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Abstract 
With the rapid increase in the density and the size of chips and systems, area and power dissi­

pation become critical concern in Very Large Scale Integrated (VLSI) circuit design. Low power 

design techniques are essential for today's VLSI industry. The history of symbolic logic and some 

typical techniques for finite state machine (FSM) logic synthesis are reviewed. 

The state assignment is used to optimize area and power dissipation for FSMs. Two cost 

functions, targeting area and power, are presented. The Genetic Algorithm (GA) is used to search 

for a good state assignment to minimize the cost functions. The algorithm has been implemented 

in C. The program can produce better results than NOVA, which is integrated into SIS by DC 

Berkeley, and other publications both in area and power tested by MCNC benchmarks. 

Flip-flops are the core components of FSMs. The reduction of power dissipation from flip-flops 

can save power for digital systems significantly. Three new kinds of flip-flops, called differential 

CMOS single edge-triggered flip-flop with clock gating, double edge-triggered and multiple valued 

flip-flops employing multiple valued clocks, are proposed. All circuits are simulated using PSpice. 

Most researchers have focused on developing low-power techniques in AND/OR or NAND 

& NOR based circuits. The low power techniques for AND /XOR based circuits are still in 

their early stage of development. To implement a complex function involving many inputs, 

a form of decomposition into smaller subfunctions is required such that the subfunctions fit 

into the primitive elements to be used in the implementation. Best polarity based XOR gate 

decomposition technique has been developed, which targets low power using Huffman algorithm. 

Compared to the published results, the proposed method shows considerable improvement in 

power dissipation. Further, Boolean functions can be expressed by Fixed Polarity Reed-Muller 

(FPRM) forms. Based on polarity transformation, an algorithm is developed and implemented 

in C language which can find the best polarity for power and area optimization. Benchmark 

examples of up to 21 inputs run on a personal computer are given. 
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Chapter 1 

Introd uction 

1.1 Motivations of low power design 

The genesis of low power microelectronics can be traced to the invention of the transistor in 1947. 

It was a breakthrough of virtually unparalleled importance in electronics to eliminate the crushing 

needs for several watts of heater power and several hundred volts of anode voltage in vacuum 

tubes in exchange for transistor operation in the tens of milliwatts range. The capability to fully 

utilize the low power assets of the transistor was provided by the invention of the integrated 

circuit in 1958. Since the first integrated circuit (IC) was developed by Jack Kilby in Texas 

Instruments and then became the first commercial IC by Fairchild Instruments in 1961, the IC 

technology has progressed greatly. The size and density of IC chips and systems are increasing 

as Gordon Moore, co-founder of Intel, predicted in 1960s that the number of transistors on an IC 

chip could be doubled every 12 to 18 months. This is well confirmed by the development trace 

of Intel microprocessors as shown in Fig. 1.1. 

The continuing increase in chip density and operating frequency have made power consump­

tion a major concern in very large scale integrated (VLSI) circuit design. For example, the PC 

chip from Motorola consumes 8.5W, the Pentium chip from Intel consumes 16W, and DEC's 

21164 (300MHz on a die area of 3cm2 ) consumes 50W! It is extrapolated that 10cm2 micropro­

cessor, clocked at 500MHz would consume 315 W in near future [83]. Unless power consumption 

is dramatically reduced the resulting heat will limit the feasible packing and performance of VLSI 

circuits and systems. 

1 



CHAPTER 1. INTRODUCTION 2 

Perhaps the primary driving factor for designing low power systems has been the remarkable 

success and growth of the class of portable personal computing devices and wireless communica-

tion systems which demand complex functionality and high speed communication. Probably no 

segment of the electronics industry has a growth potential as explosive as that of the personal 

digital assistant (PDA) which has been characterized as a combined pocket cellular phone, pager, 

e-mail terminal, fax, computer, calendar, address directory, notebook, etc. [96][69][26]. 

The market of portable applications is growing very rapidly. Fig. 1.2 shows the various PC 

percentages of the PC market in 1992 and 1998 [60]. In portable applications, average power 

consumption is a critical design constraint since it is related to the battery life time, size and 

weight [55][66]. The reason for this is illustrated with the simple example of a multi-media termi­

nal. The projected power for such a terminal, when implemented using off-the-shelf components 

not designed for low-power operation [95], is about 40W. With advanced Nickel-Metal-Hydride 

battery technologies yielding around 65 watt-hours/kilogram [56], this terminal would require an 

unacceptable 6 kilograms of batteries for 10 hours of operation between recharges. Even with new 
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CHAPTER 1. INTRODUCTION 3 

battery technologies, such as rechargeable Lithium Ion or Lithium Polymer cells, it is anticipated 

that the expected battery lifetime will increase to about 90-110 watt-hours/kilogram, which still 

leads to an unacceptable 3.6 to 4.4 kilograms of battery cells. Fig. 1.3 shows the battery capacity 

increasing over the last 30 years [56]. From Fig. 1.3, it can be observed that battery capacity has 

only improved with a factor 2 to 4 over the last 30 years while the computation power of digital 

IC's has increased by more than 4 orders of magnitude [51]. The gap is increasing with respect to 

power demand. In the absence of low power design techniques, the current and future portable 

devices will suffer from either very short battery life or unreasonably heavy battery pack. 

1992 PC Market 1998 P ( Mark et 

Mobile 

Dertop 70% Desktop 49% 

Figure 1.2: Market of portable applications is growing very rapidly 

These problems make it necessary to develop power aware VLSI design tools that help achieve 

low power in these systems. Indeed, the Semiconductor Industry Association has identified low­

power design techniques as a necessary technological need [93]. 

1.2 VLSI chip design approaches for low power 

1.2.1 Sources of power dissipation 

Since CMOS technology is predominant in the realization of today's IC and CMOS devices are 

intrinsically low power consuming, all circuits for the rest of this thesis refer to CMOS circuits. 

It is judicious to briefly discuss the mechanisms for power consumption in CMOS circuits. Take 

the inverter in Fig. 1.4 for example. The power dissipation for the inverter consists of three 
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major sources which are expressed in the following equation: 

Ptotal = Pleakage + PshorLcurrent + Pswitching (1.1) 

The first term, Pleakage, can arise from substrate injection and subthreshold effects and is pri­

marily determined by fabrication technology considerations [24]. The second term, PshorLcurrent, 

is due to the direct-path short circuit current, which arises when both the NMOS and PMOS 

transistors are simultaneously active, conducting current directly from supply to ground [118]. 

The third term, Pswitching, represents the switching power dissipation or dynamic power dissipa­

tion. This is the result of capacitance charging and discharging in the circuit. The situation is 

modeled in Fig.1.4 where the parasitic capacitances are lumped at the output in the capacitor 

CL. Consider the behavior of the circuit over one full cycle of operation with the input voltage 

going from Vdd to ground and back to Vdd' When the input changes from Vdd to ground, the 

:2 40 
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Figure 1.3: Battery capacity during the past 30 years 



CHAPTER 1. INTRODUCTION 5 

capacitor CL is charged. This charging process draws an energy equal to CL Vld from the power 

supply and ~CL Vld is stored in the capacitor CL because at the end of the transition the output 

capacitor CL is charged to Vdd. Hence, ~CL Vld is dissipated in the PMOS network. When the 

input changes from ground to Vdd, the capacitor CL is discharged. And ~CL Vld is dissipated in 

the NMOS network. Hence, for a full cycle, CL Vld from the power supply is consumed. This 

leads to the conclusion that CMOS power consumption depends on the switching activity of 

the signals involved. If a represents the signal activity, the expected number of zero to one 

transitions per data cycle, and f is the average data-rate, which may be the clock frequency in 

a synchronous system, then the effective frequency of nodal charging is given by the product of 

the activity and the data rate: af. Hence, the average CMOS power consumption is given by 

equation 1.2. 

1 2 
Pswitching = 2aCL Vddf (1.2) 

Vdd 

SL 

Figure 1.4: Charging and discharging for an inverter 

For a well designed circuit, the first two terms in equation 1.1 can be kept below 20% of 

the total power [14]. Hence, in CMOS circuits, Pswitching is by far the most important. From 

equation 1.2, Pswitching is proportional to the switching activity, capacitance loading, data-rate 

(in synchronous systems fmight correspond to the clock frequency), and the square ofthe supply 

voltage. 
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1.2.2 Design approaches of low power VLSI systems 

From the above analysis of power dissipation sources, the vast majority of power reduction 

techniques concentrate on minimizing the dynamic power dissipation by reducing one or more 

factors on the right hand side of equation 1.2 . 

• Voltage scaling 

One of the most obvious ways to reduce power is to reduce the power supply voltage of circuits 

because the dynamic power is proportional to the square of the supply voltage. Power savings 

are relatively independent of circuit function and circuit technology. Hence, it is applicable at 

different stages of the design development. Some methodologies have been proposed [24][25]. 

However, with the scaling of supply voltage and device dimensions, the transistor threshold 

voltage also has to be scaled to achieve the required performance. Unfortunately, such scaling 

does not come for free and can increase the leakage current. The leakage current occurs due 

to carrier diffusion between the source and the drain when the gate-source voltage, Vgs , has 

exceeded the weak inversion point, but is still below the threshold voltage 11th, where carrier 

drift is dominant. The current in the subthreshold region is given by equation 1.3[24] 

v;,s - 11th Vds 
Isub = kexp( n 111 f"\ )(1 - exp( - VT)) (1.3) 

Where k is a function of the technology, VT is the thermal voltage (KT / q), 11th is the threshold 

voltage and S is the subthreshold swing. 

Due to the exponential nature of subthreshold leakage current with 11th, subthreshold current 

can no longer be ignored. The lower the 11th is, the higher the subthreshold leakage current will 

be. On the other hand, delay through a logic block is proportional to Vdd/ (Vdd - 1Ith)2 where 

Vdd is the voltage of the power supply [24][25]. Lower 11th means longer delay. To compromise 

the two, it is suggested to use high supply voltage in the critical paths of a design to achieve 

the required performance while the off-critical paths of the design use lower supply voltage to 

achieve low-power dissipation [53][28]. It is also clear from the above discussion that reducing 
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the threshold voltage allows the supply voltage to be scaled down to lower Pswitching without loss 

in speed. However, the limit on threshold voltage scaling is imposed by the noise margin and the 

increase of sub-threshold current. Scaling down threshold voltage trades off between dynamic 

power (Pswitching) and static power (PLeakage)' In considering logic and memory circuit behavior, 

Vdd = 1.0V appears to be a good compromise for small dynamic and static power dissipation 

[89]. A genius approach is architecture-driven supply voltage scaling based strategy which is to 

modify the architecture of the system so as to make it faster and reduce Vdd so as to restore 

the original speed resulting in reduced power consumption [24][25]. However, area overhead is 

required. 

• Frequency reduction 

The second obvious way to reduce power is to decrease the clock frequency f. Decreasing f 

causes a proportional decrease in power dissipation. However, slowing the clock will result in 

a slower computation. The power consumption over a given period of time is reduced, but the 

total amount of useful work is reduced as well. As a result, the energy dissipated to complete the 

task has not changed. This can be illustrated by an example. Suppose the system is clocked with 

a clock period TI , and the task takes N clock cycles to complete. During each cycle, the system 

dissipates an average power Pl. If the frequency is decreased by half, the power dissipation 

over the original time period will be P2 = ~ PI because average power is directly proportional 

to the clock frequency. However, it now takes a total time of 2NTI to complete the task. As a 

consequence, the average energy consumed by the system is E = PINTI in both cases. However, 

this observation still incites some genius low power designs. One of them is double edge-triggered 

flip-flops targeting low power [49][19][68][102], which enables a halving of the clock frequency and 

hence reduces power dissipation on the clock line for a given data rate compared with the single 

edge-triggered flip-flops . 

• Effective capacitance reduction 

Effective capacitance, CEff' is defined as CEff = aCL. Design and synthesis techniques have 

been developed to reduce both the capacitive load, CL, and the switching activity, a, at all stages 
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ofthe design process[37][45][65] [27][61] [78] [88][108][131]. It is obvious that once a technology and 

a supply voltage have been set, power savings come from the careful minimization of the effective 

capacitance. There are many effective applications of this idea. Some examples are shown as 

follows. 

1. Dynamic power management: The sleep modes of operation in portable computers [37][45] 

are examples of this approach to reduce useless switching activity. Power is reduced by 

stopping the clock or shutting down the power supply of parts of the system that are not 

required to carry out the current task. 

2. Algorithmic transformations for signal processing tasks [65][27]: Reducing the number of 

operations needed to carry out a given computation may not be always useful in terms of 

performance, but it is often useful for reducing power. 

3. Communication protocol design [61]: Communication protocols can be modified to improve 

the activity patterns. 

4. Memory allocation [78] and bus encoding [98] techniques to minimize the power dissipated 

in memories and system busses. 

5. Logic optimization [88][108][114]: Area minimization can obtain global power savings be­

cause area is directly related to the capacitive load. Logic optimization can directly target 

power optimization. 

6. Circuit topology [131][74]: This method aims to change circuit topology to minimize the 

switching activity of a circuit so that the effective capacitance is minimized. 

• Other approaches 

A revolutionary approach for low power design is called energy recovery jrecycle techniques, which 

are addressed in [11][34]. Scaling down feature size is an important issue for high-performance 

and high-density VLSI circuits. However, some second order effects become serious and are 

becoming a major challenge in deep submicrometer devices and circuits. Corresponding low 

power techniques are being explored [52]. 
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1.3 Low power design flow 

Designing for low power is at least as difficult as designing for maximum speed or minimum 

area. Power dissipation is a pattern-dependent cost function, unlike area, which is constant with 

respect to input patterns. Since power dissipation becomes increasingly important as a design 

evaluation metric, a new generation of computer-aided design tools targeting power minimization 

is urgently needed by designers. In the last few years, significant research and development efforts 

have been undertaken in academia and industry targeting the creation of a new generation of 

computer-aided design (CAD) tools for low power. As a result, hundreds of papers have been 

published on the subject [88][104][12][108][77]. The wide range of ECAD tools for low power fall 

into four major categories based on the four levels, which are behavioral, architectural (Register 

Transfer/RT), logic and circuit level [89]. Countless commercial and academic design synthesis 

tools are available and some of them are shown in Table 1.1. It can be seen that VHDL [81] and 

Verilog [103] are the most popular hardware description languages (HDLs). 

Table 1.1: Some commercial and academic low power design tools 
Organization System Description Input Environment 
Synopsys PowerMill Circuit Simula- SPICE, Verilog Unix 

tion 
Synopsys Power RTL Power Esti- Gate Netlist, Unix 

Compiler mati on Switching Activ-
ity, Constraints 

Synopsys PowerHogs RTL Power Opti- Verilog/VHDL Unix 
mization 

Cadence PowerSim Gate and Logic Verilog Unix 
Level Estimation 

TransEDA PowerSure HDL/RTL Power Verilog/VHDL Unix 
Estimation 

Mentor Lsim Power Circuit level Sim- SPICE Workstation 
Analyst ulation 

Veritools Power-Tool Logic level Power Verilog Win95, 
Estimation WinNT, 

Sun4.x 
Berkeley SIS Logic Level, RTL Gate Netlist Win95, 
University Power Estimation Unix 

A typical synthesis based VLSI low power design flow is shown in Fig. 1.5[60]. 
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It can be seen from Fig. 1.5 that three steps are included in low power synthesis at each 

design level: 

1. Estimate power according to unoptimized description. The methods of power estimation 

are different from level to level. This process is called power analysis. 

2. Optimize the description through various available procedures by the criteria of power 

dissipation, area, speed or testability. This important process is called optimization. 

RTL 
Mapping 

BB 
EJEJ 

trnnsfommtion 

Behavioral 
Power Analysis 

Logic Synthesis 
and 

Optimization 

Tee-Mapping 
and 

Circuit-level 
Optimization 

Logic-level 
Power Analysis 

Circuit-level 
Power Analysis 

Figure 1.5: Low power design flow 
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3. Produce power optimization description. 

Step 1 and Step 2 are very important for low power design. Accurate power estimation tools 

must provide feedback on the quality of each design choice. In the last ten years, at each level of 

abstraction, various design alternatives have been explored. The availability of a power estimator 

for each level of abstraction is fundamental in a low-power design flow. To avoid costly re-design 

steps, it is mandatory to be able to optimize the power dissipation during the early stages of the 

design process. 

1.4 Low power digital design techniques 

Low power digital design techniques cover a broad range of subjects. In this thesis, three topics 

are chosen to discuss. 

1.4.1 State assignment for low power Finite State Machines (FSMs) 

Most of VLSI circuits are sequential circuits. A general model of sequential circuit structures is 

called Finite State Machine (FSM), which is composed of two sections: Combinational section and 

register section. Register section usually is composed of flip-flops. Compared to combinational 

circuits, there are two working characteristics: 

• An FSM has flip-flops to store state signals. 

• An FSM has clock signals to synchronously trigger fiip-flops and to realize the synchronous 

switching of state variables. 

Thereby, its synthesis procedure is slightly different from combinational circuits. FSM synthesis 

can be divided into four stages[15]: 

• Behavior synthesis: Obtain representation of machine behavior expressed as State Transi­

tion Tables (STTs) or State Transition Graphs (STGs). 

• State assignment: Assign unique binary code to the symbolic states of an FSM and obtain 

a description of the circuit produced in terms of Boolean functions. 
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• Logic synthesis: Optimize Boolean functions with respect to the original cost metric. 

• Library binding: Map the optimization Boolean functions to components from a standard 

gate library and produce a gate-level description. 

State assignment is the critical step in low power design of FSMs and is one subject of this 

thesis. It has an important role in determining the number of nodes required to implement the 

output and next logic functions. The reduction of the number of nodes promises global power 

savings. On the other hand, state assignment directly determines the switching activities of the 

state variables and the interior variables in the combinational circuit. 

The contribution of this work is in the formulation of the problem that links switching 

activities of an FSM to its power dissipation and in the study of Genetic Algorithms (GAs) for 

the search of optimal solutions to the problem of finding a state assignment that gives low power 

dissipation. Only minimizing switching activities on the state lines in the FSM does not guarantee 

the reduction of the total power dissipation because the power consumed in the combinational 

section is not taken into account. Instead, more accurate cost functions which take that of the 

combinational section into account have been developed. A methodology and a software package 

that combines ESPRESSO[23] are developed. Test results on MCNC benchmark circuits show 

that our package performs significantly better than other synthesis tools [94][111] in the majority 

of cases. 

1.4.2 Low power flip-flop design 

Flip-flops are the core components of FSMs. Reducing power dissipation of flip-flops can result 

in significant power reduction of FSMs. Traditional flip-flops are single-edge triggered flip-flops 

(SETFF), which are sensitive to the rising or falling edge of the clock. Narrow pulse sampling 

based single edge-triggered flip-flops are implemented using a clock chain to generate a series 

of narrow pulses. It suffers from significant redundant transitions in a long clock chain, which 

results in redundant dynamic power dissipation. To solve this problem, a clock-gating scheme is 

proposed to eliminate the redundant transitions and a low power single edge-triggered flip-flop is 

presented. On the other hand, for single edge-triggered flip-flops, half of the clock's transitions 
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are redundant, which results in wasteful dynamic power dissipation. To improve this, double­

edge triggered flip-flops (DETFFs) are proposed, which utilize both transition edges of the clock, 

achieving power savings. In this thesis, a low power SETFF is proposed, in which clock-gating 

techniques are used to reduce the redundant transitions of clock signals for saving power and the 

structure of low power DETFFs are explored and multiple valued flip-flops are investigated to 

explore a novel solution of low power flip-flop design. 

1.4.3 Low power logic synthesis for FPRM functions 

Any n-variable Boolean function! can be expressed by Shannon expansion based on AND/OR 

operation as follows. 

!(Xn-1Xn-2'" xo) = XdXi=O + XdXi=l (1.4) 

where 0 ~ i ~ n - 1, and !x;=o and !x;=l are the cofactors of ! with respect to Xi. Corre­

spondingly, a broad range of logic minimizers are available for SOP forms such as ESPRESSO 

[23] and SIS[94]. 

Alternatively, any Boolean function can be represented by AND /XOR operations, which is 

called Reed-Muller expansion. 

!(Xn -1Xn-2'" xo) = XdXi=O E9 XdXi=l (1.5) 

!(Xn-1Xn -2' .. xo) = !Xi=O E9 Xi (fx;=o E9 !Xi=l) (1.6) 

!(Xn-1Xn -2'" XO) = !Xi=l E9 Xi(fxi E9 !xi=d (1.7) 
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In logic synthesis, Reed-Muller logic methods are important alternatives to the traditional 

SOP approaches to implement Boolean functions. Reed-Muller realizations have some attractive 

advantages especially for functions that do not produce efficient solutions using SOP techniques. 

In addition, XOR based circuits have great advantage of easy testability. However, due to 

the lack of efficient conversion tools and Reed-Muller logic optimizer, applications of Reed­

Muller implementations have not become popular. With the development of FPGAs, XOR gates 

are already manufactured as basic cell components, which encourages the research on Reed­

Muller logic optimization. There has been extensive research on Reed-Muller methods targeting 

area minimization [4][6][8][79] [64][114]. However, the research on low power Reed-Muller logic 

implementations is still in their early stage of development. 

XOR Gate decomposition is the step before technology mapping, which decompose a multi 

input XOR gate into a two input XOR gate tree. Low power XOR gate decomposition is one 

solution of low power Reed-Muller logic implementations. Based on polarity conversion, a novel 

XOR gate decomposition targeting low power is proposed. 

Any Boolean function can be represented canonically by a Fixed Polarity Reed-Muller (FPRM) 

form. Minimization of FPRM functions promises global power savings. A power estimation frame 

for FPRM functions is proposed. Based on polarity conversion, a power minimization algorithm 

is developed. 

1.5 Outline 

This thesis covers three main parts: Low power state assignment for FSMs; low power flip­

flop design and power optimization for FPRM functions. The conventional low power design 

techniques are reviewed in chapter 2. The first part investigates low power state assignment for 

FSMs. The problem is formulated in chapter 3. Two cost functions are proposed, which take the 

power of the combinational section into account. Genetic Algorithm combined with ESPRESSO 

is used to search the optimal solution. The second part is for low power design of flip-flops. A 

new type of low power single-edge triggered flip-flop is proposed in chapter 4 while double-edge 

triggered flip-flops are presented in chapter 5. A multiple valued approach to design low power 
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flip-flops is explored in chapter 6. The third part deals with Reed-Muller logic which is based 

on AND /XOR operations. Based on polarity searching, low power XOR gate decomposition 

is stated in chapter 7 while low power FPRM function minimization is described in chapter 

8. Finally, the main improvements and contributions are summarized and some future work is 

suggested in the "conclusions and future work". 



Chapter 2 

Conventional low power design 

techniques 

2.1 Low power design approaches of FSMs 

Most of VLSI circuits are sequential ones. A sequential function can be represented by several 

models [50]. Usually, it is modeled by a finite state machine (FSM) [67]. 

2.1.1 Finite state machines and their representations 

Low power design of FSMs involves tackling the problem of the power estimation method and 

power optimization strategy. They can be done at each of four design levels [15]. 

An FSM is defined by the following standard definition. 

Definition 2.1. An FSM is characterized by a 5-tuple (X, Y, S, A, ry) where X, Y, S are the 

sets of primary inputs, primary outputs and internal states and A, ry are the output and next 

state functions, respectively. The FSM is represented by a state transition table (STT) M = 

{mdml = (Xl, (Sdl, (Si)I,YI),l E {O,1, .... L -1}), here, L is the number of product terms, Xl is 

the primary input, Si, si E S are the present state and the next state and YI is the corresponding 

output. Each entry ml E M is a symbolic implicant of the FSM. 

FSMs are categorized in two classes [14]: 

16 
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Definition 2.2. A Moore machine is an FSM where .\(x, s) = .\(s), i.e., the outputs do not 

depend directly on the input value, but they depend only on the state. A Mealy machine is an 

FSM for which this property does not hold. 

FSMs can be incompletely specified. An incompletely specified FSM is one where 'f](x, s) 

and / or .\(x, s) are incompletely specified Boolean functions. An FSM can be represented by 

a graph or, equivalently, by a table. The two representations are called state transition graph 

(STG) and state transition table (STT), respectively. The states of the STG are labeled with 

the unique symbolic state name. The edges are labelled with the input and output values. The 

state table is simply the list of edges of the STG. 

Both STG and STT completely define the input-output behavior of an FSM, but they do not 

provide any information about the circuit implementation. Hence, STG and STT are behavioral 

representations of the FSM. In order to obtain a representation which is closer to the circuit 

implementation, the concept of state encoding is needed to be introduced. 

Definition 2.3. A state encoding is a one-to-one mapping from S to B N• (Boolean space), i.e., 

a function E: S --r B N •. The number of state variables is indicated by Ns and Ns ~ rlo921S11. 
Once Ns and E have been specified, the state of an FSM is completely expressed by Ns binary 

variables called state variables. Once the state encoding has been specified, the structural model 

of an FSM is shown in Fig. 2.1. The representation of Fig. 2.1 is structural, because it refers to 

a particular circuit structure implementing the FSM. 

Primar~ 
inputs ~I Combinational 

logic 

Present -s tate 

CP ____ -' 

Primary 
outputs 

Next-state 
inputs 

Figure 2.1: FSM structure model 

The structural representation is useful since it may be much more compact than the state-
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based representations like STT and STG. However, the main limit of structural representations 

is that they are not unique. 

