,4-dithiane when presented together (Kirkwood et al., 

2005), and a consortia of BDS strains used for bunker oil desulphurisation 

showed a preference for DBT over benzo[b]naphtho[1,2-d]thiophene (Jiang et 

al., 2014). A similar trend is reflected in the BDS activity of strain 248, which 

preferred BT over DBT, and for strain F, which preferred DBT over BT when 

grown in minimal MSM. The growth pattern of each strain was similar in all the 

MSM recipes, but when presented with a richer MSM-Recipe 1 or 2, the BDS 

activity spectrum of the strains was improved, as the strains 248 and F were 

able to desulphurise both BT and DBT.  

3.4.4 Desulphurisation of n-hexadecane and diesel by growing cells 

Aromatic hydrophobic compounds are toxic to bacteria due to their high 

partition into the membrane, and only microorganisms that are resistant to the 

highly toxic nature of the fuel grow to produce a thick pellicle in the bi-phasic 

system. Growth inhibition by toxic compounds (either end product or 

feedstock) is a major hampering factor in terms of the commercial prospects 

of biochemical processes (Nicolaou et al., 2010). In this study, the basis of 

enrichment procedure was the ability of the test strains to assimilate sulphur 

derived from the polycyclic aromatic hydrocarbons dissolved in the 

hydrophobic phase. In the case of biocatalytic transformations of hydrophobic 

water-immiscible chemicals, oil-water biphasic reaction systems are 

considered suitable (Quijano et al., 2009; Watanabe et al., 2008). The practical 

importance of bacterial predilection for the organic phase should be carefully 
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considered for the development of efficient whole-cell biocatalyst acting in oil-

water biphasic systems. Such two-liquid-phase culture systems resulted in 

better accession of the oil phase by hydrophobic bacteria like R. opacus B-4 

and R. erythropolis PR4 (Hamada et al., 2009, 2008). 

The BDS associated advantages of growing R. erythropolis in a biphasic 

medium were previously reported (Ohshiro et al., 1996, 1995). Strain 248 

formed a distinct biomass layer when grown in biphasic MSM containing n-

hexadecane or diesel, as shown in Figure 3.10. To avoid consumption of the 

fuel as the carbon source, sucrose, an easily assimilable sugar, was included 

in the growth medium. However, the richer lipid membrane brought the R. 

erythropolis strain F into close contact with the fuel and the natural tendency 

for hydrocarbon degradation and biosurfactant production by the R. 

erythropolis spp. could have led to the formation of stable emulsions in the 

case of strain F, as shown in Figure 3.10.  

In a biphasic growth medium, the cultures for strains 248, 213E and F were of 

non-homogeneous nature, as shown in Figure 3.9, and the sample aliquots 

varied in biomass load. Therefore the cell growth could not be measured 

reliably using turbidity or dry cell weight methods. For all the 3 strains, the 

biphasic growth medium initially consisted of n-hexadecane as the oil phase. 

The ratio of 10% (v/v) oil phase was selected based on recommendations by 

authors who used a biphasic medium to study BDS activity by Rhodococcus 

strains previously (Davoodi-Dehaghani et al., 2010; Yu et al., 2006a). It has 

been suggested that high oil content inhibits oxygen supply and causes mass 

transfer limitations, while low oil-water ratio leads to dilution of the enzyme 

activity. One of the gaps in the literature is that the justification for the choice 

of oil-water ratios is not explicitly stated in many of the studies (Adlakha et al., 

2016). When resting cell systems were used, all the BDS strains formed thick 

foamy flocs with the oil phase which made the oil recovery impossible. 

Therefore that approach was not followed through in this research.  

3.4.5 Problems in the development of a rapid screening method 

The regular Gibbs assay procedure involved the use of liquid culture aliquots 

taken in a cuvette to which the Gibbs reagent was added. This procedure was 
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adapted in this study to work on a solidified medium so as to develop a rapid 

screening method to detect single bacterial colonies that exhibited BDS 

activity. Noble Agar was used as the solidifying agent to make up the solidified 

MSM (AgarMSM), in order to avoid introducing trace sulphates to the bacteria 

that could be present in other inferior quality. Colonies were formed on the 

AgarMSM and Gibbs test was conducted over them. The greening brown 

background colour of the AgarMSM matrix made the visualisation of the blue 

colour formation difficult, as seen in Figure 3.12. Even when Gelrite based 

clear solidified MSM was used, this approach was not successful because the 

colouration development was either very short-lived or unspecific to a colony.  

The idea to develop a rapid screening method was inspired by the reports of 

Gibbs reaction-based biosensors described in section 3.1.3, which involved 

molecular imprinting that allowed for molecular assembly of desired chemicals 

structure on a solid polymer substrate. The principle of Gibbs reaction was 

adapted to develop fast, responsive sensors based on the colour-forming 

reaction between the reagent and phenols in the sample (Arip et al., 2013; 

Bashir and Liu, 2009). While those references adopted microfluidic 

approaches, the methodology adopted in this research involved the use of 

relatively larger volumes of reagents that diffused substantially through the 

solid matrix (agar or gelrite) which resulted in a non-specific (diffused) and 

short-lived colour development, unlike the persistent deep blue colour 

observed in the conventional method using cuvettes. Therefore, this approach 

did not serve the purpose of screening for specific single colonies with BDS 

activity on a culture plate containing a mixed population of isolates or random 

mutants. 
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Chapter 4 Whole-genome sequence based analysis of 

sulphur metabolism-related genes in the desulphurising 

strains and establishment of their species identity  
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4.1 Introduction 

Biodesulphurisation (BDS) is a multi-enzymes process, and the genes that 

encode this capability vary between different BDS strains. The enzymes 

involved in DBT desulphurisation are well established, but there is no explicit 

knowledge of the enzymes and genes involved in BT desulphurisation. 

Sulphate induced repression of the desulphurisation enzymes expression and 

inadequate levels of desulphurisation achieved by microorganisms have been 

critical problems affecting the commercial prospects of biodesulphurisation 

technology. Therefore, solving these problems by genetic manipulation 

requires a thorough understanding of the genes involved in the process in the 

specific organisms. In this chapter, the whole-genome sequence of the BDS 

strains will be investigated to identify the arrangement of genes encoding BDS 

activity and other sulphur metabolism related genes, for the purpose of 

identifying potential target genes that could be manipulated for strain 

enhancement in the future. In addition, the whole genome sequences of the 

BDS strains will be applied as a taxonomic tool to confirm the species identities 

proposed in Chapter 2. 

4.1.1 Availability and quality of rhodococcal genome sequences  

At the time of this research, 314 curated rhodococcal genomic assemblies 

covering 31 valid Rhodococcus species were available in the NCBI database. 

Among them, complete genomes were available for 9 species and others at 

various levels of assembly (contigs, scaffolds, chromosome level) which lack 

segments of the genome, leading to unreliable bioinformatic analysis 

outcomes. The strains with complete genome sequence data are not always 

the type strain of the species; some of them are published in journals, and 

others are direct submissions to the database. There is no curated ‘reference 

RefSeq’ (manually identified high-quality whole-genome sequences) genome 

assembly recognised for any species under this genus; nevertheless there are 

6 ‘representative RefSeq’ (computationally determined high-quality genome) 

genome assemblies. From the whole genome data available on rhodococci 

investigated so far, it could be understood that they have large and complex 

genomes that probably acquired many genes by recombination in the distant 

past (Larkin et al., 2010). There is increasing evidence that multiple pathways 
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and gene homologs are present that further increase Rhodococcus catabolic 

versatility. Comparative and functional genomic studies have been carried out 

to identify the genetic basis of metabolic capabilities of rhodococci (Pathak et 

al., 2016), which show the existence of multiple pathways and gene homologs 

in their genomes. All three species of the “erythropolis” subclade (R. 

erythropolis, R. opacus, R. jostii), catabolise a wide range of oligosaccharides 

and organic compounds. In terms of biotechnology, R. erythropolis has two 

technical advantages, viz. tolerating a broad range of temperatures and 

possessing a relatively smaller genome, subsequently a faster growth rate. 

However, the larger genomes and plasmids of R. jostii and R. opacus contain 

genes encoding the ability to metabolise a wide range of organic substances.  

4.1.2 Desulphurisation associated genes 

The nucleotide sequence of the 9.7 kb DNA fragment containing the 

desulphurisation operon of R. erythropolis IGTS8, containing three genes 

(dszA, dszB, and dszC) that encode DBT desulphurisation enzymes DszA, 

DszB and DszC, respectively is available in the NCBI GenBank under the 

accession number U08850, and the 5.5 kb complete CDS of the dszABC is 

available under accession code L37363. The desulphurisation associated 

genes are often denoted as dsz, tds, sox or bds genes in the literature and 

often occur as operons. In their attempts to understand the dsz operon 

regulation, Li and team (1996) suggested that there could be a Dsz repressor 

which is induced directly by sulphates, Cys, Met and sulphur-rich Casamino 

acids. They also suggested a possible overlap between the operator and 

promoter region. There is only limited knowledge about the repressor or 

activator proteins associated with the operator site of the dsz operon. The 5’ 

and 3’ termini of the dsz/bds/tds genes are not conserved regions, and hence 

PCR primers based on the 5’ and 3’ ends of R. erythropolis IGTS8 dszABC 

genes failed to amplify relevant genes from G. amicalis F.5.25.8 (Kilbane II 

and Robbins, 2007). Rather than developing bespoke primers sets to suit for 

each type of BDS strain, obtaining the whole-genome sequence of the BDS 

strains and utilising the existing knowledge about the nucleotide sequence of 

dsz genes and amino acid sequence of Dsz enzymes obtained from various 

BDS strains, may be a more useful means by which BDS associated genes of 
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new BDS strains may be identified. However, despite a large number of BDS 

capable rhodococci and gordonae strains reported in the literature, validly 

published whole-genome sequence is available for only a some of them as 

shown in Table 4.1.  

Table 4.1 List of BDS capable actinobacteria with validly published 
genome sequence containing BDS genes 

Organism Metabolic capability 
Bioproject 
Accession 

Authors 

*Gordonia alkanivorans 
CGMCC 6845 

hydrocarbon-degradation 
bacterium isolated from 
petroleum-contaminated 
saline soil 

PRJNA227487 Wang et al., 2014 

*Gordonia amicalis 
CCMA 559 

biosurfactant production PRJNA215264 
Domingos et al., 
2013 

Gordonia sp. IITR100 DBT desulphurisation PRJNA376065 
Jaishankar et al., 
2017 

Gordonia terrae C-6 BT desulphurisation PRJNA196464 Wang et al., 2013b 

Rhodococcus jostii 
RHA1 

polychlorinated-biphenyls 
degradation 

PRJNA13693 
McLeod et al., 
2006 

Rhodococcus sp. JVH1 
fluorinated organosulphur 
compounds 
desulphurisation 

PRJNA46601 
Brooks and Van 
Hamme, 2012 

*Rhodococcus 
erythropolis VSD3 

diesel fuel degradation PRJNA348829 
Stevens et al., 
2017 

*Rhodococcus 
qingshengii TUHH-12 

piezotolerant bacterium 
growing on crude oil and 
tetracosane as sole 
carbon sources 

PRJNA246036 Lincoln et al., 2015 

*These strains were not published originally as BDS strains, but their genome contained genes 
homologous to dszABC genes which indicated their potential for DBT desulphurisation. While 
the genome sequence of Rhodococcus erythropolis IGTS8 is not available, the genome 
sequence of Gordonia desulfuricans 213ET is available (PRJDB465; GenBank: BCNF) but not 
validly published. 

 

Santos et al. (2006) reported that the dsz operon sequence (4,149 bp) of 

Gordonia amicalis F.5.25.8 showed 84% homology with that of G. 

alkanivorans 1B (AY678116). Interestingly, the dszB gene sequence for the 

strain F.5.25.8 was only 95% homologous to the previously obtained partial 

sequence for the same (DQ174770.1). The individual genes dszA, dszB and 

dszC shared 85, 84 and 83% homology with those of R. erythropolis IGTS8. 

However, the similarities were low with other distantly related BDS strains such 

as B. subtilis (bdsABC) and Paenibacillis sp. A11 (tdsABC). In another study, 

comparative molecular analysis of 6 desulphurising rhodococci strains isolated 

from different geographic locations revealed a conserved nature of the dsz 

genes (Denis-Larose et al., 1997).  
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In addition to the known desulphurisation genes and enzymes, alkane 

sulphonate monooxygenases (SsuDs), sulphonate ABC transporters 

(SsuABC) and sulphate permeases (CysQ) and sulphatases have been 

hypothesized to be associated with organosulfur compounds degradation 

(Ellis, 2011; Erwin et al., 2005; Hatzios and Bertozzi, 2011; van der Ploeg et 

al., 2001; Van Hamme et al., 2013). In soil-dwelling bacteria, all the proteins 

that are highly homologous to the desulfinase enzyme DszB contain Cys, His, 

and Arg amino acid residues in their N-terminal regions. The genes encoding 

these enzymes occur in the genomic sequences of various bacterial species, 

not necessarily as a part of a defined operon system (Lee et al., 2006a). These 

findings indicate the possibilities for novel sulphur metabolic pathways.  

Gordonia sp. NB4-1Y, a very closely related species to Gordonia desulfuricans 

213E, is capable of metabolising sulfonated poly-fluoroalkyl compounds. A 

neighbour-joining tree showed that the ssuD sequences of strain NB4-1Y 

tended to cluster with putative ntaA genes rather than with previously 

characterised ssuD sequences (Van Hamme et al., 2013). The initial 

degradation of nitrilotriacetate, a widely applied chelator, is also catalysed by 

a class C flavoprotein monooxygenase NtaA (Knobel et al., 1996; Uetz et al., 

1992; Xu et al., 1997) which is encoded by ntaA gene. It has been reported 

that the monooxygenases such as NtaA/SnaA/SoxA/DszA could oxidize 

nitriloacetate using reduced flavin mononucleotide (FMNH2) and O2, as well 

as catalyse the 3rd step of the 4S pathway, which is the conversion of DBTO2 

(Dibenzothiophene-5,5-dioxide) to HBPS (2'-Hydroxybiphenyl-2-sulfinate). 

Alkane sulfonate monooxygenases (SsuD; EC 1.14.14.5) enables bacteria to 

metabolise a wide range of alkanesulfonates as sulphur source by using a 

reduced flavin (supplied by a SsuE enzyme) and dioxygen, SsuD generates a 

C4a-(hydro)peroxyflavin intermediate that is directly responsible for catalysing 

the conversion of alkanesulfonate to sulphite and the corresponding aldehyde 

(Armacost et al., 2014; Ellis, 2011). SsuD was not known to desulfonate 

aromatic sulfonates, but Wang et al. (2013a) reported that SsuD was one of 

the upregulated genes when G. terrae C-6 was grown in the presence of BT 

as a sole sulphur source, indicating a possible role of SsuD as a BT 

desulphurising enzyme. Recently, genes encoding for three putative 

alkanesulfonate monooxygenases, seven putative sulphonate ABC 
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transporters, and two putative sulphate permeases were associated with the 

thermophilic biodesulphurisation activity of Geobacillus thermoglucosidasius 

W-2 (Zhu et al., 2016).  

In terms of the amino acid sequence, the enzyme DszC (EC 1.14.14.21) 

shared sequence homology with several acyl-coenzyme A dehyrdogenases, 

and the enzyme DszA (EC 1.14.14.22) shared significant homology to 

oxygenases such as the SnaA subunit of pristinamycin IIA synthase in 

Streptomyces pristinaespiralis and to component B of nitriloacetate 

monooxygenase in Chelobacter ATCC 29600. Knowledge of the degree of 

homology of the Dsz enzymes helps in the identification of putative genes 

encoding BT desulphurisation, which are presently not clearly established.  

4.1.3 Sulphate metabolism genes 

Biodesulphurisation activity is a natural starvation-induced process that the 

bacteria have evolved to meet their sulphur requirements, which is relatively 

less than their other nutritional requirements such as carbon, hydrogen or 

oxygen. The desulphurisation levels are naturally sufficient to meet the 

organisms’ need, but very low for application in a commercial scale BDS 

technology. Knowledge of the sulphur uptake gene could be useful to develop 

a gene silencing strategy for BDS strain improvement. By devoiding bacteria 

of the ability to uptake sulphates, the bacteria will be forced to depend only on 

alternate sulphur sources in the fuels, thereby avoiding sulphate induced 

repression of dsz genes and increased BDS rates. 

In E. coli, the majority of sulphate assimilation genes belong to the cysteine 

(cys) regulon that is positively regulated by the transcription factor CysB 

(Kredich, 1992). In the absence of sulphate and cysteine, E. coli can use 

aliphatic sulfonates as a source of sulphur for growth by the expression of the 

taurine transport enzymes (encoded by tauABCD) and alkanesulfonate 

transport enzymes (encoded by ssuEADCB) (Eichhorn et al., 1999; van der 

Ploeg et al., 2001). Currently, there is no study that exclusively focuses on the 

sulphate metabolism of rhodococci. Therefore results obtained for a closely 

related genus Mycobacterium could be used for comparative studies to 

understand the sulphate metabolism genes in the Rhodococcus test strains 
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used in this study. Wooff et al., (2002) obtained the genome sequence of 

Mycobacterium tuberculosis BCG and found that in the case of the Gram-

positive mycobacterial strains, sulphur assimilation was mediated by 

Cys·T·W·A· SubI ABC transporter complex (encoded by the subI, cysTWA 

cluster). The periplasmic sulphate must be activated to provide the necessary 

energy for either reduction or transfer. The enzyme ATP sulfurylase 

adenylates the inorganic sulphate to generate high energy phosphoric-

sulphuric acid anhydride bond of adenosine-5’-phosphosulphate (APS). The 

energy used for this reaction is compensated by the GTP hydrolysis which 

results in a two-subunit enzyme complex comprising of a catalytic sulfurylase 

subunit (CysD) and a G protein-like GTPase (CysN). The APS then undergoes 

either reduction or phosphorylation. In the reduction pathway, it gets 

sequentially reduced by APS reductase (CysH) and sulphite reductase (CysJ) 

towards the biosynthesis of reduced sulphur metabolites. Alternatively, an 

APS kinase (CysC) completes 3’-phosphoadenosine-5’-phosphosulphate 

(PAPS) synthesis with phosphorylation of the 3’-hydroxyl of APS, using the 

energy derived by an ATP hydrolysis. In mycobacteria, APS kinase (CysC) is 

fused to the GTPase domain (CysN) of ATP sulfurylase (Hatzios and Bertozzi, 

2011; Schelle and Bertozzi, 2006; Wooff et al., 2002). In this research, a 

rational approach will be followed to identify the sulphur uptake associated 

genes and a potential target gene among them that can be silenced in the 

future as a way for BDS improvement. 

