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Abstract Strict monotonicity of the spectral radii of bounded, positive, ordered linear
operators is investigated. It is well-known that under reasonable assumptions, the
spectral radii of two ordered positive operators enjoy a non-strict inequality. It is
also well-known that a “strict” inequality between operators does not imply strict
monotonicity of the spectral radii in general—some additional structure is required.
We present a number of sufficient conditions on both the cone and the operators for
such a strict ordering to hold which generalise known results in the literature, and have
utility in comparison arguments, ubiquitous in positive systems theory.

Keywords Comparison argument · Ordered Banach space · Positive linear operator ·
Spectral radius

Mathematics Subject Classification 06A06 · 15B48 · 47A10 · 47A63 · 47B65 ·
47N60 · 47N70

1 Introduction

We investigate the following problem pertaining to the spectral radii of bounded
positive linear operators which admit a certain ordering. Here, and throughout the
manuscript, X denotes a real Banach space, with positive coneK ⊂ X which induces
the partial order≤ or≥ and A1, A2 ∈ B(X ) denote bounded, positive linear operators
with r(A1) > 0. Given these hypotheses, we seek to investigate when
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A2 ≤ A1 and A2 �= A1 ⇒ r(A2) < r(A1), (1.1)

holds. It is known in the finite-dimensional case that irreducibility of A2 is sufficient
for (1.1), see [22, Theorem 9]. For general cones, it is known that if K is normal and
reproducing, then

A2 ≤ A1 ⇒ r(A2) ≤ r(A1), (1.2)

(see, for example, [19, Theorem 4.2] or [5, Theorem 1.1]). The non-strict inequal-
ity (1.2) has been considered for more general cones and positive operators in [5],
which builds on earlier work such as [23], and shown not to hold in general when the
assumptions of normality or reproducing are dropped, and not replaced with suitable
alternatives. The strict inequality (1.1) has been considered in [19], and sufficient con-
ditions given. By way of further background, we mention that there is also a body of
work on monotonicity of the spectral radius for commuting ordered Banach algebras,
see [21] and the references therein.

The trivial example whereinX = R
2,K = R

2+ (which is normal and reproducing),
with the usual partial ordering of componentwise inequality, and

A2 =
(
1 0
0 1

)
and A1 =

(
1 x
0 1

)
x > 0, (1.3)

shows that (1.1) need not hold in general. As another example, consider the bounded
linear operators

A2(x1, x2, . . . ) = (0, x1, x2, . . . ) and A1(x1, x2, . . . ) = (x1, x1, x2, . . . ),

defined on the space of convergent sequences with zero limit, equipped with the supre-
mum norm, and positive cone consisting of component wise nonnegative sequences.
Clearly A2 ≤ A1, A2 �= A1, but both A2 and A1 are isometries and so r(A1) =
r(A2) = 1.

We acknowledge that there are elementary sufficient conditions for (1.1), such as
if K is normal and reproducing and

∃ ρ > 0 : A2 + ρ I ≤ A1 ⇒ r(A2) < r(A1), (1.4)

or
∃ γ ∈ (0, 1) : A2 ≤ γ A1 ⇒ r(A2) < r(A1) . (1.5)

Both (1.4) and (1.5) follow from straightforward adjustments to (1.2), using the known
equalities r(A2 + ρ I ) = r(A2) + ρ and r(γ A1) = γ r(A1). The assumptions in (1.4)
and (1.5) are too conservative for many applications, however. We are interested in the
strict inequality (1.1) owing to its utility for discrete-time positive dynamical systems,
where comparison arguments are readily applicable, such as [10], particularly in the
infinite-dimensional case. For example, much attention has been devoted in theoretical
ecology to discrete-time dynamical systems specified by certain classes of integral
operators, so-called Integral Projection Models [7,8]. Here the spectral radius gives a
theoretical long-term exponential growth (or decline) rate of a population.
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There is considerable overlap between the present work and aspects of [19],
where (1.1) is also considered. Briefly, we derive sufficient conditions for (1.1) which
are distinct to those in [19] and we highlight the differences in the manuscript. Finally,
we draw heavily on the textbook [12] but, to the best of our knowledge, the results
presented here do not appear in [12] or indeed elsewhere in the literature.

2 Notation and preliminaries

There are a number of conventions pertaining to terminology in the positive operator
and positive systems literature, which are not all equivalent, and we use those in [12].
We briefly recall some key terms. Let (X , ‖·‖) denote a real Banach space. A (positive)
cone K ⊆ X is a closed subset of X such that K + K ⊆ K, αK ⊆ K for all α ≥ 0
and K ∩ (−K) = {0}. The cone is called reproducing (also sometimes known as
generating) if X = K − K and normal if 0 ≤ x ≤ y implies that ‖x‖ ≤ a‖y‖ for
some constant a > 0 which is independent of x and y. A cone is called solid if it has
non-empty interior. Solid cones are reproducing.

