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Component processes of detection probability in camera-trap
studies: understanding the occurrence of false-negatives
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Abstract
Camera-trap studies in the wild record true-positive data, but data loss from false-negatives (i.e. an animal is present but not
recorded) is likely to vary and widely impact data quality. Detection probability is defined as the probability of recording an
animal if present in the study area. We propose a framework of sequential processes within detection – a pass, trigger, image
registration, and images being of sufficient quality. Using closed-circuit television (CCTV) combined with camera-trap arrays we
quantified variation in, and drivers of, these processes for three medium-sized mammal species. We also compared trigger
success of wet and dry otter Lutra lutra, as an example of a semiaquatic species. Data loss from failed trigger, failed registration
and poor capture quality varied between species, camera-trap model and settings, and were affected by different environmental
and animal variables. Distance had a negative effect on trigger probability and a positive effect on registration probability. Faster
animals had both reduced trigger and registration probabilities. Close passes (1 m) frequently did not generate triggers, resulting
in over 20% data loss for all species. Our results, linked to the framework describing processes, can inform study design to
minimize or account for data loss during analysis and interpretation.
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Introduction

Camera-traps (CTs) are used for a range of ecological studies
from determining presence or occupancy (Mugerwa et al.
2013; Tobler et al. 2015) to activity (Lim and Ng 2008).
Studies using CTs have proliferated; however, it is not consid-
ered ‘fully mature as a methodological discipline’ (Rowcliffe
2017). The technical aspects of how CTs using passive infra-
red (PIR) motion detectors function and clarification of asso-
ciated terminology have been described (Welbourne et al.
2016). In short, a specialized ‘Fresnel’ lens focuses back-
ground infrared radiation (IR), filtered to 8–14 μm onto a

pyroelectric sensor. This sensor detects rapid changes in back-
ground IR which triggers the camera to record. As with more
traditional census techniques, it is recognized that PIR CTs are
prone to false-negatives, i.e. fail to detect a species which is
present (Gužvica et al. 2014). Detection probability is a fun-
damental issue in CT studies of occupation and population
density, particularly in studies using random encounter model-
ling (REM) of animals that lack easily distinguishable indi-
vidual markings (Rowcliffe et al. 2008).

Field data from CTs can only include true-positives: when
an animal pass elicits a trigger which results in registration of
the animal as recorded footage. In order to achieve a true-
positive, a number of sequential processes have to occur, all
of which must have a successful outcome (Fig. 1), and these
sequential processes underlie a series of measurable condi-
tional probabilities. False positives, such as misidentification
of species, sex or individual, are errors by the observer of the
footage and not the CT itself. Some species may be more
prone to being incorrectly identified, such as Scottish wildcat
Felis silvestris silvestris, where the phenotype of the ‘pure’
species and the hybrid are very similar. True negatives are
the result of an absence of footage in an area where a species
is absent. False-negatives can arise from failure of any
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processes in Fig. 1. True and false-negatives cannot be distin-
guished from each other which is why it is important to try to
understand and account for the latter.

Process 1: Encounter probability P(pass|presence). This is
the probability an animal will pass through the putative ‘de-
tection zone’ of a CT given that it is present in the study area.
This has been demonstrated to be affected by aspects of sur-
vey design such as the density and placement of CTs in rela-
tion to the species rarity and home-range size (O’Connor et al.
2017), sampling effort, specifically number of CT days and
number of CTs deployed (Tobler et al. 2008), use of attractants
such as bait (Hamel et al. 2013) and animal reaction to CT
presence (Larrucea et al. 2007). Inappropriate sampling design
could affect the probability of a pass, for instance, setting the
CT at ground level for arboreal species.

Process 2: Trigger probability P(trigger|pass). This is the
probability that the CT’s PIR sensor senses a change in infra-
red from the pass of an animal which causes the CT to trigger.
It has been suggested that mammals with aquatic lifestyles
result in low trigger probability as their thermal footprint can
be compromised by wet fur after exiting water (Lerone et al.
2015).

Process 3: Registration probability P(registration|trigger).
A CT trigger is not sufficient alone to record an animal – the
animal must also be visible on the CT image or video. Trigger
latency or trigger speed is the interval of time between PIR
trigger and initiation of the camera (Rovero et al. 2013) which
can vary widely between CT models (Randler and Kalb
2018). A slow trigger speed coupled with fast moving animals
means that not all triggers lead to registration as the animal has
passed through the field-of-view before the camera has been

activated (Rovero et al. 2013). The field-of-view of the camera
is not necessarily the same width as the detection zone mon-
itored by the PIR motion detector (Rovero et al. 2013; Trolliet
et al. 2014; Rovero and Zimmermann 2016), thus affecting
registration probability. Previous studies, without use of a con-
trol (to identify scenarios where an animal triggers the camera
but is not recorded) have only been able to measure the com-
bined detection of processes 2 and 3 (Rowcliffe et al. 2011;
Hofmeester et al. 2017). So whilst body mass, season and
relative position of an animal with respect to the camera are
likely to influence across processes 2 and 3 (Rowcliffe et al.
2011), these may operate on trigger probability, registration
probability or both.

