
Low Power Design Techniques for Digital Logic Circuits

By

Yinshui Xia

BSc, MSc

© Copyright by Yinshui Xia 2003

A thesis presented in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

Napier University

School of Engineering

March 2003

Declaration

I declare that no portion of the work referred in this thesis has been submitted in support

of an application of another degree, qualification or other academic awards of this or any other

university or institution of learning.

Yinshui Xia

Acknow ledgements

The research presented in this thesis was carried out under the supervision of Professor A.

E. A. Almaini, School of Engineering, Napier University. I sincerely thank him for offering me

an opportunity to study at Napier University, guiding my research to the logic synthesis world,

and encouraging me during this research. I am very grateful to Professor Almaini for his regular

comments and invaluable suggestions. I do appreciate his patience to teach the scientific writing

in English and correct my research papers and this thesis.

Thanks are due to Professor J. Hajto, my second supervisor, for his essential encouragement

of this research.

I would like to acknowledge the financial support of the School of Engineering, Napier Uni­

versity, Edinburgh. Without this support, this research work would not have been possible.

I would like to thank Dr Lingli Wang of Altera, a former member of the digital techniques

group, for his kindly support to install Linux operating system and great help to learn Linux

operating system and GNU C language programming environment when I started this research.

I also would like to thank Dr Alex Bystrov, also a former member of the group, at Newcastle

University for the valuable discussion of my research.

Thanks are due to other members of the digital techniques group, especially Mr Belgasem

Ali, Mr Khalid Faraj and Mr lVleng Yang, for their enjoyable working environment and various

discussions. Thanks are also due to my former supervisors and research partners in the different

period in my life. They are Prof. X. Wu of Ningbo University, Prof. T. G. Clarkson of King's

College London, Dr Nan Zhuang of Synopsys.

The time I have spent in the School of Engineering of the Napier University has been the

most challenging of my life. I would like to thank all staffs and PhD students in the School for

their kind helps. Finally, the special thanks are due to my wife Qiufen and my daughter Kankan

for their understanding and support during my research stUdy.

II

Abstract
With the rapid increase in the density and the size of chips and systems, area and power dissi­

pation become critical concern in Very Large Scale Integrated (VLSI) circuit design. Low power

design techniques are essential for today's VLSI industry. The history of symbolic logic and some

typical techniques for finite state machine (FSM) logic synthesis are reviewed.

The state assignment is used to optimize area and power dissipation for FSMs. Two cost

functions, targeting area and power, are presented. The Genetic Algorithm (GA) is used to search

for a good state assignment to minimize the cost functions. The algorithm has been implemented

in C. The program can produce better results than NOVA, which is integrated into SIS by DC

Berkeley, and other publications both in area and power tested by MCNC benchmarks.

Flip-flops are the core components of FSMs. The reduction of power dissipation from flip-flops

can save power for digital systems significantly. Three new kinds of flip-flops, called differential

CMOS single edge-triggered flip-flop with clock gating, double edge-triggered and multiple valued

flip-flops employing multiple valued clocks, are proposed. All circuits are simulated using PSpice.

Most researchers have focused on developing low-power techniques in AND/OR or NAND

& NOR based circuits. The low power techniques for AND /XOR based circuits are still in

their early stage of development. To implement a complex function involving many inputs,

a form of decomposition into smaller subfunctions is required such that the subfunctions fit

into the primitive elements to be used in the implementation. Best polarity based XOR gate

decomposition technique has been developed, which targets low power using Huffman algorithm.

Compared to the published results, the proposed method shows considerable improvement in

power dissipation. Further, Boolean functions can be expressed by Fixed Polarity Reed-Muller

(FPRM) forms. Based on polarity transformation, an algorithm is developed and implemented

in C language which can find the best polarity for power and area optimization. Benchmark

examples of up to 21 inputs run on a personal computer are given.

xv

Contents

Declaration

Acknowledgements

List of Abbreviations

List of Figures

List of Tables

Abstract

1 Introduction
1.1 Motivations of low power design.

1.2 VLSI chip design approaches for low power

1.2.1 Sources of power dissipation

1.2.2 Design approaches of low power VLSI systems.

1.3 Low power design flow

1.4 Low power digital design techniques

1.4.1 State assignment for low power Finite State Machines (FSMs)

1.4.2 Low power flip-flop design

1.4.3 Low power logic synthesis for FPRM functions

1.5 Outline

iii

ii

iv

vi

vii

viii

1
1

3

3

6

9

11

11

12

13

14

2 Conventional low power design techniques 16

2.1 Low power design approaches of FSMs 16

2.1.1 Finite state machines and their representations 16

2.1.2 FSM power estimation 18

2.1.3 FSM power optimization . 24

2.2 Low power design of flip-flops .. 27

2.3 Power optimization of XOR gate based circuits 28

2.4 Genetic algorithm. 29

2.4.1 Overview 30

2.4.2 Representation 30

2.4.3 Initial population 32

2.4.4 Evaluation. . . . 32

2.4.5 Parent selection . 33

2.4.6 Crossover 33

2.4.7 Mutation 33

2.4.8 Elitism .. 33

3 State assignment for area and power optimization 35

3.1 Finite state machines (FSMs) 35

3.2 Terminology and parameter calculation of FSMs 37

3.3 Cost functions 44

3.4 State assignment using Genetic algorithm 46

3.4.1 Solution representation . 46

3.4.2 Evaluation. 48

3.4.3 Crossover 49

3.4.4 Mutation 50

3.4.5 Elitism .. 51

3.4.6 Outline of the algorithm 51

3.5 Experimental results 52

IV

3.6 Summary

4 Differential CMOS single edge-triggered flip-flop

4.1 Differential CMOS single edge-triggered flip-flop.

4.2 Circuit parameter optimization

4.2.1 Delay

54

57

58

59

60

4.2.2 Circuit optimization .. 61

4.3 Differential CMOS Single Edge-Triggered Flip-Flop with Clock-Gating (CG-SETFF) 62

4.4 Circuit simulations and power dissipation measurement. 65

4.5 PDP measurement 69

4.6 Low power binary counters 70

4.6.1 4-bit binary counter 70

4.6.2 Binary twisted ring counters

4.7 Summary

5 Differential CMOS double edge-triggered flip-flops

5.1 Previous work

5.2 Clock Chain Based Double Edge-Triggered Flip-Flop (CCB-DETFF) using single

latch

5.2.1

5.2.2

CCB-DET flip-flop

Circuit simulations

5.3 Pass Transistor Based Differential CMOS Double Edge-Triggered Flip-Flop (PTB-

72

75

76

77

78

79

80

DETFF) .. 83

5.3.1

5.3.2

5.3.3

Voltage scaling property for CCB flip-flops.

PTB-DETFF circuit

Circuit simulations

5.4 Summary

6 Multi-valued flip-flop approach

v

83

85

86

89

90

6.1 Traditional Binary CP (BCP) controlled multiple valued master slave flip-flops in

series. 92

6.2 Multiple valued CP (MVCP) controlled multiple valued flip-flops in parallel 93

6.3 Circuit implementation 95

6.4 Experimental results 99

6.5 Summary 102

7 Low power XOR gate decomposition

7.1

7.2

Introduction

Definitions and terminology

7.3 Previous work

7.4 Proposed low power XOR gate decomposition

7.4.1 Theoretical results .

7.4.2 Proposed algorithm.

7.5 Experimental results

7.6 Summary

8 Power and area optimization of FPRM functions

8.1 Definition and terminology.

8.2 Related work

8.3 Polarity based area and power minimization of FPRM functions .

8.3.1 Power estimation

8.3.2 Area and power estimation

8.3.3 Polarity conversion

8.4 Proposed algorithms

8.5 Experimental results

8.6 Summary

9 Conclusions and Future work

9.1 Low power state assignment .

VI

104

104

105

109

111

112

114

117

120

121

122

124

126

126

127

129

131

134

139

140

140

9.2 Low power flip-flop designs

9.3 Power optimization of FPRM functions.

9.4 Future work

Publications

References and Bibliography

Disk Containing the Software

vii

141

142

142

144

145

158

List of Abbreviations
ADD Algebraic Decision Diagram

AND AND operation

BAL-CS Basic And Logic Combining Section

BCP Binary Clock Pulse

BDD Binary Decision Diagram

CAD Computer-Aided Design

CCB Clock Chain Based

CG Clock Gating

CK Clock Signal

CMOS Complementary Metal-Oxide-Semiconductor

C 2MOS Clocked CMOS

CP Clock Pulse

DC Direct Current

DET Double Edge-Triggered

DETFF Double Edge-Triggered Flip-Flop

EPT Even Polarity Transformation

FF Flip-Flop

FSM Finite State Machine

FPGA Filed Programmable Gate Array

FPRM Fixed Polarity Reed-Muller

GA Genetic Algorithm

HDL Hardware Description Language

IC Integrated Circuit

lTV Input Threshold Voltage

LCS Logic Combining Section

LID Location InDicator

LSB Less Significant Bit

Vlll

MCNC Microelectronics Center North Carolina

MSB Most Significant Bit

MV Multiple Valued

MVCP Multiple Valued Clock Pulse

MVFF Multiple Valued Flip-Flop

NLS N egative-Level-Sampling

NMOS N-type Metal-Oxide-Semiconductor

NP Narrow Pulse

OBDD Ordered Boolean Decision Diagram

OPT Odd Polarity Transformation

PDA Personal Digital Assistant

PDP Power Delay Product

PLA Programmable Logic Array

PLS Positive-Level-Sampling

PMOS P-type Metal-Oxide-Semiconductor

PPRM Positive Polarity Reed-Muller

PTB Pass Transistor Based

RTL Register Transfer Level

SA Switching Activity

SC Sampling Circuit

SET-FF Single Edge-Triggered Flip-Flop

SOP Sum Of Products

SPICE Simulation Program with Integrated Circuit Emphasis

STG State Transition Graph

STT State 'Il'ansition Table

TSPC 'Il'ue Single Phase Clocking

VHDL Very large scale Hardware Description Language

VLSI Very Large Scale Integration

XOR EXclusive OR operation

ix

List of Figures

1.1

1.2

1.3

1.4

1.5

2.1

Moore Law

Market of portable applications is growing very rapidly .

Battery capacity during the past 30 years

Charging and discharging for an inverter

Low power design flow

FSM structure model .

2.2 Monte-Carlo-based technique flow chart

2

3

4

5

10

17

19

2.3 Symbolic computation of the conditional transition probability matrix 22

2.4 FSM structure model (a) single-clock, flip-flop based FSM model; (b) clock-gating

version. 25

2.5 Reducing the switching activity by inserting register 26

2.6 GA cycle. 31

2.7 Crossover operator 33

3.1 State transition graph and state table of DK27 (a) STG; (b) STT 36

3.2 Conditional state transition probability of DK27 39

3.3 State probability labelled beside its state node and state transition probability

labelled on each edge of DK27 .. 41

3.4 Relationship between cost function and optimization quality (a) Area and SA

versus a in equation ??; (b) Area and SA versus (3 in equation ??

4.1 Differential CMOS SET-FF (a) Circuit implementation; (b) Logic symbol

x

53

59

4.2 Power delay product optimization .

4.3 Power versus width w

4.4 Delay versus width w .

4.5 PDP versus width w .

4.6 Non-redundant transition clock chain.

4.7 Differential single edge-triggered CMOS flip-flop with clock-gating (CG-SETFF)(a)

Circuit implementation; (b) Logic symbol

4.8 Transition behavior of proposed flip-flop .

4.9 Test bench for measuring the power dissipation of flip-flops

4.10 Power dissipation against D input switching activity. PI: Proposed flip-flop; P2:

Conventional flip-flop

4.11 Timing test circuit (a) Bench circuit; (b) Timing diagram

4.12 PDP versus switching activities

4.13 SET-FF based binary counter.

61

62

63

64

64

65

66

67

68

69

70

72

4.14 Gate circuit implementation (a) 2 input NAND and its logic symbol; (b) 3 input

NAND and its logic symbol; (c) XNOR and its logic symbol. 73

4.15 Power dissipation for twisted ring counters: P1- SET-FF based counters; P2-CG­

SETFF based counters

4.16 State diagram for a twisted ring counter

5.1 Differential CMOS DET flip-flop proposed in [68]: BALCS-DETFF

5.2 Differential CMOS single-edge triggered flip-flop (SET- FF)

5.3 Double edge pulse generation (a) Clock chain; (b) Timing diagram

5.4 Clock Chain Based double Edge-Triggered Flip-Flop (CCB-DETFF) cell (a) Flip-

flop cell; (b) Logic symbol

5.5 Transient behavior (a) Differential CMOS SET-FF in Fig.??; (b) Differential

CCB-DETFF in Fig. ??

5.6 Power dissipation versus switching activities: P1- result for Fig. ??; P2-result for

74

74

77

78

80

80

82

Fig. ??; P3-result for the proposed circuit .. 83

Xl

5.7 Input threshold voltage versus gate voltage of clocked transistors. NB: Vth-Two

stands for threshold voltage of Cir2ct while Vth-One for that of Circt . 84

5.8 Narrow pulse generating scheme. 85

5.9 Proposed differential CMOS double edge-triggered flip-flop (DET-FF) (a) Narrow

pulse generator; (b) Double edge-triggered flip-flop cell; (c) Logic symbol. 86

5.10 Transition behavior of the propose circuit 87

6.1 Comparison between binary and quaternary signal transmission. (a) Parallel

transmission; (b) Serial transmission .. 91

6.2 BCP controlled quaternary master slave D flip-flop in series and two digit qua­

ternary shift register (a) BCP controlled quaternary master slave D flip-flops in

series; (b) Two digit quaternary shift register; (c) Logic symbols 93

6.3 Logic structure of MVCP controlled multiple valued flip-flop in parallel (a) Logic

circuit; (b) Logic symbols . 94

6.4 Threshold 1.5 inverter (a) Circuit implementation; (b) Logic symbol 98

6.5 Circuit implementation (a) Quaternary 2 to 1 multiplexer; (b) Quaternary re­

shaper; (c) Threshold function generator; (d) Quaternary 4 to 1 multiplexer ... 100

6.6 PSpice simulation of the proposed flip-flop . 101

7.1 Switching activity versus signal probability 108

7.2 (a) Multi input XOR gate; (b) Published decomposition in [131] and [74]; (c) A

new decomposition . 110

8.1 (a) Multi input AND gate decomposition in [107]; (b) Multi input XOR gate

decomposition in [131] . 125

8.2 Power dissipation with the function forms (a) The minimal form under polarity

4; (b) The function form under polarity 5 129

8.3 Decomposition and AND- trees and XOR tree (a) AND trees; (b) XOR tree 133

8.4 Power and area versus alpha (a) Power versus alpha; (b) Area versus alpha 138

xii

List of Tables

1.1 Some commercial and academic low power design tools 9

3.1 Tav's kiss format . 40

3.2 Experimental results showing power & area improvement 55

3.3 Best state assignment codes by GA: Assignments a & b are based on costa & costb

respectively .

4.1 SPICE parameters of MOS transistors for a generic 1.0p,m process

4.2 Power dissipation for load capacitors versus switching activities

4.3 State table for a 4-bit binary counter

5.1 Power savings compared to the circuit in Figs.?? &??

5.2 Power dissipation comparison between SET-FF and PTB-DETFF .

5.3 Voltage scaling property between SET-FF and PTB-DETFF

5.4 Voltage scaling property between BALCS-DETFF and PTB-DETFF

5.5 Power dissipation from clock chain and flip-flop cell with VD D = 5.0V and Vclock =

5.0V

56

65

68

71

81

87

88

88

89

6.1 SPICE parameters for a generic 0.5p,m process 99

6.2 Performance measurement of the MVFF (ns) . 101

6.3 Area and Power dissipation for the proposed circuit and the circuit in Fig. ??(b) 102

7.1 Best polarity and switching activity for low power decomposition 118

7.2 Experimental results for the proposed algorithm and published algorithms 119

xiii

8.1 Best polarity and switching activity for low power decomposition[127j

8.2 Reduction ratios of area and switching activity

8.3 Power dissipation and area comparison

8.4 Reduction ratios of area and SA

XlV

136

136

137

137

Chapter 1

Introd uction

1.1 Motivations of low power design

The genesis of low power microelectronics can be traced to the invention of the transistor in 1947.

It was a breakthrough of virtually unparalleled importance in electronics to eliminate the crushing

needs for several watts of heater power and several hundred volts of anode voltage in vacuum

tubes in exchange for transistor operation in the tens of milliwatts range. The capability to fully

utilize the low power assets of the transistor was provided by the invention of the integrated

circuit in 1958. Since the first integrated circuit (IC) was developed by Jack Kilby in Texas

Instruments and then became the first commercial IC by Fairchild Instruments in 1961, the IC

technology has progressed greatly. The size and density of IC chips and systems are increasing

as Gordon Moore, co-founder of Intel, predicted in 1960s that the number of transistors on an IC

chip could be doubled every 12 to 18 months. This is well confirmed by the development trace

of Intel microprocessors as shown in Fig. 1.1.

The continuing increase in chip density and operating frequency have made power consump­

tion a major concern in very large scale integrated (VLSI) circuit design. For example, the PC

chip from Motorola consumes 8.5W, the Pentium chip from Intel consumes 16W, and DEC's

21164 (300MHz on a die area of 3cm2) consumes 50W! It is extrapolated that 10cm2 micropro­

cessor, clocked at 500MHz would consume 315 W in near future [83]. Unless power consumption

is dramatically reduced the resulting heat will limit the feasible packing and performance of VLSI

circuits and systems.

1

CHAPTER 1. INTRODUCTION 2

Perhaps the primary driving factor for designing low power systems has been the remarkable

success and growth of the class of portable personal computing devices and wireless communica-

tion systems which demand complex functionality and high speed communication. Probably no

segment of the electronics industry has a growth potential as explosive as that of the personal

digital assistant (PDA) which has been characterized as a combined pocket cellular phone, pager,

e-mail terminal, fax, computer, calendar, address directory, notebook, etc. [96][69][26].

The market of portable applications is growing very rapidly. Fig. 1.2 shows the various PC

percentages of the PC market in 1992 and 1998 [60]. In portable applications, average power

consumption is a critical design constraint since it is related to the battery life time, size and

weight [55][66]. The reason for this is illustrated with the simple example of a multi-media termi­

nal. The projected power for such a terminal, when implemented using off-the-shelf components

not designed for low-power operation [95], is about 40W. With advanced Nickel-Metal-Hydride

battery technologies yielding around 65 watt-hours/kilogram [56], this terminal would require an

unacceptable 6 kilograms of batteries for 10 hours of operation between recharges. Even with new

Number of Transistors

228 1

226 I-

224 I-

222

220 I-

218 I-

216 I-

214 ,

212 l- 800~080~
140~~

8086~

Intel Itanium 2(1GHz) ~
Pentium III Xeon(866 MHz)~

Mobile Pentium II(400 MHz) ~
Intel Ce1eron (333 MHz)~

Pentium Pro (200 MHz) ~
Pentium (66 MHz) ~

Intel486 DX ~

Inte1386 DX~

80286 ~

-

-

TO ~I ______ ~ ________ ~ ______ -L ______ ~ ________ L-______ ~ ______ ~

1970 1975 1980 1985 1990 1995 2000 2005
Introduction Year

* These data are originally from "I1ltel Microprocessor Quick Refere1lce Guide"

Figure 1.1: Moore Law

CHAPTER 1. INTRODUCTION 3

battery technologies, such as rechargeable Lithium Ion or Lithium Polymer cells, it is anticipated

that the expected battery lifetime will increase to about 90-110 watt-hours/kilogram, which still

leads to an unacceptable 3.6 to 4.4 kilograms of battery cells. Fig. 1.3 shows the battery capacity

increasing over the last 30 years [56]. From Fig. 1.3, it can be observed that battery capacity has

only improved with a factor 2 to 4 over the last 30 years while the computation power of digital

IC's has increased by more than 4 orders of magnitude [51]. The gap is increasing with respect to

power demand. In the absence of low power design techniques, the current and future portable

devices will suffer from either very short battery life or unreasonably heavy battery pack.

1992 PC Market 1998 P (Mark et

Mobile

Dertop 70% Desktop 49%

Figure 1.2: Market of portable applications is growing very rapidly

These problems make it necessary to develop power aware VLSI design tools that help achieve

low power in these systems. Indeed, the Semiconductor Industry Association has identified low­

power design techniques as a necessary technological need [93].

1.2 VLSI chip design approaches for low power

1.2.1 Sources of power dissipation

Since CMOS technology is predominant in the realization of today's IC and CMOS devices are

intrinsically low power consuming, all circuits for the rest of this thesis refer to CMOS circuits.

It is judicious to briefly discuss the mechanisms for power consumption in CMOS circuits. Take

the inverter in Fig. 1.4 for example. The power dissipation for the inverter consists of three

CHAPTER 1. INTRODUCTION 4

major sources which are expressed in the following equation:

Ptotal = Pleakage + PshorLcurrent + Pswitching (1.1)

The first term, Pleakage, can arise from substrate injection and subthreshold effects and is pri­

marily determined by fabrication technology considerations [24]. The second term, PshorLcurrent,

is due to the direct-path short circuit current, which arises when both the NMOS and PMOS

transistors are simultaneously active, conducting current directly from supply to ground [118].

The third term, Pswitching, represents the switching power dissipation or dynamic power dissipa­

tion. This is the result of capacitance charging and discharging in the circuit. The situation is

modeled in Fig.1.4 where the parasitic capacitances are lumped at the output in the capacitor

CL. Consider the behavior of the circuit over one full cycle of operation with the input voltage

going from Vdd to ground and back to Vdd' When the input changes from Vdd to ground, the

:2 40
--..
i'/J
L..
:::::;
o
I 30

I
+"
+"
o::i

~
>- 20

;!:::
u
o::i
Q..

o::i
u 10
o::i
c
E
o
z o

65 70

n e ! •
I ,

Nickel-Cadm' In lum / I , I

75 80 85

Year

90

• l
l

I
95

Figure 1.3: Battery capacity during the past 30 years

CHAPTER 1. INTRODUCTION 5

capacitor CL is charged. This charging process draws an energy equal to CL Vld from the power

supply and ~CL Vld is stored in the capacitor CL because at the end of the transition the output

capacitor CL is charged to Vdd. Hence, ~CL Vld is dissipated in the PMOS network. When the

input changes from ground to Vdd, the capacitor CL is discharged. And ~CL Vld is dissipated in

the NMOS network. Hence, for a full cycle, CL Vld from the power supply is consumed. This

leads to the conclusion that CMOS power consumption depends on the switching activity of

the signals involved. If a represents the signal activity, the expected number of zero to one

transitions per data cycle, and f is the average data-rate, which may be the clock frequency in

a synchronous system, then the effective frequency of nodal charging is given by the product of

the activity and the data rate: af. Hence, the average CMOS power consumption is given by

equation 1.2.

1 2
Pswitching = 2aCL Vddf (1.2)

Vdd

SL

Figure 1.4: Charging and discharging for an inverter

For a well designed circuit, the first two terms in equation 1.1 can be kept below 20% of

the total power [14]. Hence, in CMOS circuits, Pswitching is by far the most important. From

equation 1.2, Pswitching is proportional to the switching activity, capacitance loading, data-rate

(in synchronous systems fmight correspond to the clock frequency), and the square ofthe supply

voltage.

CHAPTER 1. INTRODUCTION 6

1.2.2 Design approaches of low power VLSI systems

From the above analysis of power dissipation sources, the vast majority of power reduction

techniques concentrate on minimizing the dynamic power dissipation by reducing one or more

factors on the right hand side of equation 1.2 .

• Voltage scaling

One of the most obvious ways to reduce power is to reduce the power supply voltage of circuits

because the dynamic power is proportional to the square of the supply voltage. Power savings

are relatively independent of circuit function and circuit technology. Hence, it is applicable at

different stages of the design development. Some methodologies have been proposed [24][25].

However, with the scaling of supply voltage and device dimensions, the transistor threshold

voltage also has to be scaled to achieve the required performance. Unfortunately, such scaling

does not come for free and can increase the leakage current. The leakage current occurs due

to carrier diffusion between the source and the drain when the gate-source voltage, Vgs , has

exceeded the weak inversion point, but is still below the threshold voltage 11th, where carrier

drift is dominant. The current in the subthreshold region is given by equation 1.3[24]

v;,s - 11th Vds
Isub = kexp(n 111 f"\)(1 - exp(- VT)) (1.3)

Where k is a function of the technology, VT is the thermal voltage (KT / q), 11th is the threshold

voltage and S is the subthreshold swing.

Due to the exponential nature of subthreshold leakage current with 11th, subthreshold current

can no longer be ignored. The lower the 11th is, the higher the subthreshold leakage current will

be. On the other hand, delay through a logic block is proportional to Vdd/ (Vdd - 1Ith)2 where

Vdd is the voltage of the power supply [24][25]. Lower 11th means longer delay. To compromise

the two, it is suggested to use high supply voltage in the critical paths of a design to achieve

the required performance while the off-critical paths of the design use lower supply voltage to

achieve low-power dissipation [53][28]. It is also clear from the above discussion that reducing

CHAPTER 1. INTRODUCTION 7

the threshold voltage allows the supply voltage to be scaled down to lower Pswitching without loss

in speed. However, the limit on threshold voltage scaling is imposed by the noise margin and the

increase of sub-threshold current. Scaling down threshold voltage trades off between dynamic

power (Pswitching) and static power (PLeakage)' In considering logic and memory circuit behavior,

Vdd = 1.0V appears to be a good compromise for small dynamic and static power dissipation

[89]. A genius approach is architecture-driven supply voltage scaling based strategy which is to

modify the architecture of the system so as to make it faster and reduce Vdd so as to restore

the original speed resulting in reduced power consumption [24][25]. However, area overhead is

required.

• Frequency reduction

The second obvious way to reduce power is to decrease the clock frequency f. Decreasing f

causes a proportional decrease in power dissipation. However, slowing the clock will result in

a slower computation. The power consumption over a given period of time is reduced, but the

total amount of useful work is reduced as well. As a result, the energy dissipated to complete the

task has not changed. This can be illustrated by an example. Suppose the system is clocked with

a clock period TI , and the task takes N clock cycles to complete. During each cycle, the system

dissipates an average power Pl. If the frequency is decreased by half, the power dissipation

over the original time period will be P2 = ~ PI because average power is directly proportional

to the clock frequency. However, it now takes a total time of 2NTI to complete the task. As a

consequence, the average energy consumed by the system is E = PINTI in both cases. However,

this observation still incites some genius low power designs. One of them is double edge-triggered

flip-flops targeting low power [49][19][68][102], which enables a halving of the clock frequency and

hence reduces power dissipation on the clock line for a given data rate compared with the single

edge-triggered flip-flops .

• Effective capacitance reduction

Effective capacitance, CEff' is defined as CEff = aCL. Design and synthesis techniques have

been developed to reduce both the capacitive load, CL, and the switching activity, a, at all stages

CHAPTER 1. INTRODUCTION 8

ofthe design process[37][45][65] [27][61] [78] [88][108][131]. It is obvious that once a technology and

a supply voltage have been set, power savings come from the careful minimization of the effective

capacitance. There are many effective applications of this idea. Some examples are shown as

follows.

1. Dynamic power management: The sleep modes of operation in portable computers [37][45]

are examples of this approach to reduce useless switching activity. Power is reduced by

stopping the clock or shutting down the power supply of parts of the system that are not

required to carry out the current task.

2. Algorithmic transformations for signal processing tasks [65][27]: Reducing the number of

operations needed to carry out a given computation may not be always useful in terms of

performance, but it is often useful for reducing power.

3. Communication protocol design [61]: Communication protocols can be modified to improve

the activity patterns.

4. Memory allocation [78] and bus encoding [98] techniques to minimize the power dissipated

in memories and system busses.

5. Logic optimization [88][108][114]: Area minimization can obtain global power savings be­

cause area is directly related to the capacitive load. Logic optimization can directly target

power optimization.

6. Circuit topology [131][74]: This method aims to change circuit topology to minimize the

switching activity of a circuit so that the effective capacitance is minimized.

• Other approaches

A revolutionary approach for low power design is called energy recovery jrecycle techniques, which

are addressed in [11][34]. Scaling down feature size is an important issue for high-performance

and high-density VLSI circuits. However, some second order effects become serious and are

becoming a major challenge in deep submicrometer devices and circuits. Corresponding low

power techniques are being explored [52].

CHAPTER 1. INTRODUCTION 9

1.3 Low power design flow

Designing for low power is at least as difficult as designing for maximum speed or minimum

area. Power dissipation is a pattern-dependent cost function, unlike area, which is constant with

respect to input patterns. Since power dissipation becomes increasingly important as a design

evaluation metric, a new generation of computer-aided design tools targeting power minimization

is urgently needed by designers. In the last few years, significant research and development efforts

have been undertaken in academia and industry targeting the creation of a new generation of

computer-aided design (CAD) tools for low power. As a result, hundreds of papers have been

published on the subject [88][104][12][108][77]. The wide range of ECAD tools for low power fall

into four major categories based on the four levels, which are behavioral, architectural (Register

Transfer/RT), logic and circuit level [89]. Countless commercial and academic design synthesis

tools are available and some of them are shown in Table 1.1. It can be seen that VHDL [81] and

Verilog [103] are the most popular hardware description languages (HDLs).

Table 1.1: Some commercial and academic low power design tools
Organization System Description Input Environment
Synopsys PowerMill Circuit Simula- SPICE, Verilog Unix

tion
Synopsys Power RTL Power Esti- Gate Netlist, Unix

Compiler mati on Switching Activ-
ity, Constraints

Synopsys PowerHogs RTL Power Opti- Verilog/VHDL Unix
mization

Cadence PowerSim Gate and Logic Verilog Unix
Level Estimation

TransEDA PowerSure HDL/RTL Power Verilog/VHDL Unix
Estimation

Mentor Lsim Power Circuit level Sim- SPICE Workstation
Analyst ulation

Veritools Power-Tool Logic level Power Verilog Win95,
Estimation WinNT,

Sun4.x
Berkeley SIS Logic Level, RTL Gate Netlist Win95,
University Power Estimation Unix

A typical synthesis based VLSI low power design flow is shown in Fig. 1.5[60].

CHAPTER 1. INTRODUCTION 10

It can be seen from Fig. 1.5 that three steps are included in low power synthesis at each

design level:

1. Estimate power according to unoptimized description. The methods of power estimation

are different from level to level. This process is called power analysis.

2. Optimize the description through various available procedures by the criteria of power

dissipation, area, speed or testability. This important process is called optimization.

RTL
Mapping

BB
EJEJ

trnnsfommtion

Behavioral
Power Analysis

Logic Synthesis
and

Optimization

Tee-Mapping
and

Circuit-level
Optimization

Logic-level
Power Analysis

Circuit-level
Power Analysis

Figure 1.5: Low power design flow

CHAPTER 1. INTRODUCTION 11

3. Produce power optimization description.

Step 1 and Step 2 are very important for low power design. Accurate power estimation tools

must provide feedback on the quality of each design choice. In the last ten years, at each level of

abstraction, various design alternatives have been explored. The availability of a power estimator

for each level of abstraction is fundamental in a low-power design flow. To avoid costly re-design

steps, it is mandatory to be able to optimize the power dissipation during the early stages of the

design process.

1.4 Low power digital design techniques

Low power digital design techniques cover a broad range of subjects. In this thesis, three topics

are chosen to discuss.