For u ∈ K\{0} we shall require the set

Xu := {x ∈ X : −γ u ≤ x ≤ γ u, for some γ ≥ 0},

(see [12, p. 42]). It is clear that u ∈ Xu and hence Xu �= ∅. Furthermore, as Xu is
closed under addition and scalar multiplication, it follows that Xu ⊆ X is a subspace.
Thus Xu is a normed space when equipped with

‖x‖u := inf{γ ≥ 0 : −γ u ≤ x ≤ γ u}, x ∈ Xu,

which has the elementary properties:

i. ‖u‖u = 1;
ii. for x, y ∈ Xu ∩ K, x ≤ y implies that ‖x‖u ≤ ‖y‖u ;
iii. for x ∈ Xu , −‖x‖uu ≤ x ≤ ‖x‖uu.
For Banach spaces X and Y , we let B(X ,Y) and B(X ) denote the set of bounded
linear operators X → Y and X → X , respectively. We let C(X ) ⊆ B(X ) denote the
subset of compact operators. The (continuous) dual of X , the set of bounded, real-
valued linear functionals on X , is denoted X ′ = B(X ,R) and equipped with usual
norm

‖ f ‖X ′ = sup
x∈X
x �=0

| f (x)|
‖x‖ .

Given A ∈ B(X ), we recall that the adjoint operator A′ ∈ B(X ′) is defined by
(A′ f )(x) = f (Ax) for all f ∈ X ′ and all x ∈ X (see, for example, [13, Definition
4.5-1, p. 232]). The adjoint operator A′ is boundedwith respect to the induced operator
norm
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‖A′‖X ′ = sup
f ∈X ′
f �=0

‖A′ f ‖X ′

‖ f ‖X ′
.

If Y has cone L, then the operator A ∈ B(X ,Y) is called positive if AK ⊆ L. A
positive operator A ∈ B(X ) is called u-bounded if there exist functions α, β : X →
R+ such that

α(x)u ≤ Ax ≤ β(x)u ∀ x ∈ K, (2.1)

and α(x), β(x) > 0 if x �= 0. The term u-bounded from above means that only
the second inequality in (2.1) holds. If K is reproducing and A ∈ B(X ) is a positive
operatorwhich is u-bounded fromabove, then A : X → Xu iswell-defined.Moreover,
A|Xu ∈ B(Xu) and the induced operator norm satisfies

‖A‖Xu = sup
x∈Xu
x �=0

‖Ax‖u
‖x‖u = ‖Au‖Xu . (2.2)

The above claims are all easily established from their definitions.
We shall make use of the following properties without further reference. First, if the

three conditions all hold: (i) W ⊆ X is continuously embedded in X ; (ii) A ∈ B(X )

has positive spectral radius, and; (iii) additionally A ∈ B(X ,W), then the spectral
radii of A ∈ B(X ) and A|W ∈ B(W) are equal.

Second, if X = K − K, A1, A2 ∈ B(X ), A1 ≤ A2 and A1 �= A2, then there exists
x∗ ∈ K such that

(A1 − A2)x
∗ �= 0, (2.3)

which is readily established by contraposition. Indeed, if (2.3) fails, that is,

(A1 − A2)v = 0 ∀ v ∈ K, (2.4)

then, for arbitrary x ∈ X , there exists (un)n∈N ⊂ K, (vn)n∈N ⊂ K such that

x = lim
n→∞(un − vn) .

Thus, by (2.4) and continuity of A1 and A2

A1x = A1 lim
n→∞(un − vn) = lim

n→∞(A1un − A1vn) = lim
n→∞(A2un − A2vn)

= A2 lim
n→∞(un − vn) = A2x,

implying that A1 = A2.
Following the convention of [12], we say that positive A ∈ B(X ) is irreducible if

Ax ≤ κx for some κ ≥ 0 and x ∈ K\{0} implies that x is a quasi-interior point of
K. Recall that x ∈ K is a quasi-interior point if f (x) > 0 for all non-zero, positive
functionals f ∈ X ′. A positive u-bounded operator A ∈ B(X ) is irreducible if u is
a quasi-interior point. We comment that for non-solid cones, the definition of quasi-
interior point used here is not equivalent to that used in [23], see [12, p. 36]. If K
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is solid, then the sets of quasi-interior points and interior points coincide. We let K′
denote the set of positive functionals in B(X ,R), which is a positive cone if, and only
if, X = K − K.

Finally,wenote that the argumentswhich followmake assertions about the spectrum
of an operator A ∈ B(X ), and so strictly speaking we extend A to the complexification
of X , denoted Xc in the usual way; see, for example [6, p.79].

3 Strict monotonicity of spectral radii

Our main results are contained here. The first subsection considers estimates in the
spirit of (1.4) and (1.5). The second appeals to spectral properties of positive operators.
For notational convenience throughout, let r1 := r(A1) and r2 := r(A2).

Strict monotonicity of spectral radii by direct estimates

Lemma 3.1 Let X denote a real Banach space, with a cone K ⊂ X and positive
operators A1, A2 ∈ B(X ) which satisfy A2 ≤ A1 and A1 �= A2. If either of the
following:

(1) there exist w2 ∈ K\{0} such that A2w2 = r2w2, ε > 0 and n ∈ N such that

rn2w2 ≤ (A1 − ε I )nw2, (3.1)

or γ ∈ (0, 1) such that
rn2w2 ≤ γ n An

1w2, (3.2)

(2) there exist f2 ∈ K′\{0} such that A′
2 f2 = r2 f2, ε > 0 and n ∈ N such that

rn2 f2 ≤ (A′
1 − ε I )n f2,

or γ ∈ (0, 1) such that

rn2 f2 ≤ γ n(A′
1)

n f2,

hold, then r(A2) < r(A1).