Process 4: Capture quality probability P(capture
quality|registration). Not all footage/images of a study species
are of equal value, as images of a given quality may be re-
quired depending on a study’s objectives. ‘Quality’ here refers
to the contents of the footage/images rather than image reso-
lution per se. For example, if aiming to identify individuals,
reliable unique markers need to be visible, so a given angle of
view or fully body image may be required (Foster and
Harmsen 2012). Similarly, in species where it is possible to
determine sex, and the study aims require this, footage con-
taining sufficient views of an animal in terms of primary and/
or secondary sexual characteristics may be required (Findlay
et al. 2017), and whilst video may be better than stills, sexing
animals may not be possible for every registration.

Hofmeester et al. (2019) developed a conceptual frame-
work for detectability in CT studies which considers animal
characteristics, CT specifications, CT set-up protocols and en-
vironmental variables in context with a hierarchy of different

Fig. 1 The sequential processes required to detect an animal on a camera-
trap given that it is present. Failure of any of these processes leads to a
false-negative; therefore, detection success requires a positive outcome
from all the component processes. Specific terminology we use in this

study to quantify these processes is also shown. ‘Detection probability’
can thus be considered the product of a series of conditional probabilities
representing each of these processes
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spatial scales and six orders of habitat selection. Our frame-
work broadly converges with this. In practice, most CTstudies
cannot quantify trigger probability in isolation from registra-
t ion probabil i ty, and often tr igger probabil i ty is
misrepresented as a combination of trigger and registration
together. Using closed-circuit television (CCTV), we look
specifically at Processes 2–3 (Fig. 1), which equate to the
5th and 6th scale described by Hofmeester et al. (2019), i.e.
what happens when an animal passes in front of a CT, and we
also present capture quality probability as a separate process.

We hypothesize that different environmental and animal-
based factors will bias/influence each process as they result
from different functional components of the CT (the PIR sen-
sor and the camera). For example, trigger probability will
relate to changes in IR received by the PIR sensor, and the
PIR sensitivity setting. This received IR will in turn will be
governed by the spatial relationship between the animal and
the PIR sensor as the animal enters the putative zone of detec-
tion, as well as the thermal properties of the animal’s surface in
relation to the background, CT height and vegetation density
(see Hofmeester et al. 2019). Registration probability only
applies when the PIR sensor has triggered and will be
governed by the spatio-temporal relationship between the an-
imal and the camera’s field-of-view in the time between the
trigger and camera initiation (i.e. the trigger speed), and may
also be affected by variables such as the speed of the passing
animal, and variables with potential to completely obscure the
image such as dense vegetation and fog. Capture quality prob-
ability may be affected by the proportion, and which portion,
of the animal that is within the image, in addition to factors
that may affect the quality of the image, e.g. the speed of the
passing animal (blurring), vegetation density (obscuring
view), weather (mist and rain) and time of day (glare from
sun).

We used CCTVas a control to record all passes of each of
our target species through the putative detection zones of ar-
rays of CTs in order to observe at which process CTs produced
false-negatives. CCTV explicitly allowed us to observe all
passes, even when these did not elicit a trigger or did elicit a
trigger but not a registration. Using CCTVenables distinction
between the latter and genuine ‘false triggers’ (i.e. triggers
caused by extraneous stimuli which also result in footage
not containing the target species). Such a distinction cannot
be made without a control (e.g. CCTVor direct observation).
Two CT models were chosen to contrast field-of-view and
detection zone differences, one with a more standard detection
zone and field-of-view (Bushnell) and one with wide detec-
tion and field-of-view (Acorn). We were able to separately
investigate variation in trigger probability, registration proba-
bility and elements of capture quality probability for one semi-
aquatic (Eurasian otter Lutra lutra) and two terrestrial (red fox
Vulpes vulpes and Eurasian badger Meles meles) mammal
species of a similar size (hereafter ‘otter’, ‘fox’ and ‘badger’).

We hypothesised that the variables driving success in process-
es 2, 3 and 4 would be different, for example, wewould expect
trigger probability to be influenced primarily by distance,
whilst registration probability would be most influenced by
movement patterns, such as speed. Furthermore, we hypothe-
sized that trigger probability of wet otters would be lower than
that of dry otters (Lerone et al. 2015). We use our findings to
suggest key considerations of study design and potential
sources of bias in CT studies.

Materials and methods

Data collection

We used two study sites. The first was a wild area in SE
Scotland (55.9 °N, 3.2 °W). We targeted a mammal run in
woodland known to be used by both badger and fox. The
second was a captive otter enclosure (50.6 °N, 4.2 °W) in
SW England. The enclosure was approximately 700 m2, with
a pond accounting for approximately a third of the area. The
enclosure included two wooden hutches for denning, termed
‘holts’. A male and a female otter lived in the enclosure; they
were not intended for release and were habituated to humans.
In both study areas, we set up two CCTV cameras (Swann
SRPRO-842) at approximately 2 m above ground to continu-
ously record to a CCTV recorder (M2/UTC-FDVR-4). The
CCTV used IR illumination at night and was able to observe
24 h per day. Both sites had flat topography, and work was
undertaken in winter when vegetation would be at minimum
density and height (otter: 14 Nov–5 Dec 2017, fox & badger:
21 Feb–14 April 2017). At both sites, we set up four CT
stations, subsequently referred to as CT ‘positions’, within
the CCTV field-of-view with the PIR at 27 cm above the
ground approximating average shoulder height of the three
species studied. CTs were aimed parallel to the ground and
placed in security boxes so that they could be replaced at the
same height and angle.

