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Abstract. Dynamic observers are considered in the context of structured-
population modeling and management. Roughly, observers combine a known
measured variable of some process with a model of that process to asymptoti-

cally reconstruct the unknown state variable of the model. We investigate the
potential use of observers for reconstructing population distributions described
by density-independent (linear) models and a class of density-dependent (non-
linear) models. In both the density-dependent and -independent cases, we

show, in several ecologically reasonable circumstances, that there is a natural,
optimal construction of these observers. Further, we describe the robustness

these observers exhibit with respect to disturbances and uncertainty in mea-

surement.
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1. Introduction. How can we predict a stage-structured population from merely
knowledge of repeated measurements of part of that population, for instance just
a single stage-class or life-stage? We might annually census nesting turtles and
the eggs they lay, but would like to obtain knowledge of the entire population
structure, including pelagic life stages which spend a considerable portion of the
year in oceans, where measuring is expensive, laborious, and ineffective. Likewise,
the seeds of numerous plants species spend a year or more underground before
germinating, while other plant species may retreat underground in a dormant state.
While knowing the entire plant population distribution might be useful, for example,
for management purposes, such life stages are inherently difficult to measure.

We propose that the above ecological problem can be addressed by appealing to
dynamic observers, a core component of mathematical control theory [24, 59]. Ob-
servers have numerous applications in science and engineering. A selection of ex-
amples includes, but is by no means restricted to, bone imaging [62], wastewater
treatment [33], chemical reactors [60], secure communications [41] and, recently, ap-
plications such as state-of-charge of batteries [39]. The idea of dynamic observers is
to combine measurements with a good model to build an estimate of the unknown,
but desired, population distribution x(t). Techniques related to the combination of
models and measurements also go by the term data assimilation in, for example,
meteorology [49]. In this work, t is assumed to be a discrete time variable, a ubiq-
uitous assumption in ecological modeling. Moreover, x is assumed to be stratified
into a discrete number of stage-classes (such as insect instars) or age-classes. A
model for x is assumed, and some measured portion of x is known, denoted y. As
we shall discuss later, the measurement is likely to be inaccurate, and so subject to
noise.

The principle of a dynamic observer in this context is illustrated in Figure 1.1.
The left box demonstrates a life-cycle graph of the population of interest (see,
for example, [38, Section 3.7]), which for the purposes of this example has four
stages (the numbered nodes) with transitions between these stages (the directed
lines) over one time-step. The life-cycle graph becomes a model by assuming some
functional forms for the transitions, which models the life history of individuals, but
for simplicity the functional forms are not indicated in Figure 1.1. Suppose that at
each time-step the abundance of the second stage-class is measured, and denoted
by y(t). The observer, the right box, is a virtual copy of the life-cycle graph.
The model output, the population structure at the next time-step, is computed by
using virtual information for stages one, three and four, and the measured variable
y(t). In other words, the virtual model output is updated and augmented with real
measured data. The state estimation problem is to formulate assumptions on the
model and the measured variable which ensure that the observer synchronizes its
known predicted population with the unknown population, or at least, the unknown
population predicted by the model. Such a process provides a dynamic estimate of
the whole population which improves over time.

An important ingredient in the present setting is a good population model. Ar-
guably the simplest class of discrete-time, deterministic models for stage-structured
populations are linear models, that is

x(t+ 1) = Ax(t) + v(t), x(0) = x0, t = 0, 1, 2, . . . . (1.1)
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Figure 1.1. Illustration of a dynamic observer. The dashed lines in the
right-hand figure at computed using the measured variable y(t).

In an ecological setting, (1.1) is often called a (matrix) population projection model
(PPM); see, for example [6] or [11]. Here the vector x(t) denotes the structured
population at time-step t and v denotes a disturbance signal which, depending on
the setting, describes otherwise unmodelled dynamics, migration, or other external
disturbances. For simplicity we use the term forcing to describe v abstractly. The
matrix A in the PPM (1.1) describes the life history parameters of the population
such as survival, growth, stage movement, and fecundity. Without knowledge of
x(t0) for some t0 = 0, 1, 2, . . . , and in the presence of forcing v(t), we cannot use (1.1)
to compute x(t) for t ≥ t0. Thus, our underlying and crucial assumptions are that
x0 in (1.1) is unknown and v is in general non-zero.

The linear model (1.1) may predict unbounded exponential growth, which is clearly
not biologically possible. A more reasonable assumption is that survival, growth,
or recruitment are dependent on the size of the population, owing to the effects of
intraspecific competition at higher population abundance. Such a system is referred
to as density-dependent, as opposed to the density-independent system in (1.1), and
incorporates nonlinear terms. One class of such examples takes the form

x(t+ 1) = Ax(t) + bf(kTx(t)) + v(t), x(0) = x0, t = 0, 1, 2, . . . , (1.2)

where A, b and k are appropriately sized matrices/vectors and f is a (nonlinear)
nonnegative-valued function with f(0) = 0. Again the vector x(t) denotes the
structured population at time-step t and v is a forcing term with the same inter-
pretation as that in (1.1). Evidently, (1.2) comprises a linear (density-independent)
component, and a non-linear (density-dependent) component. The biological inter-
pretation of (1.2) depends on the context, for instance the matrix A may include
survival and growth between stage-classes whilst f represents density-dependent
recruitment into the population. In this setting, kTx is a weighted combination of
reproductive stage-classes of x, which recruit f(kTx) new individuals into the pop-
ulation, distributed over one time-step according to b. For more biological back-
ground the reader is referred to [14, 15], for example. In mathematical control
theory, models of the form (1.2) are often called Lur’e systems after the Soviet sci-
entist A. I. Lur’e who made early contributions to the study of stability properties of
continous-time versions of these systems in the 1940s. Although originally studied
in the context of engineering problems, Lur’e systems arise naturally in modeling
populations with density dependent fecundity; for instance, this can be done for
certain fish species [46, p. 316–323]. Much attention has recently been devoted to
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the study of the stability properties of Lur’e systems in a biological context; includ-
ing, for example [14, 16, 22, 55, 64]. Part of the appeal and uptake of models of
the form (1.2) is that they are amenable to analysis, yet also permit a wide range
of ecologically realistic dynamic behaviour. Indeed, it is possible in certain specific
situations, see [64], to present “trichotomies of stability” for the unforced (v = 0)
model (1.2) explicitly in terms of the model data, which ensure that, under certain
assumptions, solutions either converge to the zero equilibrium, or a unique non-zero
equilibrium (some carrying capacity), or diverge.

Here we present results on observer design and subsequent analysis for both (1.1)
and (1.2). The observers proposed are based on so-called Luenberger observers [43,
44], but we exploit the ecological structure and the inherent positivity of the mod-
els. The challenges posed by the inclusion of the (potentially persistently non-zero)
forcing v in (1.1) or (1.2) and, relatedly, the errors incurred in the measurement
y have not yet been mentioned, but both sources of uncertainty are likely to be
present in realistic ecological scenarios. To analyse the stability of the observers
proposed requires a stability notion which accommodates these features. The con-
cept of input-to-state stability (ISS) from nonlinear control theory is an appropriate
framework. Roughly, the ISS concept seeks to generalize to forced nonlinear control
systems the familiar estimate:

‖w(t)‖ ≤ M
(

γt‖w(0)‖+ max
0≤τ≤t−1

‖v(τ)‖
)

, ∀ t = 0, 1, 2, . . . , (1.3)

valid for the solution w of the forced linear system (1.1) with exponentially stable
(in discrete-time) A. The constants M ≥ 1 and γ ∈ (0, 1) in (1.3) are independent of
w(0) and v, and so the bound (1.3) holds uniformly in these terms. Further, observe
that the right-hand side of (1.3) has two separate terms for the contribution of w(0)
and v to ‖w(t)‖, and that the former term decays to zero (exponentially in this case)
over time.