Proof We consider the hypotheses in (1). If (3.1) holds, then rn2w2 = An
2w2 ≤ (A1 −

ε I )nw2. It follows from [12, Lemma 9.1, p. 89] that

rn2 ≤ r
(
(A1 − ε I )n

) = (
r(A1 − ε I )

)n
,

whence

r(A2) ≤ r(A1 − ε I ) = r(A1) − ε < r(A1) .
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If (3.2) holds instead, then we again invoke [12, Lemma 9.1, p. 89] to see that

rn2 ≤ r
(
(γ A1)

n) = γ n(r(A1)
)n

,

yielding

r(A2) ≤ γ r(A1) < r(A1),

as required. The proof for (2) is identical, save using r(A′) = r(A) for A ∈ B(X ). ��
Although Lemma 3.1 is appealing in that no conditions are placed on the cone K,
the difficulty with using the lemma in practice is verifying that the inequalities in (1)
or (2) hold, which requires knowledge of w2 or f2, respectively. It is well-known that
for general operators, the assumptions in (1) and (2) are not symmetric—existence
of eigenfunctionals need not imply existence of eigenvectors, for instance, see Exam-
ple 4.1.

Lemma 3.2 Let X denote a real Banach space, with a reproducing and normal cone
K ⊂ X and positive linear operators A1, A2 ∈ B(X ) which satisfy A2 ≤ A1 and
A1 �= A2. Assume that w1 ∈ K\{0} satisfies A1w1 = r1w1 and that one of the
following:

– A1 is w1-bounded from above;
– A1 is u-bounded, for some u ∈ K\{0};

hold. It follows that r(A2) < r(A1) if, and only if, there exist γ ∈ (0, 1) and N ∈ N

such that
An
2w1 ≤ (γ r1)

nw1 ∀ n ∈ N, n ≥ N . (3.3)

Clearly, A2w1 ≤ γ r1w1 is sufficient for (3.3) to hold with N = 1. However, consider
the simple example

X = R
3, K = R

3+, A2 =
⎛
⎝0 0 κ

1 0 0
0 1 0

⎞
⎠ and A1 =

⎛
⎝0 0 1
1 0 0
0 1 0

⎞
⎠ ,

where κ ∈ (0, 1). We have that r2 < r1 = 1 and may choose w1 = (
1 1 1

)T . By
considering An

2w1 for n ∈ Nwe see that (3.3) holds for N ≥ 3, but not for N ∈ {1, 2}.
Proof of Lemma 3.2 The assumption thatK is normal implies thatXw1 is continuously
embedded in X , as for x ∈ Xw1

−‖x‖w1w1 ≤ x ≤ ‖x‖w1w1 ⇒ 0 ≤ x + ‖x‖w1w1 ≤ 2‖x‖w1w1 .

By the reverse triangle inequality and normality, it follows that

‖x‖ − ‖x‖w1‖w1‖ ≤ ‖x + ‖x‖w1w1‖ ≤ 2a‖x‖w1‖w1‖,
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for some a > 0. We conclude that

‖x‖ ≤ (2a + 1)‖w1‖‖x‖w1 ,

as required. Our assumptions imply that A1 (and so also A2) are w1-bounded from
above. Indeed, if A1 is u-bounded, then combining (2.1) with A1w1 = r1w1, yields

α(w1)u ≤ A1w1 = r1w1 ⇒ u ≤ r1
α(w1)

w1 .

Here we have used that α(w1) > 0 as w1 �= 0. We conclude that

A1x ≤ β(x)u ≤ r1β(x)

α(w1)
w1 = γ (x)w1 ∀ x ∈ K, (3.4)

where γ (x) := r1β(x)/α(w1).
Therefore, by an abuse of notation we consider A1, A2 : Xw1 → Xw1 , which are

bounded operators with the same respective spectral radii as A1, A2 ∈ B(X ).
Assume first that r(A2) < r(A1). It follows that r(A2) < γ r(A1) = r(γ A1), for

some γ ∈ (0, 1). Therefore, by the Gelfand formula for the spectral radius, there exists
N ∈ N such that

‖An
2w1‖w1 = ‖An

2‖w1 ≤ ‖(γ A1)
n‖w1 = ‖(γ A1)

nw1‖w1

= γ nrn1 ‖w1‖w1 = γ nrn1 , ∀ n ≥ N .

Thus, by definition of the norm on Xw1

An
2w1 ≤ ‖An

2w1‖w1w1 ≤ γ nrn1w1 ∀ n ≥ N ,

which is (3.3). The converse argument reverses these steps, using the property (ii). ��
In its simplest form Lemma 3.2 requires verifying that inequality A2w1 ≤ γ r1w1,

for some γ ∈ (0, 1) and where w1 satisfies A1w1 = r1w1. More assumptions are
placed on the cone than in Lemma 3.1. Moreover, an obvious corollary follows by
applying Lemma 3.2 to the adjoint operator, which we state next, and crucially use that
normal and reproducing are dual notions between K and K′, see [12, Theorems 4.5,
4.6, p. 40].