Binary decision diagrams (BDDs) are a data structure developed for the compact represen­

tation of large Boolean functions. Several variants of BDDs have been developed by different 

groups of researchers [22][20]. It has been shown that the Reduced Ordered BDD (ROBDD) is a 

canonical form, i.e., two functions are equivalent if and only if they have the same BDD. There 

are some distinct advantages to represent an FSM by BDD [39]. 

2.1.2 FSM power estimation 

The process of IC design involves a transformation of a high level behavioral specification to a 

lower level architectural (or RTL) specification, and then to a lower gate-level specification, and 

so on. If one were to get to the transistor or gate level design and only then discover that the 

power consumption is unacceptably high, it would be too expensive to make design changes. The 

circuit may require significant rework, involving perhaps changes to the overall architecture of 

the chip. For this reason, it would be very beneficial to have a power estimation capability at 

a high level of abstraction. However, estimation from a high level of abstraction is potentially 

inaccurate, while low-level power estimation can be very accurate. Therefore, a power estimation 

capability is needed at every level of abstraction in order to check the design at every step . 

• SPICE 

The acronym SPICE stands for Simulation Program with Integrated Circuit Emphasis [86]. It 

is a general-purpose circuit program that simulates electronic circuits and can perform various 

analysis of electronic circuits: the operating points of transistors, a time-domain response, a 

small-signal frequency response, and so on. SPICE contains models for common circuit elements, 

active as well as passive, and it is capable of simulating most electronic circuits. It is a versatile 

program and is widely used by industries and universities. The main frame versions are HSpice 

(Meta-Software), PSpice (MicrSim), AccuSim (Mentor Graphics) and Cadence-SPICE (Cadence 

Design). The PC-version, PSpice (MicroSim), is also available. PSpice allows various types of 

analysis, which include DC Sweep, Transient Analysis and AC Analysis. For the average power 
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estimation of a circuit, the library function avg(i x v) can be called where i is the node current 

and v is node voltage. However, the power dissipation is input pattern-dependent. Hence, the 

utility of straightforward simulation can be limited because it is time consuming and can only 

work at transistor level. 

• Monte-Carlo-based power estimation 

The basic idea of Monte Carlo methods for estimating activities of individual nodes is to simulate 

a circuit by applying random-pattern inputs. The convergence of simulation can be obtained 

when the activities of individual nodes satisfy some stopping criteria. The procedure is outlined 

in Fig. 2.2 . The detail is discussed in [73]. 

Generate a Random Circuit State 

Generate Inputs (a,P) and Sampl 

No 

Figure 2.2: Monte-Carlo-based technique flow chart 

• Encoding based power estimation 

This targets the STT or STG level of abstraction. At the STT or STG level of abstraction, 

nothing has been decided about the structure of the combinational logic implementing the next 

state and output functions. The state assignment algorithm can exploit degrees of freedom that 
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are lost at successive phases and produce an encoded state transition table that is an effective 

starting point for further power optimizations of the combinational logic. Some power estimation 

methods have been developed at this level. 

Power is a strongly pattern-dependent cost function, since it depends on the switching activity 

of a circuit, which in turn depends on the input patterns applied to the circuit. Hence, some 

information about the typical input patterns applied to a circuit needs to be specified to estimate 

its power dissipation. The most straightforward way to provide information about input patterns 

is to actually provide a long input stream representing a typical usage pattern together with the 

specification of the circuit. But it suffers from two drawbacks that the input traces can be 

very large and cumbersome to manage and in many cases only incomplete information about 

the environment may be available. Hence, instead, input signals are described by input signal 

probabilities [89]. 

Definition 2.4. Signal probability: Let I(t), t E (-00, +00), be a stochastic process that takes 

the values of logical 0 or logical 1, transitioning from one to the other at random times. The 

signal probability of signal I(t) is given by 

J
+T 

p(I) = limT-too I(t)dt 
-T 

Definition 2.5. Signal Activity: The signal activity of a logic signal I(t) is given by 

nI(T) 
A(I) = limT-too-y;-

(2.1) 

(2.2) 

where nI(t) is the number of transitions of I(t) in the time interval between -T /2 and +T /2. 

More detail state signal probability (briefly state probability) calculation is discussed in [89]. 

Two methods are developed to calculate the state probability: Explicit methods and ADD based 

methods. 
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Explicit methods use iterative method [44] or Gaussian elimination method [119] to compute 

the state probabilities. The main limitation of this method is that it is not applicable to very 

large size FSMs for which the state set is large enough to make even the storage of matrix P a 

formidable task. 

ADD based methods use Algebraic decision diagrams (ADDs) data structure to compute 

the state probabilities to avoid manipulating the transition probability matrix. ADDs [13] are 

"BDD-like" data structure. 

The main difference is that an ADD has multiple terminals while a BDD only has two 

terminals: 0 and 1. ADD based methods allow the manipulation of very large systems by 

representing the transition probability matrix with an ADD. 

The STG of a finite-state machine is implicitly represented by a BDD ( or, equivalently, by a 

1/0-ADD) of its transition relation [30]. The transition relation is a Boolean function T{x, s, s'). 

The support of the transition relation consists of the input variables, the state variables and the 

next state variables. T has value 1 when the STG of the machine has a transition from state 

s to state s' with input x, zero otherwise. Similarly, the input probabilities can be represented 

by an ADD. The ADD PI{x) is extracted from the array of input probabilities with the simple 

formula PI{x) = II~(/PIi{Xi) where each PIi{Xi) is a single-node ADD with two leaves with 

value Pi and 1 - Pi. 

Given T and PI, the implicit representation of matrix P can be obtained by the following 

symbolic formula: 

P{x, s) = PI{x) . LT{x, s, s') (2.3) 
s' 

The ADD of P can be exponentially smaller than the traditional matrix representation. 

Example 2.1. The STG of an FSM is given in Fig. 2.3{a) with input, output and conditional 

transition probability at each edge. The transition relation T{x, s, s') is shown in Fig. 2.3{b) 

in the tabular format. The ADD of T is shown in Fig. 2.3{c). The ADD of the conditional 

input probability is shown in Fig. 2.3{ d). The result of the conditional transition probabilities 
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is shown in Fig. 2.3{e). 

After computed conditional transition probabilities, the state probabilities can be computed 

using the symbolic version of the power method[44]. The symbolic representation based on ADD 

becomes useful when the STG and the truth table of T are unmanageably large. 

s,x 

0 1 0 1 
s 

1/0 (0.8) I 1 0 1 0 

(a) (b) 

(c) (d) (e) 

Figure 2.3: Symbolic computation of the conditional transition probability matrix 

Based on conditional state transition probability and the state probability, the state transition 

probability can be calculated[89]. Because of no detail circuit structure available at this level, 

switching activity is used to measure the power dissipation [88][77][15][12][48][117]. Given the 

state encoding, each state is represented by binary code and Hamming distances can be calculated 

for each state transition. Then, the switching activity of an FSM can be computed based on the 

state transition probability and Hamming distances . 

• Information-theory-based approaches 
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Recently, information theory has been used quite effectively to estimate power at the RT (reg­

ister transfer) level of design abstraction [75][62]. The RT level abstraction assumes that the 

Boolean functionality of the circuit is known while the details of the implementation are un­

known. Information-theoretic approaches depend on information-theoretic measures of activity 

(for example, entropy) to obtain quick power estimate. 

Entropy characterizes the randomness or uncertainty of a sequence of applied vectors and 

thus is intuitively related to switching activity, that is , if the signal switching is high, it is likely 

that the bit sequence is random, resulting in high entropy. Suppose the sequence contains t 

distinct vectors and let Pi denote the occurrence probability of any vector v in the sequence. 

Obviously, 2:;=1 Pi = 1. The entropy of the sequence is given by 

t 

h = - I:: Pilog2Pi 
i=l 

(2.4) 

This equation is only an upper bound on the exact entropy, since the bits may be depended. 

This upper bound expression is, however, the one that is used for power estimation purpose. 

Furthermore, in [75], it has been shown that, under the temporal independence assumption, the 

average switching activity of a bit is upper bounded by one-half of its entropy. Based on entropy, 

the methods to estimate the low bound and high bound of an FSM switching activity have been 

presented in [109][63] . 

• Power estimation included glitching 

In the combinational section of the FSM, glitching power is inevitable. It has been observed that 

this additional power dissipation is typically 20% of the total power, but can be as high as 200% 

of the total power in some cases such as in a multiplier[123]. There are some publications on the 

power estimation included glitching for FSMs [38][84][123]. Unit delay and general delay models 

are proposed to estimate the glitching included power for circuits [42]. However, overestimation of 

the power dissipation is still possible under unit delay model. Furthermore, multiple-option delay 

models in a tool are not so convenient in practical applications. Monte-Carlo-Based approach 

can estimate the exact glitching included power dissipation provided exact signal probabilities 
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and activities of primary inputs are known. However, accurate signal probability or activity 

values for primary inputs may not often be available. Since power dissipation strongly depends 

on the input signal properties, uncertainties in specifications of input signal properties make the 

estimation process difficult[73]. Hence, more work needs to be done. 

2.1.3 FSM power optimization 

Different power optimization strategies have been applied at the different design levels. Here, 

some important logic synthesis transformations will be discussed. Sequential logic optimization 

methods work at two levels of abstraction, namely the State Transition Graph level and at the 

logic-gate level. Several approaches have been developed in these levels as follows. 

• State assignment 

State assignment and the resulting combinational logic synthesis have been conventionally tar­

geted at reducing area and critical path delay [67][111][33]. For the optimization of power dis­

sipation, these methods have to be modified to target a power cost function, namely, weighted 

switching activity. State assignment significantly affects circuit power dissipation because dif­

ferent state assignments have different switching activities. Given an FSM, the state transition 

probabilities between any two states can be obtained [15][48]. A state transition in an FSM 

could be caused by single or multiple bit transitions. Therefore, the switching activity could be 

minimized if states associated with state transitions that appear most frequently are assigned 

codes that are close to each other. Several methods have been proposed for power-oriented state 

assignment [88][77][15][48], which are mainly based on the minimal average Hamming distance. 

Methods to encode State Transition Graphs to produce two-level and multilevel implementations 

with minimal power are described in [117] and [108]. A method to re-encode logic-level sequen­

tial circuits to minimize power dissipation is presented in [43]. The problem of finding the state 

assignment for the power optimization is computationally hard. There is no known method of 

predicting the optimum assignment for the states though many algorithms have been proposed 

[108] [77] [15] [48] [117]. 

• Clock-gating 
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This scheme is based on the observation that during the operation of an FSM there are conditions 

such that the next state and the output do not change (i.e., the machine is internally idle). 

Therefore, clocking the FSM only wastes power in the combinational logic and in the registers in 

this case. If the idle condition of the machine can be detected, the clock can be stopped until a 

useful transition must be performed and the clocking is resumed. Fig. 2.4{a) is an input latched 

FSM, which is different from the generic FSM structure in Fig. 2.1. Fig. 2.4{b) is a clock-gated 

FSM structure. Fa, activation function, is to selectively stop the local clock of the FSM when 

the FSM is internally idle. The block labeled "L" represents a latch, transparent when the CK is 

low. The presence of a gated clock has a two-fold advantage. First, when the clock is stopped, no 

power is consumed in the FSM combinational logic, because its inputs remain constant. Second, 

no power is consumed in the registers and the gated clock line. In an arbitrary sequential 

circuit, some parts of a circuit are not accessed in each clock cycle. A detailed discussion of this 

technique is given in [16]. However, for those which have no internal idle states, the limitation 

of this technique is obvious. To overcome this limitation, a new technique is presented in [90], 

which can create idle states so that clock-gating technique can be used to save power. If simple 

conditions that determine the inaction of particular registers can be determined, then power 

reduction can be obtained by gating the clocks of these parts [17]. An extension version of this 

technique is called precomputation technique which is presented in [2]. 

]N I FF 

CK 

(a) 

Combination 

Logic 

STATE 

OUT 

I • IFF 
]N 

Fa 

CK 

(b) 

Combination 

Logic 

STATE 

OUT 

Figure 2.4: FSM structure model (a) single-clock, flip-flop based FSM model; (b) clock-gating 
version 

• Partitioning 
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The fundamental intuition behind this technique is that a sequential circuit may be partitioned 

into a set of small interacting blocks. During operation, only one block is active at any given time 

and controls the input-output behavior. In the remaining blocks, the clock can be stopped and, 

consequently, the total power consumption is reduced. FSM partitioning has been extensively 

studied for several decades. Its theoretical foundations were laid down by Hartmanis and Stearns 

[46] in the sixties. More recent work [41] reported experimental results on the implementation of 

the partition procedures described in [46]. A different viewpoint on the problem was proposed 

in recent years by Ashar, Devadas and Newton [10] who presented numerous algorithms for the 

automatic partition of FSMs specified by an monolithic state transition graph (STG). However, 

all these techniques are for minimum-area implementation. Recently, partitioning techniques 

have been explored to reduce the power dissipation of FSMs. Chow et al. [29] proposed a 

low-power partition approach based on the relationship between state assignment and FSM 

partition that produced very promising results. Dasgupta et al [32] proposed an approach which 

is accomplished in two stages namely disjunctive partitioning and selective isolation encoding 

while Monteiro and Benini suggested approaches to combine partitioning technique with clock­

gating[71][18]. The principle behind this technique is to partition an FSM into number smaller 

interacting submachines such that only one submachine is active during any clock cycle. The 

rest of circuit comprising of the other submachines is turned off, thus avoiding unnecessary 

power-dissipating switching . 

• Retiming 

=Ore!. ~ R 
~ 
l 

I
CL 

(a) (b) 

Figure 2.5: Reducing the switching activity by inserting register 
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The transformation that repositions the registers of a design without modifying its external 

behavior is called retiming. Monteiro et al. [70] have pointed out that register positions can also 

affect power dissipation. Consider the simple example of a logic gate belonging to a synchronous 

circuit as in Fig. 2.5(a), and call CL the capacitance load driven by the output node of AND 

gate. In the case of CMOS technology, the power dissipated by AND gate is proportional to 

the product of the switching activity of the output node of the gate ag and the output load 

CL. Now consider the case in which a register R is connected to the output of AND gate. 

Let CR be the input capacitance of the register, and let aR be the switching activity of the 

register output [see Fig. 2.5(b)]. The total power dissipated by the new circuit is proportional to 

agCR + aRCL < agCL if both a g and CL are sufficiently high. Retiming repositions the flip-flops 

in a synchronous sequential circuit so that the spurious transitions at the inputs to the flip-flops 

can be filtered out by the clock as shown in Fig. 2.5. A retiming method that targets the power 

dissipation of a sequential circuits is described in [70]. 

2.2 Low power design of flip-flops 

It is found that although the power distribution of VLSI's differs from product to product a 

clock system and its logic part consume almost the same power in various VLSI chips and the 

clock system consumes 20%-45% of the total chip power. In the clock system power, 90% 

is consumed by the flip-flops themselves and the branches of the clock distribution network 

which directly drives the flip-flops [54]. Hence, low power design of flip-flops has attracted 

many researchers [49][19][68][102][54]. Based on logic families, flip-flops can be grouped into pass 

transistor based flip-flops[49][19], true single phase clocking (TSPC) based flip-flops, differential 

designs and clocked CMOS (C2 MOS) flip-flops. 

Low power design of flip-flops have been carried out along the following lines . 

• Reducing the number of transistors used in flip-flops [49] 

Reducing the number of transistors in flop-flops can reduce the internal nodes of signal transi­

tions. Hence, it can not only save area but also implement global power savings. 



CHAPTER 2. CONVENTIONAL LOW POWER DESIGN TECHNIQUES 28 

• Using double edges of clock signal to trigger flip-flops [110][49][19][102][58][40][1] 

Compared to single edge-triggered flip-flops, the clock frequency for double edge-triggered flip­

flops can be reduced into half and hence clock system power is reduced. There are two kinds of 

schemes to implement double edge-triggering. One is to use two latches or flip-flops to receive 

input signals at both clock phases alternatively and use a multiplexer at the output section to 

selectively output the stored signal[49][19][80]. This scheme often trades with the increasing 

transistor number compared to the single edge-triggered flip-flops. The other is narrow pulse­

triggered scheme. This kind of flip-flop is composed of two parts: a pulse generator and a 

latch (or a flip-flop cell). The pulse generator usually consists of a series of inverters (3 or 4 

inverters) while a latch (or a flip-flop cell) uses clock racing signals to generate a narrow pulse 

corresponding to each of clock transition edges[102][72]. A good performance comparison for 

variety double edge-triggered flip-flops is shown in [68]. 

• Reducing clock signal swing to achieve power improvement[54] 

This scheme is based on reducing clock signal swing to reduce the clock system power. However, 

if there are clocked pMOS transistors in the circuit, it will make power supply complicated to 

avoid static power dissipation increase. 

• Using clock gating techniques to deactivate clock signal so that power dissipation is reduced 

[100][101] 

Clock signal is the most active signal in a flip-flop if glitches are not taken into account. Clock 

signal triggers a flip-flop and also triggers most of internal nodes. However, if input signal is not 

changing or has low signal activity, the clock triggering is redundant. In these cases, if clock 

signal can be deactivated, the power can be saved. The principle behind clock gating techniques 

is based on this idea. 

2.3 Power optimization of XOR gate based circuits 

Any Boolean function can be expressed canonically based on AND and XOR operators using 

Reed-Muller (RM) expansions. Because Reed-Muller realizations have several attractive advan-
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tages especially for functions which do not produce efficient solutions using SOP techniques, 

research on Reed-Muller logic has attracted more and more investigators [4][64][114][8][115]. 

However, most of these work is on area minimization. The basic approaches to minimize area 

are: 

• Polarity optimization methods to find the best polarity with the least number of product 

terms or literals. 

To find the best polarity is computationally extensive in both space and time especially for large 

functions. Traditionally exhausting search is only suitable for the smaller functions which are 

less than 15 input variables[6][35][92]. However, progress has been made in [116], which can 

solve large functions which have up to 25 input variables. Several heuristic methods have been 

proposed which apply the simulated annealing [79] or genetic algorithm techniques[8][9]. 

• Decomposition 

Decomposition method is based on the concept of ~ majority cube [105]. The principle behind 

this method is that an m-dimensional cube covers at least ~ x 2m on-set 7r-terms. The method 

is further generalized to very large multiple output functions in [114]. 

• Mixed polarity minimization 

The product terms can be reduced with mixed polarity by combining the adjacent product terms 

such as using XOR-link operation[97]. 

Compared to the area minimization, little work has been presented on power optimization 

for XOR gate based circuits. 

In [131]' a multiple input XOR gate is decomposed into a tree of two input XOR gates. The 

aim is to search an optimized input signal combination which has minimum power dissipation. 

In [74], FPRM functions are implemented into XOR trees and AND trees and power dissipation 

is optimized with factorization and reduction rules. One limitation for these methods is that 

they only optimize power under the specific function form or specific polarity. 
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2.4 Genetic algorithm 
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In this section, some basic operations of Genetic Algorithms (GAs) are introduced, which will 

be further discussed in the next chapter. 

2.4.1 Overview 

First proposed by John Holland in 1975 [47] and then developed by his colleagues and students, 

genetic algorithms (GAs) have been an attractive class of computational models that mimic 

natural evolution to solve problems in a wide variety of domains. GA emulates biological evo­

lutionary theories to solve optimization problems and composes of a set of individual elements 

(the population) and a set of biologically inspired operators defined over the population itself. 

According to evolutionary theories, only the most suited elements in a population are likely to 

survive and generate offsprings, thus transmitting their biological heredity to new generations. 

The basic procedure is to create a population (breeding pool) of potential solutions to a prob­

lem. These solutions are encoded as "chromosomes" (data representation of the solution), and 

each chromosome is subjected to an evaluation function which assigns "fitness" depending upon 

how well the solution it encodes solves the problem at hand. Existing solutions are recombined 

by a process called crossover or breeding. The rational for this is that good solutions will contain 

good building blocks, rearrangement of which may produce even better solutions. Further a mu­

tation process makes random changes in a few randomly selected chromosomes. This prevents 

premature convergence by maintaining the diversity of the population. GA operates through a 

simple cycle of stages: 

• Creation of a "population" of chromosomes 

• Evaluation of each chromosome 

• Selection of "best" chromosomes 

• Genetic manipulation to create new population of chromosomes 

Fig 2.6 shows these four stages using GA. 
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2.4.2 Representation 

Fundamental to the GA structure is the encoding mechanism for representing the optimization 

problem's variables. The encoding mechanism depends on the nature of the problem variables. 

In each case the encoding mechanism should map each solution to a unique binary string. 

Example 2.2. Consider optimizing the function f(x) = x2 where the continuous variable x is 

defined in a range from [0,2] with an accuracy of two decimal places after the decimal point. 

The variable can be encoded by a binary code. The mapping from a binary code into a real 

variable value within the range [0, 2] can be implemented as in equation 2.5. 

I 

2x 
x = 28 _ 1 (2.5) 

Here, x' is binary code < b7b6'" b1bo > and 2 is the length of the domain. The reason to 

choose 8 bit binary code is to meet the accuracy because 

128 = 27 < 200 < 28 = 256 

Offsprings 

New generation 

Genetic 

operators 

Manipulation 
Mates 

Population 
(chromosomes) 

Parents 

Figure 2.6: GA cycle 

Decoded 
chromosomes 

Evaluation 
(fitness) 
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For example, a chromosome x' =(01101100) represents 0.85, because 

and 

x' = (01101100h = (108ho 

108 
x = 2- = 0.85 

255 

32 

The chromosomes (00000000) and (11111111) stand for the boundaries of the domain, 0 and 

2.0, respectively. 

2.4.3 Initial population 

A population of chromosomes needs to be initialized. Any of possible 8-bit binary codes could be 

a chromosome in the above case, which is initialized randomly. The population size (the number 

of chromosomes) is set depending on the application. 

2.4.4 Evaluation 

An evaluation function returns a measurement of the worth of any chromosome in the population. 

Evaluation function Eva(x') is equivalent to the function f(x). 

Eva(x') = f(x) 

For example, x' = (011011000) corresponds to x = 216. 

Eva(01101100) = f(0.85) = 0.72 

Usually, Eva(x') or f(x) needs to be transfered to fitness function fit(x'): 
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Jit(x') = h(Eva(x')) = h(f(x)) 

The fitness stands for a measure of how good the chromosome is. 

2.4.5 Parent selection 

Selection models nature's survival-of-the-fittest mechanism. Fitter solutions survive while weaker 

ones perish. There are many ways to do this. The most popular parent selection scheme is the 

roulette wheel parent selection. It works by allocating pie-shaped slices on a roulette wheel to 

population members, with each slice proportional to the population member's fitness. Selected 

parent can then be viewed as a spin of the wheel, with the winning population member being 

the one in whose slice the roulette spinner ends up. 

2.4.6 Crossover 

Crossover recombines the genetic material in two parent chromosomes to make two children. The 

simple crossover is one point crossover, which occurs when parts of two parent chromosomes are 

swapped after a randomly selected point, creating two children. Fig. 2.7 shows an example of 

the above application of one point crossover supposing that the cut point is selected after the 

6th bit (usually called gene). 

Parent 1: 011000 I OJ Child 1: 011000 I 10 
---l>-

Parent 2: 110110 I 10 Child 2: 110110 I 01 

Figure 2.7: Crossover operator 

2.4.7 Mutation 

Mutation is a secondary operator with the role of restoring lost genetic material. It also reduces 

the possibility of early convergence on a local optimum solution. Mutation of a bit involves 

flipping it from 0 to 1 or vice verse. For example, for child 1: 01100010, if the sixth gene 
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is selected for a mutation, it would be flipped from 0 to 1 and result in a new chromosome 

01100110. 

2.4.8 Elitism 

After crossover and mutation, the best members of the population may fail to produce good 

offsprings in the next generation. To restore the possible loss, the best members of each generation 

are copied into the succeeding one. 



Chapter 3 

State assignment for area and power 

optimization 

In this chapter, a genetic algorithm (GA) based state assignment targeting area and power 

optimization is developed. 

3.1 Finite state machines (FSMs) 

A finite state machine (FSM) is represented by a set of states and a set of their associated 

transitions. 

An FSM can be represented by a graph or, equivalently, by a table. The two representations 

are called state transition graph (STG) and state transition table (STT), respectively. The states 

of an STG are labeled with the unique symbolic state names. The edges are labeled with the 

input and output values. The state table is simply the list of edges of the STG. Take DK27 in 

1991 MCNC benchmarks [129] for example as shown in Fig. 3.1. 

FSMs can be incompletely specified. An incompletely specified FSM is one where 'T/(x, s) and 

lor .\(x, s) are incompletely specified Boolean functions. To synthesize an FSM, the symbolic 

state names must be encoded as unique binary codes. The binary codes assigned to the symbolic 

states determine the circuit's combinational logic. Then state assignment is defined in Definition 

3.1. 

35 



CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 36 

Definition 3.1. 8tate assignment is a mapping from the set of states of an F8M to the set of 

binary codes. 