ISS was introduced in 1989 by Sontag [57] and has developed into a mature stability
theory of nonlinear control systems; see, for instance [12, 37, 58]. We note that we
will use estimates of the form (1.3) to bound the difference between the known
observer state (the predicted population) and the unknown model state — the
solutions x of (1.1) or (1.2) themselves need not satisfy (1.3) and, as mentioned
earlier, may exhibit other ecologically realistic dynamic behaviour. Our analysis is
in the spirit of so-called incremental ISS (see, for example [1]) which seeks to provide
estimates of the form (1.3) for the difference between any two solutions of (1.2) (not
just a solution and the zero equilibrium). Evidently, for linear systems, where the
superposition principle holds, the notions of ISS and incremental ISS coincide. We
make the important observation that for general nonlinear difference equations,
estimates of the form (1.3) need not follow from global asymptotic stability results
of the unforced version of the difference equation, motivating our use of the ISS
framework.

In addition to stability analysis, we show that there are natural candidates for “op-
timal” observers in a sense we describe. The current work also furthers a line of
enquiry of the present authors which, in addition to deriving new control theoretic
results, seeks to increase the awareness and uptake of concepts from mathemati-
cal systems and control theory in ecological modelling and management where we
believe these tools are ideally suited; see, for instance [20, 29, 30].
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We comment that underpinning our analysis is the concept of a positive dynam-
ical system, since the state of (1.1) or (1.2) is naturally nonnegative, modeling a
necessarily nonnegative quantity. Positive systems are well-studied objects with
monographs on the subject including [3, 19, 32], and we design observers which
themselves, under ecologically reasonable assumptions on the forcing, also take non-
negative values. We therefore mention that dynamic observers have been proposed
as a technique for population estimation in [27], and for positive linear systems
in [13, 51, 66]. However, the overlap with the present work is minimal, as each
of these papers focusses on different aspects of the linear, continuous-time setting,
without forcing. None of the mentioned papers considers observer design for the
positive forced Lur’e system (1.1). Dynamic observers for nonlinear control systems
is a vast subject in the systems and control literature, and background references
include, but are not limited to [2, 18, 25, 40, 67] and the references therein. Again,
to the best of our knowledge, the case considered here of positive Lur’e systems in
discrete-time subject to forcing has not been considered.

The manuscript is organized as follows. Section 2 contains a problem statement with
solutions given in Sections 3 and 4 for the linear and nonlinear settings, respectively.
Examples are presented in Section 5, and some further robustness concepts are
addressed in Section 6. We make summarizing remarks in Section 7, which also
seeks to make connections to other related, and potential future, research areas.

Notation and Terminology

As usual let N, Z+, R, R+ and R
n denote the set of positive and nonnegative

integers, the field of real numbers, the set of nonnegative real numbers, and n-
dimensional real Euclidean space, respectively. Let Rn

+ denote the set of n-dimensional
real vectors with nonnegative entries. We let ei denote the standard i-th basis vec-
tor in R

n. For a vector v ∈ R
n, with i-th component vi, we let |v| denote the

vector with i-th component |vi|. We let ‖v‖ denote a (any) monotonic norm of v,
that is, ‖v‖ = ‖|v|‖ see, for example, [35]. Usual Euclidean norms are monotonic,
and in ecological applications the Euclidean one-norm is typically the most natural
(denoting total abundance).

Let Rm×n denote the vector space of m×n real matrices, and let Rm×n
+ denote the

set of m × n real matrices with nonnegative entries, called nonnegative matrices.
For X ∈ R

n×n, let ρ(X) denote the maximum of the moduli of the eigenvalues of X,
called the spectral radius of X. For Y,Z ∈ R

m×n, we let Y T denote the transpose
of Y . The (i, j)-th entry of Y is denoted Yi,j or (Y )i,j , and we write Y ≤ Z or
Y ≥ Z if Yi,j ≤ Zi,j for all i, j. We use the same symbols to denote componentwise
inequality of vectors. A nonnegative matrix X ∈ R

n×n
+ is said to be irreducible if,

for each i, j with 1 ≤ i, j ≤ n, there is some positive integer r = r(i, j) such that
(Xr)i,j > 0, or primitive if there is some positive integer r such that (Xr)i,j > 0
for all i, j with 1 ≤ i, j ≤ n.

For a sequence v : Z+ → R
n, we let πtv denote the projection onto the first t terms

of v, that is, (πtv)(s) = v(s) if 0 ≤ s ≤ t and (πtv)(s) = 0 if s > t. Finally, we let
‖ · ‖ℓp denote the usual ℓp norms for sequences for p ∈ [1,∞).

2. Problem statement. Throughout we let x(t) denote a structured population
of interest at the (fixed) discrete time-step t ∈ Z+ (for example, a week, month or
year). Let n denote the dimension of the vector x(t), so that the population x(t) is
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a structured population with n age- or stage-classes. We shall assume in Sections 3
and 4 that x is modelled by (1.1) and (1.2), respectively.

In both cases, we shall assume that at every time-step t, a (possibly noisy) mea-
surement of part of the population is known. We denote these measurements by
y(t) which, in the absence of noise, are assumed to be of the form

y(t) = Cx(t), t ∈ Z+ .

Here C ∈ R
q×n
+ so that q ∈ N denotes the number of distinct measurements of

the population taken at each time-step (not to be confused with measuring a given
variable(s) repeatedly over time). Since we assume no trivial measurements, we
impose throughout that every row of C is nonzero.

Example 2.1. Consider a population with n = 5 stage-classes. If y(t) is the
abundance of the fourth and fifth stages separately, then

y(t) =

(

x4(t)

x5(t)

)

, C =
(

e4 e5

)T

=

(

0 0 0 1 0

0 0 0 0 1

)

.

If y(t) is the total abundance of the fourth and fifth stages (that is, we count the
fourth and fifth stages but do not distinguish between them), then

y = x4 + x5, C = eT4 + eT5 =
(

0 0 0 1 1
)

.

Evidently, the form of C depends on the setting. We note that as C maps the
state variables x to the measured variables y (which may have different orders of
magnitude or units), it may be the case that C has non-integer components. For
example, consider a model for spawning fish where the first stage-class is the number
of eggs. In most cases it is impracticable to count eggs individually, particularly
without disrupting them, and more likely is that the observed size of an egg cluster
is a proxy for the number of eggs contained. Thus, measurement of eggs may be in
multiples of 500, say. If the first stage class denotes number of eggs, and this is the
only measurement, then C = cT ∈ R

1×n
+ with c1 = 5× 10−2. ♦

To incorporate measurement error, we write

y(t) = Cx(t) + d(t), t ∈ Z+ . (2.1)

where d in (2.1) is a forcing or noise signal, so that the “true” (but typically un-
known) measurement at each time step is Cx(t). Since we are observing a nonnega-
tive quantity x(t), it is reasonable to assume that negative entries in y(t) are caused
by noise. Thus, by replacing negative entries by zero, we shall assume throughout
that d(t) ≥ −Cx(t) for every t ∈ Z+, which results in y(t) being nonnegative for
every t ∈ Z+.