Corollary 3.3 Imposing the notation and assumptions of Lemma 3.2, assume that
f1 ∈ K′\{0} satisfies A′

1 f1 = r1 f1 and that one of the following:

– A′
1 is f1-bounded from above;

– A′
1 is g-bounded, for some g ∈ K′\{0};

hold. It follows that r(A2) < r(A1) if, and only if, there exist γ ∈ (0, 1) and N ∈ N

such that

(A′
2)

n f1 ≤ (γ r1)
n f1 ∀ n ∈ N, n ≥ N .



1180 C. Guiver

A drawback of Lemmas 3.1, 3.2 and 3.3 is the requirement that the spectral radius
of A2 or A1 is an eigenvalue with positive eigenvector or eigenfunctional, respectively.
Our next lemma relaxes that requirement for u-upper bounded operators. We recall
that every bounded positive operator with respect to a solid cone is u-bounded from
above for any interior point u of the cone, because X = Xu for such u. The proof is
the same as one direction of Lemma 3.2, and so is omitted.

Lemma 3.4 Let X denote a real Banach space, with a reproducing and normal cone
K ⊂ X and positive linear operators A1, A2 ∈ B(X ) which satisfy A2 ≤ A1 and
A1 �= A2. Assume that A1 is u-bounded from above, for some u ∈ K\{0}. If there
exist γ ∈ (0, 1) and N ∈ N such that

An
2u ≤ γ n An

1u ∀ n ∈ N, n ≥ N ,

then r(A2) < r(A1).

Finally, Lemma 3.4 may be formulated for the adjoint operator as well, mutatis mutan-
dis, and so we do not give a formal statement.

Strict monotonicity of spectral radii by spectral theory

Here we derive sufficient conditions for (1.1) in terms of the operators A1, A2 and the
cone K ⊂ X which avoid checking estimates of the form (3.1), (3.2) or (3.3). To that
end, we formulate the sequential assumptions:

(A.1) There exists w1 ∈ K, w1 �= 0, such that A1w1 ≤ r(A1)w1.

(A.2) There exists f2 ∈ K′, f2 �= 0 such that A′
2 f2 ≥ r(A2) f2.

(A.3) f2(y) > 0 where y := (A1 − A2)w1 ∈ K.

Note that y ∈ K in (A.3) follows as w1 ∈ K and by our standing assumption that
A2 ≤ A1.

Clearly, a necessary condition for (A.3) is that y �= 0, that is, the operators A1, A2
and w1 satisfy

A2w1 �= r1w1 . (3.5)

The assumptions (A.1)–(A.3) are sufficient for strict monotonicity of the spectral radii,
recorded in our main result.

Theorem 3.5 Let X denote a real Banach space, with a cone K ⊂ X and positive
linear operators A1, A2 ∈ B(X ) which satisfy A2 ≤ A1 and A1 �= A2. If (A.1)–(A.3)
are satisfied, then r(A2) < r(A1).

Proof Combining (A.1)–(A.3), we see that

0 < f2(y) = f2((A1 − A2)w1) ≤ f2((r1 I − A2)w1) ≤ (r1 − r2) f2(w1),

from which we conclude that r1 > r2, as required. ��
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We proceed to gather sufficient conditions for (A.1)–(A.3) and (3.5) to hold, for-
mulated as the following three lemmas. We do not claim that the following lists are
exhaustive. Obviously, (A.1) holds (with equality) if the spectral radius of A1 is an
eigenvalue of A1, with associated positive eigenvector w1 ∈ K. This is the approach
we take. Although it is known that under mild assumptions the spectral radius belongs
to the spectrum of a positive operator, it need not be an eigenvalue in general. Akin
to (A.1), assumption (A.2) is satisfied with equality if A2 admits a positive eigen-
functional corresponding to the spectral radius—a positive left eigenvector in the
finite-dimensional case. We highlight that assumptions (A.1) and (A.2) are them-
selves not sufficient for (1.1), as the counter-example (1.3) demonstrates. Thus, the
third assumption (A.3) is crucial and is a coupling condition between A1 and A2 where
strict positivity plays a role.

Lemma 3.6 Imposing the notation of Theorem 3.5, if any one of the following:

(a) X = R
N , for some N ∈ N;

(b) K is reproducing, Ak
1 is compact for some k ∈ N, with r(A1) > 0;

(c) K is reproducing, normal and minhedral, A1 is monotonically compact and u-
bounded;

(d) K is reproducing and normal, A1 is focussing, non-degenerate and u-bounded;
(e) K is reproducing and normal, A1 is Riesz with respect to C(X ), with r(A1) > 0;

are satisfied, then (A.1) holds.

