
On Pros and Cons of Evolving Topologies with Novelty Search

Léni K. Le Goff1, Emma Hart1, Alexandre Coninx2 and Stéphane Doncieux2

1Edinburgh Napier University, Scotland, UK
2Sorbonne Universite - ISIR/CNRS, Paris, France

leni legoff@protonmail.com

Abstract

Novelty search was proposed as a means of circumventing
deception and providing selective pressure towards novel be-
haviours to provide a path towards open-ended evolution.
Initial implementations relied on neuro-evolution approaches
which increased network complexity over time. However, al-
though many studies have reported impressive results, it is
still not clear whether the benefits of evolving topologies are
outweighed by the overall complexity of the approach. Given
that novelty search can also be combined with evolutionary
methods that utilise fixed topologies, we undertake a system-
atic comparison of evolving topologies, using two types of
fixed topology networks in conjunction with novelty search
on two test-beds. We show that evolving topologies do not
systematically help, and discuss the practical consequences
of these results and the research perspectives opened up.

Introduction
The seminal work of Lehman and Stanley on Novelty Search
(NS) (Lehman and Stanley, 2011) has created a signifi-
cant shift of perspective within neuro-evolution (Stanley and
Lehman, 2015). Although much work had been dedicated
to understanding the influence of encodings before its ad-
vent (Stanley and Miikkulainen, 2002), the results obtained
by NS suggest that selective pressures are of utmost impor-
tance to get the best from a particular encoding, leading to
many works in which understanding the role of selection-
pressure became the main focus (Doncieux and Mouret,
2014; Lehman and Miikkulainen, 2015). One of the most
thought provoking experiments showed that a powerful en-
coding associated with a naı̈ve goal-based selective pressure
can get stuck in local optima, failing to consistently repro-
duce results they had found with other means (Woolley and
Stanley, 2011). However, used judiciously, architectures
automatically discovered by evolutionary approaches have
proven to be competitive with hand-made architectures, even
in deep neural networks (Miikkulainen et al., 2019), show-
ing the potential of the method. But even now, besides ob-
serving that neuro-evolution methods that enable augment-
ing of topologies (e.g. NEAT (Stanley and Miikkulainen,
2002)) may work — and sometimes works extremely well

— little is known about the inner workings of evolution of
neural architectures, even in simple setups. When the focus
is on open-ended evolution, its use seems to be a require-
ment (at least, this is suggested by its biological counterpart
(Martin, 1999)), but what about other more general appli-
cations of evolution? What are the pros and cons of these
approaches? Do the pros outweigh the cons and does NS re-
ally benefit from it? Although NS was first published more
than ten years ago we still do not have a clear answer to these
questions.

One of the initial motivations to add NS on top of NEAT
was the idea of starting the exploration from simple be-
haviours and then providing the possibility for the algo-
rithm to make their complexity grow (Lehman and Stanley,
2011). This could be a bootstrap facilitator (i.e. enabling
the algorithm to get on track within the early iterations):
too complex network architectures with random parameters
could get stuck in degenerate behaviours that the evolution-
ary search has trouble escaping from. Starting from sim-
ple topologies that can be progressively complexified could
avoid this.

A second potential advantage is to automatically find the
most fit network structure without the need to handcraft it.
Although it may seem appealing at first glance, this motiva-
tion needs to be justified. Neural networks have many stan-
dard structures that are known to fit different categories of
problems: multi-layer perceptrons to approximate functions
and Elman networks or fully recurrent networks when past
values need to be taken into account, for instance. When
facing a particular problem, knowing the kind of network
structure that can solve it, or at least making a guess, is not a
big issue. In very challenging applications, finding the right
structure may make a difference, and in this case, network
architecture search is clearly justified (Real et al., 2019). It
is less clear in general if an architecture search algorithm can
outweigh what a specialist can intuitively find within a very
short time. In an open-ended evolution scenario, there may
be no expert in the loop to find the structure for a particular
problem that the system has to deal with, but if there is one,
the question surely has to be raised.

