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ABSTRACT

Many phenomena studied in transportation are the result of choices made by

individuals, such as the choice of route through a road network or the choice of mode

to travel with, and are therefore modelled using choice models. This thesis addresses

some aspects of the application of the multinomial probit (MNP) choice model, a

well known model that, although theoretically sound, is not widely used as it is

difficult to calculate since its choice function cannot be written in closed form. In

particular, this thesis investigates the solution of the multinomial probit choice

function by means of analytical approximations (that allow us to overcome the

computational difficulties of the model) and addresses the application of MNP

analytical approximations to the solution of the traffic assignment problem and some

of its extensions. The use of MNP approximations to solve the model calibration

problem is also addressed.

The feasibility of solving the multinomial probit choice function by analytical

approximation, rather than by simulation as typically done in applications, is

explored by reviewing a number of approximation methods, some already used in

transportation and some borrowed from other disciplines. Their precision is

investigated by comparing their results and those obtained by numerical integration

on a large number of test cases designed to replicate choice situations encountered in

traffic assignment. Their computational cost is assessed by comparing the calculation

times needed to solve the same set of test cases.

The application of analytical approximations to solve the Stochastic User

Equilibrium (SUE) traffic assignment problem is studied by describing and testing

solution algorithms based on solving analytically the choice model and on the link

based formulation of the problem due to Sheffi and Powell (1982) but keeping track

of the solution both in terms of path and of link flows. A first series of algorithms

considered use the search direction of the method of successive averages (MSA) and

are based on those developed by Maher and Hughes (1997a). A second series of

algorithms employ alternative search vectors devised by considering the MSA search

direction as a preconditioned steepest descent direction. Numerical tests, carried out

on fixed sets of paths using two of the MNP approximations investigated, show that
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some of the algorithms of the second series outperform consistently the previous

ones and those in the literature.

The inclusion of multiple classes of users (MUC) with different perceptions of the

network costs is treated using the formulation put forward by Daganzo (1982) and

extending the algorithms investigated for the SUE case. The cases of SUE with

elastic demand and with both multiple user classes and elastic demand are studied

proposing formulations of the problems that are extensions of those for SUE and

MUC SUE and allow us to develop efficient algorithms that are extensions of those

proposed for SUE.

Finally, the solution of the multinomial probit calibration problem is investigated by

describing and applying a method to obtain analytical derivatives of the log

likelihood function by exploiting the structure of the approximation employed. The

work reported focuses on the approximation of Mendell and Elston but the

calculation structure suggested can be used also with other approximations. The

efficiency of the approach proposed is tested by comparing the computational effort

it requires against that required using numerical derivatives.
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1. INTRODUCTION

Transportation models are used in the planning and management of transportation

facilities to support decision making and analysis of transportation systems. Their

results are used by planners to appraise the effects of implementing different possible

alternative actions in pursuing some set objectives and to decide which actions are

the best to plan and undertake.

Decisions made on the basis of a transportation model's results have important

impacts on people's everyday life and on its quality as well as on the economy and

the environment of the areas involved. They also often entail the use of large

amounts of resources.

Therefore, although any model's results are approximate in nature since a model can

describe reality only to a certain extent, it is important to develop and use models

which are capable of capturing real phenomena as accurately as possible thus

providing decision makers with sound and significant data to make decisions on.

Many transportation models relate the usage of a transportation system to its

characteristics and to those of a population of potential users with cause-effect

relationships.

The phenomena investigated in transportation are often the result of choices made by

a number of individuals. An example of such phenomena is the choice of mode of

travel amongst a number of available ones in a certain area (e.g. in an urban context:

foot, bicycle, private car as driver, private car as passenger, taxi, bus, LRT,

underground), that results in the overall mode choice pattern for that area. A further

example is the choice of route through a road network, that results in the traffic

pattern on that road network. The cause-effect relationships used in transportation

models dealing with such phenomena are therefore choice models that are

mathematical models able to describe how people choose amongst alternative
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options. Thus the analyst can investigate the behaviour of potential users of

transportation facilities in different situations and evaluate the effectiveness before

implementation and, more generally, the effect of possible schemes and changes to

transportation systems: for instance the effect of possible modifications to some

characteristics of a public transport service on its patronage or how the road traffic

would redistribute, and perhaps vary in quantity, if a motorway were to be added to

the available roads between two cities or if a city centre were to be pedestrianised. In

the same way it is also possible to assess how a transportation system would respond

to changes in the demand for its usage as in the case of an important traffic generator,

as a main commercial centre, were built.

A key factor for obtaining sound results is the use of an appropriate choice model. A

number of choice models and methods for their application to specific transport

problems have been devised and applied in the literature over the years and the

research efforts to obtain more detailed and realistic but also practically usable

models continue.