We recall that a positive cone K is minhedral if every finite subset of X which is
bounded with respect to the partial order induced byK has a supremum. The reader is
referred as well to [12, Theorems 9.8, 9.9] for the special cases that A1 is an integral
operator. Further, recall that an element a of a Banach algebra A is called Riesz with
respect to a closed ideal I if the spectrum of the element a+I in the quotient algebra
A/I is zero, see [20] or [2].

Proof of Lemma 3.6 (a) See [12, Theorem 9.1, p.87].
(b) See [12, Theorem 9.3, p.87].
(c) See [12, Theorem 9.7, p.92].
(d) See [12, Theorem 10.2, p. 105] and the second, unnamed, result in [12, Section

11.4, p. 115].
(e) It follows from [3, Theorem 1.7.3] thatK is reproducing and normal if, and only

if, the cone of positive operators is normal in the Banach algebra B(X ). This cone is
a closed algebra cone, see [20], which is semi-simple. The set of compact operators
C(X ) is readily shown to be a closed, inessential ideal ofB(X ). Thus, the claim follows
by [20, Theorem 3.7] which gives that there exists nonzero, positive U ∈ B(X ) such
that A1U = r(A1)U . Taking v ∈ K such that w1 := Uv �= 0 yields (A.1). ��

The next lemma contains sufficient conditions for (A.2) and (A.3).

Lemma 3.7 Imposing the notation of Theorem 3.5, any one of the following:

(f) there exists m ∈ N such that Am
2 is compact;

(g) K is normal and reproducing and A2 is Riesz with respect to C(X ), with r(A2) >

0;
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(h) K is normal and solid;
(i) K is reproducing and normal, and A2 is u-bounded;

is sufficient for (A.2). Define y := (A1 − A2)w1. If, in addition to one of (f)–(i) above,
(A.1), (3.5) and any one of the following:

(j) y is a quasi-interior point of K;
(k) A2 is irreducible;
(l) A2 is u-bounded;

hold, then (A.3) is satisfied.

Proof (f) The claim follows from [12, Theorem 9.2, p. 87] applied to A′ ∈ B(X ′),
where we have used that A′ is compact if A is, Schauder’s Theorem (see, for exam-
ple, [14, Theorem 7, p.243]).

(g) If A2 is Riesz with respect to the compact linear operators C(X ), then A′
2 ∈

B(X ′) is Riesz with respect to the compact linear operators C(X ′), and the claim
follows from [20, Theorem 3.7] applied to A′

2. Here we have used that K is a normal
and reproducing cone implies that K′ is as well (see [12, Theorems 4.5, 4.6, p. 40]),
and so from [3, Theorem 1.7.3] the cone of positive operators X ′ → X ′ is normal in
the semi-simple Banach algebra B(X ′).

(h) and (i) The claim follows from [12, Theorem 9.12, pp. 99–100].
That any of (j)–(l) and (A.1) and (3.5) are sufficient for (A.3) follows from [12,

Theorem 16.3, p. 171], once we notice from (A.1) that

A2w1 ≤ A1w1 ≤ r1w1 .

��
We next provide sufficient conditions for the inequality (3.5) to hold.

Lemma 3.8 Imposing the notation of Theorem 3.5, let u ∈ K\{0} and assume
that (A.1) holds. The conditions:

(m) X = K − K (for example, K is reproducing) and w1 is a quasi-interior point of
K;

(n) K is reproducing, A1 is u-bounded and (A1 − A2)
2 �= 0;

(p) K is reproducing, A1 is u-bounded and there exists x ∈ X such that −nw1 ≤
x ≤ nw1 for some n ∈ N with the property that (A1 − A2)x �= 0;

are each sufficient for (3.5).

We note that irreducibility of A2 is sufficient for irreducibility of A1 which in turn
is sufficient for irreducibility of A1 + A2. If this latter condition holds, then, in light
of (A.1) and the estimates

(A1 + A2)w1 ≤ 2A1w1 ≤ 2r1w1,

it follows that w1 is a quasi-interior point of K.
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Proof of Lemma 3.8 (m) Choose x∗ ∈ K such that w∗ := (A1 − A2)x∗ ∈ K\{0}.
Thus, by [12, Theorem 2.2, pp. 20–21], there exists a positive functional g ∈ K′ such
that g(w∗) > 0. Therefore, h ∈ K′ defined by

h := g ◦ (A1 − A2) : K → K → R+,

satisfies

h(x∗) = g((A1 − A2)x
∗) = g(w∗) > 0,

and so h is non-zero. As w1 is a quasi-interior point, and by (A.1),

0 < h(w1) = g((A1 − A2)w1) = g(y),

whence y �= 0.
(n) In Lemma 3.2 we proved the inequality (3.4), that u-boundedness of A1 implies

that A1 is w1-bounded from above. Clearly, A1 − A2 is w1-bounded from above as
well.

Next, the reproducing property of K implies that there exists x∗ ∈ K such that

y∗ = (A1 − A2)
2x∗ ∈ K\{0},

so that clearly both x∗ �= 0 and γ ∗ := γ ((A1 − A2)x∗) > 0. Thus, invoking the
w1-upper boundedness of A1 − A2 with x = x∗,

0 ≤ (A1 − A2)x
∗ ≤ γ ((A1 − A2)x

∗)w1 = γ ∗w1,

and applying A1 − A2 to both sides yields that

y∗ = (A1 − A2)
2x∗ ≤ γ ∗(A1 − A2)w1 ≤ γ ∗y .