It is well known that an F8M's state assignment can significantly affect the quality of syn-

thesized circuits. Much of state assignment research has been concentrated on reducing the 

circuit area. NOVA[111] makes state assignments which target minimal-area two-level logic 

while MU8TANG[33], JEDI[57] and MU8E[36] target multilevel-logic implementation. Recently, 

several researchers have focused on low-power designs using state assignment that reduces the 

average switching frequency of the states [88][12][108][77][15][48][117]. The 8yclop [88] method 

considered conditional state transition probabilities as weight coefficients in the cost function, 

while Hong [48] and Wang [117] methods exploited the total state transition probabilities. The 

shortcoming of the above approaches is that they minimize the switching activity on the present 

state bits without any consideration of the area in the combinational section of F8Ms. As a result, 

the area overhead is high compared to area-oriented state-of-the-art tools. To consider the area 

constrain in combinational section, Olson [77] and POW3 [15] introduced a convex combination 

In P8 N8 0 

0 81 86 00 
0 82 85 00 
0 83 85 00 
0 84 86 00 
0 85 81 10 
0 86 81 01 
0 87 85 00 
1 86 82 01 
1 85 82 10 
1 84 56 10 
1 87 56 10 
1 81 84 00 
1 52 53 00 
1 53 57 00 

(a) (b) 

Figure 3.1: 8tate transition graph and state table of DK27 (a) STGj (b) 8TT 
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of the switching activity and the area of the combinational logic as cost function. Wang [113] 

proposed a matching-based state assignment algorithm to minimize area and state transitions 

simultaneously. However, all of those results show that minimization of switching activity has to 

trade with area penalty. As we know, area overhead will result in many disadvantages such as 

cost and reliability of circuits. Further, high area overhead will in turn offset the power reduction 

in state registers. 

The problem of finding the state assignment for the minimization of power consumption and 

area is computationally hard. The two primary techniques used to solve the problem are the 

greedy search and the simulated annealing. However, the search space appears to be too large 

with many local minima for these schemes to find the global minimum. The genetic algorithm 

(GA) technique has been successfully applied to a variety of computationally difficult problems 

which have a large search space. It has been shown that it can produce good results in reasonable 

computation time. A recent investigation showed that GA can find better assignments than 

commercial products for area minimization [5]. Olson [77] employed a genetic local search to 

perform a local optimization of FSMs and got encouraging results. In this Chapter, a new scheme 

is proposed and genetic algorithms (GAs) are employed to optimize both switching activities and 

area without the need to carry out an exhaustive search. 

The remainder of the chapter is organized as follows. The terminology used here is defined 

in Section 2.1.1. Section 3.1 introduces the FSM calculation while Section 3.3 defines the cost 

function. The state assignment algorithms are described in Section 3.4. Experiment results and 

conclusions are given in Sections 3.5 and 3.6, respectively. 

3.2 Terminology and parameter calculation of FSMs 

Power dissipation is a strongly pattern-dependent cost function. Here, input signals are described 

by input signal probabilities. 

Given a circuit, suppose the input signal probability, Pi, is known. However, in an FSM, the 

probability of a state transition depends not only on the inputs but also on the state information. 

Considering a transition between two state Si and Sj. If state Si is unreachable, the machine will 
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never perform the transition because it will never be in state Si. Similarly if the probability of 

being in state Si is very low, a transition from state Si to state Sj is very unlikely. A parameter 

to describe the probability of a transition is called conditional probability. 

Definition 3.2. Given a set of inputs {Ioh ... In-I}, Conditional State Transition Probability 

(CSTP) Pij associated with a transition from Si to Sj (briefly tSij) is the ratio of the number of 

input minterms causing such transition to the total number of valid input minterms at state Si. 

i, j E {O, 1,2"", n - 1} and n is the number of states. 

If the input probability is not specified, a default input probability of 0.5 is used. In order to 

simplify the calculation of the conditional probability, assumption of Markov chain is employed 

[14]. 

Definition 3.3. A Markov chain is a representation of a finite-state Markov process, a stochastic 

model where the transition probability distributions at any time depend only on the present state 

and not on how the process has reached in that state. The Markov chain model for the STG is 

a directed graph isomorphic to the STG and with weighted edges. 

Symbolically the parameter can be expressed as: 

Nij 
Pij = Prob(Next = sjlPresent = Si) = 2:k Nik (3.1) 

Here, i, j = 0, 1,2, ... , n - 1, Nij is the number of transitions tSij from Si to Sj while 2:k Nik 

is all transitions that begin in state Si. 

Given an FSM, calculation of the conditional state transition probability Pij is straightforward 

assuming uncorrelated and equiprobable inputs for simplicity [15]. The following example shows 

how to calculate Pij given input signal probabilities 

Example 3.1. Consider the FSM shown in Fig. 3.1(a) with one input, In, and two outputs. 

Assume that the input probabilities are Prob(In = 1) = 0.5. The conditional transition proba-

bilities are labelled on the edges of the Markov chain. For instance, consider the transition tS14. 

Its CSTP is PI4 = Prob(In = 1) = 0.5. The detail is shown in Fig. 3.2. 
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This process is simple if the inputs of the FSM are completely specified as in Example 3.l. 

However, if the inputs are incompletely specified, the cases of overlapping inputs and impossible 

inputs need to be dealt with, which is shown in the following example. 

Example 3.2. Table 3.1 shows some lines of an incompletely specified FSM tav, which is one 

of MCNC benchmark circuits and given in the kiss file. 

The first four lines tell the number of inputs, outputs, product terms and states, respectively. 

The machine has four inputs, four outputs, 49 product terms and four states. From the fifth 

line, each row consists of four sections, which give input encoding, present state, next state and 

output encoding. For the transition tS01, the maximum number of the transition is sixteen. It 

can be seen that the input cases {0111, 1011, 1101, 1110, 1111} have been over calculated for 

the incompletely specified inputs. Thereby, the overlapping inputs need to be checked, which 

can be expressed into 

Il nIr :f: e (3.2) 

Here, Il , Ir are input vectors resulting in the same transition tSij, l :f: r are the line number 

of the circuit description file and e is an empty set. Algorithm 3.1 outlines the procedure used 

114=112 

Figure 3.2: Conditional state transition probability of DK27 
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to calculate Pij. 

Algorithm 3.1. Procedure for finding GSTP 

Find_ GSTP(8i,8j) 

{ 

Pij = L:P(Il); 

for (l = 4; l < MaximumLineNumber - 4; l + +) / /MaximumLineNumber 

stands for the maximum line number of the circuit description file 

for(r = l + 1; r < MaximumLinNum - 4; r + +) 

{ 

if Il n Il- 1 =1= «I> 

{ 

Pij = Pij - L:IEI/ nI/-l p(I); 

} 

} 

Table 3.1: Tav's kiss format 
.i4 
.04 

.p 49 
.s 4 

1000 80 81 1000 
0100 80 81 0100 
0010 80 81 0010 
0001 80 81 0001 
0000 80 81 0000 
11- 80 81 0000 
1-1- 80 81 0000 
1-1 80 81 0000 I 
-11- 80 81 0000 I 
-1-1 80 81 0000 
-11 80 81 0000 
1000 81 82 1000 
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The CSTP is external input information. It does not depend on the structure of the Markov 

chain. For an FSM, this information can be assumed to be known. Some researchers used 

this information as a rough approximation to the transition probabilities [88]. However, this 

probability does not utilize the information of state probabilities, where the state probability, 

Pi, represents the probability that the machine is in a given state Si. 

Definition 3.4. State probability Pi of a state Si, which is defined as the probability that the 

state is visited in an arbitrarily long random sequence, can be obtained by solving the cor­

responding Chapman-Kolmogorov equations and the normality condition equation in equation 

3.3. 

{ 

",i=n-l n. - 1 
L.ii=O r~-

. _ j=n-l ... 
P~ - 2:: j =o PJPJ~ 

(3.3) 

By solving the above set of linear equations, the state probability Pi can be obtained, which 

is shown on the edges of the Markov chain as in Fig. 3.3. 

P2 =4/21 

P3=2/21 

Figure 3.3: State probability labelled beside its state node and state transition probability la­
belled on each edge of DK27 
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The well-known Gaussian elimination method is used to solve the above equations [119] . The 

core of the method is to convert a matrix into an upper triangular form and solve for Pi in 

AP = b using the back-substitution method. Here, A is an upper triangular matrix, P is state 

probability vector and b is a constant vector based on equations 3.3. Algorithms 3.2 and 3.3 

outline the procedures. 

Definition 3.5. An upper triangular matrix is one in which all elements below the main diagonal 

line are zero as follows 

aOO aOl a02 aO(n-l) 

o au a12 al(n-l) 

o 0 a22 a2(n-l) 

000 a(n-l)(n-l) 

Algorithm 3.2. Convert a matrix into an upper triangular matrix 

UpperTriangular{s) { 

for (i; ; ;) { 

if (A(i, i) == 0) { 

sort(A); }llsort the matrix so that the diagonal element is not zero 

else 

pivot = A[i][i]; 

for (j = i + 1; ; ) { 

mult = A[j][i]lpivot; 

A[j][i] = 0; 

for(k = i + 1; ; ) { 

A[j][k] = A[j][k] - mult * A[i][k];} 

b[j] = b[j] - mult * b[k];}}} 
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Algorithm 3.3. Back substitution 

===================================================================================================== 

Backsubstitution() ( 

for(i; ; ;) { 

forU + i + 1; ; ) 

sum = sum + A[i]Li] * b[j]; 

b[i] = (b[i]- sum)/A[i][i];}}//The answer is returned by b 

State transition probability can be defined as follows. 

Definition 3.6. State transition probability (STP) tpij between two states Si to Sj occurs in an 

arbitrarily long sequence and is given by 

tPij = PiPij (3.4) 

The STPs of DK27 are shown in Fig. 3.3. 

Definition 3.7. The switching activity of the state bit lines depends on the state encoding and 

the state transition probabilities. Average switching activity of an FSM can be calculated as 

follows: 

i=n-lj=n-l 

SA = L L tPij x HD(enc(sd, enc(sj)) (3.5) 
i=O j=O 

where enc(sd is encoding of state Si and HD(enc(sd, enc(sj)) is the Hamming distance be­

tween two encodings, enc(si) and enc(sj). From equation 3.5, for an FSM with given input signal 

probabilities, {tPij} is fixed while H D( enc( Si), enc( Sj)) varies with different state assignments. 

Thereby, SA varies with different state assignments. This is the basic principle to optimize power 

dissipation using state assignment. 
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3.3 Cost functions 

The implementation of an FSM consists of two parts: a combinational logic section and a register 

section. Both sections contribute to the power dissipation of an FSM. Traditionally, switching 

activity is used to measure the power dissipation of a circuit. Some researchers [48][117] suggested 

the use of switching activity as cost function. The approach implements the low power dissipation 

by minimizing equation 3.5. However, this only minimizes the switching activity on present state 

bit lines of the machine and does not consider the structure of the combinational section of the 

final synthesized FSM, which may lead to non-optimal area implementation and result in power 

overhead in the combinational section. Hence, to obtain low power dissipation in the final circuit, 

area should be taken into account. 

In [15], the cost function is linear composition of the weighted area and the switching activity. 

Fan-in- or fanout-oriented method [33] based weighted area was used to indicate the desired 

Hamming distance between the state codes. The higher the weight is, the smaller the Hamming 

distance will be. A parameter a ~ 1 was introduced, specifying the relative importance of 

switching activity with respect to area constraints. It was defined as 

i=n-lj=n-l 

Cost = (1 - a)SA + aLL Wij (3.6) 
i=O j=O 

Here, Wij is weighted area between Si and Sj. 

In [77], literal based area was employed and the cost function is normalized to 1000. 

Cost = b.literals + f3 x SA (3.7) 

There, f3 was taken as 100. 

The cost function is one of very important factors to guide circuit optimization. In this work, 

two kinds of cost functions will be used and described as follows. 

In Section 3.5, area and SA versus a and f3 will be studied. However, the number of cubes 
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after the logic minimization of a machine is used instead of weighted area and literals used in 

equations 3.6 and 3.7. It will be shown that if the cost function is normalized to 1, SA is very 

sensitive to change in a while area is less sensitive (See Fig. 3.4(a)). Further, ifthe cost function 

is normalized to 1000, area is very sensitive to change in {3 while SA is less sensitive (See Fig. 

3.4(b)). To influence both SA and area, a factor of 10 is used here and the first cost function is 

defined as in equation 3.8 [124]. 

Costa = noOfCubes + SA (3.8) 

Here, noO f Cubes is the number of cubes after the logic minimization of a machine. 

On the other hand, for CMOS circuits, the dominant source of power dissipation is the 

charging and discharging of the node capacitance and is given by: 

1 k=m 
Paver = "2 Vldfclk 2: CkSAk 

k=l 
(3.9) 

Where Paver is the average power dissipation of the circuit, Vdd is the supply voltage, Ck is the 

capacitive load at the output of gate k, fclk is the clock frequency, SAk is the switching activity 

of gate k and m is the number of gates in a circuit and k E {1, 2" . ·m}. All of the parameters 

in the above equation can be determined from technology or circuit layout information except 

SAk and Ck of the circuit which depend on the synthesis technology. Hence, equation 3.9 can 

be rewritten as in equation 3.10. 

k=m k=m 
Paver = K 2: CkSAk = KSA 2: Ck (3.10) 

k=l k=l 

Here, K =~ Vldf elk while SA is the average switching activity of a circuit and defined as 

SA = 1.. ",k=m SA 
m L.Jk=l k· 

Hence, we have Paver ex Area x SA, where Area is estimate of the circuit area that is 
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representative of the capacitance 2.:~~~ Ck [75]. 

Given an STT of an FSM and a specific state encoding, SA can be calculated by equation 

3.5. Under the circumstance of employing the minimal encoding length, the number of memory 

elements used in a specific FSM are constant so that their corresponding area is fixed. Hence, 

only the area of the combinational section varies with the state assignment. The area of the 

combinational section could be measured by the number of cubes. Therefore, the second cost 

function is defined as in equation 3.11. 

Costb = noO fCubes x SA (3.11) 

3.4 State assignment using Genetic algorithm 

Genetic Algorithms (GAs) are based upon evolutionary adaptation in natural systems and at­

tempt to generate useful solutions to a given problem by the application of the "survival of the 

fittest" principal. The basic idea is to create a population (breeding pool) of potential solutions 

to a problem. These solutions are encoded as "chromosomes", and each chromosome is subjected 

to an evaluation function which assigns ''fitness'' depending upon how well the solution it encodes 

solves the problem at hand. Existing solutions are recombined by a process called crossover or 

breeding. Further, a mutation process makes random changes in a few randomly selected genes. 

This prevents premature convergence by maintaining the diversity of the population. The best 

members of the population may fail to produce offspring in the next generation. The elitist 

strategy rectifiers this potential loss by copying the best members of each generation into the 

succeeding one. 

3.4.1 Solution representation 

An FSM with n states requires a minimum of s state variables for the assignment where s = 

rlog2m 1 and symbol rl stands for taking the upper bound integer of log2m. The chromosome 

representation is a string of decimals. Take benchmark 'DK27' for example. It is a seven 
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state machine and the states are named S1, S2, S3, S4, S5, S6, S7' Assignment 6, 2, 1, 4, 3, 5, 

7 is one possible chromosome, Then, S1 is assigned the binary code 110, S2 is assigned 010, 

etc, The population of solutions consists of state assignments of an FSM, They will be stored 

in a two dimensional array population[i][j], where, (i=0,1,2, "" populationSize-1, j=0,l,2, "" 

numberOfStates-1) , The breeding pool of chromosomes is initially created by InitialPopulation 

o randomly, The sketch of InitialPopulation 0 is as shown in Algorithm 3.4: 

Algorithm 3.4. Initializing population 

InitialPopulation (int numberOfBits, int numberOfStates ) 

( 

int maxInt, randNum, randRemainj 

int doubleEentryFlag = OJ 

maxInt = 1 < < numberOfBitsj 

for(i=Oji<populationSize;i++ ) 

for(j=O;j<numberOfStates;j++ ) 

population[ilbJ = maxInt +1; 

srand (seed Value}; 

for(i=O;i <populationSize;i+ +) 

for(j=O;j<numberOfStates;j++ ) 

{ 

do 

( 

randNum = rand{}j 

randRemain = randNum%power; 

for(k=O;k<numberOfStates;k++ ) 

if(randRemain==population[i}{kj) 

doubleEntryFlag = 1; 

} while ( doubleEntryFlag==1); 
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population[i}[j} = randRemain; 

} 

} 

3.4.2 Evaluation 

Based on the above assignment, the cost can be calculated according to equations 3.8 & 3.11. 

To a specific state assignment for an FSM, let the maximum state transition probability 

tp = max(tPij) 

and maximum Hamming distance between two state codes 

maxHD = max(HD(enc(Si), (Sj))) = lengthOfStateCode 

The maximum SA of the FSM can be calculated as: 

i=n-lj=n-l 

maxSA = 2: 2: tp x maxHD 
i=O j=O 

(3.12) 

(3.13) 

(3.14) 

The area can be estimated by the number of cubes after state assignment. maxCubes takes 

the product terms from the STT. Then the maximum costs will be: 

maxCosta = maxSA + maxCubes and maxCostb = max SA x maxCubes. 

Hence, to a specific state assignment, the fitness can be defined as: 

fitnessmode = (maxCostmode - costmode)/maxCmode (3.15) 
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Here, mode E {a, b}, which corresponds to two cost models in equations 3.8 & 3.11, respec­

tively. From equation 3.15, lower cost will result in higher fitness. 

3.4.3 Crossover 

Parent selection strategy follows the one proposed in [9]. Crossover is a primary method of 

perturbations in GA, which generates better solutions by exchanging the information contained 

in the present solutions. In this application, a position-based crossover (PBX) is employed 

[130]. This was modified, however, so that invalid offsprings are avoided and efficient crossover 

is reached. This is outlined as follows. 

Randomly select a number oflocations named location-indicator (LID) in binary codes whose 

length is equal to the number of states in the FSM. Where 1s appear in the LID, copy the states 

from Parent 1 to Child 1. Where there are Os in the LID, copy those corresponding states from 

Parent 2 provided that they do not exist in Child 1. If the state from Parent 2 is already in 

Child 1, the position is filled by the first unassigned state from Parent 1 but checks are made 

to avoid duplicating the parent. Continuing this way, Child 1 is obtained. With the same LID, 

interchange Parent 2 and Parent 1 and repeat the process to produce Child 2. This is illustrated 

for a seven state machine. 

Step 1. Randomly generate a seven-bit LID: 1 0 1 1 0 1 0 

Step 2. Select two parents by the roulette wheel approach: 

Parent 1: 6 2 1 4 3 5 7 

Parent 2: 1 0 5 3 2 4 6 

Step 3. Generate Child 1: 

a. Where 1s appear in the LID, copy the states from Parent 1 to Child 1 and delete those 

copied states in Parent1. 

Parent 1: - 2 - - 3 - 7; Child 1: 6 - 1 4 - 5 -; 

b. Where there are Os in the LID, copy the states from Parent 2 to Child 1 provided that 

they do not exist in Child 1 and delete the copied states in Parent 2. There are states 0, 2 and 

6 from Parent 2 corresponding to Os in the LID. However, state 6 is already in Child 1. Hence, 

only states 0 and 2 in Parent 2 are copied to Child 1. 



CHAPTER 3. STATE ASSIGNMENT FOR AREA AND POWER OPTIMIZATION 50 

Parent 2: 1 - 5 3 - 4 6; Child 1: 6 0 1 4 2 5 -; 

c. The unfilled position in Child 1 is filled by the first unassigned state from Parent 1, which 

is state 3. Then state 3 is copied to Child 1. 

Parent 1: - 2 - - - - 7; Child 1: 6 0 1 4 2 5 3; 

Step 4: Swap Parent 1 and Parent 2 and generate Child 2 following the same procedure. 

3.4.4 Mutation 

Mutation in normal GA just flips a selected bit from 0 to 1 or vice verse. We mutate CHRO­

MOSOMES state number one by one with a mutation rate 6%. The procedure is as follows: 

For example, for a 7-state FSM, if the chromosome is 6 2 1 4 3 5 7, the following procedure 

will be executed. At first, the program will randomly generate a number, namely randomNum1, 

and check the first state 6, and if randomNum1 < 6%, produce two different random numbers 

randomNum2 and randomNum3, for instance, randomNum2 = 2 and randomNum3 = 4, 

then, the state numbers in the third bit and fifth bit of the chromosome will be swapped and the 

chromosome would become 6 2341 57. Then it will check the second state, if randomNum1 > 

6%, no exchange takes place in the chromosome during this step. The program will check the 

generations one by one until the last generation. The detail is shown in Algorithm 3.5. 

Algorithm 3.5. Mutation operator 

==================================================================================================== 

Mutation ( numberOfStates) 

( 

for(i=O;i<numberOfStates;i++ ) 

( 

randomNuml = rand()%100; 

if(randomNuml < MUTATION_RATE) 

( 

randomNum2 = rand()%(numberOfStates); 

do 
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( 

randomNum3 = rand() %numberOfStates; 

}while (randomNum2 !=randomNum3); 

swap (population[randomN uml J[randomNum2 j, population[randomNuml J[randomNum3 J); 

} 

} 

} 

3.4.5 Elitism 

The best member of the population may fail to produce offspring in the next generation. Hence, it 

will be kept in the array eletistM ember[i] and stored in the array population[populationSize/2-

l][i] of the next generation, where i = 0, 1,2, ... , numberOfstates - 1. 

3.4.6 Outline of the algorithm 

The outline of the algorithm is illustrated in Algorithm 3.6. 

Algorithm 3.6. Outline of the algorithm for state assignment 

==================================================================================================== 

Step 1. Read the benchmark 

Step 2. Generate an initial population-brooding pool 

Step 3. Calculate state transition possibilities tpij 

Step 4. Assign states and create a Berkeley standard PLA file for each chromosome 

Step 5 Calculate the number of cubes by ESPRESSO minimization for each chromosome 

Step 6. Calculate the fitness of each chromosome 

Step 7. Select parents by the roulette wheel approach. 

Step 8. Perform crossover to generate offsprings 

Step 9. Mutate chromosomes 

Step 10. Assign states and create a Berkeley standard PLA file for each chromosome 
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Step 11. Calculate the number of cubes by ESPRESSO minimization 

Step 12. Calculate the fitness of each chromosome 

Step 13. Generations = generations + 1 

Step 14. If generations'5:.max_ numberGenerations, goto Step 7. 

Step 15. Output the results: 

(1) The half chromosomes with higher fitness 

(2) The best state assignment, its switching activity and the number of cubes 

3.5 Experimental results 

The above algorithm is implemented in 0 and applied to MONO benchmark circuits. Gaussian 

elimination method [119] is used to find the total transition probabilities according to the STT 

of an FSM. ESPRESSO is used to minimize the circuit after state assignment and obtain the 

cubes. This is done by generating a Berkeley standard PLA file for each chromosome and passing 

it to ESPRESSO for minimization. The product terms from this minimization determine the 

number of cubes for that assignment. Switching activity is calculated using equation 3.5. TWo 

sets of experiments have been conducted. 

First, we want to find out how the combination of area and SA, two cost functions in equations 

3.6 and 3.7, affect the optimization quality. In order to compare them, we use noO fCubes instead 

of w in equation 3.6 and filiterals in equation 3.7, respectively. Benchmark circuits 'ex4' and 'cse' 

are chosen as study cases. The reason for choosing them is that 'ex4' has 14 states and is an 

incompletely specified machine while 'cse' has 16 states and is a completely specified machine. 

Both are medium size FSMs. Figs. 3.4(a) and (b) show that area and SA vary with a and (3, 

respectively. The plots show: 

• The area ratio Anoo fCubes I AaverageO fCubes 

• The SA ratio SAl SAaverage 

From Fig. 3.4(a), we notice that area varies much less than SA when a varies from 0.1 to 0.9. 

From Fig. 3.4(b), SA varies much less than area when (3 varies from 100 to 900. It makes sense 
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that equation 3.6 based cost function does not have too much influence on area minimization 

while equation 3.7 based cost function has little influence on SA minimization. 
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Figure 3.4: Relationship between cost function and optimization quality (a) Area and SA versus 
a in equation 3.6; (b) Area and SA versus (3 in equation 3.7 

Second, fourteen MCNC benchmark circuits, whose number of states are between 10 and 
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48, are chosen to test the proposed methods. Then an area-oriented state assignment program, 

NOVA [111], is run on the same benchmarks, following the same procedure to get the switching 

activity and the number of cubes. Tables 3.2 summarizes the test results. The results given by 

Hong et al and Wang et al are listed in the same table for comparison. In Table 3.2, cubesa 

and BAa are obtained using costa in equation 3.8 while cubesb and BAb are obtained from costb 

in equation 3.11. Compared to NOVA, Hong and Wang gave 47.5% and 42.3% reduction in 

switching activity while 10.3% and 12.6% extra product terms are used, respectively. Using 

costa, GA gives a 32.2% reduction in switching activity and 4.4% reduction of product terms. 

Among the 14 circuits, our method gives better area results in 11 cases compared to NOVA 

and in 10 cases compared to Hong's and Wang's. Using costb, GA gives a 43.8% reduction in 

switching activity but needs 5.7% extra product terms. The area penalty, however, is much 

smaller than Hong's and Wang's. Table 3.3 gives the two set of codes, namely a and b, for the 

best state assignment by GA, which are based on costa and costb, respectively. 

The above results are obtained using the following parameters: population size = 70, crossover 

rate = 60%, mutation rate = 6%, and maximum number of generations = 200. These parameters 

were determined after testing various population sizes and different crossover and mutation rates. 