For both trials, we used Bushnell Aggressor (model
119,776) CTs programmed to record 5 s video with an interval
of 5 s between recordings. Video potentially captures more
data than still images, and use of video is likely to increase
due to technological advances (Swinnen et al. 2014). In the
otter enclosure, at each recording station, we also set a
Bushnell CT to record a burst of 3 still images with a 5 s
interval between bursts and a Little Acorn (model 5310 WA)
CT to record 5 s video with a 5 s interval, see Fig. 2. We set
Bushnell CTs to ‘auto’ sensitivity as recommended by the
manufacturer. The Acorn was set to medium sensitivity. The
Acorn was used as a contrast to the Bushnell as its PIR sensor
has an advertised 100° detection angle and 100 ° camera field-
of-view, compared to an advertised 55° detection angle and
40 ° field-of-view for the Bushnell. At both sites, we fixed a
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data logger (Onset Hobo) 1.5 m above the ground to record
hourly air temperature, and in the otter enclosure pond, we
secured a data logger at 30-cm depth to record hourly water
temperature.

At both sites, we determined distances between each CT
and features visible on the CCTV such as habitually used trails
and trees in each CTs’ field-of-view. CCTV footage was
reviewed to identify passes of a single animal, and we created
a chronological list of passes. We defined a ‘pass’ as a single
animal moving across the central line of the CT’s field-of-
view (see Hofmeester et al. 2017). As CTs targeted mammal
runs, virtually all animals passed the central line. We included
passes where the target species was considered the only po-
tential stimulus for the CT PIR sensor, so we excluded passes
where extraneous stimuli were present, such as birds and ro-
dents. Waving vegetation and direct sunlight would also have
been seen as an extraneous stimuli, but these were not an issue
during our study period because vegetation was sparse at the
time of year of the study, and it was overcast and not windy.
We also excluded passes where the animal was less than 1 m
from the CT, as the animals could potentially pass beneath the
PIR sensor and/or field-of-view (Rowcliffe et al. 2011).

We cross-referenced passes on the CCTV footage against
the CT footage using their respective timestamps. This en-
abled us to separately quantify Processes 2 and 3 (Fig. 1),
i.e. distinguishing an animal passing but not triggering the
CT from an animal triggering the CT but not registering in
its footage. This process eliminated any false triggers (i.e.
where a CT triggered but no otter, fox or badger had passed).

Variables recorded

We quantified trigger probability P(trigger|pass) with a binary
variable of passes which either triggered the camera (1) or did
not (0), regardless of whether its footage registered the animal.
We a l s o q u a n t i f i e d r e g i s t r a t i o n p r o b a b i l i t y
P(registration|trigger) with a binary variable of passes which

either triggered the camera and registered the animal (1) or
triggered the camera but failed to register the animal (0).

As discussed, capture quality probability P(capture
quality|registration) depends on a study’s objectives. In many
studies of mammals, identifying presence of the species is not
necessarily sufficient, but rather a good view of the head and
body is needed to identify the age category/sex/breeding sta-
tus of the individual (for instance, lactating females)
(Sollmann and Kelly 2013; Findlay et al. 2017) or to observe
individual natural markings (Karanth 1995; Silver et al. 2004).
We used capture of the head of the animal in the first video
frame or image as an indication ofminimum capture quality as
more of the animals would normally be captured in the fol-
lowing video footage or images. We quantified capture quality
probability with a binary variable categorizing good capture
quality as capture of head only, head and body, or head, body
and tail (1) or poor capture quality when the head had already
passed through the field-of-view (0).

From the CCTV footage and data loggers, a suite of animal
and environmental variables were recorded for each pass
(Table 1). The orientation of the animal pass to the CT was
recorded, using three categories. A lateral pass was when the
animal passed exposing a complete side view and an anterior
pass was when the animal approached the camera-trap pre-
senting the head, shoulders and front legs and a posterior pass
when the animal approached the CT from behind and walked
away exposing its hindquarters. We chose to record an ani-
mal’s gait (i.e. walk, trot, run) to represent speed as gait was
quickly identifiable whilst estimating ms-1 over such short
distances would be prone to inaccuracies from perspective
using CCTV footage and inconsistencies due to instances of
the animal pausing. Running animals were subsequently com-
bined with trotting animals as running animals were too infre-
quent to analyse separately; our variable GAIT therefore had
two categories (walk/trot or run). We recorded whether there
was any delay in the animal passing through the field-of-view
as a result of the animal pausing to sniff or scent mark (i.e.