423



Encodings with evolving topologies have a cost. There
is no free lunch (Wolpert and Macready, 1997). The initial
version of NS relies on NEAT (Stanley and Miikkulainen,
2002). Besides the network encoding per se, NEAT includes
specific crossover and selection algorithms to respectively
deal with the competing convention problem and to protect
innovation. For this reason, it cannot be used with standard
evolutionary algorithms, with the result that it cannot ben-
efit from the the latest and most efficient evolutionary al-
gorithms. It has been shown that some features of NEAT
can be discarded to make it compatible with standard selec-
tion algorithms like NSGA-II (Mouret and Doncieux, 2012),
which permits multiobjectivization (Doncieux and Mouret,
2014) in which novelty can combined with other objectives
(Mouret, 2011), and can even result in increased perfor-
mance (Mouret and Doncieux, 2012). However, an encoding
with an unbounded augmenting topology capability a priori
requires a genotype whose size can increase. This is a strong
constraint that prevents the use of efficient algorithms with
fixed size genotypes like CMA-ES (Hansen and Ostermeier,
2001).

Furthermore, the capacity to evolve topologies introduces
new mecanisms to design and tune: a natural question is to
understand whether they depend on the task or not. On tasks
requiring a deep network, for instance, a classical mutation
will have a too large impact on the network behaviour, sug-
gesting to develop adapted mutation mechanisms (Lehman
et al., 2018). If such adaptations are task specific, then the
removal of the need to have task specific expertise to design
the architecture will just be replaced by a requirement for
a task specific expertise related to mechanisms design and
tuning. The gain in this case is clearly not straightforward.

To sum up this work considers the following question:
does the complexification of an evolving topology encoding
bring sufficient added value to novelty search? We focus on
two potential advantages for evolving topologies regarding
novelty search: (1) bootstrap facilitation and (2) increasing
the diversity of behaviours, while also recognising that there
are two potential drawbacks: (1) the constraints on the geno-
type and (2) the potential difficulty to tune parameters. We
use two domains (maze-navigation and a walking robot task)
to systematically explore whether we observe the suggested
advantages in practice, and whether or not they are signifi-
cant enough to balance the constraints such a genotype im-
poses. As previous studies suggest that NS is not very sen-
sitive to the encoding parameters (Gomes et al., 2015), we
have chosen not to focus on this aspect here and to postpone
further studies on this topic to future work.

Related Work
Recent works have shown that NS and other divergent algo-
rithms can efficiently drive the optimisation of deep-neural
networks that have a fixed structure (Conti et al., 2018;
Gajewski et al., 2019), suggesting in a very challenging con-

text, that evolving topologies may not be required in NS.
Hence, if it is apparent that NS can efficiently work with a
fixed structure, it is not clear whether the process would have
bootstrapped faster using an encoding that enabled augment-
ing topologies, or if a more appropriate structure would have
been found by an encoding that allows architecture search —
in particular as architecture search has also shown its poten-
tial in challenging application domains (Real et al., 2019)).

It should be noted that NEAT was directly compared to
fixed topologies when it was first introduced (Stanley and
Miikkulainen, 2002). An ablation study was conducted to
investigate the importance of the different elements of this
approach. This comparison thus relied on the selection al-
gorithm of NEAT, and it is well known that the selection
pressure has a large impact on the performance of neuro-
evolution (Doncieux and Mouret, 2014; Lehman and Mi-
ikkulainen, 2015). Furthermore, although NS can be consid-
ered as a standard evolutionary algorithm in which the goal-
oriented fitness function is simply replaced by a novelty cri-
terion, in fact it has been shown to actually behave in a com-
pletely different manner, namely as a uniform sampling pro-
cess in the behavioural space (Doncieux et al., 2019). This
behaviour makes it difficult to transpose any results or de-
sign guidelines available with other evolutionary algorithms
to NS. Hence, there is a need to study the impact of the en-
coding directly on NS.

The relationship between an encoding enabling architec-
ture search and divergent algorithms has not been frequently
explored in the literature. Mouret and Doncieux (2012) con-
ducted an empirical study that included experiments using
a direct but simple encoding enabling evolution of weights
and topology loosely inspired by NEAT and a fixed Elman
network. The comparison of these setups was not their goal,
but it can be seen from their results that the evolving topolo-
gies setup has no clear advantage, at least not in every case.
Likewise, Tarapore et al. (2016) have studied the impact of
the encoding on the performance of MAP-Elites, another
divergent search algorithm: their conclusion was more in
favour of the fixed encoding they used. These results suggest
that evolving structures with divergent search is not always
beneficial, but these studies were not performed on NS and
did not examine the dynamics of the search.