3.6 Summary 

A genetic algorithm for finding good state assignments targeting minimization of power and area 

for finite state machines has been developed and implemented in C. Tests as to the effectiveness 

of this approach to the problem are conducted by comparison of performance against the state-of­

the-art commercially available software and some published results when operating upon MCNC 

FSM benchmark circuits. Two options are available for optimizing FSMs targeting area or power 

dissipation. The results shows that significant saving in power and/or area can be achieved. 
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Table 3.3: Best state assignment codes by GA: Assignments a & b are based on costa & costb 
respectively 

a: 8, 0, 2, 7, 4, 6, 15, 14, 10, 12 ; b: 8, 0, 4, 6, 2, 3, 7, 14, 12, 10 
bbsse a: 8, 2, 6, 14, 3, 10, 15, 13, 9, 12, 11, 0, 4, 1, 7, 5 

b: 4, 14, 10, 3, 6, 2, 9, 1, 8, 11, 0, 12, 13, 15, 5, 7 
cse a: 0, 1, 13, 5, 15, 6, 2, 3, 9, 7, 11, 10, 8, 14,4, 12 

b: 0, 4, 12, 6, 14, 11, 8, 10, 1, 2, 3, 7, 5, 15, 9, 13 
donfile a: 2, 3, 0, 4, 1, 5, 6, 7, 10, 11, 8, 9, 13, 12, 14, 15, 21, 23, 17, 16, 18, 19, 

25, 27 
b: 11, 5, 12, 28, 1, 8, 15, 7, 14, 26, 31, 29, 13, 20, 6, 30, 0, 4, 3, 24, 23, 
21, 16, 22 

keyb a: 0,4, 16,8,21, 12,20, 19,7, 17, 14, 1, 15, 23, 3, 9, 28, 10, 13 
b: 0, 4, 2, 8, 31, 10, 27, 25, 24, 17, 15, 3, 13, 29, 9, 28, 16, 21, 5 

modulo12 a: 0, 9, 13, 15, 11, 3, 7, 5, 4, 6, 14, 12; b: 9, 8, 10, 11, 15, 7, 0, 2, 3, 1, 
5,13 

planet a: 26, 11, 7, 0, 4, 10, 18, 24, 22, 15, 48, 43, 59, 14, 9, 12, 46, 44, 8, 63, 
51,6, 5, 13, 47, 34, 23, 52, 2, 1, 58, 45, 61, 37, 25, 35, 42, 32, 31, 60, 39, 
56, 50, 30, 57, 49, 62, 21 
b: 50, 36, 52, 20, 16, 2, 14, 6, 54, 53, 46, 49, 40, 51, 9, 11, 3, 19, 25, 56, 
57, 35, 7, 32, 24, 28, 29, 21, 8, 33, 12, 45, 5, 37, 13, 39, 61, 63, 31, 23, 
15, 62, 58, 18, 22, 4, 48, 26 

sl a: 20, 18, 10, 26, 5, 27, 16, 24, 0, 8, 30, 25, 29, 13, 22, 1, 19, 9, 4, 21 
b: 13, 5, 28, 29, 10, 31, 1, 21, 0, 17, 19, 23, 14, 15, 16, 2, 20, 7, 18, 8 

sand a: 22, 7, 6, 2, 3, 30, 31, 21, 0, 16, 19, 17, 23, 5, 12, 13, 14, 15, 10, 11, 8, 
9, 4, 25, 28, 27, 24, 1, 20, 18, 29, 26 
b: 18, 16, 1, 17, 9, 26, 24, 8, 0, 4, 25, 12, 19, 14, 6, 22, 20, 21, 5, 13, 15, 
23, 7, 3, 2, 10, 11, 27, 31, 29, 28, 30 

styr a: 0, 8, 13, 24, 28, 29, 9, 5, 22, 4, 11, 19, 2, 18, 16, 26, 7, 12, 14, 20, 15, 
3, 27, 17, 21, 31, 23, 25, 6, 1 
b: 9, 25, 24, 10, 4, 28, 26, 30, 27, 19, 13, 29, 1, 0, 11, 12, 3, 18, 22, 6, 23, 
2, 21, 16, 8, 31, 5, 20, 17, 14 

ex1 a: 0, 4, 2, 16, 12, 18, 6, 15, 26, 11, 23, 19, 27, 30, 3, 31, 7, 5, 22, 1 
b: 0, 1, 4, 8, 3, 5, 12, 11, 23, 7, 28, 22, 18, 15, 19, 14, 21, 6, 17, 2 

ex4 a: 11, 3, 6, 15, 1, 4, 0, 9, 12, 14, 8, 10, 13, 5; b: 4, 2, 1, 3, 6, 13, 0, 5, 
15, 7, 12, 10, 11, 9 

opus a: 6, 2, 11, 0, 15, 8, 10, 4, 5, 1; b: 9, 11, 15, 0, 7, 8, 12, 2, 1, 10 
train11 a: 0, 1, 2 ,3, 7, 9, 8, 10, 14, 6, 4; b: 0, 1, 2, 3, 7, 9, 8, 10, 14, 6, 4 



Chapter 4 

Differential CMOS single 

edge-triggered fli p-flop 

Flip-flops are the basic building blocks of synchronous digital circuits and, to a large extent, 

determine circuit power dissipation. Hence, low power design techniques of flip-flops are essential 

to design low power sequential systems. As a consequence, many genius techniques have been 

recently proposed to reduce the power dissipation of the flip-flops [49][19][68][102][100][54][72]. 

Categorized by the input sampling, edge-triggered flip-flops can be grouped into two types: 

pulse sampling [102] and level sampling [100]. The former only needs one latch and hence has 

a simpler structure, however, it suffers from long clock chain used to generate narrow pulses. 

The latter needs two latches or flip-flops and hence needs more transistor count, which results 

in the increase of its area and power dissipation [102]. Structurally, they can be categorized 

into differential and non-differential flip-flops. The structure characteristic of differential flip­

flops is that they are composed of one differential amplifier, flip-flop cell, and some auxiliary 

circuits. Hence, differential flip-flop has some advantages over the non-differential one since it 

has complementary outputs, can amplify a small voltage signal and at the same time latch data. 

Much effort has been paid to improve its performance [54][59][72]. In [54], reduced clock-swing 

flip-flop is proposed and power saving is achieved by lowering the voltage swing of the clock 

system. However, a backgate bias is needed, which complicates the power supply. In [100], a 

57 
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flip-flop design with clock-gating on both master and slave latches is presented. However, the 

area penalty for the additional circuit is very high and the power saving is significant only when 

the switching activity of the input signal is very low. Looking at the published circuits, their 

designs suffer from two disadvantages. 

1. For the version clocked with NMOS and PMOS transistors in flip-flop cell, clock load 

is heavy and static power dissipation is significant if reduced-swing clock singles are applied to 

PMOS transistors [54][59]. 

2. For the version clocked with NMOS transistors in flip-flop cell, it suffers from long clock 

chain, which consumes significant clock power [72] . 

4.1 Differential CMOS single edge-triggered flip-flop 

In [59], two N - C2MOS output latches were used to improve the speed of flip-flops but this 

is traded with power dissipation penalty. There are two disadvantages for this design. One is 

that the clock load is too heavy because it uses many clocking transistors. The other is difficult 

to apply for reducing the signal swing due to clocking with NMOS and PMOS transistors. To 

overcome these problems, in [72], a differential CMOS Single Edge-Triggered Flip-Flop (SET-FF) 

based on clock racing was proposed. 

The flip-flop in Fig. 4.1 consists of a differential amplifier called a cell and a clock chain 

which is composed of three inverters [72]. The clock chain generates a delayed CPl. CP and 

CPI are applied to the cascaded transistors, m7 and m8, respectively, which generate a narrow 

pulse at the rising edge of each clock pulse. Hence, the flip-flop is triggered at the rising edge of 

the clock pulse. Transistor sizes, which are expressed in W / L, are marked beside the inverters. 

To obtain proper width of the narrow pulse, transistor sizes, Wand L, of the second inverter in 

the clock chain are the double of the other inverters. If D, Q and Q' are used to represent the 

input, present state and next state signals respectively, the next state equation can be expressed 

into 
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I 

Q = DCicp + QCicp (4.1) 

Here, Cicp represents the rising edge of clock pulse. 
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Figure 4.1: Differential CMOS SET-FF (a) Circuit implementation; (b) Logic symbol 

Because the cell is driven by a narrow pulse, the output latches can be removed and only two 

NMOS transistors are clocked. Hence, this design has a simpler structure and a feature to apply 

for data and clock signals with reducing swing. The experimental results show that it has better 

performance in power and speed than those used in commercial processors. On the other hand, 

the advantage of edge-triggered flip-flops is that the setup time for data input is independent of 

the clock pulse width. It is also less sensitive to noises. This makes system design simpler. 

4.2 Circuit parameter optimization 

For a flip-flop, speed and power dissipation are two key parameters. However, they mainly 

depend on the circuit structure and technology parameters. For a specific circuit structure, 

power delay product (PDP) is used to measure its performance. Therefore, circuit optimization 
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aims to optimize PDP. 

Definition 4.1. Power Delay Product (PDP) is defined by the following equation: 

PDP = Tdelay * Pw (4.2) 

Here, Tdelay is the delay of a flip-flop while Pw is its power dissipation. 

4.2.1 Delay 

For the clarification, it is helpful to give some definitions here. 

Definition 4.2. DCQ : Clock-to-Q time, the propagation delay from the C to the Q, assuming 

that the D signal has been set early enough relative to the triggering edge of the clock pulse. 

Here C refers to the Clock. 

Traditionally, the delay of flip-flops is referred to Clock-to-Q delay. However, some authors 

pointed out that using DCQ delay as a relevant performance parameter for a flip-flop is misleading 

because DCQ delay does not take the setup time into account [1][99]. 

Definition 4.3. Ts : Setup time, the minimum time between a D change and the triggering 

edge of the clock pulse such that the output Q will be guaranteed to change so as to become 

equal to the new D value. 

The setup time is the delay between the data input of the flip-flop and the storage element 

as the data takes a finite time to travel to the storage point. 

Thereby, it is proposed to use D-to-Q as the delay of a flip-flop. This is defined as follows: 

TVQ = DCQ +Ts 

In this thesis, we will accept both DCQ and TVQ to measure the delay of a circuit. 

For the measurement of TVQ, the methodology proposed in [1] is followed. 

(4.3) 
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4.2.2 Circuit optimization 

For a high-performance and low-power application, speed and power are equally important. 

Usually, there is tradeoff between power and speed. To compromise the two, the concept of the 

minimum power-delay product (minPDP) is used. The minimum power-delay product is the 

optimal energy utilization at a given clock frequency. 

Take Fig. 4.1 for example to explain this. Fig. 4.2 is the same version of Fig. 4.1. The main 

difference is that all inverters are substituted by nMOS and pMOS transistors. However, it is 

not easy to optimize PDP because theoretically PDP is a multiple variable function of circuit 

parameters. Given the variety of designs, it is not always simple to express the PDP as a function 

of one common variable. For simplification, we take the transistor channel width as a common 

variable. Then, delay, power and PDP can be expressed into functions of one variable. Set the 

minimum transistor length to 1/1- and channel width is marked beside the transistors using w. 

Some transistors are pre-optimized based on the parameters referred to in reference [72]. 
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Figure 4.2: Power delay product optimization 

Fig. 4.3 shows the linear relationship between the power and transistor width w while Fig. 

4.4 indicates the nearly inversely proportional relationship of delay versus width w. Fig. 4.5 

shows the curve of PDP versus width w, which shows that there is a point of the optimum 
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power-delay tradeoff. Based on this analysis, the circuit parameters can be optimized to the 

point of minimal PDP. 
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Figure 4.3: Power versus width w 

The procedure presented above is used to optimize circuits. Although the procedure could 

be developed into an automatic tool, it is not our main point here. Further details can be found 

in reference [99]. 

4.3 Differential CMOS Single Edge-Triggered Flip-Flop with Clock-

Gating (CG-SETFF) 

As known, clock signal is the most frequent transition signal in the circuit. In one clock cycle, 

clock signal has two transitions while other signals in the circuit (exclude glitches) have one 

transition at most. Hence, in the clock chain, transition is the most frequent and correspondingly 

it consumes significant power. According to the working principle of D flip-flop, next state Q' 

follows the input signal D. If D does not change, the flip-flop does not need to be triggered. If we 
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can detect the idle conditions of input signal D and stop the clock signal, then power dissipation 

can be saved. Based on this idea, a new design is proposed in this section. 

In Fig. 4.1, it is observed that whether the input signal D varies or not, there is always 

a narrow pulse to trigger the flip-flop. However, when the input signal D is in low switching 

activity, it is unnecessary to trigger the flip-flop for each clock pulse. For example, when D keeps 

at 1, the flip-flop does not need to be triggered. In this case, those narrow pulses to the flip-flop 

are redundant and the transitions that happen in the clock chain are also redundant. If the clock 

of the clock chain can be deactivated, power can be saved. Hence, if a non-redundant transition 

clock chain can be designed, then it can be expected to save significant power when the D input 

transitions are low. 

Fig. 4.6 is a schematic diagram of a non-redundant transition clock chain. In Fig. 4.6, D and 

Q are the input and the output signals of a flip-flop respectively and CP is its clock. XOR gate 

is used to compare the input D and the output Q. When D=Q, the output of the XOR is 0 (1 

when D#Q). The output of the XOR gate is used as an enable signal for the tri-state inverter. 
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Figure 4.4: Delay versus width w 
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The clock chain is only driven by OP when D#Q. Hence, compared to the conventional flip-flop, 

redundant OPs are eliminated. If CP1 and CP2 are used to control the gates of m7 and m8 

the narrow pulses generated are also non-redundant. Since the narrow pulse is generated at the 

falling edge of OP, the flip-flop will sample the input signal at the falling edge of OP. Using the 

dual trail signals D and Q from the flip-flop, one possible circuit implementation is shown in Fig. 

4.7 [125]. mg-m13 make up a control circuit, which is used to selectively pass OP to the clock 

chain. When D = Q, mll is off and OP is blocked to the clock chain. When D # Q, inverted 

OP is passed to the clock chain. 
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Figure 4.5: PDP versus width w 
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Figure 4.6: Non-redundant transition clock chain 
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4.4 Circuit simulations and power dissipation measurement 

Circuit simulations are conducted using PSpice II with Level 3 at 5V, IlL technology and 50MHz 

clock. SPICE parameters for IlL technology are shown in Table 4.1. 

Table 4.1: SPICE parameters of MOS transistors for a generic 1.0ILm process 
.MODEL CMOSN NMOS LEVEL=3 PHI=O.6 TOX=2.03E-08 XJ=O.15U TPG=1 
+VTO=O.7333 DELTA=9.445E-Ol LD=1.0E-09 KP=1.2964E-04 UO=762.1 THETA=5.246 E-02 
+RSH=2.3650 GAMMA=O.4481 NSUB=1.75E+16 NFS=2.356E+12 VMAX=1.487E+05 
+ETA=1.485E-Ol CJ=1.1962E-04 MJ=0.4398 CJSW=4.6953E-I0 KAPPA=9.51E-02 
+CGDO=2.5516E-12 CGSO=2.5516E-12 CGBO=3.0108E-I0 MJSW=O.123994 PB=O.8 
.MODEL CMOSP PMOS LEVEL=3 PHI=O.6 TOX=2.03E-08 XJ=O.15U TPG=-1 
+VTO=-O.9679 DELTA=4.3070E-Ol LD=1.0E-09 KP=4.3207E-05 UO=254 THETA=1.7060E-Ol 
+RSH=2.5530 GAMMA=0.497 NSUB=2.153E+16 NFS=4.566E+12 VMAX=1.82E+05 
+ETA=1.8290E-Ol KAPPA=3.225 CGDO=2.5516E-12 CGSO=2.5516E-12 CGBO=3.5207E-I0 
+CJ=5.3093E-04 MJ=O.5074 CJSW=7.8757E-ll MJSW=O.077193 PB=O.85 

The transistor lengths are minimum for the above technology, while the transistor widths 
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Figure 4.7: Differential single edge-triggered CMOS flip-flop with clock-gating (CG-SETFF)(a) 
Circuit implementation; (b) Logic symbol 
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are Sf.t except m3, m4, m7, mS, m12, m13 and those in the clock chain. The widths of m7 and 

mS are l2f.t. The sizes of m3 and m4 are: W = 2f.t, l = 4f.t while the sizes of m12 and m13 

are: W = 4f.t, L = If.t. The transistor sizes of the clock chain, which are expressed in W / L, 

are indicated beside the inverters in Fig. 4.1. These parameters are determined for optimizing 

both speed and power as stated in Section 4.2.2. The PSpice simulation shows that the proposed 

flip-flop has the correct behavior as shown in Fig. 4.S. 
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Figure 4.S: Transition behavior of proposed flip-flop 

Average power dissipation is measured when each output is loaded with CL = O.lpicofarad 

[72]. The power consumption is calculated as: 
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Pw =; { VDDIDD (4.4) 
m 1Tm 

Here T m is the measured time period of the D signal. 

The ideal input signal D and clock signal CP are buffered by two series inverters. The test 

bench for measuring power dissipation is shown in Fig. 4.9. The reason why this test bench is 

chosen is to provide realistic data and clock signals, which themselves are fed from ideal voltage 

sources. Capacitive load at the data input simulates the fanout signal degradation from the 

previous stages while capacitive load at the outputs simulate the fanout signal degradation caused 

by the succeeding stages. The circuit with heavy load is to estimate its driving capabilities. To 

estimate the power consumption, the simulation is performed by varying the switching activity 

of the D input. The switching activity is defined here as the average number of transitions of 

D in a clock cycle. The maximum switching activity for a glitch free signal is 1 while switching 

activity could be greater than 1 if the presence of glitches is taken into account. The switching 

activity for a signal that behaves as clock signal is equal to 2. 

Power consumption is reported as a function of input signal switching activity, assuming 

that the input signal has no glitches. Six input cases are considered for the switching activity 

of 0, 0.2, 0.4, 0.6, 0.8, 1.0. The methodology proposed in [99] is followed to measure the power 

dissipation. The power spent on the capacitative load needs to be excluded to get a fair picture 

of the circuit's power behavior. For the given load CL = O.lpicofarads, that portion of power 

reaches the values presented in Table 4.2. 

D Q 

ICL 

CP Q 

ICL 

Figure 4.9: Test bench for measuring the power dissipation of flip-flops 

The power dissipation is evaluated for Tm = 400ns. The measure statement of average power 
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dissipation in PSpice is used to measure the interested power dissipation. 

For a fair comparison of the proposed circuit and that reported in [72], the same PSpice 

simulator and 1f.,l technology are used to simulate the circuits. The result of simulations is shown 

in Fig. 4.10. From Fig. 4.10, it can be seen that the proposed flip-flop consumes lower power 

than the conventional one when the D input switching activity is < 0.65. When D is idle, the 

power dissipation of the proposed circuit is only 14% of that of a conventional flip-flop. The 

reason is that when D is idle both the cell of the flip-flop and the clock chain are shutdown and 

hence the dynamic power dissipation is nearly zero. However, when the switching activity of the 

input signal is greater than 0.65, the extra devices consume the significant power. As a result, 

the total power is greater than that of the conventional one . 
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Figure 4.10: Power dissipation against D input switching activity. P1: Proposed flip-flop; P2: 
Conventional flip-flop 

Table 4.2: Power dissipation for load capacitors versus switching activities 
p. - /coutVdd 

out - a 2 Differential structures 
f = 50MHz, Vdd = 5V Cout = 2CL = 0.2picofarad 

a = 1.0 125f.,lW 
a=0.8 100f.,lW 
a=0.6 75f.,lW 
a = 0.4 50f.,lW 
a=0.2 25f.,lW 
a=O.O Of.,lW 
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4.5 PDP measurement 

To obtain PDP defined in equation 4.2, the delay needs to be measured. The methodology in 

[1] is followed and the test bench in Fig. 4.11(a) is employed. The principle behind this method 

is that the test bench forms a ring oscillator. To measure the time figures for two flip-flops, 

the frequency of the clock pulse is gradually increased up to a point where the oscillator fails to 

operate. This is the minimum clock period of the flip-flop, which has: 

Tmin = DCQ +Ts +DL (4.5) 

lll-.t 1-- -.t 1-- Dr.2 

D I I I L 
Q 

Q I I L 
CP Cf> Q CJU -I I 

(a) (b) 

Figure 4.11: Timing test circuit (a) Bench circuit; (b) Timing diagram 

Here, DCQ and Ts are as defined previously, DL is the delay of the combinational circuit. 

The delay of the flip-flop can be obtained as long as DL can be determined. From the test 

bench, it is known that DL is the inverter chain delay. Fig.4.11(b) shows the timing diagram. 

Then, to find the delay of the flip-flop, DLl and DL2 need to be subtracted from the clock 

period. We measured that the delay of the conventional flip-flop is 0.355ns while the delay of the 

proposed circuit is 0.550ns. Then, PDP can be calculated based on the definition in equation 

4.2. Fig. 4.12 presents the relationship of PDP versus the switching activities for the proposed 

flip-flop and the conventional flip-flop. It can be seen that if using PDP to compare, the proposed 

flip-flop has higher energy efficiency than the conventional one when the switching activity of 

the input signal is lower than 0.4. 
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4.6 Low power binary counters 

4.6.1 4-bit binary counter 

The proposed structures are suitable for applications with reduced switching activity. A typical 

application is in synchronous counter design. In a synchronous counter, the input switching 

activity in each flip-flop is different from place to place and is known beforehand. Hence, if the 

proposed flip-flop is used in the low switching activity bits of the counter, a low power counter 

can be obtained. Take a 4-bit binary counter as an example. It shows as follows. 

If A, B, C and D are named for four flip-flops from the Least Significant Bit (LSB) to the 

Most Significant Bit (MSB), then the state table for this counter is shown in Table 4.3. D, C, 

B and A are used to represent present state variables while D', C', B' and A' to represent next 

state variables. 
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Figure 4.12: PDP versus switching activities 
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Assuming that D flip-flops are used, the following equations are obtained. 

DA=A 

DB=AEBB 

Dc = CEBAB 

DD =DEBABC 

(4.6) 

Hence, using D type SET-FFs, the counter can be implemented in Fig.4.13. From the working 

behavior of the counter, it can be known that the switching activity for each flip-flop input is 

2-k for the kth bit, that is, aA = 1.0, aB = 0.5, ac = 0.25 and aD = 0.125. It can be seen 

that except the lowest-order bit ( with switching activity 1.0) the other bit switching activities 

are less than and equal to 0.5. In Section 4.4, it shows that using the proposed flip-flop can save 

power if the input switching activity is less than 0.65. If we use the SET-FF for the lowest bit 

while the proposed flip-flops (CG-SETFFs) are used for the remaining bits, then a lower power 

counter can be obtained. However, for convenience, we use four CG-SETFFs instead. 

Table 4.3: State table for a 4-bit binary counter 
Present state Next state 

Count D C B A D C B A 
0 0 0 0 0 0 0 0 1 
1 0 0 0 1 0 0 1 0 
2 0 0 1 0 0 0 1 1 
3 0 0 1 1 0 1 0 0 
4 0 1 0 0 0 1 0 1 
5 0 1 0 1 0 1 1 0 
6 0 1 1 0 0 1 1 1 
7 0 1 1 1 1 0 0 0 
8 1 0 0 0 1 0 0 1 
9 1 0 0 1 1 0 1 0 
10 1 0 1 0 1 0 1 1 
11 1 0 1 1 1 1 0 0 
12 1 1 0 0 1 1 0 1 
13 1 1 0 1 1 1 1 0 
14 1 1 1 0 1 1 1 1 
15 1 1 1 1 0 0 0 o I 
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In order to measure the power dissipation, NAND gate and XNOR gate need to be imple­

mented as well. The traditional design for 2 input and 3 input NAND is employed while for 

XNOR, the low power design in [118] is used, which are shown in Fig. 4.14 for convenience. All 

transistor sizes are W = 8/-lm, L = l/-lm. 

Once again, the above two circuits are simulated using PSpice with level 3 at 5V, 1/-l technol­

ogy and 50MHz clock. The power dissipation was evaluated for Tm = 400ns. The experiment 

shows that 24% of the power is saved using the proposed flip-flop to implement the counter. 

However, the saving varies with the number of bits. Because the circuit has a complicated com­

binational section, it is expected that the saving significance will be reduced with increasing the 

bit number of the counter. 

4.6.2 Binary twisted ring counters 

It is well known that binary ring counter has simple combinational circuit while there are many 

redundant transitions. If the proposed flip-flop is used in these applications, the power saving will 

be much more significant than binary counters because the latter has complicated combinational 

circuits. Using SET-FFs and CG-SETFFs, we implemented 4-bit, 6-bit and 8-bit twist ring 

counters. Then, the same parameters as in Section 4.6.1 are used to simulate the circuits. Fig. 

4.15 shows the power comparison results for the SET-FF based and CG-SETFF based twist ring 

A D 

CP 

Figure 4.13: SET-FF based binary counter 



CHAPTER 4. DIFFERENTIAL CMOS SINGLE EDGE-TRIGGERED FLIP-FLOP 73 

counters. It can be seen that the counter, using the proposed flip-flops to build, has much smaller 

power than that using the conventional flip-flops. This is because there are many redundant 

transitions in the twisted ring counter, which are blocked by new flip-flops. Furthermore, it can 

be expected that the power savings become even more significant with the increase of the counter 
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Figure 4.14: Gate circuit implementation (a) 2 input NAND and its logic symbol; (b) 3 input 
NAND and its logic symbol; (c) XNOR and its logic symbol 
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bit number. The reason is that the redundant transitions increase with the bit number of the 

counter. For example, a possible state diagram for a 4-bit twisted ring counter could be as in 

Fig. 4.16, which has eight states. For each state transition between two states, only one bit 

needs to be changed while the other three stay at the same state. The redundant transition rate 

is 75%. For an 8-bit twist ring counter, it could be up to 87.5%. 
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Figure 4.15: Power dissipation for twisted ring counters: P1- SET-FF based counters; P2-CG­
SETFF based counters 

Figure 4.16: State diagram for a twisted ring counter 
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4.7 Summary 

A non-redundant transition clock chain for differential CMOS single edge-triggered flip-flops 

is presented. The experimental results show that compared to the conventional flip-flop, the 

proposed flip-flop can achieve significant power savings when the D switching activity is < 0.65. 