In certain situations it may be appropriate to model the measurement error multi-
plicatively, capturing errors which are proportional to the current observed quantity,
which we can always write as

y(t) = (I + ε(t))Cx(t) = Cx(t) + ε(t)Cx(t), t ∈ Z+ , (2.2)

which is in the form (2.1), and where I denotes the identity matrix. Here ε(t) is a
diagonal matrix with entries in [−1,∞) for each t ∈ Z+, and ε(t) = 0 corresponds
to exact measurement. Note that in this case, by our assumptions on ε(t), it follows
that y(t) is nonnegative for every t ∈ Z+.
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Our goal is to estimate the unknown x by a known quantity, throughout denoted z,
which is called the observer state. The two important criteria we wish z to satisfy
are:

(O1) The observer state z should be nonnegative.
(O2) For z to estimate x, the error e = x − z should be bounded in terms of the

forcing, and converge to zero if the forcing does as well.

The criteria (O1) and (O2) seek to capture desirable qualitative and quantitative
properties of the observer, respectively.

3. Linear Systems. In this section, we assume that x is given by the forced linear
PPM model (1.1), recall given by

x+ = Ax+ v, x(0) = x0 .

Here and throughout x+(t) = x(t+1) for all t ∈ Z+, and x0 ∈ R
n
+ is the (unknown)

initial state. The term v denotes a forcing (also called and interpreted as an in-
put, control action/signal, or disturbance). We shall assume throughout that v is
bounded, and that x(t) ∈ R

n
+ for all t ∈ Z+, which is certainly the case if v(t) ∈ R

n
+

for all t ∈ Z+, although x(t) ∈ R
n
+ for all t ∈ Z+ may be satisfied by v which take

nonpositive values, see [28].

We assume that A ∈ R
n×n
+ in (1.1) is irreducible — a natural assumption for ecolog-

ically meaningful models [61]. A consequence of the Perron-Frobenius theorem (see,
for example, [4, Theorem 1.4, p. 27]) is that ρ(A) is an eigenvalue of A. In practice,
we do not know either x0 or the entries of A precisely, but we assume in this man-
uscript that A is known, but x0 is unknown. Recall that for the unforced version
of (1.1), the cases ρ(A) < 1 and ρ(A) > 1 correspond to asymptotic population de-
cline to zero and asymptotic population increase without bound, respectively. This
latter case is ecologically unrealistic long term, but may be useful for short-term
estimation (for example, of an invasive species). However, the observers presented
here are asymptotic in that their estimates improve in time, and so the estimates
in the short-term may not be suitably accurate.

We propose an observer of the form

z+ = A0z +Hy, z(0) = z0 , (3.1)

where y(t) is given by (2.1), A0 := A−HC, and H ∈ R
n×q and z0 ∈ R

n
+ are to be

determined by the user.

Our key assumption for practicable observer design (3.1) is the following.

(L) There exists a nonzeroH ∈ R
n×q
+ such that A0 = A−HC ≥ 0 and ρ(A0) < 1.

We define Sl to be set of all nonzero H ∈ R
n×q
+ such that A − HC ≥ 0 and

ρ(A −HC) < 1. Hence, (L) holds if, and only if, Sl is nonempty. We shall see in
Proposition 3.3 below that Sl is nonempty in many ecologically meaningful models.

Combining (1.1), (2.1) and (3.1) gives the linear observed system

x+ = Ax+ v, x(0) = x0,

z+ = A0z +Hy, z(0) = z0,

y = Cx+ d .











(LO)
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Our main stability result for (LO) is the following.

Proposition 3.1. Consider the linear model (1.1), with observations (2.1). As-
sume that (L) holds, and let H ∈ Sl with r0 := ρ(A−HC) ∈ [0, 1) and r ∈ [1,∞).
Then property (O1) holds for z given by (LO). Further, there exist positive con-
stants M and Mr such that, for all x0, z0 ∈ R

n
+ and sequences d and v, the solution

(x, z) of (LO) satisfies

‖x(t)− z(t)‖ ≤ M
(

rt0‖x0 − z0‖+ max
0≤τ≤t−1

(‖v(τ)‖+ ‖d(τ)‖)
)

∀ t ∈ N , (3.2)

and

‖πt(x− z)‖ℓr ≤ Mr

(

‖x0 − z0‖+ ‖πt−1v‖ℓr + ‖πt−1d‖ℓr
)

∀ t ∈ N . (3.3)

The estimate (3.2) ensures that the observer estimation property (O2) holds.

Proof of Proposition 3.1. Since H ∈ Sl, it follows that A0 ≥ 0. As z0 ≥ 0, and
y ≥ 0 by our standing hypothesis, it follows from (3.1) that z(t) ≥ 0 for all t ∈ Z+,
hence (O1) holds.

From (LO), we compute that the error e := x− z satisfies

e+ = x+ − z+ = Ax+ v −A0z −Hy = A0e+ v −Hd . (3.4)

Since ρ(A0) < 1 by (L), the estimates (3.2) and (3.3) will follow from the expression

x(t)− z(t) = At
0(x(0)− z(0)) +

t−1
∑

j=0

At−1−j
0

(

v(j)−Hd(j)
)

∀ t ∈ N , (3.5)

for the solution of (3.4). For the latter, let A0 denote the sequence with t-th value
At

0. Then (3.5) is the same as

(x− z)(t) = A0(t)(x(0)− z(0)) + (A0 ∗ (v −Hd))(t− 1) ∀ t ∈ N ,

where ∗ denotes discrete convolution. Taking the ℓr norm of both sides and using
that

‖A0 ∗ (v −Hd)‖ℓr ≤ ‖A0‖ℓ1 · ‖v −Hd‖ℓr ≤ cr
(

‖v‖ℓr + ‖d‖ℓr
)

,

for some cr > 0, gives (3.3).

We provide some remarks on the above result.

Remark 3.2. (a) The inequality (3.2) is an exponential ISS (input-to-state-stability)
estimate, see also the discussion after (1.3). Observe that the first term on the right
hand side of (3.1) converges to zero as t → ∞, but the second could be positive
if ‖d‖ and ‖v‖ have positive lim inf. In this case, we should not expect that
x(t)− z(t) → 0 as t → ∞.

(b) The system (LO) is left-shift invariant, meaning if (v, d, x, z) is a solution
of (LO) with initial condition (x0, z0), then (vτ , dτ , xτ , zτ ) is also a solution of (LO)
with initial condition (x(τ), z(τ)) for all τ ∈ N. Here xτ (t) := x(t+τ) for all t ∈ Z+,
and similarly for vτ and so on. A consequence of the left-shift invariance is that
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if the hypotheses of Proposition 3.1 are satisfied, then the estimate (3.2) may be
strengthened to

‖x(t+ s)− z(t+ s)‖ ≤M
(

rt0‖x(s)− z(s)‖

+ max
s≤τ≤s+t−1

(‖v(τ)‖+ ‖d(τ)‖)
)

∀ s, t ∈ N .

Therefore, if max{‖v(t)‖, ‖d(t)‖} → 0 as t → ∞, then x(t) − z(t) → 0 as t → ∞.
Similar modifications may be applied to (3.3).

(c) The choice of z0 may be informed by any partial knowledge of x0, and making
‖x0 − z0‖ smaller provides tighter (that is, better) bounds in (3.2) and (3.3).