4.1.4 Phylogenetic study using the whole genome sequence 

Until very recently, bacterial taxonomy has relied on a polyphasic approach 

based on the combination of phenotypic, chemotaxonomic and genotypic 

characteristics. Phylogenetic analyses based on 16S rRNA gene sequence 

nucleotide similarity has informed and shaped bacterial taxonomy significantly, 

and various additional housekeeping genes have also been utilised for this 

purpose. Yet, there are limitations with this approach and indeed with DNA–

DNA hybridisation (DDH) which is used as the ‘gold standard’ to delineate 

bacterial species. Whole-genome sequences contain the entirety of genetic 

information of bacterial strains and can help to resolve the taxonomic identity 

of bacteria. Goris and team (2007) cut the whole genome sequences into 
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1,000 bp long fragments and applied the BLAST algorithm to identify high-

scoring segment pairs between whole-genome sequences to mimic the DDH 

method. These measures have been termed as the overall genome-related 

index (OGRI) values (Chun and Rainey, 2014), and the minimum standards 

and workflow (Figure 4.1) have been proposed for the use of genomic 

sequences for prokaryotic taxonomy (Chun et al., 2018). The taxonomic 

resolution of OGRI is limited to differentiate only closely related species and 

not suitable for phylogenetic inference at the suprageneric rank level. Average 

Nucleotide Identity (ANI) is a similarity-type index, which is calculated by 

fragmentation of genome sequences, followed by nucleotide sequence search 

(usually BLAST), alignment and obtaining the scores for identity calculation. 

More accurate genomic sequences result in reliable ANI similarity values, 

whose coherence has been validated by comparison with corresponding 16S 

rRNA gene similarity and DDH values (Kim et al., 2014; Klappenbach et al., 

2007).  

Although DDH is still the gold-standard in species delineation, new proposals 

and standardisations are being put forward to enable taxonomists to avoid 

tedious determinations of DDH values in wet-lab experiments and to resolve 

previously dubious classifications based on whole-genome sequences 

homology (Chun et al., 2018; De Vos et al., 2017). ANIb (ANI algorithm using 

BLAST) has been used most widely for classification and identification of 

bacteria and archaea (Camelo-Castillo et al., 2014; Chan et al., 2012; Haley 

et al., 2010; Hoffmann et al., 2012; Jiménez et al., 2013; Lee et al., 2013; 

Loffler et al., 2013; Lucena et al., 2012; Ruvira et al., 2013; Tran et al., 2017; 

Yi et al., 2012). As the 16S rRNA gene sequence of several Rhodococcus 

species share >99% similarity, this is actively promoted as a reliable and cost-

effective approach to resolve the phylogeny of Rhodococcus species 

(Creason et al., 2014; Sangal et al., 2016, 2015). ANIb causes variations, 

usually minor when reciprocal calculations are compared, meaning, the ANI 

values for the same pair of genomic sequences differ depending on which one 

of them was assigned as a query or as a subject. This led to the development 

of an improved ANI algorithm, OrthoANI (Lee et al., 2016) which accounts for 

the concept of orthology – homology among sequences descended from the 

same ancestral sequence for which function of the gene or sequence has been 
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conserved across evolutionary time. OrthoANIu (OrthoANI using USEARCH 

program; Edgar, 2010) shows good correlation with the popular ANIb, and it 

works significantly even faster than ANIb, making OrthoANIu as suitable for 

large-scale comparative studies (Yoon et al., 2017). 

 

Figure 4.1 Workflow of whole-genome sequence based classification of 
bacteria at the species level 
 

Alternatively, there are other bioinformatic tools for the rapid identification of 

bacteria based on raw genomic or metagenomic (mixed genomes) sequence 

reads. The Reads2Type web service (Saputra et al., 2015) compares the 

similarity of each sequence in the input file with their 50-mer marker sequence 

database and rapidly identify any bacterial isolate to its species level. A more 

recent program StrainSeeker (Roosaare et al., 2017) is a strain identification 

tool that offers the advantage of not having to upload the protected sequence 

reads to external servers for the analysis. 
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In this research, the species identity of the test strains was initially determined 

using their 16S rRNA and gyrB gene sequences (in Chapter 2) which 

confirmed their assignment as members of genus Rhodococcus. The BDS 

strains 248 and F were determined as R. wratislaviensis and R. degradans, 

respectively, although very high percentage similarity was observed with other 

closely related valid species and hence DDH analysis would be required for 

confirmation. As stated earlier, whole-genome sequence similarity offers a 

valid alternative to DDH, and therefore, the draft whole-genome sequence of 

these BDS strains will be used to confirm their species identity through ANI 

values obtained by comparison with the genome sequences of closely related 

Rhodococcus species available in the database. Although a draft whole 

genome sequence of the G. desulfuricans 213E / NBRC 100010 is already 

available (Genbank: BCNF01000001), a new sequence of the 213E strain will 

be obtained in this research so as to support the validity of the approach in 

terms of the DNA extraction and also ANI analysis.  
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4.1.5 Aim 

This research study involves in silico analysis of whole-genome sequence data 

from the rhodococci test strains IEGM 248 and strain F, and the desulphurising 

species Gordonia desulfuricans 213ET to discover the gene systems involved 

in sulphur metabolism, with a particular focus on genes encoding 

desulphurising activity. It is expected that this information will enable the future 

development of targeted mutagenesis strategies for improving 

biodesulphurisation capabilities, by way of avoiding sulphate induced 

repression, in these and other strains. 

Additionally, the whole genome sequence data from these strains will be used 

for taxonomic purposes, to identify them to species level using OGRI, and to 

compare the findings with those of the phylogenetic studies based on single 

gene (16S rRNA and gyrB gene) analysis conducted in Chapter 2, in order to 

evaluate these approaches. 

Objectives 

The main objectives of the study are as follows: 

1) To identify the genes involved in sulphur metabolism and 

biodesulphurisation of BT and DBT in each of the three BDS strains, 

and study the genetic loci, occurrence patterns and arrangement of the 

genes, by using comparative genomic approaches, in order to inform 

future strain improvement strategies. 

 

2) To determine the whole-genome similarities between strains IEGM 248, 

F and closely related valid Rhodococcus species in order to confirm 

species-level identifications.   
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4.2 Methods 

4.2.1 Whole-genome sequencing of test strains 

The genomic DNA of the test strains were obtained, as described in section 

2.2.5. EDTA has been known to inhibit NGS library preparation, and so when 

preparing the DNA extractions for whole-genome sequencing, they were 

eluted in a buffer (10 mM Tris-HCl pH 8.5) with no EDTA. The purity and 

integrity were checked as described in section 2.2.7. The DNA was sent for 

whole genome sequencing by MicrobesNG, which is a BBSRC-funded (grant 

number BB/L024209/1) collaboration between the University of Birmingham 

and the University of Sheffield.  

At MicrobesNG, the DNA in the samples were fragmented to comply with 

Illumina library preparation method. The DNA fragments were converted into 

the library by ligation to sequencing adapters containing specific sequences 

designed to interact with the surface of the flow cell used in Illumina platform, 

followed by clonal amplification of the library by cluster generation. Finally, 

sequencing was done on the Illumina HiSeq 2500 platform using 2x250bp 

paired-end reads. The reads were trimmed using Trimmomatic (Bolger et al., 

2014). The nucleotide reads data were subjected to bioinformatics analyses 

such as the identification of the closest available reference genome using 

Kraken (Wood and Salzberg, 2014), and mapping of the reads to the reference 

genome using BWA-MEM (Burrows-Wheeler Aligner) (Li, 2013) to assess the 

quality of the data. The reads were also subjected to de novo assembly using 

SPAdes (Bankevich et al., 2012), and mapped back to the resultant contigs, 

again using BWA-MEM to obtain further metrics on the quality. The reference 

contigs were reordered and reoriented relative to the reference genome based 

on a MUMmer (Kurtz et al., 2004) whole-genome alignment, and an automated 

annotation was performed using Prokka (Seemann, 2014). 

These analyses were performed at MicrobesNG, and the resulting annotated 

draft genome assembly was available via a user-friendly web interface. Repeat 

sequences larger than ~1000bp (e.g. IS elements and rRNA operons) cannot 

be resolved using the sequencing methodology used by MicrobesNG, and 

which cause a break in the assembly. Therefore, a closed genome would not 
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be obtained per se, and the sequences were obtained as several contigs. The 

output was provided in standard bioinformatics file formats such as fasta, gbk 

(GenBank file format), gff (Generic Feature Format). Contaminating DNA 

sequences could occur during both culturing and DNA sequencing steps and 

even in minor amounts could get incorporated into the NGS sequence 

assembly. The quality of the draft sequence produced by MicrobesNG was 

tested using ContEst16S program (Lee et al., 2017). 

4.2.2 Importing the whole genome sequence into Geneious 

Geneious™ (Biomatters Ltd., Auckland, New Zealand), a recognised 

bioinformatics suite for phylogenetic analyses (Czech et al., 2017; Masters et 

al., 2011; Smith, 2015) and genomics (Abbasian et al., 2016; Butler III et al., 

2016; Wang et al., 2017) was used to conduct bioinformatics analyses. 

Geneious package offers tools for NGS analyses for storing, organising and 

analysing (de novo assembly or mapping to a reference sequence) NGS data; 

tools for evolutionary analyses such as MSA, phylogenetic trees construction, 

repeat identification; inbuilt database searching and importing data into the 

software environment; extensions or plugins to include further operations.  

4.2.3 Phylogenetic analysis using whole-genome sequences 

The phylogenetic identity of strains 248 and F was studied using OrthoANIu 

(Yoon et al., 2017) downloaded from http://www.ezbiocloud.net/tools/ani. The 

whole-genome sequence of the test strains was selected in fasta format. The 

closely related rhodococci species were chosen based on the similarity values 

obtained by the comparative analysis of their 16S rRNA gene and gyrB gene 

(described in chapter 2), and their representative genome sequences were 

obtained by searching the NCBI Prokaryotic Genome database (Table 4.2). 

Wherever a closely related representative genome was not available, the next 

high-quality genome of the closely related type species was chosen. The 

genome of strain 248 was compared with the highest quality genome available 

for R. wratislaviensis, R. opacus, R. imtechensis and R. jostii. As the whole-

genome sequence of R. degradans was not available in the database at the 

time of the experiment, a comparative analysis was not possible between 

strain 248 and R. degradans. The genome of strain F was compared with R. 

erythropolis and R. qingshengii. The draft-genome sequence of Gordonia 

http://www.ezbiocloud.net/tools/ani
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desulfuricans 213ET obtained in this research was compared with the 

previously reported whole-genome sequence for the same strain available in 

the database as control. Additionally, the web-based StrainSeeker and 

Read2Type programs were used to identify the strains 248 and F. 

Table 4.2 Representative rhodococcal whole-genome sequences used 
for OrthoANIu analysis in this study 

Organism 
Genbank 

Code 
Contigs 

Total 

length 

(kbp) 

GC (%) 

Strain 248  339 9,375 66.82 

R. wratislaviensis NBRC 100605 NZ_BAWF 151 10,403 66.78 

R. opacus DSM 43205 NZ_LRRG  382 8,534 67.28 

R. imtechensis RKJ300 NZ_AJJH  178 8,231 67.22 

R. jostii RHA1 NC_FNTL 1 7,804 67.52 

Strain F  71 6,421 62.51 

R. erythropolis NBRC 15567 BCRM 67 6,588 62.4 

R. qingshengii djl-6-2 CP025959 1 6,518 62.44 

The table shows the genomes of closely related organisms selected for pairwise comparison 
with the genomes of strains 248 and F using OrthoANIu analysis to obtain the genome-wide 
similarity values. Strain 248 was compared with the highest quality genome available for R. 
wratislaviensis, R. opacus, R. imtechensis and R. jostii. The strain F genome was compared 
with R. erythropolis and R. qingshengii. The genome of R. degradans was not available for 
comparison.  

 

4.2.4 Identification of desulphurisation and sulphur assimilation genes 

The dsz operon sequence of Rhodococcus erythropolis 

IGTS8 (Accession: L37363) was used as the reference sequence. A short 

sequence between nucleotides (901 - 960)  (5’ 

aagtactaccaacacatcgcccgtactctggagcgcggcaagttcgatctgttgtttctg 3’)  of dsz 

operon was used as a query to identify other similar desulphurisation operons 

in the NCBI Nucleotide database using BLAST and from the database hits that 

had a higher score, expect value, identity (more than 85%) and query 

coverage (more than 65%), a list of 22 organisms which contained dsz genes 

were obtained as shown in Table 4.3. In the case of strain F, the genes related 

https://www.ncbi.nlm.nih.gov/nuccore/BAWF00000000.1
https://www.ncbi.nlm.nih.gov/nuccore/NZ_LRRG00000000.1
https://www.ncbi.nlm.nih.gov/nuccore/AJJH00000000.1
https://www.ncbi.nlm.nih.gov/nuccore/BCRM00000000.1
https://www.ncbi.nlm.nih.gov/nuccore/L37363
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to desulphurisation were known directly from the annotation of the whole 

genome sequence made by Prokka and by matching the above query with the 

genome using ‘Map to Reference’ functionality in Geneious program. In the 

case of the strains 248 and 213E, the genes related to desulphurisation were 

known by searching the annotations for all monooxygenases class of enzymes 

(EC 1.14) such as alkanesulfonate monooxygenases, flavin-dependent 

monooxygenases, acyl-coA dehydrogenases on the genome sequence using 

gene names, product name and EC numbers. 

 

Table 4.3 DBT desulphurisation operon sequences available in the 
NCBI database 

Organism 
NCBI Nucleotide Accession 

No. 

Acidovorax delafieldii DQ062154.1 

Agrobacterium tumefaciens FD-3 AY960127.1 

Bacillus subtilis AB076745.1 

Brevibacillus brevis DQ062161.1 

Gordonia alkanivorans 1B AY678116 

Gordonia alkanivorans RIPI90A EU364831.1 

Gordonia amicalis F.5.25.8 EF026089 

Gordonia nitida (reclassified as G. alkanivorans) AY714057.1 

Gordonia sp. CYKS2 (putative operon) AY396519.1 

Gordonia sp. IITR100 KC693733 

Mycobacterium goodii X7B JF740062.1 

Mycobacterium phlei SM120-1 KP202690.1 

Nocardia globerula AY714059.1 

Rhodococcus erythropolis AY714058.1 

Rhodococcus erythropolis HN2 KJ021035.1 

Rhodococcus sp. IGTS8 L37363.1; U08850.1; RERDSZA 

Rhodococcus sp. DS-3 DQ444325.1 

Rhodococcus sp. SDUZAWQ AY789136.1 

Rhodococcus erythropolis XP AY278323.1 

synthetic construct (Rhodococcus sp. LY822) EF570781.1 

  



171 
 

4.3 Results 

The complete genome sequences data for the new BDS strains 248 and F 

generated by MicrobesNG, UK, were analysed using various bioinformatics 

tools with an aim to establish their species identity and to study the genes 

encoding the BDS activity.  

4.3.1 Whole-genome sequences 

The draft whole-genome sequences of the strains 248, F and G. desulfuricans 

213E obtained from MicrobesNG have been deposited at NCBI/GenBank 

under BioProject numbers PRJNA603520, PRJNA603528 and 

PRJNA603534, respectively. The NCBI Prokaryotic Genome Annotation 

Pipeline (PGAP) annotated whole-genome sequences of R. opacus IEGM 

248, R. qingshengii strain F and G. desulfuricans 213E are available from 

GenBank using accession numbers JAAECF000000000, JAADZT000000000 

and JAADZU000000000, respectively. 

As a part of MicrobesNG’s standard analysis pipeline, the nucleotide 

sequence reads were subjected to de novo assembly using SPAdes to obtain 

the contigs and eventually a draft genome was constructed. Additionally, a 

nearest related reference genome was also identified using Kraken. The 

nucleotide sequence reads were mapped to both the newly obtained draft 

genome and also the reference genome using BWA-MEM to assess the 

quality of data and generate quality metrics for the QUality ASsesment Tool 

(QUAST) report. The assembly statistics of contigs in the draft genome 

sequence are provided in Table 4.4.  

  

http://www.ncbi.nlm.nih.gov/nuccore/JAAECF000000000
http://www.ncbi.nlm.nih.gov/nuccore/JAADZT000000000
http://www.ncbi.nlm.nih.gov/nuccore/JAADZU000000000
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Table 4.4 QUAST report on the whole genome sequence output 

Statistics without reference Strain 248 Strain F Strain 213E 

# contigs 237 49 204 

# contigs (≥ 0 bp) 339 71 266 

# contigs (≥ 1000 bp) 209 43 184 

Largest contig length (bp) 466,750 729,836 142,683 

Total number of bases in the assembly 9,332,585 6,414,301 5,534,161 

N50 87,833 307,870 53,400 

N75 55,695 202,740 28,386 

L50 27 7 33 

L75 59 14 69 

GC (%) 66.93 62.51 68 

Mismatches  

# N's 0 0 0 

# N's per 100 kbp 0 0 0 

All statistics are based on contigs of size ≥ 500 bp, unless otherwise noted 

(e.g., "# contigs (≥ 0 bp)" and "Total length (≥ 0 bp)" include all contigs.) 

The N50 is the contig length such that using longer or equal length contigs produces half 

(50%) of the bases of the assembly. N75 is the contig length such that using longer or equal 

length contigs produces 75% of the bases of the assembly. Usually, there is no exact value 

that produces the 50% or 75%, and so the technical definition is that they represent the 

maximum length x such that using contigs of length at least x accounts for at least 50 or 70% 

of the total assembly length. L50 and L75 represent the number of contigs that have lengths 

equal to N50 and N75, respectively.  
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4.3.2 Desulphurisation genes of strain F 

Strain F is a DBT desulphurising bacteria and therefore the known R. 

erythropolis IGTS8 dsz operon sequence (NCBI Nucleotide: RERDSZA or 

L37363) (Piddington et al., 1995) was used as the reference sequence to 

locate the desulphurisation genes in the genome of strain F using the “Map to 

reference” option in Geneious. The desulphurising operon dszABC of strain F 

was located in the contig 20 of the draft genome sequence obtained in this 

study, as shown in Figure 4.2. Three gene sequences occurred in succession 

as in the case of dszA, dszB and dszC and they were annotated as the genes 

encoding Nitrilotriacetate monooxygenase component A (ntaA), 2'-

hydroxybiphenyl-2-sulfinate desulfinase (soxB) and Dibenzothiophene 

desulphurisation enzyme C (soxC), respectively. Multiple sequence alignment 

of the dszABC sequence of strain F and other known DBT desulphurisation 

gene cluster sequences reported from different DBT desulphurising strains 

showed a 100% match with dszABC sequence of the IGTS8 strain and also 

showed a high similarity with that of Acidovorax delafieldii (NCBI Nucleotide: 

DQ062154), Brevibacillus brevis (NCBI Nucleotide: DQ062161) and 

Rhodococcus sp. strain IGTS8 (NCBI Nucleotide: U08850) (Denome et al., 

1994) as shown in Table 4.5.  