Reduction of power consumption can be as high as 86% when the input is idle. However, using 

PDP to measure them, the proposed flip-flop has higher energy efficiency than the conventional 

one when the D switching activity is < 0.4. Since the dual trail signals are provided by differential 

edge-triggered flip-flops, the additional circuit to implement non-redundant transition chain is 

simpler. In this design, the increased transistor count is 25% while in [100] it is 144%. Hence, 

the clock-gating technique is more suitable to differential edge-triggered flip-flops with clock­

racing than to level sampling flip-flops. The comparison is also made for some applications. The 

result shows that significant power savings can be obtained. However, the saving varies from 

application to application. 



Chapter 5 

Differential CMOS double 

edge-triggered flip-flops 

In a digital system, the sequential part is the main contributor to power dissipation. The reason 

is that one of the inputs to a sequential circuit is the clock pulse (CP) signal. Each CP has one 

rising transition and one falling transition in one CP period. Hence, the switching activity is 2. 

However, other signals in the circuit have at most one transition in one CP period if the glitches 

from signal racing are not taken into account. On the other hand, the load of CP is alway the 

highest in a digital system. For example, to distribute CPs and control the skew of CPs, one 

needs to build a clock tree which consists of buffers, which results in increasing the total node 

capacitance of a CP tree. As a result, research confirms that in a digital system 20-45 % of the 

power is consumed by CPs. 

However, traditional flip-flops are only triggered by a specific edge (rising edge or falling 

edge) of a CP, which is called Single Edge-Triggered Flip-Flops (SET-FFs). On the other edge, 

it is just wasteful to charge or discharge the capacitive load of the global clock line in a system. 

This is particularly true in CMOS because the dynamic power is the dominant power. Therefore, 

reducing the CP power consumption should reduce the total power dissipation for a system. If 

flip-flops can be triggered by two edges, then half of power dissipation from CPs can be saved. 

This leads to the design of double edge-triggered flip-flops [49]. 

76 
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5.1 Previous work 

The double edge-triggered (DET) idea was presented as early as 1981 [110]. At that time, 

it targeted high performance for flip-flops. With the increasing size of VLSI systems, power 

dissipation gained the equal priority to area and speed. The double edge-triggered idea was 

developed to reduce the power dissipation of VLSI systems [49][19]. 

Based on input sampling mode, DET flip-flops can be classified as level sampling and pulse 

sampling. Level sampling DET flip-flops can be implemented using two latches[49][19]. Two 

latches sample and store input signal alternatively under different clock phases. Pulse sampling 

flip-flops usually consist of one latch and one clock chain [102]. The clock chain is used to 

generate narrow pulses. The input signal is sampled during each narrow pulse. 

For differential DET-FFs, level sampling version has been proposed in [68][58]. The disad­

vantage of DET flip-flops has been the substantial increase in the number of transistors required 

to build such flip-flops compared to single edge-triggered (SET) flip-flops. For example, a typ­

ical SET-FF needs 16 transistors while DET flip-flop proposed in [58] needs 28 transistors. A 

recently proposed circuit in [68] needs 26 transistors, which is shown in Fig.5.1 and is called 

BALCS-DETFF. 

D 

D ., 

CK ----J>o---- CK 

Figure 5.1: Differential CMOS DET flip-flop proposed in [68]: BALCS-DETFF 
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5.2 Clock Chain Based Double Edge-Triggered Flip-Flop (CCB­

DETFF) using single latch 

Single-Edge-Triggered Flip-Flops (SET-FFs) change their states either at the rising edge or at 

the falling edge of the clock pulse. Take the differential CMOS SET-FF proposed in [72] for 

example. For convenience, it is redrawn in Fig. 5.2, which consists of a flip-flop cell and a clock 

chain. The clock chain generates a delayed CPl. Then, CP and C PI are applied to the cascaded 

transistors, m7 and m8, respectively, which generate a narrow pulse at every rising edge of each 

clock pulse. Hence, the flip-flop is triggered at the rising edge of the clock pulse. However, this 

design suffers from one disadvantage. The flip-flop responds only once per each clock pulse cycle. 

The other of the two clock transitions accomplishes nothing for the flip-flop. But this transition 

may cause transitions of some logic gates within the flip-flop, which consumes power. 
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Figure 5.2: Differential CMOS single-edge triggered flip-flop (SET- FF) 

To solve this problem, there are two solutions. One is to refrain from redundant clock 

transitions, which is proposed in [125]. The other is to use the other transition to change 

states. With both edges able to cause state transitions, the redundant clock transitions can 

be eliminated. Moreover, the clock period can be shortened since there is no need to wait for 

the clock signal to toggle. This is the design principle of Double Edge-Triggered (DET) scheme 

which enables a halving of the clock frequency and hence reduces power dissipation [49]. 
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5.2.1 CCB-DET flip-flop 

From Fig. 5.2, a clock chain consisting of three inverters can generate a delayed CP, CP3 . If 

we use four inverters to implement a clock chain, then four delayed CPs can be generated. The 

timing diagram is shown in Fig. 5.3 (b) where CP4 is a delayed CPl. If CP and CP3 are logically 

ANDed while C PI and C P4 are ANDed, then two narrow pulses corresponding to two edges of 

a clock pulse can be obtained as shown in Fig. 5.3. To even two narrow pulse width, W f L of 

transistors in the clock chain is taken as indicated beside four inverters. This can be proved as 

follows. 

If tl is the delay of a 4fl-inverter while t2 is the delay of a 8f2-inverter. Then the delay 

between CP3 and CP is: 

tcpa-cp = tl + 2t2 

Also, we have the delay between CPI and CP4 : 

tCP4-CPl = 2t2 + tl 

Hence, two narrow pulses have the same pulse width. 

The proposed double edge-triggered flip-flop cell is as in Fig. 5.4. There are two branches, 

which are composed of four transistors, m7, m8, m9 and mlO, at the common source terminal 

of the amplifier. CP and CP3 are used to control the gates of m7 and m8 to generate a narrow 

pulse corresponding to the rising edge of clock pulse while CPI and CP4 are used to control the 

gates of m9 and mlO to generate the other narrow pulse corresponding to the falling edge of 

clock pulse. In this way, the flip-flop can change its state triggered by two clock transitions. 



CHAPTER 5. DIFFERENTIAL CMOS DOUBLE EDGE-TRIGGERED FLIP-FLOPS 80 

5.2.2 Circuit simulations 

Circuit simulations are conducted using PSpice II with Level 3 at 5V, 1.0J-tm process. The 

transistor lengths are minimum for the above technology, while the widths are 8J-tm except those 

specified as follows. The widths of m7, m8, mg and mlO are l2J-tm while the sizes of m3 and 

m4 are W = 2J-tm, L = 4J-tm. The transistor sizes of the clock chain, which are expressed in 

W / L, are indicated beside the inverters in Figs. 5.2 & 5.3. These parameters are determined 
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Figure 5.3: Double edge pulse generation (a) Clock chain; (b) Timing diagram 
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for minimum power as stated in Section 4.2.2. The PSpice simulation shows that the proposed 

flip-flop has correct transition behavior as shown in Fig. 5.5. In Fig. 5.5, the transient behavior 

of the single edge-triggered flip-flop is also shown for comparison. 

The test bench in Fig. 4.9 is used to simulate circuits. Circuits in Figs. 4.7 & 5.2 are used to 

be reference circuits. Once again, six input cases, the switching activity of 0, 0.2, 0.4, 0.6, 0.8, 

1.0, are considered to test the power dissipation of circuits. However, to get the same output 

throughput as the double edge-triggered flip-flop does, the clock frequency to the SET flip-flops 

should be 100MHz while the clock frequency for the DET counterpart is 50MHz. The results 

are shown in Fig. 5.6 and Table 5.1. 

Table 5.1 shows the power saving rate compared to SET-FF in Fig. 5.2. From Fig. 5.6, it 

can be seen that CCB-DETFF always has lower power dissipation than SET-FF with different 

input switching activities. However, the saving rate varies with the input switching activity 0:. 

From Table 5.1, when 0: = 0, the saving rate is up to 44.7%. Ideally, the saving rate should 

be 50% because the clock frequency is reduced half and the power is consumed mainly by the 

clock chain. The reason which is not equal to 50% is that two cascaded transistors, m9 and m10, 

and the extra inverter in the clock chain consumes the power. When 0: = 1.0, the saving rate 

is reduced to 20.8% from 44.7% when 0: = O. This is because the flip-flop cell also consumes 

significant power and the weight of the clock power in the total power is decreased. 

Table 5.1: Power savings compared to the circuit in Figs.4.7 & 5.2 
Switching activities (0:) 0 0.2 0.4 0.6 0.8 1.0 

SETFF (%) 0 0 0 0 0 0 
CG-SETFF (%) 86.5 54.2 28.4 5.5 -14.8 -30.1 

CCB-DETFF (%) 44.7 37.7 30.8 27.3 23.7 20.8 

From Fig. 5.6, among three flip-flops, CG-SETFF has the lowest power dissipation when 

0: < 0.38 while CCB-DETFF has the lowest power dissipation when 0: > 0.38. In addition, 

SET-FF uses 20 transistors while CG-SETFF uses 25 transistors. However, CCB-DETFF uses 

24 transistors. 
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CCB-DETFF in Fig. 5.4 
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5.3 Pass Transistor Based Differential CMOS Double Edge-Triggered 

Flip-Flop (PTB-DETFF) 

5.3.1 Voltage scaling property for CCB flip-flops 

A common disadvantage for the above designs is that there are cascaded transistors in the 

common source terminal of the differential amplifier (briefly called clocked transistor), which 

introduces the extra resistance. This degrades the input threshold of the amplifier. This is 

investigated by measuring the input threshold versus the gate voltage of the clocked transistors 

in Fig. 5.2. The experiment is conducted as follows. 

DC characteristic of the circuit in Fig. 5.2 is simulated using PSpice with 1 urn technology 

and 5V power supply. The Input Threshold Voltage (lTV) is defined as the input voltage when 

the output high level of the circuit is 2.4V. Varying the gate voltage of clocked transistors, the 

lTV versus the gate voltage is measured. Then, reduce the number of clocked transistors in 

Fig. 5.2 to one and repeat the above experiment. For the simplification, the former circuit is 
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Figure 5.6: Power dissipation versus switching activities: Pl- result for Fig. 5.2; P2-result for 
Fig. 4.7; P3-result for the proposed circuit 
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called Cir2ct while the latter Circt. The results are shown in Fig. 5.7. It can be seen that the 

circuit, Circb which has one clocked transistor has lower lTV than the circuit, Cir2ct, which has 

two clocked-transistors and furthermore the former is still workable when the gate voltage of the 

clocked transistor is 2.0V . 
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Figure 5.7: Input threshold voltage versus gate voltage of clocked transistors. NB: Vth-Two 
stands for threshold voltage of Cir2ct while Vth-One for that of Circt 

This confirms that the cascaded transistors in the common emitter degrade the lTV of the 

amplifier. From Fig. 5.7, it also shows that reducing the gate voltage of clocked transistors has 

less effect for the lTV of Circt than for that of Cir2ct. The lTV will increase fast when the gate 

voltage of the clocked transistors is reduced to 4.0V for Cir2ct. However, for Circt, the lTV 

remains the same when the gate voltage is reduced to 2.0V. Hence, it is possible for Circt to 

use low clock swing, which will significantly save the clock power. As known, dynamic power is 

proportional to voltage squared. Hence, a good voltage scaling property is important to design 

a low power differential flip-flop. 
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5.3.2 PTB-DETFF circuit 

The proposed circuit is based on the following idea. If a narrow pulse corresponding to each 

edge of clock pulse is available, the two cascaded transistors in the common source terminal in 

Figs. 5.2 & 5.4 can be substituted by one transistor. Then the input threshold degrading can 

be avoided. Furthermore, if two narrow pulses corresponding to two edges of the clock pulse are 

generated to drive the transistor, double edge-triggered differential flip-flop can be implemented. 

Narrow pulses can be generated by the clock-racing. A possible scheme is shown in Fig. 5.8. 

There, C P1 is a delay C P and the delay time is determined by two cascaded inverters. If they 

are input into an XOR gate, then narrow pulses (N Ps) corresponding to two edges of clock pulse 

can be obtained. This is explained in Fig. 5.8. 

CP 

CP 

CPl 

NP 

Figure 5.8: Narrow pulse generating scheme 

Using transmission transistors, a possible circuit implementation is shown in Fig. 5.9 (a). All 

branches are ANDed together as the output. From Fig. 5.8, CP & CP1 have four combinations, 

namely 00,10,11 & 01, labelled as A, B, C & D respectively. As known, transmission of a logic 

zero is not degraded through nMOS transistor while transmission of logic 1 is not degraded 

through pMOS transistor[118]. Take Case A for example to analyze the working principle of the 

circuit. For Case A, CP = 0 and CP1 = o. CP is applied to the input of pass transistor mt4 

while CP2 = 1, inverted CP1 , is applied to the gate of mt4. Then, logic zero is transmitted to 

the output of mt4. The other cases can be analyzed similarly. However, it should be noticed 

that narrow pulse width is widened because of the delay of inverter 3. Hence, when determining 

the parameters of inverter 3, this factor should be considered. 

Having this pulse generator, the flip-flop cell can be as shown in Fig. 5.9 (b) where only one 
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transistor m7 is required at the common source terminal. Because the generator only drives one 

nMOS, the driving capability of Fig. 5.9 (a) is not a problem. 

5.3.3 Circuit simulations 

Circuit simulations are conducted using PSpice II with level 3 at 5V, 1{l technology and 50MHz 

clock. The transistor lengths are minimum for the above technology, while the widths are 8{lm 

except those specified as follows. The widths of m7 and m8 are 12{lm while ones of mtl, mt2, 

mt3 and mt4 are 2{lm. The sizes of m3 and m4 are W = 2{lm, L = 4{lm. The transistor sizes 

of the clock chain, which are expressed in W / L, are indicated beside the inverters in Fig. 5.9. 

These parameters are determined for optimizing the power. The PSpice simulation shows that 

the proposed flip-flop has correct transition behavior as shown in Fig. 5.10. 

The test bench in Fig. 4.9 is used to simulate the circuits and the same methodology 

is followed. Average power dissipation is measured when each output is loaded with CL = 

O.lpicofarad. Four input sequence cases are considered: Case 1, Case 2, Case 3 and Case 4. 

Case 1 has an input change at every clock phase while Case 2 has an input change at every-other 

clock phase. Case 3 and Case 4 are constant but with a glitch at every and every-other clock 
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Figure 5.9: Proposed differential CMOS double edge-triggered flip-flop (DET-FF) (a) Narrow 
pulse generator; (b) Double edge-triggered flip-flop cell; (c) Logic symbol 
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phase, respectively. The power dissipation is evaluated for a time period of 400 ns. The power 

spent on output loads is excluded from the total power to get a fair picture of the power behavior 

of the circuit. 

The same PSpice simulator and 1tt technology are used to simulate SET-FF circuit given in 

Fig. 5.2. However, to get the same output throughput as the double edge-triggered flip-flop, the 

clock frequency to the single edge-triggered flip-flop should be 100M Hz. 

Table 5.2 shows power reduction compared to the power dissipation of the circuit in Fig. 5.2, 

which includes clock power dissipation. It can be seen that the proposed circuit has significant 

power savings compared to the single edge-triggered counterpart. However, the power saving is 

not equal to 50%. The reason is that three extra pass transistors consume power. 

Table 5.2: Power dissipation comparison between SET-FF and PTB-DETFF 
Input sequences Case 1 Case 2 Case 3 Case 4 

SET-FF in Fig. 5.2 (ttW) 489.7 383.3 279.2 240.2 
PTB-DETFF in Fig. 5.9(ttW) 318.9 231.7 175.0 155.4 

Power Reduction (%) 34.9 39.6 37.3 35.3 

Table 5.3 shows the property of voltage scaling for two circuits. Case 2 is chosen as a test 

sequence. It can be seen that the proposed circuit has better property of voltage scaling. The 
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Figure 5.10: Transition behavior of the propose circuit 
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proposed circuit can work well even if the supply voltage is as low as 1.2V while the circuit in 

Fig. 5.2 does not work when the supply voltage is lower than 1.8V. It can also be seen that the 

power reduction for the proposed circuit is up to 39.2% compared to the single edge-triggered 

one under workable supply voltages. The area penalty is that PTB-DETFF needs 3 transistors 

more than SET-FF. 

Table 5.3: Voltage scaling property between SET-FF and PTB-DETFF 
Supply voltage (V) 3.0 2.0 1.8 1.5 1.2 

SET-FF in Fig.5.2(ttW) 120.7 50.3 40.6 - -
PTB-DETFF in Fig. 5.9(ttW) 74.2 31.1 24.7 16.6 6.9 

Power Reduction (%) 38.5 38.2 39.2 - -

Then, BALCS-DETFF in Fig. 5.1 is simulated using 1tt technology. The width of transistors 

is 8ttm while the length is minimum. The experiment is carried out as follows. Under the specified 

power supply voltage, the minimum clock swing is determined. Then the power is measured with 

corresponding input switching activities. Two power supply voltages, 5.0v and 2.5v, are selected. 

The results are shown in Table 5.4. In the table, the second row gives the minimum clock swing 

for given power supply voltage. The third row gives the input switching activities while the 

fourth row gives the measured flip-flops. The fifth row gives the power dissipation. The most 

bottom row shows the power reduction compared to BALCS-DETFF. 

Table 5.4: Voltage scaling property between BALCS-DETFF and PTB-DETFF 
- -

Power supply (V) 5.0 2.5 
Mini Vclock swing (V) 2.0 1.4 
Switching activities a = 1.0 a=0.5 a = 1.0 a=0.5 

DETFFs BALCS I PTB BALCS I PTB BALCS I PTB BALCS I PTB 
Power (ttW) 402.4 I 298 242.5 I 231.9 88.3 I 71.9 53.5 I 51.1 

Power reduction (%) 25.9 4.4 18.6 4.5 

Both flip-flops have the same minimum clock swing under the same power supply. With 

a = 1.0 and power supply 5.0v, the power reduction of PTB-DETFF can be up to 25.9% 

compared to BALCS-DETFF in Fig. 5.1. The reason is that when a clock is "high" at the 

voltage of Vclock, two clocked pMOS transistors in Fig. 5.1 do not switch off completely, leaving 

leakage current flow through either of two clocked pMOSs. However, PTB-DET flip-flop has 

no such problem. With a = 0.5, the power reduction is 4%, which is much smaller than the 
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case a = 1.0. This is because PTE-DETFF has a long clock chain with pass transistor branches, 

which consumes significant power and this is taken into account. When the input signal has lower 

switching activity, the weight of the clock power cell in the total power is increased and dominates, 

which results in the decrease of the power savings. This can be confirmed by experiments. Table 

5.5 shows clock power and flip-flop cell power for BALCS-DETFF and PTB-DETFF. The rate 

of clock power to cell power for PTB-DETFF is 0.69:1 when a = 1.0 while it goes up to 1.37:1 

when a = 0.5. However, for BALCS-DETFF, it is 0.09:1 when a = 1.0 while it is 0.17:1 when 

a 0.5. There are two solutions to further reduce the clock power. One is to refrain the 

redundant clock transitions, which is proposed in [125]. The other is that a number of flip-flops 

share a clock driver so that the clock power for each flip-flop is reduced [102]. Hence, if this 

is taken into account, the power saving for PTB-DETFF is even more significant compared to 

BALCS-DETFF. 

Table 5.5: Power dissipation from clock chain and flip-flop cell with VDD = 5.0V and Vclock = 
5.0V 

Switching activities a = 1.0 a= 0.5 
Power Clock power Cell power Clock power Cell power 

BALCS-DETFF (ttW) 26.4 301.0 26.2 150.6 
PTB-DETFF (ttW) 131.9 192.4 133.8 97.9 

Finally, it is noticed that PTB-DETFF only uses 23 transistors while BALCS-DETFF needs 

26 transistors. Compared with BALCS-DETFF, the area saving of the proposed circuit is 11.5%. 

5.4 Summary 

Two differential CMOS double-edge triggered flip-flops, CCB-DETFF and PTB-DETFF, are 

proposed in this chapter. CCB-DETFF could be the complementarity of the CG-SETFF to 

design a low power system when the input switching activity is greater than 0.38. However, 

further work needs to be done on how to design a system using both SET-FFs and DET-FFs. 

PTB-DETFF is composed of a narrow pulse generator and a flip-flop cell. It only needs one 

clocked NMOS transistor for the flip-flop cell. Hence, PTB-DETFF has good properties of 

voltage scaling and clock swing scaling, which are very important to design a low power system. 



Chapter 6 

Multi-valued flip-flop approach 

In the binary logic, the logic 1 is nearly set to the supply voltage Vdd. Each charging or discharging 

to a node consumes ~vldCL' Hence, reducing Vdd is reducing logic level voltage and is an efficient 

approach for low power design. However, there are some limitations to further scale down Vdd 

as discussed in Section 1.2.2. If high supply voltage Vdd is still used and multiple logic levels 

are set between 0 and Vdd, then logic level voltage between two adjacent logic values can be 

reduced. Power dissipation for each charging and discharging to a node can be reduced. Take 

quaternary logic for example. If Vdd = 5V, then four logic levels can be: 5V (VDD), 3.33V 

(2VDD/3), 1.67V (VDD/3), and OV (Vss). Corresponding logic values will be {3, 2, 1, O}. Each 

charging or discharging to a node transitioning between two adjacent logic levels only consumes 

~(~Vdd)2CL' From the signal transmission and storage point of view, using multi-valued signal 

can reduce transmission capacitance and result in power saving or improve transmission speed. 

Fig. 6.1 shows a comparative result to transmit an eight bit binary signal 01110010 transmitted in 

parallel and serial in binary and quaternary valued logic. Fig. 6.1(a) shows that using quaternary 

signal only half of signal lines are needed and hence transmission capacitance can be reduced 

while 6.1(b) shows that transmission time can be reduced to half. 

Furthermore, multiple valued logic may resolve the serious pin-out problems encountered in 

some VLSI circuit designs since if signals are used in four or more states rather than only two 

the pin-outs could be reduced to less than half. Many logical and arithmetic functions have been 

shown to be more efficiently implemented with multiple valued logic because fewer operations, 

90 
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gates, signal lines, etc. are required [31]. Yet, for multiple valued logic to be in wide use the 

key problem is to design a less complicated multiple valued memory [112]. In recent years, many 

ingenious multiple valued flip-flops (MVFFs) have been proposed [31][82][121][122][132]. 

Hence, multi-valued flip-flops may be a new approach to design low power flip-flops. However, 

as a first step, the structure should be explored. 

Looking at previous research, it can be seen that multiple valued flip-flop designs are analo-

gous to binary flip-flops and have the following three characteristics. 

(1) Structurally, MVFFs have similar characteristics to their binary counterparts and usually 

are the extension of their binary version. 

(2) Functionally, the next state behavior of the MVFFs are derived from their binary coun-

terpart. 

(3) In terms of working mode, the state transition is controlled by a binary clock pulse (CP), 

which is similar to their binary counterpart as well. 

The third characteristic contradicts the aim of using multiple valued signals to increase in-

formation content. Since all signals used in multiple valued circuits are multiple valued, the 

clock signal should be multiple valued as well. For example, to a quaternary flip-flop, the clock 

signal should be CP E {O, 1, 2, 3} rather than a binary signal. In order to increase information 

content of the clock signal, ternary clock signal has been proposed by Wu [122]. There, besides 

the standard binary clock signal, an additional signal is used to implement the preset function. 

This effort, however, did not change the basic working mode of the MVFFs which are controlled 

by a binary clock signal. In this paper, a new MVFF, controlled by a multiple valued clock pulse, 
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Figure 6.1: Comparison between binary and quaternary signal transmission. (a) Parallel trans­
mission; (b) Serial transmission 
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is proposed. 

6.1 Traditional Binary OP (BCP) controlled multiple valued mas­

ter slave flip-flops in series 

Similar to binary master slave flip-flops, the structure of multiple valued master slave flip-flops 

is composed of two multiple valued latches in series and controlled by two inter-inverting binary 

clock signals. The logic design of multiple valued latches can be classified by whether they have 

transmission switches or not [133]. If not, the logic structure can be implemented by crossing 

feedback from outputs to inputs. If yes, it can be implemented by employing the logic structure 

of buffers with controlling switches. A quaternary CMOS master slave D flip-flop is proposed 

by Prosser [82], which is composed of two quaternary buffers and two 2 to 1 multiplexers as 

in Fig. 6.2(a). Here, D is the inciting input, Q is the output, CP is the clock pulse, and 

Q, D E {O, 1, 2, 3}, CP E {O, 3}. Its working principal is: CP = 3, the input of the master 

latch receives the input signal D while the slave latch is in the storing state, and vice versa when 

CP = O. Hence, the state transition of the flip-flop happens at the falling edge of CP (3 -+ 0) 

and the next state equation is Qf = D. Because it is composed of two quaternary latches in series 

and controlled by a binary CP, it is called a binary clock pulse (BCP) controlled quaternary 

master slave flip-flop in series. Fig. 6.2 (b) shows a binary shift register, which is composed 

of two D flip-flops of the type in Fig. 6.2 (a). The output of the shift register is expressed as: 

Q" = D. It means that after two falling edges of CP the output equals the original inciting input 

signal D. 