Gomes et al. (2015) performed one of the rare systematic
studies of NS features. They compared a NS variant imple-
mented with a genetic algorithm and a fixed Elman structure
with a standard NS-NEAT. They examined many factors, in-
cluding the influence of the mutation rate, concluding that,
with an appropriate mutation rate, there was no significant
difference between a fixed encoding, and NEAT. However,
they only studied one network structure, only experimented
with maze tasks, and did not look at the dynamics of the
search process.

424



Background
Novelty Search
NS was introduced by Lehman and Stanley (2011). It is
an evolutionary algorithm in which the goal-oriented fitness
objective is replaced by a measure of the novelty of indi-
viduals. NS is particularly efficient when the rewards are
deceptive or sparse, as it pushes the search towards explo-
ration. In contrast to other evolutionary algorithms, individ-
uals are not selected on their performance or fitness but with
regard to their novelty with respect to previously evaluated
individuals.

To be able to assess the novelty of an individual, we have
to define a measurable space to compare individuals’ be-
haviours. This is commonly called the behavioural space
B. It is a smaller space than the full state space in which
action and state trajectories of the agent can be fully de-
scribed. Each individual has a behavioural descriptor de-
fined in B. Generally, this descriptor is computed based on
a trajectory1 σ of the individual defined on the joint space of
the robot states (S) and time (T ) : ST . Thus, we can define
FB : ST → B a function that takes a trajectory as input and
computes the corresponding behavioural descriptor.

The novelty of an individual is computed with respect to
the current population and an archive. The archive contains
the behavioural descriptors (BD) of a sample of past individ-
uals. The archive is filled throughout the generations. Then,
the novelty of an individual is defined as the average of the
distances between the BD of the individual and itsK nearest
neighbours in the archive and the population (equation 1).

η(FB(σ)) =
1

K

K∑

i=0

dB(FB(σ), FB(σi)) (1)

Where dB is a distance defined on the behavioural space B;
σ is the trajectory of the current individual and σi the i-th
closest individual in the archive and in the population.

Evolving Topologies
In the context of robotics, neural networks are often evolved
as controllers to solve a specific task. A naı̈ve approach
would be to select a fixed topology and only optimising
the weights. However, the topology of the network may
be important in relation to the context and the task. In
such cases, allowing evolution to discover the best structure
seems a reasonable choice. Moreover, an approach that gen-
erates topologies should encourage the exploration process,
thus releasing the full potential of NS (Lehman and Stanley,
2011). This has motivated the use of NEAT (Stanley and
Miikkulainen, 2002). Alongside the weights, NEAT evolves
network topologies of increasing complexity. It uses a di-
versity preservation mechanism based on speciation and a

1A list of states over time in which the agents have visited dur-
ing an episode

global innovation number for the crossover operator. How-
ever, these interesting and useful features prevent this encod-
ing from being used with classical evolutionary algorithm
such as NSGA-II as previously noted.

A simplification of this algorithm that we will refer to
as Direct-encoding Evolving Topologies (DET) has been
proposed by Mouret and Doncieux (Mouret and Doncieux,
2012). They use only mutation and no crossover. To evolve
the structure and the weights, five mutation operators are
used (selected at random): (1) Add a connection between
two existing neurons (add conn), (2) Remove an existing
connection (rm conn), (3) Add a neuron by splitting an ex-
isting connection in two. The weight is kept for the new
connections (add neu), (4) Remove a neuron and its con-
nections (rm neu), (5) Change the weights by polynomial
mutation (ch conn).

add conn rm conn add neu rm neu ch conn
0.1 0.01 0.1 0.01 0.1

Table 1: Hyper-parameters of DET corresponding to the
probability to apply these mutations. The values are those
used in the study of Mouret and Doncieux (Mouret and Don-
cieux, 2012). Their are used in the experiments of this study
too.