Since y∗/γ ∗ �= 0, we conclude that y �= 0.
(p) Similarly to (n), A1 − A2 is w1-bounded from above. Thus, (A1 − A2)|Xw1

∈
B(Xw1) and, by assumption, is not equal to the zero operator. Therefore, invoking (2.2)
and (ii), we see that

0 < ‖(A1 − A2)|Xw1
‖w1 = ‖(A1 − A2)w1‖w1 = ‖y‖w1 ,

demonstrating that y �= 0. ��
To summarise briefly, Lemmas 3.7 and 3.8 place assumptions on A2 which, via

Theorem 3.5, ensure that (1.1) holds. Our final result is inspired by [19, Theorem 4.3],
and instead places more assumptions on A1.

Proposition 3.9 LetX denote a real Banach space,with reproducing andnormal cone
K ⊂ X which induces a Riesz space, and positive linear operators A1, A2 ∈ B(X )

which satisfy A2 ≤ A1 and A1 �= A2. If there exist
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(I) w1 ∈ K\{0} such that A1w1 = r1w1;
(II) f1, f2 ∈ K′\{0} such that A′

i fi = ri fi ;

and one of:

(III) (1) A1 is u-bounded, for some u ∈ K\{0}, a quasi-interior point of K;
(2) A1 is irreducible;

hold, then r(A2) < r(A1).

Recall that an ordered Banach space X is a Riesz space if for each u, v ∈ X , the
supremum and infimum of u and v (with respect to the ordering induced by the cone
K in this instance) also are elements of X . Riesz spaces are well-studied objects; see,
for example [1, p. 2] or [18, p. 48].

With reference to assumption (III) (1), in light of the inequalities

α(w1)u ≤ A1w1 = r1w1 ≤ β(w1)u, (3.6)

it follows that u is a quasi-interior point of K if, and only if, w1 is.

Proof of Proposition 3.9 The assumption that K is normal and reproducing implies
that r2 ≤ r1 by, for example, [5, Theorem 1.1]. Seeking a contradiction, assume that
r2 = r1 =: r . If A1 is irreducible, then w1 is quasi-interior point, and as for all x ∈ K,
x �= 0

0 < f1(A
n
1x) = rn f1(x),

for some n ∈ N by [12, Theorem 11.2, p.113], we conclude that r > 0 and f1 is strictly
positive. Alternatively, if A1 is u-bounded by a quasi-interior point, then f1(u) > 0.
It now follows from (2.1) that

0 < α(x) f1(u) ≤ f1(A1x) = r f1(x) ∀ x ∈ K\{0},

meaning r > 0 and f1 is strictly positive. Using (II), we now estimate that

r f2 = A′
2 f2 ≤ A′

1 f2 .

Since φ := A′
1 f2 − r f2 ∈ K′, and w1 is a quasi-interior point, the equality

φ(w1) = f2(A1w1) − r f2(w1) = (r − r) f2(w1) = 0,

implies that φ = 0, that is, A′
1 f2 = r f2.

We claim that
f2 = c f1, (3.7)

for some c > 0. The arguments which follow are based on those of [12, pp.112–113].
To that end, consider g := t f1− f2 ∈ X ′, for t > 0. If g = 0 for some t > 0, then there
is nothing to prove. We consider two exhaustive possibilities. Either we may choose
t > 0 sufficiently large such that g ∈ K′\{0} and g(x) = 0 for some x ∈ K\{0}
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or, for these t > 0, g /∈ K′ ∪ (−K′). In the first case we reach the contradiction
that the obvious equality A′

1g = rg implies that g must be strictly positive. In the
second, the element g+ := sup{0, g} ∈ K′ is well-defined by the minhedrality of K′,
see [12, Theorem 6.4, p. 61] and is not strictly positive. Moreover, as A′

1g+ ≥ 0 and
A′
1g+ ≥ rg, it follows that A′

1g+ ≥ rg+, yet A′
1g+ �= rg+ (else g+ would be strictly

positive). Therefore, on the one hand, the functional

h :=
∞∑
k=0

(2‖A′‖)−k(A′
1)

k(A′
1g+ − rg+

) ∈ K′\{0},

satisfies

h(w1) =
∞∑
k=0

(2‖A′‖)−k(A′
1)

k (
g+(A1w1) − rg+(w1)

)
︸ ︷︷ ︸

=0

= 0 .

However, on the other hand, the easily established estimate

A′
1h ≤ 2‖A′

1‖h,

implies that h is strictly positive, and so h(w1) > 0, a contradiction. We have estab-
lished (3.7), and so f2 is also strictly positive, as f1 is.

Let v ∈ K\{0} be such that (A1 − A2)v �= 0, so that fi (v) > 0, as v �= 0. Thus,
we arrive at the contradiction

r = r1 = f1(A1v)

f1(v)
= f2(A1v)

f2(v)
= f2(A2v)

f2(v)
+ f2((A1 − A2)v)

f2(v)
(3.8)

= r2 + f2((A1 − A2)v)

f2(v)
> r .