Rather than working on new models, this thesis focuses on the use of the

multinomial probit (MNP) model, a well-known and theoretically sound but not

widely used choice model, and attempts to address some issues related to its practical

implementation focussing on analytical methods to solve it and on their efficient use

in traffic assignment models (that describe how traffic distributes itself on a road

network), for which it is particularly suitable, and for the solution of the calibration

stage (in which the parameters of the models are retrieved from surveyed data) of

more general choice modelling problems in which the MNP is interesting for its

flexibility to represent different choice mechanisms.

The main reason behind the relatively limited use of the multinomial probit choice

model in practical applications is that it is not easily tractable mathematically: its

choice function, that is the function defining the result of the model, cannot be

written in closed form and approximate solution methods need be used.
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Traditionally, this has led researchers and practitioners to prefer for many

applications other choice models that can be solved directly and more easily,

although they are not necessarily as suitable for the modelled phenomena or as

flexible as the MNP.

Alternatively, most of the applications and research works using the MNP model

have relied on its solution by simulation.

The approach taken in the present work is to consider methods for the analytical

solution of the MNP model, as opposed to simulation based methods, on the basis of

the efficiency and of the repeatability of the results that they allow.

The analytical approach to the solution of the MNP model and, in particular, the use

of analytical approximations has been considered in a rather limited number of

research works presenting several different methods (for traffic assignment see e.g.

Daganzo and Sheffi, 1977; Maher, 1992; Maher and Hughes, 1997a; for model

calibration see e.g. Daganzo et al., 1977; Hausman and Wise, 1978; Kamakura,

1989) but it has not found its way into modelling practice. This is possibly because

of the limited applicability of some of the methods proposed and of the lack of

commercial software.

The present study builds on the results obtained in previous work trying to establish a

set of data showing that the approach is actually efficient and competitive.

The aims of the study are therefore to explore different possible analytical solutions

to the probit model, refining them where possible, establishing a set of data on their

accuracy and cost and characterising those most suitable for transportation

applications (for accuracy and computational efficiency) as well as to investigate

efficient ways to apply such analytical solution methods to traffic assignment and

model calibration, also by exploiting the advantages that they offer.
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The remainder of the thesis is organised as follows.

Chapter 2 introduces choice models and outlines their application to transportation

problems. It reviews the main characteristics and the applicability of the multinomial

probit model and of the main alternative choice models used in transportation (with

particular focus on those used for mode choice and route choice) and compares them

remarking the high degree of flexibility of the MNP. The stages in the practical use

of a choice model are outlined and the concepts of simple and equilibrium choice

problems are discussed.

Whilst the issues related to the evaluation of the MNP choice function (the base

function for the application of the model) are mentioned in chapter 2, chapter 3

deals with them in detail. The three kinds of evaluation methods that can be used are

introduced: simulation, numerical integration and approximation. The main

simulation methods are described and, although they are at present the most widely

used solution methods in research and practical applications, arguments are given for

preferring analytical methods. The rest of chapter 3 is thus devoted to describing and

testing some analytical MNP solution methods. A brief overview of the numerical

approximation techniques devised in the past precedes the description of the recently

proposed method of Genz (1992), the first one to be suitable for the large

dimensional MNP problem. Then a number of analytical approximation methods,

some of which already used in transportation and some taken from other disciplines,

are described in detail and tested for accuracy and computational cost to assess their

suitability for transportation problems. The tests are carried out in the context of

route choice on a large number of small artificial networks. The most precise and

best-performing approximations are characterised. Finally, the satisfaction function

is defined and alternative methods for evaluating it when using the MNP choice

model are described.

The problem of devising efficient algorithms for stochastic user equilibrium (SUE)

path-based traffic assignment is studied in chapter 4. First, the traffic assignment

problem is defined, some of the models for solving it are introduced and a review of

link-based and path-based traffic assignment models and algorithms is given with a

survey of the techniques for forming the sets of used paths between the origins and
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destinations on a network. Several different SUE solution algorithms incorporating

some of the approximations investigated in chapter 3 are then described and tested

for performance on real size networks. The algorithms include techniques already

used in the literature and others obtained by building on them. The discussion is

based on path-based algorithms applying MNP approximations but similar

algorithms could also be used in link-based cases and with other choice models

whose choice function can be written in closed form or approximated analytically.

Chapter 5 considers two extensions of SUE path-based traffic assignment: the

inclusion of multiple user classes and of elastic demand. The former allows us to

account for differences across the population of travellers of the factors affecting

route choice whilst the latter is an aggregate way to include variable demand in

traffic assignment models, that means extending the models for route choice on a

road network to include other choices, hierarchically higher (as e.g. the choice of

mode or the choice of travelling or foregoing a trip).

Methods for solving path-based SUE problems including multiple user classes and

elastic demand, separately and together, are developed and discussed, building on the

work presented in chapter 4. In particular, new formulations for SUE with elastic

demand and SUE with multiple user classes and elastic demand are put forward.

Then, algorithms for SUE with multiple user classes and for SUE with multiple user

classes and elastic demand are introduced and tested on the same real size networks

considered in chapter 4.