1.4.1 State assignment for low power Finite State Machines (FSMs)

Most of VLSI circuits are sequential circuits. A general model of sequential circuit structures is

called Finite State Machine (FSM), which is composed of two sections: Combinational section and

register section. Register section usually is composed of flip-flops. Compared to combinational

circuits, there are two working characteristics:

• An FSM has flip-flops to store state signals.

• An FSM has clock signals to synchronously trigger fiip-flops and to realize the synchronous

switching of state variables.

Thereby, its synthesis procedure is slightly different from combinational circuits. FSM synthesis

can be divided into four stages[15]:

• Behavior synthesis: Obtain representation of machine behavior expressed as State Transi­

tion Tables (STTs) or State Transition Graphs (STGs).

• State assignment: Assign unique binary code to the symbolic states of an FSM and obtain

a description of the circuit produced in terms of Boolean functions.

CHAPTER 1. INTRODUCTION 12

• Logic synthesis: Optimize Boolean functions with respect to the original cost metric.

• Library binding: Map the optimization Boolean functions to components from a standard

gate library and produce a gate-level description.

State assignment is the critical step in low power design of FSMs and is one subject of this

thesis. It has an important role in determining the number of nodes required to implement the

output and next logic functions. The reduction of the number of nodes promises global power

savings. On the other hand, state assignment directly determines the switching activities of the

state variables and the interior variables in the combinational circuit.

The contribution of this work is in the formulation of the problem that links switching

activities of an FSM to its power dissipation and in the study of Genetic Algorithms (GAs) for

the search of optimal solutions to the problem of finding a state assignment that gives low power

dissipation. Only minimizing switching activities on the state lines in the FSM does not guarantee

the reduction of the total power dissipation because the power consumed in the combinational

section is not taken into account. Instead, more accurate cost functions which take that of the

combinational section into account have been developed. A methodology and a software package

that combines ESPRESSO[23] are developed. Test results on MCNC benchmark circuits show

that our package performs significantly better than other synthesis tools [94][111] in the majority

of cases.

1.4.2 Low power flip-flop design

Flip-flops are the core components of FSMs. Reducing power dissipation of flip-flops can result

in significant power reduction of FSMs. Traditional flip-flops are single-edge triggered flip-flops

(SETFF), which are sensitive to the rising or falling edge of the clock. Narrow pulse sampling

based single edge-triggered flip-flops are implemented using a clock chain to generate a series

of narrow pulses. It suffers from significant redundant transitions in a long clock chain, which

results in redundant dynamic power dissipation. To solve this problem, a clock-gating scheme is

proposed to eliminate the redundant transitions and a low power single edge-triggered flip-flop is

presented. On the other hand, for single edge-triggered flip-flops, half of the clock's transitions

CHAPTER 1. INTRODUCTION 13

are redundant, which results in wasteful dynamic power dissipation. To improve this, double­

edge triggered flip-flops (DETFFs) are proposed, which utilize both transition edges of the clock,

achieving power savings. In this thesis, a low power SETFF is proposed, in which clock-gating

techniques are used to reduce the redundant transitions of clock signals for saving power and the

structure of low power DETFFs are explored and multiple valued flip-flops are investigated to

explore a novel solution of low power flip-flop design.

1.4.3 Low power logic synthesis for FPRM functions

Any n-variable Boolean function! can be expressed by Shannon expansion based on AND/OR

operation as follows.

!(Xn-1Xn-2'" xo) = XdXi=O + XdXi=l (1.4)

where 0 ~ i ~ n - 1, and !x;=o and !x;=l are the cofactors of ! with respect to Xi. Corre­

spondingly, a broad range of logic minimizers are available for SOP forms such as ESPRESSO

[23] and SIS[94].

Alternatively, any Boolean function can be represented by AND /XOR operations, which is

called Reed-Muller expansion.

!(Xn -1Xn-2'" xo) = XdXi=O E9 XdXi=l (1.5)

!(Xn-1Xn -2' .. xo) = !Xi=O E9 Xi (fx;=o E9 !Xi=l) (1.6)

!(Xn-1Xn -2'" XO) = !Xi=l E9 Xi(fxi E9 !xi=d (1.7)

CHAPTER 1. INTRODUCTION 14

In logic synthesis, Reed-Muller logic methods are important alternatives to the traditional

SOP approaches to implement Boolean functions. Reed-Muller realizations have some attractive

advantages especially for functions that do not produce efficient solutions using SOP techniques.

In addition, XOR based circuits have great advantage of easy testability. However, due to

the lack of efficient conversion tools and Reed-Muller logic optimizer, applications of Reed­

Muller implementations have not become popular. With the development of FPGAs, XOR gates

are already manufactured as basic cell components, which encourages the research on Reed­

Muller logic optimization. There has been extensive research on Reed-Muller methods targeting

area minimization [4][6][8][79] [64][114]. However, the research on low power Reed-Muller logic

implementations is still in their early stage of development.

XOR Gate decomposition is the step before technology mapping, which decompose a multi

input XOR gate into a two input XOR gate tree. Low power XOR gate decomposition is one

solution of low power Reed-Muller logic implementations. Based on polarity conversion, a novel

XOR gate decomposition targeting low power is proposed.

Any Boolean function can be represented canonically by a Fixed Polarity Reed-Muller (FPRM)

form. Minimization of FPRM functions promises global power savings. A power estimation frame

for FPRM functions is proposed. Based on polarity conversion, a power minimization algorithm

is developed.

1.5 Outline

This thesis covers three main parts: Low power state assignment for FSMs; low power flip­

flop design and power optimization for FPRM functions. The conventional low power design

techniques are reviewed in chapter 2. The first part investigates low power state assignment for

FSMs. The problem is formulated in chapter 3. Two cost functions are proposed, which take the

power of the combinational section into account. Genetic Algorithm combined with ESPRESSO

is used to search the optimal solution. The second part is for low power design of flip-flops. A

new type of low power single-edge triggered flip-flop is proposed in chapter 4 while double-edge

triggered flip-flops are presented in chapter 5. A multiple valued approach to design low power

CHAPTER 1. INTRODUCTION 15

flip-flops is explored in chapter 6. The third part deals with Reed-Muller logic which is based

on AND /XOR operations. Based on polarity searching, low power XOR gate decomposition

is stated in chapter 7 while low power FPRM function minimization is described in chapter

8. Finally, the main improvements and contributions are summarized and some future work is

suggested in the "conclusions and future work".

Chapter 2

Conventional low power design

techniques

2.1 Low power design approaches of FSMs

Most of VLSI circuits are sequential ones. A sequential function can be represented by several

models [50]. Usually, it is modeled by a finite state machine (FSM) [67].

2.1.1 Finite state machines and their representations

Low power design of FSMs involves tackling the problem of the power estimation method and

power optimization strategy. They can be done at each of four design levels [15].

An FSM is defined by the following standard definition.

Definition 2.1. An FSM is characterized by a 5-tuple (X, Y, S, A, ry) where X, Y, S are the

sets of primary inputs, primary outputs and internal states and A, ry are the output and next

state functions, respectively. The FSM is represented by a state transition table (STT) M =

{mdml = (Xl, (Sdl, (Si)I,YI),l E {O,1, L -1}), here, L is the number of product terms, Xl is

the primary input, Si, si E S are the present state and the next state and YI is the corresponding

output. Each entry ml E M is a symbolic implicant of the FSM.

FSMs are categorized in two classes [14]:

16

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 17

Definition 2.2. A Moore machine is an FSM where .\(x, s) = .\(s), i.e., the outputs do not

depend directly on the input value, but they depend only on the state. A Mealy machine is an

FSM for which this property does not hold.

FSMs can be incompletely specified. An incompletely specified FSM is one where 'f](x, s)

and / or .\(x, s) are incompletely specified Boolean functions. An FSM can be represented by

a graph or, equivalently, by a table. The two representations are called state transition graph

(STG) and state transition table (STT), respectively. The states of the STG are labeled with

the unique symbolic state name. The edges are labelled with the input and output values. The

state table is simply the list of edges of the STG.

Both STG and STT completely define the input-output behavior of an FSM, but they do not

provide any information about the circuit implementation. Hence, STG and STT are behavioral

representations of the FSM. In order to obtain a representation which is closer to the circuit

implementation, the concept of state encoding is needed to be introduced.

Definition 2.3. A state encoding is a one-to-one mapping from S to B N• (Boolean space), i.e.,

a function E: S --r B N •. The number of state variables is indicated by Ns and Ns ~ rlo921S11.
Once Ns and E have been specified, the state of an FSM is completely expressed by Ns binary

variables called state variables. Once the state encoding has been specified, the structural model

of an FSM is shown in Fig. 2.1. The representation of Fig. 2.1 is structural, because it refers to

a particular circuit structure implementing the FSM.

Primar~
inputs ~I Combinational

logic

Present -s tate

CP ____ -'

Primary
outputs

Next-state
inputs

Figure 2.1: FSM structure model

The structural representation is useful since it may be much more compact than the state-

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 18

based representations like STT and STG. However, the main limit of structural representations

is that they are not unique.

Binary decision diagrams (BDDs) are a data structure developed for the compact represen­

tation of large Boolean functions. Several variants of BDDs have been developed by different

groups of researchers [22][20]. It has been shown that the Reduced Ordered BDD (ROBDD) is a

canonical form, i.e., two functions are equivalent if and only if they have the same BDD. There

are some distinct advantages to represent an FSM by BDD [39].

2.1.2 FSM power estimation

The process of IC design involves a transformation of a high level behavioral specification to a

lower level architectural (or RTL) specification, and then to a lower gate-level specification, and

so on. If one were to get to the transistor or gate level design and only then discover that the

power consumption is unacceptably high, it would be too expensive to make design changes. The

circuit may require significant rework, involving perhaps changes to the overall architecture of

the chip. For this reason, it would be very beneficial to have a power estimation capability at

a high level of abstraction. However, estimation from a high level of abstraction is potentially

inaccurate, while low-level power estimation can be very accurate. Therefore, a power estimation

capability is needed at every level of abstraction in order to check the design at every step .

• SPICE

The acronym SPICE stands for Simulation Program with Integrated Circuit Emphasis [86]. It

is a general-purpose circuit program that simulates electronic circuits and can perform various

analysis of electronic circuits: the operating points of transistors, a time-domain response, a

small-signal frequency response, and so on. SPICE contains models for common circuit elements,

active as well as passive, and it is capable of simulating most electronic circuits. It is a versatile

program and is widely used by industries and universities. The main frame versions are HSpice

(Meta-Software), PSpice (MicrSim), AccuSim (Mentor Graphics) and Cadence-SPICE (Cadence

Design). The PC-version, PSpice (MicroSim), is also available. PSpice allows various types of

analysis, which include DC Sweep, Transient Analysis and AC Analysis. For the average power

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 19

estimation of a circuit, the library function avg(i x v) can be called where i is the node current

and v is node voltage. However, the power dissipation is input pattern-dependent. Hence, the

utility of straightforward simulation can be limited because it is time consuming and can only

work at transistor level.

• Monte-Carlo-based power estimation

The basic idea of Monte Carlo methods for estimating activities of individual nodes is to simulate

a circuit by applying random-pattern inputs. The convergence of simulation can be obtained

when the activities of individual nodes satisfy some stopping criteria. The procedure is outlined

in Fig. 2.2 . The detail is discussed in [73].

Generate a Random Circuit State

Generate Inputs (a,P) and Sampl

No

Figure 2.2: Monte-Carlo-based technique flow chart

• Encoding based power estimation

This targets the STT or STG level of abstraction. At the STT or STG level of abstraction,

nothing has been decided about the structure of the combinational logic implementing the next

state and output functions. The state assignment algorithm can exploit degrees of freedom that

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 20

are lost at successive phases and produce an encoded state transition table that is an effective

starting point for further power optimizations of the combinational logic. Some power estimation

methods have been developed at this level.

Power is a strongly pattern-dependent cost function, since it depends on the switching activity

of a circuit, which in turn depends on the input patterns applied to the circuit. Hence, some

information about the typical input patterns applied to a circuit needs to be specified to estimate

its power dissipation. The most straightforward way to provide information about input patterns

is to actually provide a long input stream representing a typical usage pattern together with the

specification of the circuit. But it suffers from two drawbacks that the input traces can be

very large and cumbersome to manage and in many cases only incomplete information about

the environment may be available. Hence, instead, input signals are described by input signal

probabilities [89].

Definition 2.4. Signal probability: Let I(t), t E (-00, +00), be a stochastic process that takes

the values of logical 0 or logical 1, transitioning from one to the other at random times. The

signal probability of signal I(t) is given by

J
+T

p(I) = limT-too I(t)dt
-T

Definition 2.5. Signal Activity: The signal activity of a logic signal I(t) is given by

nI(T)
A(I) = limT-too-y;-

(2.1)

(2.2)

where nI(t) is the number of transitions of I(t) in the time interval between -T /2 and +T /2.

More detail state signal probability (briefly state probability) calculation is discussed in [89].

Two methods are developed to calculate the state probability: Explicit methods and ADD based

methods.

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 21

Explicit methods use iterative method [44] or Gaussian elimination method [119] to compute

the state probabilities. The main limitation of this method is that it is not applicable to very

large size FSMs for which the state set is large enough to make even the storage of matrix P a

formidable task.

ADD based methods use Algebraic decision diagrams (ADDs) data structure to compute

the state probabilities to avoid manipulating the transition probability matrix. ADDs [13] are

"BDD-like" data structure.

The main difference is that an ADD has multiple terminals while a BDD only has two

terminals: 0 and 1. ADD based methods allow the manipulation of very large systems by

representing the transition probability matrix with an ADD.

The STG of a finite-state machine is implicitly represented by a BDD (or, equivalently, by a

1/0-ADD) of its transition relation [30]. The transition relation is a Boolean function T{x, s, s').

The support of the transition relation consists of the input variables, the state variables and the

next state variables. T has value 1 when the STG of the machine has a transition from state

s to state s' with input x, zero otherwise. Similarly, the input probabilities can be represented

by an ADD. The ADD PI{x) is extracted from the array of input probabilities with the simple

formula PI{x) = II~(/PIi{Xi) where each PIi{Xi) is a single-node ADD with two leaves with

value Pi and 1 - Pi.

Given T and PI, the implicit representation of matrix P can be obtained by the following

symbolic formula:

P{x, s) = PI{x) . LT{x, s, s') (2.3)
s'

The ADD of P can be exponentially smaller than the traditional matrix representation.

Example 2.1. The STG of an FSM is given in Fig. 2.3{a) with input, output and conditional

transition probability at each edge. The transition relation T{x, s, s') is shown in Fig. 2.3{b)

in the tabular format. The ADD of T is shown in Fig. 2.3{c). The ADD of the conditional

input probability is shown in Fig. 2.3{ d). The result of the conditional transition probabilities

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 22

is shown in Fig. 2.3{e).

After computed conditional transition probabilities, the state probabilities can be computed

using the symbolic version of the power method[44]. The symbolic representation based on ADD

becomes useful when the STG and the truth table of T are unmanageably large.

s,x

0 1 0 1
s

1/0 (0.8) I 1 0 1 0

(a) (b)

(c) (d) (e)

Figure 2.3: Symbolic computation of the conditional transition probability matrix

Based on conditional state transition probability and the state probability, the state transition

probability can be calculated[89]. Because of no detail circuit structure available at this level,

switching activity is used to measure the power dissipation [88][77][15][12][48][117]. Given the

state encoding, each state is represented by binary code and Hamming distances can be calculated

for each state transition. Then, the switching activity of an FSM can be computed based on the

state transition probability and Hamming distances .

• Information-theory-based approaches

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 23

Recently, information theory has been used quite effectively to estimate power at the RT (reg­

ister transfer) level of design abstraction [75][62]. The RT level abstraction assumes that the

Boolean functionality of the circuit is known while the details of the implementation are un­

known. Information-theoretic approaches depend on information-theoretic measures of activity

(for example, entropy) to obtain quick power estimate.

Entropy characterizes the randomness or uncertainty of a sequence of applied vectors and

thus is intuitively related to switching activity, that is , if the signal switching is high, it is likely

that the bit sequence is random, resulting in high entropy. Suppose the sequence contains t

distinct vectors and let Pi denote the occurrence probability of any vector v in the sequence.

Obviously, 2:;=1 Pi = 1. The entropy of the sequence is given by

t

h = - I:: Pilog2Pi
i=l

(2.4)

This equation is only an upper bound on the exact entropy, since the bits may be depended.

This upper bound expression is, however, the one that is used for power estimation purpose.

Furthermore, in [75], it has been shown that, under the temporal independence assumption, the

average switching activity of a bit is upper bounded by one-half of its entropy. Based on entropy,

the methods to estimate the low bound and high bound of an FSM switching activity have been

presented in [109][63] .

• Power estimation included glitching

In the combinational section of the FSM, glitching power is inevitable. It has been observed that

this additional power dissipation is typically 20% of the total power, but can be as high as 200%

of the total power in some cases such as in a multiplier[123]. There are some publications on the

power estimation included glitching for FSMs [38][84][123]. Unit delay and general delay models

are proposed to estimate the glitching included power for circuits [42]. However, overestimation of

the power dissipation is still possible under unit delay model. Furthermore, multiple-option delay

models in a tool are not so convenient in practical applications. Monte-Carlo-Based approach

can estimate the exact glitching included power dissipation provided exact signal probabilities

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 24

and activities of primary inputs are known. However, accurate signal probability or activity

values for primary inputs may not often be available. Since power dissipation strongly depends

on the input signal properties, uncertainties in specifications of input signal properties make the

estimation process difficult[73]. Hence, more work needs to be done.

2.1.3 FSM power optimization

Different power optimization strategies have been applied at the different design levels. Here,

some important logic synthesis transformations will be discussed. Sequential logic optimization

methods work at two levels of abstraction, namely the State Transition Graph level and at the

logic-gate level. Several approaches have been developed in these levels as follows.

• State assignment

State assignment and the resulting combinational logic synthesis have been conventionally tar­

geted at reducing area and critical path delay [67][111][33]. For the optimization of power dis­

sipation, these methods have to be modified to target a power cost function, namely, weighted

switching activity. State assignment significantly affects circuit power dissipation because dif­

ferent state assignments have different switching activities. Given an FSM, the state transition

probabilities between any two states can be obtained [15][48]. A state transition in an FSM

could be caused by single or multiple bit transitions. Therefore, the switching activity could be

minimized if states associated with state transitions that appear most frequently are assigned

codes that are close to each other. Several methods have been proposed for power-oriented state

assignment [88][77][15][48], which are mainly based on the minimal average Hamming distance.

Methods to encode State Transition Graphs to produce two-level and multilevel implementations

with minimal power are described in [117] and [108]. A method to re-encode logic-level sequen­

tial circuits to minimize power dissipation is presented in [43]. The problem of finding the state

assignment for the power optimization is computationally hard. There is no known method of

predicting the optimum assignment for the states though many algorithms have been proposed

[108] [77] [15] [48] [117].

• Clock-gating

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 25

This scheme is based on the observation that during the operation of an FSM there are conditions

such that the next state and the output do not change (i.e., the machine is internally idle).

Therefore, clocking the FSM only wastes power in the combinational logic and in the registers in

this case. If the idle condition of the machine can be detected, the clock can be stopped until a

useful transition must be performed and the clocking is resumed. Fig. 2.4{a) is an input latched

FSM, which is different from the generic FSM structure in Fig. 2.1. Fig. 2.4{b) is a clock-gated

FSM structure. Fa, activation function, is to selectively stop the local clock of the FSM when

the FSM is internally idle. The block labeled "L" represents a latch, transparent when the CK is

low. The presence of a gated clock has a two-fold advantage. First, when the clock is stopped, no

power is consumed in the FSM combinational logic, because its inputs remain constant. Second,

no power is consumed in the registers and the gated clock line. In an arbitrary sequential

circuit, some parts of a circuit are not accessed in each clock cycle. A detailed discussion of this

technique is given in [16]. However, for those which have no internal idle states, the limitation

of this technique is obvious. To overcome this limitation, a new technique is presented in [90],

which can create idle states so that clock-gating technique can be used to save power. If simple

conditions that determine the inaction of particular registers can be determined, then power

reduction can be obtained by gating the clocks of these parts [17]. An extension version of this

technique is called precomputation technique which is presented in [2].

]N I FF

CK

(a)

Combination

Logic

STATE

OUT

I • IFF
]N

Fa

CK

(b)

Combination

Logic

STATE

OUT

Figure 2.4: FSM structure model (a) single-clock, flip-flop based FSM model; (b) clock-gating
version

• Partitioning

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 26

The fundamental intuition behind this technique is that a sequential circuit may be partitioned

into a set of small interacting blocks. During operation, only one block is active at any given time

and controls the input-output behavior. In the remaining blocks, the clock can be stopped and,

consequently, the total power consumption is reduced. FSM partitioning has been extensively

studied for several decades. Its theoretical foundations were laid down by Hartmanis and Stearns

[46] in the sixties. More recent work [41] reported experimental results on the implementation of

the partition procedures described in [46]. A different viewpoint on the problem was proposed

in recent years by Ashar, Devadas and Newton [10] who presented numerous algorithms for the

automatic partition of FSMs specified by an monolithic state transition graph (STG). However,

all these techniques are for minimum-area implementation. Recently, partitioning techniques

have been explored to reduce the power dissipation of FSMs. Chow et al. [29] proposed a

low-power partition approach based on the relationship between state assignment and FSM

partition that produced very promising results. Dasgupta et al [32] proposed an approach which

is accomplished in two stages namely disjunctive partitioning and selective isolation encoding

while Monteiro and Benini suggested approaches to combine partitioning technique with clock­

gating[71][18]. The principle behind this technique is to partition an FSM into number smaller

interacting submachines such that only one submachine is active during any clock cycle. The

rest of circuit comprising of the other submachines is turned off, thus avoiding unnecessary

power-dissipating switching .

• Retiming

=Ore!. ~ R
~
l

I
CL

(a) (b)

Figure 2.5: Reducing the switching activity by inserting register

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 27

The transformation that repositions the registers of a design without modifying its external

behavior is called retiming. Monteiro et al. [70] have pointed out that register positions can also

affect power dissipation. Consider the simple example of a logic gate belonging to a synchronous

circuit as in Fig. 2.5(a), and call CL the capacitance load driven by the output node of AND

gate. In the case of CMOS technology, the power dissipated by AND gate is proportional to

the product of the switching activity of the output node of the gate ag and the output load

CL. Now consider the case in which a register R is connected to the output of AND gate.

Let CR be the input capacitance of the register, and let aR be the switching activity of the

register output [see Fig. 2.5(b)]. The total power dissipated by the new circuit is proportional to

agCR + aRCL < agCL if both a g and CL are sufficiently high. Retiming repositions the flip-flops

in a synchronous sequential circuit so that the spurious transitions at the inputs to the flip-flops

can be filtered out by the clock as shown in Fig. 2.5. A retiming method that targets the power

dissipation of a sequential circuits is described in [70].

2.2 Low power design of flip-flops

It is found that although the power distribution of VLSI's differs from product to product a

clock system and its logic part consume almost the same power in various VLSI chips and the

clock system consumes 20%-45% of the total chip power. In the clock system power, 90%

is consumed by the flip-flops themselves and the branches of the clock distribution network

which directly drives the flip-flops [54]. Hence, low power design of flip-flops has attracted

many researchers [49][19][68][102][54]. Based on logic families, flip-flops can be grouped into pass

transistor based flip-flops[49][19], true single phase clocking (TSPC) based flip-flops, differential

designs and clocked CMOS (C2 MOS) flip-flops.

Low power design of flip-flops have been carried out along the following lines .

• Reducing the number of transistors used in flip-flops [49]

Reducing the number of transistors in flop-flops can reduce the internal nodes of signal transi­

tions. Hence, it can not only save area but also implement global power savings.

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 28

• Using double edges of clock signal to trigger flip-flops [110][49][19][102][58][40][1]

Compared to single edge-triggered flip-flops, the clock frequency for double edge-triggered flip­

flops can be reduced into half and hence clock system power is reduced. There are two kinds of

schemes to implement double edge-triggering. One is to use two latches or flip-flops to receive

input signals at both clock phases alternatively and use a multiplexer at the output section to

selectively output the stored signal[49][19][80]. This scheme often trades with the increasing

transistor number compared to the single edge-triggered flip-flops. The other is narrow pulse­

triggered scheme. This kind of flip-flop is composed of two parts: a pulse generator and a

latch (or a flip-flop cell). The pulse generator usually consists of a series of inverters (3 or 4

inverters) while a latch (or a flip-flop cell) uses clock racing signals to generate a narrow pulse

corresponding to each of clock transition edges[102][72]. A good performance comparison for

variety double edge-triggered flip-flops is shown in [68].

• Reducing clock signal swing to achieve power improvement[54]

This scheme is based on reducing clock signal swing to reduce the clock system power. However,

if there are clocked pMOS transistors in the circuit, it will make power supply complicated to

avoid static power dissipation increase.

• Using clock gating techniques to deactivate clock signal so that power dissipation is reduced

[100][101]

Clock signal is the most active signal in a flip-flop if glitches are not taken into account. Clock

signal triggers a flip-flop and also triggers most of internal nodes. However, if input signal is not

changing or has low signal activity, the clock triggering is redundant. In these cases, if clock

signal can be deactivated, the power can be saved. The principle behind clock gating techniques

is based on this idea.

2.3 Power optimization of XOR gate based circuits

Any Boolean function can be expressed canonically based on AND and XOR operators using

Reed-Muller (RM) expansions. Because Reed-Muller realizations have several attractive advan-

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 29

tages especially for functions which do not produce efficient solutions using SOP techniques,

research on Reed-Muller logic has attracted more and more investigators [4][64][114][8][115].

However, most of these work is on area minimization. The basic approaches to minimize area

are:

• Polarity optimization methods to find the best polarity with the least number of product

terms or literals.

To find the best polarity is computationally extensive in both space and time especially for large

functions. Traditionally exhausting search is only suitable for the smaller functions which are

less than 15 input variables[6][35][92]. However, progress has been made in [116], which can

solve large functions which have up to 25 input variables. Several heuristic methods have been

proposed which apply the simulated annealing [79] or genetic algorithm techniques[8][9].

• Decomposition

Decomposition method is based on the concept of ~ majority cube [105]. The principle behind

this method is that an m-dimensional cube covers at least ~ x 2m on-set 7r-terms. The method

is further generalized to very large multiple output functions in [114].

• Mixed polarity minimization

The product terms can be reduced with mixed polarity by combining the adjacent product terms

such as using XOR-link operation[97].

Compared to the area minimization, little work has been presented on power optimization

for XOR gate based circuits.

In [131]' a multiple input XOR gate is decomposed into a tree of two input XOR gates. The

aim is to search an optimized input signal combination which has minimum power dissipation.

In [74], FPRM functions are implemented into XOR trees and AND trees and power dissipation

is optimized with factorization and reduction rules. One limitation for these methods is that

they only optimize power under the specific function form or specific polarity.

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES

2.4 Genetic algorithm

30

In this section, some basic operations of Genetic Algorithms (GAs) are introduced, which will

be further discussed in the next chapter.

2.4.1 Overview

First proposed by John Holland in 1975 [47] and then developed by his colleagues and students,

genetic algorithms (GAs) have been an attractive class of computational models that mimic

natural evolution to solve problems in a wide variety of domains. GA emulates biological evo­

lutionary theories to solve optimization problems and composes of a set of individual elements

(the population) and a set of biologically inspired operators defined over the population itself.

According to evolutionary theories, only the most suited elements in a population are likely to

survive and generate offsprings, thus transmitting their biological heredity to new generations.

The basic procedure is to create a population (breeding pool) of potential solutions to a prob­

lem. These solutions are encoded as "chromosomes" (data representation of the solution), and

each chromosome is subjected to an evaluation function which assigns "fitness" depending upon

how well the solution it encodes solves the problem at hand. Existing solutions are recombined

by a process called crossover or breeding. The rational for this is that good solutions will contain

good building blocks, rearrangement of which may produce even better solutions. Further a mu­

tation process makes random changes in a few randomly selected chromosomes. This prevents

premature convergence by maintaining the diversity of the population. GA operates through a

simple cycle of stages:

• Creation of a "population" of chromosomes

• Evaluation of each chromosome

• Selection of "best" chromosomes

• Genetic manipulation to create new population of chromosomes

Fig 2.6 shows these four stages using GA.

OHAPTER 2. OONVENTIONAL LOW POWER DESIGN TEOHNIQUES 31

2.4.2 Representation

Fundamental to the GA structure is the encoding mechanism for representing the optimization

problem's variables. The encoding mechanism depends on the nature of the problem variables.

In each case the encoding mechanism should map each solution to a unique binary string.

Example 2.2. Consider optimizing the function f(x) = x2 where the continuous variable x is

defined in a range from [0,2] with an accuracy of two decimal places after the decimal point.

The variable can be encoded by a binary code. The mapping from a binary code into a real

variable value within the range [0, 2] can be implemented as in equation 2.5.

I

2x
x = 28 _ 1 (2.5)

Here, x' is binary code < b7b6'" b1bo > and 2 is the length of the domain. The reason to

choose 8 bit binary code is to meet the accuracy because

128 = 27 < 200 < 28 = 256

Offsprings

New generation

Genetic

operators

Manipulation
Mates

Population
(chromosomes)

Parents

Figure 2.6: GA cycle

Decoded
chromosomes

Evaluation
(fitness)

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES

For example, a chromosome x' =(01101100) represents 0.85, because

and

x' = (01101100h = (108ho

108
x = 2- = 0.85

255

32

The chromosomes (00000000) and (11111111) stand for the boundaries of the domain, 0 and

2.0, respectively.

2.4.3 Initial population

A population of chromosomes needs to be initialized. Any of possible 8-bit binary codes could be

a chromosome in the above case, which is initialized randomly. The population size (the number

of chromosomes) is set depending on the application.

2.4.4 Evaluation

An evaluation function returns a measurement of the worth of any chromosome in the population.

Evaluation function Eva(x') is equivalent to the function f(x).

Eva(x') = f(x)

For example, x' = (011011000) corresponds to x = 216.

Eva(01101100) = f(0.85) = 0.72

Usually, Eva(x') or f(x) needs to be transfered to fitness function fit(x'):

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 33

Jit(x') = h(Eva(x')) = h(f(x))

The fitness stands for a measure of how good the chromosome is.

2.4.5 Parent selection

Selection models nature's survival-of-the-fittest mechanism. Fitter solutions survive while weaker

ones perish. There are many ways to do this. The most popular parent selection scheme is the

roulette wheel parent selection. It works by allocating pie-shaped slices on a roulette wheel to

population members, with each slice proportional to the population member's fitness. Selected

parent can then be viewed as a spin of the wheel, with the winning population member being

the one in whose slice the roulette spinner ends up.

2.4.6 Crossover

Crossover recombines the genetic material in two parent chromosomes to make two children. The

simple crossover is one point crossover, which occurs when parts of two parent chromosomes are

swapped after a randomly selected point, creating two children. Fig. 2.7 shows an example of

the above application of one point crossover supposing that the cut point is selected after the

6th bit (usually called gene).