��
We conclude this section with some commentary, first on the assumptions of Propo-

sition 3.9, and then make some comparisons with [19].

Remark 3.10 Inspection of the proof of Proposition 3.9 shows where the assumptions
made are applied, and how these may be substituted. The assumption thatK is normal
and reproducing is used to ensure that r2 ≤ r1, from which a contradiction argument
is used. If X = K − K and either A2 is compact or r(A2) is a pole of the resolvent
of (the complexification of) A2, then r(A2) ≤ r(A1), see [5, Theorem 1.2, Corollary
1.3]. The Riesz property and normality are together used in the proof of (3.7) to
ensure that K′ is minhedral, and so the element g+ = sup{g, 0} is well-defined. If the
cone is K′ is solid, then a different argument may be used to establish (3.7), see [12,
Theorem 11.1]. By [12, Theorems 5.6 and 5.10], solidity of K′ is equivalent to the
existence of a uniformly positive functional f ∈ K′, that is, there exists θ > 0 such
that f (x) ≥ θ‖x‖ for all x ∈ K. Irreducibility or u-boundedness is used to establish
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that f1 is strictly positive and that (3.7) holds, so that f2 is strictly positive as well.
Strict positivity is required so that the arguments in (3.8) make sense. �

Remark 3.11 There is overlap between our results and those of [19], namely [19,
Theorems 4.3, 4.4]. In both of these results the cone K is assumed closed, and so the
cones in [19, Theorems 4.3, 4.4] are assumed reproducing (although that assumption
is not made throughout [19]). Our Proposition 3.9, including its proof, is based on [19,
Theorem 4.3], and strengthens it slightly by permitting that A1 is u-bounded. Irre-
ducibility as used here goes by the term semi-nonsupporting operator in [19], and is
assumed of A1 in [19, Theorem 4.3], but the concepts are equivalent via [12, Theorem
11.2, p. 113].

Theorem 3.5 is comparable with, but generalises, [19, Theorem 4.4], where it is
assumed that A1 is strongly positive (non-zero positive elements are mapped to quasi-
positive ones), which ensures that (l) holds. Finally, the assumption that (A1− A2)x is
a quasi-interior point whenever x ∈ K\{0} is stronger than our assumption (i). Finally,
we do note that [19, Theorem 4.4] proves other assertions than solely (1.1). ��

4 Examples

Example 4.1 Let X = C([0, 1]) denote the Banach space of continuous real-valued
functions [0, 1] → R equipped with the supremum norm, and let K denote the cone
of nonnegative-valued functions. This cone is solid (and so reproducing) and normal.
The operator

A2 : X → X , (A2x)(t) = t x(t) ∀ x ∈ X , ∀ t ∈ [0, 1],

is linear, continuous and positive. Evidently, for x ∈ X with ‖x‖∞ = 1

‖A2x‖∞ = sup
t∈[0,1]

|t x(t)| ≤ sup
t∈[0,1]

|x(t)| = ‖x‖∞ = 1,

and the bound is achieved when x ≡ 1, so ‖A2‖∞ = 1. Moreover, ‖An
2‖ = 1 for

all n ∈ N, and so r(A2) = 1. However, it is clear that A2x = λx has no non-zero
solutions, and so A2 has no eigenvalues and eigenvectors. For ρ > 1 andω > 0 define

A1 : X → X , (A1x)(t) = t (ρ + (ρ − 1) sin(ωt)) x(t) ∀ x ∈ X , ∀ t ∈ [0, 1],

which is also linear, bounded and positive. The coefficients of x in A1 and A2 are
plotted in Fig. 1, which visualises the readily established properties that A2 ≤ A1
and A2 �= A1. As with A2, A1 does not have any eigenvalues, but noting that for all
s ∈ [0, 1], gs ∈ K′ defined by gs(x) = x(s) clearly satisfies

(A′
2gs)(x) = sx(s) = sgs(x)

and (A′
1gs)(x) = sθ(s)x(s) = sθ(s)gs(x),
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Fig. 1 Coefficient of A2 dashed
line and coefficient of A1, solid
line. Here ρ = 1.1 and ω = 40π
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where θ : [0, 1] → R+ is given by

θ(t) := ρ + (ρ − 1) sin(ωt) ∀ t ∈ [0, 1],

we see that both A′
1 and A′

2 have positive eigenfunctionals.
For ease of exposition, assume that θ(1) > 1 and choose ρ ∈ (1/θ(1), 1). In this

case, we have that

A′
2g1 = g1 ≤ ρθ(1)g1 = ρA′

1g1 .

An application of Lemma 3.1 yields that r(A2) = 1 < r(A1). ��
Example 4.2 Let X = R

N for some N ∈ N,K = R
N+ which induces the partial order

of componentwise inequality. Let A1, A2 ∈ R
N×N+ denote nonnegative matrices. If

A2 ≤ A1, A2 �= A1 and A2 is irreducible, then r(A2) < r(A1). The claim is known
from [22, Theorem 9], but in the present context follows from Theorem 3.5, after
noting that assumptions (a), (h), (j) and (m) are satisfied. If A1 is irreducible, then
r(A2) < r(A1) is known from [4, Corollary 1.5, p.27], but in the present setting
follows from Proposition 3.9.