CCTV, with 
field of view

CT posi�on
with a single
CT

Approx. 5m

Pond

Approx. 5 m

CT posi�on
with 3 CTs

(a) fox and badger (b) o�er

Fence

Approx. 5m

Fig. 2 Schematic maps showing the positions of the camera-trap (CT) arrays and closed-circuit television (CCTV) at the study sites for a badger and fox,
and b otter. Scales and relative positions are approximate, and CTs and CCTVs are oversized. Arrows indicate direction CT stations faced
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loitering). This was recorded as a binary variable LOIT. For
otter, we also recorded whether the animal was dry after being
in the holt and prior to immersion in water (from holt) or
whether the animal had been immersed in water since leaving
the holt (not from holt). This enabled us to subset the data to
include passes where the otter was fully dry or not fully dry.
For fox and badger, we only used Bushnell CTs on video
setting. For otter, we had stations of three CTs (Bushnell vid-
eo, Bushnell still images, Acorn video) together to maximize
data acquisition from each pass. We analysed data for each of
the three CT models/settings separately so we could compare
Bushnell video between fox/badger and otter, and because
aspects of the three CT models/setting differ substantially in
key elements such as detection zone, field-of-view, etc..

To understand how the otters’ IR footprint develops after
exiting from water, we used a thermal imager (FLIR PAL65)
to take thermal images of otter on dry ground from the point of
exitingwater to 300 s post-immersion. Seventeen images were
taken, the land temperature ranged between 6 and 10 °C and
the water was 9.5 °C. Mean temperature of the otter trunk and
an equivalent area of ground adjacent to the otter were mea-
sured using FLIR Tools software (v5.13.17214.2001). The
absolute difference in temperature was plotted against time
from water (Fig. 3), and an exponential model was fitted to
the data. Approximately a 2.7 °C difference between animals
emitted with IR and the background IR is needed for a PIR
sensor to initiate a trigger (Meek et al. 2012), although this
will depend on the CT model and PIR sensitivity setting.
Under these conditions, the fitted model predicts 32 s to have

elapsed before the temperature difference reaches a conserva-
tive 3 °C.

Modelling trigger and registration probabilities

We carried out modelling in R version 3.2.2 (RCore Team
2015) within R Studio (RStudioTeam 2015), fitting general-
ized linear mixed models (GLMMs) using lme4 (Bates et al.
2015) and generating model comparison tables using MuMIn
(Barton 2016). We used the package manipulate (Allaire
2014) to fit the exponential model in Fig. 3.

We used GLMMs with a binomial distribution to investi-
gate variation in the response variables P (trigger|pass) and
P(registration|trigger) for each species and CT model. The
CTs positions potentially had different local conditions.
Therefore, we set CT position as a categorical random effect
and built a list of candidate models (online resource 1) con-
taining combinations of appropriate variables in Table 1, in-
cluding a null model in each.

Distance to CT and orientation of animal could not be in-
vestigated in the samemodel sets, as the trigger distance could
not be measured for anterior passes, i.e. when the animal ap-
proaches the CT at 180°, whilst for most posterior passes
when the animal walks away at 180° the animal would have
to enter the detection zone close to the CT. Distance was
prioritized as a variable, and lateral passes approximating
90 ° were selected for analysis unless otherwise stated.

We investigated whether immersion in water negatively
affected trigger probability for otter, as suggested by Lerone

Table 1 Data collected for each animal pass identified on CCTV. Response variables were recorded against the first frame of the CT video or the first
still image from the burst of three. Explanatory variables described parameters of the pass as observed on CCTV prior to viewing passes on the CTs

Response variables from CT recordings Badger/fox Otter

TRIGGER: binary (1 = trigger/0 = no trigger) ✓ ✓

REGISTRATION: when trigger = 1. Binary (1 = animal registered/0 = no animal registered) ✓ ✓

CAPTURE QUALITY: when trigger = 1 and registration = 1. Binary (1 = good/0 = poor) ✓ ✓

Explanatory variables from CCTV footage

DIST: perpendicular distance (m) between CT and animal, continuous ✓ ✓

GAIT: binary (walk/trot or run) ✓ ✓

ORIENT: orientation of animal pass to CT, factor with 3 levels (anterior/lateral/posterior) ✓ ✓

LOIT: any pauses in animal’s progress when passes the CT such as sniffing or scent marking. Binary (LOIT/NO LOIT) ✓ ✓

TFW: Time from exiting water (s), continuous ✓

WET.DRY: binary, DRY i.e. from holt, and WET (passes where TFW ≤ 10s) ✓

Explanatory variables from data loggers

AIR: air temperature (°C), continuous ✓ ✓

WATER: water temperature (°C), continuous ✓

ABSDIFF: the absolute difference between air and water temperatures (°C), continuous ✓

Random variable

CAM.POS: The location of the CTwithin the study area, categorical ✓ ✓
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et al. (2015). First we modelled trigger probability for dry
otters after they had emerged from their holts and prior to
entering water. This allowed us to compare dry otter to fox
and badger. Then, we repeated the model comparison includ-
ing a generated binary variable WET.DRY to distinguish
passes where the otter was fully ‘wet’ (≤ 10 s since exiting
water) and passes where the otter was fully ‘dry’ (passes
where FROM.HOLT = 1). Finally, using all passes where
FROM.HOLT = 0, we repeated the model comparison includ-
ing TFW to test whether it was a significant variable, but it
was not well supported. We tested all GLMMs for
overdispersion and used a threshold of ΔAIC ≤ 2 to indicate
models with ‘substantial support’ (Burnham and Anderson
2004). For brevity, we only include plots for the best support-
ed model (ΔAIC = 0) in the main text, but other plots of all
models withΔAIC ≤ 2 and parameter estimates for all models
are provided in the online supplement.