With this traditional design, a shift register of n digits is able to store n quaternary signals 

in series, and is composed of 2n quaternary flip-flops controlled by a binary CPo 
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6.2 Multiple valued CP (MVCP) controlled multiple valued flip­

flops in parallel 

Under the control of two levels in a CP, the master slave flip-flop shown in Fig. 6.2 (a) is in 

receiving and storing states alternately so that its "invalid toggle" is avoided. This meets the 

requirement of one state transition each CP for flip-flops. However, if two latches are connected 

in parallel rather than in series, then one latch receives the input signal while the other stores and 

outputs the stored signal. If CP is multiple valued such as a quaternary valued signal, the four 

levels can be used to select four latches to work alternately, that is, one of them is in the receiving 

state while the others are in storing states. This methodology is used to design multiple valued 
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Figure 6.2: BCP controlled quaternary master slave D flip-flop in series and two digit quaternary 
shift register (a) BCP controlled quaternary master slave D flip-flops in series; (b) Two digit 
quaternary shift register; (c) Logic symbols 
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CP (MVCP) controlled multiple valued parallel flip-flops which are proposed in this chapter. 

Based on the above observation, a quaternary D flip-flop can be constructed as shown in Fig. 

6.3 (a). It consists offour 2 to 1 multiplexers, four quaternary buffers, one quaternary threshold 

function generator and one 4 to 1 multiplexer. The implementation of those components can be 

found in the published literature [122][133][121]. Take the 4 to 1 multiplexer for example. If four 

transmission gates are controlled by four outputs of a quaternary threshold function generator, 

its circuit implementation is shown in Fig. 6.3 (b), where all inverters are binary. 
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Figure 6.3: Logic structure of MVCP controlled multiple valued flip-flop in parallel (a) Logic 
circuit; (b) Logic symbols 
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The working principal of the flip-flop in Fig. 6.3 (a) is: for any of the four values of the 

quaternary C P, one of the four latches receives the input signal D while the others are at storing 

states. The 4 to 1 multiplexer selects anyone latch at storing state and its stored state becomes 

the output of the flip-flop. For the specific connection in Fig. 6.3 (a), when CP = 0, latch 1 

receives the input signal and latch 2 outputs the stored signal; when CP = 1, latch 2 receives 

the input signal while latch 3 outputs the stored signal; when CP = 2, latch 3 receives the input 

signal and latch 4 outputs the stored signal; when CP = 3, latch 4 receives the input signal and 

latch 1 outputs the stored signal. Hence, if the clock pulse changes from ° -+ 1 -+ 2 -+ 3 -+ 0, the 

stored signal when CP = ° can be output when CP = 3. Let Ql, Q2, Q3, Q4 be initial states 

for four latches, Ql, Q2, Q3 and Q4 respectively. During the first three upward level transitions 

of the CP, the outputs will be Q2, Q3, Q4, respectively. Therefore, the next state equation of 

the D flip-flop shown in Fig. 6.3 (a) is expressed as: 

Q"' = D (6.1) 

The above equation states that the input signal will be output in three level transitions during 

one CPo 

6.3 Circuit implementation 

The circuit implementation principle of all the components in Fig. 6.3 can be found in the 

published literature [122][133][121]. However, their corresponding CMOS circuits will be imple­

mented here based on transmission switch theory[122]. 

In the transmission switch theory, two algebraic systems are developed: Switching algebra to 

describe switching state with variable E{T, F} and signal algebra to describe signal value with 

variable E {O, 1,2, 3} if quaternary valued logic is taken for example. Two sets of connection 

operations are introduced. The first set is for describing the physical process of how the signal 

controls the state of an element. They are defined as follows. 
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Definition 6.1. High-threshold comparison operation 

'X: { : 
if x> t 

if x < t 

Definition 6.2. Low-threshold comparison operation 

xt == { T if x < t 
F if x> t 

where x is control signal and t E {a.5, 1.5, 2.5}. 

96 

(6.2) 

(6.3) 

The second set is for describing how the state of a MOS transistor decides whether the source 

signal is transmitted to the drain or not. 

Definition 6.3. Transmission operation 

C * a == { C if a = T 

<I> if a = F 
(6.4) 

where <I> describes the high-impedance state, c is called transmission source and a is the 

switching state of a transmission switch network. 

Definition 6.4. Union operation 

Cj H" #0, * C<2 : { 
Cl * al 

C2 * a2 

if C2 * a2 = <I> 

if Cl * al = <I> 

(6.5) 
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In equation 6.5, the case CI =I C2 and al = a2 = T is not allowed because a voltage conflict 

arises between sources cland C2. In addition, the transmission operation * takes priority over the 

union operation #. Based on the above definitions and some derived properties, the function 

expression can be obtained according to the logic functionality. Take a threshold 1.5 inverter 

for example. The logic functionality is that if x < 1.5 the output will be 3 while if x > 1.5 

the output will be O. Then, Taking threshold t = 1.5, low-threshold comparison operation and 

high-threshold comparison operation can be used to describe cases x < 1.5 & x > 1.5. Hence, 

based on definitions 6.4 & 6.5, the function expression is: 

x(1.5) = 3 * x1.5#O *1.5 x (6.6) 

Take case x < 1.5 for example to explain the above equation. When x < 1.5, x1.5 = T while 

1.5x = F' since 1.5x = F O*1.5 x = <p' based on union operation x(l 5) = 3*x1.5. since x1.5 = T , " ,.,' 
x(1.5) = 3. According to the action principle of MOS transistors, when x < 1.5, a source voltage 

of 3 must be transmitted by a pMOS transistor while when x > 1.5 a source voltage of 0 must be 

transmitted by an nMOS transistor. Hence, the circuit realization of the threshold 1.5 inverter 

can be constructed as shown in Fig. 6.4. In Fig. 6.4, the number beside the transistor denotes its 

on threshold. Thus, the circuit implementation with pMOS and nMOS transistors easily follows 

based on the given function representation. 

Similarly, the function expressions of all the logic components in Fig. 6.3 can be obtained as 

follows: 

• Quaternary 2 to 1 multiplexer 

Y2tol = Yo * x1.5#YI *1.5 X (6.7) 

• Quaternary reshaper function 
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x res = 0 * xO.5#1 *0.5 x1.5#2 *1.5 X2.5#3 *2.5 X 

• Threshold function Y xY 

Y xY = { 0 Y =1= x 

3 y = x 

Here, x, y E {O, 1, 2, 3}. Then, the function expressions are: 

0xo = 3 * xO.5#O *0.5 x 

lXl = 3 *0.5 x1.5#O * (xO.5#1.5 x ) 

2X2 = 3 *1.5 x2.5#O * (x1.5#2.5 x ) 

3~_151-x~ ~. x(15) 

0-11.5 I 

(a) 

x -8>0-- x(1.5) 

(b) 

Figure 6.4: Threshold 1.5 inverter (a) Circuit implementation; (b) Logic symbol 
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3 X3 = 3 *2.5 X#O * X2.5 (6.13) 

• Quaternary 4 to 1 multiplexer 

Y4tol = Yo * XO. 5#Yl *0.5 X1.5#Y2 *1.5 X2.5#Y3 *2.5 X (6.14) 

Their corresponding circuit implementations are shown in Fig. 6.5. However, for threshold 

functions, only the implementation of °xo is shown to save space. In addition, for quaternary 4 

to 1 multiplexer, if four threshold function signals from four threshold function generators are 

used, a simpler modified circuit can be obtained as shown in Fig. 6.5 (d). Then, the CMOS 

circuit of the flip-flop in Fig. 6.3 can be constructed. 

6.4 Experimental results 

The proposed flip-flop in Fig. 6.3 has been simulated using PSpice with a supply voltage of 5V 

for 0.5 f-lm technology. The SPICE parameters for a generic 0.5f-lm process are shown in Table 

6.1. 

Table 6.1: SPICE parameters for a generic 0.5f-lm process 
.MODEL CMOSN NMOS LEVEL=3 PHI=O.7 TOX=10E-09 XJ=O.2U TPG=l 
+VTO=O.65 DELTA=O.7 LD=5E-08 KP=2E-04 UO=550 THETA=O.27 RSH=2 
+GAMMA=O.6 NSUB=1.4E+17 NFS=6E+ll VMAX=2E+05 ETA=3.7E-02 
+CJ=5.6E-04 MJ=O.56 CJSW=5E-ll KAPPA=2.9E-02 CGDO=3.0E-10 
+CGSO=3.0E-10 CGBO=4.0E-10 MJSW=O.52 PB=l 
.MODEL CMOSP PMOS LEVEL=3 PHI=O.7 TOX=10E-09 XJ=O.2U TPG=-l 
+ VTO=-O.92 DELTA=O.29 LD=3.5E-08 KP=4.9E-05 UO=135 THETA=O.18 
+RSH=2 GAMMA=O.47 NSUB=8.5E+16 NFS=6.5E+ll VMAX=2E+05 
+ETA=2.45E-02 KAPPA=7.96 CGDO=2.4E-10 CGSO=2.4E-10 CGBO=3.8E-10 
+CJ=9.3E-04 MJ=O.47 C.JSW=2.9E-10 MJSW=O.505 PB=l 

Four logic level voltages are set to: 5V (VDD), 3.33V (2VDD/3), 1.67V (VDD/3), and OV (Vss). 
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For all nMOS devices, W / L = 4p..m/0.5p..m, while for all pMOS devices, W / L = 8p..m/0.5p..m. 

The PSpice simulation shows correct circuit operation as shown in Fig. 6.6. 

0--------, 

~ =fG>03:: 1-Y
2
"1 

x T I ""/" '-../ T ,.---- xres 

2 

Yl 
11 " 

3 

(a) (b) 

I ~.~ 

Yo I r--... >< 

Yl II ~ rL_ 
f 

Y4tol 

Y2 I I I 11.5 

3 

I 
Y3 I I I I 8>0 f15 

1.5 

x , °xo 

0--- °xO IXI 2X2 3X3 

(c) (d) 

Figure 6.5: Circuit implementation (a) Quaternary 2 to 1 multiplexer; (b) Quaternary reshaper; 
(c) Threshold function generator; (d) Quaternary 4 to 1 multiplexer 
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The performance is measured when output is loaded with C = O.lpicofarad. The circuit 

with heavy capacitive load is to estimate its driving capabilities. The clock-to-Q time is measured 

from the 50% point of the clock logic-level transition of the associated output transition. The 

clock-to-Q time for the best-case output transition from logical-One to logical-Zero is 0.15ns 

while the time for the worst-cased from logical-'IWo to logical-One is 0.59ns. The rising time 

and falling time are measured from the 10% point to 90% point of the transition level, which 

borrows from the conventional definition in the binary logic measurement. It can be seen that 

the falling time is much longer than the rising time for this design. Table 6.2 shows the average 

value. 

Table 6.2: Performance measurement of the MVFF (ns) 
Transition of logic levels Clock-to-Q time Rising time Falling time 

0++1 0.25 0.14 0.34 
1++2 0.42 0.05 0.14 
2++3 0.29 0.06 0.06 
0++2 0.28 0.24 0.17 
1++3 0.27 0.08 0.25 
0++3 0.33 0.08 0.11 
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Figure 6.6: PSpice simulation of the proposed flip-flop 
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A comparison for the storage capacity between the MVCP controlled quaternary D flip-flop 

in Fig. 6.3 and the two-digit shift register in Fig.6.2 (b) can be made. They use the same number 

of latches. However, the former can output a four digit quaternary signal in one clock cycle while 

the latter can only output a two digit quaternary signal in two clock cycles. The reason is that 

the proposed flip-flop can receive input signal when the quaternary CP takes any of its four 

values while the latter can only do so when CP = 3. 

Average power dissipation is measured with 5V and 50MHz clock for the proposed circuit and 

evaluated for a time period of 200ns, which is 1.49mW. For the fair comparison of the proposed 

circuit and that in Fig. 6.2, the same PSpice simulator and 0.5um technology are used to simulate 

the circuit in Fig. 6.2. The power dissipation is 2.56mW with 5V and 200MHz clock. The reason 

of using 200MHz clock is that BCP based flip-flop samples the input date only when CP = 3 

and the same data throughput as that of the proposed circuit is required. The power reduction 

is 41.3% with the area trade of 29.8%. 

Table 6.3: Area and Power dissipation for the proposed circuit and the circuit in Fig. 6.2(b) 
No of Transistors Power dissipation (mW) 

Circuit in Fig. 6.2(b) 80 2.56 
Proposed circuit 114 1.49 

Improve (%L -29.8 41.8 
--

6.5 Summary 

In this chapter, the present BCP controlled multiple valued master slave flip-flops in series are 

analyzed first. Then MVCP controlled multiple valued flip-flop in parallel is proposed. Based on 

transmission switch theory, the CMOS circuit of the proposed flip-flop is implemented. PSpice 

simulation shows that it has the correct operation. Although only the quaternary D flip-flop is 

designed, the result can be extended to the design of ternary and higher radix flip-flops. This 

design changes the traditional design method of multiple valued flip-flops. It uses each level of 

a quaternary clock signal to receive an input signal, which makes the logic structure of multiple 

valued flip-flops more flexible. The proposed flip-flop has the following characteristics: 

1. Employing multiple valued clock signal ensures the consistency of processing signals for 
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multiple valued flip-flops, which eliminates the requirement to provide the same circuit with both 

multiple valued signals and binary signals. 

2. An n-valued CP controlled n-valued flip-flop can shift out an n-digit n-value signal during 

one upward clock cycle while a BCP controlled multiple valued flip-flop can only shift out one­

digit n-valued signal during one binary clock cycle. The proposed circuit is characterized by 

reduced power dissipation. 

3. Because there are possibly multiple connections between each latch and the output multi­

plexer, various logic functions can be obtained by changing the connections, which adds flexibility 

to the design of the flip-flops. 



Chapter 7 

Low power XOR gate decomposition 

7.1 Introduction 

With the rapid increase in the density and the size of chips and systems, power dissipation 

is becoming critical concern in VLSI design. Since CMOS technology is predominant in the 

realization of today's ICs and CMOS devices are intrinsically low-power consuming, CMOS 

has become the reference technology. Power dissipation in digital CMOS circuits is dominated 

by dynamic dissipation, which results mainly from the charging and discharging of the node 

capacitances [89]. It can be modeled as in equation 7.1 

1 2 '" Power = 'iVddfdk L.J CiSAi (7.1) 
i 

where Vdd is the supply voltage and fdk is the clock frequency which are determined by the 

technology, Ci is the physical capacitance at the output of the node (i is the node number) and 

SAi (referred to as the switching activity) is the expected number of output transitions per clock 

cycle[131]. The summation is taken over all nodes of the logic circuit. As is known, Ci and SAi 

can be optimized during the design process. 

Logic functions can be expressed canonically based on AND JOR (NAND & NOR) operators. 

Extensive research has been done on developing low-power techniques in AND JOR or NAND 
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& NOR based circuits [91]. However, in certain applications, XOR realizations have attractive 

advantages over the conventional AND JOR NAND&NOR logic especially for functions which do 

not produce optimization solutions based on these operators. The XOR circuit is easier to test 

and may require fewer gates and interconnections [3]. Unfortunately, the techniques for synthesis 

and optimization of logic based on Reed-Muller are much more difficult than those based on the 

standard Boolean expressions. 

With recent development and increasing use of various field programmable gate array (FPGA) 

devices[21] where the XOR gate is already manufactured as a basic component, synthesis and 

optimization of XOR gate based circuits are receiving much more attention than before. More 

recently, there has been some success in achieving area reduction by employing optimization 

techniques specifically targeted towards initial AND jXOR representations in the well known 

Fixed Polarity Reed Muller ( FPRM) form [114][107]. The low power optimization of XOR gate 

based circuits is still in its infancy. 

In technology mapping, the subject net list is usually first decomposed into a netlist composed 

of only inverters and two-input XOR gates. The decomposition can have a significant impact on 

the power dissipation of the final implementation [74][131]. Looking at the existing work done 

by Narayanan and Liu [74] and Zhou and Wong [131]' the former is for static logic and the latter 

is for dynamic logic. However, as we will show later, the algorithms in [74][131] are not optimal. 

In this chapter, we will deal with the low power XOR gate decomposition problem. 

The rest of this chapter is organized as follows. In section 7.2, some definitions and termi­

nology are introduced. In Section 7.3, some previous work is reviewed. Section 7.4 presents a 

new algorithm for low power XOR gate decomposition while Section 7.5 shows the experimental 

results. Finally, a brief summary is given in Section 7.6. 

7.2 Definitions and terminology 

To implement a complex function involving many inputs, a form of decomposition into smaller 

subfunctions is required such that the subfunctions fit into the primitive elements to be used in 

the implementation. 
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Definition 7.1. Low power XOR gate decomposition: a multi input XOR gate is decomposed 

into a tree of two-input XOR gates, which is of optimal power dissipation. 

A tree is defined by the following definition. 

Definition 7.2. Let T = (V,E) represent a decomposition tree, and Pr(v), for any v E V, 

denotes the output signal probability of node v. Each node has two children. The primary 

inputs are called leaves of the tree and the primary output is called the root of the tree. 

Each primary input signal into a tree is treated as a random variable and its probability is 

defined as follows. 

Definition 7.3. Signal probability for signal x is defined as the probability of x being 1. 

To estimate the power dissipation of a tree, according to equation 7.1, Ci and SAi need to 

be known. Each node in the tree corresponds to a two-input XOR gate. Suppose Ci is constant 

for each two-input XOR gate. Then, the only parameter we need to compute is SAi . 

Under the assumptions of zero delay model with temporal and spatial independence [74][131], 

given input signal probabilities and a decomposition tree, the probabilities of internal signals can 

be computed according to the following definition of XOR operator. 

Definition 7.4. XOR operator: f(Xl, xo) = Xl El7 Xo = XlXO + XlXO if Xl and Xo are two input 

variables. Hence, the probability of f(Xl, xo) is as shown in equation 7.2 [74][131]: 

PrJ = Pr(Pr,xl ,Pr,xQ) = Pr,xl + Pr,xQ - 2Pr,X1Pr,XQ (7.2) 

The calculation of the corresponding switching activity depends on whether the circuit is 

implemented static logic (which does not take into account the timing behavior and is strictly a 

function of the topology and the signal statistics) or in dynamic logic (which takes into account 

the timing behavior of the circuit). 

For static logic, the transition probability assuming independent inputs is the probability 

that the output will be in the zero state multiplied by the probability that the output will be in 
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the one state. For example, if the signal probability being zero is Po and Pi represents the signal 

probability being one, the transition probability from zero to one is prO -+ 1] = POPi = po(1- po). 

In general, for a digital signal, pro -+ 1] is equal to p[1 -+ 0]. Therefore, the switching activity 

for gate i can be expressed as 7.3 [131] 

SAi = Pr,i[O -+ 1] + Pr,i[1 -+ 0] = 2Pr,i(1 - Pr,i) (7.3) 

The main difference between static logic and dynamic logic is that dynamic CMOS works 

using a precharging circuit. The output of a circuit can be precharged high or low then the 

resulting value is evaluated in each clock cycle. Therefore, the output transition probability does 

not depend on the sate of the inputs but rather on just the signal probabilities[24]. There are 

two implementation models, which are precharged to 0 or 1 and evaluated to the result value. 

Take the former for example, that is, a gate output is first precharged to 0 at the leading edge 

of the clock signal and then evaluated to the result value at the falling edge. Therefore, if the 

output probability is Pr,i, the switching activity for gate i will be 2Pr,i where one Pr,i comes 

from the precharging and one Pr,i comes from the evaluation. 

Then, for dynamic logic, the switching activity for gate i is given by equation 7.4 [89] 

SAi = 2Pr,i (7.4) 

Fig. 7.1 shows the switching activity as a function of signal probability both in dynamic logic 

and static logic. It can be seen that if only considered in term of switching activity, static logic 

is always better than dynamic logic. If the two input signal probabilities of an XOR gate are 

Pr,xQ = 0 and Pr,xl = 1 respectively, then the output signal probability of XOR gate is P = 1 

according to equation 7.2. One transition, evaluated to 1 at the falling edge of the clock, is 

followed by another transition, precharged to 0 at the leading edge of the clock. Hence, in this 

particular case, the switching activity of an XOR gate is equal to that of a clock signal, which is 2. 

For static logic, the maximum switching activity is 0.5 when signal probability is 0.5. However, 
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in terms of power dissipation, the same conclusion can not be deduced from switching activity 

since dynamic logic usually has smaller load capacitance. 
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Figure 7.1: Switching activity versus signal probability 

Given an n-input XOR gate with primary input signals I = {Xn-l, Xn-2," . ,xo} and cor­

responding signal probabilities {Pr,xn- II Pr,xn-2' ... ,Pr,xQ}' based on the above discussion, the 

procedure for the power estimation of the XOR gate decomposition is as follows. 

1. Given the primary input signal probabilities, construct a tree of two input XOR gates. 

2. Compute the output probability for each gate. 

3. Compute the node switching activity using equations 7.4 or 7.3. 

4. Compute the total switching activity using equation 7.1. 

Then, the problem for low power XOR gate decomposition can be described as follows. 

Low power XOR gate decomposition: Given an n-input XOR gate with input signals 

1= {Xn-l, X n -2,'" ,xo} and corresponding signal probabilities {Pr,Xn-llPr,Xn-2"" ,Pr,xQ}' two 

input XOR gates are used to construct a tree T = (V,E) with Pr,Xn-llPr,xn-2'''' ,Pr,xQ as 

its leaves such that equations 7.5 and 7.6 are minimized for dynamic logic and static logic 

respectively. 

For dynamic logic, 
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For static logic, 

SA = 2:: 2Pr,i 
iEV-J 

SA = 2:: 2Pr,i (1 - Pr,d 
iEV-J 
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(7.5) 

(7.6) 

Where SA is the total switching activity and Pr,i is the signal probability of an internal node. 

7.3 Previous work 

In [131], the authors analyzed some optimal properties and proposed an algorithm to solve the 

problem of lower power XOR gate decomposition in dynamic logic. 

Algorithm 7.1. Zhou - Wong's algorithm 

First, sort the input probabilities which are greater than 0.5. 

Then, combine them pairwisely from the largest to the smallest. 

Finally, iteratively combine the two signals with the smallest probabilities until there is one 

signal. 

Based on the analysis of XOR operation and assuming that the signals and their complements 

are available, Naraynana and Liu [74] presented an algorithm as follows. 

Algorithm 7.2. Naraynana - Liu's algorithm 

====================================================================================================== 

Let k be the number of primary inputs to the XOR tree with probabilities greater than 0.5. 

If k is even, replace all k inputs by their respective complements. 

If k is odd, replace any k - 1 inputs by their respective complements. 
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Then simply use the Huffman algorithms to build the optimal tree. 

Take a simple example to show how their algorithms work in Fig. 7.2. The problem has 

three inputs and corresponding signal probabilities are 0.1, 0.45 and 0.9 respectively. Both 

algorithms share the same decomposition in Fig. 7.2(b). The total switching activities are 1.984 

from equation 7.5. However, if the assumption that both the signals and their complements are 

available is preserved, the above decomposition is not optimal. Suppose signal X2 and Xl are 

replaced by their complements and it can be proved that the functionality is still preserved. Then, 

there is another decomposition as shown in Fig. 7.2(c) with a total switching activity of 1.424, 

which is smaller. It is realistic to assume that both signals and their complements are available 

like FPGA mapping. Hence, in the chapter, all discussions are based on this assumption. 

x2 0.9 

xl 0.45 

Xo 0.1 

(a) 

Xo 0.1 ~.46 Xo 0.1~.18 
xl 0.45 0.532 x2 0.1 0.532 
x2 0.9 xl 0.5 

(b) (c) 

Figure 7.2: (a) Multi input XOR gate; (b) Published decomposition in [131] and [74]; (c) A new 
decomposition 

Actually, both the Naraynana-Liu's algorithm and the new decomposition in Fig. 7.2(c) 

use the polarity transformation. However, any n-variable Boolean function can be expressed 

canonically by the Fixed Polarity Reed-Muller (FPRM) form as follows: 

2n-l 

!(Xn-l, Xn-2, ... ,xo) = E!1 L bi'rri 
i=O 

(7.7) 

The 1r- terms can be represented as 1ri = xn -ti:n-2' .. xo, the subscript i can be written as a 

binary n-tuple i = (in-lin-2'" io), bi E {O, 1}, x is a literal which can be X or X, 
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Xj = { 

and 0 ~ j ~ n - 1. 

1, ij = 0 

Xj, ij = 1 
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(7.8) 

An FPRM form of a Boolean function can be identified by a polarity p, P = (Pn-IPn-2'" po). 

Pj E {O,l}. Pj = 0 if Xj is true otherwise Pj = 1. For FPRM forms, every variable can only be 

either true or complemented but not both. Therefore, there are 2n polarities for an n-variable 

function. 

Definition 7.5. If P = (Pn-IPn-2'" po) and q = (Qn-1Qn-2'" qo) are the two polarities of an 

n variable function under FPRM forms. If the number of binary bits that are 1s is even, it is 

called even polarity, otherwise it is called odd polarity. If all variables appeared in equation 7.7 

are in true forms, the polarity of expansion is known as positive polarity or polarity zero. 

Obviously, an n variable XOR function is a special case of an n variable FPRM form where 

the number of 1f-terms equals to the number of variables and 1fi = Xi and its polarity is zero. 

For example, an n-variable XOR function under polarity zero can be expressed as 

!(Xn-l, Xn-2,'" ,xo) = Xo EI1 Xl EI1 X2'" EI1 Xn-l (7.9) 

7.4 Proposed low power XOR gate decomposition 

Dynamic logic is used to illustrate the technique. For dynamic logic, according to equation 7.5, 

minimizing the total switching activity can be achieved by minimizing the total internal signal 

probabilities. 