Parent 1: 011000 I OJ Child 1: 011000 I 10
---l>-

Parent 2: 110110 I 10 Child 2: 110110 I 01

Figure 2.7: Crossover operator

2.4.7 Mutation

Mutation is a secondary operator with the role of restoring lost genetic material. It also reduces

the possibility of early convergence on a local optimum solution. Mutation of a bit involves

flipping it from 0 to 1 or vice verse. For example, for child 1: 01100010, if the sixth gene

CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 34

is selected for a mutation, it would be flipped from 0 to 1 and result in a new chromosome

01100110.

2.4.8 Elitism

After crossover and mutation, the best members of the population may fail to produce good

offsprings in the next generation. To restore the possible loss, the best members of each generation

are copied into the succeeding one.

Chapter 3

State assignment for area and power

optimization

In this chapter, a genetic algorithm (GA) based state assignment targeting area and power

optimization is developed.

3.1 Finite state machines (FSMs)

A finite state machine (FSM) is represented by a set of states and a set of their associated

transitions.

An FSM can be represented by a graph or, equivalently, by a table. The two representations

are called state transition graph (STG) and state transition table (STT), respectively. The states

of an STG are labeled with the unique symbolic state names. The edges are labeled with the

input and output values. The state table is simply the list of edges of the STG. Take DK27 in

1991 MCNC benchmarks [129] for example as shown in Fig. 3.1.

FSMs can be incompletely specified. An incompletely specified FSM is one where 'T/(x, s) and

lor .\(x, s) are incompletely specified Boolean functions. To synthesize an FSM, the symbolic

state names must be encoded as unique binary codes. The binary codes assigned to the symbolic

states determine the circuit's combinational logic. Then state assignment is defined in Definition

3.1.

35

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 36

Definition 3.1. 8tate assignment is a mapping from the set of states of an F8M to the set of

binary codes.

It is well known that an F8M's state assignment can significantly affect the quality of syn-

thesized circuits. Much of state assignment research has been concentrated on reducing the

circuit area. NOVA[111] makes state assignments which target minimal-area two-level logic

while MU8TANG[33], JEDI[57] and MU8E[36] target multilevel-logic implementation. Recently,

several researchers have focused on low-power designs using state assignment that reduces the

average switching frequency of the states [88][12][108][77][15][48][117]. The 8yclop [88] method

considered conditional state transition probabilities as weight coefficients in the cost function,

while Hong [48] and Wang [117] methods exploited the total state transition probabilities. The

shortcoming of the above approaches is that they minimize the switching activity on the present

state bits without any consideration of the area in the combinational section of F8Ms. As a result,

the area overhead is high compared to area-oriented state-of-the-art tools. To consider the area

constrain in combinational section, Olson [77] and POW3 [15] introduced a convex combination

In P8 N8 0

0 81 86 00
0 82 85 00
0 83 85 00
0 84 86 00
0 85 81 10
0 86 81 01
0 87 85 00
1 86 82 01
1 85 82 10
1 84 56 10
1 87 56 10
1 81 84 00
1 52 53 00
1 53 57 00

(a) (b)

Figure 3.1: 8tate transition graph and state table of DK27 (a) STGj (b) 8TT

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 37

of the switching activity and the area of the combinational logic as cost function. Wang [113]

proposed a matching-based state assignment algorithm to minimize area and state transitions

simultaneously. However, all of those results show that minimization of switching activity has to

trade with area penalty. As we know, area overhead will result in many disadvantages such as

cost and reliability of circuits. Further, high area overhead will in turn offset the power reduction

in state registers.

The problem of finding the state assignment for the minimization of power consumption and

area is computationally hard. The two primary techniques used to solve the problem are the

greedy search and the simulated annealing. However, the search space appears to be too large

with many local minima for these schemes to find the global minimum. The genetic algorithm

(GA) technique has been successfully applied to a variety of computationally difficult problems

which have a large search space. It has been shown that it can produce good results in reasonable

computation time. A recent investigation showed that GA can find better assignments than

commercial products for area minimization [5]. Olson [77] employed a genetic local search to

perform a local optimization of FSMs and got encouraging results. In this Chapter, a new scheme

is proposed and genetic algorithms (GAs) are employed to optimize both switching activities and

area without the need to carry out an exhaustive search.

The remainder of the chapter is organized as follows. The terminology used here is defined

in Section 2.1.1. Section 3.1 introduces the FSM calculation while Section 3.3 defines the cost

function. The state assignment algorithms are described in Section 3.4. Experiment results and

conclusions are given in Sections 3.5 and 3.6, respectively.

3.2 Terminology and parameter calculation of FSMs

Power dissipation is a strongly pattern-dependent cost function. Here, input signals are described

by input signal probabilities.

Given a circuit, suppose the input signal probability, Pi, is known. However, in an FSM, the

probability of a state transition depends not only on the inputs but also on the state information.

Considering a transition between two state Si and Sj. If state Si is unreachable, the machine will

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 38

never perform the transition because it will never be in state Si. Similarly if the probability of

being in state Si is very low, a transition from state Si to state Sj is very unlikely. A parameter

to describe the probability of a transition is called conditional probability.

Definition 3.2. Given a set of inputs {Ioh ... In-I}, Conditional State Transition Probability

(CSTP) Pij associated with a transition from Si to Sj (briefly tSij) is the ratio of the number of

input minterms causing such transition to the total number of valid input minterms at state Si.

i, j E {O, 1,2"", n - 1} and n is the number of states.

If the input probability is not specified, a default input probability of 0.5 is used. In order to

simplify the calculation of the conditional probability, assumption of Markov chain is employed

[14].

Definition 3.3. A Markov chain is a representation of a finite-state Markov process, a stochastic

model where the transition probability distributions at any time depend only on the present state

and not on how the process has reached in that state. The Markov chain model for the STG is

a directed graph isomorphic to the STG and with weighted edges.

Symbolically the parameter can be expressed as:

Nij
Pij = Prob(Next = sjlPresent = Si) = 2:k Nik (3.1)

Here, i, j = 0, 1,2, ... , n - 1, Nij is the number of transitions tSij from Si to Sj while 2:k Nik

is all transitions that begin in state Si.

Given an FSM, calculation of the conditional state transition probability Pij is straightforward

assuming uncorrelated and equiprobable inputs for simplicity [15]. The following example shows

how to calculate Pij given input signal probabilities

Example 3.1. Consider the FSM shown in Fig. 3.1(a) with one input, In, and two outputs.

Assume that the input probabilities are Prob(In = 1) = 0.5. The conditional transition proba-

bilities are labelled on the edges of the Markov chain. For instance, consider the transition tS14.

Its CSTP is PI4 = Prob(In = 1) = 0.5. The detail is shown in Fig. 3.2.

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 39

This process is simple if the inputs of the FSM are completely specified as in Example 3.l.

However, if the inputs are incompletely specified, the cases of overlapping inputs and impossible

inputs need to be dealt with, which is shown in the following example.

Example 3.2. Table 3.1 shows some lines of an incompletely specified FSM tav, which is one

of MCNC benchmark circuits and given in the kiss file.

The first four lines tell the number of inputs, outputs, product terms and states, respectively.

The machine has four inputs, four outputs, 49 product terms and four states. From the fifth

line, each row consists of four sections, which give input encoding, present state, next state and

output encoding. For the transition tS01, the maximum number of the transition is sixteen. It

can be seen that the input cases {0111, 1011, 1101, 1110, 1111} have been over calculated for

the incompletely specified inputs. Thereby, the overlapping inputs need to be checked, which

can be expressed into

Il nIr :f: e (3.2)

Here, Il , Ir are input vectors resulting in the same transition tSij, l :f: r are the line number

of the circuit description file and e is an empty set. Algorithm 3.1 outlines the procedure used

114=112

Figure 3.2: Conditional state transition probability of DK27

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 40

to calculate Pij.

Algorithm 3.1. Procedure for finding GSTP

Find_ GSTP(8i,8j)

{

Pij = L:P(Il);

for (l = 4; l < MaximumLineNumber - 4; l + +) / /MaximumLineNumber

stands for the maximum line number of the circuit description file

for(r = l + 1; r < MaximumLinNum - 4; r + +)

{

if Il n Il- 1 =1= «I>

{

Pij = Pij - L:IEI/ nI/-l p(I);

}

}

Table 3.1: Tav's kiss format
.i4
.04

.p 49
.s 4

1000 80 81 1000
0100 80 81 0100
0010 80 81 0010
0001 80 81 0001
0000 80 81 0000
11- 80 81 0000
1-1- 80 81 0000
1-1 80 81 0000 I
-11- 80 81 0000 I
-1-1 80 81 0000
-11 80 81 0000
1000 81 82 1000

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 41

The CSTP is external input information. It does not depend on the structure of the Markov

chain. For an FSM, this information can be assumed to be known. Some researchers used

this information as a rough approximation to the transition probabilities [88]. However, this

probability does not utilize the information of state probabilities, where the state probability,

Pi, represents the probability that the machine is in a given state Si.

Definition 3.4. State probability Pi of a state Si, which is defined as the probability that the

state is visited in an arbitrarily long random sequence, can be obtained by solving the cor­

responding Chapman-Kolmogorov equations and the normality condition equation in equation

3.3.

{

",i=n-l n. - 1
L.ii=O r~-

. _ j=n-l ...
P~ - 2:: j =o PJPJ~

(3.3)

By solving the above set of linear equations, the state probability Pi can be obtained, which

is shown on the edges of the Markov chain as in Fig. 3.3.

P2 =4/21

P3=2/21

Figure 3.3: State probability labelled beside its state node and state transition probability la­
belled on each edge of DK27

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 42

The well-known Gaussian elimination method is used to solve the above equations [119] . The

core of the method is to convert a matrix into an upper triangular form and solve for Pi in

AP = b using the back-substitution method. Here, A is an upper triangular matrix, P is state

probability vector and b is a constant vector based on equations 3.3. Algorithms 3.2 and 3.3

outline the procedures.

Definition 3.5. An upper triangular matrix is one in which all elements below the main diagonal

line are zero as follows

aOO aOl a02 aO(n-l)

o au a12 al(n-l)

o 0 a22 a2(n-l)

000 a(n-l)(n-l)

Algorithm 3.2. Convert a matrix into an upper triangular matrix

UpperTriangular{s) {

for (i; ; ;) {

if (A(i, i) == 0) {

sort(A); }llsort the matrix so that the diagonal element is not zero

else

pivot = A[i][i];

for (j = i + 1; ;) {

mult = A[j][i]lpivot;

A[j][i] = 0;

for(k = i + 1; ;) {

A[j][k] = A[j][k] - mult * A[i][k];}

b[j] = b[j] - mult * b[k];}}}

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 43

Algorithm 3.3. Back substitution

===

Backsubstitution() (

for(i; ; ;) {

forU + i + 1; ;)

sum = sum + A[i]Li] * b[j];

b[i] = (b[i]- sum)/A[i][i];}}//The answer is returned by b

State transition probability can be defined as follows.

Definition 3.6. State transition probability (STP) tpij between two states Si to Sj occurs in an

arbitrarily long sequence and is given by

tPij = PiPij (3.4)

The STPs of DK27 are shown in Fig. 3.3.

Definition 3.7. The switching activity of the state bit lines depends on the state encoding and

the state transition probabilities. Average switching activity of an FSM can be calculated as

follows:

i=n-lj=n-l

SA = L L tPij x HD(enc(sd, enc(sj)) (3.5)
i=O j=O

where enc(sd is encoding of state Si and HD(enc(sd, enc(sj)) is the Hamming distance be­

tween two encodings, enc(si) and enc(sj). From equation 3.5, for an FSM with given input signal

probabilities, {tPij} is fixed while H D(enc(Si), enc(Sj)) varies with different state assignments.

Thereby, SA varies with different state assignments. This is the basic principle to optimize power

dissipation using state assignment.

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 44

3.3 Cost functions

The implementation of an FSM consists of two parts: a combinational logic section and a register

section. Both sections contribute to the power dissipation of an FSM. Traditionally, switching

activity is used to measure the power dissipation of a circuit. Some researchers [48][117] suggested

the use of switching activity as cost function. The approach implements the low power dissipation

by minimizing equation 3.5. However, this only minimizes the switching activity on present state

bit lines of the machine and does not consider the structure of the combinational section of the

final synthesized FSM, which may lead to non-optimal area implementation and result in power

overhead in the combinational section. Hence, to obtain low power dissipation in the final circuit,

area should be taken into account.

In [15], the cost function is linear composition of the weighted area and the switching activity.

Fan-in- or fanout-oriented method [33] based weighted area was used to indicate the desired

Hamming distance between the state codes. The higher the weight is, the smaller the Hamming

distance will be. A parameter a ~ 1 was introduced, specifying the relative importance of

switching activity with respect to area constraints. It was defined as

i=n-lj=n-l

Cost = (1 - a)SA + aLL Wij (3.6)
i=O j=O

Here, Wij is weighted area between Si and Sj.

In [77], literal based area was employed and the cost function is normalized to 1000.

Cost = b.literals + f3 x SA (3.7)

There, f3 was taken as 100.

The cost function is one of very important factors to guide circuit optimization. In this work,

two kinds of cost functions will be used and described as follows.

In Section 3.5, area and SA versus a and f3 will be studied. However, the number of cubes

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 45

after the logic minimization of a machine is used instead of weighted area and literals used in

equations 3.6 and 3.7. It will be shown that if the cost function is normalized to 1, SA is very

sensitive to change in a while area is less sensitive (See Fig. 3.4(a)). Further, ifthe cost function

is normalized to 1000, area is very sensitive to change in {3 while SA is less sensitive (See Fig.

3.4(b)). To influence both SA and area, a factor of 10 is used here and the first cost function is

defined as in equation 3.8 [124].

Costa = noOfCubes + SA (3.8)

Here, noO f Cubes is the number of cubes after the logic minimization of a machine.

On the other hand, for CMOS circuits, the dominant source of power dissipation is the

charging and discharging of the node capacitance and is given by:

1 k=m
Paver = "2 Vldfclk 2: CkSAk

k=l
(3.9)

Where Paver is the average power dissipation of the circuit, Vdd is the supply voltage, Ck is the

capacitive load at the output of gate k, fclk is the clock frequency, SAk is the switching activity

of gate k and m is the number of gates in a circuit and k E {1, 2" . ·m}. All of the parameters

in the above equation can be determined from technology or circuit layout information except

SAk and Ck of the circuit which depend on the synthesis technology. Hence, equation 3.9 can

be rewritten as in equation 3.10.

k=m k=m
Paver = K 2: CkSAk = KSA 2: Ck (3.10)

k=l k=l

Here, K =~ Vldf elk while SA is the average switching activity of a circuit and defined as

SA = 1.. ",k=m SA
m L.Jk=l k·

Hence, we have Paver ex Area x SA, where Area is estimate of the circuit area that is

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 46

representative of the capacitance 2.:~~~ Ck [75].

Given an STT of an FSM and a specific state encoding, SA can be calculated by equation

3.5. Under the circumstance of employing the minimal encoding length, the number of memory

elements used in a specific FSM are constant so that their corresponding area is fixed. Hence,

only the area of the combinational section varies with the state assignment. The area of the

combinational section could be measured by the number of cubes. Therefore, the second cost

function is defined as in equation 3.11.

Costb = noO fCubes x SA (3.11)

3.4 State assignment using Genetic algorithm

Genetic Algorithms (GAs) are based upon evolutionary adaptation in natural systems and at­

tempt to generate useful solutions to a given problem by the application of the "survival of the

fittest" principal. The basic idea is to create a population (breeding pool) of potential solutions

to a problem. These solutions are encoded as "chromosomes", and each chromosome is subjected

to an evaluation function which assigns ''fitness'' depending upon how well the solution it encodes

solves the problem at hand. Existing solutions are recombined by a process called crossover or

breeding. Further, a mutation process makes random changes in a few randomly selected genes.

This prevents premature convergence by maintaining the diversity of the population. The best

members of the population may fail to produce offspring in the next generation. The elitist

strategy rectifiers this potential loss by copying the best members of each generation into the

succeeding one.

3.4.1 Solution representation

An FSM with n states requires a minimum of s state variables for the assignment where s =

rlog2m 1 and symbol rl stands for taking the upper bound integer of log2m. The chromosome

representation is a string of decimals. Take benchmark 'DK27' for example. It is a seven

CHAPTER 3, STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 47

state machine and the states are named S1, S2, S3, S4, S5, S6, S7' Assignment 6, 2, 1, 4, 3, 5,

7 is one possible chromosome, Then, S1 is assigned the binary code 110, S2 is assigned 010,

etc, The population of solutions consists of state assignments of an FSM, They will be stored

in a two dimensional array population[i][j], where, (i=0,1,2, "" populationSize-1, j=0,l,2, ""

numberOfStates-1) , The breeding pool of chromosomes is initially created by InitialPopulation

o randomly, The sketch of InitialPopulation 0 is as shown in Algorithm 3.4:

Algorithm 3.4. Initializing population

InitialPopulation (int numberOfBits, int numberOfStates)

(

int maxInt, randNum, randRemainj

int doubleEentryFlag = OJ

maxInt = 1 < < numberOfBitsj

for(i=Oji<populationSize;i++)

for(j=O;j<numberOfStates;j++)

population[ilbJ = maxInt +1;

srand (seed Value};

for(i=O;i <populationSize;i+ +)

for(j=O;j<numberOfStates;j++)

{

do

(

randNum = rand{}j

randRemain = randNum%power;

for(k=O;k<numberOfStates;k++)

if(randRemain==population[i}{kj)

doubleEntryFlag = 1;

} while (doubleEntryFlag==1);

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 48

population[i}[j} = randRemain;

}

}

3.4.2 Evaluation

Based on the above assignment, the cost can be calculated according to equations 3.8 & 3.11.

To a specific state assignment for an FSM, let the maximum state transition probability

tp = max(tPij)

and maximum Hamming distance between two state codes

maxHD = max(HD(enc(Si), (Sj))) = lengthOfStateCode

The maximum SA of the FSM can be calculated as:

i=n-lj=n-l

maxSA = 2: 2: tp x maxHD
i=O j=O

(3.12)

(3.13)

(3.14)

The area can be estimated by the number of cubes after state assignment. maxCubes takes

the product terms from the STT. Then the maximum costs will be:

maxCosta = maxSA + maxCubes and maxCostb = max SA x maxCubes.

Hence, to a specific state assignment, the fitness can be defined as:

fitnessmode = (maxCostmode - costmode)/maxCmode (3.15)

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 49

Here, mode E {a, b}, which corresponds to two cost models in equations 3.8 & 3.11, respec­

tively. From equation 3.15, lower cost will result in higher fitness.

3.4.3 Crossover

Parent selection strategy follows the one proposed in [9]. Crossover is a primary method of

perturbations in GA, which generates better solutions by exchanging the information contained

in the present solutions. In this application, a position-based crossover (PBX) is employed

[130]. This was modified, however, so that invalid offsprings are avoided and efficient crossover

is reached. This is outlined as follows.

Randomly select a number oflocations named location-indicator (LID) in binary codes whose

length is equal to the number of states in the FSM. Where 1s appear in the LID, copy the states

from Parent 1 to Child 1. Where there are Os in the LID, copy those corresponding states from

Parent 2 provided that they do not exist in Child 1. If the state from Parent 2 is already in

Child 1, the position is filled by the first unassigned state from Parent 1 but checks are made

to avoid duplicating the parent. Continuing this way, Child 1 is obtained. With the same LID,

interchange Parent 2 and Parent 1 and repeat the process to produce Child 2. This is illustrated

for a seven state machine.

Step 1. Randomly generate a seven-bit LID: 1 0 1 1 0 1 0

Step 2. Select two parents by the roulette wheel approach:

Parent 1: 6 2 1 4 3 5 7

Parent 2: 1 0 5 3 2 4 6

Step 3. Generate Child 1:

a. Where 1s appear in the LID, copy the states from Parent 1 to Child 1 and delete those

copied states in Parent1.

Parent 1: - 2 - - 3 - 7; Child 1: 6 - 1 4 - 5 -;

b. Where there are Os in the LID, copy the states from Parent 2 to Child 1 provided that

they do not exist in Child 1 and delete the copied states in Parent 2. There are states 0, 2 and

6 from Parent 2 corresponding to Os in the LID. However, state 6 is already in Child 1. Hence,

only states 0 and 2 in Parent 2 are copied to Child 1.

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 50

Parent 2: 1 - 5 3 - 4 6; Child 1: 6 0 1 4 2 5 -;

c. The unfilled position in Child 1 is filled by the first unassigned state from Parent 1, which

is state 3. Then state 3 is copied to Child 1.

Parent 1: - 2 - - - - 7; Child 1: 6 0 1 4 2 5 3;

Step 4: Swap Parent 1 and Parent 2 and generate Child 2 following the same procedure.

3.4.4 Mutation

Mutation in normal GA just flips a selected bit from 0 to 1 or vice verse. We mutate CHRO­

MOSOMES state number one by one with a mutation rate 6%. The procedure is as follows:

For example, for a 7-state FSM, if the chromosome is 6 2 1 4 3 5 7, the following procedure

will be executed. At first, the program will randomly generate a number, namely randomNum1,

and check the first state 6, and if randomNum1 < 6%, produce two different random numbers

randomNum2 and randomNum3, for instance, randomNum2 = 2 and randomNum3 = 4,

then, the state numbers in the third bit and fifth bit of the chromosome will be swapped and the

chromosome would become 6 2341 57. Then it will check the second state, if randomNum1 >

6%, no exchange takes place in the chromosome during this step. The program will check the

generations one by one until the last generation. The detail is shown in Algorithm 3.5.

Algorithm 3.5. Mutation operator

==

Mutation (numberOfStates)

(

for(i=O;i<numberOfStates;i++)

(

randomNuml = rand()%100;

if(randomNuml < MUTATION_RATE)

(

randomNum2 = rand()%(numberOfStates);

do

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 51

(

randomNum3 = rand() %numberOfStates;

}while (randomNum2 !=randomNum3);

swap (population[randomN uml J[randomNum2 j, population[randomNuml J[randomNum3 J);

}

}

}

3.4.5 Elitism

The best member of the population may fail to produce offspring in the next generation. Hence, it

will be kept in the array eletistM ember[i] and stored in the array population[populationSize/2-

l][i] of the next generation, where i = 0, 1,2, ... , numberOfstates - 1.

3.4.6 Outline of the algorithm

The outline of the algorithm is illustrated in Algorithm 3.6.

Algorithm 3.6. Outline of the algorithm for state assignment

==

Step 1. Read the benchmark

Step 2. Generate an initial population-brooding pool

Step 3. Calculate state transition possibilities tpij

Step 4. Assign states and create a Berkeley standard PLA file for each chromosome

Step 5 Calculate the number of cubes by ESPRESSO minimization for each chromosome

Step 6. Calculate the fitness of each chromosome

Step 7. Select parents by the roulette wheel approach.

Step 8. Perform crossover to generate offsprings

Step 9. Mutate chromosomes

Step 10. Assign states and create a Berkeley standard PLA file for each chromosome

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 52

Step 11. Calculate the number of cubes by ESPRESSO minimization

Step 12. Calculate the fitness of each chromosome

Step 13. Generations = generations + 1

Step 14. If generations'5:.max_ numberGenerations, goto Step 7.

Step 15. Output the results:

(1) The half chromosomes with higher fitness

(2) The best state assignment, its switching activity and the number of cubes

3.5 Experimental results

The above algorithm is implemented in 0 and applied to MONO benchmark circuits. Gaussian

elimination method [119] is used to find the total transition probabilities according to the STT

of an FSM. ESPRESSO is used to minimize the circuit after state assignment and obtain the

cubes. This is done by generating a Berkeley standard PLA file for each chromosome and passing

it to ESPRESSO for minimization. The product terms from this minimization determine the

number of cubes for that assignment. Switching activity is calculated using equation 3.5. TWo

sets of experiments have been conducted.

First, we want to find out how the combination of area and SA, two cost functions in equations

3.6 and 3.7, affect the optimization quality. In order to compare them, we use noO fCubes instead

of w in equation 3.6 and filiterals in equation 3.7, respectively. Benchmark circuits 'ex4' and 'cse'

are chosen as study cases. The reason for choosing them is that 'ex4' has 14 states and is an

incompletely specified machine while 'cse' has 16 states and is a completely specified machine.

Both are medium size FSMs. Figs. 3.4(a) and (b) show that area and SA vary with a and (3,

respectively. The plots show:

• The area ratio Anoo fCubes I AaverageO fCubes

• The SA ratio SAl SAaverage

From Fig. 3.4(a), we notice that area varies much less than SA when a varies from 0.1 to 0.9.

From Fig. 3.4(b), SA varies much less than area when (3 varies from 100 to 900. It makes sense

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 53

that equation 3.6 based cost function does not have too much influence on area minimization

while equation 3.7 based cost function has little influence on SA minimization.

1.6

j
1.S

1.~

1.3

1.2

1 .1

0.9

0.8

o .7

0.6

1.2

1.1

0.9

0.8

0.1

0.6

____ a re a_c;!; e

\
_____ SA _c;!; e

---.- a re a_ e x 1

---ff"- SA _ex 1

o .1 0 .2 0 .3 0 . ~ 0 .S 0 .6 0 .7 0 .8 0 .9 a h'a

(a)

100 300 SOD

(b)

-t--area_cH

___ SA_C;!;e

----t- a re a_e xl

______ SA _ (!X 1

100 900 be ta

Figure 3.4: Relationship between cost function and optimization quality (a) Area and SA versus
a in equation 3.6; (b) Area and SA versus (3 in equation 3.7

Second, fourteen MCNC benchmark circuits, whose number of states are between 10 and

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 54

48, are chosen to test the proposed methods. Then an area-oriented state assignment program,

NOVA [111], is run on the same benchmarks, following the same procedure to get the switching

activity and the number of cubes. Tables 3.2 summarizes the test results. The results given by

Hong et al and Wang et al are listed in the same table for comparison. In Table 3.2, cubesa

and BAa are obtained using costa in equation 3.8 while cubesb and BAb are obtained from costb

in equation 3.11. Compared to NOVA, Hong and Wang gave 47.5% and 42.3% reduction in

switching activity while 10.3% and 12.6% extra product terms are used, respectively. Using

costa, GA gives a 32.2% reduction in switching activity and 4.4% reduction of product terms.

Among the 14 circuits, our method gives better area results in 11 cases compared to NOVA

and in 10 cases compared to Hong's and Wang's. Using costb, GA gives a 43.8% reduction in

switching activity but needs 5.7% extra product terms. The area penalty, however, is much

smaller than Hong's and Wang's. Table 3.3 gives the two set of codes, namely a and b, for the

best state assignment by GA, which are based on costa and costb, respectively.

The above results are obtained using the following parameters: population size = 70, crossover

rate = 60%, mutation rate = 6%, and maximum number of generations = 200. These parameters

were determined after testing various population sizes and different crossover and mutation rates.

3.6 Summary

A genetic algorithm for finding good state assignments targeting minimization of power and area

for finite state machines has been developed and implemented in C. Tests as to the effectiveness

of this approach to the problem are conducted by comparison of performance against the state-of­

the-art commercially available software and some published results when operating upon MCNC

FSM benchmark circuits. Two options are available for optimizing FSMs targeting area or power

dissipation. The results shows that significant saving in power and/or area can be achieved.

@
~
"\j

~
~

~
S..:l

cr" CJ:l

benchmarks GA Wang [117] Hong [48] NOVA [111]

- ~ CTl

I:.I.:l

~ ~
Name States cubes a BAa cubeSb BAb cubes SA cubes SA cubes SA
bbara 10 22 0.317 24 0.279 26 0.279 26 0.295 24 0.495
bbsse 16 27 0.783 28 0.788 31 0.776 31 0.856 30 1.500

cse 16 43 0.355 44 0.252 48 0.239 50 0.292 46 0.604
downfile 24 36 1.600 47 1.438 45 1.125 40 1.083 28 1.750

tIj ~
~ CJ:l
'0 ~ CTl
I-j G S·

~ CTl

~ e. ~
keyb 19 46 0.674 48 0.573 58 0.556 52 0.647 48 1.466

modulo12 12 12 0.583 11 0.583 12 0.500 12 0.583 12 1.000
planet 48 86 2.424 92 1.682 103 0.984 101 1.153 87 2.831

sl 20 66 1.480 76 1.184 91 1.175 85 1.131 80 1.698
sand 32 89 0.765 101 0.664 109 0.610 110 0.604 97 1.085
styr 30 88 0.943 98 0.586 99 0.553 101 0.578 94 1.278
ex1 20 52 0.842 59 0.750 47 1.135 49 0.755 44 1.358

I-j f..3 CTl m ~ ~ - 0 .,....
m ~
m

~ ::r"

~ ~
::J

Q'q

~ '0
0 @ ~

ex4 14 14 0.421 16 0.467 18 0.957 16 0.495 19 1.316
I-j "\j
[?;' 0

opus 10 15 0.556 16 0.417 17 0.712 17 0.524 16 0.812
train 11 11 10 0.339 10 0.339 10 0.714 9 0.360 9 0.619

..,
~ I-j

CTl ..,
~

Total 606 12.082 670 10.002 714 10.315 699 9.356 634 17.812
aver.%red. 4.4 32.2 -5.7 43.8 -12.6 42.3 -10.3 47.5 0 0

S· 0
'0 "\j
I-j

bl ~
CTl ~ S
CTl ~ ::J .,....

bl
0
<

CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 56

Table 3.3: Best state assignment codes by GA: Assignments a & b are based on costa & costb
respectively

a: 8, 0, 2, 7, 4, 6, 15, 14, 10, 12 ; b: 8, 0, 4, 6, 2, 3, 7, 14, 12, 10
bbsse a: 8, 2, 6, 14, 3, 10, 15, 13, 9, 12, 11, 0, 4, 1, 7, 5

b: 4, 14, 10, 3, 6, 2, 9, 1, 8, 11, 0, 12, 13, 15, 5, 7
cse a: 0, 1, 13, 5, 15, 6, 2, 3, 9, 7, 11, 10, 8, 14,4, 12

b: 0, 4, 12, 6, 14, 11, 8, 10, 1, 2, 3, 7, 5, 15, 9, 13
donfile a: 2, 3, 0, 4, 1, 5, 6, 7, 10, 11, 8, 9, 13, 12, 14, 15, 21, 23, 17, 16, 18, 19,

25, 27
b: 11, 5, 12, 28, 1, 8, 15, 7, 14, 26, 31, 29, 13, 20, 6, 30, 0, 4, 3, 24, 23,
21, 16, 22

keyb a: 0,4, 16,8,21, 12,20, 19,7, 17, 14, 1, 15, 23, 3, 9, 28, 10, 13
b: 0, 4, 2, 8, 31, 10, 27, 25, 24, 17, 15, 3, 13, 29, 9, 28, 16, 21, 5

modulo12 a: 0, 9, 13, 15, 11, 3, 7, 5, 4, 6, 14, 12; b: 9, 8, 10, 11, 15, 7, 0, 2, 3, 1,
5,13

planet a: 26, 11, 7, 0, 4, 10, 18, 24, 22, 15, 48, 43, 59, 14, 9, 12, 46, 44, 8, 63,
51,6, 5, 13, 47, 34, 23, 52, 2, 1, 58, 45, 61, 37, 25, 35, 42, 32, 31, 60, 39,
56, 50, 30, 57, 49, 62, 21
b: 50, 36, 52, 20, 16, 2, 14, 6, 54, 53, 46, 49, 40, 51, 9, 11, 3, 19, 25, 56,
57, 35, 7, 32, 24, 28, 29, 21, 8, 33, 12, 45, 5, 37, 13, 39, 61, 63, 31, 23,
15, 62, 58, 18, 22, 4, 48, 26

sl a: 20, 18, 10, 26, 5, 27, 16, 24, 0, 8, 30, 25, 29, 13, 22, 1, 19, 9, 4, 21
b: 13, 5, 28, 29, 10, 31, 1, 21, 0, 17, 19, 23, 14, 15, 16, 2, 20, 7, 18, 8

sand a: 22, 7, 6, 2, 3, 30, 31, 21, 0, 16, 19, 17, 23, 5, 12, 13, 14, 15, 10, 11, 8,
9, 4, 25, 28, 27, 24, 1, 20, 18, 29, 26
b: 18, 16, 1, 17, 9, 26, 24, 8, 0, 4, 25, 12, 19, 14, 6, 22, 20, 21, 5, 13, 15,
23, 7, 3, 2, 10, 11, 27, 31, 29, 28, 30

styr a: 0, 8, 13, 24, 28, 29, 9, 5, 22, 4, 11, 19, 2, 18, 16, 26, 7, 12, 14, 20, 15,
3, 27, 17, 21, 31, 23, 25, 6, 1
b: 9, 25, 24, 10, 4, 28, 26, 30, 27, 19, 13, 29, 1, 0, 11, 12, 3, 18, 22, 6, 23,
2, 21, 16, 8, 31, 5, 20, 17, 14

ex1 a: 0, 4, 2, 16, 12, 18, 6, 15, 26, 11, 23, 19, 27, 30, 3, 31, 7, 5, 22, 1
b: 0, 1, 4, 8, 3, 5, 12, 11, 23, 7, 28, 22, 18, 15, 19, 14, 21, 6, 17, 2

ex4 a: 11, 3, 6, 15, 1, 4, 0, 9, 12, 14, 8, 10, 13, 5; b: 4, 2, 1, 3, 6, 13, 0, 5,
15, 7, 12, 10, 11, 9

opus a: 6, 2, 11, 0, 15, 8, 10, 4, 5, 1; b: 9, 11, 15, 0, 7, 8, 12, 2, 1, 10
train11 a: 0, 1, 2 ,3, 7, 9, 8, 10, 14, 6, 4; b: 0, 1, 2, 3, 7, 9, 8, 10, 14, 6, 4

Chapter 4

Differential CMOS single

edge-triggered fli p-flop

Flip-flops are the basic building blocks of synchronous digital circuits and, to a large extent,

determine circuit power dissipation. Hence, low power design techniques of flip-flops are essential

to design low power sequential systems. As a consequence, many genius techniques have been

recently proposed to reduce the power dissipation of the flip-flops [49][19][68][102][100][54][72].