Chapter 6 deals with a different problem related to the practical use of the MNP

model: its calibration, that is the process of retrieving the parameters governing the

choice model from surveyed choice data. A review of the literature on the subject

and a discussion of the relevant issues (difficulties for the correct specification of the

model, complexity of the calibration problem) introduce the chapter. Then the

methods used to develop a program for the calibration of MNP models using one of

the approximation methods analysed in chapter 3 are discussed. In particular, it is

explained how, in some cases, the recursive structure of the calculations for the MNP

approximations considered can be exploited to obtain analytical derivatives of the

likelihood function. The computer program developed using the method described is
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then applied to some artificial choice situations to confirm the efficiency of using

analytical derivatives and investigate the quality of the retrievable results for a

number ofmodel structures and sample sizes.

Chapter 7 summarises the work reported in the thesis, drawing conclusions and

suggesting further possible research work on the problems studied.
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2. RANDOM UTILITY DISCRETE CHOICE

MODELS IN TRANSPORTATION

2.1 Introduction

The present chapter introduces choice models, on which the models and algorithms

considered in the remainder of the thesis are based, by summarising the results of a

literature survey on the subject. In particular, it outlines the characteristics of the

multinomial probit model, on which the research work focuses, and those of the

main alternative choice models currently available in the literature.

The stages in the practical application of a choice model are outlined to introduce the

work on equilibrium route choice models and on model calibration presented in the

following chapters.

2.2 The Random Utility Framework

Transportation models relate the usage of transportation facilities to their

characteristics and to those of a population of potential users.

They can be used, for instance, to describe how a population of users will choose at

what time or by which transport mode to travel to their destination amongst different

possible ones, to model the traffic pattern resulting from the routes that people drive

along or from the public transport services that people use. All these phenomena,

and others studied in transportation, can be described as the results of choices of

individuals: in the examples above the choice of the time to travel at, of the mode to

travel with and of the route to travel along. In fact, many transportation models are

actually applications of choice models.

Choice models replicate how a decision maker (in transportation, typically, an

individual or an household) chooses amongst several mutually exclusive options.

Since in transportation the options considered normally form a discrete set, discrete

choice models are used. A sound and effective theoretical framework for modelling
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discrete choices is provided by the random utility theory. This is not the only

possible framework (see e.g. Ben-Akiva and Lerman, 1985, for alternative

theoretical settings) but it is the most established one in transportation as well as in

econometrics, to which transportation modelling is tightly related.

The random utility theory assumes that each decision maker has a set of available

choice options, and attaches to each of them a quantity known as utility which is not

directly observable but depends on the user's and option's characteristics. Then the

decision maker ranks the alternatives according to their perceived utilities and

chooses the one with the highest utility.

Whilst it is not possible to observe the perceived utilities, the characteristics of the

alternatives and of the choice makers can be measured and the choices recorded.

Therefore, the utilities are modelled as random variables whose distributions are

functions of the observed characteristics and the choice models give the probability

that each available option is chosen for the given user's and options' characteristics.

In this framework, the utility U, associated by a decision maker to an alternative i in

their choice set containing J alternatives can be written as the sum of a systematic or

deterministic term Vi and a random term 8i (also called error or disturbance). In

general both terms can be functions of the vector of parameters of the model 8 and of

the vector a of the characteristics of the alternative and socio-economic attributes of

the decision maker:

(2.1)

The systematic part of the utility is usually expressed as a linear combination of the

relevant attributes a or of their transformations as e.g.:

Vi(8,a)= L:8ea e
E

(2.2)

where e is the subscript associated to each of the E elements entering the systematic

utility expression. The coefficients 8e can be either considered fixed or some or all of

them can be assumed randomly distributed across the population according to a
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suitable distribution. In the latter case the model is said to account for taste

variations across the population and (2.2) can be rewritten as:

u;(e,a)= 2:8eae +11;(e,a)+c;(e,a)
E

(2.3)

where ee are the means of the distributions of the coefficients e and 11i is the

additional random term deriving from the taste variations (for simplicity taste

variations are not normally considered hereon).

The random part s i of the utility is assumed to account for unobserved attributes (i.e.

not included in the systematic part), unobserved taste variations (that is accounting

for coefficients of the attributes included in the systematic part considered as fixed

whilst they should be more correctly considered as randomly distributed),

measurements errors and imperfect information and instrumental variables (Ben

Akiva and Lerman, 1985).

Since it is assumed that the alternative chosen is the one with the highest perceived

utility and that the utilities are random variables, the probability that an alternative i

is chosen is equal to the probability that its utility is greater than those of the other

options in the choice set:

(2.4)

Substituting a compact form of the formula (2.1) for the alternatives' utilities, (2.4)

can also be written:

It is sometimes useful to expand (2.5) into the following integral:

(2.6)

where p is the multivariate random variable of the differences CrCi ,Vj;&i, f(p) is its

density function and the upper limits of integration result from considering (2.5) for

each alternative option different from i.
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The actual functional form of (2.5) or (2.6) depends on the assumed distribution of

the systematic utility coefficients and of the random terms which also determine the

different choice models.