(d) In the case that d = 0 and v = 0, the error e = x − z dynamics are given by
e(t + 1) = A0e(t). Consequently, e(t) ∈ R

n
+ for all t ∈ Z+ if z0 ≤ x0, that is, the

initial observer state is an underestimate of the initial state. It is always possible
to choose z0 = 0 as a guaranteed underestimate. In this case, z is an underestimate
of x, that is, z(t) ≤ x(t) for all t ∈ Z+.

(e) In the situation that the measurement error is proportional to the true mea-
surement, meaning d = εy, see (2.2), then the right hand sides of (3.5) may diverge
if ρ(A) > 1 and the infimum of |ε(t)| is positive. This is a consequence of the short-
comings of linear models which may predict unbounded exponential growth, and
is a feature not seen in realistic biological models, such as the nonlinear models
considered in Section 4.

(f) Taking H = 0 is prohibited in (L), as H = 0 corresponds to the so-called
“trivial observer”, that is the measurement y(t) does not inform the observer state
z(t). When our estimate z(t) fails to be informed by the measurement, it is simply
a simulation of the model (1.1) with initial state z(0) and without the forcing v. ♦

There may be many H in Sl, raising the question of how to (optimally) choose H.
Noting that r0 := ρ(A−HC) < 1 appears in the upper bound in (3.2), we seek to
minimize this quantity. In our next result, we describe the optimal H to minimize
r0 in several ecologically meaningful settings; for examples see Section 5.1. In the
next result, A(j) denotes the j-th column of A.

Proposition 3.3. Given (LO), the following statements hold.

(a) There exists H∗ ∈ R
n×q
+ such that A−H∗C ≥ 0 and

ρ(A−H∗C) ≤ ρ(A−HC) ∀H ∈ R
n×q
+ with A−HC ≥ 0 . (3.6)

(b) Assume that individual stage-classes are separately observed, that is,

C =
(

ei1 . . . eiq

)T

for 1 ≤ i1 < ... < iq ≤ n . (3.7)

Then H1 given by

H1 =
(

A(i1) . . . A(iq)
)

, (3.8)

satisfies A − H1C ≤ A − HC over all H ∈ R
n×q
+ such that A − HC ≥ 0, and

so (3.6) holds with H∗ = H1. Thus, (L) holds if, and only if, ρ(A−H1C) < 1.

(c) Assume that a collection of stages is observed, that is,

C =

q
∑

j=1

eTij for 1 ≤ i1 < ... < iq ≤ n . (3.9)
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Then H2 given by

H2 =









mink=1,...,q A1,ik

...

mink=1,...,q An,ik









,

satisfies A − H2C ≤ A − HC over all H ∈ R
n×q
+ such that A − HC ≥ 0, and

so (3.6) holds with H∗ = H2. Thus, (L) holds if, and only if, ρ(A−H2C) < 1 and
A−H2C 6= 0.

We comment that there are situations where (L) fails and so statement (a) of Propo-
sition 3.3 holds only with H = 0. Evidently, the construction of H is an integral
part of the observer design part. However, the choice of H ∈ S1 depends on C,
capturing which stage-classes are observed. Depending on the context, there may
be some choice in the construction of C as well.

Proof of Proposition 3.3: (a) Define the set Tl of all H ∈ R
n×q
+ such that A−HC ≥

0. It is clear that Tl is closed and, we claim, bounded. Indeed, let H ∈ Tl. By the
assumption that every row of C is nonzero, for each j ∈ {1, 2, . . . , q}, there exists
k(j) ∈ {1, 2, . . . , n} such that Cj,k(j) > 0. Consequently, for every i ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . , q}

Ai,k(j) −Hi,jCj,k(j) ≥ Ai,k −

q
∑

ℓ=1

Hi,ℓCℓ,k(j) = (A−HC)i,k(j) ≥ 0 .

We conclude that

Hi,j ≤
Ai,k(j)

Cj,k(j)
≤

maxℓ,r Aℓ,r

minr Cr,k(r)
< ∞ ∀ i ∈ {1, 2, . . . , n}, ∀ j ∈ {1, 2, . . . , q} .

Therefore, the continuous function g : Tl → R+ defined by g(H) = ρ(A − HC)
attains a minimum in Tl, denoted H∗, which is (3.6).

(b) Note that with H1 defined as in (3.8), columns i1 to iq of A − H1C are zero.

Consequently, there are no H ∈ R
n×q
+ such that A −HC ≤ A −H1C, A −HC 6=

A−H1C and A−HC ≥ 0. It is well-known from, for example [4, Corollary 1.5 (a),
p.27], that the inequalities 0 ≤ A−H1C ≤ A−HC imply that (3.6) holds. To prove

the claimed equivalence, suppose that (L) holds. Then there exists H ∈ R
n×q
+ such

that 0 ≤ A −HC and ρ(A −HC) < 1. In light of the first part of statement (b),
ρ(A −H1C) ≤ ρ(A −HC) < 1, as required. Conversely, if ρ(A −H1C) < 1, then
H1 ∈ Sl as A irreducible implies that no column of A is zero, and hence H1 6= 0
and 0 ≤ A−H1C. Evidently, Sl is nonempty and hence (L) holds.

(c) The proof is similar to that of statement (b), and so the details are omitted.

Remark 3.4. Given (LO), we comment that we should not in general expect a
“componentwise minimizing” H∗ such that

0 ≤ A−H∗C ≤ A−HC ∀H ∈ R
n×q
+ with A−HC ≥ 0 ,

as the pair

A =









1 1 1

∗ ∗ ∗

∗ ∗ ∗









, C =

(

1 1 1
2

0 1
2 1

)

,
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demonstrates. Here ∗ denotes unimportant entries. The matrices

H1 =









1 0

0 0

0 0









and H2 =









0 1

0 0

0 0









,

satisfy

A−H1C =









0 0 1

∗ ∗ ∗

∗ ∗ ∗









and A−H2C =









1 1
2 0

∗ ∗ ∗

∗ ∗ ∗









.

Therefore, for H∗ to satisfy 0 ≤ A−H∗C ≤ A−H1C and 0 ≤ A−H∗C ≤ A−H2C,
the top row of A−H∗C must equal zero. It is straightforward to see that there is
no such H∗. ♦

3.1. Observability. We conclude the current section by providing some discus-
sion on the ubiquitous concept from mathematical control theory of observability.
Observability pertains to reconstructing x0, and hence x, from finitely-many mea-
surements y, which ostensibly provides a solution to the problem considered in this
paper.

Observability for linear control systems is discussed in most control theory text-
books; see, for example, [24] or [59]. At its heart, the notion appeals to linear
algebra as a consequence of the assumed structure in (1.1) and (2.1). The require-
ment that d = 0 and v = 0 is crucial to what follows. In this case, we simply note
that (1.1) and (2.1) yields a linear system of n equations,

y(t) = CAtx0, t = 0, ..., n− 1 ,

which may be rewritten as

Qx0 :=















C

CA
...

CAn−1















x0 =















y(0)

y(1)
...

y(n− 1)















. (3.10)

The matrix Q ∈ R
mn×n in (3.10) is known to the user, as is the vector of observa-

tions on the right hand side. It follows that (3.10) has a unique solution x0 if, and
only if, Q has full rank (equal to n), in which case (3.10) can be solved for x0. This
calculation underpins the concept of observability.