Quantifying detection in a ‘worst-case scenario’

Poor triggering of CTs by otters after emergence from
water (Lerone et al. 2015) implies that studies on semi-
aquatic mammals could carry large bias, particularly if
some CTs are closer to water than others. We hypothesized
that a ‘worst-case scenario’ would be an otter emerging
directly from water into the detection zone, with an ante-
rior or posterior orientation, i.e. travelling towards or away
from the CT. An otter after immersion may emit less IR
radiation relative to the background (Kuhn and Meyer
2009). Anterior and posterior passes presents a smaller
surface area to the PIR sensor and are less likely to create
enough movement across the PIR which is required for a

trigger (see Rovero and Zimmermann 2016 for further
details). One of our CT stations in the otter enclosure
faced the pond at a distance of 2.5 m. Thus, we quantified
trigger and registration percentages for any anterior passes
of otter following immersion, although the sample size
(n = 28) was too small for further analyses.

Latency between trigger and registration

Trigger speeds of the CT models were tested by placing a
digital clock within the field-of-view of a CT and simulta-
neously triggering the CT with a moving hand whilst starting
the clock; thus, the trigger speed was displayed on the clock in
the first frame of the video or still. Across 40 repeats per
camera, trigger speeds were: Bushnell video 2.4 s (± 0.1
SD), Bushnell still 0.5 s (± 0.1 SD); Acorn video 2.3 s (± 0.1
SD); and Acorn still 0.7 s (± 0.1 SD).

Results

False-negatives were recorded at each stage of detection
we studied (triggering, registering, capture quality), but
the extent of false-negatives from each process varied be-
tween species, within species (e.g. wet vs dry otters), with
CT mode (still vs video) and CT model (Acorn vs
Bushnell) (Fig. 4). For all scenarios, at least 20% of passes
did not elicit a trigger despite the animal entering the pu-
tative detection area (Fig. 4, white bars). For otters, bad-
gers and foxes on videos, a substantial component of
false-negatives occurred when the CT triggered but did
not register the animal, whilst for stills (otters only) this
occurred very infrequently (stippled bars). Based on our
specific criteria of recording the animal’s head, substantial
data loss occurred due to poor capture quality regardless
of whether stills or videos were used, although this varied
widely between scenarios (light grey bars). There was sub-
stantial variation in the proportion of passes that registered
images (combined dark and light grey bars) or images of
sufficient quality (dark grey bars).

Trigger probability P(trigger|pass)

For the terrestrial mammals and fully dry otters, model com-
parison results and plots of lowest AIC models are in Fig. 5.
DIST and GAIT influenced trigger probability for all species
using the Bushnell CTs. DIST has a negative effect in each
scenario, with a slower GAIT having greater trigger probabil-
ity except for the interaction seen in badger where this was
only true close to the CT. Trigger rate by the Acorn CT was
influenced by AIR and DIST with trigger probability being
better at the higher air temperature, but again decreasing with
increased DIST.

Fig. 3 Absolute difference (ΔABS) in temperature (°C) between an otter’s
trunk and surrounding land against time after being immersed in water
illustrating how long since immersion it takes for the otter to emit enough
heat (c. 3 °C) for a passive infrared sensor to theoretically detect the otter.
To describe the asymptotic relationship, we fitted an exponential model in
the form y = a(1-e-bx) + c where y is the temperature difference, x is the
time since exiting water, and a, b and c are parameters estimated by the
model. The absolute difference between air and water temperatures is also
plotted, using temperature from data loggers
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Figure 6 shows model comparisons for trigger probability
of the best supported models in which fully wet and fully dry
otter were considered. With both CT models, DIST had a
negative effect, but the negative effect was reduced for dry
otter compared to wet.

Registration probability P(registration|trigger)

Registration probabilities for the Bushnell still images of
otter were almost perfect (i.e. only 2–4% data was lost
from cameras triggering but not registering), see Fig. 4,
so we did not model these. For videos, registration prob-
ability model comparisons are in Fig. 7. Because registra-
tion probability is conditional on the camera having trig-
gered, we did not expect the thermal properties of the
animal relative to the background to influence it, so we
combined wet and dry otter passes for the analysis.

For video, in each species the model of LOIT+GAIT+
DIST had strong support. Notably for registration, the
probability increased with distance in most cases, except
for Acorn CTs where there was no relationship. In all
cases, the registration probability was substantially better
when animals were walking and loitering than when they
were moving more rapidly.

Capture quality probability

GLMMs were not possible for capture quality probability
as loss of data from the trigger and registration stages
reduced the number of captured images; furthermore the
associated variables (GAIT, LOIT, DIST) were too un-
evenly distributed. A summary table is provided, see
Table 2.

Detection in a ‘worst-case scenario’

For 28 anterior passes of otters emerging fromwater at the CT
station 2.5 m from the pond, the percentage of triggers, regis-
trations and overall capture probabilities are in Table 3.