This is an important point as the error term distribution allowed by each different

model, and therefore the pattern of substitution it can accommodate, determines the

model's suitability to represent different choice problems.

For instance, if the coefficients of the systematic part of the utility are fixed and the

error terms are independently and identically distributed type I extreme value

(Gumbel) variates the multinomiallogit (MNL) model results, which is perhaps the

simplest and most used stochastic choice model. The multinomial probit (MNP),

which is the subject of this work, results when the coefficients of the systematic

utility are fixed or jointly multivariate Normally distributed and the error terms are

specified as jointly multivariate Normally distributed with zero mean and arbitrary

covariance matrix.

Both the MNL and the MNP are introduced in more detail in the next section along

with other random utility choice models used in transportation.

2.3 A Survey of Random Utility Discrete Choice Models

2.3.1 Introduction

A number of different discrete choice models have been developed and applied in

the literature, ranging from simple and numerically convenient ones to more

sophisticated models able to capture the mechanism of complex choice situations.

The development of new models, or of techniques to make feasible and efficient the

use of existing models, is motivated by the need to use in practical studies models

that are as realistic as possible, and often by the needs arising in each particular

application. The remainder of this thesis focuses on route choice problems and on

the calibration of more general choice problems so it is worth mentioning which are

the general requirements of models suitable for these applications.
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The choice of route through a network should be represented with models able to

capture the different variability and the correlation between the alternatives. The

alternatives in route choice are the paths between each two points of origin and

destination of a journey. The utility of paths of different characteristics (e.g. length

or travel time) should be assumed as perceived with a different variation. Moreover

when the paths between two points on the network partially overlap their utility must

be represented as partially correlated. These are actually quite demanding

requirements that can be fully met only by some very flexible model, as the

following survey shows.

In the case of model calibration that is, as explained in section 2.4.3, when the

parameters of a model specification are retrieved from field data and very likely

different model specifications are tested for the ability to fit the choice situation

under study, the structure of the model is not known a priori although the analyst

will have some information on it. When the choice structure is well defined a model

directly fitting it can be used but, more in general, flexible models, able to represent

simple choice situations as particular cases, should be used to check which model

specification best fits the data and with what significance. Hence the need for models

able to accommodate a rather wide range of choice situations, the simpler ones being

"nested" as particular cases in the more complex and general ones.

The sort of data used in model calibration is a further reason to have models able to

account for different variation and correlation of the alternatives' utilities. For

instance when panel data are used, that is when a model is fitted using data on the

choices of the same individual monitored at different points in time, the correlations

across time need to be taken into account. Also when actual and stated choices (the

latter are choices stated by a choice maker confronted with hypothetical situations

set up by the analyst; see e.g. Ortuzar and Willumsen, 1994) are considered together

there is a need to account for different variability of the utility of the two types of

data as there is when taste variations are included and the model needs to capture

their correlation as well as their variability.

The following brief survey of choice models reviews the multinomial probit model,

used in the rest of this work, and some of the most important alternative models
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presently in the open literature. Although the focus here is on stochastic models the

deterministic model is introduced first both as a base model and because it is largely

applied, mainly for traffic assignment.

2.3.2 The Deterministic Model

The deterministic model is obtained when the error terms in the general specification

of random utility discrete choice models (see e.g. formula 2.1) are assumed to be

zero.

The result is that the decision is modelled as made on the systematic part of the

utility of each option in a choice set and the option with the highest utility has a

probability 1 of being chosen whilst all the others have zero probability.

Using this model entails assuming that the decision makers perceive an utility equal

to the systematic utility specified by the analyst. This is often stated saying that the

decision maker has a perfect knowledge of the utility of each alternative (as it is

accounted for in the model).

Although the deterministic model is used in route choice when it is believed that

attributes included in the systematic utility would be dominant if the random terms

were not assumed to be zero, thus making the latter of little importance, this is

generally too simplistic a model for most applications and stochastic models, with

random errors not equal to zero, are used instead.

2.3.3 Stochastic Models

2.3.3.1 The Probit Model

The probit model or multinomial probit model (MNP) results when the error terms in

the general specification of random utility discrete choice models (formula 2.1) are

assumed to be multivariate Normally distributed with zero mean and arbitrary

covariance matrix. The choice model remains a MNP also if the coefficients of the

systematic utility are multivariate Normally distributed rather than fixed. The utility

12



vector U of dimension J is therefore MVN(V,L) with V=V(8, a) and L=L(8, a) and

its probability density function is therefore:

(2.7)

Considering the utilities as Normally distributed is theoretically sound as it is backed

up by the Central Limit theorem, as pointed out e.g. by Daganzo and Sheffi (1977),

since it is assumed that the error terms derive from the effect of several unobserved

factors, as mentioned in section 2.2.