 

Figure 4.2 Detection of the dsz genes of strain F using comparative 
genomics 
As the strain F was a dibenzothiophene (DBT) desulphurising bacteria, the 5.5 kb dszABC 
operon sequence of R. erythropolis IGTS8 (Genbank: L37363) was used to search the draft 
whole-genome sequence of strain F to detect the locus and the nucleotide sequences flanking 
the DBT desulphurisation operon. The 100% matching sequence containing all the 3 genes 
was located on the contig 20 (Node 20) of the draft sequence. The blue coloured numbers 
indicate the nucleotide count on the contig 20. 
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Table 4.5 Comparison of dsz operon sequences of different DBT desulphurising bacteria 
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M. goodii X7B (JF740062)  636 1843 1580 2224 2207 2465 3971 1208 1716 1161 1709 1711 2588 1259 1157 1158 1158 3832 1395 

Bacillus subtilis (AB076745) 85  342 1516 1482 1466 1584 1576 1183 1573 1134 1569 1568 1563 1236 1130 1131 1131 1564 1381 
M. phlei SM120-1 
(KP202690) 67.56 92.33  2041 2705 2689 3773 6384 1183 2389 1134 2385 2384 3198 1377 1130 1131 1131 5424 1614 
G. amicalis F.5.25.8 
(EF026089) 61.91 63.09 56.45  895 885 1499 1493 671 1119 598 1109 1109 1107 676 591 592 592 1102 778 
G. alkanivorans 1B 
(AY678116) 56.53 64.86 51.88 77.74  2 282 2752 504 669 417 661 659 1487 482 407 410 410 3308 574 
G. alkanivorans RIPI90A 
(EU364831) 56.65 65.03 51.95 77.89 99.96  280 2731 504 658 417 650 648 1476 484 407 410 410 3272 576 
Gordonia sp. CYKS2 
(AY396519) 53.46 63.63 46.12 68.27 93.79 93.8  2818 500 1240 413 1231 1229 2157 480 403 406 406 4341 572 
Gordonia sp. IITR100 
(KC693733) 43.36 63.81 37.87 68.4 61.85 61.83 66.85  503 1243 416 1234 1232 1937 483 406 409 409 5046 575 
R. erythropolis HN2 
(KJ021035) 67.64 68.31 68.31 81.48 86.45 86.45 86.56 86.48  120 111 111 109 108 106 105 104 104 104 104 

G. nitida (AY714057) 61.92 63.71 54.69 74.35 84.3 84.49 75.15 75.09 96.77  23 31 35 25 21 17 16 16 37 16 
Rhodococcus sp. 
SDUZAWQ (AY789136) 68.9 69.62 69.62 83.5 88.79 88.79 88.9 88.82 97.02 99.38  14 12 11 9 8 7 7 7 7 
Nocardia globerula 
(AY714059) 62.07 63.81 54.76 74.58 84.49 84.68 75.33 75.27 97.02 99.32 99.62  26 16 12 8 7 7 31 10 

R. erythropolis (AY714058) 62.05 63.85 54.8 74.59 84.53 84.72 75.37 75.31 97.07 99.23 99.68 99.43  20 10 6 5 5 34 6 
R. erythropolis IGTS8 
dszABC (RERDSZA) 53.01 63.94 49.13 74.63 71.13 71.23 63.79 67.72 97.1 99.45 99.7 99.65 99.56  9 5 4 4 32 4 
Agrobacterium tumefaciens 
(AY960127) 67.63 68.22 65.83 82.02 87.67 87.62 87.72 87.64 97.15 99.46 99.76 99.69 99.74 99.77  3 2 2 5 5 
R. erythropolis XP 
(AY278323) 68.98 69.71 69.71 83.69 89.05 89.05 89.16 89.08 97.18 99.54 99.78 99.78 99.84 99.87 99.92  1 1 1 1 
Acidovorax delafieldii 
(DQ062154) 68.98 69.7 69.7 83.66 88.98 88.98 89.09 89.01 97.2 99.57 99.81 99.81 99.87 99.89 99.95 99.97  0 0 0 
Brevibacillus brevis 
(DQ062161) 68.98 69.7 69.7 83.66 88.98 88.98 89.09 89.01 97.2 99.57 99.81 99.81 99.87 99.89 99.95 99.97 100  0 0 
Rhodococcus sp. IGTS8 
(RSU08850) 43.98 63.92 38.75 74.74 53.08 53.21 47.94 51.43 97.2 99.19 99.81 99.32 99.26 99.42 99.87 99.97 100 100  0 

Strain_F dszABC 65.87 66.21 62.85 80.1 86.02 85.98 86.07 86 97.2 99.61 99.81 99.75 99.85 99.9 99.87 99.97 100 100 100  
Percentage similarity  

Molecular phylogenetic analysis based on the complete dszABC sequence of strain F and other desulphurising bacterial species by Maximum Likelihood method. The NCBI accession 
code for the dsz operon is provided in parenthesis. The matrix shows variation among the gene sets that encode the same functionality. Darker shades indicate high similarity.  
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The dszABC gene cluster was not found in the draft whole-genome sequence 

of strains 248 and G. desulfuricans 213E, which are predominantly BT 

desulphurising organisms. As noted earlier, genes encoding the 

desulphurisation of benzothiophene (BT) are not clearly established in the 

literature, and there was no reference sequence that could be used to probe 

the BT desulphurisation genes in the whole-genome sequence of strains 248 

and 213E. Therefore, the whole-genome sequences of strain 248 and 213E 

were searched to identify genes encoding various monooxygenases and 

identify putative genes for BT desulphurisation. 

4.3.3 Monooxygenases genes occurring in the genome of strains 248, F 

and Gordonia desulfuricans 213E 

Strain F 

There were 91 instances of monooxygenase related genes (EC 1.14.x.x) (EC 

1.13.x.x) occurring at various nodes in the draft genome sequences. There 

was an abundant occurrence of genes encoding flavin-dependent 

monooxygenase (hsaA, hsaB), alkane monooxygenase (alkB), alkane 

sulfonate monooxygenase (ssuD), limonene 1,2-monooxygenase (limB), 

nitrilotriacetate monooxygenase (ntaA) and nitronate monooxygenase at 

various regions of the genome (Appendix 7.8). 

A single instance of NAD(P)H-dependent FAD/FMN reductase occurred on 

Node_14. At Node_12, genes related to the metabolism of organic sulphur 

compounds occur in proximity. The alkanesulfonate monooxygenase genes 

(ssuD_3, ssuD_4) occur consecutively and immediately followed by soxB_1 

(gene for the HBPS desulfinase) and other sulphur metabolism related genes 

such as aliphatic sulfonates import ATP-binding protein (ssuB_4), putative 

aliphatic sulfonates transport permease protein (ssuC_5), and putative 

aliphatic sulfonates-binding protein precursor (ssuA_3). As described in 

section 4.3.2, the full dszABC operon was found in the whole-genome 

sequence of strain F . 
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Strain 213E 

In the case of strain 213E, the draft genome sequence revealed 79 

monooxygenase related genes are occurring at various nodes of the genome 

sequence (Appendix 7.9). Repeated occurrence of the genes encoding 2,4-

dichlorophenol 6-monooxygenase (tfdB), 4-hydroxy acetophenone 

monooxygenase (hapE), 4-nitrophenol 4-monooxygenase (npcB), alkanal 

monooxygenase alpha chain (luxA), alkanesulfonate monooxygenase (ssuD), 

dimethyl-sulfide monooxygenase (dmoA), flavin-dependent monooxygenase 

(hsaA), limonene 1,2-monooxygenase, nitrilotriacetate monooxygenase 

component A (ntaA), nitronate monooxygenase and pyrimidine 

monooxygenase (rutA) were observed.  

At Node_27, the genes encoding FMN reductases (ntaB and ssuE) occur 

consecutively and closely followed by a gene for alkanesulfonate 

monooxygenase (ssuD_2). The FMN reductase NtaB (EC 1.5.1.42), unlike 

SsuE (EC 1.5.1.38), has a strong preference for NADH over NADPH. 

The draft genome shows 6 instances of the gene encoding DszC enzyme 

occurring at various nodes. At Node_12, Node_38, and Node_52, the gene 

dszC occur successively with other monooxygenases encoding genes such 

as ntaA, msuD and dmoA_3, respectively. 

At Node_76, the genes related to aliphatic sulphur metabolism such as ssuA 

(binding), ssuB (import) and ssuC (transport permease) occur clustered and 

in proximity to ssuE_3 (FMN reductase).  

 

Strain 248 

About 159 instances of monooxygenase related genes were observed in the 

draft genome of strain 248 which included genes encoding 2,4-dichlorophenol 

6-monooxygenase (tfdB), 3-ketosteroid-9-alpha-monooxygenase oxygenase 

subunit (kshA), 4-hydroxy acetophenone monooxygenase (hapE), alkanal 

monooxygenase alpha chain (luxA), alkanesulfonate monooxygenase (ssuD), 

antibiotic biosynthesis monooxygenase, flavin-dependent monooxygenase 

oxygenase subunit (hsaA), flavin-dependent monooxygenase reductase 

subunit (hsaB), limonene 1,2-monooxygenase (limB), nitrilotriacetate 
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monooxygenase component A (ntaA), nitronate monooxygenase, 

pentachlorophenol 4-monooxygenase (pcpB) and pyrimidine monooxygenase 

(rutA), as shown in Appendix 7.10. 

Node_40 consists of two clusters of monooxygenase genes that are made up 

of genes ntaA_7, ntaA_8 and ntaA_9 occurring as a tight cluster and genes 

ntaA_10, moxC_2 and limB_5 occurring as another tight cluster.  

The dszC gene occurs at Node_5 clustered with msuD_2 (gene for 

methanesulfonate monooxygenase), and at Node_83 as a cluster with 

ntaA_12 and ntaA_13. 

4.3.4 Sulphur metabolism related genes occurring in the genome of 

strains 248, F and 213E 

The Cys family of proteins encoded by cys genes play vital roles in the 

sulphate metabolism of bacteria, with CysB being the master controller. The 

genes encoding sulphate binding proteins sbpA, and the cysTWA genes occur 

as conserved clusters in the whole-genome sequence of the three BDS strains 

analysed in this research, as shown in Figure 4.3, where it could also be seen 

that the gene associated with cysteine biosynthesis cysD and cysH also occur 

clustered. The bifunctional protein CysNC plays a role in the synthesis of 

sulphite from sulphate. The gene for cysNC always occur adjacent to cysD 

genes and translated in the same direction, with more (at least 3) copies 

spread across the genome than the cysTWA genes which occur only once in 

all three BDS strains. In the BT desulphurising strains 248 and 213E, one copy 

of the cysNC-cysD pair occur in the same contig containing the cysTWA 

genes, distinguishing them from the DBT desulphurising strain F where all 

copies of the cysNC-cysD pair occurs at different loci. This observation 

concurred with the findings of Woof et al. (2002) who reported the clustered 

arrangement of these sulphur uptake genes in M. tuberculosis BCG. 

The knowledge of sulphate assimilation genes is important because regulation 

of sulfur metabolism relies on the transcriptional response of sulphate 

assimilation enzymes to diverse environmental cues and regulatory proteins 

that influence flux through the sulfate assimilation pathway (Hatzios and 

Bertozzi, 2011). The knowledge of their location in the genonme and the 
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sequences flanking them will be helpful to develop gene silencing approaches 

in the future to generate genetically modified strains. These mutant strains will 

have their sulphate genes silenced, and therefore depend on the constitutive 

expression of dsz genes to meet their sulphur requirements even in the 

presence of sulphates and exhibit improved BDS rates (proposed as future 

work in section 5.1.6).  
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A) Sulphate uptake genes of G. desulfuricans 213E (contig 4) 

 

B) Sulphate uptake genes of strain 248 (contig 11) 

 

C) Sulphate uptake genes of strain F (contig 3) 

 

Figure 4.3 Sulphate uptake-related genes occurring on the genomes of strains 213E, 248 and F 
The segment of whole-genome sequence showing a clustered arrangement of genes associated with uptake of sulphates found in strains G. desulfuricans 213E 
(A), Rhodococcus opacus IEGM 248 (B) and R. qingshengii F (C) are shown. The contig number of the draft whole-genome sequence where these genes occur 
is given in parentheses. The degree of conservation of the arrangement is such that gene for sulphate binding precursor protein sbpA and genes for sulphate 
transportation proteins cysTWA occur clustered, and are translated in forward direction. The genes encoding cysteine biosynthesis cysD and cysH occur clustered, 
and are translated in reverse direction. This observation further supports the evolutionary idea that genes encoding proteins associated with a single process tend 
to occur closer to each other. The three BDS strains differ in terms of the other genes occurring in between the cysTWA and cysDH clusters. The arrangement of 
the sulphur uptake genes of strains 248, F and 213E is homologous to Mycobacterium tuberculosis BCG,which is an actinobacterial strain. 



180 
 

4.3.5 Identification of Strain 248 

The Read2Type rapid bacterial identification program, after 18 minutes of 

operation, divided the submitted genome sequence of strain 248 into 38,839 

50-mer sequences and predicted 4 different possible identities for the strain 

248 as Nocardia farcinica, Haloarcula hispanica, Rhodococcus jostii, and 

Rhodococcus opacus. The StrainSeeker program compared the genome 

sequence of strain 248 against a database of more than 4,300 bacterial strains 

obtained from NCBI RefSeq repository and detected that R. jostii RHA1 and 

R. opacus PD630 genome sequences occurring at a relative frequency of 

57.24% and 42.76% on the whole genome sequence of strain 248. 

The OrthoANIu based comparison of strain 248 with genome sequences of R. 

wratislaviensis NBRC 100605, R. opacus DSM 43205 and R. imtechensis 

RKJ300 revealed a percentage match of 94.59%, 96.66% and 96.18%, 

respectively. Interestingly, a high similarity was obtained when the genomes 

of the type species were subjected to the pairwise comparison as given in 

Table 4.6. Based on the OrthoANIu values, the species identity of strain 248 

could be reliably confirmed as R. opacus.
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Table 4.6 OrthANIu values for the pairwise comparison of strain 248 and the genomes of its closely related type 
strains 

Metric 

R. 

wratislaviensis 

vs 

248 

R. opacus 

vs 

248 

R. imtechensis 

vs 

248 

R. jostii 

vs 

248 

R. wratislaviensis 

vs 

R. imtechensis 

R. opacus 

vs 

R. imtechensis 

R. wratislaviensis 

vs 

R. opacus 

OrthoANIu value (%) 94.59 96.66 96.18 94.99 94.34 97.88 94.51 

Genome A length (bp) 10,329,540 8,336,460 8,139,600 7,804,020 10,329,540 8,336,460 10,329,540 

Genome B length (bp) 9,208,560 9,208,560 9,208,560 9,208,560 8,139,600 8,139,600 8,336,460 

Average aligned length (bp) 4,907,944 4,796,859 4,450,152 4,827,779 4,242,131 4,441,082 4,512,155 

Genome A coverage (%) 47.51 57.54 54.67 61.86 41.07 53.27 43.68 

Genome B coverage (%) 53.3 52.09 48.33 52.43 52.12 54.56 54.13 

The draft genome sequence of strain 248 was compared with closely related representative genomes of type strains of R. wratislaviensis NBRC 
100605, R. opacus DSM 43205, R. jostii RHA1and R. imtechensis RKJ300. Genome A refers to the reference genome obtained from the NCBI 
database, and Genome B refers to the WGS of strain F obtained in this research. 
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4.3.6 Identification of Strain F 

The StrainSeeker program detected that genomes of R. erythropolis strains 

BG43, R138, CCM2595 and PR4 occur at a relative frequency of 31.35%, 

26.56%, 21.10% and 21.00% on the whole genome sequence of strain F. The 

OrthoANIu based comparison of strain F with the genomes of R. erythropolis 

and R. qingshengii showed a percentage similarity value of 95.48% and 

98.93%, respectively (Table 4.7). Based on the high OrthoANIu values, strain 

F could be reliably confirmed as a member of the species R. qingshengii. It 

was also observed that strain F shared comparable percentage similarity 

values of 95.48% and 95.51% with R. erythropolis strains NBRC 15567 and 

XP, respectively. The former is the type strain of the species, and the latter is 

a widely studied BDS capable strain with representative grade whole genome 

sequence. Interestingly, a high similarity of 95.48% was obtained for the 

pairwise comparison of the genomes of the type strains of R. erythropolis and 

R. qingshengii, as given in Table 4.7. 

 

Table 4.7 OrthANIu values for pairwise comparison of strain F and the 
genomes of its closely related type strains 

Metric 

R. erythropolis 

NBRC 15567 

vs 

Strain F 

R. qingshengii 

vs 

Strain F 

R. erythropolis 

XP 

vs 

Strain F 

R. qingshengi 

djl-6-2i 

vs 

R. erythropolis NBRC 

15567 

OrthoANIu value (%) 95.48 98.93 95.51 95.48 

Genome A length (bp) 6,557,580 6,517,800 7,225,680 6,517,800 

Genome B length (bp) 6,386,220 6,386,220 6,386,220 6,557,580 

Average aligned length 

(bp) 
4,236,638 4,259,426 4,287,519 4,063,974 

Genome A coverage (%) 64.61 65.35 59.34 62.35 

Genome B coverage (%) 53.3 52.09 67.14 48.33 

The draft genome sequence of strain F was compared with closely related representative 
genomes of type strains of R. erythropolis strains NBRC 15567 and XP, and R. qingshengii 
djl-6-2. The strain XP was included because it was a well studied BDS strain with the known 
whole genome sequence. Genome A refers to the reference genome obtained from the NCBI 
database, and Genome B refers to the WGS of strain F obtained in this research. 
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4.3.7 Confirmation of Strain 213E identity by OrthoANIu values 

The whole-genome sequence of the Gordonia desulfuricans strain 213E 

obtained through this research was compared with that of the representative 

genome sequence of Gordonia desulfuricans NBRC 100010 already available 

in the NCBI Genome (RefSeq: NZ_BCNF00000000.1) which confirmed a very 

high similarity value of 99.94% as shown in Table 4.8. 

Table 4.8 OrthoANIu values of pairwise comparison of whole-genome 
sequences of G. desulfuricans strain 213E 

Metric 

G. desulfuricans 213E 

NBRC 

Vs 

Strain 213E 

OrthoANIu value (%) 99.94 

Genome A length (bp) 5,308,080 

Genome B length (bp) 5,430,480 

Average aligned length 

(bp) 
3,909,026 

Genome A coverage (%) 73.64 

Genome B coverage (%) 71.98 

Genome A refers to the reference genome available in the NCBI database, and Genome B 
refers to the WGS obtained for strain 213E in this research. 
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4.4 Discussion 

Bacteria have efficient cellular mechanisms to adapt to the change in culture 

environment by the activity of global regulatory proteins, that generally act at 

the transcriptional level. The regulation often carried out by two-component 

systems (Hoch, 2000), that involve detection of extracellular signals and 

transduction of the signals into the cytosol. There might also be a cross-talk 

between the regulators and unknown proteins that influence the regulation 

(Yamamoto et al., 2005). Additionally, σ factors also play essential roles in the 

transcription, where they allow RNA polymerase to be recruited at specific 

DNA sequences in the promoter regions. The BDS enzymes are produced by 

the bacteria as a stress-response (sulphate limitation in the growth medium).  