Discussion

Consideration of the separate component processes of detectabil-
ity, aligned with their measurable probabilities (Fig. 1) facilitated
a clearer understanding of false-negatives when camera-trapping
our study species. We demonstrated that substantial data loss
through false-negatives can occur at Processes 2–4 (Fig. 4) but
that this varies with context (species, camera model, footage
type). These false-negatives are driven by different variables as
demonstrated by differences between drivers of trigger and reg-
istration probabilities. There are some clear methodological con-
siderations that can be drawn from our findings.

PIR sensitivity caused loss of data at close distances

Decreased capture with increased distance is well documented
(Rowcliffe 2017; Randler and Kalb 2018), but our data dem-
onstrate this occurs primarily because of reduction in trigger-
ing, not a reduction in registering of animals on footage. The
PIR sensor receives long-wave infrared (IR) through an 8–
14 μm filter. Atmospheric transmission of long-wave IR
through air is good (Usamentiaga et al. 2014); therefore, ab-
sorption (by atmospheric gases such as CO2 and water va-
pour) of IR energy between the animal and PIR sensor is not
thought to be of consequence (Welbourne et al. 2016). Other
mechanisms are therefore needed to explain decreasing trigger

Fig. 4 Success rate of trigger, trigger and registration, and trigger and registration of head as a proportion of the number of passes for a terrestrial
mammals on video and dry otter on video and still images b otter passes not from holt c all otter passes (passes from holt and not from holt)
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probability with increased distance. We suggest that there are
two ways that distance can affect the presentation of the ani-
mals IR footprint to the PIR sensor. The first relates to the loss
of intensity of the animals emitted IRwith increasing distance,
as the energy per unit area from a point source decreases
according to the inverse-square law (Papacosta and
Linscheid 2014). The second is that the further away the an-
imal is from the PIR, the more likely there are to be objects or
vegetation between the animal and PIR sensor which could
block the passage of IR and reduce capture rates (Hofmeester

et al. 2017). Whilst distance will always have a predictable
negative effect on trigger probability due to the loss of inten-
sity of IR, this will be compounded by objects within the
detection zone and lead to variation in the relationship be-
tween trigger probability and distance, depending on context,
such as local vegetation density.

The negative effect of distance is critical in CT studies that
adopt the random encounter model (REM) to estimate popula-
tion densities when individuals cannot be identified (Rowcliffe
and Carbone 2008). This has been an important development in

Fig. 5 Model selection tables and plots of the best supported model for
Trigger Probability, P(trigger|pass), for a badger with Bushnell camera-
trap (CT) on video setting b foxwith Bushnell CTon video and c dry otter
with Bushnell CT on video and d dry otter with Acorn CT on video.

Model variables are defined in Table 1. For brevity, only models with
ΔAIC ≤ 2 and the null model are shown in the ranking tables. Full model
results are included in online resource 1
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density estimation using camera-traps because capture-
recapture methods cannot be applied to species that are not
individually identifiable. The REM or similar could be used
for all species, therefore removing any potential error from
misidentification of individuals. REMs require knowledge of
the size of the detection zone of CTs (Rowcliffe et al. 2008).
However, because detection probability is variable within the
detection zone, distance sampling has been integrated into
REMs to estimate effective detection distances for species
(i.e. the distance within which the number of animals not cap-
tured equals the number captured beyond) (Hofmeester et al.
2017). This relies upon ‘a shoulder of certain detectability up to
a certain distance’ from the camera-trap (Rowcliffe et al. 2011),
i.e. there is an assumed zone close to the camera with a 100%
capture probability for a passing animal. However, we found
that at 1 m there was a substantial predicted rate of false-
negatives due to trigger failure. At 1 m, trigger probability
was already compromised, notably at faster gaits: fox 69%;
badger run/trot 58% (walk 88%); and dry otter from holt with
Bushnell CTs run/trot 74% (walk 93%). The REM approach is
caveated with the assumption that PIR response must be reli-
able (Rowcliffe et al. 2011). Our trials with two frequently used
models of camera-trap demonstrate important limitations in PIR
sensitivity. Similar poor capture at close distance (1 m) has also
been found in a study of birds (mean of 60% across six size
classes of bird and six CT models), where CTs were pro-
grammed to capture still images and high sensitivity (Randler
and Kalb 2018). We suggest that imperfect triggering at close
distances for small to medium homoiotherms may be ubiqui-
tous in CT technology and thus needs to be evaluated prior to

distance sampling and other quantitative studies, with a CCTV
control being a useful method.

Speed is important in registration probability

Gait was an important variable affecting trigger probability for
badger and dry otter, but less so for fox with a slower gait
increasing trigger probability. We used gait to represent the
relative speed of passes within each species, but in some spe-
cies, there is also a difference in the vertical movement (i.e.
bounce) as well as horizontal movement with different gaits.
The bouncing gait of a trotting badger will interact with a
larger proportion of its background, possibly creating a better
signal to the PIR. This may lessen the effect of distance on
trigger probability, as seen in the interaction of GAIT and
DIST in Fig. 5. There was a more consistent effect of gait on
registration probability, in all cases slower passes are more
likely to register in an image/video; see Fig. 7. Observations
of running animals were rare in our study, and this has been
noted in other mammal groups such as the Felidae (Anile and
Devillard 2016), so speed may cause greater bias in multispe-
cies surveys where species move at different speeds affecting
both trigger and registration probability (Hofmeester et al.
2019).