A seminal version of the MNP, for a binomial case, was put forward in

psychometrics by Thurstone (1927). The model was adopted in transportation and

econometrics later (Hausman and Wise, 1978). A comprehensive description of the

model can be found in Daganzo (1979) although for the issues related to its

identification and specification the studies listed in section 6.2, which reviews these

issues, should be referred to.

The multinormal distribution of the random terms makes the MNP model very

flexible, and suitable to represent the different patterns of substitution arising in

different applications. The flexibility of the MNP has been discussed e.g. by

Daganzo (1979), Bouthelier and Daganzo (1979), Sheffi et al. (1982) and it is

important to remark that the MNP is much more flexible than most other discrete

choice models in the literature as the survey in the following paragraphs shows.

In general, the MVN distribution of utilities can be specified to accommodate

homoscedastic and heteroscedastic independent utilities and also different patterns of

correlation between homoscedastic or heteroscedastic utilities (although with some

limitations when a model is being calibrated, as noted in section 6.2), such as

correlation between all options or between groups of options in a choice set.

The MVN distribution of the utilities results also in the ability to deal with cross

sectional choice data along with panel data, to allow for calibration with aggregate or

mixed aggregate and disaggregate data and also with missing data or data containing

errors; moreover, the aggregation of the result is particularly simple if the attributes

over which they are aggregated are Normally distributed (see Daganzo, 1979;
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Bouthelier and Daganzo 1979; Sheffi et al., 1982). The MNP can accommodate

random taste variations due to Normally distributed coefficients of the attributes

entering the systematic utility.

With the multinomial probit model, the choice probability of an option i in a set ofJ

options, that is (2.4), is expressed by:

~(V,L)=

(2.8)

This integral cannot be written in closed form and calculated exactly. This lack of

tractability has counterbalanced the theoretical appeal and the flexibility of the

model hampering, at least to some extent, its development and use in research and

practical applications.

However, the choice function (2.8) can be solved approximately with a number of

analytical or simulation based methods. The analytical methods are based on

numerical integration or on other analytical approximations to (2.8) but have enjoyed

only limited interest in the literature. In the case of the numerical integration

methods this is due to the limited practical applicability of the algorithms usually

considered, since their implementations are time consuming and become

increasingly and extremely so when the dimension of the MNP problem increases

beyond 4 (see e.g. Munizaga et al., 2000). The approximation methods have had

scarce use perhaps after the limited accuracy of the approximation of Clark has been

underlined in Horowitz et al. (1982). Monte Carlo simulation algorithms have

typically been preferred to solve the MNP choice function and are the only methods

that have found their way into commercial software: MNP traffic assignment

methods are available e.g. in the software packages SATURN (Van Vliet and Hall,

1993) and TRIPS (MVA, 1994). More recently, improved MNP simulation methods

to solve (2.8) have been proposed (see e.g. McFadden, 1989; Borsch-Supan and

Hajivassiliou, 1993), helping to overcome the traditional objections to the model

found in the literature concerning its tractability, bringing about some renewed
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interest III the MNP for econometrics and transportation applications (see e.g.

Geweke et al., 1994; Bolduc, 1999; Munizaga et al., 2000) and also providing

practical methods to use the mixed logit model described in section 2.3.3.8.

Approximate methods for solving the MNP are introduced in detail in chapter 3 in

which the possibility of solving analytically the MNP is reconsidered and the

performance of some analytical methods is assessed.

2.3.3.2 The Multinomial Logit Model

The logit model (McFadden, 1973), or multinomial logit model (MNL) is the

simplest and best known stochastic choice model in the literature (for a

comprehensive description see e.g. Ben-Akiva and Lerman, 1985). It results when

the error terms Ej in the general specification of the random utility (formula 2.1) are

assumed to be identically and independently Gumbel (type I extreme value)

distributed i.e. with cumulative distribution function:

F(E) =exp(- exp(- ~(E -11))) (2.9)

where 11 is a location parameter and ~ is a strictly positive scale parameter. The

parameters 11 and ~ are related to the mean of the Gumbel distribution by the

formula:

mean = 11 + y I ~

where y is the Euler constant (see also e.g. Ben-Akiva and Lerman, 1985).

(2.10)

This assumption entails that the covariance matrix of the joint distribution of the

random terms (and of the utilities) is a fixed diagonal matrix with non-zero entries

equal to (i, the common variances of the Gumbel variates, that are given by the

formula:

(2.11)
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As noted by Ben-Akiva and Lerman (1985) the use of the Gumbel distribution in the

logit model can be justified as an approximation to the Normal distribution.

The main advantage of assuming the Gumbel distribution for the random terms is

that it is closed under maximisation and therefore results in a simple and tractable

choice function. In fact, in the MNL case, the choice function (2.4) expressing the

probability Pi of choosing alternative i, whose systematic utility is Vi , from a choice

set containing J alternatives can be rewritten as:

(2.12)

The distribution of random terms assumed in the MNL makes it comply with the

independence from irrelevant alternatives (IIA) axiom. This, as reported by Ortuzar

and Willumsen (1994), states that when any two alternatives have a non zero

probability of being chosen, the ratio of one probability over the other is unaffected

by the presence or absence of any additional alternative in the choice set. This

implies that the reduction or increase of any alternative's utility will have the same

proportional impact on the probability of choice of all other alternatives.