The dsz genes involved in DBT metabolism occur in most DBT degrading 

bacteria and with approximately 70% homology (Monticello, 2000). Despite 

the genetic homology, they exhibit differences in Dsz phenotypes in terms of 

specificity and substrate preferences (Kilbane II, 2006). Therefore, 

comprehensive knowledge of all the genes present in the organism could 

provide insights into its genetic preparedness for the activity. Mutation 

strategies could be developed based on this knowledge. Recently, the 

bioinformatics-based approach has been used to predict potential BDS strains 

using their genome sequences data without the need to grow them in the lab 

(Bhanjadeo et al., 2018). 

The whole-genome sequence obtained for the strains 248, F and G. 

desulfuricans 213E from MicrobesNG in this research are draft sequences at 

the contig level of assembly. Using ContEst16S program (Lee et al., 2017), at 

least 7 of the publicly available rhodococci genome assemblies were found to 

be contaminated with sequences from other species. The quality of genome 

sequence is a critical factor for bioinformatics analyses, and therefore, 

contamination-free high-quality RefSeq or Representative sequences were 

used in this study. The genome sequences obtained in this research were not 

contaminated. The QUAST report on the quality of the genomes as described 

in Table 4.4 show that the sequences could be reliably used for bioinformatics 

analyses based on the N50 and N75 scores. It also shows the difference in 

the size of the genomes, with strain 248 being the largest (9.3 Mb), followed 
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by strain F (6.4 Mb) and 213E (5.5 Mb). It could be noted from Table 4.2 that 

the GC% of the strains 248 (66.82%) and strain F (62.51%) is similar to that 

of the respective reference genome sequence of selected for comparison from 

the Genbank. 

4.4.1 Phylogenetic analysis of DBT dsz operon in strain F 

All known bacteria with the ability to desulphurise DBT into 2HBP through the 

4S pathway possess three desulphurisation enzymes. From Table 4.5, it could 

be noted that the dsz operon occurs predominantly in the members of phylum 

Actinobacteria and that the dsz genes appear more conserved among 

Rhodococcus species, in concordance with previously reported observations 

(Akhtar et al., 2015; Bhanjadeo et al., 2018; Duarte et al., 2001). The 

infrequent distribution of the dsz operon is observed in Proteobacteria and 

Firmicutes phyla, which Bhanjadeo et al., (2018) described as a scattered 

pattern of conservation of dsz genes owing to the horizontal gene transfer 

mode of origin of the operon.  

4.4.2 Genetic arrangement of the BDS genes  

The genes encoding the enzymes involved in the 4S pathway of DBT 

desulphurisation and their clustered arrangement in the genome of bacteria 

belonging to diverse genera are so well established, that Chauhan et al. (2014) 

grouped the dsz operons into 6 types. Quite the reverse, the genes encoding 

BT desulphurisation enzymes are not precisely known. It was suggested that 

in the case of organisms exhibiting BDS of both BT and DBT, the genes coding 

for the desulphurisation enzymes share sequence homology (Kirimura et al., 

2004). The only research done towards establishing the BT desulphurisation 

genes to date is the genetic analysis published by Wang et al. (2013a), who 

investigated the BT desulphurisation genes, by obtaining the draft whole-

genome sequence of the BT desulphurising strain Gordonia terrae C-6 

(Genbank: AQPW00000000.1) and comparing the transcriptomic profiles 

when cultured in the presence of BT or Na2SO4 as the sole sulphur source. 

Among the 135 upregulated genes which were mostly alkane sulfonate 

monooxygenases, they identified a gene cluster consisting of a desulfinase 

gene, a flavin-dependent monooxygenase gene and an alkanesulfonate 

monooxygenase gene whose products were functionally analogous to DszB, 
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DszC and DszA, and designated it as bdsABC operon (NCBI accession: 

KC831580). This highlighted the possible role of alkanesulfonate 

monooxygenases (ssuD) in desulphurisation, and therefore, in this study, the 

genomes of strains 248, 213E and F were searched for the occurrence of ssuD 

genes and genes encoding flavin-dependent monooxygenases.  

The genome of strain 248 was more abundant than that of G. desulfuricans 

213E and strain F in terms of the number of genes encoding monooxygenase 

enzymes. However, a clustered occurrence of monooxygenase and 

desulfinase genes was not detected in the draft genome sequence of strains 

248 and G. desulfuricans 213E obtained in this study. Nevertheless, both 

strains contained the soxC gene encoding DszC and a gene encoding 

NADPH-dependent FMN reductase that underlies the modest ability of these 

strains to desulphurise DBT. Whereas the significant DBT desulphurisation 

activity of strain F, as shown in Figure 3.8 and Table 3.5, could be attributed 

to the several instances of the dszABC genes occurring in its genome along 

with several other flavin-dependent monooxygenases (Appendix 7.8).  

One of the hypotheses of this research was that the location, arrangement and 

reoccurrence of the BDS related genes would be a determinant for the level of 

BDS activity expressed by them. This could be established by selecting the 

BDS strains with known genome sequence, studying the location and 

arrangement of dsz genes and other monooxygenases and correlate with the 

specific activity reported for them. Searching through the NCBI Genbank 

shows that BDS genes are often seen as individual annotations on WGS 

projects and occur scattered (not as a cluster). The number of annotations of 

dszC > dszA > dszB. At the time of writing, validly published whole-genome 

sequence data were available for only 8 other BDS capable actinobacteria, as 

shown in Table 4.1. The complete dsz operon was available for only 20 BDS 

strains listed in Table 4.5, among which only 10 included the sequences 

flanking the dszABC genes. The lack of diversity in the BDS strain WGS 

availability and complete dszABC operon limited the possibility of the 

investigation. 
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4.4.3 Genome sequence-based identification of strains 248 and F 

The high speed and low cost of draft genome sequencing opens the door to in 

silico comparisons that are reminiscent of DDH. The power of genome 

sequences to resolve the taxonomy was utilised to confirm the identity of 

strains 248, F and 213E. It was previously found that digitally derived genome-

to-genome distances showed a better correlation with 16S rRNA gene 

sequence distances than DDH values (Auch et al., 2010). The pairwise 

average nucleotide identity (ANI) values were obtained in this research by the 

comparison of the genome sequences of the test strains with a representative 

genome of the closely related species. The closely related species were 

determined by 16S rRNA and gyrB gene sequence analysis, as described in 

Chapter 2, where the corresponding reference sequences were taken from the 

type strains for comparison. Stackebrandt (2011) suggested that the level of 

genome sequence identity (ANI value) among two strains must be >96% to be 

considered as an equivalent of a DDH similarity value of higher than 70%, 

which is the current standard for species delineation. It should be noted 

carefully that the 4% variation allowed between the genome sequences could 

encode for any phenotypic differences between them. 

Strain 213E 

The WGS of G. desulfuricans 213E obtained in this research (5104_213E) and 

the representative genome for the same strain existing in the NCBI Genome 

database (NZ_BCNF00000000.1) were subjected to ANI value calculation. 

This was done mainly for the purpose of evaluating the accuracy of the 

OrthoANIu algorithm for species delineation, and to confirm the reliability of 

the workflow followed in this research. A high genome coverage >70% used 

in the pairwise comparison and very high ANI value of 99.94% as shown in 

Table 4.8 is a promising result that happened as expected, as the two genome 

sequences were from the same strain. Besides serving as a further 

confirmation of the identity of the strain, the results show that the OrthoANIu 

values are reliable. 
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Strain 248 

Based on 16S rRNA gene and gyrB sequence similarity analysis, the identity 

of strain 248 was determined (section 2.3.7) as R. wratislaviensis, as against 

its original classification as R. opacus which was the second closest relative 

(99.14% 16S rRNA similarity) and closely followed by R. imtechensis (98.53% 

16S rRNA similarity). The highest quality reference whole-genome sequences 

available for these closely related strains was selected for evaluating the 

pairwise relatedness. Based on the ANI values shown in Table 4.6, it could be 

seen that the whole-genome sequence of strain 248 shares the highest 

relatedness (96.66%) to R. opacus rather than R. wratislaviensis (94.59%).  

Moreover, it should be noted that when the reference genomes of R. opacus, 

R. wratislaviensis and R. imtechensis were compared to each other, a high 

percentage similarity (97.88%) was observed between R. opacus and R. 

imtechensis, which is higher than the threshold needed for being classified as 

a single species. Sangal et al., (2016) reported the high similarity between 

these two strains and went on to suggest that R. imtechensis RKJ300T 

represents a later heterotypic synonym of R. opacus DSM 43205T. In the 

description of R. imtechensis type strain, Gosh and team (2006) acknowledge 

the close relationship with R. opacus and R. wratislaviensis but used the 

differences exhibited by them in the hydrolysis of tween 80 and utilisation of 

specific substrates as carbon sources (determined using Biolog GP2 

Microplate) to present it as a novel species. As the genes associated with this 

phenotype are not clearly defined, it could only be assumed that they may 

have occurred in the unmatched regions of their genome.  

Although programs like Read2Type and Strainseeker indicated the close 

relationship between strain 248 and R. jostii, the OrthoANIu value between 

them was less than 95% threshold. Based on higher OrthoANIu value of 

96.66%, the strain 248 could be concluded as R. opacus IEGM 248.  

Strain F 

Based on the 16S rRNA and gyrB sequence similarity analysis, the identity of 

the strain F was determined as R. degradans (section 2.3.4). However, the 

whole-genome sequence data of R. degradans was not available at the time 
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of research and hence the genomes of other closely related species R. 

qingshengii was included in the analysis. It could be seen from Table 4.7, that 

the strain F shares ANI value of 95.48% with R. erythropolis and an even 

higher value of 98.93% with R. qingshengii. Interestingly the two reference 

genomes of R. erythropolis and R. qingshengii also shared a high 95.48% 

similarity, which hints that the differing 5.5% genome could contain the genes 

that led to the phenotypic differences based on which the latter strain was 

distinguished from the former and R. baikonurensis DSM 44587T in order to 

be described as a new species (Xu et al., 2007). The higher OrthoANIu value 

(98.93%) shared by strain F with R. qingshengii than with R. erythropolis 

strains (~95%) confirmed that strain F belonged to R. qingshengii. 

The relationship between R. degradans and R. qingshengii could not be 

resolved through WGS based approaches because the R. degradans whole-

genome sequence was not available. However, the conclusion that strain F is 

a R. qingshengii strain is further supported by other reports of R. qingshengii 

strains with BDS related characteristics. Licoln et al. (2015), reported R. 

qingshengii strain TUHH-2 harbouring BDS genes. Also, a desulphurisation-

negative R. qingshengii CW25 has been genetically transformed into more 

enhanced BDS strain (Wang et al., 2017), which indicated the natural 

adaptability of the species for BDS purposes. There is no known BDS capable 

R. degradans strain. This circumstantial evidence also favours the conclusion 

that strain F could be a R. qingshengii strain. 
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Chapter 5 Discussion and Conclusion 

5.1.1 The scope of BDS technology 

The race for commercial exploitation of BDS technology was on even before 

the development of the IGTS8 strain in 1990. Maliyantz (1935) reported the 

first known bacterial desulphurisation of petroleum oil with the accumulation of 

hydrogen sulphide. Since then, there have been significant investments in 

BDS research and development, and a series of US patents 2521761 (1950), 

2574070 (1951), 2641564 (1953) and 2975103 (1961) filed for commercial 

application of BDS technology. The ENCHIRA Biotechnology Corporation 

(ENBC), USA (formerly, Energy Biosystems Corporation) pioneered a 

commercially applicable BDS technology, and interest in this was also shared 

by various other organisations including the Japanese Petroleum Energy 

Centre, Institute of Gas Technology, the Korean Advanced Institute of Science 

and Technology and Exxon Research & Engineering Company (Bachmann et 

al., 2014; Borgne and Quintero, 2003). 

BDS technology has some apparent advantages over current  

hydrodesulphurisation (HDS) processes. The energy requirements and 

associated CO2 (greenhouse gas) emissions of BDS based processes are 

much less compared to the energy-intensive and expensive HDS process. 

This is because BDS processes operate at room temperature and normal 

pressure, much milder (and safer) process conditions than for HDS (Alves et 

al., 2015; Linguist and Pacheco, 1999). Atlas et al. (1999) estimated that in the 

HDS process, the cost of reducing sulphur content from 200 to 50 ppm would 

be 4–5 times or higher than the cost of lowering the sulphur content from 500 

to 200 ppm. Although there will be logistical costs for BDS associated with 

maintaining a contamination-free environment, sanitation handling, shipment 

and storage of bacterial cultures, this would be relatively cheaper than the 

operational costs of HDS (Kirkwood et al., 2007b). In addition, the capital costs 

to set up a BDS process would reportedly be 50% of that for HDS. The 

advantages of BDS technology also include low operational costs 

(approximately 15% less than HDS) and also the ability to target thiophenes 

(Nuhu, 2013).  
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Despite these advantages and interest shown by multinational establishments, 

the BDS technology is not currently applied on an industrial scale because of 

practical and technical problems yet to be solved (these are summarised in 

Table 5.1). Indeed, the most favourable bioprocess method for a commercial-

scale operation has not yet been established. Petro Star Incorporated, a fuel 

refinery in Alaska, obtained several rounds of funding from EBS and the US 

Department of Energy to develop enhanced enzymes and genetically modified 

host strains for BDS; however, scale-up of the process beyond pilot-scale was 

beset with issues.  

Lab-scale research is often being reported in shake-flask level batch 

bioprocess experiments and continuous tank reactors and immobilised 

systems. Lately, advancements have been made in order to increase BDS 

efficiency by genetic engineering techniques (recombinant strains for 

overexpression of dsz genes) and classic microbiology techniques such as 

removal of the inhibiting end product from the culture, co-substrate addition 

(Martínez et al., 2015), and to seamlessly integrate BDS technology as a 

complementing process to the existing processes (HDS technology). By these 

approaches, it has been possible to generate ultra-low sulphur diesel (Alves 

et al., 2015; Nazari et al., 2017). The lower capital and operating costs, 

minimal pollution and the possibilities to produce high valuable by-products, 

such as biosurfactants, mean that the BDS technology still a promising avenue 

of research (Alves et al., 2015; Javadli and Klerk, 2012). As the 

desulphurisation enzymes require constant regeneration of cofactors for 

catalysing the oxidation-reduction reactions, whole cells were recommended 

for the BDS process to avoid problems of cofactor recycling and regeneration 

(Lin and Tao, 2017; Setti et al., 1997). Strains with broader substrate ranges 

are also needed to address better the complicated mixture of chemicals 

present in petroleum. Characteristics such as reaction rate, emulsion 

formation and breakage, biocatalyst recovery, fuel recovery and both gas and 

liquid mass transport characteristics have a direct impact on the commercial 

prospects of the BDS technology in terms of setting up and operational costs. 

Hence there is a constant quest for new naturally occurring strains that would 

ideally require minimal if not no reformations for application in commercial 

scale. 
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Table 5.1 Critical factors influencing the large-scale application of BDS 
technology 

Reasons favouring BDS technology Factors of concern 

Operation releases a very minimal 

amount of acid rain gases 

(Izumi et al., 1994) 

Operational costs associated with 

maintaining sterile conditions, and 

storage and use of viable microbial 

cells within the refinery environment to 

avoid contamination (McFarland, 1999) 

High targeted enzymatic activity for the 

DBT and its derivatives and other 

desired compounds in the fuel are 

unaffected 

(Konishi et al., 2000b) 

Sulphate dependent repression of dsz 

genes and toxic inhibition by 2HBP 

produced as the end product of DBT 

desulphurisation 

(Alves and Paixão, 2011) 

Lower capital and operating costs than 

HDS 

(Guobin et al., 2006) 

Conversion of sulphite to extracellular 

sulphates using sulfite oxidoreductase 

would affect dsz gene expression 

(Aggarwal et al., 2012) 

Yields ultra-low sulphur fuels 

(Soleimani et al., 2007) 

Cost of substrate in the bioprocess 

(Silva et al., 2013) 

More environmentally sustainable 

process as refractory organosulphur 

compounds are desulphurised under 

mild pressures and temperatures 

(Caro et al., 2007) 

Challenges with downstream 

oil/microbial biomass separation 

(Li et al., 2009) 

Yields high valuable by-products such 

as biosurfactants 

(Alves and Paixão, 2014a) 

Multi-enzyme process requires whole-

cell catalyst for full functionality (Alves 

and Paixão, 2014b) 
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With this in mind, the current study sought to identify new naturally occurring 

bacterial strains with BDS capabilities that have the potential to be future 

commercial strains in a full-scale BDS process. The focus of the research in 

this study was influenced by the knowledge that natural actinobacterial strains, 

notably rhodococci, are known to be metabolic powerhouses, capable of an 

array of transformation and degradation processes including 

biodesulphurisation. Therefore, the overarching aim of the research was to 

identify new naturally occurring, rhodococci and/or closely related 

actinobacteria, capable of biodesulphurisation of benzothiophene (BT) and/or 

dibenzothiophene (DBT). A total of 11 strains, isolated from various 

hydrocarbon-contaminated environments, and putatively identified as species 

belonging to the genus Rhodococcus, were selected from the IEGM culture 

collection in Russia. These aerobic, mesophilic organisms were tested for their 

ability to grow in mineral media, at neutral pH, with BT or DBT as the sole 

sulphur source.  A routine procedure in the workflow to select BDS strains was 

adopted in this study: the strains were grown in defined selective media, 

MSMBT or MSMDBT with n-hexadecane or diesel, and the formation of phenol 

measured as an indirect indicator of BDS activity. During the study, the 

formulation for MSM was successfully modified to decrease the elemental 

composition and thereby reduce media associated costs. 

To ensure confidence in the results of BDS screening, the type strain of 

Gordonia desulfuricans, strain 213E, was utilised as a positive control as this 

validly described species is well characterised and its benzothiophene 

desulphurising capabilities understood.  However, it should be noted that its 

suitability for the BDS of diesel has not been explored previously. Gordonia 

desulfuricans 213E was also included in the phylogenetic studies, including 

single gene (16S rRNA and gyrB) and whole-genome sequence analyses, for 

the same purpose. 

Prior to the current investigation, the taxonomic identities of the test strains 

were based on a limited number of phenotypic tests undertaken more than two 

decades ago, later followed by diagnostic PCR-based identifications using 

species-specific primer sets targeting variable regions of the 16S rRNA gene 

(Bell et al., 1999). Confirmation of the taxonomic status of these organisms 
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was an important starting point to the current study to ensure that any strains 

found to be capable of BDS through this study are correctly classified. The 

basis of the previous identifications, however, was tenuous. The taxonomy of 

the genus Rhodococcus has transformed almost beyond recognition since 

these isolates were first characterised. Species membership has grown from 

around 11 to over 50, with many other species removed and reassigned to 

other genera or indeed combined with existing species. Phylogenetic analyses 

have played a significant role in shaping rhodococcal systematics and the 

approach to species identification more broadly.  The significance of these 

developments in the context of the current study is that the previous 

identifications have no formal grounding; the criteria for classification as a 

member of this genus have evolved and there is now also a plethora of 

sequence data upon which to make phylogenetic identifications.  Hence, the 

identifications made by the IEGM and by Bell et al. (1999) represent a low level 

of resolution by current taxonomic practices. Indeed, the species-specific 

primers designed by Bell and co-workers are no longer considered specific to 

the target species and based on in silico analyses would target multiple 

species, including those described at the time but for which 16S rRNA gene 

sequences were unavailable and more recently reported novel species. 