Assuming the parameters are chosen judiciously, neuro-
evolution with DET therefore also generates augmenting
topologies over generations (table 1). In this study, DET
is chosen to investigate the benefits of augmenting topolo-
gies instead of NEAT because of its simplicity: it does not
contain a speciation mechanism (which is unrelated to aug-
menting the topology) and therefore enables the study the
effect of augmenting topologies mechanism alone on nov-
elty search.

Experimental Protocol
We consider a neuro-evolution algorithm that is driven by
the novelty only and assess the added value of an evolving
topology encoding for novelty by comparing it with a fixed
topology encoding. The goal of this evolutionary algorithm
is to uniformly explore the behavioural space B (Doncieux
et al., 2019). The question we seek to answer is: What is the
impact of evolving topology on the uniformity of exploration
of B? Fixed structure and evolved structure neural networks
are compared based on their capacity to achieve uniform ex-
ploration. Two criteria are considered : (1) the uniformity
of the exploration and (2) the speed of the bootstrap, i.e. the
number of generation needed to converge.

Fixed Neural Network Structures
DET is compared to two types of fixed neural networks :
a fully connected feed-forward network (FFNN) and an El-
man network (RNN) which falls in the category of recurrent

425



neural networks. The FFNN is a three layered network com-
posed of an input, a hidden layer, and an output layer. The
input layer is fully connected with the hidden layer; the hid-
den layer is fully connected with the output layer. The El-
man network is an extension of the FFNN. In addition to the
other fully connected layers, a fourth layer, called context
units, is fully connected with the hidden layer. Additionally,
each context unit is connected to itself. For both types of
network, we conduct experiments in which networks of in-
creasing complexity (number of neurons and connections)
are used.

Tasks
Experiments are conducted on two different environments.
The first one is a simple 2D environment with a simulator
based on Simple DirectMedia Layer (SDL)2 with no physics
engine. The second one is a 3D environment simulated with
DART (Lee et al., 2018), a modern simulator. In both en-
vironments, the goal for the robot is to move away from its
starting position. Thanks to novelty search, the end goal is
to have a population of robotic controllers in which the end
position of the robots uniformly covers the whole environ-
ment.

(a) Hard maze (b) Multi maze (c) Wheeled robot

Figure 1: Picture of the two mazes and of the robot used for
the mazes’ experiments. The black dot indicates the starting
position of the robot. The three arrows indicate the position
of the proximity sensors and the two rectangles represent the
wheels.

2D Mazes The first test case is a simple navigation task in
a 2D maze. A wheeled robot has to move in the maze. It
is equipped with two wheels and three range sensors on the
front (see 1c). Two mazes with different features are used
(see figure 1). The hard maze has wide corridors but a non-
repetitive structure. It is named hard maze as in the study
of Lehman and Stanley (2011). The multi maze has narrow
corridors but a repetitive structure. It is named a multi maze
as in the study of Gomes et al. (2015).

The behavioural descriptor represents the final position of
the robot. The neural networks used to control movement
have three inputs, two outputs, and one input bias. The num-
ber of neurons and connections of each fixed structure neu-

2https://www.libsdl.org/index.php

ral networks are listed in table 2. The evaluation of each
controller is simulated using fastsim (Mouret and Doncieux,
2012), a simple 2D simulator based on SDL with no physics
engine.

Name Type Hidden Context Neurons Connections
ff 4 FFNN 4 0 10 24
rec 4 RNN 2 2 10 22
ff 16 FFNN 16 0 24 96
rec 16 RNN 8 8 24 120
rec 32 RNN 16 16 38 368
rec 128 RNN 64 64 134 4544

Table 2: Description of the fixed structure neural networks
used for the 2D mazes experiments.

3D Walkers For this task, a three legged robot has to move
in a square arena. Its starting position is in the centre of the
arena. The experiments are conducted with three different
robots which have either 2, 3, 4 degrees of freedom (DOF)
on each leg (see figure 2). The behavioural descriptor, as in
the maze experiment, is the final position of the robot. The
position is calculated from the centre of the base on which
the three legs are attached. The neural networks used to con-
trol the robot have as input all the joint angles of the legs and
the position and orientation of the base, and as output the
joint angles of the legs. Each neural network has in addition
an input bias. The number of neurons and connections are
listed in table 3. For this task, experiments conducted with
feed-forward neural networks performed poorly and thus are
of little interest. So, we chose not to include them. The eval-
uations are simulated using the DART simulator (Lee et al.,
2018) with its provided physics engine and collision solver.