The compliance with the pattern of substitution assumed by the IIA aXIOm

underlines that the logit model is suitable only for choice situations with independent

options with the same variance of the utility and therefore also makes the model

unable to deal correctly with situations, such as those mentioned in the introduction

to this section, where these assumptions are not correct. This has often been

disregarded in practical applications although doing so gives biased choice results as

discussed in the traffic assignment case e.g. by Florian and Fox (1976) and by

Daganzo and Sheffi (1977).

The convenient closed functional fonn of the logit model and its applicability

limitations have motivated research work that has led to richer legit-related models

retaining the closed functional form while expanding the modelling capabilities. The

most important ones are introduced in the following paragraphs.
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2.3.3.3 The Nested Logit Model

The nested logit (NL), or hierarchical or tree logit, is the most used and longest

established "extension" of the logit model. An account of its origins and of the

studies on this model is given in Ortuzar (200 1) whilst detailed information on its

characteristics and use can be found e.g. in Ben-Akiva and Lerman (1985).

The NL can account for correlation of the utility within mutually exclusive groups of

alternatives. In the NL model the alternatives can be seen as organised in a

hierarchical tree-like structure (hence its name) where correlated alternatives are

grouped in "nests". Fig. 2.1 sketches the structure of an example with one level of

nests only.

ABeD E F G
'-----v----" '---v--' '---v--'

Nest 1 Nest 2 Nest 3

Fig 2.1 - Example ofcorrelation structure amongst alternatives accommodated by a

nested logit model with one level ofnests. The letters A to G denote the alternatives.

The random terms of an option's utility can be seen as resulting from a part relative

to the nest it belongs to and a part relative to the option itself. The two parts of the

error term are independent and are both Gumbel distributed. This results in the

utilities of the alternatives within a nest having the same variance of the error term

and a common correlation (determined by the coefficient of the nest) whilst

alternatives belonging to different nests may have different variances and are

uncorrelated. This utility structure corresponds to a joint distribution of the utilities

of all the alternatives with a fixed block diagonal covariance matrix whose off

diagonal entries can be calculated with the formula obtained by Daganzo and Kusnic

(1993).

The choice probability of an alternative is expressed as the product of the marginal

probability of choosing the nest to which it belongs and the conditional probability

of choosing that alternative in the nest. Marginal and conditional probabilities are

obtained with closed form functions similar to (2.12). For instance, the choice
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probability of option i amongst the possible J belonging to nest m (out of N) in a

nested logit model with one level of nests as in fig. 2.1, is given by:

(2.13)

where Ln =_I_In I exp~ nVj ) is the expected maximum utility of the J options
~n jeJ

belonging to nest n.

Nested logit models can also include multiple levels of nests to represent more

complex grouping of choice alternatives but the nests at each level can only include

mutually exclusive alternatives or groups of alternatives. Alternatives not belonging

to the same nest at any level are not correlated.

The wide use of the NL model is due to its ability to suit several choice situations.

For instance, the patterns of correlation it accommodates can be used to model the

choice between different transport options some of which have similar

characteristics not accounted for in the systematic part of the utility as in the choice

between several public and private transport modes.

Furthermore, the possibility of using correlated alternatives (although with some

limitations) with a common part of the error terms can be used in mixed revealed

stated preference studies where stated and observed choice data have a different

variability and must be included in separate exclusive nests.

The possibility of introducing heteroscedasticity amongst options in different nests

has also been used by Munizaga et al. (2000) to model a situation with

heteroscedastic independent options with the Single Element Nested Logit (SENL)

model: a nested logit model with only one alternative in each nest.

However the utility structure the NL allows is not completely general: for instance

correlation structures such as those amongst routes between origin and destinations

encountered in traffic assignment cannot be generally modelled. Moreover, since its

errors terms cannot be function of the options' attributes, the NL model cannot treat

taste variations.
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2.3.3.4 The Generalised Extreme Value Model

The Generalised Extreme Value (GEV) model, proposed by McFadden (1978), is

used in the literature to derive choice models that are particular cases of its

functional formulation rather than directly as a choice model in its own right. The

MNL and the NL models can be seen as special cases of the GEV model, although

they have not been initially obtained as such. In fact, the GEV model has been

included in this survey because it has been used to derive the Cross Nested Logit

(CNL) and the Paired Combinatorial Logit (PCL), reported in the next two sections,

that extend the modelling capabilities of the logit-like models, although not to the

extent of including taste variations as, in general, GEV models cannot include

randomly distributed coefficients ofthe systematic part of the utility.