Therefore, in this study, a phylogenetic study using high-quality 16S rRNA and 

gyrB gene sequences was successfully conducted in order to establish the 

correct genus and species assignments of all the test strains, and this enabled 

confirmation of the original genus assignment to Rhodococcus and enabled 

the putative species-level identifications made by the previous workers to be 

confirmed or amended. However, the findings of this study not only highlighted 

the comparative resolution of 16S rRNA versus gyrB gene analyses but also 

the limitations of single gene based phylogeny. Whole-genome sequencing 

taxonomy was therefore employed later in the study to firmly establish the 

species identities of those strains that were found capable of BDS.  
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The growth and BDS activities of the rhodococci isolates were investigated at 

bench-scale in shake flasks grown in batch mode. The overarching aim of this 

research study was successfully achieved; 2 of the 11 strains from the IEGM 

collection, namely strain 248 and strain F, were discovered to be robust BDS 

strains. Furthermore, these two strains were capable of BDS in MSM with a 

modified formulation with reduced concentrations and removal of some 

elements. The significance of this finding is that these strains demonstrate the 

potential for use in full-scale processes in which media costs will by necessity 

need to be kept to a minimum. 

5.1.2 Identity and biodesulphurisation activity of strain 248 

In the course of this study, strain 248 was found to be a benzothiophene (BT) 

desulphurising actinomycete belonging to genus Rhodococcus. A detailed 

phylogenetic analysis conducted using the high-quality 16S rRNA (1,495 bp) 

and gyrB (1,080 bp) gene sequences of strain 248, indicated that the strain 

was most closely related to the species R. wratislaviensis and most likely a 

member of this species. This finding disagreed with the original putative 

identification from the IEGM as R. erythropolis and that of Bell and co-workers, 

R. opacus. However, based on colony morphology and the WGS based 

OrthoANIu values from the WGS study, strain 248 was indeed confirmed as a 

member of the species R. opacus. Rhodococcus opacus is highly 

metabolically versatile and usually contain large plasmids, which explains the 

larger size of the draft genome (9.3 Mb) obtained in this research. When grown 

in a sulphate free mineral medium, R. opacus IEGM 248 exhibited 

desulphurisation of BT and DBT, with BT being the preferred substrate. This 

activity is similar to that of Gordonia desulfuricans 213E which was reported 

as a mainly BT desulphurising organism by Kim et al., (1999) but later reported 

to be capable of DBT desulphurisation also and used for biological 

devulcanisation of ground rubber tyres (Tatangelo et al., 2016). The 

occurrence of dszC in 6 different contigs in the draft genome of G. 

desulfuricans 213E obtained in this research further supports its broad range 

desulphurisation capability and hence its potential for future application.  
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5.1.3 Identity and biodesulphurisation activity of strain F 

The current research study also revealed that the strain F (received as 

Rhodococcus sp.) is a DBT desulphurising bacterium. A detailed phylogenetic 

analysis conducted using the high-quality 16S rRNA (1,495 bp) and gyrB 

(1,066 bp) gene sequences of strain F, indicated that the strain was most 

closely related to the species R. degradans (100%) and closely followed by R. 

qingshengii. The16S rRNA and gyrB gene sequences of the type strains of 

these two validly described species also shared high similarity with each other, 

of 99.59% and 99.14%, respectively. However, based on OrthoANIu values 

obtained in the WGS analyses, the strain F was found to be a member of the 

species R. qingshengii.  

In a biphasic medium containing 1% (v/v) n-hexadecane, the culture of strain 

F formed an emulsion, whereas the other isolates assigned to the same ‘R. 

erythropolis’ group, also analysed in this study, namely strains 20, 213 and 

508, grew as flocs suspended in a relatively less turbid medium (data not 

shown). This type of growth indicates the production of emulsifying surface-

active agents by strain F for the purpose of degrading the oil substrate. 

However, this type of growth is unsuitable for a full-scale BDS process as it 

would lead to significant challenges for downstream separation of the oil and 

biomass. Hence, strain F is not the leading candidate.  

When grown in a sulphate free mineral medium, R. qingshengii F exhibited the 

desulphurisation of BT and DBT, with DBT being the preferred substrate. The 

whole-genome sequence of the strain F revealed the presence of dszABC 

operon (type 1) which supported its DBT desulphurising phenotype.  

The genomes of strains 248, F and 213E were searched for the occurrence of 

sulphur metabolism associated genes in order to identify their location on the 

genome and the nucleotide sequences flanking the genes. This would then 

enable identification of the protospacer adjacent motif (PAM) sequence upon 

which suitable guide RNAs could be designed for CRISPRi based gene 

silencing approach in the future. It should be pointed out that gene repression 

methodologies had not been developed for rhodococci at the outset of this 

study. During the course of the research, the CRISPR based genome 
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engineering technology witnessed rapid developments in terms of modified 

endonuclease enzymes requiring different PAM requirements (Choi and Lee, 

2016; Selle and Barrangou, 2015; Wenyan Jiang, David Bikard, David Cox, 

Feng Zhang, 2013). Also, a preliminary molecular tool kit for rhodococci based 

on CRISPRi approach has been developed recently (DeLorenzo et al., 2018; 

DeLorenzo and Moon, 2018). Therefore, genetic manipulation was not 

conducted, and this research was restricted to in silico investigation and 

identification of suitable target genes for suppression in the future. 

5.1.4 Conclusion 

In this research, a selection of putative rhodococci bacteria isolated from 

hydrocarbon-contaminated environments were screened for the capability of 

biodesulphurisation (BDS) of BT and/or DBT with a view to establishing strains 

with promising characteristics for potential commercial application of gas oil 

(diesel) desulphurisation. Two strains (strain 248 and strain F) with stable BDS 

capabilities were discovered and their taxonomic identities were confirmed as 

Rhodococcus opacus IEGM 248 and Rhodococcus qingshengii strain F. 

Interestingly, members of the latter species have not previously been reported 

capable of BDS, although a strain has been genetically modified to achieve 

DBT activity. The identity of the strains arrived at through the single gene (16S 

rRNA, gyrB) and whole-genome approaches (OrthoANI) only agree at the 

genus level, which reflects the complexity in the taxonomy of the genus 

Rhodococcus and the limitations of the taxonomic tools currently in use. There 

is discussion amongst the bacterial taxonomy community regarding current 

standards for species description and the value of including whole-genome 

sequence based approaches as standard within the polyphasic framework. 

Although both strains 248 and F exhibited deep desulphurisation of thiophenes 

present in diesel, based on the ease of recovery of the desulphurised oil 

observed in the case of strain 248, it was identified as the preferred potential 

candidate strain for commercial application. Through comprehensive analysis 

of the gene sequence data available about desulphurisation related genes, 

this research work highlights the limitations in the data currently available that 

hinder meaningful comparative analysis to understand the correlation between 

the organisation of dsz genes and the resulting BDS activity. The other strains 
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analysed in this study, although not suitable for application to BDS, were able 

to grow in MSM containing oil, which is an indicator of other noteworthy 

metabolic activities for biotechnological investigation but beyond the scope of 

this research.  

5.1.5 Future Works 

The test strains, especially 208, 488 and 508, can benefit from a thorough 

polyphasic taxonomic study combining biochemical tests and 

chemotaxonomic approaches (mycolic acid profiling), DNA-DNA Hybridisation 

and whole-genome sequencing, leading to full taxonomic description and 

notification of new species in the International Journal of Systematic and 

Evolutionary Microbiology (IJSEM) – recognised publication. 

The qualitative data obtained in this research work regarding the BDS 

capability of the strains 248, F and 213E are supported by enough replicates 

and are consistent throughout. However, the extent of the quantitative data 

was limited by the access to analytical equipment such as ICP-OES or GC-

MS. The HDS gas oil (diesel) used in this study was from a single batch 

obtained from PetroIneos refinery. The composition of diesel fuel is prone to 

geographic variations, and therefore, it would be interesting to study how the 

organisms fare with gas oil from different geo-locations. As the organism 

interacts to some extent with other naturally occurring organic compounds in 

the oil, a 2D-GC-MS analysis on the oil would reveal the changes caused in 

the fuel by the action of the bacteria and the subsequent effect on its calorific 

value. Moreover, in order to compare and assess the performance of the 

organisms accurately, BDS research can benefit from standardisation of the 

feedstock (gas oil) specification that the researchers use in biphasic systems. 

In terms of bioprocess, immobilising the BDS bacteria on 3D printed 

multichannel scaffolds that have distinct channels to supply the nutrients for 

growth and fuel feedstock for desulphurisation could also be a promising way 

forward. 

The bioinformatic approach followed in this research relies on the sequence 

information available in the databases. The dsz genes show both a high 

degree of conservation and variation between bacterial species. However, 
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there are only a few complete dsz operon sequences available in the database 

and the ones covering the regulatory regions are further limited. A comparative 

analysis of dsz genes, regulatory regions and the respective enzymes of 

different strains can offer insights regarding bacterial desulphurisation at the 

molecular level. The quality of the whole-genome sequence of the strains 248 

and strain F is currently at contig level of assembly. These should be updated 

to the complete genome sequence with a clear distinction of the chromosomal 

and plasmid sequences. As the dsz genes could be plasmid-borne in R. 

opacus strains, such detailed information would be helpful to develop refined 

mutation strategies. The CRISPRi based gene silencing technique is emerging 

for Rhodococcus sp. recently. When fully developed these techniques could 

be used for silencing of various sulphur metabolism genes to arrive at 

constitutive mutants suitable for commercial application.  

5.1.6 Suppression of sulphate assimilation genes as the future 

approach for the development of BDS strains  

The two main obstacles for the commercialisation of BDS technology are, 

firstly, sulphate induced repression of dsz gene expression, and secondly, 

reduced BDS rates of the strains. Several genetic engineering strategies have 

been attempted to augment the BDS activity as described in detail in section 

1.7. However, none of the approaches has led to the commercial application 

of the technology yet. Many of the members of the order Actinomycetales, and 

particularly rhodococci are recalcitrant to conventional plasmid-based genetic 

manipulation methods and modification of the genes owing to the high GC 

content in the DNA and the diverse genomic contents, which hinder the 

progress in systematic metabolic engineering (Tong et al., 2015). However, 

gene repression has not been reported as a strategy for the development of 

BDS strains so far.There are two gene silencing methods available for 

prokaryotic gene repression, antisense RNA and CRISPRi, neither of which 

has been validated and optimised for Rhodococcus spp until recently. 

DeLorenzo et al. (2018) developed a CRISPRi based prototype molecular tool 

kit for tunable and targeted gene repression in Rhodococcus opacus based on 

the CRISPRi principles developed for mycobacteria which utilised a different 

ortholog of the deactivated Cas9 called dCasSth1. The approach requires the 
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knowledge of the whole-genome sequence of the organism. The authors, 

however, have declared the need for further refinement and optimisation of the 

method. To date, CRISPR-Cas based genetic engineering has not been 

reported with reference to BDS genes or to manipulate any other metabolic 

aspect of BDS bacteria. In the future, these approaches should be adopted, 

and their success rates for the development of improved BDS strains 

determined.  

The dsz operon is a coordinated unit of genetic expression containing a set of 

genes, namely a regulator, an operator, and structural genes (Dejaloud et al., 

2017). Therefore, repression of a repressor of the dsz operon could be a 

promising step forward to obtain constitutive expression of genes. Aggarwal 

and team (2011) performed several in silico experiments and metabolic flux 

balance analyses using the available genomic, biochemical and experimental 

data of the BDS strain R. erythropolis PR4 and found that components of the 

4S pathway occur among these essential genes and reactions for the survival 

on medium containing DBT. In the absence of DBT, the components of the 4S 

pathway, dsz genes, are not essential. However, when DBT is the sole sulphur 

source, any malfunction in the components of the 4S pathway would lead to 

cell death. Moreover, the dsz operon is not strictly conserved among the BDS 

organisms which would demand the development of bespoke genetic 

manipulation for each type rather than a standardised kit. Therefore, the 

repression of the components of dsz operon poses more difficulty and risk. 

It has been known that bacteria such as E. coli, B. subtilis, P. aeruginosa and 

P. putida can also utilise sulphonates such as taurine or isethionate as a 

sulphur source as do rhodococci. This capability is endowed by the gene 

cluster (ssuEADCB operon) that shares a high degree of sequence similarity 

between the bacteria, and generally, their expression in all the bacteria is 

repressed by sulphates (van Der Ploeg et al., 1999). Therefore, a more rational 

genetic engineering approach to improve the BDS capability of the strains 

would be to repress the genes associated with sulphate uptake through 

CRISPRi approaches, forcing the organism to express dsz genes in order to 

utilise the thiophenes, irrespective of the presence of sulphates in the medium. 

As the BDS reaction occurs in the cytoplasm, the organism may not be 
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affected by the inability to obtain sulphates from the environment. The BDS 

activity of bacteria is a manifestation of the organisms’ efforts to meet their 

sulphur requirements for survival. Suppressing other forms of sulphur intake 

guarantees that all sulphur requirements are met through the BDS reaction, 

which would result in improved BDS levels, thereby tackling the second 

problem in the BDS technology.  

Genes encoding the primary sulphate transport complex of M. tuberculosis 

BCG are induced following treatment with hydrogen peroxide (cysT) and 

nutrient starvation (cysA1, cysT, cysW, subI), conditions that also induce the 

ATP sulfurylase genes cysD and cysN, as well as the bifunctional cysNC gene. 

It was observed that cysA- mutants phenotype was similar to that of the wild-

type BCG strains and hence it was proposed that although CysA is essential 

for sulphate transport in rich media, there could be secondary sulphate 

transporter involved in sulphate uptake to compensate for its role. It was also 

observed that cysH- mutants, could not survive in vitro containing only 

sulphates and were dependent on the acquisition of reduced sulphur (cysteine 

or methionine) from the environment for survival (Schelle and Bertozzi, 2006). 

This highlights the importance of the cysH gene for sulphur assimilation and 

therefore, a potential target gene for repression for avoiding sulphate induced 

repression of the desulphurisation genes. As the cysH- mutant organisms 

could not utilise the inorganic sulphates, the dsz genes would be induced. 

Silencing of the cysH gene encoding the enzyme phosphoadenosine 

phosphosulfate reductase (EC 1.8.4.8) could be achieved using CRISPRi.  

Methionine and cysteine are other sulphur sources that were reported to 

impact dsz gene expression. In the case of R. erythropolis KA2-5-1 and its 

mutants described by Tanaka et al. (2002), no DBT desulphurisation activity 

was observed for the wild type in the presence of either methionine or cysteine. 

However, a disruption in the cbs gene, that encodes for cystathionine β-

synthase, an enzyme responsible for converting methionine to cysteine, 

enabled the cbs- mutants with desulphurising activity in the presence of 

methionine, albeit with slower growth, showing that methionine does not 

repress dsz genes. No desulphurisation activity or growth was expressed by 

the mutants in the presence of cysteine, and therefore they concluded that 
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cysteine repressed the dsz genes. However, Aggarwal and team (2011) 

proposed that by designing a strain that is unable to convert cysteine to any 

sulphur-containing metabolite that is essential for growth, then such a mutant 

would take DBT even in the presence of cysteine. By trial and error in silico 

mutation studies, they found that mutants with a simultaneous knockout of cbs 

gene and the gene for cysteine desulfhydrase forced the strain to use DBT, 

even in the presence of cysteine, showing that cysteine may not repress the 

dsz genes. In silico mutants with the simultaneous lack of genes for cysteine 

desulfhydrase, cystathionine γ-lyase, and cystathionine β-synthase could 

exhibit DBT desulphurisation in the presence of both methionine and cysteine 

in the medium. The cbs gene was found in genomes of strain 248 (contig_2 

and contig_81), F (contig_2) and 213E (contig_33). The cysH gene occurred 

in the genomes of strain 248 (contig_11 and contig_74), F (contig_3) and 213E 

(contig_15). However, the implications of silencing the cysH or cbs genes 

remain unknown, and therefore the development of temporary gene silencing 

systems would be an ideal way forward. 
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Chapter 7 Appendices 

Appendix 7.1 List of chemicals and manufacturer used to study the 
growth and BDS activity of the test strains 
 

Chemical Chemical Formula Manufacturer (code) 

Distilled water H2O Elga Purelab Water Purifier 

Nutrient Agar  Oxoid (CM0003) 

Nutrient Broth  Oxoid (CM0001) 

Agar No.1  Oxoid (LP0011) 

Agar No.3  Oxoid (LP0013) 

Agar Noble  Sigma (A5431) 

Gibbs reagent (95%) C6H2Cl3NO Sigma, UK 

Benzothiophene (98%) C8H6S Alfa Aesar, UK 

Dibenzothiophene (98%) C12H8S Alfa Aesar, UK 

Sucrose C12H22O11 VWR Chemicals (GPR RECTAPUR®) 

Ringer’s solution  Oxoid (10239632) 

Disodium phosphate Na2HPO4 VWR Chemicals (GPR RECTAPUR®) 

Dipotassium phosphate KH2PO4 Fisher Scientific, USA 

Ammonium chloride NH4Cl Aldrich, USA 

Sodium bicarbonate NaHCO3 Fisher Scientific, UK 

EDTA  
VWR Chemicals (AnalaR 

NORMAPUR®) 

Salts used to make Trace 

Minerals 

MgCl2.6H2O 

CaCl2.2H2O 

(NH4)6Mo7O24.4 H2O 

FeCl3.6 H2O 

ZnCl2, FeCl3.6 H2O 

MnCl2.4 H2O 

CuCl2.2 H2O 

Co(NO3)2.6 H2O 

Na2B4O7.10 H2O 

VWR Chemicals (GPR RECTAPUR®) 
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Appendix 7.2 Gel electrophoresis of purified 16S rRNA and gyrB gene 

amplicons of test strains 

 

 A 

 

B 

 

The gel electrophoresis images of the (A) 16S rRNA gene amplicons and (B) gyrB gene 
amplicons obtained from the test strains is shown. The numbers printed over the wells indicate 
the respective strains from which the amplicons were obtained. By comparison with lanes 
formed from the 1Kb Hyperladder™ that was run on the wells marked (M), it could be seen 
that the bands of 16S rRNA gene amplicon and gyrB amplicon have migrated along with their 
own lanes without any distortion and parallel to the 1500 and 1000 bp marker bands, 
respectively. No obscure patches are observed that indicated the integrity (non-sheared DNA) 
and purity of the samples. The clear lane on the Blank control (B) showed the high quality of 
sample preparation for the electrophoresis. 

