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Abstract

We provide a counter example to the H∞ error bound for the dif-
ference of a positive real transfer function and its positive real balanced
truncation stated in “Positive realness preserving model reduction with
H∞ norm error bounds” IEEE Trans. Circuits Systems I Fund. Theory
Appl. 42 (1995), no. 1, 23–29. The proof of the error bound is based on a
lemma from an earlier paper “A tighter relative-error bound for balanced
stochastic truncation.” Systems Control Lett. 14 (1990), no. 4, 307–317,
which we also demonstrate is false by our counter example. The main
result of this paper was already known in the literature to be false. We
state a correct H∞ error bound for the difference of a proper positive
real transfer function and its positive real balanced truncation and also
an error bound in the gap metric.

1 Counter-example

Consider the following continuous time, time invariant SISO linear system on
the state-space C4 :

M ẋ(t) = Kx(t) + Lu(t),

y(t) = Hx(t) + Ju(t),
(1)

∗Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2
7AY, United Kingdom m.opmeer@maths.bath.ac.uk, cwg20@bath.ac.uk.

1



where

M =


1
12

1
24 0 0

1
24

1
6

1
24 0

0 1
24

1
6

1
24

0 0 1
24

1
6

 , L =


−1

0
0
0

 ,

K =


−4 4 0 0

4 −8 4 0
0 4 −8 4
0 0 4 −8

 , H = L∗,

J = 0.01.

(2)

The physical motivation for studying (1) comes from a finite element approxi-
mation of the heat equation

wt(t, x) = wxx(t, x),

w(0, x) = w0(x),

w(t, 1) = 0,

 t ≥ 0, x ∈ [0, 1], (3)

with input u and output y satisfying

u(t) := wx(t, 0),

y(t) := −w(t, 0) + Jwx(t, 0).
(4)

By setting A := M−1K, G = M−1L, we can rewrite (1) as

ẋ(t) = Ax(t) +Gu(t),

y(t) = Hx(t) + Ju(t),
(5)

with transfer function

Z(s) = J +H(sI −A)−1G. (6)

Observe that the system with transfer function Z − J is positive real as P =
M = P ∗ > 0, N =

√
−2K and R = 0 satisfy the positive real linear matrix

equalities
A∗P + PA = −N∗N,
PG−H∗ = −N∗R,

0 = R∗R.

(7)

Therefore for s ∈ C with Re s ≥ 0,

[(Z − J)(s)]∗ + (Z − J)(s) ≥ 0,

⇒ [Z(s)]∗ + Z(s) ≥ 2J > 0,

and so the system (5) is extended strictly positive real. It is easy to verify also
that (6) is a minimal, and hence controllable and observable, realisation of Z.
The positive real singular values of Σ are

σ1 = 0.6640, σ2 = 0.2927, σ3 = 0.0487, σ4 = 0.0036. (8)
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The first order positive real balanced truncation of Σ is

Ẑ(s) =
0.01s+ 12.74

s+ 51.97
,

and the approximation error ‖Z − Ẑ‖H∞ is 0.7648. However, the error bound
provided in [3, Theorem 2] is

2J

4∑
i=2

2σi
(1− σi)2

1 +

i−1∑
j=1

2σj
1− σj

2

= 0.6509,

which is smaller than the error. Hence [3, Theorem 2] is false.

Remark 1. We remark that there is some confusion in the literature regarding
the nomenclature balanced stochastic truncation (the term that was used in
[3]). Originally balanced stochastic truncation of a positive real function Z
meant a reduced order triple Zr, Vr, Wr with Vr and Wr left and right spectral
factors of Zr + Z∗r respectively, which are obtained by balancing the minimal
nonnegative definite solutions of the (primal and dual) positive real equations
and truncating. Nowadays ([1, p. 229] or [4]) the term positive real balanced
truncation is used for obtaining only Zr in this way, and the term balanced
stochastic truncation is reserved for a generalization of obtaining Vr from a
function V which can be seen as a left spectral factor of Z + Z∗. The matlab
function bstmr (balanced stochastic truncation model reduction) for example
only does the latter. The article [3] however pertains to what is now called
positive real balanced truncation.

2 Explanation

The proof of [3, Theorem 2] fails because for our above example the bound (18)
in [3] is false. Using the notation of [3] (note here only one state is truncated
from Σ) it follows that

‖T1‖∞ = 4.0389 > 1.7692 = 2

3∑
i=1

σ2
i

1− σ2
i

. (9)

Their proof of bound (18) uses [6, Lemma 5], which is only proven in [6] under
the assumptions (51) and (53) (using the numbering of [6]). However, the au-
thors state that [6, Lemma 5] also holds when (51) and (54) are satisfied. The
above example shows that this is false. Letting

S = T1, P (s) = Q(s) = diag (σ1, σ2, σ3) =: Π̂,

then equations (51) and (54) from [6] hold with A,B and C replaced by Â1, B̂1

and Ĉ1 (again, notation from [3]), but the conclusion fails as inequality (9)
shows. In this instance,

Â∗1Π̂ + Π̂Â1 + Ĉ∗1 Ĉ1 6= 0,
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and so equation (53) of [6] does not hold.
Counter-examples to [6, Theorem 1], which also uses the flawed [6, Lemma

5] in its proof, can be found in Chen and Zhou [2] and Zhou et al. [7, p. 171].
It is not pointed out there, however, that the flaw to [6, Theorem 1] occurs in
[6, Lemma 5].

3 A new error bound

We prove the following error bounds in [5]. The gap metric error-bound was
proven independently by Timo Reis as well.

Theorem 2. Let G and Gr denote the transfer functions of a minimal, asymp-
totically stable, positive real input-state-output system of McMillan degree m and
its positive real balanced truncation of McMillan degree k respectively. Then

δ(G,Gr) ≤ 2

m∑
i=k+1

σi,

where δ is the gap metric and

‖G−Gr‖H∞ ≤ 2 min
{

(1 + ‖G‖2H∞)(1 + ‖Gr‖H∞),

(1 + ‖G‖H∞)(1 + ‖Gr‖2H∞)
} m∑

i=k+1

σi,

where σi are the positive real singular values.
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