Categorized by the input sampling, edge-triggered flip-flops can be grouped into two types:

pulse sampling [102] and level sampling [100]. The former only needs one latch and hence has

a simpler structure, however, it suffers from long clock chain used to generate narrow pulses.

The latter needs two latches or flip-flops and hence needs more transistor count, which results

in the increase of its area and power dissipation [102]. Structurally, they can be categorized

into differential and non-differential flip-flops. The structure characteristic of differential flip­

flops is that they are composed of one differential amplifier, flip-flop cell, and some auxiliary

circuits. Hence, differential flip-flop has some advantages over the non-differential one since it

has complementary outputs, can amplify a small voltage signal and at the same time latch data.

Much effort has been paid to improve its performance [54][59][72]. In [54], reduced clock-swing

flip-flop is proposed and power saving is achieved by lowering the voltage swing of the clock

system. However, a backgate bias is needed, which complicates the power supply. In [100], a

57

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 58

flip-flop design with clock-gating on both master and slave latches is presented. However, the

area penalty for the additional circuit is very high and the power saving is significant only when

the switching activity of the input signal is very low. Looking at the published circuits, their

designs suffer from two disadvantages.

1. For the version clocked with NMOS and PMOS transistors in flip-flop cell, clock load

is heavy and static power dissipation is significant if reduced-swing clock singles are applied to

PMOS transistors [54][59].

2. For the version clocked with NMOS transistors in flip-flop cell, it suffers from long clock

chain, which consumes significant clock power [72] .

4.1 Differential CMOS single edge-triggered flip-flop

In [59], two N - C2MOS output latches were used to improve the speed of flip-flops but this

is traded with power dissipation penalty. There are two disadvantages for this design. One is

that the clock load is too heavy because it uses many clocking transistors. The other is difficult

to apply for reducing the signal swing due to clocking with NMOS and PMOS transistors. To

overcome these problems, in [72], a differential CMOS Single Edge-Triggered Flip-Flop (SET-FF)

based on clock racing was proposed.

The flip-flop in Fig. 4.1 consists of a differential amplifier called a cell and a clock chain

which is composed of three inverters [72]. The clock chain generates a delayed CPl. CP and

CPI are applied to the cascaded transistors, m7 and m8, respectively, which generate a narrow

pulse at the rising edge of each clock pulse. Hence, the flip-flop is triggered at the rising edge of

the clock pulse. Transistor sizes, which are expressed in W / L, are marked beside the inverters.

To obtain proper width of the narrow pulse, transistor sizes, Wand L, of the second inverter in

the clock chain are the double of the other inverters. If D, Q and Q' are used to represent the

input, present state and next state signals respectively, the next state equation can be expressed

into

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 59

I

Q = DCicp + QCicp (4.1)

Here, Cicp represents the rising edge of clock pulse.

D .1

-::-

4/1

CP

(a)

Q

Q

~P1
~1

CP1
DQQ
CP Q

(b)

Figure 4.1: Differential CMOS SET-FF (a) Circuit implementation; (b) Logic symbol

Because the cell is driven by a narrow pulse, the output latches can be removed and only two

NMOS transistors are clocked. Hence, this design has a simpler structure and a feature to apply

for data and clock signals with reducing swing. The experimental results show that it has better

performance in power and speed than those used in commercial processors. On the other hand,

the advantage of edge-triggered flip-flops is that the setup time for data input is independent of

the clock pulse width. It is also less sensitive to noises. This makes system design simpler.

4.2 Circuit parameter optimization

For a flip-flop, speed and power dissipation are two key parameters. However, they mainly

depend on the circuit structure and technology parameters. For a specific circuit structure,

power delay product (PDP) is used to measure its performance. Therefore, circuit optimization

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 60

aims to optimize PDP.

Definition 4.1. Power Delay Product (PDP) is defined by the following equation:

PDP = Tdelay * Pw (4.2)

Here, Tdelay is the delay of a flip-flop while Pw is its power dissipation.

4.2.1 Delay

For the clarification, it is helpful to give some definitions here.

Definition 4.2. DCQ : Clock-to-Q time, the propagation delay from the C to the Q, assuming

that the D signal has been set early enough relative to the triggering edge of the clock pulse.

Here C refers to the Clock.

Traditionally, the delay of flip-flops is referred to Clock-to-Q delay. However, some authors

pointed out that using DCQ delay as a relevant performance parameter for a flip-flop is misleading

because DCQ delay does not take the setup time into account [1][99].

Definition 4.3. Ts : Setup time, the minimum time between a D change and the triggering

edge of the clock pulse such that the output Q will be guaranteed to change so as to become

equal to the new D value.

The setup time is the delay between the data input of the flip-flop and the storage element

as the data takes a finite time to travel to the storage point.

Thereby, it is proposed to use D-to-Q as the delay of a flip-flop. This is defined as follows:

TVQ = DCQ +Ts

In this thesis, we will accept both DCQ and TVQ to measure the delay of a circuit.

For the measurement of TVQ, the methodology proposed in [1] is followed.

(4.3)

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 61

4.2.2 Circuit optimization

For a high-performance and low-power application, speed and power are equally important.

Usually, there is tradeoff between power and speed. To compromise the two, the concept of the

minimum power-delay product (minPDP) is used. The minimum power-delay product is the

optimal energy utilization at a given clock frequency.

Take Fig. 4.1 for example to explain this. Fig. 4.2 is the same version of Fig. 4.1. The main

difference is that all inverters are substituted by nMOS and pMOS transistors. However, it is

not easy to optimize PDP because theoretically PDP is a multiple variable function of circuit

parameters. Given the variety of designs, it is not always simple to express the PDP as a function

of one common variable. For simplification, we take the transistor channel width as a common

variable. Then, delay, power and PDP can be expressed into functions of one variable. Set the

minimum transistor length to 1/1- and channel width is marked beside the transistors using w.

Some transistors are pre-optimized based on the parameters referred to in reference [72].

Q}
-=-

-=-

I~Q
1~D

-=-

~~/2 ~~/2 CP CPl

wl2 w w/2

-=- -=-

Figure 4.2: Power delay product optimization

Fig. 4.3 shows the linear relationship between the power and transistor width w while Fig.

4.4 indicates the nearly inversely proportional relationship of delay versus width w. Fig. 4.5

shows the curve of PDP versus width w, which shows that there is a point of the optimum

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 62

power-delay tradeoff. Based on this analysis, the circuit parameters can be optimized to the

point of minimal PDP.

1400 -:s: 1200
:J -s::: 1000
0

:J:J
~ 800
.9-

600j / U1I
U) .-
" 400
10-
G.I

200 .-A i:
0
f1. 0

0 10 20 30 40

Chanrlel width (urn)

Figure 4.3: Power versus width w

The procedure presented above is used to optimize circuits. Although the procedure could

be developed into an automatic tool, it is not our main point here. Further details can be found

in reference [99].

4.3 Differential CMOS Single Edge-Triggered Flip-Flop with Clock-

Gating (CG-SETFF)

As known, clock signal is the most frequent transition signal in the circuit. In one clock cycle,

clock signal has two transitions while other signals in the circuit (exclude glitches) have one

transition at most. Hence, in the clock chain, transition is the most frequent and correspondingly

it consumes significant power. According to the working principle of D flip-flop, next state Q'

follows the input signal D. If D does not change, the flip-flop does not need to be triggered. If we

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 63

can detect the idle conditions of input signal D and stop the clock signal, then power dissipation

can be saved. Based on this idea, a new design is proposed in this section.

In Fig. 4.1, it is observed that whether the input signal D varies or not, there is always

a narrow pulse to trigger the flip-flop. However, when the input signal D is in low switching

activity, it is unnecessary to trigger the flip-flop for each clock pulse. For example, when D keeps

at 1, the flip-flop does not need to be triggered. In this case, those narrow pulses to the flip-flop

are redundant and the transitions that happen in the clock chain are also redundant. If the clock

of the clock chain can be deactivated, power can be saved. Hence, if a non-redundant transition

clock chain can be designed, then it can be expected to save significant power when the D input

transitions are low.

Fig. 4.6 is a schematic diagram of a non-redundant transition clock chain. In Fig. 4.6, D and

Q are the input and the output signals of a flip-flop respectively and CP is its clock. XOR gate

is used to compare the input D and the output Q. When D=Q, the output of the XOR is 0 (1

when D#Q). The output of the XOR gate is used as an enable signal for the tri-state inverter.

2

1 .5 -U1I
s::::

~ . . •

1 -i;' ..
c 0.5

0 T I I 1

0 10 20 30 40

Channel width (um)

Figure 4.4: Delay versus width w

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 64

The clock chain is only driven by OP when D#Q. Hence, compared to the conventional flip-flop,

redundant OPs are eliminated. If CP1 and CP2 are used to control the gates of m7 and m8

the narrow pulses generated are also non-redundant. Since the narrow pulse is generated at the

falling edge of OP, the flip-flop will sample the input signal at the falling edge of OP. Using the

dual trail signals D and Q from the flip-flop, one possible circuit implementation is shown in Fig.

4.7 [125]. mg-m13 make up a control circuit, which is used to selectively pass OP to the clock

chain. When D = Q, mll is off and OP is blocked to the clock chain. When D # Q, inverted

OP is passed to the clock chain.

0.6 ...-, ---------------,

0.5

~ 0.4
"5
.§- 0.3
u :s 0.2
~ a.. 0.1

O+I------~----~------~----~

o 10 20 30 40

Channel width (urn)

Figure 4.5: PDP versus width w

CP
CP2

CPl

Figure 4.6: Non-redundant transition clock chain

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 65

4.4 Circuit simulations and power dissipation measurement

Circuit simulations are conducted using PSpice II with Level 3 at 5V, IlL technology and 50MHz

clock. SPICE parameters for IlL technology are shown in Table 4.1.

Table 4.1: SPICE parameters of MOS transistors for a generic 1.0ILm process
.MODEL CMOSN NMOS LEVEL=3 PHI=O.6 TOX=2.03E-08 XJ=O.15U TPG=1
+VTO=O.7333 DELTA=9.445E-Ol LD=1.0E-09 KP=1.2964E-04 UO=762.1 THETA=5.246 E-02
+RSH=2.3650 GAMMA=O.4481 NSUB=1.75E+16 NFS=2.356E+12 VMAX=1.487E+05
+ETA=1.485E-Ol CJ=1.1962E-04 MJ=0.4398 CJSW=4.6953E-I0 KAPPA=9.51E-02
+CGDO=2.5516E-12 CGSO=2.5516E-12 CGBO=3.0108E-I0 MJSW=O.123994 PB=O.8
.MODEL CMOSP PMOS LEVEL=3 PHI=O.6 TOX=2.03E-08 XJ=O.15U TPG=-1
+VTO=-O.9679 DELTA=4.3070E-Ol LD=1.0E-09 KP=4.3207E-05 UO=254 THETA=1.7060E-Ol
+RSH=2.5530 GAMMA=0.497 NSUB=2.153E+16 NFS=4.566E+12 VMAX=1.82E+05
+ETA=1.8290E-Ol KAPPA=3.225 CGDO=2.5516E-12 CGSO=2.5516E-12 CGBO=3.5207E-I0
+CJ=5.3093E-04 MJ=O.5074 CJSW=7.8757E-ll MJSW=O.077193 PB=O.85

The transistor lengths are minimum for the above technology, while the transistor widths

D " _I

(a)

Q

Q

CPl
~
C~

CPICP2 L

CP2

D8 Q

CP 0 Q

(b)

Figure 4.7: Differential single edge-triggered CMOS flip-flop with clock-gating (CG-SETFF)(a)
Circuit implementation; (b) Logic symbol

i

I

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 66

are Sf.t except m3, m4, m7, mS, m12, m13 and those in the clock chain. The widths of m7 and

mS are l2f.t. The sizes of m3 and m4 are: W = 2f.t, l = 4f.t while the sizes of m12 and m13

are: W = 4f.t, L = If.t. The transistor sizes of the clock chain, which are expressed in W / L,

are indicated beside the inverters in Fig. 4.1. These parameters are determined for optimizing

both speed and power as stated in Section 4.2.2. The PSpice simulation shows that the proposed

flip-flop has the correct behavior as shown in Fig. 4.S.

5 .GU T ---
1

CP

GU 4-1---.1

5 . GU T - - - - - - ,---, - .,..---..,. - _.- -,,- - - -., ---------------,-

o

GU +------'- --- --- -,--'--

5 .GU T---------ry---,-------v- --------- --------

Q

G -+I---------l --- -I- ---
L-______ L _ _______ -, ___ _

Gs Time 5Gns tGGns

Figure 4.S: Transition behavior of proposed flip-flop

Average power dissipation is measured when each output is loaded with CL = O.lpicofarad

[72]. The power consumption is calculated as:

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 67

Pw =; { VDDIDD (4.4)
m 1Tm

Here T m is the measured time period of the D signal.

The ideal input signal D and clock signal CP are buffered by two series inverters. The test

bench for measuring power dissipation is shown in Fig. 4.9. The reason why this test bench is

chosen is to provide realistic data and clock signals, which themselves are fed from ideal voltage

sources. Capacitive load at the data input simulates the fanout signal degradation from the

previous stages while capacitive load at the outputs simulate the fanout signal degradation caused

by the succeeding stages. The circuit with heavy load is to estimate its driving capabilities. To

estimate the power consumption, the simulation is performed by varying the switching activity

of the D input. The switching activity is defined here as the average number of transitions of

D in a clock cycle. The maximum switching activity for a glitch free signal is 1 while switching

activity could be greater than 1 if the presence of glitches is taken into account. The switching

activity for a signal that behaves as clock signal is equal to 2.

Power consumption is reported as a function of input signal switching activity, assuming

that the input signal has no glitches. Six input cases are considered for the switching activity

of 0, 0.2, 0.4, 0.6, 0.8, 1.0. The methodology proposed in [99] is followed to measure the power

dissipation. The power spent on the capacitative load needs to be excluded to get a fair picture

of the circuit's power behavior. For the given load CL = O.lpicofarads, that portion of power

reaches the values presented in Table 4.2.

D Q

ICL

CP Q

ICL

Figure 4.9: Test bench for measuring the power dissipation of flip-flops

The power dissipation is evaluated for Tm = 400ns. The measure statement of average power

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 68

dissipation in PSpice is used to measure the interested power dissipation.

For a fair comparison of the proposed circuit and that reported in [72], the same PSpice

simulator and 1f.,l technology are used to simulate the circuits. The result of simulations is shown

in Fig. 4.10. From Fig. 4.10, it can be seen that the proposed flip-flop consumes lower power

than the conventional one when the D input switching activity is < 0.65. When D is idle, the

power dissipation of the proposed circuit is only 14% of that of a conventional flip-flop. The

reason is that when D is idle both the cell of the flip-flop and the clock chain are shutdown and

hence the dynamic power dissipation is nearly zero. However, when the switching activity of the

input signal is greater than 0.65, the extra devices consume the significant power. As a result,

the total power is greater than that of the conventional one .

..-.. 500

~ :500
c
.9 400
~
.9- 300
i'/)

~ 200

~ 100

g, 0

o 0.2 0.4 0.5

D inplJt SI).I itohing activity

0.8 1

Figure 4.10: Power dissipation against D input switching activity. P1: Proposed flip-flop; P2:
Conventional flip-flop

Table 4.2: Power dissipation for load capacitors versus switching activities
p. - /coutVdd

out - a 2 Differential structures
f = 50MHz, Vdd = 5V Cout = 2CL = 0.2picofarad

a = 1.0 125f.,lW
a=0.8 100f.,lW
a=0.6 75f.,lW
a = 0.4 50f.,lW
a=0.2 25f.,lW
a=O.O Of.,lW

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 69

4.5 PDP measurement

To obtain PDP defined in equation 4.2, the delay needs to be measured. The methodology in

[1] is followed and the test bench in Fig. 4.11(a) is employed. The principle behind this method

is that the test bench forms a ring oscillator. To measure the time figures for two flip-flops,

the frequency of the clock pulse is gradually increased up to a point where the oscillator fails to

operate. This is the minimum clock period of the flip-flop, which has:

Tmin = DCQ +Ts +DL (4.5)

lll-.t 1-- -.t 1-- Dr.2

D I I I L
Q

Q I I L
CP Cf> Q CJU -I I

(a) (b)

Figure 4.11: Timing test circuit (a) Bench circuit; (b) Timing diagram

Here, DCQ and Ts are as defined previously, DL is the delay of the combinational circuit.

The delay of the flip-flop can be obtained as long as DL can be determined. From the test

bench, it is known that DL is the inverter chain delay. Fig.4.11(b) shows the timing diagram.

Then, to find the delay of the flip-flop, DLl and DL2 need to be subtracted from the clock

period. We measured that the delay of the conventional flip-flop is 0.355ns while the delay of the

proposed circuit is 0.550ns. Then, PDP can be calculated based on the definition in equation

4.2. Fig. 4.12 presents the relationship of PDP versus the switching activities for the proposed

flip-flop and the conventional flip-flop. It can be seen that if using PDP to compare, the proposed

flip-flop has higher energy efficiency than the conventional one when the switching activity of

the input signal is lower than 0.4.

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 70

4.6 Low power binary counters

4.6.1 4-bit binary counter

The proposed structures are suitable for applications with reduced switching activity. A typical

application is in synchronous counter design. In a synchronous counter, the input switching

activity in each flip-flop is different from place to place and is known beforehand. Hence, if the

proposed flip-flop is used in the low switching activity bits of the counter, a low power counter

can be obtained. Take a 4-bit binary counter as an example. It shows as follows.

If A, B, C and D are named for four flip-flops from the Least Significant Bit (LSB) to the

Most Significant Bit (MSB), then the state table for this counter is shown in Table 4.3. D, C,

B and A are used to represent present state variables while D', C', B' and A' to represent next

state variables.

0.4

0.3 • -Q)

~
0 .~ 0.2
u • -t
A
~ 01

0

0 0.2 0.4 0.6 0.8 '1

Switching activitv

Figure 4.12: PDP versus switching activities

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 71

Assuming that D flip-flops are used, the following equations are obtained.

DA=A

DB=AEBB

Dc = CEBAB

DD =DEBABC

(4.6)

Hence, using D type SET-FFs, the counter can be implemented in Fig.4.13. From the working

behavior of the counter, it can be known that the switching activity for each flip-flop input is

2-k for the kth bit, that is, aA = 1.0, aB = 0.5, ac = 0.25 and aD = 0.125. It can be seen

that except the lowest-order bit (with switching activity 1.0) the other bit switching activities

are less than and equal to 0.5. In Section 4.4, it shows that using the proposed flip-flop can save

power if the input switching activity is less than 0.65. If we use the SET-FF for the lowest bit

while the proposed flip-flops (CG-SETFFs) are used for the remaining bits, then a lower power

counter can be obtained. However, for convenience, we use four CG-SETFFs instead.

Table 4.3: State table for a 4-bit binary counter
Present state Next state

Count D C B A D C B A
0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 1 0
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 1 0 0
4 0 1 0 0 0 1 0 1
5 0 1 0 1 0 1 1 0
6 0 1 1 0 0 1 1 1
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 0 1
9 1 0 0 1 1 0 1 0
10 1 0 1 0 1 0 1 1
11 1 0 1 1 1 1 0 0
12 1 1 0 0 1 1 0 1
13 1 1 0 1 1 1 1 0
14 1 1 1 0 1 1 1 1
15 1 1 1 1 0 0 0 o I

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 72

In order to measure the power dissipation, NAND gate and XNOR gate need to be imple­

mented as well. The traditional design for 2 input and 3 input NAND is employed while for

XNOR, the low power design in [118] is used, which are shown in Fig. 4.14 for convenience. All

transistor sizes are W = 8/-lm, L = l/-lm.

Once again, the above two circuits are simulated using PSpice with level 3 at 5V, 1/-l technol­

ogy and 50MHz clock. The power dissipation was evaluated for Tm = 400ns. The experiment

shows that 24% of the power is saved using the proposed flip-flop to implement the counter.

However, the saving varies with the number of bits. Because the circuit has a complicated com­

binational section, it is expected that the saving significance will be reduced with increasing the

bit number of the counter.

4.6.2 Binary twisted ring counters

It is well known that binary ring counter has simple combinational circuit while there are many

redundant transitions. If the proposed flip-flop is used in these applications, the power saving will

be much more significant than binary counters because the latter has complicated combinational

circuits. Using SET-FFs and CG-SETFFs, we implemented 4-bit, 6-bit and 8-bit twist ring

counters. Then, the same parameters as in Section 4.6.1 are used to simulate the circuits. Fig.

4.15 shows the power comparison results for the SET-FF based and CG-SETFF based twist ring

A D

CP

Figure 4.13: SET-FF based binary counter

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 73

counters. It can be seen that the counter, using the proposed flip-flops to build, has much smaller

power than that using the conventional flip-flops. This is because there are many redundant

transitions in the twisted ring counter, which are blocked by new flip-flops. Furthermore, it can

be expected that the power savings become even more significant with the increase of the counter

V DD

out

a • I

b •
out

a •

c •

b •

D-
(a) (b)

A

Figure 4.14: Gate circuit implementation (a) 2 input NAND and its logic symbol; (b) 3 input
NAND and its logic symbol; (c) XNOR and its logic symbol

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 74

bit number. The reason is that the redundant transitions increase with the bit number of the

counter. For example, a possible state diagram for a 4-bit twisted ring counter could be as in

Fig. 4.16, which has eight states. For each state transition between two states, only one bit

needs to be changed while the other three stay at the same state. The redundant transition rate

is 75%. For an 8-bit twist ring counter, it could be up to 87.5%.

~ 2500
..-
-; 2000
Q

-:; 1500
c..

:~ 1000
""C 500 Q)

3:
Q 0 C.

------+

P2
• • •

4-b its 6-b its

bits

8-b its

Figure 4.15: Power dissipation for twisted ring counters: P1- SET-FF based counters; P2-CG­
SETFF based counters

Figure 4.16: State diagram for a twisted ring counter

CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 75

4.7 Summary

A non-redundant transition clock chain for differential CMOS single edge-triggered flip-flops

is presented. The experimental results show that compared to the conventional flip-flop, the

proposed flip-flop can achieve significant power savings when the D switching activity is < 0.65.

Reduction of power consumption can be as high as 86% when the input is idle. However, using

PDP to measure them, the proposed flip-flop has higher energy efficiency than the conventional

one when the D switching activity is < 0.4. Since the dual trail signals are provided by differential

edge-triggered flip-flops, the additional circuit to implement non-redundant transition chain is

simpler. In this design, the increased transistor count is 25% while in [100] it is 144%. Hence,

the clock-gating technique is more suitable to differential edge-triggered flip-flops with clock­

racing than to level sampling flip-flops. The comparison is also made for some applications. The

result shows that significant power savings can be obtained. However, the saving varies from

application to application.

Chapter 5

Differential CMOS double

edge-triggered flip-flops

In a digital system, the sequential part is the main contributor to power dissipation. The reason

is that one of the inputs to a sequential circuit is the clock pulse (CP) signal. Each CP has one

rising transition and one falling transition in one CP period. Hence, the switching activity is 2.

However, other signals in the circuit have at most one transition in one CP period if the glitches

from signal racing are not taken into account. On the other hand, the load of CP is alway the

highest in a digital system. For example, to distribute CPs and control the skew of CPs, one

needs to build a clock tree which consists of buffers, which results in increasing the total node

capacitance of a CP tree. As a result, research confirms that in a digital system 20-45 % of the

power is consumed by CPs.

However, traditional flip-flops are only triggered by a specific edge (rising edge or falling

edge) of a CP, which is called Single Edge-Triggered Flip-Flops (SET-FFs). On the other edge,

it is just wasteful to charge or discharge the capacitive load of the global clock line in a system.

This is particularly true in CMOS because the dynamic power is the dominant power. Therefore,

reducing the CP power consumption should reduce the total power dissipation for a system. If

flip-flops can be triggered by two edges, then half of power dissipation from CPs can be saved.

This leads to the design of double edge-triggered flip-flops [49].

76

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 77

5.1 Previous work

The double edge-triggered (DET) idea was presented as early as 1981 [110]. At that time,

it targeted high performance for flip-flops. With the increasing size of VLSI systems, power

dissipation gained the equal priority to area and speed. The double edge-triggered idea was

developed to reduce the power dissipation of VLSI systems [49][19].

Based on input sampling mode, DET flip-flops can be classified as level sampling and pulse

sampling. Level sampling DET flip-flops can be implemented using two latches[49][19]. Two

latches sample and store input signal alternatively under different clock phases. Pulse sampling

flip-flops usually consist of one latch and one clock chain [102]. The clock chain is used to

generate narrow pulses. The input signal is sampled during each narrow pulse.

For differential DET-FFs, level sampling version has been proposed in [68][58]. The disad­

vantage of DET flip-flops has been the substantial increase in the number of transistors required

to build such flip-flops compared to single edge-triggered (SET) flip-flops. For example, a typ­

ical SET-FF needs 16 transistors while DET flip-flop proposed in [58] needs 28 transistors. A

recently proposed circuit in [68] needs 26 transistors, which is shown in Fig.5.1 and is called

BALCS-DETFF.

D

D .,

CK ----J>o---- CK

Figure 5.1: Differential CMOS DET flip-flop proposed in [68]: BALCS-DETFF

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 78

5.2 Clock Chain Based Double Edge-Triggered Flip-Flop (CCB­

DETFF) using single latch

Single-Edge-Triggered Flip-Flops (SET-FFs) change their states either at the rising edge or at

the falling edge of the clock pulse. Take the differential CMOS SET-FF proposed in [72] for

example. For convenience, it is redrawn in Fig. 5.2, which consists of a flip-flop cell and a clock

chain. The clock chain generates a delayed CPl. Then, CP and C PI are applied to the cascaded

transistors, m7 and m8, respectively, which generate a narrow pulse at every rising edge of each

clock pulse. Hence, the flip-flop is triggered at the rising edge of the clock pulse. However, this

design suffers from one disadvantage. The flip-flop responds only once per each clock pulse cycle.

The other of the two clock transitions accomplishes nothing for the flip-flop. But this transition

may cause transitions of some logic gates within the flip-flop, which consumes power.

D "

-=-
4/1 812

CP

Q

Q

LrcP1

~1

CP1

Figure 5.2: Differential CMOS single-edge triggered flip-flop (SET- FF)

To solve this problem, there are two solutions. One is to refrain from redundant clock

transitions, which is proposed in [125]. The other is to use the other transition to change

states. With both edges able to cause state transitions, the redundant clock transitions can

be eliminated. Moreover, the clock period can be shortened since there is no need to wait for

the clock signal to toggle. This is the design principle of Double Edge-Triggered (DET) scheme

which enables a halving of the clock frequency and hence reduces power dissipation [49].

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 79

5.2.1 CCB-DET flip-flop

From Fig. 5.2, a clock chain consisting of three inverters can generate a delayed CP, CP3 . If

we use four inverters to implement a clock chain, then four delayed CPs can be generated. The

timing diagram is shown in Fig. 5.3 (b) where CP4 is a delayed CPl. If CP and CP3 are logically

ANDed while C PI and C P4 are ANDed, then two narrow pulses corresponding to two edges of

a clock pulse can be obtained as shown in Fig. 5.3. To even two narrow pulse width, W f L of

transistors in the clock chain is taken as indicated beside four inverters. This can be proved as

follows.

If tl is the delay of a 4fl-inverter while t2 is the delay of a 8f2-inverter. Then the delay

between CP3 and CP is:

tcpa-cp = tl + 2t2

Also, we have the delay between CPI and CP4 :

tCP4-CPl = 2t2 + tl

Hence, two narrow pulses have the same pulse width.

The proposed double edge-triggered flip-flop cell is as in Fig. 5.4. There are two branches,

which are composed of four transistors, m7, m8, m9 and mlO, at the common source terminal

of the amplifier. CP and CP3 are used to control the gates of m7 and m8 to generate a narrow

pulse corresponding to the rising edge of clock pulse while CPI and CP4 are used to control the

gates of m9 and mlO to generate the other narrow pulse corresponding to the falling edge of

clock pulse. In this way, the flip-flop can change its state triggered by two clock transitions.

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 80

5.2.2 Circuit simulations

Circuit simulations are conducted using PSpice II with Level 3 at 5V, 1.0J-tm process. The

transistor lengths are minimum for the above technology, while the widths are 8J-tm except those

specified as follows. The widths of m7, m8, mg and mlO are l2J-tm while the sizes of m3 and

m4 are W = 2J-tm, L = 4J-tm. The transistor sizes of the clock chain, which are expressed in

W / L, are indicated beside the inverters in Figs. 5.2 & 5.3. These parameters are determined

411 812
cp

(a)

8/2

cJL
c~
c~

c~
c~

~
c~

(b)

Figure 5.3: Double edge pulse generation (a) Clock chain; (b) Timing diagram

Q

Q

D .1

-::-

D-1l-Q
cP~Q

(a) (b)

Figure 5.4: Clock Chain Based double Edge-Triggered Flip-Flop (CCB-DETFF) cell (a) Flip-flop
cell; (b) Logic symbol

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 81

for minimum power as stated in Section 4.2.2. The PSpice simulation shows that the proposed

flip-flop has correct transition behavior as shown in Fig. 5.5. In Fig. 5.5, the transient behavior

of the single edge-triggered flip-flop is also shown for comparison.