Distance drives trigger and registration probability
in opposite directions

In contrast to the strong negative effect of distance on trigger
probability, there was a positive, though less marked,

Fig. 6 Model selection tables and plots of the best supported model for
Trigger Probability for otter, P(trigger|pass), including the variable
WET.DRY, using a Bushnell video and b Acorn video. Model variables

are defined in Table 1. For brevity, only models with ΔAIC ≤ 2 and the
null model are shown in the ranking tables. Full model results are includ-
ed in online resource 1
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relationship between distance and registration probabilities
when using Bushnell CTs on video setting. This is likely a
function of the time interval between the PIR detecting the
animal and the camera switching on, i.e. the trigger speed.
Registration probability for CTs recording video was consis-
tently affected by gait, loitering and distance across species
and CT models, contrasting with the minimal data loss due to
high registration probability on ‘still’ image setting. The lon-
ger trigger speed of videos (just over 2 s) required slower

passes and/or loitering (e.g. to scent mark or sniff) to achieve
better registration probability. Also, the further the subject is
from the CT, the greater the width of field-of-view of the
camera, and therefore it takes longer to pass through the
field-of-view and is more likely to be within it when the cam-
era starts recording.

A hypothetical scenario illustrating a mechanism by which
registration probability for a lateral pass is likely to increase
with distance, and how this is likely to interact with animal

Fig. 7 Model selection tables and plots of best models for registration
probability P(registration|trigger) for a badger, Bushnell video b fox,
Bushnell video c otter (all passes), Bushnell video and d otter (all
passes), Acorn video. Only lateral passes were included (see text).

Model variables are defined in Table 1. For brevity, only models with
ΔAIC ≤ 2 and the null model are shown in the ranking tables. Full model
results are included in online resource 1
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speed, is shown in Fig. 8. This interpretation presents a hy-
pothesis that could be tested in future experiments.

Given this reasoning, a stronger positive effect of distance
on registration probability would have been expected with the
Acorn CTs due to their wider field-of-view, but this was not
observed. The Acorn’s wide field-of-view led to difficulties
identifying otter at greater distances as the otter had a smaller
apparent size, thus reducing registration probability.

The choice between still image and video capture

The fast trigger speed for Bushnell still images resulted in high
registration probability: 96–98% of passes that triggered re-
sulted in the otter being registered. This contrasts with the
registration probability for Bushnell videos, where a lower
65–79% of passes that triggered resulted in registered otter.
Survey design therefore needs to consider potential false-
negatives due to longer trigger speeds of the video setting,
which should influence the choice of CT make/model. Video
capture, however, can facilitate behavioural observations
which may be essential but are not possible with still capture.

For example, animal vocalizations can be recorded on video
mode with CT models that have microphones.

Still capture is indicated for capture-recapture density stud-
ies where a key consideration is high-quality images to distin-
guish pelage details (Trolliet et al. 2014); still capture also
enables the use of xenon white flash. It is also more efficient
for faunal inventories and occupancy studies where data gen-
erated by videos is not usually required. Density studies using
REM can use video or a burst of still images to the estimate
average speed of an animal (Rowcliffe et al. 2016). Whilst
there will be lost data from both settings due to imperfect
trigger probability, the video setting is also likely to have
reduced registration probability, unless the trigger speeds are
comparable. Where data from video is required, for instance,
in behavioural studies, CTs should be aimed at areas with field
signs indicating activity that delays the passage of a passing
animal, such as at dens, bait stations or scent marking sites.

Although trigger speeds for video recording are generally
slower than for still images, models are now available with an
advertised trigger speed of less than 1 s (e.g. Bushnell Core DS),
and these could be chosen if video is the preferred mode of study
to increase registration probability. An additional constraint for
video recording is that video data requires more storage capacity,
and viewing video footage takes longer than still images. Whilst
software to enable automated species identification is being de-
veloped and may be used in the future, this is directed at still
images (Yu et al. 2013; Tabak et al. 2019).

Effects of immersion of otter on detection are
short-lived

The trigger probability of dry otter passes on Bushnell videos
broadly reflected those of the two terrestrial species, with dis-
tance and/or gait being important in all the best fitting models
although the best supported model for the Acorn video CT
included air temperature and distance. Our results corroborate

Table 2 Percentages of the amount of mammal visible in the first frame
of each capture for each species and each camera-trap scenario, with
capture of head only, head and body, head, body and tail representing

‘good’ capture quality by our standard (see text), and any capture not
including head a ‘poor’ quality capture