In terms of polarities, the algorithm proposed in [131] is optimal only under polarity zero. 

Although the authors in [74] tried to use polarity transform to optimize power dissipation, they 

only tried one of 2n polarities, because, for given input signal probabilities the selected polarity is 

fixed according to their algorithm. For example, for a three input problem shown in Fig. 7.2, the 
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selected polarity is zero. For a five input problem whose input signal probabilities are 0.1, 0.2, 

0.55, 0.7 and 0.9, the selected polarity using the algorithm in [74] is 3 or 5. As we know, different 

polarities have different function forms, which result in different power dissipation as shown in 

Fig. 7.2. Hence, if 2n polarities are searched, the best polarity for low power decomposition can 

be found. However, for reasons that will become apparent in Section 7.4.1, the search space can 

be reduced to 2n - 1 - 1. 

7.4.1 Theoretical results 

For an n variable function, there are 2n polarities and correspondingly there are 2n FPRM forms. 

FPRM forms can be transformed from one to the other with polarity transformations [114]. From 

definition 7.5 and starting from positive polarity, all polarity transformations can be categorized 

into two classes: Odd Polarity Transformation (OPT) and Even Polarity Transformation (EPT). 

Lemma 7.1. Suppose there is an XOR function consisting of n inputs based on equation 7.9. If 

an OPT is selected, one more 1r - term,l, is added while if an EPT is selected, the number of 

1r - terms remains the same. 

This is trivial because x $1 = x and x $ x = O. Take the three inputs in Fig. 7.2 for example. 

If transformations of polarities 2 (010), odd polarity, and 6 (110), even polarity, are derived from 

the positive polarity form, the function forms are shown as follows: 

f(x2,xI,xo) = 1$XO$XI$X2 (7.10) 

f(X2' Xl, xo) = Xo $ Xl $ X2 (7.11) 

Form Lemma 7.1, there is a following corollary. 

Corollary 1. For any XOR tree T consisting of n inputs, the OPT requires one additional input 

node compared to the EPT. 
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From Lemma 7.1, Corollary 1 is obvious because for a tree of two input XOR gates, the 

additional input needs one more two-input XOR gate. Hence, EPT can preserve the size of an 

XOR tree between polarity transformations. 

Theorem 7.1. Given an n variable junction, there are one zero polarity, 2n-l_1 even polarities 

and 2n - 1 odd polarities [126}. 

This can be proved by induction on n as below. 

(1) When n is 1, there are two polarities 0 and 1. Obviously, it satisfies the Theorem 7.1. 

(2) Suppose when n is k, k > 1, polarity p' = (Pk-1Pk-2'" po) and there are one polarity 

zero, 2k- 1 - 1 even polarities and 2k- 1 odd polarities and Theorem 7.1 is true. When n is k + 1, 

polarity p = (PkPk-l' .. po). (a) When Pk is 0, the distribution of polarities is the same as the 

case n = k. Hence, there is one polarity zero, 2k - 1 - 1 even polarities and 2k - 1 odd polarities. 

(b) When Pk is 1, then P = 2k + p' where "+" is the arithmetic addition. Compared to the p', 

the polarity distribution changes as follows: Polarity zero::::}odd polarity; 2k-l -1 even polarities 

::::}2k-l_1 odd polarities; 2k- 1 odd polarities::::} 2k- 1 even polarities. Hence, there are 2k- 1 even 

polarities and 2k - 1 odd polarities. From both (a) and (b), Theorem 7.1 is true when n is k + 1. 

Corollary 1 and Theorem 7.1 tell us that considering area constraints, EPT is preferred and 

the best polarity could be found by searching 2n - 1 - 1 even polarities. 

For any specified polarity, all input signal probabilities can be deduced from the input signal 

probabilities under polarity zero. However, given a set of input signal probabilities, it must be 

one of following three cases. 

Case 1: At most one input signal probability is greater than 0.5. 

Case 2: All input signal probabilities are greater than 0.5. 

Case 3: Some are greater than 0.5 and some smaller than 0.5. 

For each case, the optimal solution for low power XOR gate decomposition is to find out 

an optimal combination of input signals with the merging function in equation 7.2 such that 

the total internal probability is minimized. For Cases 2 and 3, the theorem in [131] is used to 

combine input signal probabilities greater than 0.5 pairwisely. 
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Theorem 7.2. (Zhou and Wong) In an optimal XOR gate decomposition, all inputs of proba­

bilities greater than 0.5 are combined pairwisely from largest to smallest. 

Then, using the above theorem, Cases 2 and 3 can be transformed into Case 1. For Case 1, 

it is shown that under some conditions a variation of Huffman's algorithm, which is a little bit 

different from the original one, can give an optimal solution[74][131]. It is defined as follows. 

Definition 7.6. Mini-Huffman algorithm: [107]Start from all the input signals; combine the 

two signals of minimum probabilities and substitute them with a new signal; continue the process 

until there remains only one signal. 

7.4.2 Proposed algorithm 

Based on the above properties, a new algorithm to solve the low power XOR gate decomposition 

problem is proposed as follows. First, according to input signal probabilities given with a specified 

polarity, an optimal tree for low power XOR gate is derived based on Theorem 7.2 and Mini­

Huffman algorithm, as described in Procedure 7.1 and corresponding pseudo-code in Algorithm 

7.3. 

Procedure 7.1. Given the input signal probabilities set for an n variable XOR function with 

polarity p, carry out Steps 1 to 3: 

Step 1. If the problem belongs to Case 1: At most one input signal probability is greater than 

0.5, use mini-Huffman algorithm to combine the signal probabilities and construct a tree and 

compute the total switching activity; 

Step 2. If the problem belongs to Case 2 or Case 3, according to Theorem 7.2, combine the 

signal probabilities using equation 7.2 until Case 2 or Case 3 is changed into Case 1. Then, go 

to Step 1; 

Step 3. Output the tree and its total switching activity. 

Then, other polarities are calculated and their corresponding switching activities are com­

pared to find the best polarity which has the minimum switching activity. However, based on 

Theorem 7.1, only 2n - 1 - 1 even polarities need to be computed. This is shown in Procedure 

7.2 and corresponding pseudo-code is given in Algorithm 7.4. 
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Procedure 7.2. Given the input signal probabilities set for an n variable XOR function with 

polarity zero, set bestPolarity, SAp and OptSA to be 0, respectively. For any p, O<p$. 2n - 1, 

carry out Steps 1 to 5. 

Step 1. Use Procedure 7.1 to compute switching activity (SAo) with polarity zero. Let OptSA 

= SAo ,-

Step 2. Let p = p+1,-

Step 3. If p is OPT, go to Step 2. If p is EPT, use Procedure 1.1 to compute SAp with 

polarity p. 

Step 4. If SAp is less than OptSA, let OptSA=SAp and bestpolarity=p. If p$. 2n - 1,go to 

Step 2. Otherwise, go to Step 4. 

Step 5. Output OptSA and bestPolarity. 

Algorithm 7.3. Pseudo-code of Procedure 1.1 

~==================================================================================================== 

Input: a set of signals X = {Xn-l, Xn-2,'" ,xo} and corresponding probabilities 

(
" I 

Pr,xn-l' Pr,xn-2' ... ,Pr,xoJ under polarity p 

Output: a decomposition tree T 

Decomp(X) 

{ 

if /X/ ==1 

I • 

return Pr,xn-l' 

else 

( 

if(Case 1) 

( 

T = mini-Huf fman(X),-

return T,-

J 
if(Case 2 or Case 3) 

{ 
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S = {Si = combine{xn-i,Xn-i-t}},{XI E XI:S; X); //XI is a set of primary 

input signal probabilities greater than 0.5 

} 

} 

T = minLHuf fman{X + S - Xd; 

return (T + S); 

Algorithm 7.4. Pseudo-code of Procedure 7.2 

Input: a set of signals X {Xn-l, Xn-2,'" , xo} and { Pr,xn -llPr,xn -2"" ,Pr,xo} under 

polarity zero 

Output: OptSA and bestPolarity / /OptSA-the smallest switching activity for a tree; bestPolarity­

the polarity corresponding 

/* Decompose under zero polarity*/ 

bestPolSearch(X) 

{ 

if /X/==l 

OptSA = Pr,xn-l; 

else 

{ 

OptSA=Decomp(XY.SA; / /SA - switching activity 

} 

bestPolarity=O; / /bestPolarity - the polarity corresponding OptSA is named bestPolarity 

polarityN 0 = 1 < < n; / /The number of polarities for an n - input variable function is named 

polarityNo 

for (p = 1; p < polarityN 0; p + +) 

( 

if(p%2 == 1); 
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} 

else 

( 

/ /decomp /X/ under polarity p 

SAp = Decomp(X) . SA; / /SAp- switching activity under polarity p 

} 

if( SAp < OptSA) 

{ 

} 

OptSA = SAp; 

bestPolarity = p; 

Output OptSA and bestPolarity; 

} 

7.5 Experimental results 

117 

The proposed algorithm is implemented in C and compiled by the GNU C compiler. The time 

complexity for the mini-Huffman procedure is O(nlogn)[131]. The proposed algorithm has a time 

complexity of O(2nnlogn) where n is the number of variables. In order to compare our results 

with those from other algorithms, Zhou-Wong's algorithm and Narayanan-Liu's algorithm are 

also implemented. All the three algorithms are tested on a personal computer with PIlI 550 

CPU and 64M RAM under Linux operating system. Two sets of experiments have been carried 

out. 

First, given a set of input signal probabilities, the best polarity (the lowest switching activity) 

is found and its corresponding switching activity is computed and compared to that under 

polarity zero to see the efficiency. Table 7.1 shows the experimental results for input size from 3 

to 13 variables. Thirteen input signal probabilities are generated under randomly selected seed 

number 500, which are 0.98, 0.57, 0.17, 0.70, 0.71, 0.18, 0.03, 0.14, 0.69, 0.70, 0.81, 0.32, 0.63, 
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respectively. For different input sizes, the input signal probabilities are chosen from left to right 

in the above list. For example, for three inputs, the signal probabilities are 0.98, 0.57 and 0.17 

while for four inputs they are 0.98, 0.57, 0.17, 0.70, and so on. In Table 7.1, Column 2 from 

left shows the best polarity and its corresponding switching activity SAp, Column 3 shows the 

switching activity SAo decomposed under polarity zero and last column shows the improvement 

rate which is defined as follows: 

Improv = SAo - SAp 
eJ! % 

-p 

Table 7.1: Best polarity and switching activity for low power decomposition 
INs Best Decomp Polarity Zero Improv 

Best Polarity SAp SAo (%) 
3 3 0.6388 0.8884 39.07 
4 9 1.0742 1.1990 11.62 
5 27 1.4895 1.6299 9.43 
6 27 1.8560 1.9693 6.10 
7 3 1.9399 2.1771 12.23 
8 3 2.2620 2.5049 10.74 
9 257 2.7286 2.9525 8.21 
10 3 3.1781 3.4198 7.61 
11 305 3.5494 3.6889 3.93 
12 305 4.0205 4.1610 3.49 
13 2355 4.4925 4.6424 3.34 

(7.12) 

Decomposed with the best polarity, it can be seen that the improvement could be as high as 

39% compared to the result with polarity zero for this randomly selected instance. 

Second, for each input size from 3 to 13 variables, 100 sets of input probabilities are randomly 

generated and then run on each of the above algorithms. For each instance X, let Opt(X) 

represents the optimal solution, which has the lowest switching activity from the three algorithms. 

The following parameter defined in equation 7.13 is used to measure the performance of solution 

S(X). 
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R = S(X) - Opt (X) o/c 
Opt(X) 0 

(7.13) 

From the definition in 7.13, obviously, the higher the rate R is, the worse the performance 

of the algorithm will be. For each algorithm, among all 100 problems of the same input size, 

the number of non-optimal solutions, the maximum ratio and the average ratio are computed. 

They are represented by N on Opt , M R and AR, respectively. M R is to measure the worst 

performance among all 100 problems of the same input size while AR is to measure the average 

poor performance. The average CPU time is also reported in Table 7.2. 

Table 7.2: Experimental results for the proposed algorithm and published algorithms 
INs Narayanan-Liu [74] Zhou-Wong [131] Proposed 

Non MR AR Non MR AR Non time 
Opt (%) (%) Opt (%) (%) Opt 10-2 8 

3 41 46.04 7.79 50 69.77 10.87 0 0 
4 40 44.41 8.11 72 40.58 8.88 0 0.1 
5 44 35.75 8.57 89 28.39 8.28 0 0.3 
6 53 34.43 9.08 92 28.18 7.42 0 0.8 
7 51 25.04 6.76 92 24.10 5.59 0 1.0 
8 45 27.43 6.31 95 20.01 4.91 0 1.9 
9 48 22.50 5.90 98 14.47 4.38 0 4.2 
10 58 18.31 6.80 98 7.25 4.00 0 9.7 
11 56 15.17 6.09 99 5.28 3.63 0 21.8 
12 54 13.37 5.88 99 4.79 3.56 0 48.6 
13 47 11.77 5.08 100 4.06 3.27 0 108.0 

From the results reported in Table 7.2, the number of non-optimal solutions for the proposed 

algorithm is always zero in comparison with Narayanan-Liu's and Zhou-Wong's algorithms. In 

other words, the switching activity from the proposed algorithm is always smaller than that from 

Narayanan-Liu's or Zhou-Wong's algorithm. It can be seen that the average poor performance 

is decreased with the increase of input size for Zhou-Wong's algorithm but this does not happen 

for Narayanan-Liu's algorithm. For smaller input size like 3 and 4 variables, Narayanan-Liu's 

algorithm is better than Zhou-Wong's algorithm. The reason is that in this case the number 

of polarities is smaller and there is a higher chance for Narayanan-Liu's algorithm to find a 
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good polarity than Zhou-Wong's algorithm. For example, for three inputs: 0.10,0.80,0.90, using 

Narayanan-Liu's algorithm the polarity is 3 and the switching activity is 0.488 while using Zhou­

Wong's algorithm it is 0.568 under polarity zero. 

7.6 Summary 

Using the polarity transform under the assumption that both signals and their complements are 

available, a new solution to decompose low power XOR circuits is proposed. The algorithm is 

implemented in C. The time complexity of the algorithm is O(2nnlogn). The improvement of 

switching activity is significant compared to published results. It should be pointed out that the 

algorithm can be applied to static logic as long as the calculation formula of switching activity 

in equation 7.5 is substituted by the static logic formula in equation 7.6. 



Chapter 8 

Power and area optimization of FPRM 

functions 

In the past, the task of VLSI designers has been to explore the area-time implementation space. 

In recent years, power is being given comparable weight to area and time [28]. 

Up to now, most researchers have focused on developing optimization techniques for area 

and power dissipation in AND/OR or NAND & NOR based circuits [91]. However, in certain 

applications, XOR realizations have advantages over the conventional AND/OR or NAND & 

NOR logic. XOR circuits are easier to test and may require fewer gates and interconnections 

[3][87]. Applications of Reed-Muller circuits have so far not become popular due to the following 

two obstacles. 

1. XOR gates used to have slow speed and require large silicon area to realize in comparison 

with OR gates. 

2. The problem of optimization of Reed-Muller functions is difficult although there has been 

a great deal of research in recent years [64][114]. 

With the development of new technologies and the advent of various field programmable 

gate array (FPGA) devices [21], the first obstacle has been solved. In programmable devices, the 

XOR gate is either easily configured in "universal modules" or directly available. For example, 

logic blocks can be configured as various two-input gates such as XORs, ANDs and NANDs in 

the AT6000 FPGA series from ATMEL Corporation while in other FPGAs, both AND and XOR 

121 
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gates are available in the macrocells or logic array blocks [76]. For the second obstacle, more 

recently, there has been some success in achieving area reduction by employing optimization 

techniques specifically targeted towards initial AND /XOR representations in the well known 

Fixed Polarity Reed Muller expansion [64][114][107]. 

Usually, area synthesis of circuits promises more global power savings. However, power dissi­

pation for a circuit depends on input pattern, which requires more specific low power techniques. 

For low power optimization of Fixed Polarity Reed-Muller (FPRM) functions, to the best of our 

knowledge, the only results in the literature are algorithms proposed by Zhou and Wong [131] 

and Narayanan and Liu [74]. The former is for low power XOR gate decomposition, which is the 

special case of FPRM functions and hence can not solve low power problem for general FPRM 

functions. And the latter is for the FPRM functions with the implementation of static logic. 

However, as will be shown later, the algorithm in [74] is not optimal and can only be applied to 

some special FPRM functions. 

The objective of area and power optimization is twofold. This chapter proposes a frame to 

estimate power dissipation based on FPRM functions, discusses the effect of polarity on area 

and power dissipation and introduces an optimal algorithm for area and power minimization of 

single output FPRM functions. The rest of the paper is organized as follows. In Section 8.1, 

some definitions and terminology are introduced. Some previous work is reviewed in Section 8.2. 

Section 8.3 presents a frame of power estimation and a cost function to estimate area and power 

while an optimisation algorithm is proposed in Section 8.4. Finally, some experimental results 

are shown in Section 8.5 and summary in Section 8.6. 

8.1 Definition and terminology 

For convenience, some definitions are restated here. 

Any n-variable Boolean function can be expressed canonically by the exclusive SOP form as 

follows. 
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2n-1 

f(xn-l, Xn-2,'" ,xo) = EB l: b(lri (8.1) 
i=O 

where the subscript i can be expressed into a binary form as i = (in-lin-2'" io), bi E {O, 1}, 

the 1r-terms can be represented as 1ri = Xn-IXn -2 . " xo, x is a literal which can be x or X, 

X. = { 1, 
J . 

Xj, 

ij = 0 

ij = 1 
(8.2) 

In equation 8.2, j is from 0 to n - 1. The form in equation 8.1 is also known as the positive 

polarity Reed-Muller (PPRM) form if all the variables are in true forms. PPRM forms can be 

extended to FPRM forms with any fixed polarity p, p = (Pn-IPn-2'" po), where variables can 

only be either true or complemented, but not both. If a binary bit of p, Pj , is 0 (or 1) then the 

corresponding variable is in the true (or complemented) form. Hence, there are 2n polarities for 

an n-variable function. Each FPRM form can be identified by its polarity. 

Example 8.1. A four variable function under polarity 0 is given: f(X3, X2, Xl, Xo) = XOEBXIXOEB 

X2XI EB X2XIXO EB X3 EB X3 XO EB X3X2 EB X3X2XO EB X3X2XI· 

Then, under polarity 5, it has 

f(X3, X2, Xl, Xo) = 1 EB Xo EB Xl EB EBX2XIXO EB X3XI EB X3X2XO EB X3X2XI (8.3) 

while under polarity 14, it will be 

f(X3, X2, Xl, Xo) = Xo EB X2 EB X2XIXO EB X3 EB X3XI EB X3X2XO EB X3X2XI (8.4) 

The above functions can be implemented using AND gates and XOR gates with suitable 
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technology. XOR gate has defined in Definition 7.4 while two input AND gate is based on the 

following definition of AND operator. 

Definition 8.1. For two-input AND operator: !(Xl,XO) = Xl' Xo , the probability of !(Xl,XO) 

is [89]: 

PrJ = Pr{Pr,xllPr,xo) = Pr,xl . Pr,xo (8.5) 

Here, Pr,xi is the input signal probability, which was defined in Definition 7.3 while PrJ 

represents the output signal probability of the corresponding gate. 

8.2 Related work 

The total SA of a specific function form depends on how to combine the input signal probabilities, 

which refers to low power gate decomposition. The problem for gate decomposition has been 

extensively studied [107][74][131]. 

In [107], AND gate decomposition was discussed. For dynamic logic, it is found that a mod­

ified Huffman's algorithm gives optimal solutions. The modified version of Huffman's algorithm 

is called Mini-Huffman algorithm which was described in Algorithm 7.6. 

Take a simple example to explain the algorithm. For three inputs (X2, Xl, XO) and correspond­

ing signal probabilities are 0.9, 0.45 and 0.1 respectively, Fig. 8.1{a) shows the above algorithm 

applied to decompose a three input AND gate into a tree of two-input gates in dynamic logic. 

The switching activity is 0.171. 

In [131], the authors analyzed some optimal properties and proposed an algorithm to solve 

the problem of lower power XOR gate decomposition in dynamic logic in Algorithm 7.1. 

Fig. 8.1{b) shows the decomposition based on algorithm 7.1. The switching activity is 1.984. 

It can be seen that this algorithm only works for XOR gate decomposition. 

Based on the analysis of XOR operation and assuming that both the signals and their com-
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plements are available, Naraynana and Liu claimed that they use the selection of polarity vectors 

to solve low power logic synthesis for XOR based circuits in Algorithm 7.2. 

However, this algorithm can not handle the reduction of tree size and only works for some 

special cases of FPRM functions. For example, consider two five variable problems, which share 

the same input signal probabilities: {Pr,x4,Pr,x3,Pr,x2,Pr,Xt,Pr,xo} = {0.1, 0.3, 0.7, 0.8, 0.9}. Tho 

function forms are shown in equations 8.6 and 8.7: 

f(X4, X3, X2, Xl, Xo) = XIXO E9 X2XO E9 X4 E9 X4X3XO (8.6) 

f(X4, X3, X2, Xl, XO) = XIXO E9 X2XO E9 X4Xl E9 X4X3XO (8.7) 

Obviously, algorithm 7.2 works for the function in equation 8.6. If Xl and X2 in equation 8.6 

are replaced by their complements, then an alternative representation of the function is: 

f(X4, X3, X2, Xl, XO) = XIXO E9 X2 XO E9 X4 E9 X4X3XO (8.8) 

which has the same size and the same logic functionality as in equation 8.6. However, if the 

same algorithm is applied to the function in equation 8.7, the function will be changed into: 

Xo 0.1 

XI 0.45~ J1 Xo 0.1 

x I 0.45 

x2 0.9 LJ X 2 0.9 

(a) (b) 

Figure 8.1: (a) Multi input AND gate decomposition in [107]; (b) Multi input XOR gate decom­
position in [131] 
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f(X4, X3, X2, Xl, XO) = X1XO EEl X2XO EEl X4Xl EEl X4X3XO (8.9) 

which offers different functionality from the function in equation 8.7. This is easily tested by 

applying the formula X = 1 EEl x to X2 and Xl in equation 8.7, which will result in 

f(X4, X3, X2, Xl, XO) = X1XO EEl X2XO EEl X4 EEl X4 X l EEl X4X3XO (8.10) 

Obviously, equation 8.10 is different from equation 8.9. Hence, the algorithm does not work 

well with the function in equation 8.7. 

Based on Algorithm 7.2, the algorithm only tried one of 2n polarities because given input 

signal probabilities the selected polarity is fixed. For example, for a three input problem shown 

in Fig. 8.1, the selected polarity is zero while for a five input problem as the above, the selected 

polarity is 7. Therefore, the selected polarity may not be optimal. 

Hence, an FPRM function with multi variables can be implemented using trees of two-input 

AND gates and a tree of two-input XOR gates. Given the input signal probability set, the 

switching activity can be computed using the above algorithms. 

8.3 Polarity based area and power minimization of FPRM func­

tions 

8.3.1 Power estimation 

As stated in Section 7.1, all discussions here refer to CMOS technology. Consider dynamic power 

in CMOS circuit. The power can be modeled as in equation 7.l. 

Power dissipation for a circuit is an input pattern involved problem. Any FPRM form can 

be implemented by AND gates and XOR gates. Before technology mapping, conventionally, all 

multi input AND gates and XOR gates need to be decomposed into a tree of two input gates, 
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which is called AND & XOR tree. A tree is defined in Definition 7.2. 

Furthermore, each primary input signal into a tree is treated as a random variable and its 

probability is defined as in Definition 7.3. 

Power estimation of an AND & XOR tree is similar to that of an XOR tree in Section 7.2. 

The difference is that there are two kinds of nodes in the AND & XOR tree, namely XOR gate 

output and AND gate output. 

Given an n-input FPRM function with primary input signals 1= {Xn-l,Xn -2,'" ,xo} and 

corresponding signal probabilities {Pr,Xn-llPr,xn-2"" ,Pr,xo}, based on the above discussion, the 

procedure for the power estimation of an FPRM function is as follows. 

1. Given an n-variable FPRM function and its primary input signal probability set, construct 

a tree of two input AND gates and XOR gates; 

2. Compute the output probability for each gate using equations 7.2 and 8.5; 

3. Compute the node switching activity using equations 7.5 or 7.6; 

4. Compute the total power dissipation using equation 7.1. 

However, for a given FPRM function with given input signal probability set, the decomposi­

tion can have a significant impact on the amount of power dissipation. 

8.3.2 Area and power estimation 

For an n variable function, there are 2n polarities and correspondingly there are 2n FPRM forms, 

which results in different number of 'if-terms. If implemented as a tree, then the different number 

of 'if-terms will have different tree sizes and result in different power dissipation. Hence, area 

and power minimization of FPRM functions can be implemented by searching the best polarity 

among 2n polarities. This is guaranteed by the following Lemma. 

Lemma 8.1. For any n-variable FPRM function, there are 2n different forms. Each form can 

be identified by corresponding polarity. Among 2n different forms, there exists at least one form, 

which has the minimal number of 'if - terms. For convenience, it is called minimal form. 

An n-variable FPRM function has 2ft different forms. Different forms have different function 

sizes or different 'if - terms. Then, the number of 'if - terms is used to measure the area of an 
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FPRMform. 