In [4, Corollary 1.5, p.27], it is proven that irreducibility of A1 + A2 is sufficient
for r(A2) < r(A1), which is seemingly weaker than requiring A1 is irreducible. We
comment that there is no generality gained by assuming that αA1 + (1 − α)A2 is
irreducible or u-bounded, for some α ∈ (0, 1], at least under our standing assumption
that A2 ≤ A1, even in more general operator settings. Indeed, the trivially established
inequalities

αA1 ≤ αA1 + (1 − α)A2 ≤ A1,

shows that αA1 + (1−α)A2 is irreducible or u-bounded if, and only if, A1 is—where
Proposition 3.9 applies. ��
Example 4.3 Let X = L p(
;R) for 1 ≤ p < ∞ and where 
 is a compact metric
space. Let K+ denote the cone of functions 
 → R which are nonnegative almost
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everywhere on 
, which is reproducing and normal, but not solid. Consider A1, A2 ∈
B(X ) defined by

(Ai x)(t) =
∫




ki (t, s)x(s) ds, i ∈ {1, 2},

for some kernels ki : 
 × 
 → R. The operators Ai are positive if

ki (t, s) ≥ 0 for almost all (t, s) ∈ 
 × 
, (4.1)

andmoreover, by [12, Theorem2.1, p.19], nonnegativity of the kernel (4.1) is sufficient
for Ai to be bounded. By linearity, the inequality A2 ≤ A1 is equivalent to

k2(t, s) ≤ k1(t, s) for almost all (t, s) ∈ 
 × 
, (4.2)

and A2 �= A1 means that there exist sets of positive measure 
∗
i ⊂ 
 such that

k2(t, s) < k1(t, s) for almost all (t, s) ∈ 
∗
1 × 
∗

2.

It is well-known that integral operators are compact under rather general assumptions
on the kernel. If k1 ∈ L1(
×
), then A1 is compact and so is A2 by (4.2). It follows
from (b) and (e) that (A.1) and (A.2) hold. The operators Ai are ui -bounded if there
exists ui ∈ K, ui �= 0 and nonnegative functions αi , βi ∈ Lq(
), where q ∈ (1,∞)

is complimentary to p, such that

αi (s)ui (t) ≤ ki (t, s) ≤ βi (s)ui (t) for almost all (t, s) ∈ 
 × 
.

The operators Ai are irreducible if, for any measurable proper subset 
1 ⊂ 
 with
positive measure, there exist closed sets �1 ⊂ 
 and �2 ⊂ 
\
1 such that

ki (t, s) > 0 for almost all (t, s) ∈ �1 × �2.

Irreducibility of A2 (k) is sufficient for (A.3), as is u-boundedness of A2 (l) and w1
a quasi-interior point (m). Alternatively, if one of (j)–(l) hold and 
∗ := 
∗

1 ∩ 
∗
2

has positive measure, then there exists x ∈ K such that (A1 − A2)
2x �= 0, and so

statement (m) holds, which together are sufficient for (A.3). To see that (m) holds, we
compute that for x ∈ K and almost all t ∈ 


(A1 − A2)
2x(t) =

∫
s∈


(k1 − k2)(t, s)(A1 − A2)x(s) ds

=
∫
s∈


(k1 − k2)(t, s)
∫

τ∈


(k1 − k2)(s, τ )x(τ ) dτ ds

=
∫∫

s,τ∈


(k1 − k2)(t, s)(k1 − k2)(s, τ )︸ ︷︷ ︸
>0 on 
∗×
∗

x(τ ) dτ ds .

��
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Example 4.4 Consider the discrete-time switched dynamical system

x(t + 1) = B(t)x(t) x(0) = x0 t ∈ {0} ∪ N, (4.3)

where B(t) ∈ {B1, . . . , BN } for each t ∈ {0} ∪ N and given positive Bk ∈ B(X ).
Switched systems are a popular and important class of control systems which, for
example, arise in dynamical systems with several distinct modes of operation. Their
interest is in part motivated by the property that even if r(Bk) < 1 for every k, the
zero equilibrium of (4.3) may be unstable, depending on the switching between the
Bk , captured via B. We refer the reader to the survey articles [15] or [16] and the
references therein, for further background on switched systems. Much attention has
been devoted in the systems and control literature to the stability of switched positive
dynamical systems, particularly by Valcher, Shorten and their collaborators; see, for
instance [9,11].

Here we simply record an elementary application of our results. Namely, if
B1, . . . , BN ≤ A2 ≤ A1, with A1 �= A2, r(A1) = 1 and (1.1) holds, then r(A2) < 1
and the zero equilibrium is globally exponentially stable if the cone is normal. Indeed,
the solution x of (4.3) satisfies

x(t) ≤ At
2x(0) ⇒ 0 ≤ ‖x(t)‖ ≤ ‖At

2‖ · ‖x(0)‖ ≤ Mrt2‖x(0)‖ → 0 as t → ∞,

for some M > 0 by, for example, [17, Lemma 1]. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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