We are proposing dynamic observers as a solution for the population estimation
problem for the following two reasons:

• The above analysis breaks down in the likely situation that v and d are
nonzero.

• Generalizing observability as an estimation method for nonlinear systems
requires solving a nonlinear version of (3.10). Such a nonlinear system of
(possibly many) equations could be much more difficult to solve.

We conclude by highlighting that there is a connection between observability and
observers. Specifically, it can be proved that if the pair (A,C) is observable (which is
equivalent to rankQ = n), then it is possible to choose H such that the eigenvalues
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of A −HC are equal to the roots of any real, monic polynomial of degree n. This
process is sometimes called pole-placement or eigenvalue-placement in the control
engineering jargon. However, pole placement need not respect the nonnegativity
constraints we impose for ecological relevance in this paper: H ≥ 0 such that
A−HC ≥ 0 and H 6= 0. Consequently, we do not pursue pole placement as a tool
for observer design in this context.

4. Nonlinear Systems. Here we assume that x satisfies

x+ = Ax+ bf(kTx) + v, x(0) = x0 , (1.2)

where x0 ∈ R
n
+; A ∈ R

n×n
+ ; b, k ∈ R

n
+; and f : R+ → R+ is continuous with

f(0) = 0. We formulate the assumption on the linear data in (1.2):

(NL1) ρ(A) < 1, and b, k 6= 0.

The assumptions on A, b and k imposed in (NL1) are not restrictive. A consequence
of the assumed nonnegativity is that when v = 0, the solution x of (1.2) satisfies
the lower bound x+ ≥ Ax, and so diverges if ρ(A) > 1, which is dynamic behaviour
we wish to omit. The case b = 0 or k = 0 is degenerate and leads to linear models
considered in Section 3.

For (H, j) ∈ R
n×q
+ ×R

q
+, let A0 := A−HC and k0 := k−CT j. We let Snl denote the

set of all non-zero ordered pairs (H, j) ∈ R
n×q
+ × R

q
+ such that A0 ≥ 0 and k0 ≥ 0.

As with Sl in Section 3, we shall see in Proposition 4.3 that Snl is nonempty for
ecologically reasonable C ∈ R

q×n
+ .

We propose an observer of the form

z+ = A0z +Hy + bf(kT0 z + jT y), z(0) = z0 , (4.1)

where (H, j) ∈ Snl and z0 ∈ R
n are to be determined by the user.

Combining (1.2), (2.1) and (4.1) gives the nonlinear observed system

x+ = Ax+ bf(kTx) + v, x(0) = x0,

z+ = A0z +Hy + bf(kT0 z + jT y), z(0) = z0,

y = Cx+ d.











(NLO)

A crucial quantity in the following development is the real-valued function p : Snl ∪
{0} → R+ ∪ {∞} defined by

p(H, j) =
1

(kT − jTC)
(

I − (A−HC)
)−1

b
∀ (H, j) ∈ Snl ∪ {0} ,

where we use the convention 1/0 = ∞ for scalar 0. Note that p is well-defined
by (NL1), and is nonnegative since the denominator may be written as

(kT − jTC)
(

∑

j∈N0

(A−HC)j
)

b ≥ 0 ,

a sum of nonnegative terms, as (H, j) ∈ Snl ∪ {0}. For notational convenience, we
use p0 to denote the more cumbersome p(0, 0). More commentary on p, including a
biological interpretation, is provided in Remark 4.2. From, for example [64, Lemma
3.1], it is known that p0 is finite if A+ bkT is primitive.

Our main stability result for the observed system (NLO) is the following theorem.
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Theorem 4.1. Consider the nonlinear model (1.2) satisfying (NL1), with observa-
tions (2.1). Assume that Snl is nonempty, and let (H, j) ∈ Snl. Then property (O1)
holds for z given by (NLO). Furthermore, if

(NL2) f is µ-Lipschitz, with µ < p(H, j);

holds, then with r0 := ρ(A0 + µbkT0 ) ∈ [0, 1) and r ∈ [1,∞), there exists M,Mr > 0
such that, for all x0, z0 ∈ R

n
+ and all sequences d and v, the estimates (3.2) and (3.3)

hold for the solution (x, z) of (NLO).

As with Proposition 3.1, the estimate (3.2) ensures that the observer estimation
property (O2) holds.

The conclusions of Theorem 4.1 are still valid if p(H, j) is infinite, provided that f
is µ-Lipschitz with some finite Lipschitz constant µ.

Proof of Theorem 4.1. By hypothesis, all the terms involved on the right hand side
of (4.1), the dynamic equation for z, are nonnegative. Hence, it follows from (4.1)
that z(t) ≥ 0 for all t ∈ Z+, that is, (O1) holds.

Given x0, z0, d and v, let (x, z) denote the solution of (NLO), and set e := x − z.
A routine calculation shows that the error dynamics are given by

e+ = A0e+ b
(

f(kTx)− f(kT0 z + jT y)
)

+ v −Hd, e(0) = x0 − z0 . (4.2)

Taking the vector absolute value in (4.2), using the triangle inequality and the
Lipschitz property of f , as well as noting that |Qw| ≤ Q|w| for nonnegative matrices
Q and all appropriately-sized vectors w, we estimate that

|e+| ≤ A0|e|+ b
∣

∣f(kTx)− f(kT0 z + jT y)
∣

∣+ |v|+ |Hd|

≤ A0|e|+ bµ
∣

∣kTx− kT0 z − jT y
∣

∣+ |v|+ |Hd|

= (A0 + µbkT0 )|e|+ µb|jT d|+ |v|+ |Hd|

= E0|e|+ η ,

where E0 := A0 + µbkT0 and η := µb|jT d| + |v| + |Hd|. Therefore, |e| admits the
estimate

|e(t)| ≤ Et
0|e(0)|+

t−1
∑

j=0

Et−1−j
0 η(j) ∀ t ∈ N . (4.3)

It is well-known from stability radius theory for positive systems (see, for exam-
ple [35, Theorem 3.4]) that µ < p(H, j) implies that ρ(E0) = ρ(A0 + µbkT0 ) < 1.
Therefore, the bounds (3.2) and (3.3) follow from (4.3), combined with the assumed
monotonic norm property

∥

∥|w|
∥

∥ = ‖w‖.

We provide some commentary on the above result, noting that items (a)–(c) of
Remark 3.2 are relevant in the nonlinear setting as well.

Remark 4.2. (a) Stability properties of (1.2) have been considered in the forced
case in [20], which builds on the earlier work [64] where the unforced version (v = 0)
of (1.2) is considered. In both works, the interplay between p0 and f is crucial.
Indeed, the unforced model (1.2) can exhibit any one of: all solutions converging
to a zero; a non-zero equilibrium, or; asymptotic divergence, see [64, Theorem 2.1].
The number p0 is equal to the stability radius of the linear system specified by A,
with perturbation structure b and kT . Indeed, p0 = min |µ|, where the minimum
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is taken over all µ such that A + µbkT is not exponentially stable. The larger
p0, the ‘larger’ the perturbation A can tolerate through b and kT without losing
exponential stability.

(b) A biological interpretation of p0 depends on the specific context. In the setup
described in [14, p. 43]: “p [p0] is simply the establishment probability that would
cause stasis in a density-independent setting [meaning f(y) = py for all y].” Fur-
ther, it is noted in [14, p. 44] that p0 is also equal to the reciprocal of the inherent
net reproductive number of A+ bkT (in the sense of [11, p. 7]), see [14, p. 44] for
more details.