Assuming Yi=exp( VD where Vi is the systematic component of the utility for

alternative i, a GEV model (see e.g. Ben-Akiva and Lerman, 1985) can be derived

from any function:

G(~, Yz,"" Yn ) (2.14)

which is non-negative, homogeneous of degree j...l>O, approaches infinity with any Yi,

i=1,2, ... ,n and has kth cross partial derivatives which are non-negative for odd k and

non-positive for even k. Given the function G, the choice function for alternative i in

the resulting GEV model can be written as:

P. = r;G;(~,Yz,···,YJ
I j...lG(~ ,Yz ,•.., Yn )

where G. is the first derivative of G with respect to Yi.

(2.15)

The actual pattern of substitution obtained, and therefore the particular model that

n

results, depends on the function G used. For instance, taking G = I (rJl gives the
;;1

MNL model with scale parameter u.
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2.3.3.5 The Cross-Nested Logit Model

The cross-nested logit (CNL) model has been recently obtained by Vovsha (1997) as

a particular case of the GEV model and has been applied by Vovsha and Bekhor

(1998) in traffic assignment.

The CNL has a structure similar to the NL but the options may belong to several

nests of the same hierarchical level and may have a different degree of inclusion to

each of the nests they belong. Vovsha (1997) developed the model to study a mode

choice situation. In traffic assignment it has been applied to capture the even more

complex pattern of correlations amongst the routes between an origin-destination

pair.

As noted by Koppelman and Sethi (2000), although alternatives can be included in

different proportions in each nest, the parameter related to each nest, a parameter

similar to ~ in (2.13), is the same for all nests.

The choice function for each option is given by the summation over all the nests to

which it belongs of the product of the marginal probability of choosing the nest by

the conditional probability of choosing that option in the nest. Marginal and

conditional probabilities are obtained similarly to the NL case, therefore with a

closed form function similar to (2.13), although the exponential related to each

option in each nest is weighted by the relevant degree of inclusion.

2.3.3.6 The Paired Combinatorial Logit Model

The paired combinatorial logit (PCL) model was proposed by Chu (1981),

reconsidered by Koppelmann and Wen (2000) for general choice and used in traffic

assignment by Prashker and Bekhor (1998). It can be derived from the GEV and is

able to capture complex patterns of correlation since it considers the similarity

between all the possible pairs of alternatives in a choice set.

Koppelman and Sethi (2000) noted that, although different nests can have different

parameters, each alternative has the same degree of inclusion into each nest it

belongs to and this limits the correlation with other alternatives.
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The choice probability of an option in a choice set is the sum, over all the pairs to

which it belongs, of the products of the marginal probability of choice of that

particular pair by the conditional probability that the option is chosen in the pair.

Marginal and conditional probabilities are obtained similarly to the NL case,

therefore with a closed form function similar to (2.13), although the exponential

related to each option in each nest is weighted by the fixed degree of inclusion.

2.3.3.7 The C-Logit Model

The C-Iogit model has been derived by Cascetta et al. (1996) specifically for route

choice applications. It cannot be derived from the GEV model and Koppelman and

Sethi (2000) presented it as a form of the Mother Logit model. This is a rarely used

model proposed by McFadden (1975) that can deal with similarity among

alternatives by including in the utility of each option the attributes of the alternative

options (see Koppelman and Sethi, 2000; Ben-Akiva and Lerman, 1985). In fact, the

C-Iogit model accounts for the similarity between the options by adding to the utility

of each option as considered in the MNL a term, known as the commonality factor,

that is a non-linear function of a measure of similarity amongst the option under

consideration and the others in the choice set. In the path choice case the degree of

similarity is established considering a fixed attribute of the paths between the same

origin destination pair (as the length). For instance, one of the specifications of the

commonality factor suggested by Cascetta et al. (1996) is:

[ J

y
L ..

CFi = ~ In L 0.5 lJ 0.5

jEJ t: L j

(2.16)

where ~ and yare coefficients, L, and Lj are respectively the lengths of paths i and j

of the set of J paths between an origin-destination pair and Lij is their common

length. This device makes the model able to capture the topology of the network and

therefore the effect of path overlapping.

The C-Iogit choice function is as (2.12) but with the relevant commonality factors

subtracted from the utilities Vi to account for an option's similarities to other options:
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p _ exp l-l(V; - CF; )
i - =2:=-e-x-pl-l-'(-Vj---C-F~J

jeJ

2.3.3.8 The Mixed Logit Model

(2.17)

The mixed logit (ML) model, also known as the error component logit or the hybrid

logit model, had first been applied by Boyd and Melman (1980) and Cardell and

Dunbar (1980) (both cited by Brownstone and Train, 1999) but only very recently

has enjoyed increasing attention and application (see e.g.: McFadden and Train,

1996; Train, 1998; Brownstone and Train, 1999).

It has a random component of the utility (2.1) given by the sum of two terms: one

independently and identically Gumbel distributed as in a MNL model and the other

having a distribution across the J alternatives in the choice set tailored to the

problem at hand. Sometimes, but not necessarily, the second error term IS

multivariate Normally distributed. In other cases it is formed by a mixture of

different distributions such as e.g. Normal and log-Normal distributions.