For power estimation, it is an input relevant pattern problem. Two input AND gates and 

XOR gates are used to build a tree to implement an FPRM function. Then, for a given input 

signal probability set, Mini-Huffman algorithm in Definition 7.6 & Algorithm 7.1 are used to 

combine the input signal probabilities to calculate the total SA. 

Lemma 8.1 also shows that for any n-variable FPRM function, there is one or multiple 

minimal forms. If the function has one minimal form, the task of area minimization is to find a 

polarity, which has the minimal form. If the function has multiple minimal forms, then choose 

any of them because there is no difference among them for area minimization. However, for 

power dissipation, different minimal forms may have different power dissipation for a specific 

input signal pattern. Furthermore, the minimal form does not always have the minimal power. 

The power dissipation under the minimal form may be higher than that under other forms. This 

can be shown by the following three variable function example. 

Example 8.2. A three-variable function, 1(X2, Xl, xo), with corresponding input signal proba­

bilities (PX2,PXllPXO) = (0.10, 0.90, 0.90) is shown as two-level FPRM format in equation 8.11. 

1(X2, Xl, xo) = Xo EEl Xl EEl XIXO EEl X2XO EEl X2 X l (8.11) 

The function is given under polarity O. It can be found that the minimal form is under 

polarity 4 as shown in equation 

1(X2, Xl, Xo) = XIXO EEl X2XO EEl X2 X l (8.12) 

Also the function form under polarity 5 can be obtained as in equation 

1(X2, Xl, Xo) = Xl EEl XIXO EEl X2 EEl X2XO EEl X2 X l (8.13) 
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X
2 

Xl 

Xo Xo 

Xl x2 

Xo Xl 

x2 Xo 

Xl xl -T-\ '" 0.18 
x2 x2 

(a) (b) 

Figure 8.2: Power dissipation with the function forms (a) The minimal form under polarity 4; 
(b) The function form under polarity 5 

Equations 8.12 & 8.13 can be implemented using two-input AND gates and XOR gates as 

shown in Figure 8.2. The switching activity of Fig. 8.2 (a) is 6.714 while it is 2.323 for Fig. 

8.2 (b). For the form under polarity 5, the power reduction is 65.4% compared to that of the 

minimal form though the penalty of area is two 7r - terms. To find a good compromise of area 

and power dissipation, a cost function is proposed to guide the optimization as in equation 8.14. 

Cost = a * Area + (1 - a) * SA (8.14) 

Here, SA stands for the Switching Activity and a is the weight of area and SA and 0 < a < 1. 

In order to find the best polarity, which gets area and switching activity minimized, among 2n 

polarities, a polarity conversion algorithm is needed. 

8.3.3 Polarity conversion 

For area minimization, various methods have been developed. They can be classified into two 

categories [92]: 

1. Gray code: Sequentially search 2n polarities to find the best one which has the minimum 

number of products. Memory requirement is O(2n) while the computation time is O(4n). 
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2. Extended truth vector: Using an extended truth vector and a weight vector, obtain the 

number of products for 2n different expansions simultaneously. Both memory requirement and 

the computation time are O(3n ). 

Any n-variable FPRM function can be uniquely expressed by its on set coefficient. Recently, 

an exact method was reported in [114] to find the best polarity targeting area minimization based 

on on-set coefficients by gray code, which is suitable for large functions. Memory requirement 

and the computation time are O(M) and O(2n M) respectively, where M is the average number 

of on-set coefficients. This method is used here to implement function polarity conversion. 

For convenience, some definitions are given as follows. 

Definition 8.2. Two integers can be expressed by binary n-tuples, i = {in - 1in-2'" io}, j = 

{jn-dn-2'" jo}. If ik ~ jk for all k, 0 ~ k ~ n - 1, then i covers j or j is covered by i. 

Algorithm 8.1. Wang's algorithm [116] 

Given an on-set Reed-Muller coefficient set Rp for an n-variable Boolean function with polarity 

p. A coefficient set Rp with any other polarity q can be achieved through the following operations 

on Rp itself, where p /\ q = r (/\ is bitwise operator). 

(1) For any coefficient i in the set Rp, if i does not cover r, then i is an element of Rp. Leave 

i in the set. If i covers r, search the set Rp for the coefficient (i - r). If there is such a coefficient, 

then delete coefficient (i - r) from the set Rp. Otherwise, if there is not such a coefficient, then 

add coefficient (i - r) to the set Rp. 

(2) The new set obtained in step (1) is the on-set Reed-Muller coefficient set with polarity p. 

Using the above polarity conversion algorithm, the optimization implementation of FPRM 

functions can be described as follows: 

Given an n-input PPRM function with primary input signals 1= {Xn-l, Xn -2,'" ,xo} and 

corresponding signal probabilities {Pr,xn-l' Pr,xn-2' ... ,Pr,xo}' two input AND gates and two 

input XOR gates are used to construct a tree T = (V, E) with Pr,xn-ll Pr,xn-2' ... , and Pr,xo as 

its leaves. Search the best polarity such that both area and equations 8.15 or 8.16 are minimized 
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for dynamic logic and static logic respectively. 

For dynamic logic, 

For static logic, 

SA = L2Pr,i 

iEV 

SA = L 2Pr,i(1 - Pr,i) 
iEV 

(8.15) 

(8.16) 

Where SA is the total switching activity and Pr,i is the signal probability of an internal node. 

8.4 Proposed algorithms 

Based on the above discussion, a new algorithms for minimizing area and power dissipation of 

single output FPRM functions is proposed as follows. 

Algorithm 8.2. Power minimized algorithm 

==================================================================================================== 

Given an on-set Reed-Muller coefficient set Rp of a single output FPRM function with the in­

put signal probability set under polarity p, let one real variable and one integer variable, SA Cost, 

AreaCost, represent the total switching activity and area cost (measured by the number of 1r-terms) 

under polarity p, and let one real variable and two integer variables, BestSACost, BestAreaCost 

and BestPolarity, represent the lowest total switching activity, area cost and the polarity corre­

sponding to the lowest total switching activity, respectively. Then, for any i, 0 < i :::; 2n - 1, 

carry out the following steps,' 

(1) Generate a polarity qi in gray code order, that is adjacent with qi-l. Let r = qi /\ qi-l' 

(2) Pass R qi_ 1 and r to Algorithm 8.1 to get the new on-set coefficient set R qi . Obtain 

AreaCost from the set R q;. 

(3) If BestAreaCost < AreaCost, let qi = qi-l and qi = qi + 1, go to Step 1. 
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(4) If BestAreaCost ~ AreaCost, construct an optimal tree of two input AND gates using 

Algorithm 7.6 for each 1f'-term in the FPRM function. Compute the switching activity for all 

AND-trees and store it into SACost and save the primary output signal probabilities of AND­

trees into an array called ANDOutProb[}. Taking the signal probabilities in ANDOutProb[} as 

the primary input signal probabilities, construct an optimal tree of two input XOR gates using 

Algorithm 7.1. Compute the switching activity of the XOR-tree and add it to SACost. If SA Cost 

is less than BestSACost, then BestSACost, BestAreaCost and BestPolarity are substituted by 

SACost, AreaCost and qi respectively. Otherwise, go to Step 1. 

(5) Output (BestPolarity /\p) that is the best polarity with BestSACost and BestAreaCost. 

The above algorithm supposes that the area has the higher weight than the power dissipation. 

If the function has many area minimal representations, the algorithm can find the best polarity, 

which has the lowest power dissipation. 

Example 8.3. A three-variable function, f(x2, Xl, xo), with corresponding input signal proba­

bilities (0.10, 0.45, 0.90) is shown as two-level FPRM format in equation 8.17. 

f(X2, Xl, Xo) = Xo EB X1XO EB X2X1XO (8.17) 

Obviously, the function representation is under polarity O. The on-set Reed-Muller coefficient 

set Ro is (1,3, 7). First, construct an optimal tree of two input AND gates using Algorithm 7.6 

for each 1f'-term in the FPRM function and compute the switching activity for all AND-trees and 

store it into SACost and save the primary out signal probabilities of AND-trees into an array 

called ANDOutProbD. For this example, 1f'1 = Xo, 1f'3 = X1XO, 1f'7 = X2X1XO and corresponding 

AND trees are shown in Fig. 8.3 (a). The switching activity is SACost = 0.9810. The primary 

out signal probabilities of AND-trees are ANDOutProb[O] = 0.9, ANDOutProb[l] = 0.405 and 

ANDOutProb[2] = 0.0405. 

Then, take the signal probabilities in ANDOutProbD as the primary input signal probabilities, 

construct an optimal tree of two input XOR gates using Algorithm 7.1 and compute the switching 
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activity of the XOR-tree and add it to SACost. The XOR tree is shown in Fig. 8.3 (b) and 

add its switching activity to SACost. Obtain SACost = 2.9460. Let BestSACost be 2.9460, 

BestAreaCost be 3 and polarity 0 be BestPolarity. 

Xo 0.9 0.9 

Xl 0.45 =0-0.405 

Xo 0.9 

X2 0.1 

xl 0.45 

Xo 0.9 -----~ 

(a) 

0.0405 

0.405 

0.9 

(b) 

Figure 8.3: Decomposition and AND- trees and XOR tree (a) AND trees; (b) XOR tree 

Generate polarity 1 in gray code order, 001. Let r = 001 /\ 000 = 1. Pass Ro = (1,3,7) and 

r = 1 to Algorithm 8.1 to get the new on-set coefficient set Rl = (0, 1, 2, 3, 6, 7). Because 

AreaCost is 6, which is greater than BestAreaCost, go to Step 1 and generate gray code for next 

polarity 2. Repeat this procedure till polarity 7. Finally, find that the BestPolarity is polarity 

4, BestSACost is 0.2362 and BestAreaCost is 2. 

Algorithm 8.3. Power and area optimisation algorithm 

==================================================================================================== 

Given an on-set Reed-Muller coefficient set Rp of a single output FPRM function with the 

input signal probability set under polarity p, let two real variables and one integer variable, Cost, 

SACost, AreaCost, represent the cost, total switching activity and area cost (measured by the num­

ber of 1r-terms) under polarity p, and let two real variables and two integer variables, BestCost, 

BestSACost, BestAreaCost and BestPolarity, represent the best cost, the lowest total switching 

activity, area cost and the polarity corresponding to the lowest total switching activity, respec-

tively. Then, for any i, 0 < i ~ 2n - 1, carry out the following steps: 

(1) Generate a polarity qi in gray code order, that is adjacent with qi-l' Let r = qi /\ qi-l' 
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(2) Pass R qi_ 1 and r to Algorithm 8.1 to get the new on-set coefficient set R qi . Obtain 

AreaCost from the set R qi . 

(3) Construct an optimal tree of two input AND gates using Algorithm 7.6 for each 1r-term in 

the FPRM function. Compute the switching activity for all AND-trees and store it into SACost 

and save the primary output signal probabilities of AND-trees into an array called ANDOutProbf]. 

Taking the signal probabilities in ANDOutProbf} as the primary input signal probabilities, con­

struct an optimal tree of two input XOR gates using Algorithm 7.1. 

(4) Compute the switching activity of the XOR-tree and add it to SA Cost and take the number 

of 1r-terms as area. Use equation 8.14 to calculate the cost. If Cost is less than BestCost, then 

BestCost, BestAreaCost and BestPolarity are substituted by Cost, AreaCost and qi respectively. 

Otherwise, go to Step 1. 

(5) Output (BestPolarity /\p) that is the best polarity with BestSACost and BestAreaCost. 

8.5 Experimental results 

The proposed algorithm has been implemented in C and compiled by the GNU C compiler. The 

time complexity for mini-Huffman is O(nlogn) [131] while that for polarity conversion is O(M2n) 

[114]. Hence, the proposed algorithm has the time complexity of O(M2nnlogn) where n is the 

number of variables and M is the average number of on-set coefficients. The algorithm is tested 

on a personal computer with PIlI 550 CPU and 64M RAM under Linux operating system. Ten 

single output circuits with input size from 8 to 21 from MCNC benchmarks are tested. 

The algorithm proposed in [115] is used to convert the test circuits directly from two-level 

PLA format to two-level FPRM format with polarity O. Then, the proposed algorithm will 

work with the two-level FPRM format circuits. Given a set of input signal probabilities, the 

best polarity is searched and its corresponding switching activity and area are found, where 

area is measured by the number of 1r-terms. Twenty-one input signal probabilities are randomly 

generated, which are 0.95,0.08,0.78,0.25,0.18, 0.77, 0.75, 0.71, 0.47, 0.07, 0.23, 0.73, 0.28, 0.73, 

0.28, 0.73, 0.44, 0.81, 0.20, 0.38, 0.71, respectively. For different input sizes, the input signal 
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probabilities are chosen from the left to the right in the above list. For example, for three inputs 

(X2' Xl, xo), the signal probabilities are 0.78, 0.08, 0.95 while for four inputs (X3, X2, Xl, xo), 

they are 0.25, 0.78, 0.08, 0.95, and so on. 

Two sets of experiments are conducted. The first set is based on Algorithm 8.2. Ten circuits 

from MCNC benchmark are tested. Table 8.1 shows the experimental results [127]. To see the 

efficiency of the algorithm, the switching activity and area under the polarity 0 are also listed 

in the same table for comparison. In Table 8.1, Column 1 shows the circuit name while Column 

2 shows the number of inputs (IN#) and the number of product terms (p#) in PLA format; 

Columns 3 and 4 show the switching activity ( SAo) and area (Areao the number of 1r- terms 

in two-level RM format) under polarity 0 while Columns 5, 6, 7 and 8 show the best polarity, 

switching activity (SAb), area (Areab) and CPU time for the best polarity using the proposal 

algorithm, respectively; Columns 9 and 10 show the improvement percentage of the switching 

activity and area under the best polarity compared to those under the best polarity given in 

[115]. The improvement percentage of switching activities is defined as follows: 

SAo - SAb 
Improvement = SAo % (8.18) 

while the one for area is similarly defined in equation 8.19. 

Improvement = Areao - Areab 
'reao % 

(8.19) 

From the results reported in Table 8.1, it is found that the switching activities can be improved 

significantly for all ten circuits compared to those under polarity 0, which can be as high as 91.9%. 

The average reduction of switching activities is 61.0% while the average area reduction is 32.0% 

for all ten circuits. For seven cases of ten circuits, both area and switching activity are reduced. 

For each circuit, 10 sets of input probabilities are randomly generated and then run on the 

above algorithm. For each instance X, let Opt(X) represents the optimal solution under the best 

polarity and S(X) be the solution with polarity O. The following parameter defined in equation 
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8.20 is used to measure the performance of the algorithm. 

R = S(X) - Opt(X) o/c 
S(X) 0 

(8.20) 

From the definition in 8.20, obviously, the higher the rate R, the worse the performance of the 

algorithm. For each circuit, among 10 problems, the maximum ratios and the average improve­

ment ratios of switching activity and area are computed, which are represented by M axSAR, 

M axAreaR, AvergAreaR and AvergSAR, respectively. The results are shown in Table 8.2. 

The second experiment is conducted based on Algorithm 8.3, which uses the cost function 

in equation 8.14 to guide the optimization. To determine the weight a in equation 8.14, an 

experiment is conducted as follows. An input signal probability set is randomly generated, in 

Table 8.1: Best polarity and switching activity for low power decomposition[127] 
- -

Name IN#/p# Polarity 0 Best Polarity Improvement (%) 
SAo Areao polarity SAb Areab time(s) SA Area 

Newwill 8/8 16.84 57 150 2.10 14 0.21 87.5 75.4 
Newtag 8/8 8.20 21 160 2.18 6 0.14 73.4 71.4 
sym10 10/837 128.76 266 966 20.54 557 29.42 84.0 -109.4 
xor5 5/5 3.14 5 6 2.52 5 0 19.7 0 
9sym 9/87 136.36 210 450 11.58 173 1.94 91.5 17.6 
life 9/512 113.26 184 255 23.12 100 3.82 79.6 45.6 

t481 16/481 46.96 41 39323 9.82 19 29.46 76.7 53.6 
ryy6 16/122 23.38 80 49152 13.74 64 16.70 41.2 20.0 

cm150a 21/17 139.30 163 819200 17.22 81 41.30 87.6 50.3 
mux 21/36 77.40 81 786432 40.06 81 40.14 48.1 0 

Average improvement (%) 73.2 22.0 

Table 8.2: Reduction ratios of area and switching activity -

Name MaxSWR(%) MaxAreaR(%) AvergSWR(% ) AvergAreaR(% ) 
Newill 89.7 75.4 79.2 74.0 I 

Newtag 88.0 93.2 68.0 72.2 J 
Sym10 93.6 -112.0 74.2 -98.4 
xor5 19.7 0 8.6 0 I 

9sym 93.2 17.6 83.2 17.6 I 
life 95.4 45.7 79.7 34.8 ! 

t481 89.1 68.3 78.9 61.0 I 
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which the elements are 0.15, 0.97, 0.48, 0.10, 0.24, 0.16, 0.60, 0.96, 0.78, 0.56, 0.26, 0.74, 0.53, 

0.87, 0.37, 0.39 respectively for a sixteen input variable set. Power versus alpha and area versus 

alpha are conducted. The results are shown in Figs. 8.4 (a) and (b). Fig. 8.4 (a) depicts the 

normalized power of four benchmarks versus alpha, i.e. the power when a = 1 is divided by the 

power with specific a. Fig. 8.4 (b) depicts the normalized area versus alpha, i.e. the area when 

a = 0 is divided by the area with specific a. For circuits life & 9sym, power and area do not vary 

with a while for circuits t481 & sym10, power and area varies significant with a. From Figs. 

8.4 (a) & (b), it can be seen that setting a = 0.4 produces the optimization implementations for 

area and power. 

Table 8.3 shows the results of ten MCNC benchmark circuits. The results of the area min-

imized algorithm in [116] are also listed in the table for comparison. It can be seen that two 

circuits have significant power improvement without any area penalty while one circuit has power 

improvement with small area trade. For the circuits 9sym and cm150a, the proposed algorithm 

finds the best polarities, which have the minimal area and power dissipation. However, for the 

circuit ryy6, it means that the polarity which has the minimal area is not the best polarity for 

power minimization. 

Table 8.3: Power dissipation and area comparison 
Name Inputs Results in [116] Proposed in [128] Reduction 

P area SA P area SA time (s) Area (%) SA (%) 
9sym 9 15 173 154.92 195 173 31.1 0.21 0 79.9 
ryy6 16 49152 64 38.76 57344 72 19.9 16.83 -12.5 48.7 
mux 21 0 81 19.86 0 81 19.86 40.14 0 0 

cm150a 21 1 82 47.90 32768 82 25.28 40.35 0 47.2 

Table 8.4: Reduction ratios of area and SA 
Name MaxSAR (%) MaxAreaR (%) AverageSAR (%) AverageAreaR (%) 
9sym 79.7 0 60.0 0 
ryy6 48.7 -12.5 11.7 -3.1 

cm150a 78.0 -1.2 29.9 -0.1 

Once again, for each circuit, 10 sets of input probabilities are randomly generated and then 

run on the proposed algorithm and area efficient algorithm in [116] to see the efficiency of the cost 

function in equation 8.14. Equation 8.20 is used to measure the performance of the proposed 
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algorithm. The results are shown in Table 8.4. It shows that the proposed algorithm has a 

significant power dissipation improvement with smaller area penalty compared with the results 

from the area minimized algorithm. 
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I ___ t481 

6 .... 0.4 • z , ...•... sym10 - 0.2 .... . 
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Figure 8.4: Power and area versus alpha (a) Power versus alpha; (b) Area versus alpha 
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8.6 Summary 

A frame to estimate power dissipation of FPRM functions has been presented. Using the po­

larity conversion under the assumption that both signals and their complements are available, a 

solution to minimize power dissipation for single output FPRM functions is proposed. The time 

complexity of the proposed algorithm is O( M2nnlogn). Although the dynamic logic is taken to 

explain how the algorithm works, it should be pointed out that the algorithm can be applied to 

static logic as long as the calculation formula of switching activity in equation 7.5 is substituted 

by the one for static logic in equation 7.6. 



Chapter 9 

Conclusions and Future work 

This project aims to develop low power design techniques for digital logic circuits. The main 

contributions in this thesis can be summarized as follows. 

9.1 Low power state assignment 

Using the state assignment to reduce area or power of FSMs is not new. This can be classified 

as a single object optimization problem. However, using state assignment to optimize power and 

area is relatively new, which is a multiple object optimization problem and much more difficult 

than single object optimization. For the optimization problem, the optimization quality of a 

problem mainly depends on the algorithm used and the cost function developed. An algorithm 

which has large search space is essential to solve large size problems. Considering this, a genetic 

algorithm is employed to do this job in Chapter 3. Corresponding operators are developed for 

this specific application. Switching activity is used to estimate power dissipation of an FSM, 

which includes the power dissipation both from the register section and combinational section. 

Based on the number of cubes and switching activity, two cost functions are developed, which 

can optimize FSMs targeting area or power dissipation or both. For a specific state assignment, 

the area of the combinational section is calculated by ESPRESSO minimization. The algorithm 

is implemented in C and the efficiency is tested on MCNC benchmarks. The results show that 

the proposed algorithm has significant improvement in area and power dissipation compared to 

140 
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those from the state-of-the-art tools. 

9.2 Low power flip-flop designs 

Pulse sampling flip-flops usually suffer from a long clock chain, which is used to generate narrow 

pulse, and the long clock chain consumes significant power dissipation compared to the flip-flop 

cell. In Chapter 4, a clock-gating technique is used to reduce the redundant transition in a clock 

chain. A novel low power Single Edge-Triggered Flip-Flop with Clock-Gating (CG-SETFF) is 

proposed. The proposed flip-flop can detect the idle of the input signal to gate the clock chain 

so that the clock power can be saved. From the simulation result, the power savings can be as 

high as 86% compared with the published design when the input is in idle conditions. 

Clock signal is the most frequent transition signal in a flip-flop except glitches. Traditional 

flip-flops are single edge-triggered flip-flops, which are sensitive to the rising or falling edge 

of the clock. Therefore, half of the clock's transitions have nothing to do with the circuit 

and became redundant. One solution to reduce the redundant transition is to develop double 

edge-triggered flip-flops. In Chapter 5, two versions of differential CMOS double edge-triggered 

flip-flops are proposed: Clock Chain Based Double Edge-Triggered Flip-Flop (CCB-DETFF) 

and Pass Transistor Based Differential CMOS Double Edge-Triggered Flip-Flop (PTB-DETFF). 

CCB-DETFF has the lower power dissipation than CG-SETFF when input signal probability is 

greater than 0.38. PTB-DETFF only uses one clocked nMOS transistor. Therefore, it has some 

advantages to use in the reduced clock swing and voltage scalability. 

Reducing the number of signal lines can reduce the total capacitor and hence power dissipation 

can be reduced. One solution to do that is to use multiple valued signals. In Chapter 6, multiple 

valued flip-flop is explored and a novel quaternary flip-flop is proposed. The simulated result 

shows that the proposed flip-flop has a correct function and has lower power dissipation compared 

to other multiple flip-flop 
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9.3 Power optimization of FPRM functions 

Low power techniques of AND/OR operator based domain have been extensively investigated. 

However, for AND/XOR operator based domain, the research is still in its infancy. 

Before technology mapping, a multiple input XOR gate needs to be decomposed into a tree 

of two input gates. In Chapter 7, low power XOR gate decomposition is discussed. It is shown 

that previous algorithms for low power XOR gate are not optimal. Based on polarity searching 

and some given properties, a novel algorithm is presented and implemented in C. The results 

show that improved power dissipation is obtained. 

In Chapter 8, the above idea is extended to Fixed Polarity Reed-Muller (FPRM) functions. 

A power estimation frame for FPRM functions is proposed. A cost function, which is linearly 

combined by the number of 1r-terms and power dissipation, is proposed to optimize area and 

power dissipation. Based on polarity conversion, two algorithms are presented. One is to optimize 

power dissipation and the other is to optimize area and power. The experimental results for 

MCNC benchmark circuits show that an improvement is obtained compared to the unoptimized 

circuits or published results. 

9.4 Future work 

The above work can further be generalized and improved along the following lines. 

• Low power state assignment program described in Chapter 3 can be incorporated into 

other logic minimizers, such as SIS, to improve their performance. The state assignment 

technique can be extended to solve the multilevel FSMs in which their combinational 

sections are multilevel. It is also possible to apply this technique to low power FSM 

decomposition[29] . 

• The idea of clock-gating technique proposed in Chapter 4 can be applied to low power 

sequential circuit design[120] and low power finite state machine partitioning[18]. 

• Multiple-valued clock based flip-flops can be further explored to design flip-flops with sim­

pler structure. Moreover, the design methodology of low power sequential systems based 
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on this kind of flip-flops needs to be studied . 

• Low power XOR gate decomposition algorithm in Chapter 7 can be modified to take the 

delay into account so that the target circuit is optimized in both power dissipation and 

delay. If a proper delay model is applied, gliching power can be taken into account. Then, 

using this logic synthesis technique, the "real" power savings will be more accurate . 

• Low power FPRM function algorithm in Chapter 8 is for single output functions, which 

can be extended to solve multiple output FPRM functions. Further, if some algebraic 

abstraction and reduction rules are applied, then the above algorithm will be more efficient 

to optimize area and power. 
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Disk Containing the Software 
The attached floppy disk contains the programs developed in the previous chapters. 

• GA based FSM low power state assignment: Shell script file and C source files 

• GA based FSM power and area optimisation: Shell script file and C source files 

• Low power XOR gate decomposition: C source files 

• FPRM function power optimisation: FPRM function power minimisation; FPRM function 

power and area optimisation 
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