The test bench in Fig. 4.9 is used to simulate circuits. Circuits in Figs. 4.7 & 5.2 are used to

be reference circuits. Once again, six input cases, the switching activity of 0, 0.2, 0.4, 0.6, 0.8,

1.0, are considered to test the power dissipation of circuits. However, to get the same output

throughput as the double edge-triggered flip-flop does, the clock frequency to the SET flip-flops

should be 100MHz while the clock frequency for the DET counterpart is 50MHz. The results

are shown in Fig. 5.6 and Table 5.1.

Table 5.1 shows the power saving rate compared to SET-FF in Fig. 5.2. From Fig. 5.6, it

can be seen that CCB-DETFF always has lower power dissipation than SET-FF with different

input switching activities. However, the saving rate varies with the input switching activity 0:.

From Table 5.1, when 0: = 0, the saving rate is up to 44.7%. Ideally, the saving rate should

be 50% because the clock frequency is reduced half and the power is consumed mainly by the

clock chain. The reason which is not equal to 50% is that two cascaded transistors, m9 and m10,

and the extra inverter in the clock chain consumes the power. When 0: = 1.0, the saving rate

is reduced to 20.8% from 44.7% when 0: = O. This is because the flip-flop cell also consumes

significant power and the weight of the clock power in the total power is decreased.

Table 5.1: Power savings compared to the circuit in Figs.4.7 & 5.2
Switching activities (0:) 0 0.2 0.4 0.6 0.8 1.0

SETFF (%) 0 0 0 0 0 0
CG-SETFF (%) 86.5 54.2 28.4 5.5 -14.8 -30.1

CCB-DETFF (%) 44.7 37.7 30.8 27.3 23.7 20.8

From Fig. 5.6, among three flip-flops, CG-SETFF has the lowest power dissipation when

0: < 0.38 while CCB-DETFF has the lowest power dissipation when 0: > 0.38. In addition,

SET-FF uses 20 transistors while CG-SETFF uses 25 transistors. However, CCB-DETFF uses

24 transistors.

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 82

S .1V r­

ep

-a.1V

S.lV
o

-a.1V

S.lV
o

-a.1V

S.lV
CP

-a.1V

S.lV
D

-a.1V

S.lV
Q

-a.1V

i- m'run---W-T m Tu-r 1-mm
1 J---- _,m___ ---- I

[Um[uJ -u---m--]_u_mJU] ___ r-]
as Sans

Til'lle

(a)

laans

~---[----~--I----[--~]----~---[--- [___ 1---]

m m __ u _\umu:
J_~]mnmITmLm-u] L__ j

[m-LJ ---m-----:lm ___ JuJ _ur-j
as Sans laans

Til'lle

(b)

Figure 5.5: Transient behavior (a) Differential CMOS SET-FF in Fig. 5.2; (b) Differential
CCB-DETFF in Fig. 5.4

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 83

5.3 Pass Transistor Based Differential CMOS Double Edge-Triggered

Flip-Flop (PTB-DETFF)

5.3.1 Voltage scaling property for CCB flip-flops

A common disadvantage for the above designs is that there are cascaded transistors in the

common source terminal of the differential amplifier (briefly called clocked transistor), which

introduces the extra resistance. This degrades the input threshold of the amplifier. This is

investigated by measuring the input threshold versus the gate voltage of the clocked transistors

in Fig. 5.2. The experiment is conducted as follows.

DC characteristic of the circuit in Fig. 5.2 is simulated using PSpice with 1 urn technology

and 5V power supply. The Input Threshold Voltage (lTV) is defined as the input voltage when

the output high level of the circuit is 2.4V. Varying the gate voltage of clocked transistors, the

lTV versus the gate voltage is measured. Then, reduce the number of clocked transistors in

Fig. 5.2 to one and repeat the above experiment. For the simplification, the former circuit is

i: 700
::::s
- 600
it:
0 500 .-.....,
~ 400
U1I 300 U1I .-
" 200 P3
:10-
QJI

100 !:
0 0 Q.

0 0.2 0.4 0.6 0.8 1

S wit chi n 9 act iv it i e s

Figure 5.6: Power dissipation versus switching activities: Pl- result for Fig. 5.2; P2-result for
Fig. 4.7; P3-result for the proposed circuit

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 84

called Cir2ct while the latter Circt. The results are shown in Fig. 5.7. It can be seen that the

circuit, Circb which has one clocked transistor has lower lTV than the circuit, Cir2ct, which has

two clocked-transistors and furthermore the former is still workable when the gate voltage of the

clocked transistor is 2.0V .

3.8

~3.4
." 3
~ 2.6
:It 2.2
~ 1.8
!j1.4
e- ·1

1.5 2.5 3.5 4.5

Gate voltage ct clocked

transistor (V)

___ Vlh-T V\O

-+- Vlh-Cne

Figure 5.7: Input threshold voltage versus gate voltage of clocked transistors. NB: Vth-Two
stands for threshold voltage of Cir2ct while Vth-One for that of Circt

This confirms that the cascaded transistors in the common emitter degrade the lTV of the

amplifier. From Fig. 5.7, it also shows that reducing the gate voltage of clocked transistors has

less effect for the lTV of Circt than for that of Cir2ct. The lTV will increase fast when the gate

voltage of the clocked transistors is reduced to 4.0V for Cir2ct. However, for Circt, the lTV

remains the same when the gate voltage is reduced to 2.0V. Hence, it is possible for Circt to

use low clock swing, which will significantly save the clock power. As known, dynamic power is

proportional to voltage squared. Hence, a good voltage scaling property is important to design

a low power differential flip-flop.

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 85

5.3.2 PTB-DETFF circuit

The proposed circuit is based on the following idea. If a narrow pulse corresponding to each

edge of clock pulse is available, the two cascaded transistors in the common source terminal in

Figs. 5.2 & 5.4 can be substituted by one transistor. Then the input threshold degrading can

be avoided. Furthermore, if two narrow pulses corresponding to two edges of the clock pulse are

generated to drive the transistor, double edge-triggered differential flip-flop can be implemented.

Narrow pulses can be generated by the clock-racing. A possible scheme is shown in Fig. 5.8.

There, C P1 is a delay C P and the delay time is determined by two cascaded inverters. If they

are input into an XOR gate, then narrow pulses (N Ps) corresponding to two edges of clock pulse

can be obtained. This is explained in Fig. 5.8.

CP

CP

CPl

NP

Figure 5.8: Narrow pulse generating scheme

Using transmission transistors, a possible circuit implementation is shown in Fig. 5.9 (a). All

branches are ANDed together as the output. From Fig. 5.8, CP & CP1 have four combinations,

namely 00,10,11 & 01, labelled as A, B, C & D respectively. As known, transmission of a logic

zero is not degraded through nMOS transistor while transmission of logic 1 is not degraded

through pMOS transistor[118]. Take Case A for example to analyze the working principle of the

circuit. For Case A, CP = 0 and CP1 = o. CP is applied to the input of pass transistor mt4

while CP2 = 1, inverted CP1 , is applied to the gate of mt4. Then, logic zero is transmitted to

the output of mt4. The other cases can be analyzed similarly. However, it should be noticed

that narrow pulse width is widened because of the delay of inverter 3. Hence, when determining

the parameters of inverter 3, this factor should be considered.

Having this pulse generator, the flip-flop cell can be as shown in Fig. 5.9 (b) where only one

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 86

transistor m7 is required at the common source terminal. Because the generator only drives one

nMOS, the driving capability of Fig. 5.9 (a) is not a problem.

5.3.3 Circuit simulations

Circuit simulations are conducted using PSpice II with level 3 at 5V, 1{l technology and 50MHz

clock. The transistor lengths are minimum for the above technology, while the widths are 8{lm

except those specified as follows. The widths of m7 and m8 are 12{lm while ones of mtl, mt2,

mt3 and mt4 are 2{lm. The sizes of m3 and m4 are W = 2{lm, L = 4{lm. The transistor sizes

of the clock chain, which are expressed in W / L, are indicated beside the inverters in Fig. 5.9.

These parameters are determined for optimizing the power. The PSpice simulation shows that

the proposed flip-flop has correct transition behavior as shown in Fig. 5.10.

The test bench in Fig. 4.9 is used to simulate the circuits and the same methodology

is followed. Average power dissipation is measured when each output is loaded with CL =

O.lpicofarad. Four input sequence cases are considered: Case 1, Case 2, Case 3 and Case 4.

Case 1 has an input change at every clock phase while Case 2 has an input change at every-other

clock phase. Case 3 and Case 4 are constant but with a glitch at every and every-other clock

Inv1 Inv 2
4/1 8/2

CP~ V J _~~D ~r!'l r-l>o-Q Inv 3
411

)!~~~Q
nDQ D , r n _c

CP Q
-=-

(a) (b) (c)

Figure 5.9: Proposed differential CMOS double edge-triggered flip-flop (DET-FF) (a) Narrow
pulse generator; (b) Double edge-triggered flip-flop cell; (c) Logic symbol

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 87

phase, respectively. The power dissipation is evaluated for a time period of 400 ns. The power

spent on output loads is excluded from the total power to get a fair picture of the power behavior

of the circuit.

The same PSpice simulator and 1tt technology are used to simulate SET-FF circuit given in

Fig. 5.2. However, to get the same output throughput as the double edge-triggered flip-flop, the

clock frequency to the single edge-triggered flip-flop should be 100M Hz.

Table 5.2 shows power reduction compared to the power dissipation of the circuit in Fig. 5.2,

which includes clock power dissipation. It can be seen that the proposed circuit has significant

power savings compared to the single edge-triggered counterpart. However, the power saving is

not equal to 50%. The reason is that three extra pass transistors consume power.

Table 5.2: Power dissipation comparison between SET-FF and PTB-DETFF
Input sequences Case 1 Case 2 Case 3 Case 4

SET-FF in Fig. 5.2 (ttW) 489.7 383.3 279.2 240.2
PTB-DETFF in Fig. 5.9(ttW) 318.9 231.7 175.0 155.4

Power Reduction (%) 34.9 39.6 37.3 35.3

Table 5.3 shows the property of voltage scaling for two circuits. Case 2 is chosen as a test

sequence. It can be seen that the proposed circuit has better property of voltage scaling. The

S.tv
CP
-O.tv

5.1V
o
-O.tV

r---
I
I

~--~-- ?r--~~~~----~

I
I

-r..J LJ 1...------1

OS.1V :-----~-----~----]- - :
-O.tv ~ - - -- -----1

Os SOns tOOns
Time

Figure 5.10: Transition behavior of the propose circuit

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 88

proposed circuit can work well even if the supply voltage is as low as 1.2V while the circuit in

Fig. 5.2 does not work when the supply voltage is lower than 1.8V. It can also be seen that the

power reduction for the proposed circuit is up to 39.2% compared to the single edge-triggered

one under workable supply voltages. The area penalty is that PTB-DETFF needs 3 transistors

more than SET-FF.

Table 5.3: Voltage scaling property between SET-FF and PTB-DETFF
Supply voltage (V) 3.0 2.0 1.8 1.5 1.2

SET-FF in Fig.5.2(ttW) 120.7 50.3 40.6 - -
PTB-DETFF in Fig. 5.9(ttW) 74.2 31.1 24.7 16.6 6.9

Power Reduction (%) 38.5 38.2 39.2 - -

Then, BALCS-DETFF in Fig. 5.1 is simulated using 1tt technology. The width of transistors

is 8ttm while the length is minimum. The experiment is carried out as follows. Under the specified

power supply voltage, the minimum clock swing is determined. Then the power is measured with

corresponding input switching activities. Two power supply voltages, 5.0v and 2.5v, are selected.

The results are shown in Table 5.4. In the table, the second row gives the minimum clock swing

for given power supply voltage. The third row gives the input switching activities while the

fourth row gives the measured flip-flops. The fifth row gives the power dissipation. The most

bottom row shows the power reduction compared to BALCS-DETFF.

Table 5.4: Voltage scaling property between BALCS-DETFF and PTB-DETFF
- -

Power supply (V) 5.0 2.5
Mini Vclock swing (V) 2.0 1.4
Switching activities a = 1.0 a=0.5 a = 1.0 a=0.5

DETFFs BALCS I PTB BALCS I PTB BALCS I PTB BALCS I PTB
Power (ttW) 402.4 I 298 242.5 I 231.9 88.3 I 71.9 53.5 I 51.1

Power reduction (%) 25.9 4.4 18.6 4.5

Both flip-flops have the same minimum clock swing under the same power supply. With

a = 1.0 and power supply 5.0v, the power reduction of PTB-DETFF can be up to 25.9%

compared to BALCS-DETFF in Fig. 5.1. The reason is that when a clock is "high" at the

voltage of Vclock, two clocked pMOS transistors in Fig. 5.1 do not switch off completely, leaving

leakage current flow through either of two clocked pMOSs. However, PTB-DET flip-flop has

no such problem. With a = 0.5, the power reduction is 4%, which is much smaller than the

CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 89

case a = 1.0. This is because PTE-DETFF has a long clock chain with pass transistor branches,

which consumes significant power and this is taken into account. When the input signal has lower

switching activity, the weight of the clock power cell in the total power is increased and dominates,

which results in the decrease of the power savings. This can be confirmed by experiments. Table

5.5 shows clock power and flip-flop cell power for BALCS-DETFF and PTB-DETFF. The rate

of clock power to cell power for PTB-DETFF is 0.69:1 when a = 1.0 while it goes up to 1.37:1

when a = 0.5. However, for BALCS-DETFF, it is 0.09:1 when a = 1.0 while it is 0.17:1 when

a 0.5. There are two solutions to further reduce the clock power. One is to refrain the

redundant clock transitions, which is proposed in [125]. The other is that a number of flip-flops

share a clock driver so that the clock power for each flip-flop is reduced [102]. Hence, if this

is taken into account, the power saving for PTB-DETFF is even more significant compared to

BALCS-DETFF.

Table 5.5: Power dissipation from clock chain and flip-flop cell with VDD = 5.0V and Vclock =
5.0V

Switching activities a = 1.0 a= 0.5
Power Clock power Cell power Clock power Cell power

BALCS-DETFF (ttW) 26.4 301.0 26.2 150.6
PTB-DETFF (ttW) 131.9 192.4 133.8 97.9

Finally, it is noticed that PTB-DETFF only uses 23 transistors while BALCS-DETFF needs

26 transistors. Compared with BALCS-DETFF, the area saving of the proposed circuit is 11.5%.

5.4 Summary

Two differential CMOS double-edge triggered flip-flops, CCB-DETFF and PTB-DETFF, are

proposed in this chapter. CCB-DETFF could be the complementarity of the CG-SETFF to

design a low power system when the input switching activity is greater than 0.38. However,

further work needs to be done on how to design a system using both SET-FFs and DET-FFs.

PTB-DETFF is composed of a narrow pulse generator and a flip-flop cell. It only needs one

clocked NMOS transistor for the flip-flop cell. Hence, PTB-DETFF has good properties of

voltage scaling and clock swing scaling, which are very important to design a low power system.

Chapter 6

Multi-valued flip-flop approach

In the binary logic, the logic 1 is nearly set to the supply voltage Vdd. Each charging or discharging

to a node consumes ~vldCL' Hence, reducing Vdd is reducing logic level voltage and is an efficient

approach for low power design. However, there are some limitations to further scale down Vdd

as discussed in Section 1.2.2. If high supply voltage Vdd is still used and multiple logic levels

are set between 0 and Vdd, then logic level voltage between two adjacent logic values can be

reduced. Power dissipation for each charging and discharging to a node can be reduced. Take

quaternary logic for example. If Vdd = 5V, then four logic levels can be: 5V (VDD), 3.33V

(2VDD/3), 1.67V (VDD/3), and OV (Vss). Corresponding logic values will be {3, 2, 1, O}. Each

charging or discharging to a node transitioning between two adjacent logic levels only consumes

~(~Vdd)2CL' From the signal transmission and storage point of view, using multi-valued signal

can reduce transmission capacitance and result in power saving or improve transmission speed.

Fig. 6.1 shows a comparative result to transmit an eight bit binary signal 01110010 transmitted in

parallel and serial in binary and quaternary valued logic. Fig. 6.1(a) shows that using quaternary

signal only half of signal lines are needed and hence transmission capacitance can be reduced

while 6.1(b) shows that transmission time can be reduced to half.

Furthermore, multiple valued logic may resolve the serious pin-out problems encountered in

some VLSI circuit designs since if signals are used in four or more states rather than only two

the pin-outs could be reduced to less than half. Many logical and arithmetic functions have been

shown to be more efficiently implemented with multiple valued logic because fewer operations,

90

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 91

gates, signal lines, etc. are required [31]. Yet, for multiple valued logic to be in wide use the

key problem is to design a less complicated multiple valued memory [112]. In recent years, many

ingenious multiple valued flip-flops (MVFFs) have been proposed [31][82][121][122][132].

Hence, multi-valued flip-flops may be a new approach to design low power flip-flops. However,

as a first step, the structure should be explored.

Looking at previous research, it can be seen that multiple valued flip-flop designs are analo-

gous to binary flip-flops and have the following three characteristics.

(1) Structurally, MVFFs have similar characteristics to their binary counterparts and usually

are the extension of their binary version.

(2) Functionally, the next state behavior of the MVFFs are derived from their binary coun-

terpart.

(3) In terms of working mode, the state transition is controlled by a binary clock pulse (CP),

which is similar to their binary counterpart as well.

The third characteristic contradicts the aim of using multiple valued signals to increase in-

formation content. Since all signals used in multiple valued circuits are multiple valued, the

clock signal should be multiple valued as well. For example, to a quaternary flip-flop, the clock

signal should be CP E {O, 1, 2, 3} rather than a binary signal. In order to increase information

content of the clock signal, ternary clock signal has been proposed by Wu [122]. There, besides

the standard binary clock signal, an additional signal is used to implement the preset function.

This effort, however, did not change the basic working mode of the MVFFs which are controlled

by a binary clock signal. In this paper, a new MVFF, controlled by a multiple valued clock pulse,

0---
1---
1---
1---
0---
0---
1---
0---

(a)

1---
3---
0---
2---

CP

xb 3

xq~

(b)

Figure 6.1: Comparison between binary and quaternary signal transmission. (a) Parallel trans­
mission; (b) Serial transmission

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 92

is proposed.

6.1 Traditional Binary OP (BCP) controlled multiple valued mas­

ter slave flip-flops in series

Similar to binary master slave flip-flops, the structure of multiple valued master slave flip-flops

is composed of two multiple valued latches in series and controlled by two inter-inverting binary

clock signals. The logic design of multiple valued latches can be classified by whether they have

transmission switches or not [133]. If not, the logic structure can be implemented by crossing

feedback from outputs to inputs. If yes, it can be implemented by employing the logic structure

of buffers with controlling switches. A quaternary CMOS master slave D flip-flop is proposed

by Prosser [82], which is composed of two quaternary buffers and two 2 to 1 multiplexers as

in Fig. 6.2(a). Here, D is the inciting input, Q is the output, CP is the clock pulse, and

Q, D E {O, 1, 2, 3}, CP E {O, 3}. Its working principal is: CP = 3, the input of the master

latch receives the input signal D while the slave latch is in the storing state, and vice versa when

CP = O. Hence, the state transition of the flip-flop happens at the falling edge of CP (3 -+ 0)

and the next state equation is Qf = D. Because it is composed of two quaternary latches in series

and controlled by a binary CP, it is called a binary clock pulse (BCP) controlled quaternary

master slave flip-flop in series. Fig. 6.2 (b) shows a binary shift register, which is composed

of two D flip-flops of the type in Fig. 6.2 (a). The output of the shift register is expressed as:

Q" = D. It means that after two falling edges of CP the output equals the original inciting input

signal D.

With this traditional design, a shift register of n digits is able to store n quaternary signals

in series, and is composed of 2n quaternary flip-flops controlled by a binary CPo

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 93

6.2 Multiple valued CP (MVCP) controlled multiple valued flip­

flops in parallel

Under the control of two levels in a CP, the master slave flip-flop shown in Fig. 6.2 (a) is in

receiving and storing states alternately so that its "invalid toggle" is avoided. This meets the

requirement of one state transition each CP for flip-flops. However, if two latches are connected

in parallel rather than in series, then one latch receives the input signal while the other stores and

outputs the stored signal. If CP is multiple valued such as a quaternary valued signal, the four

levels can be used to select four latches to work alternately, that is, one of them is in the receiving

state while the others are in storing states. This methodology is used to design multiple valued

D Q

CP •

(a)

D

CP. • •

(b)

~- -[>-

2 to 1 multiplexer Quaternary reshaper

(c)

Figure 6.2: BCP controlled quaternary master slave D flip-flop in series and two digit quaternary
shift register (a) BCP controlled quaternary master slave D flip-flops in series; (b) Two digit
quaternary shift register; (c) Logic symbols

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 94

CP (MVCP) controlled multiple valued parallel flip-flops which are proposed in this chapter.

Based on the above observation, a quaternary D flip-flop can be constructed as shown in Fig.

6.3 (a). It consists offour 2 to 1 multiplexers, four quaternary buffers, one quaternary threshold

function generator and one 4 to 1 multiplexer. The implementation of those components can be

found in the published literature [122][133][121]. Take the 4 to 1 multiplexer for example. If four

transmission gates are controlled by four outputs of a quaternary threshold function generator,

its circuit implementation is shown in Fig. 6.3 (b), where all inverters are binary.

"> • 10

4

to

2 1
3

s

CP • • • •

iCpi

~
CP

Threshold function generator

(a)

o
4
to

2 1

3

Quaternary 4 to 1 multiplexer

Q

Figure 6.3: Logic structure of MVCP controlled multiple valued flip-flop in parallel (a) Logic
circuit; (b) Logic symbols

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 95

The working principal of the flip-flop in Fig. 6.3 (a) is: for any of the four values of the

quaternary C P, one of the four latches receives the input signal D while the others are at storing

states. The 4 to 1 multiplexer selects anyone latch at storing state and its stored state becomes

the output of the flip-flop. For the specific connection in Fig. 6.3 (a), when CP = 0, latch 1

receives the input signal and latch 2 outputs the stored signal; when CP = 1, latch 2 receives

the input signal while latch 3 outputs the stored signal; when CP = 2, latch 3 receives the input

signal and latch 4 outputs the stored signal; when CP = 3, latch 4 receives the input signal and

latch 1 outputs the stored signal. Hence, if the clock pulse changes from ° -+ 1 -+ 2 -+ 3 -+ 0, the

stored signal when CP = ° can be output when CP = 3. Let Ql, Q2, Q3, Q4 be initial states

for four latches, Ql, Q2, Q3 and Q4 respectively. During the first three upward level transitions

of the CP, the outputs will be Q2, Q3, Q4, respectively. Therefore, the next state equation of

the D flip-flop shown in Fig. 6.3 (a) is expressed as:

Q"' = D (6.1)

The above equation states that the input signal will be output in three level transitions during

one CPo

6.3 Circuit implementation

The circuit implementation principle of all the components in Fig. 6.3 can be found in the

published literature [122][133][121]. However, their corresponding CMOS circuits will be imple­

mented here based on transmission switch theory[122].

In the transmission switch theory, two algebraic systems are developed: Switching algebra to

describe switching state with variable E{T, F} and signal algebra to describe signal value with

variable E {O, 1,2, 3} if quaternary valued logic is taken for example. Two sets of connection

operations are introduced. The first set is for describing the physical process of how the signal

controls the state of an element. They are defined as follows.

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH

Definition 6.1. High-threshold comparison operation

'X: { :
if x> t

if x < t

Definition 6.2. Low-threshold comparison operation

xt == { T if x < t
F if x> t

where x is control signal and t E {a.5, 1.5, 2.5}.

96

(6.2)

(6.3)

The second set is for describing how the state of a MOS transistor decides whether the source

signal is transmitted to the drain or not.

Definition 6.3. Transmission operation

C * a == { C if a = T

<I> if a = F
(6.4)

where <I> describes the high-impedance state, c is called transmission source and a is the

switching state of a transmission switch network.

Definition 6.4. Union operation

Cj H" #0, * C<2 : {
Cl * al

C2 * a2

if C2 * a2 = <I>

if Cl * al = <I>

(6.5)

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 97

In equation 6.5, the case CI =I C2 and al = a2 = T is not allowed because a voltage conflict

arises between sources cland C2. In addition, the transmission operation * takes priority over the

union operation #. Based on the above definitions and some derived properties, the function

expression can be obtained according to the logic functionality. Take a threshold 1.5 inverter

for example. The logic functionality is that if x < 1.5 the output will be 3 while if x > 1.5

the output will be O. Then, Taking threshold t = 1.5, low-threshold comparison operation and

high-threshold comparison operation can be used to describe cases x < 1.5 & x > 1.5. Hence,

based on definitions 6.4 & 6.5, the function expression is:

x(1.5) = 3 * x1.5#O *1.5 x (6.6)

Take case x < 1.5 for example to explain the above equation. When x < 1.5, x1.5 = T while

1.5x = F' since 1.5x = F O*1.5 x = <p' based on union operation x(l 5) = 3*x1.5. since x1.5 = T , " ,.,'
x(1.5) = 3. According to the action principle of MOS transistors, when x < 1.5, a source voltage

of 3 must be transmitted by a pMOS transistor while when x > 1.5 a source voltage of 0 must be

transmitted by an nMOS transistor. Hence, the circuit realization of the threshold 1.5 inverter

can be constructed as shown in Fig. 6.4. In Fig. 6.4, the number beside the transistor denotes its

on threshold. Thus, the circuit implementation with pMOS and nMOS transistors easily follows

based on the given function representation.

Similarly, the function expressions of all the logic components in Fig. 6.3 can be obtained as

follows:

• Quaternary 2 to 1 multiplexer

Y2tol = Yo * x1.5#YI *1.5 X (6.7)

• Quaternary reshaper function

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH

x res = 0 * xO.5#1 *0.5 x1.5#2 *1.5 X2.5#3 *2.5 X

• Threshold function Y xY

Y xY = { 0 Y =1= x

3 y = x

Here, x, y E {O, 1, 2, 3}. Then, the function expressions are:

0xo = 3 * xO.5#O *0.5 x

lXl = 3 *0.5 x1.5#O * (xO.5#1.5 x)

2X2 = 3 *1.5 x2.5#O * (x1.5#2.5 x)

3~_151-x~ ~. x(15)

0-11.5 I

(a)

x -8>0-- x(1.5)

(b)

Figure 6.4: Threshold 1.5 inverter (a) Circuit implementation; (b) Logic symbol

98

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 99

3 X3 = 3 *2.5 X#O * X2.5 (6.13)

• Quaternary 4 to 1 multiplexer

Y4tol = Yo * XO. 5#Yl *0.5 X1.5#Y2 *1.5 X2.5#Y3 *2.5 X (6.14)

Their corresponding circuit implementations are shown in Fig. 6.5. However, for threshold

functions, only the implementation of °xo is shown to save space. In addition, for quaternary 4

to 1 multiplexer, if four threshold function signals from four threshold function generators are

used, a simpler modified circuit can be obtained as shown in Fig. 6.5 (d). Then, the CMOS

circuit of the flip-flop in Fig. 6.3 can be constructed.

6.4 Experimental results

The proposed flip-flop in Fig. 6.3 has been simulated using PSpice with a supply voltage of 5V

for 0.5 f-lm technology. The SPICE parameters for a generic 0.5f-lm process are shown in Table

6.1.

Table 6.1: SPICE parameters for a generic 0.5f-lm process
.MODEL CMOSN NMOS LEVEL=3 PHI=O.7 TOX=10E-09 XJ=O.2U TPG=l
+VTO=O.65 DELTA=O.7 LD=5E-08 KP=2E-04 UO=550 THETA=O.27 RSH=2
+GAMMA=O.6 NSUB=1.4E+17 NFS=6E+ll VMAX=2E+05 ETA=3.7E-02
+CJ=5.6E-04 MJ=O.56 CJSW=5E-ll KAPPA=2.9E-02 CGDO=3.0E-10
+CGSO=3.0E-10 CGBO=4.0E-10 MJSW=O.52 PB=l
.MODEL CMOSP PMOS LEVEL=3 PHI=O.7 TOX=10E-09 XJ=O.2U TPG=-l
+ VTO=-O.92 DELTA=O.29 LD=3.5E-08 KP=4.9E-05 UO=135 THETA=O.18
+RSH=2 GAMMA=O.47 NSUB=8.5E+16 NFS=6.5E+ll VMAX=2E+05
+ETA=2.45E-02 KAPPA=7.96 CGDO=2.4E-10 CGSO=2.4E-10 CGBO=3.8E-10
+CJ=9.3E-04 MJ=O.47 C.JSW=2.9E-10 MJSW=O.505 PB=l

Four logic level voltages are set to: 5V (VDD), 3.33V (2VDD/3), 1.67V (VDD/3), and OV (Vss).

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 100

For all nMOS devices, W / L = 4p..m/0.5p..m, while for all pMOS devices, W / L = 8p..m/0.5p..m.

The PSpice simulation shows correct circuit operation as shown in Fig. 6.6.

0--------,

~ =fG>03:: 1-Y
2
"1

x T I ""/" '-../ T ,.---- xres

2

Yl
11 "

3

(a) (b)

I ~.~

Yo I r--... ><

Yl II ~ rL_
f

Y4tol

Y2 I I I 11.5

3

I
Y3 I I I I 8>0 f15

1.5

x , °xo

0--- °xO IXI 2X2 3X3

(c) (d)

Figure 6.5: Circuit implementation (a) Quaternary 2 to 1 multiplexer; (b) Quaternary reshaper;
(c) Threshold function generator; (d) Quaternary 4 to 1 multiplexer

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 101

The performance is measured when output is loaded with C = O.lpicofarad. The circuit

with heavy capacitive load is to estimate its driving capabilities. The clock-to-Q time is measured

from the 50% point of the clock logic-level transition of the associated output transition. The

clock-to-Q time for the best-case output transition from logical-One to logical-Zero is 0.15ns

while the time for the worst-cased from logical-'IWo to logical-One is 0.59ns. The rising time

and falling time are measured from the 10% point to 90% point of the transition level, which

borrows from the conventional definition in the binary logic measurement. It can be seen that

the falling time is much longer than the rising time for this design. Table 6.2 shows the average

value.