(a) 2 DOF (b) 3 DOF (c) 4 DOF

Figure 2: Picture of the three legged robots. Each degree-
of-freedom (DOF) has alternating colours in order to be dis-
tinguishable.

Name Type Hidden Context Neurons Connections
rec 32 RNN 16 16 51, 57, 63 576, 672, 768
rec 64 RNN 32 32 82, 88, 94 1664, 1856, 2048
rec 128 RNN 64 64 146, 152, 158 5376, 5760, 6144

Table 3: Description of the fixed structure neural networks
used for the 3D walkers experiments. In the neurons and
connections column, the numbers correspond in the follow-
ing order to the 2, 3, and 4 DOF for each leg.

426



Exploration uniformity measure
To measure the exploration uniformity score of a run, we use
the method used by Gomes et al. (2015). The environment is
divided intoR = 12×12 cells and the number of individuals
in each cell is counted. Then, the distance of this distribu-
tion of the population is compared with the ideal uniformly
distributed population, measured using the Jensen-Shannon
divergence (JSD) (Fuglede and Topsoe, 2004). JSD is based
on the Kullback-Leibler divergence commonly used to mea-
sure the difference between two probability distributions.
Hence, the exploration uniformity score is the opposite of
the JSD between Pφ of the current population and the uni-
form distribution I (see equation 2). So, a score of 1 cor-
responds to a perfect uniformity of the distribution of the
solutions’ BD.

U(φ) = 1− JSD(Pφ, I) (2)

Where φ is the set of behavioural descriptors of a population;
Pφ the distribution of this set in the behavioural space and I
the uniform distribution in the same space.

Results
All the results shown in this section have been conducted
with an evolutionary algorithm with tournament selection,
no crossover and replacement of the whole population at
each generation. The only objective is novelty. Ten
replications of each experiment were conducted. Finally,
the population is set to a size of 400. The source code
used to obtain the results is available at this address :
https://github.com/LeniLeGoff/novelty neat.

2D Mazes
Figures 3 and 4 show the exploration uniformity score over
the generations for the two mazes. Experiments with DET
reach an exploration score at convergence that is less than or
equal to the best runs from RNNs. Indeed, rec 16 (see table
2) has a better score than the DET on the hard maze, and
the DET reaches a score equivalent to rec 32 on the multi
maze. Moreover, on both mazes, experiments with DET
have a slower bootstrap than almost all the runs with a fixed
structure network.

However, it is worth noting that DET achieves a high
coverage and an exploration capability close to uniformity
with simpler network structures than its fixed network chal-
lengers. As seen in figure 5, the maximum number of neu-
rons and connections in the DET generated networks are re-
spectively, around 15 and 40. By comparison, rec 16 has
24 neurons and 120 connections and rec 32 has 38 neurons
and 368 connections (see table 2). Thus, neuro-evolution
with DET generates simple structures which achieve at least
same results than more complex recurrent networks.

Interestingly, increasing the complexity of the RNN (i.e.
number of neurons and connections) does not necessarily

Figure 3: Exploration uniformity score over the generations
of experiments conducted on the hard maze. The solid bold
line corresponds to the median and the transparent areas
above and under the curves correspond to the first and third
quartile. Network structure parameters are in Table 2.

Figure 4: Exploration uniformity score over the generations
of experiments conducted on the multi maze. The solid bold
line corresponds to the median and the transparent areas
above and under the curves correspond to the first and third
quartile. Network structure parameters are in Table 2.

achieve a more uniform exploration. Experiments conducted
with rec 128 which has 134 neurons and 4544 connections
(see table 2), reach an exploration uniformity score below
those conducted with rec 32 (see figures 4 and 6). Also, El-
man networks lead to a better exploration than feed forward
networks for a similar complexity. Experiments with rec 4
reach largely higher scores than ff 4 on the multi maze (see
4). The multi maze seems to present a greater challenge than
the hard maze which is likely due to the narrow corridors and
the length of the paths.