B 

B 
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Appendix 7.3 List of validly described species under genus Rhodococcus 

Species 
Nomenclature Revision 

History 

Environment 
of isolation of 

the type 
strain 

Type strain 
16S rRNA 

gene 
sequence 
Accession 

Number 

Rhodococcus 
rhodochrous 

Nocardia rubra; Nocardia 
salmonicolor; 
Rhodococcus roseus 
Tsukamura et al. 1991; 
Mycobacterium rhodochrous; 
Rhodococcus rhodochrous 

soil/activated 
sludge foam 

X79288 

Rhodococcus 
erythropolis 

Arthrobacter picolinophilus Tate 
and Ensign 1974 
''Corynebacterium 
hydrocarboclastum''  
''Nocardia canicruria''  
Nocardia calcarea Metcalf and 
Brown 1957 Nocardia 
erythropolis (Gray) 

soil X79289 

Rhodococcus 
fascians  

Corynebacterium fascians 
(Tilford 1936) Dowson 1942;  
''Mycobacterium luteum'';  
Rhodococcus luteus Nesterenko 
et al. 1982 

leaves of 
nfected plant 
Chrysanthemu
m morifolium 

X79186 

Rhodococcus 
coprophilus  

Mycobacterium rhodochrous lake mud U93340 

Rhodococcus 
rhodnii  

 
gut of Reduviid 
bug (Rhodnius 
prolixus) 

X80621 

Rhodococcus 
ruber 

Nocardia pellegrino; Nocardia 
rubra 

 X80625 

Rhodococcus 
marinonascens  

 

the uppermost 
layer of marine 
sediments 
from various 
sea sites in the 
northeastern 
Atlantic Ocean 

X80617 

Rhodococcus 
globerulus  

 soil X80619 

Rhodococcus 
opacus  

 

soil from the 
surroundings 
of a defective 
town gas pipe 
(Siebert, 1969) 

X80630 

https://www.ncbi.nlm.nih.gov/nuccore/x79288
https://www.ncbi.nlm.nih.gov/nuccore/x79289
https://www.sciencedirect.com/science/article/pii/S0723202084800235
https://www.sciencedirect.com/science/article/pii/S0723202084800235
https://www.ncbi.nlm.nih.gov/nuccore/x79186
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-100-1-123
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-100-1-123
http://www.ncbi.nlm.nih.gov/nuccore/U93340
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-100-1-99?crawler=true&mimetype=application/pdf
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-100-1-99?crawler=true&mimetype=application/pdf
https://www.ncbi.nlm.nih.gov/nuccore/X80621
https://www.ncbi.nlm.nih.gov/nuccore/X80625
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-34-2-127
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-34-2-127
https://www.ncbi.nlm.nih.gov/nuccore/x80617
https://www.sciencedirect.com/science/article/pii/S0723202011800123
https://www.sciencedirect.com/science/article/pii/S0723202011800123
https://www.ncbi.nlm.nih.gov/nuccore/x80619
http://www.sciencedirect.com/science/article/pii/S0723202011800512
http://www.sciencedirect.com/science/article/pii/S0723202011800512
https://www.ncbi.nlm.nih.gov/nuccore/X80630
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Rhodococcus 
zopfii  

 

toluene-phenol 
bioreactor 
operated by 
the 
Department of 
Civil 
Engineering, 
University of 
Washington 

AF191343 

Rhodococcus 
wratislaviensis  

Tsukamurella wratislaviensis 
Goodfellow et al. 1995 

soil Z37138 

Rhodococcus 
percolatus  

 

percolator that 
was seeded 
with 
contaminated 
sludge and 
sediment 
samples and 
was 
continuously 
fed with 2,4,6-
tricholorophen
ol, Finland 

X92114 

Rhodococcus 
koreensis  

 

industrial 
wastewater in 
Cheong-Ju, 
Korea 

AF124342 

Rhodococcus 
pyridinivorans  

 
industrial 
wastewater in 
Korea 

AF173005 

Rhodococcus 
jostii  

 

femur of the 
remains of 
Jost 
Lucembursky, 
margrave in 
Moravia, Brno 
(Czech 
Republic) 

AB046357 

Rhodococcus 
maanshanensis  

 

soil sample 
that had been 
collected from 
Maanshan 
Mountain in 
Anhui 
Province, 
China 

AF416566 

Rhodococcus 
tukisamuensis  

 

soil in Sapporo 
City, 
Hokkaido, 
Japan 

AB067734 

http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-44-1-106
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-44-1-106
https://www.ncbi.nlm.nih.gov/nuccore/af191343
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-52-3-749
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-52-3-749
https://www.ncbi.nlm.nih.gov/nuccore/Z37138
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-46-1-23
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-46-1-23
https://www.ncbi.nlm.nih.gov/nuccore/X92114
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-50-3-1193
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-50-3-1193
https://www.ncbi.nlm.nih.gov/nuccore/AF124342
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-50-6-2173
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-50-6-2173
https://www.ncbi.nlm.nih.gov/nuccore/AF173005
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-52-2-409
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-52-2-409
https://www.ncbi.nlm.nih.gov/nuccore/AB046357
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-52-6-2121
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-52-6-2121
https://www.ncbi.nlm.nih.gov/nuccore/AF416566
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.02523-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.02523-0
https://www.ncbi.nlm.nih.gov/nuccore/AB067734
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Rhodococcus 
aetherivorans  

 activated 
sludge 

AF447391 

Rhodococcus 
baikonurensis  

 
air in the 
Russian space 
laboratory Mir 

AB071951 

Rhodococcus 
gordoniae  

 

blood culture 
of an 
immunocompe
tent patient 
with fatal 
pneumonia 
associated 
with adult 
respiratory 
disease 
syndrome 

AY233201 

Rhodococcus 
corynebacterioid
es 

Nocardia corynebacterioides 
(Serrano et al 1972) 

air-
contaminated 
culture 
medium 

X80615 

Rhodococcus 
phenolicus  

 

Johnson 
Space Center 
graywater 
bioprocessor 

AY533293 

Rhodococcus 
triatomae  

 

blood-sucking 
bug of the 
genus 
Triatoma 

AJ854055 

Rhodococcus 
yunnanensis  

 

forest soil 
sample in 
Yunnan 
Province, 
China 

AY602219 

Rhodococcus 
imtechensis  

 

pesticide-
contaminated 
site in Punjab 
State, India 

AY525785.2 

Rhodococcus 
kroppenstedtii  

 

Lahaul-Spiti 
Valley, a cold 
desert of the 
Himalayas, 
India 

AY726605 

Rhodococcus 
kyotonensis  

 
soil sample in 
Kyoto city, 
Japan 

AB269261 

http://linkinghub.elsevier.com/retrieve/pii/S0723202004702386
http://linkinghub.elsevier.com/retrieve/pii/S0723202004702386
http://www.ncbi.nlm.nih.gov/nuccore/20271163/
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.02828-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.02828-0
http://www.ncbi.nlm.nih.gov/nuccore/ab071951
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.02756-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.02756-0
https://www.ncbi.nlm.nih.gov/nuccore/AY233201
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63529-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63529-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63529-0
http://www.ncbi.nlm.nih.gov/nuccore/x80615
http://linkinghub.elsevier.com/retrieve/pii/S0723202005000986
http://linkinghub.elsevier.com/retrieve/pii/S0723202005000986
https://www.ncbi.nlm.nih.gov/nuccore/AY533293
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63571-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63571-0
https://www.ncbi.nlm.nih.gov/nuccore/aj854055
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63390-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63390-0
https://www.ncbi.nlm.nih.gov/nuccore/AY602219
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63939-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63939-0
https://www.ncbi.nlm.nih.gov/nuccore/Ay525785
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63831-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63831-0
https://www.ncbi.nlm.nih.gov/nuccore/AY726605
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.64770-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.64770-0
https://www.ncbi.nlm.nih.gov/nuccore/AB269261
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Rhodococcus 
qingshengii  

Rhodococcus jialingiae (Wang 
et al. 2010) 

carbendazim-
contaminated 
soil sample 
from Jiangsu 
province, 
China 

DQ090961 

Rhodococcus 
cercidiphylli  

 

surface 
sterilized leaf 
sample of 
Cercidiphyllum 
japonicum 
collected from 
Yunnan 
province, 
south-west 
China 

EU325542 

Rhodococcus 
kunmingensis  

 

soil sample 
collected from 
the 
rhizosphere of 
Taxus 
chinensis in 
Kunming, SW 
China 

DQ997045 

Rhodococcus 
jialingiae  

now regrouped under 
Rhodococcus qingshengii (Xu et 
al., 2007) 

the sludge of a 
carbendazim 
wastewater 
treatment 
facility in 
Jiangsu 
province, 
China 

DQ185597.2 

Rhodococcus 
artemisiae  

 

pharmaceutica
l plant 
Artemisia 
annua L 

GU367155 

Rhodococcus 
nanhaiensis  

 

sediment 
sample 
collected from 
the South 
China Sea 
(Nanhai sea 
area) at a 
depth of 84.5 
m 

JN582175 

Rhodococcus 
canchipurensis  

 

limestone 
quarry at 
Hundung, 
Manipur, India 

JN164649 

Rhodococcus 
cerastii  

 

phyllosphere 
of Cerastium 
holosteoides in 
the Hainich-
Dun region, 
Germany 

FR714842 

http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.65095-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.65095-0
https://www.ncbi.nlm.nih.gov/nuccore/dq090961
http://linkinghub.elsevier.com/retrieve/pii/S0723202008000210
http://linkinghub.elsevier.com/retrieve/pii/S0723202008000210
http://www.ncbi.nlm.nih.gov/nuccore/EU325542.1
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.65673-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.65673-0
https://www.ncbi.nlm.nih.gov/nuccore/DQ997045
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.013219-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.013219-0
https://www.ncbi.nlm.nih.gov/nuccore/dq185597
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.031930-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.031930-0
http://www.ncbi.nlm.nih.gov/nuccore/GU367155.1
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.038067-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.038067-0
https://www.ncbi.nlm.nih.gov/nuccore/JN582175
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.036087-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.036087-0
http://www.ncbi.nlm.nih.gov/nuccore/JN164649.1
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.044958-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.044958-0
http://www.ncbi.nlm.nih.gov/nuccore/FR714842.1
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Rhodococcus 
trifolii  

 

leaf surface of 
Trifolium 
repens, 
Hainich-Dün 
region, 
Thuringia, 
Germany 

FR714843 

Rhodococcus 
defluvii  

 

wastewater 
treatment 
bioreactor in 
Aachen, 
Germany 
which showed 
extensive 
phosphorus 
removal 

KC788572 

Rhodococcus 
enclensis  

 

marine 
sediment 
sample 
collected from 
Chorao Island, 
Goa, India 

HQ858009 

Rhodococcus 
hoagii  

Corynebacterium equi 
Magnusson 1923 
Corynebacterium hoagii (Morse 
1912) Eberson 1918 
Nocardia restricta (Turfitt 1944) 
McClung 1974 
''Prescotella equi''  
''Prescottia equi''  
Rhodococcus equi (Magnusson 
1923) Goodfellow and Alderson 
1977 

lung abscess 
of the foal 

X80614; 
X82052* 

Rhodococcus 
kronopolitis  

 

millipede 
(Kronopolites 
svenhedind 
Verhoeff), 
which was 
collected 
from 
Fenghuang 
Mountain in 
Wuchang, 
Heilongjiang 
Province, 
north China 

KF887492 

Rhodococcus 
aerolatus  

 subarctic 
rainwater 

KM044053  

Rhodococcus 
agglutinans  

 soil KP232908 

http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.044958-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.044958-0
https://www.ncbi.nlm.nih.gov/nuccore/FR714843
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.053322-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.053322-0
http://www.ncbi.nlm.nih.gov/nuccore/KC788572
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.061390-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.061390-0
https://www.ncbi.nlm.nih.gov/nuccore/HQ858009
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.053322-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.053322-0
https://www.ncbi.nlm.nih.gov/nuccore/X80614
https://www.ncbi.nlm.nih.gov/nuccore/X80614
https://link.springer.com/article/10.1007%2Fs10482-014-0290-5
https://link.springer.com/article/10.1007%2Fs10482-014-0290-5
https://www.ncbi.nlm.nih.gov/nuccore/KF887492
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.070086-0
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.070086-0
http://www.ncbi.nlm.nih.gov/nuccore/669774483/
http://link.springer.com/10.1007/s10482-015-0421-7
http://link.springer.com/10.1007/s10482-015-0421-7
http://www.ncbi.nlm.nih.gov/nuccore/KP232908
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Rhodococcus 
antrifimi  

 

dried bat dung 
inside a 
natural cave 
on Jeju Island 

LN867321 

Rhodococcus 
biphenylivorans  

 

river sediment  
in Taizhou city, 
Zhejiang 
province, 
eastern China 
- e-waste 
disassembly 
site for nearly 
30 years 

KJ546454 

Rhodococcus 
degradans  

Arthrobacter sp. HA1T (Scholtz 
et al., 1987b). 

 JQ776649 

Rhodococcus 
lactis  

 

sludge sample 
of a dairy 
industry 
effluent 
treatment plant 

KP342300 

Rhodococcus 
soli  

 soil, Kyoto 
Park, Japan 

KJ939314 

Rhodococcus 
humicola  

 

 forest topsoil 
in Suwon, 
Gyeonggi-Do, 
South Korea 

KT301939 

Rhodococcus 
pedocola  

 

 forest topsoil 
in Suwon, 
Gyeonggi-Do, 
South Korea 

KT301938 

Rhodococcus 
gannanensis  

 

sunflower root 
(Helianthus 
annuus L.) in 
Gannan, 
China 

KX887333 

Rhodococcus 
sovatensis  

 

water sample 
of the 
hypersaline 
and 
heliothermal 
Lake Ursu, 
Sovata, 
Romania 

KU189221 

Rhodococcus 
olei  

 

oil-
contaminated 
soil of 
Biratnagar, 
Morang, Nepal 

MF405107 

http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.000534
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.000534
https://www.ncbi.nlm.nih.gov/nuccore/LN867321.1
http://link.springer.com/10.1007/s10482-014-0303-4
http://link.springer.com/10.1007/s10482-014-0303-4
http://www.ncbi.nlm.nih.gov/nuccore/KJ546454.1
http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.000584
http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.000584
https://www.ncbi.nlm.nih.gov/nuccore/JQ776649.2
http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.000565
http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.000565
https://www.ncbi.nlm.nih.gov/nuccore/KP342300
http://link.springer.com/10.1007/s10482-014-0334-x
http://link.springer.com/10.1007/s10482-014-0334-x
https://www.ncbi.nlm.nih.gov/nuccore/KJ939314
http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001039
http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001039
https://www.ncbi.nlm.nih.gov/nuccore/962061033
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001039#tab2
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001039#tab2
https://www.ncbi.nlm.nih.gov/nuccore/962061032
https://link.springer.com/article/10.1007%2Fs10482-017-0884-9
https://link.springer.com/article/10.1007%2Fs10482-017-0884-9
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001514
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001514
https://www.ncbi.nlm.nih.gov/nuccore/KU189221.1
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.002750
http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.002750
https://www.ncbi.nlm.nih.gov/nuccore/MF405107
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Rhodococcus 
pyschrotolerans  

 

rhizosphere of 
Deschampsia 
antarctica 
collected at 
King George 
Island, 
Antarctic 
Peninsula 

KY317932 

Rhodococcus 
electrodiphilus 

 

a marine coral 
reef collected 
from the 
Shivrajpur 
coast, 
Kachhighadi, 
Gujarat, India 

LT630357 

Rhodococcus 
daqingensis 

 

petroleum-
contaminated 
soil collected 
in Daqing, 
Heilongjiang 
province, 
China 

MH205096 

Rhodococcus 
subtropicus 

 

soil sampled in 
a natural cave 
on Jeju Island, 
Republic of 
Korea 

MK605285 

The table presents a chronological list of the validly described species under genus 
Rhodococcus as of December 2019. Their taxonomical revision history and details about the 
environment of isolation where available are included along with the NCBI accession code for 
the 16S rRNA of their respective type strains. *In this research, R. olei, R. pyschrotolerans, R. 
electrodiphilus, R. daqingensis and R. subtropicus were not included in any of the 
phylogenetic analyses because they were described after December 2017.  

https://link.springer.com/article/10.1007%2Fs10482-017-0983-7
https://link.springer.com/article/10.1007%2Fs10482-017-0983-7
https://www.ncbi.nlm.nih.gov/nuccore/ky317932
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Appendix 7.4 Results of the BLASTn analysis using the 16S rRNA and 
gyrB gene sequence 
 

In the case of 16S rRNA gene, the curated subset of the NCBI nucleotide database 

containing 16S ribosomal RNA sequences of type strains (Bacteria and Archaea) was used. 

In the case of gyrB gene, the entire non-redundant nucleotide database was selected. The 

output were obtained using blastn version 2.5.0 for the analysis done in December 2016. 

Strain 20: 

- received as Rhodococccus erythropolis IEGM 20 – classified based on 

the species specific PCR primers designed by Bell et al. (1999) 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 
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Strain 60: 

- received as Rhodococcus sp. – suggested as R. opacus strain based 

on a weak positive PCR signal obtained using the species specific PCR 

primers designed by Bell et al. (1999) 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 
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Strain 87: 

- received as Rhodococcus ruber IEGM 87 – classified based on the 

species specific PCR primers designed by Bell et al. (1999) 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 
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Strain 208: 

- received as Rhodococcus erythropolis IEGM 208 – classified based on 

the species specific PCR primers designed by Bell et al. (1999) 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 
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Strain 213: 

- received as Rhodococcus erythropolis IEGM 213 – classified based on 

the species specific PCR primers designed by Bell et al. (1999) 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 
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Strain 248: 

- received as Rhodococcus opacus IEGM 248 – classified based on the 

species specific PCR primers designed by Bell et al. (1999) 

BLAST output for 16S rRNA gene sequence 
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BLAST output for gyrB gene sequence 
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Strain 369: 

- received as Rhodococcus ruber IEGM 369 – classified based on the 

species specific PCR primers designed by Bell et al. (1999) and an 

inaccessible 16S rRNA gene sequence published in Russian literature 

(Novoselova et al., 2011) 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 
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Strain 488: 

- received as Rhodococcus erythropolis IEGM 488 – suggested as 

probable R. opacus strain based on the species specific PCR primers 

designed by Bell et al. (1999). This strain was not listed in the IEGM 

online catalogue (December 2017) 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 
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Strain 505: 

- received as Rhodococcus erythropolis IEGM 505 – classified based on 

the species specific PCR primers designed by Bell et al. (1999). This 

strain was not listed in the printed IEGM catalogue written by Prof. 

Christofi 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 
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Strain 508: 

- received as Rhodococcus opacus IEGM 508 – classified based on the 

species specific PCR primers designed by Bell et al. (1999) 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 
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Strain F: 

- received as Rhodococcus sp. – the species identity of strain F was 

unknown in the beginning of the research. 