Table 6.2: Performance measurement of the MVFF (ns)
Transition of logic levels Clock-to-Q time Rising time Falling time

0++1 0.25 0.14 0.34
1++2 0.42 0.05 0.14
2++3 0.29 0.06 0.06
0++2 0.28 0.24 0.17
1++3 0.27 0.08 0.25
0++3 0.33 0.08 0.11

5 .au -.----------.,--. --r----r - - - - - - - - - ...,.--....,

CP
I

au 1 ' - - - - - - - - - - ----------1

5 .au -.----------- , ----------------T"", -----,

o
I
I
I
I

au 1 1 - - - - - - - - r - - - - - - - -I 1 - r - - - - - - - - - - - - -I

S.1U
Q

-e.1u

r--------------------~-----------------I

I

es
L _____ 1

' -------r -- Gens 1------.. zzzL I-

zens -iens
Time

Figure 6.6: PSpice simulation of the proposed flip-flop

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 102

A comparison for the storage capacity between the MVCP controlled quaternary D flip-flop

in Fig. 6.3 and the two-digit shift register in Fig.6.2 (b) can be made. They use the same number

of latches. However, the former can output a four digit quaternary signal in one clock cycle while

the latter can only output a two digit quaternary signal in two clock cycles. The reason is that

the proposed flip-flop can receive input signal when the quaternary CP takes any of its four

values while the latter can only do so when CP = 3.

Average power dissipation is measured with 5V and 50MHz clock for the proposed circuit and

evaluated for a time period of 200ns, which is 1.49mW. For the fair comparison of the proposed

circuit and that in Fig. 6.2, the same PSpice simulator and 0.5um technology are used to simulate

the circuit in Fig. 6.2. The power dissipation is 2.56mW with 5V and 200MHz clock. The reason

of using 200MHz clock is that BCP based flip-flop samples the input date only when CP = 3

and the same data throughput as that of the proposed circuit is required. The power reduction

is 41.3% with the area trade of 29.8%.

Table 6.3: Area and Power dissipation for the proposed circuit and the circuit in Fig. 6.2(b)
No of Transistors Power dissipation (mW)

Circuit in Fig. 6.2(b) 80 2.56
Proposed circuit 114 1.49

Improve (%L -29.8 41.8
--

6.5 Summary

In this chapter, the present BCP controlled multiple valued master slave flip-flops in series are

analyzed first. Then MVCP controlled multiple valued flip-flop in parallel is proposed. Based on

transmission switch theory, the CMOS circuit of the proposed flip-flop is implemented. PSpice

simulation shows that it has the correct operation. Although only the quaternary D flip-flop is

designed, the result can be extended to the design of ternary and higher radix flip-flops. This

design changes the traditional design method of multiple valued flip-flops. It uses each level of

a quaternary clock signal to receive an input signal, which makes the logic structure of multiple

valued flip-flops more flexible. The proposed flip-flop has the following characteristics:

1. Employing multiple valued clock signal ensures the consistency of processing signals for

CHAPTER 6. MULTI-VALUED FLIP-FLOP APPROACH 103

multiple valued flip-flops, which eliminates the requirement to provide the same circuit with both

multiple valued signals and binary signals.

2. An n-valued CP controlled n-valued flip-flop can shift out an n-digit n-value signal during

one upward clock cycle while a BCP controlled multiple valued flip-flop can only shift out one­

digit n-valued signal during one binary clock cycle. The proposed circuit is characterized by

reduced power dissipation.

3. Because there are possibly multiple connections between each latch and the output multi­

plexer, various logic functions can be obtained by changing the connections, which adds flexibility

to the design of the flip-flops.

Chapter 7

Low power XOR gate decomposition

7.1 Introduction

With the rapid increase in the density and the size of chips and systems, power dissipation

is becoming critical concern in VLSI design. Since CMOS technology is predominant in the

realization of today's ICs and CMOS devices are intrinsically low-power consuming, CMOS

has become the reference technology. Power dissipation in digital CMOS circuits is dominated

by dynamic dissipation, which results mainly from the charging and discharging of the node

capacitances [89]. It can be modeled as in equation 7.1

1 2 '" Power = 'iVddfdk L.J CiSAi (7.1)
i

where Vdd is the supply voltage and fdk is the clock frequency which are determined by the

technology, Ci is the physical capacitance at the output of the node (i is the node number) and

SAi (referred to as the switching activity) is the expected number of output transitions per clock

cycle[131]. The summation is taken over all nodes of the logic circuit. As is known, Ci and SAi

can be optimized during the design process.

Logic functions can be expressed canonically based on AND JOR (NAND & NOR) operators.

Extensive research has been done on developing low-power techniques in AND JOR or NAND

104

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 105

& NOR based circuits [91]. However, in certain applications, XOR realizations have attractive

advantages over the conventional AND JOR NAND&NOR logic especially for functions which do

not produce optimization solutions based on these operators. The XOR circuit is easier to test

and may require fewer gates and interconnections [3]. Unfortunately, the techniques for synthesis

and optimization of logic based on Reed-Muller are much more difficult than those based on the

standard Boolean expressions.

With recent development and increasing use of various field programmable gate array (FPGA)

devices[21] where the XOR gate is already manufactured as a basic component, synthesis and

optimization of XOR gate based circuits are receiving much more attention than before. More

recently, there has been some success in achieving area reduction by employing optimization

techniques specifically targeted towards initial AND jXOR representations in the well known

Fixed Polarity Reed Muller (FPRM) form [114][107]. The low power optimization of XOR gate

based circuits is still in its infancy.

In technology mapping, the subject net list is usually first decomposed into a netlist composed

of only inverters and two-input XOR gates. The decomposition can have a significant impact on

the power dissipation of the final implementation [74][131]. Looking at the existing work done

by Narayanan and Liu [74] and Zhou and Wong [131]' the former is for static logic and the latter

is for dynamic logic. However, as we will show later, the algorithms in [74][131] are not optimal.

In this chapter, we will deal with the low power XOR gate decomposition problem.

The rest of this chapter is organized as follows. In section 7.2, some definitions and termi­

nology are introduced. In Section 7.3, some previous work is reviewed. Section 7.4 presents a

new algorithm for low power XOR gate decomposition while Section 7.5 shows the experimental

results. Finally, a brief summary is given in Section 7.6.

7.2 Definitions and terminology

To implement a complex function involving many inputs, a form of decomposition into smaller

subfunctions is required such that the subfunctions fit into the primitive elements to be used in

the implementation.

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 106

Definition 7.1. Low power XOR gate decomposition: a multi input XOR gate is decomposed

into a tree of two-input XOR gates, which is of optimal power dissipation.

A tree is defined by the following definition.

Definition 7.2. Let T = (V,E) represent a decomposition tree, and Pr(v), for any v E V,

denotes the output signal probability of node v. Each node has two children. The primary

inputs are called leaves of the tree and the primary output is called the root of the tree.

Each primary input signal into a tree is treated as a random variable and its probability is

defined as follows.

Definition 7.3. Signal probability for signal x is defined as the probability of x being 1.

To estimate the power dissipation of a tree, according to equation 7.1, Ci and SAi need to

be known. Each node in the tree corresponds to a two-input XOR gate. Suppose Ci is constant

for each two-input XOR gate. Then, the only parameter we need to compute is SAi .

Under the assumptions of zero delay model with temporal and spatial independence [74][131],

given input signal probabilities and a decomposition tree, the probabilities of internal signals can

be computed according to the following definition of XOR operator.

Definition 7.4. XOR operator: f(Xl, xo) = Xl El7 Xo = XlXO + XlXO if Xl and Xo are two input

variables. Hence, the probability of f(Xl, xo) is as shown in equation 7.2 [74][131]:

PrJ = Pr(Pr,xl ,Pr,xQ) = Pr,xl + Pr,xQ - 2Pr,X1Pr,XQ (7.2)

The calculation of the corresponding switching activity depends on whether the circuit is

implemented static logic (which does not take into account the timing behavior and is strictly a

function of the topology and the signal statistics) or in dynamic logic (which takes into account

the timing behavior of the circuit).

For static logic, the transition probability assuming independent inputs is the probability

that the output will be in the zero state multiplied by the probability that the output will be in

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 107

the one state. For example, if the signal probability being zero is Po and Pi represents the signal

probability being one, the transition probability from zero to one is prO -+ 1] = POPi = po(1- po).

In general, for a digital signal, pro -+ 1] is equal to p[1 -+ 0]. Therefore, the switching activity

for gate i can be expressed as 7.3 [131]

SAi = Pr,i[O -+ 1] + Pr,i[1 -+ 0] = 2Pr,i(1 - Pr,i) (7.3)

The main difference between static logic and dynamic logic is that dynamic CMOS works

using a precharging circuit. The output of a circuit can be precharged high or low then the

resulting value is evaluated in each clock cycle. Therefore, the output transition probability does

not depend on the sate of the inputs but rather on just the signal probabilities[24]. There are

two implementation models, which are precharged to 0 or 1 and evaluated to the result value.

Take the former for example, that is, a gate output is first precharged to 0 at the leading edge

of the clock signal and then evaluated to the result value at the falling edge. Therefore, if the

output probability is Pr,i, the switching activity for gate i will be 2Pr,i where one Pr,i comes

from the precharging and one Pr,i comes from the evaluation.

Then, for dynamic logic, the switching activity for gate i is given by equation 7.4 [89]

SAi = 2Pr,i (7.4)

Fig. 7.1 shows the switching activity as a function of signal probability both in dynamic logic

and static logic. It can be seen that if only considered in term of switching activity, static logic

is always better than dynamic logic. If the two input signal probabilities of an XOR gate are

Pr,xQ = 0 and Pr,xl = 1 respectively, then the output signal probability of XOR gate is P = 1

according to equation 7.2. One transition, evaluated to 1 at the falling edge of the clock, is

followed by another transition, precharged to 0 at the leading edge of the clock. Hence, in this

particular case, the switching activity of an XOR gate is equal to that of a clock signal, which is 2.

For static logic, the maximum switching activity is 0.5 when signal probability is 0.5. However,

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 108

in terms of power dissipation, the same conclusion can not be deduced from switching activity

since dynamic logic usually has smaller load capacitance.

2

>-. 1.5
.t:!
.~
1j 1
ro
0)

:.§ 0.5
. .kl
~ 0

o

c:tynamic

.... ..,
....

/

0.5

..,.

.,. ,. ,.

Signal probability

,rY

static

1

Figure 7.1: Switching activity versus signal probability

Given an n-input XOR gate with primary input signals I = {Xn-l, Xn-2," . ,xo} and cor­

responding signal probabilities {Pr,xn- II Pr,xn-2' ... ,Pr,xQ}' based on the above discussion, the

procedure for the power estimation of the XOR gate decomposition is as follows.

1. Given the primary input signal probabilities, construct a tree of two input XOR gates.

2. Compute the output probability for each gate.

3. Compute the node switching activity using equations 7.4 or 7.3.

4. Compute the total switching activity using equation 7.1.

Then, the problem for low power XOR gate decomposition can be described as follows.

Low power XOR gate decomposition: Given an n-input XOR gate with input signals

1= {Xn-l, X n -2,'" ,xo} and corresponding signal probabilities {Pr,Xn-llPr,Xn-2"" ,Pr,xQ}' two

input XOR gates are used to construct a tree T = (V,E) with Pr,Xn-llPr,xn-2'''' ,Pr,xQ as

its leaves such that equations 7.5 and 7.6 are minimized for dynamic logic and static logic

respectively.

For dynamic logic,

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION

For static logic,

SA = 2:: 2Pr,i
iEV-J

SA = 2:: 2Pr,i (1 - Pr,d
iEV-J

109

(7.5)

(7.6)

Where SA is the total switching activity and Pr,i is the signal probability of an internal node.

7.3 Previous work

In [131], the authors analyzed some optimal properties and proposed an algorithm to solve the

problem of lower power XOR gate decomposition in dynamic logic.

Algorithm 7.1. Zhou - Wong's algorithm

First, sort the input probabilities which are greater than 0.5.

Then, combine them pairwisely from the largest to the smallest.

Finally, iteratively combine the two signals with the smallest probabilities until there is one

signal.

Based on the analysis of XOR operation and assuming that the signals and their complements

are available, Naraynana and Liu [74] presented an algorithm as follows.

Algorithm 7.2. Naraynana - Liu's algorithm

==

Let k be the number of primary inputs to the XOR tree with probabilities greater than 0.5.

If k is even, replace all k inputs by their respective complements.

If k is odd, replace any k - 1 inputs by their respective complements.

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 110

Then simply use the Huffman algorithms to build the optimal tree.

Take a simple example to show how their algorithms work in Fig. 7.2. The problem has

three inputs and corresponding signal probabilities are 0.1, 0.45 and 0.9 respectively. Both

algorithms share the same decomposition in Fig. 7.2(b). The total switching activities are 1.984

from equation 7.5. However, if the assumption that both the signals and their complements are

available is preserved, the above decomposition is not optimal. Suppose signal X2 and Xl are

replaced by their complements and it can be proved that the functionality is still preserved. Then,

there is another decomposition as shown in Fig. 7.2(c) with a total switching activity of 1.424,

which is smaller. It is realistic to assume that both signals and their complements are available

like FPGA mapping. Hence, in the chapter, all discussions are based on this assumption.

x2 0.9

xl 0.45

Xo 0.1

(a)

Xo 0.1 ~.46 Xo 0.1~.18
xl 0.45 0.532 x2 0.1 0.532
x2 0.9 xl 0.5

(b) (c)

Figure 7.2: (a) Multi input XOR gate; (b) Published decomposition in [131] and [74]; (c) A new
decomposition

Actually, both the Naraynana-Liu's algorithm and the new decomposition in Fig. 7.2(c)

use the polarity transformation. However, any n-variable Boolean function can be expressed

canonically by the Fixed Polarity Reed-Muller (FPRM) form as follows:

2n-l

!(Xn-l, Xn-2, ... ,xo) = E!1 L bi'rri
i=O

(7.7)

The 1r- terms can be represented as 1ri = xn -ti:n-2' .. xo, the subscript i can be written as a

binary n-tuple i = (in-lin-2'" io), bi E {O, 1}, x is a literal which can be X or X,

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION

Xj = {

and 0 ~ j ~ n - 1.

1, ij = 0

Xj, ij = 1

111

(7.8)

An FPRM form of a Boolean function can be identified by a polarity p, P = (Pn-IPn-2'" po).

Pj E {O,l}. Pj = 0 if Xj is true otherwise Pj = 1. For FPRM forms, every variable can only be

either true or complemented but not both. Therefore, there are 2n polarities for an n-variable

function.

Definition 7.5. If P = (Pn-IPn-2'" po) and q = (Qn-1Qn-2'" qo) are the two polarities of an

n variable function under FPRM forms. If the number of binary bits that are 1s is even, it is

called even polarity, otherwise it is called odd polarity. If all variables appeared in equation 7.7

are in true forms, the polarity of expansion is known as positive polarity or polarity zero.

Obviously, an n variable XOR function is a special case of an n variable FPRM form where

the number of 1f-terms equals to the number of variables and 1fi = Xi and its polarity is zero.

For example, an n-variable XOR function under polarity zero can be expressed as

!(Xn-l, Xn-2,'" ,xo) = Xo EI1 Xl EI1 X2'" EI1 Xn-l (7.9)

7.4 Proposed low power XOR gate decomposition

Dynamic logic is used to illustrate the technique. For dynamic logic, according to equation 7.5,

minimizing the total switching activity can be achieved by minimizing the total internal signal

probabilities.

In terms of polarities, the algorithm proposed in [131] is optimal only under polarity zero.

Although the authors in [74] tried to use polarity transform to optimize power dissipation, they

only tried one of 2n polarities, because, for given input signal probabilities the selected polarity is

fixed according to their algorithm. For example, for a three input problem shown in Fig. 7.2, the

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 112

selected polarity is zero. For a five input problem whose input signal probabilities are 0.1, 0.2,

0.55, 0.7 and 0.9, the selected polarity using the algorithm in [74] is 3 or 5. As we know, different

polarities have different function forms, which result in different power dissipation as shown in

Fig. 7.2. Hence, if 2n polarities are searched, the best polarity for low power decomposition can

be found. However, for reasons that will become apparent in Section 7.4.1, the search space can

be reduced to 2n - 1 - 1.

7.4.1 Theoretical results

For an n variable function, there are 2n polarities and correspondingly there are 2n FPRM forms.

FPRM forms can be transformed from one to the other with polarity transformations [114]. From

definition 7.5 and starting from positive polarity, all polarity transformations can be categorized

into two classes: Odd Polarity Transformation (OPT) and Even Polarity Transformation (EPT).

Lemma 7.1. Suppose there is an XOR function consisting of n inputs based on equation 7.9. If

an OPT is selected, one more 1r - term,l, is added while if an EPT is selected, the number of

1r - terms remains the same.

This is trivial because x $1 = x and x $ x = O. Take the three inputs in Fig. 7.2 for example.

If transformations of polarities 2 (010), odd polarity, and 6 (110), even polarity, are derived from

the positive polarity form, the function forms are shown as follows:

f(x2,xI,xo) = 1XOXI$X2 (7.10)

f(X2' Xl, xo) = Xo $ Xl $ X2 (7.11)

Form Lemma 7.1, there is a following corollary.

Corollary 1. For any XOR tree T consisting of n inputs, the OPT requires one additional input

node compared to the EPT.

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 113

From Lemma 7.1, Corollary 1 is obvious because for a tree of two input XOR gates, the

additional input needs one more two-input XOR gate. Hence, EPT can preserve the size of an

XOR tree between polarity transformations.

Theorem 7.1. Given an n variable junction, there are one zero polarity, 2n-l_1 even polarities

and 2n - 1 odd polarities [126}.

This can be proved by induction on n as below.

(1) When n is 1, there are two polarities 0 and 1. Obviously, it satisfies the Theorem 7.1.

(2) Suppose when n is k, k > 1, polarity p' = (Pk-1Pk-2'" po) and there are one polarity

zero, 2k- 1 - 1 even polarities and 2k- 1 odd polarities and Theorem 7.1 is true. When n is k + 1,

polarity p = (PkPk-l' .. po). (a) When Pk is 0, the distribution of polarities is the same as the

case n = k. Hence, there is one polarity zero, 2k - 1 - 1 even polarities and 2k - 1 odd polarities.

(b) When Pk is 1, then P = 2k + p' where "+" is the arithmetic addition. Compared to the p',

the polarity distribution changes as follows: Polarity zero::::}odd polarity; 2k-l -1 even polarities

::::}2k-l_1 odd polarities; 2k- 1 odd polarities::::} 2k- 1 even polarities. Hence, there are 2k- 1 even

polarities and 2k - 1 odd polarities. From both (a) and (b), Theorem 7.1 is true when n is k + 1.

Corollary 1 and Theorem 7.1 tell us that considering area constraints, EPT is preferred and

the best polarity could be found by searching 2n - 1 - 1 even polarities.

For any specified polarity, all input signal probabilities can be deduced from the input signal

probabilities under polarity zero. However, given a set of input signal probabilities, it must be

one of following three cases.

Case 1: At most one input signal probability is greater than 0.5.

Case 2: All input signal probabilities are greater than 0.5.

Case 3: Some are greater than 0.5 and some smaller than 0.5.

For each case, the optimal solution for low power XOR gate decomposition is to find out

an optimal combination of input signals with the merging function in equation 7.2 such that

the total internal probability is minimized. For Cases 2 and 3, the theorem in [131] is used to

combine input signal probabilities greater than 0.5 pairwisely.

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 114

Theorem 7.2. (Zhou and Wong) In an optimal XOR gate decomposition, all inputs of proba­

bilities greater than 0.5 are combined pairwisely from largest to smallest.

Then, using the above theorem, Cases 2 and 3 can be transformed into Case 1. For Case 1,

it is shown that under some conditions a variation of Huffman's algorithm, which is a little bit

different from the original one, can give an optimal solution[74][131]. It is defined as follows.

Definition 7.6. Mini-Huffman algorithm: [107]Start from all the input signals; combine the

two signals of minimum probabilities and substitute them with a new signal; continue the process

until there remains only one signal.

7.4.2 Proposed algorithm

Based on the above properties, a new algorithm to solve the low power XOR gate decomposition

problem is proposed as follows. First, according to input signal probabilities given with a specified

polarity, an optimal tree for low power XOR gate is derived based on Theorem 7.2 and Mini­

Huffman algorithm, as described in Procedure 7.1 and corresponding pseudo-code in Algorithm

7.3.

Procedure 7.1. Given the input signal probabilities set for an n variable XOR function with

polarity p, carry out Steps 1 to 3:

Step 1. If the problem belongs to Case 1: At most one input signal probability is greater than

0.5, use mini-Huffman algorithm to combine the signal probabilities and construct a tree and

compute the total switching activity;

Step 2. If the problem belongs to Case 2 or Case 3, according to Theorem 7.2, combine the

signal probabilities using equation 7.2 until Case 2 or Case 3 is changed into Case 1. Then, go

to Step 1;

Step 3. Output the tree and its total switching activity.

Then, other polarities are calculated and their corresponding switching activities are com­

pared to find the best polarity which has the minimum switching activity. However, based on

Theorem 7.1, only 2n - 1 - 1 even polarities need to be computed. This is shown in Procedure

7.2 and corresponding pseudo-code is given in Algorithm 7.4.

OHAPTER 7. LOW POWER XOR GATE DEOOMPOSITION 115

Procedure 7.2. Given the input signal probabilities set for an n variable XOR function with

polarity zero, set bestPolarity, SAp and OptSA to be 0, respectively. For any p, O<p$. 2n - 1,

carry out Steps 1 to 5.

Step 1. Use Procedure 7.1 to compute switching activity (SAo) with polarity zero. Let OptSA

= SAo ,-

Step 2. Let p = p+1,-

Step 3. If p is OPT, go to Step 2. If p is EPT, use Procedure 1.1 to compute SAp with

polarity p.

Step 4. If SAp is less than OptSA, let OptSA=SAp and bestpolarity=p. If p$. 2n - 1,go to

Step 2. Otherwise, go to Step 4.

Step 5. Output OptSA and bestPolarity.

Algorithm 7.3. Pseudo-code of Procedure 1.1

~==

Input: a set of signals X = {Xn-l, Xn-2,'" ,xo} and corresponding probabilities

(
" I

Pr,xn-l' Pr,xn-2' ... ,Pr,xoJ under polarity p

Output: a decomposition tree T

Decomp(X)

{

if /X/ ==1

I •

return Pr,xn-l'

else

(

if(Case 1)

(

T = mini-Huf fman(X),-

return T,-

J
if(Case 2 or Case 3)

{

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 116

S = {Si = combine{xn-i,Xn-i-t}},{XI E XI:S; X); //XI is a set of primary

input signal probabilities greater than 0.5

}

}

T = minLHuf fman{X + S - Xd;

return (T + S);

Algorithm 7.4. Pseudo-code of Procedure 7.2

Input: a set of signals X {Xn-l, Xn-2,'" , xo} and { Pr,xn -llPr,xn -2"" ,Pr,xo} under

polarity zero

Output: OptSA and bestPolarity / /OptSA-the smallest switching activity for a tree; bestPolarity­

the polarity corresponding

/* Decompose under zero polarity*/

bestPolSearch(X)

{

if /X/==l

OptSA = Pr,xn-l;

else

{

OptSA=Decomp(XY.SA; / /SA - switching activity

}

bestPolarity=O; / /bestPolarity - the polarity corresponding OptSA is named bestPolarity

polarityN 0 = 1 < < n; / /The number of polarities for an n - input variable function is named

polarityNo

for (p = 1; p < polarityN 0; p + +)

(

if(p%2 == 1);

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION

}

else

(

/ /decomp /X/ under polarity p

SAp = Decomp(X) . SA; / /SAp- switching activity under polarity p

}

if(SAp < OptSA)

{

}

OptSA = SAp;

bestPolarity = p;

Output OptSA and bestPolarity;

}

7.5 Experimental results

117

The proposed algorithm is implemented in C and compiled by the GNU C compiler. The time

complexity for the mini-Huffman procedure is O(nlogn)[131]. The proposed algorithm has a time

complexity of O(2nnlogn) where n is the number of variables. In order to compare our results

with those from other algorithms, Zhou-Wong's algorithm and Narayanan-Liu's algorithm are

also implemented. All the three algorithms are tested on a personal computer with PIlI 550

CPU and 64M RAM under Linux operating system. Two sets of experiments have been carried

out.

First, given a set of input signal probabilities, the best polarity (the lowest switching activity)

is found and its corresponding switching activity is computed and compared to that under

polarity zero to see the efficiency. Table 7.1 shows the experimental results for input size from 3

to 13 variables. Thirteen input signal probabilities are generated under randomly selected seed

number 500, which are 0.98, 0.57, 0.17, 0.70, 0.71, 0.18, 0.03, 0.14, 0.69, 0.70, 0.81, 0.32, 0.63,

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 118

respectively. For different input sizes, the input signal probabilities are chosen from left to right

in the above list. For example, for three inputs, the signal probabilities are 0.98, 0.57 and 0.17

while for four inputs they are 0.98, 0.57, 0.17, 0.70, and so on. In Table 7.1, Column 2 from

left shows the best polarity and its corresponding switching activity SAp, Column 3 shows the

switching activity SAo decomposed under polarity zero and last column shows the improvement

rate which is defined as follows:

Improv = SAo - SAp
eJ! %

-p

Table 7.1: Best polarity and switching activity for low power decomposition
INs Best Decomp Polarity Zero Improv

Best Polarity SAp SAo (%)
3 3 0.6388 0.8884 39.07
4 9 1.0742 1.1990 11.62
5 27 1.4895 1.6299 9.43
6 27 1.8560 1.9693 6.10
7 3 1.9399 2.1771 12.23
8 3 2.2620 2.5049 10.74
9 257 2.7286 2.9525 8.21
10 3 3.1781 3.4198 7.61
11 305 3.5494 3.6889 3.93
12 305 4.0205 4.1610 3.49
13 2355 4.4925 4.6424 3.34

(7.12)

Decomposed with the best polarity, it can be seen that the improvement could be as high as

39% compared to the result with polarity zero for this randomly selected instance.

Second, for each input size from 3 to 13 variables, 100 sets of input probabilities are randomly

generated and then run on each of the above algorithms. For each instance X, let Opt(X)

represents the optimal solution, which has the lowest switching activity from the three algorithms.

The following parameter defined in equation 7.13 is used to measure the performance of solution

S(X).

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 119

R = S(X) - Opt (X) o/c
Opt(X) 0

(7.13)

From the definition in 7.13, obviously, the higher the rate R is, the worse the performance

of the algorithm will be. For each algorithm, among all 100 problems of the same input size,

the number of non-optimal solutions, the maximum ratio and the average ratio are computed.

They are represented by N on Opt , M R and AR, respectively. M R is to measure the worst

performance among all 100 problems of the same input size while AR is to measure the average

poor performance. The average CPU time is also reported in Table 7.2.

Table 7.2: Experimental results for the proposed algorithm and published algorithms
INs Narayanan-Liu [74] Zhou-Wong [131] Proposed

Non MR AR Non MR AR Non time
Opt (%) (%) Opt (%) (%) Opt 10-2 8

3 41 46.04 7.79 50 69.77 10.87 0 0
4 40 44.41 8.11 72 40.58 8.88 0 0.1
5 44 35.75 8.57 89 28.39 8.28 0 0.3
6 53 34.43 9.08 92 28.18 7.42 0 0.8
7 51 25.04 6.76 92 24.10 5.59 0 1.0
8 45 27.43 6.31 95 20.01 4.91 0 1.9
9 48 22.50 5.90 98 14.47 4.38 0 4.2
10 58 18.31 6.80 98 7.25 4.00 0 9.7
11 56 15.17 6.09 99 5.28 3.63 0 21.8
12 54 13.37 5.88 99 4.79 3.56 0 48.6
13 47 11.77 5.08 100 4.06 3.27 0 108.0

From the results reported in Table 7.2, the number of non-optimal solutions for the proposed

algorithm is always zero in comparison with Narayanan-Liu's and Zhou-Wong's algorithms. In

other words, the switching activity from the proposed algorithm is always smaller than that from

Narayanan-Liu's or Zhou-Wong's algorithm. It can be seen that the average poor performance

is decreased with the increase of input size for Zhou-Wong's algorithm but this does not happen

for Narayanan-Liu's algorithm. For smaller input size like 3 and 4 variables, Narayanan-Liu's

algorithm is better than Zhou-Wong's algorithm. The reason is that in this case the number

of polarities is smaller and there is a higher chance for Narayanan-Liu's algorithm to find a

CHAPTER 7. LOW POWER XOR GATE DECOMPOSITION 120

good polarity than Zhou-Wong's algorithm. For example, for three inputs: 0.10,0.80,0.90, using

Narayanan-Liu's algorithm the polarity is 3 and the switching activity is 0.488 while using Zhou­

Wong's algorithm it is 0.568 under polarity zero.

7.6 Summary

Using the polarity transform under the assumption that both signals and their complements are

available, a new solution to decompose low power XOR circuits is proposed. The algorithm is

implemented in C. The time complexity of the algorithm is O(2nnlogn). The improvement of

switching activity is significant compared to published results. It should be pointed out that the

algorithm can be applied to static logic as long as the calculation formula of switching activity

in equation 7.5 is substituted by the static logic formula in equation 7.6.

Chapter 8

Power and area optimization of FPRM

functions

In the past, the task of VLSI designers has been to explore the area-time implementation space.

In recent years, power is being given comparable weight to area and time [28].

Up to now, most researchers have focused on developing optimization techniques for area

and power dissipation in AND/OR or NAND & NOR based circuits [91]. However, in certain

applications, XOR realizations have advantages over the conventional AND/OR or NAND &

NOR logic. XOR circuits are easier to test and may require fewer gates and interconnections

[3][87]. Applications of Reed-Muller circuits have so far not become popular due to the following

two obstacles.

1. XOR gates used to have slow speed and require large silicon area to realize in comparison

with OR gates.

2. The problem of optimization of Reed-Muller functions is difficult although there has been

a great deal of research in recent years [64][114].

With the development of new technologies and the advent of various field programmable

gate array (FPGA) devices [21], the first obstacle has been solved. In programmable devices, the

XOR gate is either easily configured in "universal modules" or directly available. For example,

logic blocks can be configured as various two-input gates such as XORs, ANDs and NANDs in

the AT6000 FPGA series from ATMEL Corporation while in other FPGAs, both AND and XOR

121

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 122

gates are available in the macrocells or logic array blocks [76]. For the second obstacle, more

recently, there has been some success in achieving area reduction by employing optimization

techniques specifically targeted towards initial AND /XOR representations in the well known

Fixed Polarity Reed Muller expansion [64][114][107].

Usually, area synthesis of circuits promises more global power savings. However, power dissi­

pation for a circuit depends on input pattern, which requires more specific low power techniques.

For low power optimization of Fixed Polarity Reed-Muller (FPRM) functions, to the best of our

knowledge, the only results in the literature are algorithms proposed by Zhou and Wong [131]

and Narayanan and Liu [74]. The former is for low power XOR gate decomposition, which is the

special case of FPRM functions and hence can not solve low power problem for general FPRM

functions. And the latter is for the FPRM functions with the implementation of static logic.

However, as will be shown later, the algorithm in [74] is not optimal and can only be applied to

some special FPRM functions.

The objective of area and power optimization is twofold. This chapter proposes a frame to

estimate power dissipation based on FPRM functions, discusses the effect of polarity on area

and power dissipation and introduces an optimal algorithm for area and power minimization of

single output FPRM functions. The rest of the paper is organized as follows. In Section 8.1,

some definitions and terminology are introduced. Some previous work is reviewed in Section 8.2.

Section 8.3 presents a frame of power estimation and a cost function to estimate area and power

while an optimisation algorithm is proposed in Section 8.4. Finally, some experimental results

are shown in Section 8.5 and summary in Section 8.6.

8.1 Definition and terminology

For convenience, some definitions are restated here.