3D Walkers
As shown in figures 7, 8, and 9, with all the robots, DETs
does not lead to an exploration score as high as that obtained
using RNNs. Unlike on the maze environment, experiments
with DET are not systematically slower to bootstrap than
with the RNNs, but neither are they faster (see figures 8
and 9). On all the experiments, rec 32 and rec 64 are the
best structures for exploration, apart from the 3 DOF legged

427



(a) Hard maze (b) Multi maze

Figure 5: Number of neurons and connections of the DETs
throughout the generations on the hard maze and on the
multi maze. For comparison : ff 4 has 10 neurons and 24
connections, rec 4 has 10 neurons and 22 connections, ff 16
has 24 neurons and 96 connections, rec 16 has 24 neurons
and 120 connections, rec 32 has 38 neurons and 368 con-
nections, and rec 128 has 134 neurons and 4544 connec-
tions. Refer to table 2 for more information about the fixed
networks structures.

(a) Hard maze (b) Multi maze

Figure 6: Plot of the exploration uniformity at the last gen-
eration for each neural network topology and DET.

robots in which there is no significant difference between
the different RNNs. As on the maze environment, the best
RNN is not the most complex one. On the experiments with
the robots with 2 and 4 DOF on each leg, rec 128 reaches
an exploration score below those of rec 32 and rec 64 (see
figure 11).

The number of neurons and connections increase with a
similar dynamic as the experiments on the maze (see figure
10). This is expected as the hyperparameters of DET are the
same in both tasks. Also, as in the maze task, DET gen-
erates networks with lower complexity than the RNN. The
maximum number of neurons and connections for the robots
with 2, 3, and 4 DOF on each leg are, respectively, around
25 neurons and 85 connections; 32 neurons and 150 connec-
tions; and 40 neurons and 230 connections. By comparison,
rec 32 has around 50 neurons and between 500 and 800 con-
nections, rec 64 has around 90 neurons and between 1500
and 2000 connections, and rec 128 has around 150 neurons
and between 5000 and 6000 connections (see table 3).

Figure 7: Exploration uniformity score over the generations
of experiments conducted with the three legged with 2 DOF
on each. The solid bold line corresponds to the median and
the transparent areas above and under the curve correspond
to the first and third quartile. Refer to the table 3 to have
information of the fix networks structures

Figure 8: Exploration uniformity score over the generations
of experiments conducted with the three legged with 3 DOF
on each. The solid bold line corresponds to the median and
the transparent areas above and under the curve correspond
to the first and third quartile. Refer to the table 3 to have
information of the fix networks structures

Overall, the results on this walking task are consistent
with the results obtained on the maze task. Evolving topolo-
gies neuro-evolution using DET does not systematically lead
to a better exploration uniformity than with fixed topology
neuro-evolution. Regarding bootstrap, DET does not guar-
antee a fast bootstrap: in fact, the opposite is observed on
the maze task. However, the networks discovered by DET
are simpler than the fixed structures that challenge it.

428



Figure 9: Exploration uniformity score over the generations
of experiments conducted with the three legged with 4 DOF
on each. The solid bold line corresponds to the median and
the transparent areas above and under the curve correspond
to the first and third quartile. Refer to the table 3 to have
information of the fix networks structures

(a) 2 dof legs (b) 3 dof legs

(c) 4 dof legs

Figure 10: Number of neurons and connections of the DETs
throughout the generations with the legged robots and on
the multi maze. For comparison : respectively for 2, 3, 4
dof legs, rec 32 has 51, 57, 63 neurons and 576, 672, 768
connections, rec 64 has 82, 88, 94 neurons and 1664, 1856,
2048 connections, and rec 128 has 146, 152, 158 neurons
and 5376, 5760, 6144 connections. Refer to table 3 for more
information about the fix networks

(a) 2 DOF (b) 3 DOF

(c) 4 DOF

Figure 11: Plot of the exploration uniformity at the last gen-
eration for each neural network topology and DET. Beware
of the y axis scales which are different for each plot.