BLAST analysis output for 16S rRNA gene sequence 
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BLAST analysis output for gyrB gene sequence 

 

  



278 
 

Appendix 7.5 List of naturally occurring bacterial isolates reported to 
exhibit biodesulphurisation of DBT  

Bacteria Author & Year 

Agrobacterium sp. MC501 Constanti et al., 1994 

Arthrobacter sp. ECRD-1 Lee et al., 1995 

Arthrobacter sulfureus Labana et al., 2005 

Bacillus brevis R-6 Jiang et al., 2002 

Bacillus cereus HN Arabian et al., 2014 

Bacillus sphaericus R-16 Jiang et al., 2002 

Bacillus subtilis Fds-1 Ma et al., 2006c 

Bacillus subtilis WU-S2B Kirimura et al., 2001 

Corynebacterium sp. P32C1 Maghsoudi et al., 2000 

Corynebacterium sp. SY1 

(reclassified as Rhodococcus sp. SY1) 
Omori et al., 1992 

Corynebacterium sp. ZD-1 Wang et al., 2006 

Desulfobacterium anilini 

(reclassified as Desulfatiglans anilini) 
Aribike et al., 2009 

Desulfovibrio desulfuricans Yamada et al., 1968 

Gordonia alkanivorans 1B 

Alves & Paixão, 2011 

Alves et al., 2008 

Gordonia alkanivorans RIPI90A 

Mohebali et al., 2007 

Mohebali et al., 2008 

Gordonia alkanivorans 1B Alves et al., 2005 

Gordonia alkanivorans RIPI90A Mohebali et al., 2007 

Gordonia nitida CYKS1 

(reclassified as G. alkanivorans CYKS1) 

Chang et al., 2001 

Rhee et al., 1998 

Gordonia sp. F.5.25.8 Duarte et al., 2001 

Gordonia sp. IITR100 Ahmad et al., 2014 

Gordonia sp. ZD-7 Li et al., 2006 
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Gordonia sp. WQ-01 Jia et al., 2006 

Klebsiella sp. Dudley & Frost, 1994 

Lysinibacillus sphaericus DMT-7 Bahuguna et al., 2011 

Microbacterium sp. NISOC-06 Papizadeh et al., 2010 

Microbacterium ZD-M2 Li et al., 2005b 

Mycobacterium goodii X7B 

Li et al., 2005a 

Li et al., 2007b 

Chen et al., 2008 

Mycobacterium phlei GTIS10 Kayser et al., 2002 

Mycobacterium phlei SM120-1 Srinivasaraghavan et al., 2006 

Mycobacterium phlei WU-0103 Ishii et al., 2005 

Mycobacterium phlei WU-0104 Ishii et al., 2005 

Mycobacterium phlei WU-F1 

Furuya et al., 2002 

Furuya et al., 2003 

Mycobacterium sp. G3 Nekodzuka et al., 1997 

Mycobacterium sp. MR65 Watanabe et al., 2003 

Mycobacterium sp. X7B 

Nekodzuka et al., 1997 

Li et al., 2003 

Mycobacterium sp. ZD-19 

Li et al., 2003 

Chen et al., 2008 

Nocardia asteroides Olson, 2000 

Nocardia globerula Wang & Krawiec, 1994 

Nocardia globerula R-9 

Jiang et al., 2002 

Mingfang et al., 2003 

Nocardia sp. CYKS2 Chang et al., 1998 

Paenibacillus sp. A11-2 

Konishi et al., 1997 

Onaka et al., 2001 
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Pantoea agglomerans D23W3 Bhatia & Sharma, 2010 

Pseudomonas abikonensis DDA109 Yamada et al., 1968 

Pseudomonas delafieldii R-8 

(reclassified as Acidovorax delafieldii) 

Jiang et al., 2002 

Mingfang et al., 2003 

Guobin et al., 2005 

Guobin et al., 2006 

Zhang et al., 2007 

Zhang et al., 2008 

Li et al., 2009 

Guobin et al., 2005 

Guobin et al., 2006 

Pseudomonas jianii DDC279 Yamada et al., 1968 

Pseudomonas jianii DDE 27 Yamada et al., 1968 

Pseudomonas putida Gomez et al., 2006 

Pseudomonas putida A4 Tao et al., 2006 

Pseudomonas putida CECT5279 

Alcon et al., 2005 

Martin et al., 2005 

Alcon et al., 2005 

Caro et al., 2007 

Caro et al., 2008 

Pseudomonas sp. ARK Honda et al., 1998 

Pseudomonas stutzeri TCE3 Dinamarca et al., 2010 

Pseudomonas stutzeri UP-1 Hou et al., 2005 

Ralstonia eutropha Dejaloud et al., 2017 

Rhodococcus erythropolis Amin, 2011 

Rhodococcus erythropolis 1awq Feng et al., 2006 

Rhodococcus erythropolis D-1 Izumi et al., 1994 
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Rhodococcus erythropolis DR-1 Ma et al., 2006 

Rhodococcus erythropolis DS-3 Yu et al., 2006 

Rhodococcus erythropolis FSD-2 Zhang et al., 2007 

Rhodococcus erythropolis H-2 Ohshiro et al., 1996 

Rhodococcus erythropolis I-19 

Denis-Larose et al., 1997 

Folsom et al., 1999 

Rhodococcus erythropolis IGTS8 

Kilbane, 1992 

del Olmo et al., 2005 

Caro et al., 2007 

Tangaromsuk et al., 2008 

Ansari et al., 2009 

Rhodococcus erythropolis KA2- 5-1 Folsom et al., 1999 

Rhodococcus erythropolis LSSE8-1 Li et al., 2007 

Rhodococcus erythropolis NCC-1 Li et al., 2007a 

Rhodococcus erythropolis SHT87 Davoodi-Dehaghani et al., 2010 

Rhodococcus erythropolis USTB-03 Yan et al., 2008 

Rhodococcus erythropolis XP 

Yu et al., 2006 

Ma et al., 2006a 

Yu et al., 2006 

Rhodococcus globerulus DAQ3 

Yang et al., 2007 

Yang & Marison, 2005 

Yang et al., 2007 

Rhodococcus sp. 1awq 

Yu et al., 2006 

Ma et al., 2006 

Rhodococcus sp. Labana et al., 2006 

Rhodococcus sp. B1 Denis-Larose et al., 1997 

Rhodococcus sp. DS-3 Akbarzadeh et al., 2003 
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Rhodococcus sp. ECRD-1 

Lee et al., 1995 

Grossman et al., 1999 

Grossman et al., 2001 

Rhodococcus sp. HN2 El-Gendy et al., 2014 

Rhodococcus sp. IMPS02 

Castorena et al., 2002 

Matsui et al., 2001 

Rhodococcus sp. JUBT1 Guchhait et al., 2005 

Rhodococcus sp. JVH1 Kirkwood et al., 2007a 

Rhodococcus sp. P32C1 

Kobayashi et al., 2000 

Maghsoudi et al., 2001 

Rhodococcus sp. SA11 Mohamed et al., 2015 

Rhodococcus sp. T09 Maghsoudi et al., 2000 

Rhodococcus sp. UM3 Purdy et al., 1993 

Rhodococcus sp. UM9 Purdy et al., 1993 

Rhodococcus sp. X309 Omori et al., 1995 

RIPI-S81 

(classification unknown) 
Rashidi et al., 2006 

Shewanella putrefaciens NCIMB 8768 Ansari et al., 2007 

Sphingomonas sp. AD109 Zhang et al., 2007 

Sphingomonas subarctica T7b 

Darzins & Mrachko 1998 

Gunam et al., 2006 

Xanthomonas sp. Gunam et al., 2006 

The list was compiled up to December 2017. The information was sourced from original 
research literature in the PubMed collection and from verified citations used in one of the 
comprehensive books on the subject, “Biodesulfurization in Petroleum Refining” by El-Gendy 
& Nassar (2018). 
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Appendix 7.6 Mass Spectral profile of intermediates of 4S pathway 
obtained from NIST Mass Spectrometry Data Center Collection with 
major peaks marked 

Benzothiophene C8H6S 

MW: 134 Exact Mass: 134.019021 CAS#: 95-15-8 

 

Benzofuran C8H6O 

MW: 118 Exact Mass: 118.041865 CAS#: 271-89-6 

 

Dibenzothiophene C12H8S 

MW: 184 Exact Mass: 184.034671 CAS#: 132-65-0 
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Dibenzothiophene-5-oxide C12H8OS  

MW: 200 Exact Mass: 200.029586 CAS#: 1013-23-6 

 

Dibenzothiophene-5,5-dioxide C12H8O2S 

MW: 216 Exact Mass: 216.024501 CAS#: 1016-05-3 

 

 

2-Hydroxybiphenyl C12H10O 

MW: 170 Exact Mass: 170.073165 CAS#: 90-43-7 
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Dibenzyl ketoxime C15H15NO 

MW: 225 Exact Mass: 225.115364 CAS#: 1788-31-4 NIST#: 185226 
 

 

Dibenzofuran C12H8O 

MW: 168 Exact Mass: 168.057515 CAS#: 132-64-9 NIST#: 228192 

 
 

 

 

  



286 
 

Appendix 7.7 ICP-OES operating conditions for aqueous and oil 
samples 

  Aqueous Oil 

Analysis Preferences 

Sample Options # Repeats 3 3 

 Delay Time 0.0 seconds 0.0 

 Sample Flush Time 30 seconds 80 

Source Sample Introduction Mira Mist Nebuliser V-Groove Nebuliser 

 Spray Chamber Glass cyclonic  

 Plasma View Line Selection Line Selection 

Analysis Maximum 
Integration Times 
(sec) 

Low WL Range Axial 15 Radial 15 Axial 15 Radial 15 

 High WL Range Axial 5 Radial 5 Axial 5 Radial 5 

Calibration Mode  Concentration   

Trailing Full Frame Intelli-Frame Yes  

Options 
Max Integration Time 
(sec) 

30  

 WL Range Low  

 View Radial  

 
Auto-Increment Sample 
Names 

Yes  

 
Use Sample Weight 
Corrections 

No  

Source Settings 

Nebuliser Pump Flush Pump Rate (rpm) 100 25 

 
Analysis Pump Rate 
(rpm) 

50 25 

 
Pump Relaxation Time 
(sec) 

5 0 

Pump Tubing Type Sample Tube Tygon orange-white 
Viton orange-white 
(0.64 mm ID) 

 Internal Standard Tube Tygon blue-white - 

 Drain Tube Tygon white-white 
Viton white-white (1.02 
mm ID) 

 Torch   

 RF Power 1150 W  

 Nebuliser Flow 0.50 L/min  

 Auxiliary Gas 0.5 L/min  
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Appendix 7.8 Genes encoding monooxygenases and FMN reductase 
found in the draft whole-genome sequence of strain F 

Gene Loci 
Gene_ 
copy 

number 
Product EC Number 

Length 
(bp) 

Direction 

Contig_4 kshA_1 
3-ketosteroid-9-alpha-
monooxygenase oxygenase 
subunit 

1.14.13.142 

1161 reverse 

Contig_4 kshA_2 1155 reverse 

Contig_11 kshA_3 1164 forward 

Contig_13 kshA_4 1197 forward 

Contig_2 hapE_1 

4-hydroxyacetophenone 
monooxygenase 

1.14.13.84 

1557 forward 

Contig_2 hapE_2 1488 reverse 

Contig_5 hapE_3 1485 forward 

Contig_12 hapE_4 2085 reverse 

Contig_14 hapE_5 1584 reverse 

Contig_25 hapE_6 1575 forward 

Contig_15 nphA1 
4-nitrophenol 2-monooxygenase, 
oxygenase component 

1.14.13.29 1629 forward 

Contig_2 npcB 

4-nitrophenol 4-
monooxygenase/4-nitrocatechol 
2-monooxygenase, reductase 
component 

1.14.13.166 450 reverse 

Contig_14 luxA_1 Alkanal monooxygenase alpha 
chain 

1.14.14.3 
1059 reverse 

Contig_17 luxA_2 1095 forward 

Contig_4 alkB_1 

Alkane 1-monooxygenase 1.14.15.3 

1176 forward 

Contig_7 alkB_2 1227 forward 

Contig_21 alkB_4 1152 reverse 

Contig_6 alkB1_1 1167 forward 

Contig_9 alkB1_2 1161 forward 

Contig_3 ssuD_1 Alkanesulfonate monooxygenase 1.14.14.5 1110 forward 

Contig_5 ssuD_2 996 forward 

Contig_12 ssuD_3 1155 reverse 

Contig_12 ssuD_4 1110 reverse 

Contig_14 ssuD_5 846 reverse 

Contig_16 ssuD_6 876 forward 

Contig_3  Antibiotic biosynthesis 
monooxygenase 

 
297 forward 

Contig_3  972 reverse 

Contig_19  
Cyclohexanone 1,2-
monooxygenase 

1.14.13.22  forward 

Contig_2 dmoA Dimethyl-sulfide monooxygenase 1.14.13.131 1419 reverse 

Contig_14 ethA 
FAD-containing monooxygenase 
EthA 

1.14.13.- 1482 reverse 

Contig_3 hsaA_1 

Flavin-dependent 
monooxygenase, oxygenase 
subunit HsaA 

1.14.14.12 

1179 forward 

Contig_4 hsaA_2 1176 forward 

Contig_11 hsaA_3 1167 reverse 

Contig_11 hsaA_4 1179 reverse 

Contig_13 hsaA_5 1182 forward 

Contig_4 hsaB_1 Flavin-dependent 
monooxygenase, reductase 
subunit HsaB 

1.5.1.36 

585 forward 

Contig_13 hsaB_2 501 forward 

Contig_16 hsaB_3 654 reverse 

Contig_4 mhuD 
Heme-degrading 
monooxygenase HmoB 

1.14.99.3 309 reverse 

Contig_28 pvdA L-ornithine 5-monooxygenase 1.13.12.- 1347 reverse 

Contig_5  Lactate 2-monooxygenase 1.13.12.4 1248 forward 

Contig_2 limB_1 

Limonene 1,2-monooxygenase 1.14.13.107 

1167 reverse 

Contig_2 limB_2 1194 forward 

Contig_6 limB_3 855 forward 

Contig_11 limB_4 876 forward 

Contig_16 limB_5 990 reverse 
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Contig_17 limB_6 1008 forward 

Contig_22 limB_7 1251 forward 

Contig_20 linC_3 Linalool 8-monooxygenase 1.14.13.151 1389 forward 

Contig_15  Luciferase-like monooxygenase  897 forward 

Contig_6 msuD_1 Methanesulfonate 
monooxygenase 

1.14.14.5 
1125 forward 

Contig_15 msuD_2 1164 reverse 

Contig_2 ntaA_1 Nitrilotriacetate monooxygenase 
component A (DszA) 

1.14.14.10 1347 reverse 

Contig_2 ntaA_2 1299 reverse 

Contig_2 ntaA_3 1395 reverse 

Contig_3 ntaA_4 1281 reverse 

Contig_8 ntaA_5 1215 reverse 

Contig_13 ntaA_6 1371 reverse 

Contig_13 ntaA_7 1119 reverse 

Contig_13 ntaA_8 1353 reverse 

Contig_20 ntaA_9 1362 forward 

Contig_22 ntaA_10 1242 forward 

Contig_4 nmo 

Nitronate monooxygenase 1.13.12.16 

990 reverse 

Contig_4  984 reverse 

Contig_12  984 reverse 

Contig_27  1116 forward 

Contig_12  1029 forward 

Contig_4  1062 reverse 

Contig_11  963 forward 

Contig_3  1137 reverse 

Contig_3  930 forward 

Contig_4 pcpB_1 Pentachlorophenol 4-
monooxygenase 

1.14.13.50 
1608 reverse 

Contig_7 pcpB_2 1437 forward 

Contig_3 pamO_1 

Phenylacetone monooxygenase 1.14.13.92 

1482 forward 

Contig_6 pamO_2 1389 reverse 

Contig_13 pamO_3 1626 reverse 

Contig_15 mymA 
Putative FAD-containing 
monooxygenase MymA 

1.14.13.- 1500 reverse 

Contig_2 moxC_1 

Putative monooxygenase MoxC 1.14.-.- 

1080 reverse 

Contig_21 moxC_2 1305 reverse 

Contig_22 moxC_3 1368 forward 

Contig_3  Putative monooxygenase 
Rv0793 

1.-.-.- 
285 forward 

Contig_8  291 reverse 

Contig_6 ycnE Putative monooxygenase YcnE 1.-.-.- 288 forward 

Contig_4 rutA_1 

Pyrimidine monooxygenase RutA 1.14.99.46 

864 reverse 

Contig_6 rutA_2 870 forward 

Contig_10 rutA_3 1020 reverse 

Contig_4  

Steroid C26-monooxygenase 1.14.13.141 

1251 forward 

Contig_19  1254 forward 

Contig_24  1269 reverse 

Contig_4 iaaM Tryptophan 2-monooxygenase 1.13.12.3 1689 forward 

Contig_13 xylA 
Xylene monooxygenase electron 
transfer component 

 747 forward 

Contig_14  NAD(P)H-dependent FAD/FMN 
reductase 

1.5.1.45 567 reverse 

  DszB    

Contig_12 soxB_1 2'-hydroxybiphenyl-2-sulfinate 
desulfinase 

3.13.1.3 1041 reverse 

Contig_20 soxB_2 2'-hydroxybiphenyl-2-sulfinate 
desulfinase 

3.13.1.3 1098 forward 

  DszC    

Contig_6 soxC_1 Dibenzothiophene desulfurization 
enzyme C 

1.14.14.21 1221 reverse 

Contig_10 soxC_3 Dibenzothiophene desulfurization 
enzyme C 

1.14.14.21 1278 reverse 
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Contig_10 soxC_2 Dibenzothiophene desulfurization 
enzyme C 

1.14.14.21 1224 reverse 

Contig_20 soxC_4 Dibenzothiophene desulfurization 
enzyme C 

1.14.14.21 1254 forward 

The shaded rows indicate the genes associated with desulphurisation of benzothiophene and 

dibenzothiophene occurring at various contigs of the draft genome sequence of the strain F. 

The annotated whole-genome sequence was researched for genes homologous to the dsz 

genes and as a result, the 3 desulphurisation genes soxC, ntaA and soxB corresponding to 

dszC, dszA and dszB, respectively occured as cluster dszABC operon on contig_10. There 

were other instances of these genes at different contigs where they did not occur as a cluster. 