Any n-variable Boolean function can be expressed canonically by the exclusive SOP form as

follows.

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 123

2n-1

f(xn-l, Xn-2,'" ,xo) = EB l: b(lri (8.1)
i=O

where the subscript i can be expressed into a binary form as i = (in-lin-2'" io), bi E {O, 1},

the 1r-terms can be represented as 1ri = Xn-IXn -2 . " xo, x is a literal which can be x or X,

X. = { 1,
J .

Xj,

ij = 0

ij = 1
(8.2)

In equation 8.2, j is from 0 to n - 1. The form in equation 8.1 is also known as the positive

polarity Reed-Muller (PPRM) form if all the variables are in true forms. PPRM forms can be

extended to FPRM forms with any fixed polarity p, p = (Pn-IPn-2'" po), where variables can

only be either true or complemented, but not both. If a binary bit of p, Pj , is 0 (or 1) then the

corresponding variable is in the true (or complemented) form. Hence, there are 2n polarities for

an n-variable function. Each FPRM form can be identified by its polarity.

Example 8.1. A four variable function under polarity 0 is given: f(X3, X2, Xl, Xo) = XOEBXIXOEB

X2XI EB X2XIXO EB X3 EB X3 XO EB X3X2 EB X3X2XO EB X3X2XI·

Then, under polarity 5, it has

f(X3, X2, Xl, Xo) = 1 EB Xo EB Xl EB EBX2XIXO EB X3XI EB X3X2XO EB X3X2XI (8.3)

while under polarity 14, it will be

f(X3, X2, Xl, Xo) = Xo EB X2 EB X2XIXO EB X3 EB X3XI EB X3X2XO EB X3X2XI (8.4)

The above functions can be implemented using AND gates and XOR gates with suitable

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 124

technology. XOR gate has defined in Definition 7.4 while two input AND gate is based on the

following definition of AND operator.

Definition 8.1. For two-input AND operator: !(Xl,XO) = Xl' Xo , the probability of !(Xl,XO)

is [89]:

PrJ = Pr{Pr,xllPr,xo) = Pr,xl . Pr,xo (8.5)

Here, Pr,xi is the input signal probability, which was defined in Definition 7.3 while PrJ

represents the output signal probability of the corresponding gate.

8.2 Related work

The total SA of a specific function form depends on how to combine the input signal probabilities,

which refers to low power gate decomposition. The problem for gate decomposition has been

extensively studied [107][74][131].

In [107], AND gate decomposition was discussed. For dynamic logic, it is found that a mod­

ified Huffman's algorithm gives optimal solutions. The modified version of Huffman's algorithm

is called Mini-Huffman algorithm which was described in Algorithm 7.6.

Take a simple example to explain the algorithm. For three inputs (X2, Xl, XO) and correspond­

ing signal probabilities are 0.9, 0.45 and 0.1 respectively, Fig. 8.1{a) shows the above algorithm

applied to decompose a three input AND gate into a tree of two-input gates in dynamic logic.

The switching activity is 0.171.

In [131], the authors analyzed some optimal properties and proposed an algorithm to solve

the problem of lower power XOR gate decomposition in dynamic logic in Algorithm 7.1.

Fig. 8.1{b) shows the decomposition based on algorithm 7.1. The switching activity is 1.984.

It can be seen that this algorithm only works for XOR gate decomposition.

Based on the analysis of XOR operation and assuming that both the signals and their com-

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 125

plements are available, Naraynana and Liu claimed that they use the selection of polarity vectors

to solve low power logic synthesis for XOR based circuits in Algorithm 7.2.

However, this algorithm can not handle the reduction of tree size and only works for some

special cases of FPRM functions. For example, consider two five variable problems, which share

the same input signal probabilities: {Pr,x4,Pr,x3,Pr,x2,Pr,Xt,Pr,xo} = {0.1, 0.3, 0.7, 0.8, 0.9}. Tho

function forms are shown in equations 8.6 and 8.7:

f(X4, X3, X2, Xl, Xo) = XIXO E9 X2XO E9 X4 E9 X4X3XO (8.6)

f(X4, X3, X2, Xl, XO) = XIXO E9 X2XO E9 X4Xl E9 X4X3XO (8.7)

Obviously, algorithm 7.2 works for the function in equation 8.6. If Xl and X2 in equation 8.6

are replaced by their complements, then an alternative representation of the function is:

f(X4, X3, X2, Xl, XO) = XIXO E9 X2 XO E9 X4 E9 X4X3XO (8.8)

which has the same size and the same logic functionality as in equation 8.6. However, if the

same algorithm is applied to the function in equation 8.7, the function will be changed into:

Xo 0.1

XI 0.45~ J1 Xo 0.1

x I 0.45

x2 0.9 LJ X 2 0.9

(a) (b)

Figure 8.1: (a) Multi input AND gate decomposition in [107]; (b) Multi input XOR gate decom­
position in [131]

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 126

f(X4, X3, X2, Xl, XO) = X1XO EEl X2XO EEl X4Xl EEl X4X3XO (8.9)

which offers different functionality from the function in equation 8.7. This is easily tested by

applying the formula X = 1 EEl x to X2 and Xl in equation 8.7, which will result in

f(X4, X3, X2, Xl, XO) = X1XO EEl X2XO EEl X4 EEl X4 X l EEl X4X3XO (8.10)

Obviously, equation 8.10 is different from equation 8.9. Hence, the algorithm does not work

well with the function in equation 8.7.

Based on Algorithm 7.2, the algorithm only tried one of 2n polarities because given input

signal probabilities the selected polarity is fixed. For example, for a three input problem shown

in Fig. 8.1, the selected polarity is zero while for a five input problem as the above, the selected

polarity is 7. Therefore, the selected polarity may not be optimal.

Hence, an FPRM function with multi variables can be implemented using trees of two-input

AND gates and a tree of two-input XOR gates. Given the input signal probability set, the

switching activity can be computed using the above algorithms.

8.3 Polarity based area and power minimization of FPRM func­

tions

8.3.1 Power estimation

As stated in Section 7.1, all discussions here refer to CMOS technology. Consider dynamic power

in CMOS circuit. The power can be modeled as in equation 7.l.

Power dissipation for a circuit is an input pattern involved problem. Any FPRM form can

be implemented by AND gates and XOR gates. Before technology mapping, conventionally, all

multi input AND gates and XOR gates need to be decomposed into a tree of two input gates,

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 127

which is called AND & XOR tree. A tree is defined in Definition 7.2.

Furthermore, each primary input signal into a tree is treated as a random variable and its

probability is defined as in Definition 7.3.

Power estimation of an AND & XOR tree is similar to that of an XOR tree in Section 7.2.

The difference is that there are two kinds of nodes in the AND & XOR tree, namely XOR gate

output and AND gate output.

Given an n-input FPRM function with primary input signals 1= {Xn-l,Xn -2,'" ,xo} and

corresponding signal probabilities {Pr,Xn-llPr,xn-2"" ,Pr,xo}, based on the above discussion, the

procedure for the power estimation of an FPRM function is as follows.

1. Given an n-variable FPRM function and its primary input signal probability set, construct

a tree of two input AND gates and XOR gates;

2. Compute the output probability for each gate using equations 7.2 and 8.5;

3. Compute the node switching activity using equations 7.5 or 7.6;

4. Compute the total power dissipation using equation 7.1.

However, for a given FPRM function with given input signal probability set, the decomposi­

tion can have a significant impact on the amount of power dissipation.

8.3.2 Area and power estimation

For an n variable function, there are 2n polarities and correspondingly there are 2n FPRM forms,

which results in different number of 'if-terms. If implemented as a tree, then the different number

of 'if-terms will have different tree sizes and result in different power dissipation. Hence, area

and power minimization of FPRM functions can be implemented by searching the best polarity

among 2n polarities. This is guaranteed by the following Lemma.

Lemma 8.1. For any n-variable FPRM function, there are 2n different forms. Each form can

be identified by corresponding polarity. Among 2n different forms, there exists at least one form,

which has the minimal number of 'if - terms. For convenience, it is called minimal form.

An n-variable FPRM function has 2ft different forms. Different forms have different function

sizes or different 'if - terms. Then, the number of 'if - terms is used to measure the area of an

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 128

FPRMform.

For power estimation, it is an input relevant pattern problem. Two input AND gates and

XOR gates are used to build a tree to implement an FPRM function. Then, for a given input

signal probability set, Mini-Huffman algorithm in Definition 7.6 & Algorithm 7.1 are used to

combine the input signal probabilities to calculate the total SA.

Lemma 8.1 also shows that for any n-variable FPRM function, there is one or multiple

minimal forms. If the function has one minimal form, the task of area minimization is to find a

polarity, which has the minimal form. If the function has multiple minimal forms, then choose

any of them because there is no difference among them for area minimization. However, for

power dissipation, different minimal forms may have different power dissipation for a specific

input signal pattern. Furthermore, the minimal form does not always have the minimal power.

The power dissipation under the minimal form may be higher than that under other forms. This

can be shown by the following three variable function example.

Example 8.2. A three-variable function, 1(X2, Xl, xo), with corresponding input signal proba­

bilities (PX2,PXllPXO) = (0.10, 0.90, 0.90) is shown as two-level FPRM format in equation 8.11.

1(X2, Xl, xo) = Xo EEl Xl EEl XIXO EEl X2XO EEl X2 X l (8.11)

The function is given under polarity O. It can be found that the minimal form is under

polarity 4 as shown in equation

1(X2, Xl, Xo) = XIXO EEl X2XO EEl X2 X l (8.12)

Also the function form under polarity 5 can be obtained as in equation

1(X2, Xl, Xo) = Xl EEl XIXO EEl X2 EEl X2XO EEl X2 X l (8.13)

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 129

X
2

Xl

Xo Xo

Xl x2

Xo Xl

x2 Xo

Xl xl -T-\ '" 0.18
x2 x2

(a) (b)

Figure 8.2: Power dissipation with the function forms (a) The minimal form under polarity 4;
(b) The function form under polarity 5

Equations 8.12 & 8.13 can be implemented using two-input AND gates and XOR gates as

shown in Figure 8.2. The switching activity of Fig. 8.2 (a) is 6.714 while it is 2.323 for Fig.

8.2 (b). For the form under polarity 5, the power reduction is 65.4% compared to that of the

minimal form though the penalty of area is two 7r - terms. To find a good compromise of area

and power dissipation, a cost function is proposed to guide the optimization as in equation 8.14.

Cost = a * Area + (1 - a) * SA (8.14)

Here, SA stands for the Switching Activity and a is the weight of area and SA and 0 < a < 1.

In order to find the best polarity, which gets area and switching activity minimized, among 2n

polarities, a polarity conversion algorithm is needed.

8.3.3 Polarity conversion

For area minimization, various methods have been developed. They can be classified into two

categories [92]:

1. Gray code: Sequentially search 2n polarities to find the best one which has the minimum

number of products. Memory requirement is O(2n) while the computation time is O(4n).

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 130

2. Extended truth vector: Using an extended truth vector and a weight vector, obtain the

number of products for 2n different expansions simultaneously. Both memory requirement and

the computation time are O(3n).

Any n-variable FPRM function can be uniquely expressed by its on set coefficient. Recently,

an exact method was reported in [114] to find the best polarity targeting area minimization based

on on-set coefficients by gray code, which is suitable for large functions. Memory requirement

and the computation time are O(M) and O(2n M) respectively, where M is the average number

of on-set coefficients. This method is used here to implement function polarity conversion.

For convenience, some definitions are given as follows.

Definition 8.2. Two integers can be expressed by binary n-tuples, i = {in - 1in-2'" io}, j =

{jn-dn-2'" jo}. If ik ~ jk for all k, 0 ~ k ~ n - 1, then i covers j or j is covered by i.

Algorithm 8.1. Wang's algorithm [116]

Given an on-set Reed-Muller coefficient set Rp for an n-variable Boolean function with polarity

p. A coefficient set Rp with any other polarity q can be achieved through the following operations

on Rp itself, where p /\ q = r (/\ is bitwise operator).

(1) For any coefficient i in the set Rp, if i does not cover r, then i is an element of Rp. Leave

i in the set. If i covers r, search the set Rp for the coefficient (i - r). If there is such a coefficient,

then delete coefficient (i - r) from the set Rp. Otherwise, if there is not such a coefficient, then

add coefficient (i - r) to the set Rp.

(2) The new set obtained in step (1) is the on-set Reed-Muller coefficient set with polarity p.

Using the above polarity conversion algorithm, the optimization implementation of FPRM

functions can be described as follows:

Given an n-input PPRM function with primary input signals 1= {Xn-l, Xn -2,'" ,xo} and

corresponding signal probabilities {Pr,xn-l' Pr,xn-2' ... ,Pr,xo}' two input AND gates and two

input XOR gates are used to construct a tree T = (V, E) with Pr,xn-ll Pr,xn-2' ... , and Pr,xo as

its leaves. Search the best polarity such that both area and equations 8.15 or 8.16 are minimized

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 131

for dynamic logic and static logic respectively.

For dynamic logic,

For static logic,

SA = L2Pr,i

iEV

SA = L 2Pr,i(1 - Pr,i)
iEV

(8.15)

(8.16)

Where SA is the total switching activity and Pr,i is the signal probability of an internal node.

8.4 Proposed algorithms

Based on the above discussion, a new algorithms for minimizing area and power dissipation of

single output FPRM functions is proposed as follows.

Algorithm 8.2. Power minimized algorithm

==

Given an on-set Reed-Muller coefficient set Rp of a single output FPRM function with the in­

put signal probability set under polarity p, let one real variable and one integer variable, SA Cost,

AreaCost, represent the total switching activity and area cost (measured by the number of 1r-terms)

under polarity p, and let one real variable and two integer variables, BestSACost, BestAreaCost

and BestPolarity, represent the lowest total switching activity, area cost and the polarity corre­

sponding to the lowest total switching activity, respectively. Then, for any i, 0 < i :::; 2n - 1,

carry out the following steps,'

(1) Generate a polarity qi in gray code order, that is adjacent with qi-l. Let r = qi /\ qi-l'

(2) Pass R qi_ 1 and r to Algorithm 8.1 to get the new on-set coefficient set R qi . Obtain

AreaCost from the set R q;.

(3) If BestAreaCost < AreaCost, let qi = qi-l and qi = qi + 1, go to Step 1.

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 132

(4) If BestAreaCost ~ AreaCost, construct an optimal tree of two input AND gates using

Algorithm 7.6 for each 1f'-term in the FPRM function. Compute the switching activity for all

AND-trees and store it into SACost and save the primary output signal probabilities of AND­

trees into an array called ANDOutProb[}. Taking the signal probabilities in ANDOutProb[} as

the primary input signal probabilities, construct an optimal tree of two input XOR gates using

Algorithm 7.1. Compute the switching activity of the XOR-tree and add it to SACost. If SA Cost

is less than BestSACost, then BestSACost, BestAreaCost and BestPolarity are substituted by

SACost, AreaCost and qi respectively. Otherwise, go to Step 1.

(5) Output (BestPolarity /\p) that is the best polarity with BestSACost and BestAreaCost.

The above algorithm supposes that the area has the higher weight than the power dissipation.

If the function has many area minimal representations, the algorithm can find the best polarity,

which has the lowest power dissipation.

Example 8.3. A three-variable function, f(x2, Xl, xo), with corresponding input signal proba­

bilities (0.10, 0.45, 0.90) is shown as two-level FPRM format in equation 8.17.

f(X2, Xl, Xo) = Xo EB X1XO EB X2X1XO (8.17)

Obviously, the function representation is under polarity O. The on-set Reed-Muller coefficient

set Ro is (1,3, 7). First, construct an optimal tree of two input AND gates using Algorithm 7.6

for each 1f'-term in the FPRM function and compute the switching activity for all AND-trees and

store it into SACost and save the primary out signal probabilities of AND-trees into an array

called ANDOutProbD. For this example, 1f'1 = Xo, 1f'3 = X1XO, 1f'7 = X2X1XO and corresponding

AND trees are shown in Fig. 8.3 (a). The switching activity is SACost = 0.9810. The primary

out signal probabilities of AND-trees are ANDOutProb[O] = 0.9, ANDOutProb[l] = 0.405 and

ANDOutProb[2] = 0.0405.

Then, take the signal probabilities in ANDOutProbD as the primary input signal probabilities,

construct an optimal tree of two input XOR gates using Algorithm 7.1 and compute the switching

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 133

activity of the XOR-tree and add it to SACost. The XOR tree is shown in Fig. 8.3 (b) and

add its switching activity to SACost. Obtain SACost = 2.9460. Let BestSACost be 2.9460,

BestAreaCost be 3 and polarity 0 be BestPolarity.

Xo 0.9 0.9

Xl 0.45 =0-0.405

Xo 0.9

X2 0.1

xl 0.45

Xo 0.9 -----~

(a)

0.0405

0.405

0.9

(b)

Figure 8.3: Decomposition and AND- trees and XOR tree (a) AND trees; (b) XOR tree

Generate polarity 1 in gray code order, 001. Let r = 001 /\ 000 = 1. Pass Ro = (1,3,7) and

r = 1 to Algorithm 8.1 to get the new on-set coefficient set Rl = (0, 1, 2, 3, 6, 7). Because

AreaCost is 6, which is greater than BestAreaCost, go to Step 1 and generate gray code for next

polarity 2. Repeat this procedure till polarity 7. Finally, find that the BestPolarity is polarity

4, BestSACost is 0.2362 and BestAreaCost is 2.

Algorithm 8.3. Power and area optimisation algorithm

==

Given an on-set Reed-Muller coefficient set Rp of a single output FPRM function with the

input signal probability set under polarity p, let two real variables and one integer variable, Cost,

SACost, AreaCost, represent the cost, total switching activity and area cost (measured by the num­

ber of 1r-terms) under polarity p, and let two real variables and two integer variables, BestCost,

BestSACost, BestAreaCost and BestPolarity, represent the best cost, the lowest total switching

activity, area cost and the polarity corresponding to the lowest total switching activity, respec-

tively. Then, for any i, 0 < i ~ 2n - 1, carry out the following steps:

(1) Generate a polarity qi in gray code order, that is adjacent with qi-l' Let r = qi /\ qi-l'

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 134

(2) Pass R qi_ 1 and r to Algorithm 8.1 to get the new on-set coefficient set R qi . Obtain

AreaCost from the set R qi .

(3) Construct an optimal tree of two input AND gates using Algorithm 7.6 for each 1r-term in

the FPRM function. Compute the switching activity for all AND-trees and store it into SACost

and save the primary output signal probabilities of AND-trees into an array called ANDOutProbf].

Taking the signal probabilities in ANDOutProbf} as the primary input signal probabilities, con­

struct an optimal tree of two input XOR gates using Algorithm 7.1.

(4) Compute the switching activity of the XOR-tree and add it to SA Cost and take the number

of 1r-terms as area. Use equation 8.14 to calculate the cost. If Cost is less than BestCost, then

BestCost, BestAreaCost and BestPolarity are substituted by Cost, AreaCost and qi respectively.

Otherwise, go to Step 1.

(5) Output (BestPolarity /\p) that is the best polarity with BestSACost and BestAreaCost.

8.5 Experimental results

The proposed algorithm has been implemented in C and compiled by the GNU C compiler. The

time complexity for mini-Huffman is O(nlogn) [131] while that for polarity conversion is O(M2n)

[114]. Hence, the proposed algorithm has the time complexity of O(M2nnlogn) where n is the

number of variables and M is the average number of on-set coefficients. The algorithm is tested

on a personal computer with PIlI 550 CPU and 64M RAM under Linux operating system. Ten

single output circuits with input size from 8 to 21 from MCNC benchmarks are tested.

The algorithm proposed in [115] is used to convert the test circuits directly from two-level

PLA format to two-level FPRM format with polarity O. Then, the proposed algorithm will

work with the two-level FPRM format circuits. Given a set of input signal probabilities, the

best polarity is searched and its corresponding switching activity and area are found, where

area is measured by the number of 1r-terms. Twenty-one input signal probabilities are randomly

generated, which are 0.95,0.08,0.78,0.25,0.18, 0.77, 0.75, 0.71, 0.47, 0.07, 0.23, 0.73, 0.28, 0.73,

0.28, 0.73, 0.44, 0.81, 0.20, 0.38, 0.71, respectively. For different input sizes, the input signal

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 135

probabilities are chosen from the left to the right in the above list. For example, for three inputs

(X2' Xl, xo), the signal probabilities are 0.78, 0.08, 0.95 while for four inputs (X3, X2, Xl, xo),

they are 0.25, 0.78, 0.08, 0.95, and so on.

Two sets of experiments are conducted. The first set is based on Algorithm 8.2. Ten circuits

from MCNC benchmark are tested. Table 8.1 shows the experimental results [127]. To see the

efficiency of the algorithm, the switching activity and area under the polarity 0 are also listed

in the same table for comparison. In Table 8.1, Column 1 shows the circuit name while Column

2 shows the number of inputs (IN#) and the number of product terms (p#) in PLA format;

Columns 3 and 4 show the switching activity (SAo) and area (Areao the number of 1r- terms

in two-level RM format) under polarity 0 while Columns 5, 6, 7 and 8 show the best polarity,

switching activity (SAb), area (Areab) and CPU time for the best polarity using the proposal

algorithm, respectively; Columns 9 and 10 show the improvement percentage of the switching

activity and area under the best polarity compared to those under the best polarity given in

[115]. The improvement percentage of switching activities is defined as follows:

SAo - SAb
Improvement = SAo % (8.18)

while the one for area is similarly defined in equation 8.19.

Improvement = Areao - Areab
'reao %

(8.19)

From the results reported in Table 8.1, it is found that the switching activities can be improved

significantly for all ten circuits compared to those under polarity 0, which can be as high as 91.9%.

The average reduction of switching activities is 61.0% while the average area reduction is 32.0%

for all ten circuits. For seven cases of ten circuits, both area and switching activity are reduced.

For each circuit, 10 sets of input probabilities are randomly generated and then run on the

above algorithm. For each instance X, let Opt(X) represents the optimal solution under the best

polarity and S(X) be the solution with polarity O. The following parameter defined in equation

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 136

8.20 is used to measure the performance of the algorithm.

R = S(X) - Opt(X) o/c
S(X) 0

(8.20)

From the definition in 8.20, obviously, the higher the rate R, the worse the performance of the

algorithm. For each circuit, among 10 problems, the maximum ratios and the average improve­

ment ratios of switching activity and area are computed, which are represented by M axSAR,

M axAreaR, AvergAreaR and AvergSAR, respectively. The results are shown in Table 8.2.

The second experiment is conducted based on Algorithm 8.3, which uses the cost function

in equation 8.14 to guide the optimization. To determine the weight a in equation 8.14, an

experiment is conducted as follows. An input signal probability set is randomly generated, in

Table 8.1: Best polarity and switching activity for low power decomposition[127]
- -

Name IN#/p# Polarity 0 Best Polarity Improvement (%)
SAo Areao polarity SAb Areab time(s) SA Area

Newwill 8/8 16.84 57 150 2.10 14 0.21 87.5 75.4
Newtag 8/8 8.20 21 160 2.18 6 0.14 73.4 71.4
sym10 10/837 128.76 266 966 20.54 557 29.42 84.0 -109.4
xor5 5/5 3.14 5 6 2.52 5 0 19.7 0
9sym 9/87 136.36 210 450 11.58 173 1.94 91.5 17.6
life 9/512 113.26 184 255 23.12 100 3.82 79.6 45.6

t481 16/481 46.96 41 39323 9.82 19 29.46 76.7 53.6
ryy6 16/122 23.38 80 49152 13.74 64 16.70 41.2 20.0

cm150a 21/17 139.30 163 819200 17.22 81 41.30 87.6 50.3
mux 21/36 77.40 81 786432 40.06 81 40.14 48.1 0

Average improvement (%) 73.2 22.0

Table 8.2: Reduction ratios of area and switching activity -

Name MaxSWR(%) MaxAreaR(%) AvergSWR(%) AvergAreaR(%)
Newill 89.7 75.4 79.2 74.0 I

Newtag 88.0 93.2 68.0 72.2 J
Sym10 93.6 -112.0 74.2 -98.4
xor5 19.7 0 8.6 0 I

9sym 93.2 17.6 83.2 17.6 I
life 95.4 45.7 79.7 34.8 !

t481 89.1 68.3 78.9 61.0 I

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 137

which the elements are 0.15, 0.97, 0.48, 0.10, 0.24, 0.16, 0.60, 0.96, 0.78, 0.56, 0.26, 0.74, 0.53,

0.87, 0.37, 0.39 respectively for a sixteen input variable set. Power versus alpha and area versus

alpha are conducted. The results are shown in Figs. 8.4 (a) and (b). Fig. 8.4 (a) depicts the

normalized power of four benchmarks versus alpha, i.e. the power when a = 1 is divided by the

power with specific a. Fig. 8.4 (b) depicts the normalized area versus alpha, i.e. the area when

a = 0 is divided by the area with specific a. For circuits life & 9sym, power and area do not vary

with a while for circuits t481 & sym10, power and area varies significant with a. From Figs.

8.4 (a) & (b), it can be seen that setting a = 0.4 produces the optimization implementations for

area and power.

Table 8.3 shows the results of ten MCNC benchmark circuits. The results of the area min-

imized algorithm in [116] are also listed in the table for comparison. It can be seen that two

circuits have significant power improvement without any area penalty while one circuit has power

improvement with small area trade. For the circuits 9sym and cm150a, the proposed algorithm

finds the best polarities, which have the minimal area and power dissipation. However, for the

circuit ryy6, it means that the polarity which has the minimal area is not the best polarity for

power minimization.

Table 8.3: Power dissipation and area comparison
Name Inputs Results in [116] Proposed in [128] Reduction

P area SA P area SA time (s) Area (%) SA (%)
9sym 9 15 173 154.92 195 173 31.1 0.21 0 79.9
ryy6 16 49152 64 38.76 57344 72 19.9 16.83 -12.5 48.7
mux 21 0 81 19.86 0 81 19.86 40.14 0 0

cm150a 21 1 82 47.90 32768 82 25.28 40.35 0 47.2

Table 8.4: Reduction ratios of area and SA
Name MaxSAR (%) MaxAreaR (%) AverageSAR (%) AverageAreaR (%)
9sym 79.7 0 60.0 0
ryy6 48.7 -12.5 11.7 -3.1

cm150a 78.0 -1.2 29.9 -0.1

Once again, for each circuit, 10 sets of input probabilities are randomly generated and then

run on the proposed algorithm and area efficient algorithm in [116] to see the efficiency of the cost

function in equation 8.14. Equation 8.20 is used to measure the performance of the proposed

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 138

algorithm. The results are shown in Table 8.4. It shows that the proposed algorithm has a

significant power dissipation improvement with smaller area penalty compared with the results

from the area minimized algorithm.

1.2
= Q 1
i 0.8

__ ..JJt _.t-. life
N , .--- I

E ~ 0.6
I ___ t481

6 0.4 • z , ...•... sym10 - 0.2
~

- -..t..t..-
0 :t; 9sym

Q
C- O 0.2 0.4 0.6 0.8 1

alpha

1 '. - \ .a
(1;1 0.8 :-- ---...-.. ---- ---- ---- -- - -life
.... ..
~ 0.6 - -- - t481
N

~ 0.4 - - i. ... sym10
E
Q 0.2 t: 9sym
z - 0 (1;1
Q)

.a 0 0.2 0.4 0.6 0.8 1

alpha

- - -

Figure 8.4: Power and area versus alpha (a) Power versus alpha; (b) Area versus alpha

CHAPTER 8. POWER AND AREA OPTIMIZATION OF FPRM FUNCTIONS 139

8.6 Summary

A frame to estimate power dissipation of FPRM functions has been presented. Using the po­

larity conversion under the assumption that both signals and their complements are available, a

solution to minimize power dissipation for single output FPRM functions is proposed. The time

complexity of the proposed algorithm is O(M2nnlogn). Although the dynamic logic is taken to

explain how the algorithm works, it should be pointed out that the algorithm can be applied to

static logic as long as the calculation formula of switching activity in equation 7.5 is substituted

by the one for static logic in equation 7.6.

Chapter 9

Conclusions and Future work

This project aims to develop low power design techniques for digital logic circuits. The main

contributions in this thesis can be summarized as follows.

9.1 Low power state assignment

Using the state assignment to reduce area or power of FSMs is not new. This can be classified

as a single object optimization problem. However, using state assignment to optimize power and

area is relatively new, which is a multiple object optimization problem and much more difficult

than single object optimization. For the optimization problem, the optimization quality of a

problem mainly depends on the algorithm used and the cost function developed. An algorithm

which has large search space is essential to solve large size problems. Considering this, a genetic

algorithm is employed to do this job in Chapter 3. Corresponding operators are developed for

this specific application. Switching activity is used to estimate power dissipation of an FSM,

which includes the power dissipation both from the register section and combinational section.

Based on the number of cubes and switching activity, two cost functions are developed, which

can optimize FSMs targeting area or power dissipation or both. For a specific state assignment,

the area of the combinational section is calculated by ESPRESSO minimization. The algorithm

is implemented in C and the efficiency is tested on MCNC benchmarks. The results show that

the proposed algorithm has significant improvement in area and power dissipation compared to

140

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 141

those from the state-of-the-art tools.

9.2 Low power flip-flop designs

Pulse sampling flip-flops usually suffer from a long clock chain, which is used to generate narrow

pulse, and the long clock chain consumes significant power dissipation compared to the flip-flop

cell. In Chapter 4, a clock-gating technique is used to reduce the redundant transition in a clock

chain. A novel low power Single Edge-Triggered Flip-Flop with Clock-Gating (CG-SETFF) is

proposed. The proposed flip-flop can detect the idle of the input signal to gate the clock chain

so that the clock power can be saved. From the simulation result, the power savings can be as

high as 86% compared with the published design when the input is in idle conditions.

Clock signal is the most frequent transition signal in a flip-flop except glitches. Traditional

flip-flops are single edge-triggered flip-flops, which are sensitive to the rising or falling edge

of the clock. Therefore, half of the clock's transitions have nothing to do with the circuit

and became redundant. One solution to reduce the redundant transition is to develop double

edge-triggered flip-flops. In Chapter 5, two versions of differential CMOS double edge-triggered

flip-flops are proposed: Clock Chain Based Double Edge-Triggered Flip-Flop (CCB-DETFF)

and Pass Transistor Based Differential CMOS Double Edge-Triggered Flip-Flop (PTB-DETFF).

CCB-DETFF has the lower power dissipation than CG-SETFF when input signal probability is

greater than 0.38. PTB-DETFF only uses one clocked nMOS transistor. Therefore, it has some

advantages to use in the reduced clock swing and voltage scalability.

Reducing the number of signal lines can reduce the total capacitor and hence power dissipation

can be reduced. One solution to do that is to use multiple valued signals. In Chapter 6, multiple

valued flip-flop is explored and a novel quaternary flip-flop is proposed. The simulated result

shows that the proposed flip-flop has a correct function and has lower power dissipation compared

to other multiple flip-flop

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 142

9.3 Power optimization of FPRM functions

Low power techniques of AND/OR operator based domain have been extensively investigated.

However, for AND/XOR operator based domain, the research is still in its infancy.