(c) If f and v are bounded, and assuming that (NL1) holds, then it is straight-
forward to show that x given by (1.2) is bounded. Consequently, if a proportional
measurement error is incurred, see (2.2), with bounded ε, then it follows that
d = εy is also bounded, cf. Remark 3.2 (e). Hence, the right hand side of (3.2) is
finite.

(d) Using ideas behind [31, Theorem 3.1], Theorem 4.1 may be generalized to
the situation wherein (1.2) is replaced by x+ = Ax + BF (Kx) + v, for (B,K) ∈
R

n×m
+ × R

s×n
+ for some m, s ∈ N and F : Rs

+ → R
m
+ . Assumption (NL1) and

the observer (4.1) are modified accordingly. The hypothesis (NL2) on f and p is
replaced by the conjunction of
• there exists Γ ∈ R

m×s
+ such that F satisfies the estimate

|F (ξ1)− F (ξ2)| ≤ Γ|ξ1 − ξ2| ∀ ξ1, ξ2 ∈ R
s
+ ; (4.4)

• there exists strictly positive ξ ∈ R
s
+ and µ ∈ (0, 1) such that

ξTK0(I −A0)
−1BΓ ≤ µξT , (4.5)

where A0 := A−HC, K0 := K − JC and Γ is as in (4.4).
We comment that (4.4)–(4.5) simplify to (NL2) when m = s = 1.

(e) Finally, we note that Theorem 4.1 may be altered to account for nonlinearities
which are not Lipschitz, provided that the Lipschitz criterion is replaced by: there
exists α > 0 such that f is µ-Lipschitz on [α,∞) with µ < p, and there exists
t0 ≥ 0 such that kTx(t), kT z(t) ≥ α for all t ≥ t0. Under these hypotheses, the
bound (3.2) in Theorem 4.1 is replaced by

‖x(t+ t0)− z(t+ t0)‖ ≤M
(

rt0‖x(t0)− z(t0)‖

+ max
t0≤τ≤t0+t−1

(‖v(τ)‖+ ‖d(τ)‖)
)

∀ t ∈ N .

However, the time t0 above depends in general on x0 and z0, and so we lose
uniformity with respect to initial conditions. ♦

We next present a nonlinear version of Proposition 3.3 which seeks to address op-
timal observer design, in a sense we describe. The proof of Proposition 4.3 is
analogous to that of Proposition 3.3, and so is omitted.

Proposition 4.3. Given (NLO) and γ > 0, assume that (NL1) is satisfied. The
following statements hold.

(a) There exists (H∗, j∗) ∈ R
n×q
+ × R

q
+ such that, with A0 := A−H∗C and k0 :=

k − CT j∗,

ρ
(

A0 + γbkT0
)

≤ ρ
(

(A−HC) + γb(kT − jTC)
)

∀ (H, j) ∈ Snl . (4.6)
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(b) If C is given by (3.7), then

H1 =
(

A(i1) . . . A(iq)
)

, and j1 =
(

ki1 . . . kiq

)

, (4.7)

satisfy (H1, j1) ∈ Snl if (H1, j1) 6= 0 (and so Snl 6= Ø), in which case A−H1C ≤
A − HC and k − CT j1 ≤ k − CT j for all (H, j) ∈ Snl. Thus (4.6) holds with
(H∗, j∗) = (H1, j1) and, further,

p(H, j) ≤ p(H1, j1) ∀ (H, j) ∈ Snl . (4.8)

(c) If C is given by (3.9), then

H2 =









mink=1,...,q A1,ik

...

mink=1,...,q An,ik









and j2 = min
k=1,...,q

jk, (4.9)

satisfy (H2, j2) ∈ Snl if (H2, j2) 6= 0 (and so Snl 6= Ø), in which case A−H2C ≤
A−HC and k − CT j2 ≤ k − CT j for all (H, j) ∈ Snl.

Thus (4.6) holds with (H∗, j∗) = (H2, j2), and (4.8) holds with (H1, j1) replaced
by (H2, j2).

Proposition 4.3 provides a recipe for how to optimally choose (H, j) ∈ Snl in two
ecologically realistic scenarios, that is, when C is given by (3.7) or (3.9). The
optimality of (Hi, ji) in statements (b) and (c) is twofold. First, these choices
minimize ρ(A0 + µbkT0 ), which appears in the upper bound for the error (3.2),
providing a faster-decaying estimate. Second, in light of (4.8), they maximize p
over Snl, which enlarges (in the sense of a larger Lipschitz constant) the set of
functions f to which Theorem 4.1 applies. Indeed, if p(Hi, ji) is not finite, then
assumption (NL2) holds for any Lipschitz function f .

Remark 4.4. We conclude this section by commenting that in the context of
observer design, a well-known and celebrated alternative is the so-called Kalman
filter, introduced by Kalman in [36] in a stochastic framework for recursive state
estimation, see more recently [9, Chapter 2] for instance. The Kalman filter in part
motivated what is now known in control theory as H2 optimal control, see [65,
Chapter 11], and provides an estimate of (1.1) that minimizes the variance of the
error over a large set of possible estimates, but this depends on both the forcing
term v(t) and the measurement error d(t) being zero-mean white noise with gaussian
distribution. Specifically, a forcing term that has gaussian distribution is highly
restrictive, and may not be a suitable assumption to make in ecological models.
Consequently, we have not adopted this approach.

Further, the extended Kalman filter, which is an application of the classical Kalman
filter to a nonlinear system by linearizing the nonlinearity (see, for instance, [9,
Chapter 7]) is known to make error estimates for situations where zero is not glob-
ally asymptotically stable in mean. This can be particularly disadvantageous in
the instance that the population approaches a nonzero stable equilibrium, since the
extended Kalman filter may give estimates that vary widely away from the equi-
librium. Examples of Kalman filters and extened Kalman filters applied to noisy
stage-structured populations can be found in [50]. ♦

5. Examples. We present examples of observer design for linear (1.1) and non-
linear (1.2) models in Sections 5.1 and 5.2, respectively.
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5.1. Linear Examples.

Example 5.1. We consider the age-structured matrix PPM proposed in [10] to
model female cheetahs in the Serengetti. In this model, one time-step is six months
and there are n = 8 stage-classes (0-6 months, 6-12 months, and so on, with the
eighth stage comprising adults which are 42 months or older). The last four stage-
classes comprise fecund adults, whilst the first four represent non-reproducing juve-
niles. A growth and survival matrix A is given in [10, Table 2.], where ρ(A) = 0.955,
and so the unforced (v = 0) model predicts that the cheetah population shall decline
asymptotically.

The paper [10] does not consider observations of the model (1.1), and so we illustrate
the theory of Section 3 by discussing some different possibilities.