Discussion
On both tasks studied, the fixed structures chosen for the
experiment lead to better exploration. On the maze task,
they also lead to a faster bootstrap time than the augmenting
topology encoding. The slower bootstrap observed with the
DET could be due to the time needed to find appropriate net-
work structures: this is not needed with a fixed structure net-
work encoding. Also, within the available generation bud-
get, neuro-evolution with DET does not generate networks
which are as complex as the biggest RNN and FFNN used
in this study. This is an interesting feature of augmenting
topology neuro-evolution, i.e. that it can achieve equiva-
lent results with less complex networks than with hand-made
neural network structures. However, this is also a possible
explanation of why this method has lower exploration capa-
bility than the most complex of the fixed structure networks
used in this study. Indeed, if a task needs a high level of
complexity in its policy representation, augmenting topol-
ogy may need a high number of generations to find this level,
or at worst, may never converge to this level of complexity.

Moreover, the results on the maze task show that RNN
performs better than FFNN for equivalent complexity, sug-
gesting that network structure has to be chosen according
to the task. Indeed, an Elman network (being a recurrent
network) has the capacity of computing sequences (Elman,
1990) which is useful for a task such as navigation which
has an obvious temporal component. It would be better to
use a central pattern generator (CPG) (Shan et al., 2000; Liu
et al., 2013) in the walking tasks given that CPG facilitates
the emergence of cyclical patterns. In this respect, interest-
ing studies have been conducted to assess the importance of

429



the network architecture over the values of the weights by
randomly assigning values to the weights (He et al., 2016),
achieving similar performance to trained networks. It is un-
clear so far whether augmenting topology neuro-evolution
algorithms are capable of generating such structures. How-
ever, a recent work proposed a method to evolve weight-
agnostic neural networks with the aim of evolving networks
able to solve tasks with random weights. This is a significant
attempt to shift emphasis towards the structure of networks.

In this study, the impact of the parameter settings for
DETs has not been explored. For instance, on the walking
task, it would be interesting to tune the parameters in order
to accelerate the augmentation of complexity to find larger
networks in fewer generations. However, if the parameters
of the encoding have to be fine-tuned according to the task
domain, then the expertise required to design network struc-
ture is simply replaced by the need for task-specific exper-
tise, so there is no significant gain from this point of view.

Experiments have been conducted in different environ-
ments and using robots of varying complexity to challenge
the complexity of the networks. For the walking task, the
same fixed structure leads to the best exploration behaviours,
which suggests that it is possible to find one structure with
enough generalisation capability to be used on a large va-
riety of environments in the same domain. However, the
results also suggest that a critical point is reached in the
complexity of the network, after which the quality of explo-
ration decreases with increasing complexity. Furthermore,
this critical point seems to be different for each task.

Augmenting topology neuro-evolution is one way to
avoid the difficult search for a suitable network. Accord-
ing to the task, the type of structure and its size have to be
chosen carefully, which is not a trivial task. However the
results of this study show that the use of augmenting topol-
ogy neuro-evolution is certainly not a panacea. Further re-
search directed towards finding a method that balances the
pros and cons of both fixed topology methods and of aug-
menting topology neuro-evolution is required.

Conclusion
Evolving topologies may have two different impacts: (1) the
approach may help to bootstrap the search and (2) it may dis-
cover an appropriate structure without the need for an expert
to define it. Our experiments show that a simple encoding
using an augmenting topologies feature neither helped boot-
strap the experiments nor did it converge towards the perfor-
mance of the most efficient network structure. On the other
hand, these experiments converged to structures that are sim-
pler than their fixed structure equivalent. Therefore the con-
clusion from this study is that, as for now, evolving topology
encodings do not outweigh their cost. In line with the princi-
ple of Occam’s Razor, the evidence presented here suggests
that NS should be used with a fixed structure neural network.
Nevertheless, architecture search clearly has great potential.

Our results show that different network complexities gener-
ate different performances and the most complex network
is not necessarily the best. It also suggests that the neural
networks do not need to start from the simplest structures
possible, and that there is no bootstrap problem when start-
ing from complex structures, at least on the tasks we have
considered. New encodings which aim to develop methods
that rapidly converge towards appropriate structures should
take these factors into account.

References
Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stanley, K.,

and Clune, J. (2018). Improving exploration in evolution
strategies for deep reinforcement learning via a population of
novelty-seeking agents. In Advances in Neural Information
Processing Systems, pages 5027–5038.