Before technology mapping, a multiple input XOR gate needs to be decomposed into a tree

of two input gates. In Chapter 7, low power XOR gate decomposition is discussed. It is shown

that previous algorithms for low power XOR gate are not optimal. Based on polarity searching

and some given properties, a novel algorithm is presented and implemented in C. The results

show that improved power dissipation is obtained.

In Chapter 8, the above idea is extended to Fixed Polarity Reed-Muller (FPRM) functions.

A power estimation frame for FPRM functions is proposed. A cost function, which is linearly

combined by the number of 1r-terms and power dissipation, is proposed to optimize area and

power dissipation. Based on polarity conversion, two algorithms are presented. One is to optimize

power dissipation and the other is to optimize area and power. The experimental results for

MCNC benchmark circuits show that an improvement is obtained compared to the unoptimized

circuits or published results.

9.4 Future work

The above work can further be generalized and improved along the following lines.

• Low power state assignment program described in Chapter 3 can be incorporated into

other logic minimizers, such as SIS, to improve their performance. The state assignment

technique can be extended to solve the multilevel FSMs in which their combinational

sections are multilevel. It is also possible to apply this technique to low power FSM

decomposition[29] .

• The idea of clock-gating technique proposed in Chapter 4 can be applied to low power

sequential circuit design[120] and low power finite state machine partitioning[18].

• Multiple-valued clock based flip-flops can be further explored to design flip-flops with sim­

pler structure. Moreover, the design methodology of low power sequential systems based

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 143

on this kind of flip-flops needs to be studied .

• Low power XOR gate decomposition algorithm in Chapter 7 can be modified to take the

delay into account so that the target circuit is optimized in both power dissipation and

delay. If a proper delay model is applied, gliching power can be taken into account. Then,

using this logic synthesis technique, the "real" power savings will be more accurate .

• Low power FPRM function algorithm in Chapter 8 is for single output functions, which

can be extended to solve multiple output FPRM functions. Further, if some algebraic

abstraction and reduction rules are applied, then the above algorithm will be more efficient

to optimize area and power.

Publications
The following are papers published, accepted and submitted while at Napier University

• Y Xia and A E A Almaini, Differential CMOS edge-triggered flip-flop with clock-gating,

Electronics Letters, Vol. 38, No.1, pp.9-11, 2002

• Y Xia and A E A Almaini, Genetic algorithm based state assignment for power and area

optimization, IEE Proceedings - Computers and Digital Techniques, Vol. 149, No.4, pp.

128-134, 2002

• Y Xia and A E A Almaini, Best polarity for low power XOR gate decomposition, Euromi­

cro Symposium on DSD'2002 Digital System Design, Proceedings of DSD'2002, pp. 53-59

, Germany, Sept., 2002

• P. Wang, X. Wu and Y Xia, Design of ternary Schmitt triggers based on its sequential

characteristic, IEEE International Symposium on Multiple-valued logic, IEEE Proc. of

ISMVL, pp. 156-160, Boston, USA, May 2002

• Y Xia, A E A Almaini and Xunwei Wu, Genetic algorithm based finite state machine

optimization, Journal of Electronics (Accepted)

• Y Xia and A E A Almaini, Power minimisation of FPRM functions based on polarity

conversion, Journal of Computer Science Technology (Accepted)

• Y Xia and A E A Almaini, Area and power optimisation of FPRM function based circuits,

IEEE International Symposium on Circuits and Systems, Bangkok, May, 2003 (accepted)

• Y Xia and A E A Almaini, A novel multiple valued flip-flop employing multiple valued

clock, (submitted to International Journal of Electronics)

144

References and Bibliography

[1] Afghahi M. and Yuan J., Double edge-triggered D-flip-flops for high-speed CMOS circuits,

IEEE Journal of Solid-state Circutis, Vol. 26, No.8, pp.1168-1170, 1991

[2] Alidian M., Monteiro J., Devadas S., Ghosh A., and Papaefthymiou M., Precomputation­

based sequential logic optimization for low power, IEEE Trans. on VLSI Systems, Vol. 2,

No.4, pp. 426-436, 1994

[3] Almaini A. E. A. Electronic logic systems, Third Edition, Prentice Hall, UK, 1994.

[4] Almaini A. E. A. and McKenzie L., Tabular techniques for generating Kronecker expansion,

lEE Proc. -Comput. Digit. Tech., Vol. 143, No.4, pp. 205-212, 1996

[5] Almaini A., Miller J., Thomson P. and Billina S., State assignment of finite state machines

using a genetic algorithm, IEE Proc.-Comput. Digit. Tech., Vol. 142, No.4, pp. 279-286,

1995

[6] Almaini A. E. A. and Ping S., Algorithm for Reed-Muller expansions of Boolean func­

tions and optimization of fixed polarities, The fourth IEEE International Conference on

Electronics, Circuits and Systems, Cairo, pp 148-153, Dec., 1997

[7] Almaini A. E. A., Thomson P. and Hanson D., Tabular techniques for Reed-Muller logic,

Int. J. Electronics, Vol.70, No.1, pp. 23-24, 1991

[8] Almaini A. E. A. and Zhuang N., Using genetic algorithms for the variable ordering of

Reed-Muller binary decision diagrams, Microelectronic Journal, Vol. 24, No.4, pp. 471-

480, 1995

145

BIBLIOGRAPHY 146

[9] Almaini A. E. A., Zhuang N. and Bourset F., Minimisation of multiouput Binary Decision

Diagrams using hybrid Genetic Algorithms, IEE Electronic Letters, Vol. 31, No. 20, pp.

1722-1723, 1995

[10] Ashar P., Devada S., and Newton A., Sequential logic synthesis, Kluwer, Boston, 1991

[11] Athas W., Svensson L., Koller, Tzartzanis E. and Chou E., A framework for practical low­

power digital CMOS systems using adiabatic-switching principles, International Workshop

on Low Power Design, pp. 189-194, April, 1994

[12] Bacchetta P., Daldoss L., Sciuto D. and Silvano C., Low-power state assignment techniques

for finite state machines, IEEE International Symposium on Circuits and Systems, Gnenva,

pp. 28-31, 2000

[13] Bahar R., Frohm E., Gaona C., Hachtel G., Macii E., Pardo A. and Somenzi F., Algebraic

decision diagrams and their application, Proceedings of the IEEE/ ACM International Con­

ference on Computer-Aided Design, Santa Clara, USA, pp. 188-191,1993

[14] Benini L. and Micheli G., Dynamic power management design techniques and CAD tools,

Kluwer Academic Publishers, USA, 1998

[15] Benini L. and Micheli G., State assignment for low-power dissipation, IEEE Journal of

solid State Circuits, Vol.30, No.3, pp. 258-268, 1995

[16] Benini L. and Micheli G., Automatic synthesis of low-power gated-dock finite-state ma­

chines, IEEE Trans. on CAD Design of Integrated Circuits and Systems, Vol. 15, No.6, pp.

630-643, 1996

[17] Benini L. and Micheli G., Synthesis of low-power selectively-docked systems from high­

level specification, AMC Trans. on Design Automation of Electronic Systems, Vol. 5, No.3,

311-321, 2000

[18] Benini L., Micheli G. and Vermeulen F., Finite-state machine partitioning for low power,

Proceedings of IEEE International Symposium on Circuits and Systems, Monterey, CA,

pp. 5-8, May, 1998

BIBLIOGRAPHY 147

[19] Blair G., Low-power double-edge triggered flip-flop, IEE Electronics Letters, Vol. 33, No.

10, pp. 845-847, 1997

[20] Brace, K., Rudell R, Bryant R, Efficient implementation of a BDD package, Proceedings

of the Design Automation Conference, Orlando, USA, pp. 40-45, June, 1990

[21] Brown S., Francis Rand Vranesic Z. G. File-programmable gate array, Kluwer Academic

Publisher, Boston, 1992.

[22] Bryaton R, Graph-based algorithms for Boolean function manipulation, IEEE Trans on

Comput., Vol. C-35, No.8, pp.79-85, 1986

[23] Brayton R K., Hachtel, G. D., McMullen C. T. and Sangiovanni-Vincentelli A. L., Logic

minimization algorithms for VLSI synthesis, Kluwer Academic Publishers, Boston, 1984

[24] Chandrakasan A. and Brodensen R, Low power digital CMOS design, Kluwer Academic

Publishers, Boston, 1995

[25] Chandrakasan A., Sheng S. and Brodersen R, Low power techniques for portable real­

time DSP applications, Proceedings of the 5th International Conference on VLSI Design,

Bangalore, India, pp. 203-208, Jan. 1992

[26] Chandrakasan A., Sheng S., and Brodersen R, Low-power CMOS digital design, IEEE

Journal of Solid-State Circuits, Vol. 27, No.4, pp. 473-484, 1994

[27] Chandrakasan A., Potkonjak M., et al., Optimizing power using transformations, IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 14, No.1, pp.

12-31, 1995

[28] Chang J. and Pedram M., Energy minimization using multiple supply voltages, Proceedings

of International Symposium on Low Power Electronics and Design, Monterey, Calfornia,

pp. 157-162, USA, 1996

[29] Chow S., Ho Y. and Hwang T., Low power realization of finite state machines- A decom­

position approach, ACM Trans on Design Automation of Electronic Systems, VoLl, No.3,

315-340, 1996

BIBLIOGRAPHY 148

[30] Coudert 0., Berthet C., Madre J., Verification of sequential machines using Boolean func­

tional vectors, Proceedings of IFIP Inti. Workshop on Applied Formal Methods for Correct

VLSI Design, Leuven, Belgium, pp.111-128, Nov. 1989

[31] Current K., Multiple-valued logic memory circuit, International Journal of Electronics, Vol.

78, pp. 547-555, 1995

[32] Dasgupta A. and Ganguly S., Divide & Conquer: A strategy for synthesis of low power

finite state machines, Proceedings of IEEE International Conference on Computer Design,

Texas, USA, pp740-745, Oct. 1997

[33] Devadas S., Ma H., Newton A. and Sangiovanni-Vinventelli A., MUSTANG: State as­

signment of finite state machines targeting multilevel logic implementations, IEEE Trans.,

Comput.-Aided Des, Integr. Circuits Syst., Vol. 7, No.12, pp. 1290-1300,1998

[34] Dickinson A., Denker J., Adiabatic dynamic logic, IEEE Journal of Solid-State Circuits,

Vol. 30, No.3, pp. 311-315, 1995

[35] Drechsler R., Theobald M. and Becker B., Fast OFDD-based minimization of fixed polarity

Reed-Muller expressions, IEEE Trans. Computers, Vol. 45, No. 11, pp 1294-1299, 1996

[36] Du X., Hatchel G., Lin B. and Newton A., MUSE: A MUltilevel Symbolic Encoding Algo­

rithm for State Assignment, IEEE Transactions on Computer Aided Design, Vol. 10, pp.

28-38, 1991

[37] Ellis S., Power management in notebook counters, Proceedings of the Personal Computer

Design Conference, PP. 749-754, 1991

[38] Forrest J., ODE: Output direct state machine encoding, Proceedings of European Design

Automation Conference with EURO-VHDL'95 on EURO-DAC, Brighton, England, pp.600-

605, Dec. 1995

[39] Forth R., Molitor P., An efficient heuristic for state encoding minimizing the BDD repre­

sentations of the transition relations of finite sate machines, Proceedings of the IEEE/ ACM

BIBLIOGRAPHY 149

Asia and South Pacific Design Automation Conference, Yokohama, Japan, pp. 61-66, Jan.

2000

[40] Gago A. Escano R. and Hidalgo J., Reduce implementation of D-type DET flip-flops, IEEE

Journal of Solid-State Circuits, Vo1.28, No.3, pp.400-402, 1993

[41] Geiger M. and Muller-Wipefurth T., FSM decomposition revisited: algebraic structure

theory applied to MCNC benchmark FSMs, Proceedings of the Design Automation Con­

ference, pp. 182-185, 1992

[42] Ghosh A., Devadas S., Keutzer K. and White J., Estimation of average switching activ­

ity in combinational and sequential circuits, ACM/IEEE Design Automation Conference,

California, USA, pp. 253-259, June 1992

[43] Hachtel G., Hermida M., Pardo A., Poncino M., and Somenzi F., Re-encoding sequential

circuits to reduce power dissipation, Proceedings of the IntI Conference on Computer-Aided

Design, San Jose, USA, pp. 70-73, Nov. 1994

[44] Hachtel G., Macii E., et al., Symbolic algorithms to calculate steady-state probabilities of

a finite state machine, Proceedings of IEEE European Design and Test Conference, Paris,

pp. 214-218, Feb. 1994

[45] Harris E., Depp S., Pence W., Kirkpatrick S., Sri-jayantha M and Troutman R., Technology

directions for portable computers, Proceedings of the IEEE, Vol. 83, No.4, pp. 636-658,

1995

[46] Hartmanis J., and Stearns H., Algebraic structure theory of sequential machines, Prentice­

Hall, New Jersey, 1966

[47] Holland J., Adaptation in natural and artificial system, University of Michigan Press, Ann

Arbor, MI, 1975

[48] Hong S., Pard S., Hwang S. and Kyung C., State assignment in finite state machines for

minimal switching power consumption, IEE Electronics Letters, Vol. 30, No.8, pp. 627-629,

1994

BIBLIOGRAPHY 150

[49] Hossain R., Wronaski L. and Albicki A., Low power design using double edge triggered

flip-flops, IEEE Trans. VLSI Syst., Vol. 2, No.2, pp. 261-265, 1994

[50] Hopcroft J., Ullman J., Introduction to automata theory, languages, and computation.

Addison-Wesley, New York, 1979

[51] http://www.intle.com/kits/quickrefyr.htm

[52] Huang M., Kwok R., Chan S., Simplified and accurate power -analysis method for deep­

submicron ASIC designs, lEE Proc. -Circuits Devices Syst., Vol. 147, No.3, pp. 175-182,

2000

[53] Johnson M. and Roy K., Datapath scheduling with multiple supply voltages and level

converters, ACM Trans. on Design Automation Electronic Systems, Vol. 2, No.3, pp.

227-248, 1997

[54] Kawaguchi H., Skurai T., A reduced clock-swing flip-flop (RCSFF) for 63% power reduc­

tion, Journal of Solid-State Circuits, Vol. 33, No.5, pp. 807-811, 1998

[55] Keonjian E., Micropower Electronics, Pergamon Press, London, New York, 1964

[56] Liew B., et al., Electromigration interconnect lifetime under AC and pulse DC stress,

International Reliability Physics Symp., pp. 215-219, 1989

[57] Lin B. and Newton A., Synthesis of multiple level logic from symbolic high-level descrip­

tion languages, Proceedings of International Conference on Very Large Scale Integration,

Federal Republic of Germany, pp. 187-196, Aug., 1989

[58] Lu S. and Ercegovac M., A Novel CMOS implementation of double-edge-triggered flip-flops,

IEEE Journal of Solid-state Circuits, Vol. 25, No.4, pp. 1008-1010, 1990

[59] Kim J., Jang Y. and Park H., CMOS sense amplifier-based flip-flop with two N-C2MOS

output latches, lEE Electronics Letters, Vol. 36, No.6, pp. 498-499, 2000

[60] Macii E. and Pncino M., Design techniques and tools for low-power digital systems, Euro­

Training Course, Italy, Nov. 2000

BIBLIOGRAPHY 151

[61] Mangione-Simith B., Low power communication protocols: Paging and beyond, Sympo­

sium on Low Power Electronics, San Jose, USA, pp.8-11, Nov. 1995

[62] Marculescu D., Marculescr R. and Pedram M., Information theoretic measures for power

analysis, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,

VoLl5, No.6, pp. 599-598,1996

[63] Marculescu D., Marculescr R. and Pedram M., Theoretical bounds for switching activity

analysis in finite-state machines, IEEE Trans. on VLSI systems, Vol. 8 , No.3, pp. 335-339,

2000

[64] Mckenzie L., Logic synthesis and optimization using Reed-Muller expansions, PhD thesis,

Napier University, UK, 1995

[65] Meng T., Gordon B., et aI., Portable video-on-demand in wireless communication, Pro­

ceedings of the IEEE, Vol. 83, No.4, pp. 659-680, 1995

[66] Meindl J., Micropower Circuits, J. Wiley and Sons, New York, 1969

[67] Micheli G., Brayton R. and Sangiovanni-Vincentelli A., Optimal state assignment for finite

state machines, IEEE Trans. on CAD, Vol. CAD-4, No.3, pp.269-283, 1985

[68] Mishra S., Rofail M. and Yeo, K., Design of high performance double edge-triggered flip­

flops, lEE Proc. -Circuits Devices Syst., Vol. 147, No.5, pp. 283-2, 2000

[69] Molhi S. and Chatterjee P., I-V microsystem-scaling on schedule for personal communica­

tions, IEEE Circuits and Devices, pp. 13-17, 1994

[70] Monteiro J. and Devadas S., Retiming sequential circuits for low power, Proceedings of the

Int'l Conference on Computer-Aided Design, California, USA, pp. 398-402, 1993

[71] Monteiro J. and Oliveira A., Finite state machine decomposition for low power, Proceedings

of the 35th Annual Conference on Design Automation Conference, San Francisco, USA,

pp. 758-763, June 1998

BIBLIOGRAPHY 152

[72] Mosisiads Y. and Bouras 1., Differential CMOS edge-triggered flip-flop based on clock

racing, Electronics Letters, Vol 36, No. 12, pp. 1012-1013, 2000

[73] Najm F., Goel. S. and Hajj 1., Power estimation in sequential circuits, ACM/IEEE Design

Automation Conference, San Francisco, USA, pp.635-640, June 1995

[74] Narayanan U. and Liu C. L. Low power logic synthesis for XOR based circuits, International

Conference on Computer-Aided-Desigm, San Jose, USA, pp. 570-574, Nov. 1997

[75] Nemani M. and Najm N., Towards a high-level power estimation capability, IEEE Trans­

action on Computer-Aided Design of Integrated Circuits and Systems, Vo1.15, No.6, pp.

588-598, 1996

[76] Oldfield J., Dorf R., Field programmable gate arrays, John Wiley & Sons, Inc., New York,

1995

[77] Olson E. and Kang S., Low-power state assignment for finite state machines search, Pro­

ceedings of IWLPD'94: ACM/IEEE International Workshop on Low Power Design, Napa

Valley, pp. 63-68,1994

[78] Panda P., Dutt N., Reducing address bus transitions for low power memory mapping, IEEE

Europena Design and Test Conference, Paris, pp. 63-67, March 1996

[79] Parrilla L., Ortega J. and Lloris A., Nondeterministic AND-EXOR minimisation by using

rewrite rules and simulated annealing, lEE Proc., Comput. Digit. Tech., Vol. 146, No.1,

pp.I-8, 1999

[80] Pedram M, Wu Q and Wu X, A new design of double edge triggered flip-flops, Proceedings

of the Asia and South Pacific Design Automation Conference, Yokohama, Japan, pp. 417-

421, Feb. 1998

[81] Perry D., VHDL, 3rd edition, McGraw-Hill Inc., New York, 1998

[82] Prosser F., Wu X., and Chen X., 1988, Ternary CMOS flip-flops and their applications,

lEE Proceedings, Vol. 135E, pp. 256-272, 1988

BIBLIOGRAPHY 153

[83] Rabaey J. and Pedram M., Low power design, Kluwer Academic Publishers, USA, 1996

[84] Raghunathan A., Dey S. and Jha N., Wakabayashi K., Power management techniques

of control-flow intensive design, ACM/IEEE Design Automation Conference, California,

USA, pp.429-434, 1997

[85] Raghunathan A. and Kja N., Behavioral synthesis for low power, Proceedings of the Inter­

national Conference on Computer Design, Cambridge, USA, pp. 318-322, Oct. 1994

[86] Rashid M., SPICE for circuits and electronics using PSpice, Prentice Hall, New Jersey,

1995

[87] Reddy S., Easily testable realization for logic functions, IEEE Transaction on Computers,

No.11, pp. 1183-1188, 1972

[88] Roy K. and Prasad S., Syclop: Synthesis of CMOS logic for low power application, Pro­

ceedings of IEEE International Conference on Computer Design, Cambridge, USA, pp.

464-467, 1992

[89] Roy K. and Prasad S., Low-power CMOS VLSI circuit design, John Wiley & Sons, Inc.,

New York, 2000

[90] Roy S., Banerjee P. and Sarrafzadeh M., Partitioning sequential circuits for low power,

Proceedings of the IEEE International Conference on VLSI Design, India, pp. 212-217,

Jan. 1998

[91] Panda R. and Najm F. Technology decomposition for low-power synthesis, IEEE Custom

Integrated Circuits Conference, Santa Clara, CA, pp. 627-630, May 1995.

[92] Sasao T. and Fujita M. Representations of discrete functions, Kluwer Academic Publishers,

USA, 1996

[93] Semiconductor Industry Association, Workshop Working Group Reports, Irving, TX, 22-

23, 1992

BIBLIOGRAPHY 154

[94] Sentovich E. M., Singh K. J., Lavagno L. Moon C., Murgai R., Saldanha A., Savoj J.,

Stephan P. R., Brayton R. K., and Sangiovanni-Vincentelli A., SIS: A system for sequential

circuit synthesis, Electronics Research Laboratory, Memorandum No. UCB/ERL M92/41,

UC, Berkeley, May, 1992

[95] Shahidi G., et al., O.lfl,m CMOS devices, Proceddings of the Third Great Lakes Symposium

on VLSI Technology, pp.67, 1993

[96] Singh D., Prospects for low power microprocessor design, International Workshop on Low

Power Design, Napa, Cal., p. 1, 1994

[97] Song N. and Perdowski M., New fast approach to approximate ESOP minimization for

incompletely specified multi-output functions, Proc. Reed-Muller'97 Conference, Oxford

Univ., UK, pp 67-72, 1997

[98] Stan M., Burleson W., Bus-invert coding for low-power I/O, IEEE Trans on VLSI Systems,

Vol. 3, No.1, pp.49-58, 1995

[99] Stojanovic V. and Oklobdzija V. G. , Comparative analysis of master-slave latches and flip­

flops for high-performance and low-power system, IEEE Journal of Solid-State Circuits,

Vol. 34, No.4, pp. 536-548, 1999

[100] Strollo A. and Caro D., Low power flip-flop with clock gating on master and slave latches,

Electronics Letters, Vol. 36, No.4, pp. 294-295, 2000

[101] Strollo A, Napoli E and Caro D, Low-power flip-flops with reliable clock gating, Microelec­

tronics Journal, Vol. 32, pp.21-28, 2001

[102] Strollo E. Napoli E. and Cimino C., Low power double edge-triggered flip-flop using one

latch, Electronics Letters, Vol. 35, No.3, pp. 187-188, 1999

[103] Thomas D., The Verilog Hardware Description Language, Fourth Edition, Kluwer Aca­

demic Publishers, Lowell, MA, 1998

[104] Tiwari V., Ashar P. and Malik S., Technology mapping for low power, Proceeding of the

Design Automation Conference, Dallas, Texas, pp. 74-79, June 1993

BIBLIOGRAPHY 155

[105] Tran A. adn Wang J., Decomposition method for minimisation of Reed-Muller polynomials

in mixed-polarity, IEE Proc-E, Vol. 140, No.1 pp. 65-68, 1993

[106] Trivedi K., Probability and statistics with reliability, queueing, and computer science ap­

plications, Prentice-Hall, USA, 1982

[107] 'Thai C. and Marek-Dadowska M., Multilevel logic synthesis for arithmetic functions, Design

Automation Conference, Las Vegas, pp. 68-73, June 1996

[108] 'Thui C., Pedram M. and Despain A., Low power state assignment targeting two- and multi­

level logic implementations, IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, Vol. 17, No.12, pp. 1281-1291, 1998

[109] Tyagi A., Entropic Bounds on FSM switching, IEEE Transactions on VLSI Systmes, Vol.5,

No.4, 456-464, 1997

[110] Unger S., Double-edge-triggered flip-flops, IEEE Tans. on Computers, Vol. C-30, No.6,

pp.447-451, 1981

[111] Villa T., Sangiovanni-Vincentelli A., NOVA: State assignment of finite state machines for

optimal two-level logic implementations, IEEE Trans. Computer-Aided Design of Inte­

grated Circuits and Systems, Vol. 9, No.9, pp. 905-924, 1990

[112] Vranesic, Z., Multiple-valued logic: an introduction and overview, IEEE Transactions on

Computers, Vol. C-26, pp. 1181-1182, 1977

[113] Wang K., Wang W., Hwang T., Wu A. and Lin Y., State assignment for power and area

minimization, Proceedings of IEEE International Conference on Computer design, Cam­

bridge, USA, pp. 250-254, Oct. 1994

[114] Wang L., Automated synthesis and optimization of multilevel logic circuits, PhD thesis,

Napier University, UK, 2000

[115] Wang L. and Almaini A. E. A., Fast conversion algorithm for very large Boolean functions,

Electronics Letters, Vol. 36, No. 16, pp. 370-1371, 2000

BIBLIOGRAPHY 156

[116] Wang L. and Almaini A. E. A., Exact minimisation of large multiple output FPRM func­

tions, lEE Proc.-Comput. Digit. Tech., Vol. 149, No.5, pp. 203-212, 2002

[117] Wang, S. and Horng, M., State assignment of finite state machines for low power applica­

tions, Electronics Letters, Vol. 32, No. 25, pp. 2323-2324, 1996

[118] Weste N., and Eshragian K., Principles of CMOS VLSI design: a systems perspective,

Second Edition, Addison-Wesley Publishing Company, Santa Clara, 1992

[119] Woodford C., Solving linear and non-linear equations, Ellis Horwood Limited, England,

1992

[120] Wu Q., Pedram M and Wu X, Clock-gating and its application to low power design of

sequential circuits, IEEE Trans. on Circuits and Systems, Part 1, Vol.47, No.3, pp. 415-

420, 2000

[121] Wu X., and Chen X., Quaternary CMOS circuits based on transmission function theory,

Chinese Science (Series A), No.5, pp. 528-536, 1989

[122] Wu X., Shen J., and Chen X., CMOS multivalued flip-flops based on new presetting scheme

and transmission function theory, Proceedings of International Workshop on Spectral Tech­

nique, Beijing, pp. 74-77, 1994

[123] Wu X., Chen B. and Pedram M., Power estimation in binary CMOS circuits based on

multiple-valued logic, Journal of Multiple Valued Logic, Gordon and Breach Publishing

Group, Vol. 7, No. 3-4, pp. 195-211, 2001

[124] Xia Y. and Almaini A. E. A., Genetic algorithm based state assignment for power and area

optimisation, IEE Proc.-Comput. Digit. Tech., Vol. 149, No.4, 128-133, 2002

[125] Xia Y. and Almaini A. E. A., Differential CMOS edge-triggered flip-flop with clock-gating,

Electronics Letters, Vol. 38, No.1, pp. 9-11, 2002

[126] Xia Y. and Almaini A. E. A. , Best polarity for low power XOR gate decomposition,

Proceedings of Euromicro Symposium on Digital System Design, Dortmund, Germany, pp.

53-59, Sept. 2002

BIBLIOGRAPHY 157

[127] Xia Y., Almaini A.E.A. and Wu X., Power minimization of FPRM function on polarity

conversion, Journal of Computer Science Technology (Accepted)

[128] Xia Y., Almaini A.E.A., Area and power optimization of FPRM function based circuits,

IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, May 25-28,

2003 (Accepted)

[129] Yang S., Logic synthesis and optimization benchmarks user guide, Microelectronics Center

of North Carolina, 1991

[130] Yim J. and Kyung C., Datapath layout optimization using genetic algorithm and simulated

annealing, lEE Proc.-Comput. Digit. Tech., Vol. 145, No.2, pp.135-141, 1998

[131] Zhou H. and Wong D. F., Optimal low power XOR gate decomposition, Design Automation

Conference, Bergen, Norway, pp.104-107, Aug. 2000

[132] Zhuang N. and Wu H., Novel ternary JKL flip-flops, Electronics Letters, Vol. 26, pp.

1145-1146, 1990

[133] Zukeran, C., et aI, 1985, Design of new low-power quaternary CMOS logic circuits based on

multiple ion implants, IEEE International Symposium on Multiple-Valued Logic, Kingston,

pp. 84-90, 1985

Disk Containing the Software
The attached floppy disk contains the programs developed in the previous chapters.

• GA based FSM low power state assignment: Shell script file and C source files

• GA based FSM power and area optimisation: Shell script file and C source files

• Low power XOR gate decomposition: C source files

• FPRM function power optimisation: FPRM function power minimisation; FPRM function

power and area optimisation

158

	251916_0001
	251916_0002
	251916_0003
	251916_0004
	251916_0005
	251916_0006
	251916_0007
	251916_0008
	251916_0009
	251916_0010
	251916_0011
	251916_0012
	251916_0013
	251916_0014
	251916_0015
	251916_0016
	251916_0017
	251916_0018
	251916_0019
	251916_0020
	251916_0021
	251916_0022
	251916_0023
	251916_0024
	251916_0025
	251916_0026
	251916_0027
	251916_0028
	251916_0029
	251916_0030
	251916_0031
	251916_0032
	251916_0033
	251916_0034
	251916_0035
	251916_0036
	251916_0037
	251916_0038
	251916_0039
	251916_0040
	251916_0041
	251916_0042
	251916_0043
	251916_0044
	251916_0045
	251916_0046
	251916_0047
	251916_0048
	251916_0049
	251916_0050
	251916_0051
	251916_0052
	251916_0053
	251916_0054
	251916_0055
	251916_0056
	251916_0057
	251916_0058
	251916_0059
	251916_0060
	251916_0061
	251916_0062
	251916_0063
	251916_0064
	251916_0065
	251916_0066
	251916_0067
	251916_0068
	251916_0069
	251916_0070
	251916_0071
	251916_0072
	251916_0073
	251916_0074
	251916_0075
	251916_0076
	251916_0077
	251916_0078
	251916_0079
	251916_0080
	251916_0081
	251916_0082
	251916_0083
	251916_0084
	251916_0085
	251916_0086
	251916_0087
	251916_0088
	251916_0089
	251916_0090
	251916_0091
	251916_0092
	251916_0093
	251916_0094
	251916_0095
	251916_0096
	251916_0097
	251916_0098
	251916_0099
	251916_0100
	251916_0101
	251916_0102
	251916_0103
	251916_0104
	251916_0105
	251916_0106
	251916_0107
	251916_0108
	251916_0109
	251916_0110
	251916_0111
	251916_0112
	251916_0113
	251916_0114
	251916_0115
	251916_0116
	251916_0117
	251916_0118
	251916_0119
	251916_0120
	251916_0121
	251916_0122
	251916_0123
	251916_0124
	251916_0125
	251916_0126
	251916_0127
	251916_0128
	251916_0129
	251916_0130
	251916_0131
	251916_0132
	251916_0133
	251916_0134
	251916_0135
	251916_0136
	251916_0137
	251916_0138
	251916_0139
	251916_0140
	251916_0141
	251916_0142
	251916_0143
	251916_0144
	251916_0145
	251916_0146
	251916_0147
	251916_0148
	251916_0149
	251916_0150
	251916_0151
	251916_0152
	251916_0153
	251916_0154
	251916_0155
	251916_0156
	251916_0157
	251916_0158
	251916_0159
	251916_0160
	251916_0161
	251916_0162
	251916_0163
	251916_0164
	251916_0165
	251916_0166
	251916_0167
	251916_0168
	251916_0169
	251916_0170
	251916_0171
	251916_0172
	251916_0173
	251916_0174