If we assume that just the final stage-class is measured, so that C = eT8 , then by
statement (b) of Proposition 3.3, the optimal H = H∗ is equal to the eighth column
of A. Moreover, this is the componentwise largest H such that A − HC ≥ 0. To
see what this means in practice, since A0 = A−H∗C is a copy of A with zero last
column and, by (3.1),

z+ = A0z +H∗Cx = A0z +Hx8 +Hd ,

we see that the final stage-class of the estimated state z(t) is replaced by the mea-
sured value of the eighth stage-class x8(t)+ d(t) to compute z(t+1). A calculation
shows that ρ(A − H∗C) = 0.7227 and Figure 5.1 contains an illustrative numeri-
cal simulation. For simplicity we choose zero initial observer state, z0 = 0, and a
randomly distributed initial population of 30 individuals. At each time step, the
forcing term v(t) was drawn from a discrete uniform random variable with values
in {0, 1, 2}, and v is assumed to effect the first stage-class only. Proportional mea-
surement noise of the form (2.2) is assumed, and ε(t) was drawn from a truncated
normally distributed random variable between −0.2 and 0.2, corresponding to a
relative observation error of up to 20% at each time step. These terms were chosen
for the purpose of illustration.
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Figure 5.1. Numerical simulations from Example 5.1. Abundances from
the model (LO) are plotted against time. The solid line and dotted lines
are the abundance of the eighth stage-class x8(t) of the (forced) chee-
tah population, and its corresponding observer state z8(t), respectively.
The dashed and dashed-dotted lines are ‖x(t)‖1 and ‖z(t)‖1, the total
population and its observer estimate, respectively.
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If instead we assume that the sum of the four adult stage-classes is observed, then
C = eT4 + · · ·+ eT8 . By statement (c) of Proposition 3.3, we have that H∗ = 1.143e1
is optimal, and ρ(A−H∗C) = 0.8920. Notice that observing a collection of multiple
stage-classes together has led to a optimal observer with a worse (that is, greater)
exponential rate of convergence.

We conclude the first example by noting that our key hypothesis (L) may not always
be satisfied. Indeed, with

C =
(

0 0 0 1 1 1 1 1
)

,

which corresponds to measuring the sum of all four adult stage-classes and the final
juvenile stage-class, it can be easily shown that the set Sl is empty. In other words,
there are no non-zero H ∈ R

n
+ such that 0 ≤ A−HC and ρ(A−HC) < 1. ♦

5.2. Nonlinear Examples. A density-dependent model of the form (1.2) for Chi-
nook salmon was analyzed in [64], using time steps in years and n = 5 stages, where
the third, fourth, and fifth stage represented spawning adult fish while the first and
second stages represented juvenile fish that do not yet spawn. The A and b terms
in (1.2) are given by

A =

















0 0 0 0 0

0.0131 0 0 0 0

0 0.8 0 0 0

0 0 0.7896 0 0

0 0 0 0.6728 0

















, b =

















1

0

0

0

0

















. (5.1)

This example is an exemplar for Lur’e systems in population ecology: A is the matrix
of transition probabilities, the structure of b yields that new individuals are added
into the first stage-class, and f(kTx(t)) captures density-dependent recruitment.
Clearly, ρ(A) = 0 < 1 as A5 = 0, that is, A is nilpotent. We consider two different
functional forms for f in Examples 5.2 and 5.3 below.

Throughout we assume that stages four and five are observed, leading to

C =

(

0 0 0 1 0

0 0 0 0 1

)

.

Example 5.2. Here we assume that the nonlinear term f : R+ → R+ and k ∈ R
5
+

are given by

f(w) =
30w

8 + w
∀ w ≥ 0 and kT =

(

0 0 6.524 100.314 793.294
)

, (5.2)

and so f is a so-called Beverton-Holt function. Assumption (NL1) is evidently
satisfied. An application of [64, Theorem 2.1, statement 3.] yields that, for all
nonzero x0, the state x of the unforced (v = 0) model (1.2) with model data (5.1)
and (5.2) satisfies

x(t) → x∗ = (I −A)−1bp0y
∗ 6= 0 as t → ∞,

where y∗ is the unique positive solution to

f(w) = p0w w ≥ 0 .
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We choose (H, j) ∈ Snl in accordance with statement (b) of Proposition 4.3. Since

0 ≤ f ′(w) ≤ lim
ξց0

f(ξ)

ξ
=

30

8
= 3.75 < 14.6 = p(H, j) ∀ w ≥ 0 ,

(where f ′(0) is the right derivative of f at 0) it follows that assumption (NL2)
is satisfied. Hence, Theorem 4.1 applies to the nonlinear observed system (NLO)
with model data (5.1) and (5.2). An illustrative numerical simulation is contained
in Figure 5.2. In both panels we chose zero initial observer state, z0 = 0, and a
randomly distributed initial population of 120 individuals. Figure 5.2 (a) shows
the convergence of the observer to the unknown population in the unforced case
(v = 0 and d = 0). Figure 5.2 (b) illustrates the effects of nonzero disturbances.
Namely, for this simulation, at each time step, the forcing term v(t) was drawn from
a discrete uniform random variable with integer values between 0 and 10, and is
assumed to effect the final stage-class only. Proportional measurement noise of the
form (2.2) is assumed, and ε(t) was drawn from a truncated normally distributed
random variable between −0.2 and 0.2, corresponding to a relative observation error
of up to 20% at each time step in each measurement. These terms were chosen for
the purpose of illustration. We see that exact asymptotic estimation is not obtained,
but the error is small (of the same order of the forcing term v(t)). ♦
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Figure 5.2. Numerical simulations from Example 5.2. In both pan-
els, the solid, dashed, dashed-dotted and dotted lines denote the to-
tal population ‖x(t)‖1, the corresponding estimate ‖z(t)‖1, the error
‖x(t) − z(t)‖1 and the unforced equilibrium ‖x∗‖1, respectively, each
plotted against time t. In (a), no forcing terms are present, so d = 0
and v = 0, and the error converges to zero. In (b), the forcing and
measurement error terms are nonzero, described in the main text.

Example 5.3. Now we assume that the nonlinear term f : R+ → R+ and k ∈ R
5
+

are given by

f(w) = we−w/10 ∀ w ≥ 0 and kT =
(

0 0 6.524 100.314 1400
)

, (5.3)

and so f is a so-called Ricker function. With these alterations, the state x of the
unforced (v = 0) model (1.2) with model data (5.1) and (5.3) is seen numerically to
oscillate for nonzero x0. Note that assumption (NL1) still holds with k as in (5.3).
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Since |f ′(w)| ≤ 1 for all w > 0, it follows immediately that f is 1-Lipschitz. Again
we choose (H, j) ∈ Snl in accordance with statement (b) of Proposition 4.3, yielding
p(H, j) = 14.6. In particular, (NL2) holds, and so Theorem 4.1 applies to the
nonlinear observed system (NLO) with model data (5.1) and (5.3). An illustrative
numerical simulation is contained in Figure 5.3. Here we seek to illustrate the effect
of increasing measurement errors and so, for simplicity, have chosen zero additive
forcing v(t), and a fixed nonzero initial population x0. In the three numerical
simulations shown in Figure 5.3, a relative observation error of up to 5%, 20% and
40% was incurred at each time-step and in each stage-class, respectively. At each
time-step, the error was drawn from a truncated normal distribution. We see that,
as expected, larger observation errors lead to larger errors in estimation. ♦
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Figure 5.3. Numerical simulations from Example 5.3. The solid line
denotes ‖x(t)‖1, and the dashed, dashed-dotted, and dotted lines denote
the errors ‖x(t)− z(t)‖1 for increasing measurement error. See the main
text.

6. Robustness with respect to model uncertainty. In this penultimate sec-
tion, we briefly discuss robustness of the observers considered with respect to model
uncertainty, germane to observer design in an ecological setting. This problem and
its solution are considered in more detail in the doctoral thesis [50].