A gene encoding NADPH dependent FMN reductase was found at contig_14. 
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Appendix 7.9 Genes encoding monooxygenases and FMN reductase 
found in the draft whole-genome sequence of Gordonia desulfuricans 
213E 

Sequence 
Name 

Gene_ 
copy 

number 
Product EC_number 

Length 
(bp) 

Direction 

Contig_15 tfdB_2 
2,4-dichlorophenol 6-
monooxygenase 

1.14.13.20 

894 reverse 

Contig_15 tfdB_1 705 reverse 

Contig_97 tfdB_3 846 forward 

Contig_8 kshA 
3-ketosteroid-9-alpha-
monooxygenase oxygenase 
subunit 

1.14.13.142 1209 forward 

Contig_1 hapE_1 
4-hydroxyacetophenone 
monooxygenase 

1.14.13.84 

1521 forward 

Contig_57 hapE_2 1533 reverse 

Contig_112 hapE_3 1716 reverse 

Contig_58 hpaC 
4-hydroxyphenylacetate 3-
monooxygenase reductase 
component 

1.5.1.36 498 forward 

Contig_26 nphA1_1 4-nitrophenol 2-
monooxygenase, oxygenase 
component 

1.14.13.29 
1614 reverse 

Contig_45 nphA1_2 1572 reverse 

Contig_6 npcB_1 4-nitrophenol 4-
monooxygenase/4-
nitrocatechol 2-
monooxygenase, reductase 
component 

1.14.13.166 

582 forward 

Contig_26 npcB_2 588 reverse 

Contig_127 npcB_3 516 forward 

Contig_22 luxA_1 

Alkanal monooxygenase 
alpha chain 

1.14.14.3 

1113 forward 

Contig_27 luxA_2 1191 reverse 

Contig_83 luxA_3 1023 reverse 

Contig_137 luxA_4 1041 forward 

Contig_51 alkB Alkane 1-monooxygenase 1.14.15.3 1230 forward 

Contig_8 ssuD_1 Alkanesulfonate 
monooxygenase 

1.14.14.5 1107 forward 

Contig_27 ssuD_2 1164 reverse 

Contig_64 ssuD_3 1173 reverse 

Contig_15  Antibiotic biosynthesis 
monooxygenase 

 
318 reverse 

Contig_126  321 forward 

Contig_24 dmoA_1 

Dimethyl-sulfide 
monooxygenase 

1.14.13.131 

1386 reverse 

Contig_38 dmoA_2 1458 forward 

Contig_52 dmoA_3 1377 forward 

Contig_52 dmoA_4 1368 forward 

Contig_23 ethA 
FAD-containing 
monooxygenase EthA 

1.14.13.- 1512 forward 

Contig_6 tftD_1 FADH(2)-dependent 
monooxygenase TftD 

1.14.14.- 
1512 forward 

Contig_127 tftD_2 1497 forward 

Contig_6 hsaA_1 

Flavin-dependent 
monooxygenase, oxygenase 
subunit HsaA 

1.14.14.12 

996 reverse 

Contig_8 hsaA_2 1185 reverse 

Contig_12 hsaA_3 1269 forward 

Contig_29 hsaA_4 1137 reverse 

Contig_58 hsaA_5 1170 forward 

Contig_60 hsaA_6 1173 reverse 
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Contig_8 hsaB_1 Flavin-dependent 
monooxygenase, reductase 
subunit HsaB 

1.5.1.36 

606 reverse 

Contig_23 hsaB_2 498 forward 

Contig_60 hsaB_3 510 reverse 

Contig_3 mhuD 
Heme-degrading 
monooxygenase HmoB 

1.14.99.3 309 reverse 

Contig_16 pvdA 
L-ornithine 5-
monooxygenase 

1.13.12.- 1311 reverse 

Contig_6  Lactate 2-monooxygenase 1.13.12.4 1290 forward 

Contig_1 limB_1 

Limonene 1,2-
monooxygenase 

1.14.13.107 

1026 reverse 

Contig_2 limB_2 990 forward 

Contig_11 limB_3 1035 forward 

Contig_23 limB_4 1167 forward 

Contig_58 limB_5 1140 reverse 

Contig_64 limB_6 1170 forward 

Contig_86 limB_7 876 reverse 

Contig_87 limB_8 978 reverse 

Contig_75 mmoX 
Methane monooxygenase 
component A alpha chain 

1.14.13.25 1638 forward 

Contig_75 mmoC 
Methane monooxygenase 
component C 

1.14.13.25 1053 forward 

Contig_38 msuD 
Methanesulfonate 
monooxygenase 

1.14.14.5 1110 reverse 

Contig_12 ntaA_1 Nitrilotriacetate 
monooxygenase component 
A 

1.14.14.10 1287 reverse 

Contig_27 ntaA_3 1371 reverse 

Contig_27 ntaA_2 1347 reverse 

Contig_41 ntaA_5 1380 forward 

Contig_41 ntaA_4 1173 forward 

Contig_87 ntaA_6 1347 reverse 

Contig_131 ntaA_7 1353 forward 

Contig_3  

Nitronate monooxygenase 1.13.12.16 

1155 forward 

Contig_3  1092 reverse 

Contig_73  978 forward 

Contig_134  1032 reverse 

Contig_97 pcpB 
Pentachlorophenol 4-
monooxygenase 

1.14.13.50 1638 reverse 

Contig_5 pamO_1 

Phenylacetone 
monooxygenase 

1.14.13.92 

1386 forward 

Contig_13 pamO_2 1569 reverse 

Contig_18 pamO_3 1482 forward 

Contig_23 pamO_4 1602 forward 

Contig_67  
Putative ammonia 
monooxygenase 

 1152 reverse 

Contig_51  
Putative monooxygenase 
Rv0793 

1.-.-.- 318 forward 

Contig_30 rutA_1 

Pyrimidine monooxygenase 
RutA 

1.14.99.46 

879 forward 

Contig_65 rutA_2 987 forward 

Contig_94 rutA_4 1086 forward 

Contig_94 rutA_3 942 forward 

Contig_3  Steroid C26-
monooxygenase 

1.14.13.141 
1290 forward 

Contig_3  1260 reverse 
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Contig_2 styA 
Styrene monooxygenase 
StyA 

1.14.14.11 1401 reverse 

Contig_5 iaaM 
Tryptophan 2-
monooxygenase 

1.13.12.3 1662 Reverse 

Contig_27 ntaB 
FMN reductase (NADH) 
NtaB 

1.5.1.42 501 reverse 

Contig_22 ssuE_1 FMN reductase (NADPH) 1.5.1.38 681 forward 

Contig_27 ssuE_2 501 reverse 

Contig_76 ssuE_3 501 reverse 

Contig_94 nfrA1 798 Reverse 

Contig_1 soxC_1 Dibenzothiophene 
desulfurization enzyme C 

1.14.14.21 1200 forward 

Contig_12 soxC_2 1254 reverse 

Contig_28 soxC_3 1236 reverse 

Contig_38 soxC_4 1251 reverse 

Contig_52 soxC_5 1194 forward 

Contig_52 soxC_6 651 forward 

The shaded rows indicate the genes associated with desulphurisation of benzothiophene and 

dibenzothiophene occurring at various contigs of the draft genome sequence of the strain 

213E. The annotated whole-genome sequence was researched for genes homologous to the 

dsz genes and as a result, genes soxC, ntaA and ssuE that correspond to dszC, dszA and 

dszD, respectively were identified explicitly, but a gene encoding with functionality of 

desulfinase (dszB) was not found from the annotations. 
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Appendix 7.10 Genes encoding monooxygenases and FMN reductase 
in the draft whole-genome sequence of strain 248 

Sequence 
Name 

Gene_ 
copy 

number 

Product EC_number 
Length 

(bp) 
Direction 

Contig_97 cinA_2 
1,8-cineole 2-endo-

monooxygenase 
1.14.13.156 1224 forward 

Contig_19 tfdB_1 

2,4-dichlorophenol 6-

monooxygenase 
1.14.13.20 

1647 forward 

Contig_22 tfdB_2 1386 forward 

Contig_36 tfdB_3 1932 reverse 

Contig_57 tfdB_4 1707 reverse 

Contig_75 tfdB_5 1692 forward 

Contig_5 camP_1 2,5-diketocamphane 1,2-

monooxygenase 
1.14.13.162 

996 reverse 

Contig_42 camP_2 1167 forward 

Contig_42 36 
3,6-diketocamphane 1,6 

monooxygenase 
1.14.13.- 1116 reverse 

Contig_2 kshA_1 

3-ketosteroid-9-alpha-

monooxygenase 

oxygenase subunit 

1.14.13.142 

1161 forward 

Contig_3 kshA_2 1185 forward 

Contig_5 kshA_3 1161 forward 

Contig_72 kshA_4 1206 reverse 

Contig_100 kshA_5 1167 forward 

Contig_12 hapE_1 

4-hydroxyacetophenone 

monooxygenase 
1.14.13.84 

1482 reverse 

Contig_13 hapE_2 1464 forward 

Contig_30 hapE_3 1545 reverse 

Contig_42 hapE_4 1959 reverse 

Contig_43 hapE_5 1812 reverse 

Contig_50 hapE_6 1491 forward 

Contig_99 hapE_7 1602 forward 

Contig_108 hapE_8 1548 forward 

Contig_56 hpaC 

4-hydroxyphenylacetate 

3-monooxygenase 

reductasecomponent 

1.5.1.36 594 reverse 

Contig_5 nphA1_1 4-nitrophenol 2-

monooxygenase, 

oxygenase component 

1.14.13.29 

1617 reverse 

Contig_5 nphA1_2 1617 reverse 

Contig_34 npcA 

4-nitrophenol 4-

monooxygenase/4-

nitrocatechol 2-

monooxygenase, 

oxygenase component 

1.14.13.166 1587 forward 

Contig_5 npcB_1 1.14.13.166 561 reverse 
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Contig_34 npcB_2 4-nitrophenol 4-

monooxygenase/4-

nitrocatechol 2-

monooxygenase, 

reductase component 

543 forward 

Contig_39 npcB_3 513 reverse 

Contig_16 hspB 

6-hydroxy-3-

succinoylpyridine 3-

monooxygenase HspB 

1.14.13.163 1209 reverse 

Contig_31  6-hydroxynicotinate 3-

monooxygenase 

precursor 

1.14.13.114 

1131 reverse 

Contig_48  1212 forward 

Contig_34 luxA_1 

Alkanal monooxygenase 

alpha chain 
1.14.14.3 

993 reverse 

Contig_63 luxA_2 1173 reverse 

Contig_72 luxA_3 1173 forward 

Contig_72 luxA_4 1122 forward 

Contig_62 luxB 
Alkanal monooxygenase 

beta chain 
1.14.14.3 1029 reverse 

Contig_5 alkB1 
Alkane 1-

monooxygenase 1 
1.14.15.3 1233 reverse 

Contig_10 ssuD_1 Alkanesulfonate 

monooxygenase 

1.14.14.5 921 reverse 

Contig_31 ssuD_2 930 forward 

Contig_39 ssuD_3 1053 reverse 

Contig_81 ssuD_5 651 reverse 

Contig_81 ssuD_4 450 reverse 

Contig_3 hpaH_1 Anthranilate 3-

monooxygenase 

oxygenase component 

1.14.14.8 

1461 forward 

Contig_19 hpaH_2 1458 reverse 

Contig_1  

Antibiotic biosynthesis 

monooxygenase 
 

984 forward 

Contig_6  558 reverse 

Contig_7  303 forward 

Contig_9  621 reverse 

Contig_16  285 reverse 

Contig_35  309 reverse 

Contig_51  363 reverse 

Contig_114  327 forward 

Contig_114  276 reverse 

Contig_62  
Cyclohexanone 1,2-

monooxygenase 
1.14.13.22 1635 reverse 

Contig_15 cpnB_1 Cyclopentanone 1,2-

monooxygenase 
1.14.13.16 

1638 reverse 

Contig_15 cpnB_2 1617 reverse 
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Contig_23 cpnB_3 1647 reverse 

Contig_36 cpnB_4 1632 forward 

Contig_48 cpnB_5 1650 reverse 

Contig_60 dmoA 
Dimethyl-sulfide 

monooxygenase 
1.14.13.131 1416 reverse 

Contig_23 ethA_1 
FAD-containing 

monooxygenase EthA 
1.14.13.- 

1494 forward 

Contig_66 ethA_2 1548 reverse 

Contig_115 ethA_3 591 forward 

Contig_2 hsaA_2 

Flavin-dependent 

monooxygenase, 

oxygenase subunit HsaA 

1.14.14.12 

1179 reverse 

Contig_2 hsaA_1 1167 reverse 

Contig_3 hsaA_3 1176 reverse 

Contig_5 hsaA_4 1182 forward 

Contig_16 hsaA_5 1200 reverse 

Contig_56 hsaA_6 1161 reverse 

Contig_103 hsaA_7 1179 reverse 

Contig_2 hsaB_1 

Flavin-dependent 

monooxygenase, 

reductase subunit HsaB 

1.5.1.36 

537 forward 

Contig_3 hsaB_2 588 reverse 

Contig_3 hsaB_3 501 forward 

Contig_5 hsaB_4 519 forward 

Contig_12 hsaB_5 555 reverse 

Contig_28 hsaB_6 522 reverse 

Contig_42 hsaB_7 582 forward 

Contig_111 hsaB_8 1044 reverse 

Contig_20 mhuD 
Heme-degrading 

monooxygenase HmoB 
1.14.99.3 315 forward 

Contig_1 pvdA 
L-ornithine 5-

monooxygenase 
1.13.12.- 1347 forward 

Contig_43  Lactate 2-

monooxygenase 
1.13.12.4 

1287 reverse 

Contig_60  192 forward 

Contig_2 limB_1 

Limonene 1,2-

monooxygenase 
1.14.13.107 

897 forward 

Contig_4 limB_2 1011 reverse 

Contig_10 limB_3 975 forward 

Contig_28 limB_4 1194 reverse 

Contig_40 limB_5 1062 reverse 

Contig_85 limB_6 966 forward 

Contig_1  
Luciferase-like 

monooxygenase 
 

828 reverse 

Contig_5  855 reverse 

Contig_101  855 reverse 
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Contig_114 mmoX 

Methane 

monooxygenase 

component A alpha 

chain 

1.14.13.25 1635 forward 

Contig_114 mmoY 

Methane 

monooxygenase 

component A beta chain 

1.14.13.25 1107 forward 

Contig_52 mmoC_1 Methane 

monooxygenase 

component C 

1.14.13.25 

768 forward 

Contig_114 mmoC_2 1044 forward 

Contig_3 msuD_1 
Methanesulfonate 

monooxygenase 
1.14.14.5 

1071 reverse 

Contig_5 msuD_3 1170 forward 

Contig_5 msuD_2 1125 forward 

Contig_1 ntaA_3 Nitrilotriacetate 

monooxygenase 

component A 

1.14.14.10 1362 forward 

Contig_1 ntaA_2 1344 forward 

Contig_1 ntaA_1 1296 forward 

Contig_3 ntaA_4 1275 reverse 

Contig_10 ntaA_5 1359 forward 

Contig_38 ntaA_6 1299 forward 

Contig_40 ntaA_10 1395 reverse 

Contig_40 ntaA_8 1365 reverse 

Contig_40 ntaA_9 1137 reverse 

Contig_40 ntaA_7 915 reverse 

Contig_55 ntaA_11 1365 reverse 

Contig_83 ntaA_13 1296 forward 

Contig_83 ntaA_12 900 forward 

Contig_108 ntaA_14 1356 reverse 

Contig_1  

Nitronate 

monooxygenase 
1.13.12.16 

1116 forward 

Contig_1  1062 reverse 

Contig_7  990 reverse 

Contig_11  939 forward 

Contig_15  636 reverse 

Contig_22  1029 reverse 

Contig_22  990 reverse 

Contig_23  981 forward 

Contig_31  978 forward 

Contig_45  963 forward 

Contig_74  975 forward 

Contig_74  576 reverse 



297 
 

Contig_74  438 reverse 

Contig_140  987 reverse 

Contig_1 pcpB_2 

Pentachlorophenol 4-

monooxygenase 
1.14.13.50 

1617 forward 

Contig_1 pcpB_1 1500 reverse 

Contig_5 pcpB_3 1521 forward 

Contig_12 pcpB_4 1443 forward 

Contig_21 pcpB_5 1545 reverse 

Contig_64 pcpB_6 1428 forward 

Contig_166 pcpB_7 1530 forward 

Contig_5 pamO_1 Phenylacetone 

monooxygenase 
1.14.13.92 

1662 forward 

Contig_58 pamO_2 1647 forward 

Contig_80  
Putative ammonia 

monooxygenase 
 1119 reverse 

Contig_3 moxC_1 
Putative 

monooxygenase MoxC 
1.14.-.- 

1392 forward 

Contig_40 moxC_2 1059 reverse 

Contig_112 moxC_3 1299 forward 

Contig_25  
Putative 

monooxygenase Rv0793 
1.-.-.- 294 reverse 

Contig_5 ycnE 
Putative 

monooxygenase YcnE 
1.-.-.- 324 reverse 

Contig_1 rutA_1 

Pyrimidine 

monooxygenase RutA 
1.14.99.46 

864 forward 

Contig_1 rutA_2 864 reverse 

Contig_6 rutA_3 873 reverse 

Contig_34 rutA_4 888 reverse 

Contig_36 rutA_5 915 forward 

Contig_39 rutA_6 1131 reverse 

Contig_63 rutA_7 1080 reverse 

Contig_101 rutA_8 1167 reverse 

Contig_1  
Steroid C26-

monooxygenase 
1.14.13.141 

1257 forward 

Contig_1  1218 forward 

Contig_5  1224 reverse 

Contig_60 styA 
Styrene monooxygenase 

StyA 
1.14.14.11 1359 reverse 

Contig_21 tcmH 
Tetracenomycin-F1 

monooxygenase 
1.13.12.21 240 forward 

Contig_4 tsaM1 

Toluene-4-sulfonate 

monooxygenase system 

iron-sulfur subunit 

TsaM1 

1.14.14.- 1074 reverse 

Contig_48 iaaM_1 1.13.12.3 1671 forward 
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Contig_49 iaaM_2 
Tryptophan 2-

monooxygenase 
1689 reverse 

Contig_32 xylA 

Xylene monooxygenase 

electron transfer 

component 

 753 Forward 

Contig_3 rutF 
FMN reductase (NADH) 
for Rut pathway 

1.5.1.42 621 forward 

Contig_22 nfrA1 
FMN reductase 
(NADPH) 

1.5.1.38 828 reverse 

Contig_3 ssuE_1 FMN reductase 
(NADPH) 

1.5.1.38 510 forward 

Contig_72 ssuE_2 531 forward 

Contig_2 
 

NADPH-dependent FMN 
reductase 

 
732 Forward 

Contig_5 soxC_1 Dibenzothiophene 
desulfurization enzyme 
C 

 1212 Reverse 

Contig_83 soxC_2 1230 Forward 

The shaded rows indicate the genes associated with desulphurisation of benzothiophene and 

dibenzothiophene occurring at various contigs of the draft genome sequence of the strain 248. 

The annotated whole-genome sequence was researched for genes homologous to the dsz 

genes and as a result, genes soxC, ntaA and ssuE that correspond to dszC, dszA and dszD, 

respectively were identified explicitly, but a gene encoding with functionality of desulfinase 

(dszB) was not found from the annotations. 
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