Doncieux, S., Laflaquière, A., and Coninx, A. (2019). Novelty
search: a theoretical perspective. In Proceedings of the Ge-
netic and Evolutionary Computation Conference, pages 99–
106.

Doncieux, S. and Mouret, J.-B. (2014). Beyond black-box op-
timization: a review of selective pressures for evolutionary
robotics. Evolutionary Intelligence, 7(2):71–93.

Elman, J. L. (1990). Finding structure in time. Cognitive science,
14(2):179–211.

Fuglede, B. and Topsoe, F. (2004). Jensen-shannon divergence and
hilbert space embedding. In International Symposium onIn-
formation Theory, 2004. ISIT 2004. Proceedings., page 31.
IEEE.

Gajewski, A., Clune, J., Stanley, K. O., and Lehman, J. (2019).
Evolvability es: scalable and direct optimization of evolvabil-
ity. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 107–115.

Gomes, J., Mariano, P., and Christensen, A. L. (2015). Devising
effective novelty search algorithms: A comprehensive empir-
ical study. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pages 943–950.
ACM.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized
self-adaptation in evolution strategies. Evolutionary compu-
tation, 9(2):159–195.

He, K., Wang, Y., and Hopcroft, J. (2016). A powerful generative
model using random weights for the deep image representa-
tion. In Advances in Neural Information Processing Systems,
pages 631–639.

Lee, J., Grey, M., Ha, S., Kunz, T., Jain, S., Ye, Y., Srinivasa,
S., Stilman, M., and Liu, C. (2018). Dart: Dynamic anima-
tion and robotics toolkit. Journal of Open Source Software,
3(22):500.

Lehman, J., Chen, J., Clune, J., and Stanley, K. O. (2018). Safe mu-
tations for deep and recurrent neural networks through output
gradients. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 117–124.

Lehman, J. and Miikkulainen, R. (2015). Extinction events can
accelerate evolution. PloS one, 10(8).

430



Lehman, J. and Stanley, K. O. (2011). Abandoning objectives:
Evolution through the search for novelty alone. Evolution-
ary computation, 19(2):189–223.

Liu, C., Wang, D., and Chen, Q. (2013). Central pattern generator
inspired control for adaptive walking of biped robots. IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
43(5):1206–1215.

Martin, A. P. (1999). Increasing genomic complexity by gene du-
plication and the origin of vertebrates. The American Natu-
ralist, 154(2):111–128.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D.,
Francon, O., Raju, B., Shahrzad, H., Navruzyan, A., Duffy,
N., et al. (2019). Evolving deep neural networks. In Arti-
ficial Intelligence in the Age of Neural Networks and Brain
Computing, pages 293–312. Elsevier.

Mouret, J.-B. (2011). Novelty-based multiobjectivization. In New
horizons in evolutionary robotics, pages 139–154. Springer.

Mouret, J.-B. and Doncieux, S. (2012). Encouraging behavioral
diversity in evolutionary robotics: An empirical study. Evo-
lutionary computation, 20(1):91–133.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regu-
larized evolution for image classifier architecture search. In
Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789.

Shan, J., Junshi, C., and Jiapin, C. (2000). Design of cen-
tral pattern generator for humanoid robot walking based on
multi-objective ga. In Proceedings. 2000 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS
2000)(Cat. No. 00CH37113), volume 3, pages 1930–1935.
IEEE.

Stanley, K. O. and Lehman, J. (2015). Why greatness cannot be
planned: The myth of the objective. Springer.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural net-
works through augmenting topologies. Evolutionary compu-
tation, 10(2):99–127.

Tarapore, D., Clune, J., Cully, A., and Mouret, J.-B. (2016).
How do different encodings influence the performance of the
map-elites algorithm? In Proceedings of the Genetic and
Evolutionary Computation Conference 2016, pages 173–180.
ACM.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch the-
orems for optimization. IEEE transactions on evolutionary
computation, 1(1):67–82.

Woolley, B. G. and Stanley, K. O. (2011). On the deleterious ef-
fects of a priori objectives on evolution and representation.
In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, pages 957–964.

431