So far we have been assuming that only the initial population distribution x0 in
the models (1.1) and (1.2) is unknown, and that the model parameters are known.
In all likelihood, even if there is a “true” model of the form (1.1) or (1.2) for x,
it is not likely to be known exactly, and hence subject to some so-called model
uncertainty. Here we describe the robustness the observers considered have with
respect to model uncertainty.

Suppose that the linear matrix PPM (1.1) is replaced by

x(t+ 1) = (A+∆A)x(t) + v(t), x(0) = x0, t = 0, 1, 2, . . . , (6.1)

where A ∈ R
n×n
+ is known, and ∆A ∈ R

n×n is unknown, but (hopefully) small.
With z still given by (LO), as ∆A is not available for observer design, the observer
error e := x− z satisfies

e+ = x+ − z+ = A0e+ v −Hd+∆Ax .
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Thus, under assumption (L), it follows that, for all t ∈ N,

‖x(t)− z(t)‖ ≤ M
(

rt0‖x0 − z0‖+ max
0≤τ≤t−1

(‖(∆A)x(τ)‖+ ‖v(τ)‖+ ‖d(τ)‖)
)

, (6.2)

where H ∈ Sl and r0,M are as in Proposition 3.1. If x(t) is bounded and ∆A is
“small”, then the bound for the difference ‖x(t) − z(t)‖ increases by a “small”
amount compared to the case when ∆A = 0. Of course, in the (not ecologi-
cally realistic) situation wherein ‖x(t)‖ → ∞ as t → ∞, then it is possible that
‖(∆A)x(t)‖ → ∞ as t → ∞, and the bound (6.2) is uninformative. This is another
shortcoming of the linear model (1.1) or (6.1) — when ‖x(t)‖ is growing with-
out bound, we see that uncertainties propagate through the error and prevent the
observer z from providing an accurate estimate of x.

Next, consider the situation wherein the nonlinear model (1.2) is replaced by

x(t+ 1) = (A+∆A)x(t) + bf(kTx(t)) + v(t), x(0) = x0, t = 0, 1, 2, . . . , (6.3)

with analogous interpretations of the terms involved, and let z be given by (4.1).
If (NL1) and (NL2) hold (the former applied to A+∆A), then estimate (6.2) again
holds. In the nonlinear setting, the solution x of (6.3) is bounded under ecologically
reasonable assumptions, see Remark 4.2. Similar analysis is possible in the cases
that the terms b, k and f are subject to model uncertainty, although we do not give
the details here.

7. Summary and future directions. Dynamic observers in the context of pop-
ulation ecology have been considered. The observers asymptotically estimate or
reconstruct the entire (unknown) state, using a combination of a model for the
state and known measurements of part of the state. We have considered situations
wherein the underlying models are discrete-time, and are either assumed to be linear
or have a nonlinear structure of Lur’e type. We have placed a particular emphasis
on the likely scenario wherein the populations of interest are described by nonlinear
models, subject to potentially persistent exogenous forcing (also interpreted as a
disturbance), and measurement error is incurred.

Without further information about the forcing terms, one cannot expect dynamic
observers to reconstruct the state exactly, and hence we have provided assumptions
in Proposition 3.1 and Theorem 4.1 under which the bounds (3.2) and (3.3) hold in
the linear and nonlinear case, respectively. The former estimate bounds the norm
of the current difference between the observer and state in terms of a decaying
exponential, capturing the contribution from the initial state error, and a term
which is linear in the ‘size’ of the forcing term. Consequently, when the forcing is
small, the error is small, and improves asymptotically. This is very much a worst
case estimate. The latter estimate bounds the ℓr norm of the observer/state error
in terms of the norm of the initial error and the ℓr norms of the disturbance, and
so provides an ensemble estimate. Further commentary on these estimates is given
in Remark 3.2.

In the nonlinear case, our approach has in part been inspired by incremental input-
to-state stability concepts, a contemporary area of research in nonlinear control
theory (see, for example [1, 26]), and our treatment permits ecological nonlinearities
common to population dynamics including Beverton-Holt type and Ricker functions;
the former is used in cases where the nonlinearity describes compensation and the
latter for overcompensation, see [48]. Roughly, our theory places assumptions on
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the state/observer error dynamics, captured by the interplay between the linear
components and the nonlinear term f . These requirements permit the state to
exhibit a rich range of biologically meaningful dynamics not captured by linear
models. Further, we have considered ‘optimal’ observer design in Propositions 3.3
and 4.3, which minimize the decaying exponential term in the error bounds, and
solved these optimisation problems in several ecologically reasonable situations.
These explicit constructions are simple and intuitive and exploit the structure of
the measurements natural in population ecology.

We conclude by reiterating that the present work continues a line of enquiry by
the authors in seeking to: increase the uptake of; apply; and develop new tools
in mathematical control theory in the context of biological sciences, particularly
ecology. The concepts of forced nonlinear dynamics, feedbacks, and control or
management strategies/actions are ubiquitous in both disciplines. In particular,
mathematical control theory is ideally-suited to uncertain or disturbed dynamics
which, we argue, is likely to be the case in realistic ecological settings. The value of
this approach has been noted by other authors, including, for instance, in the context
of the adaptive management of forests [23] and the study of reservoir dynamics [47].

Finally, our study on observer design in an ecological setting connects to numer-
ous areas, each of which could be pursued further, and we briefly mention just
three. First, although we have considered discrete-time systems, where many eco-
logical models are naturally formulated, the theory presented readily extends to
a continuous-time setting. We note that measurements are typically discrete, and
discrete-time models also arise from continuous-time models by evaluating the so-
lution at discrete points. In mathematical control theory, the term sampled-data
control broadly refers to where a continuous-time process is connected to a digital
(discrete-time) device. The sampled-data literature is vast, and textbooks on the
subject include [8] and [68]. A natural question raised by this work is what happens
when a population which, perhaps, is already difficult to measure or cryptic [7], is
only irregularly measured. Ideas from aperiodically measured sampled-data control
systems, for example [54], may be relevant in this setting.

Second, the problem of observer design in an ecological setting could be reformu-
lated as an identifiability problem, by viewing the unknown initial state as un-
known model parameters. Identifiability is a broad term, with different meanings
in different academic disciplines, see [52] for instance, and a full discussion is be-
yond the scope of the present contribution. Identifiability comprises both questions
of whether a model structure or parameter set can be determined from measure-
ments of that model, as well as the cycle of activity of model selection, estima-
tion/parameterisation, and validation. In mathematical control theory, the term
systems identification is typically used for this cycle, with textbooks including [5],
[42] and [56]. Interestingly, research has been conducted into the use of systems
identification in this sense in an ecological context in [34], although the overlap
with the present work appears minimal.

Third, we highlight that our approach has been restricted to the assumption that
a population is well-modelled by finitely-many discrete stage-classes, such as age in
time-steps, or insect instars. We note that many species may be naturally stratified
according to some continuous variable, for example the crown or stem diameter of
plants, see [53]. The natural state-space for models of the form (1.1) or (1.2) in this
setting is infinite dimensional. A class of integro-difference equations which arise
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in ecological modelling are the so-called integral projection models (IPMs). IPMs
were introduced as a tool for ecological modelling in [17], see more recently [45],
and also naturally admit a Lur’e-type nonlinear structure. Stability and incremental
stability analysis for such models appears in, for example [21] and [26], respectively.
Consequently, we anticipate that ideas underpinning our current presentation may
apply to the observer design for these classes of models.
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