‘Good’ capture quality ‘Poor’ capture quality

Head only Head and body Head, body and tail Body and tail Tail only

Badger – Bushnell video (n = 55) 4 4 60 27 5

Fox – Bushnell video (n = 72) 1 3 60 14 22

Otter – from holt, Bushnell video (n = 37) 0 11 27 11 51

Otter – from holt, Acorn video (n = 50) 2 0 54 20 24

Otter – from holt, Bushnell still (n = 65) 54 14 23 11 0

Otter – not from holt, Bushnell video (n = 68) 1 3 62 18 16

Otter – not from holt, Acorn video (n = 58) 0 3 76 16 5

Otter – not from holt, Bushnell still (n = 97) 26 18 38 9 9

Table 3 Summary of trigger, registration and overall capture
probabilities for otter representing ‘worst-case scenario’, from camera-
trap position facing water’s edge at 2.5 m recording anterior passes of
otter emerging directly from water (n = 28)

CT
model &
setting

Triggers as %
of all otter
passes (n)

Registrations
as % of all
triggers (n)

Overall trigger and
registrations combined (i.e.
‘captures’) as % of all otter
passes (n)

Acorn
Video

36 (10) 40 (4) 14 (4)

Bushnell
Video

39 (11) 63 (7) 25 (7)

Bushnell
Still

43 (12) 100 (12) 43 (12)
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observations that wet otters are poor in eliciting a PIR trigger
(Lerone et al. 2015). However, time from exiting water was
not an important variable in trigger success, indicating that
other variables may impact on the rate of change in IR emitted
after an otter has left water. Otter thermoregulation in cold
water can result in reduced emission of IR from an otter’s
body and tail; however, the intensity and duration of swim-
ming prior to exiting water can affect thermoregulation and
hence the amount of IR emitted (Kuhn and Meyer 2009).
These variables, and others, may confound any effect of time
from exiting water on trigger success. When we set a CT
facing water at 2.5 m to record otter emerging from water,
the trigger probabilities for Bushnell (video and still) and
Acorn CTs were very poor (36–43%). The slower trigger
speed for video led to poor registration probability of 40–
63% (Table 2); the resulting capture of all passes on video
setting (e.g. 14% for Acorn) is unlikely to be fit for any pur-
pose. Within the limits of our study conditions and limited
sample size, thermal imaging readings indicated that when
an otter emerges from water, its surface temperature nearly
matches water temperature (see Fig. 3). It only takes a short
period of time from immersion (≤ 1 min) for an otter to devel-
op a thermal footprint with a 3 °C difference from the back-
ground, 3 °C being an approximate difference that would trig-
ger a camera-trap PIR (Meek et al. 2012). Although this is
likely to be affected by background temperatures, and the
otter’s prior activity, it indicates such effects are potentially
short-lived.

Understanding the stages of detectability will
improve study design

CTs can be used for a range of study types; hence, study
design needs to consider CT model specifications,

placement and settings (Rovero and Zimmermann 2016).
Recognition of detection as a sequence of processes
(Fig. 1) enables each process to be considered indepen-
dently when planning CT studies, as the mechanisms for
success in each process are different. Understanding how
the animal, environment and equipment interact is impor-
tant for all CT studies and can help in considering poten-
tial bias, for example, from detection heterogeneity be-
tween sites or species in a study. We demonstrate the high
level of data loss (on both video and still setting) on
medium-sized animals due to poor triggering, even at
close distances. This would need to be accounted for with-
in population density analyses such as the REM when
distance sampling is used to estimate effective detection
distances. Using CCTV as a control, the influences of dif-
ferent seasons, temperatures, humidity and vegetation
structure could also be quantified.

We found that trigger probability for otter was compro-
mised after recent emergence from water, and it is anticipated
that this would apply for other semiaquatic species. In a pilot
study, we also found very low trigger probabilities for
European beaver Castor fiber in an enclosure where they
spent a significant time in water (unpubl. data). Careful CT
placement is therefore critical when studying semiaquatic
mammals and CTs set on in-stream features such as stones
or on entry/exit points from water are likely to have poor
trigger probability, as previously demonstrated (Lerone et al.
2015). Trigger probability would improve if CTs were set to
anticipate semiaquatic mammal passes where the animal has
been out of water long enough to develop a better thermal
footprint.

We would recommend that the trigger speed of the cho-
sen CT model and mode of recording is established, either
from the manufacturer’s specification or via testing. Video

Fig. 8 Hypothesized mechanism showing how distance to camera-trap
(CT) can interact with animal speed to influence registration probability.
Registration probability is positively affected by distance due to the larger

area within the field-of-view at greater distances. Conversely, faster mov-
ing animals can completely pass through the small width of the field-of-
view close to the CT before the camera takes an image
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trigger speeds are rarely specified by manufacturers, per-
haps because they are usually significantly slower than
those for still images.

Conclusions

Our approach has demonstrated where false-negatives poten-
tially occur during the process of detection using camera-traps
and what factors drive variation in trigger and registration
probabilities, and this can help optimize camera-trap deploy-
ments to try to reduce false-negatives given the study species,
environmental context and study aims. Our findings could
generalize to other species of medium-sized terrestrial and
semi-aquatic mammals. Similarly, this approach, using
CCTVas a control to separate component processes of detec-
tion (trigger, registration and capture quality), could be carried
out as a precursor to CT studies in different contexts, such as
with small or large mammals, or in different seasons and en-
vironmental conditions. Results could be used to inform
modelling of detection functions for REM with distance sam-
pling and would help to improve study design more widely.
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