The expression of the utility (2.1) for the ML model, assuming the systematic part of

the utility as in (2.2), results:

U; = 2:8eae +8; +0;
E

(2.18)

where 8i is the Gumbel distributed term and Oi is the remaining random effect. The

actual choice model is defined by the distribution of the Oi terms.

Writing the choice function (2.5) for the ML with the utilities as in (2.18) yields:

(2.19)

where f(8) is the distribution function of 0 and the integral is over the distribution

function domain.
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The choice function (2.19) and the ML model can be derived in different ways. For

instance considering the inclusion in a logit model of taste variations resulting in the

non-logit random effect. The choice function (2.19) is also analogous to the

expression for the aggregation of logit results over a population with parameters

distributed as the error terms B.

The integral (2.19) expressing the ML choice function cannot be written in closed

form and calculated exactly but it is solved in the literature using simulation with

methods originating from the probit simulator of McFadden (1989) that obtains the

value of the choice function taking draws of the non-logit random term and

averaging the results of the resulting logit choice functions over the sample of

random terms.

The ML cannot be obtained from the GEV model but it turns out to be more flexible

than GEV models thanks to the allowed random term structure that can

accommodate taste variations and other random effects of several sorts so to

approximate several different substitution patterns. This is the reason for which the

ML is encountering increasing favour. McFadden and Train (1996) proved that it

can approximate arbitrarily closely any random utility model. For instance,

Brownstone and Train (1999) discussed how it can approximate the nested logit

model and the cross-nested logit model. This is similar to the substitution patterns

that the probit models allow but the main difference is that the ML allows also for

not-Normally distributed ~.

2.3.4 Discussion

The MNL choice model, although imposing a number of limitations on the choice

pattern it can represent, is still widely used and one of its simpler extensions, the NL,

is also very widely used (so much so that in the literature it is sometimes referred to

as the "workhorse" of choice modelling).

However, as shown in the survey reported above, recently there has been a

significant research effort that has resulted in choice models able to represent

complex substitution patterns (and include simple ones as particular cases) being

presented in the literature and applied in practice.
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This evolution is still ongoing and is following different lines of work like the

development of closed form models, whether referable to the GEV models (see e.g.

Wen and Koppelman, 2001; Koppelman and Sethi, 2000) or otherwise, as the C

logit, or like the development of a new and very general model like as the ML.

One other line of development is the refinement of the techniques to solve a well

known and general model like the MNP. In this line of work can be included the

simulation techniques mentioned in 2.3.3.1 that also led to the development of the

ML, and the validation, refinement and application of analytical techniques as in the

work carried out in this thesis.

If, on the one hand, logit related models are being expanded to keep a closed form

but approximate patterns of substitutions allowed e.g. by the MNP, applying

analytical techniques for the solution of the MNP can be seen as a different way to

propose flexible analytical methods for choice modelling. Moreover the MNP is

more flexible than GEV models, which cannot include taste variations, and includes

patterns of correlation in a perhaps more intuitive way through the representation of

random terms using directly the covariance matrix.

The ML model, which has very recently received increasing attention III the

literature, has a modelling flexibility similar to that of the MNP. In fact both MNP

and ML can cover the substitution patterns of the other models in the survey reported

in this chapter, at least approximately. As suggested by Brownstone and Train

(1999), the difference between the MNP and the ML with a MVN mixing

distribution is practically negligible. In fact, they support the use of ML on the basis

of the possibility of using different mixing distributions which is when the ML offers

actually an advantage over the MNP. This is useful, for instance, when random

terms, perhaps deriving from taste variations, need to be strictly of one sign which

makes the Normal distribution less appropriate than, for example, the log-Normal.

MNP and ML, the two more flexible models in the literature, share the issue of lack

of a closed form solution for the choice function. However, the possibility of

approximating analytically the MNP is particularly interesting because it results

directly in repeatable results (critical in scenario comparisons) and, for traffic

assignment models, in the possibility of obtaining the optimised solution methods

24



discussed in chapter 4 and 5 which could not be developed, for instance, with the

MNP model solved by simulation.

2.4 Using Discrete Choice Models

2.4.1 Introduction

This part of the chapter outlines the stages and problems in using discrete choice

models to place in this process the work described in the remainder of the thesis.

Whichever is the actual model chosen by the analyst, the final use of a choice model

is for predicting choices: actual or hypothesised choice situations are defined by the

attributes of the options and of the decision makers and by the relevant parameters

(parameters are usually assumed not to change for the same population facing

different choice situations). Then the model, with known functional form and

parameters, is used to obtain the probability of choice for each option for the

population of choice makers under study: the choice pattern.

However, before this forecasting or prediction stage is reached, a choice model must

be defined through the specification of the choice set, the functional specification of

the model, its calibration and its validation. The definition of the model and the

values of its calibrated parameters constitute also a result as they are of help in

understanding the relevance of each attribute considered in the choice process.

Furthermore, the forecasting stage is of a different nature depending on whether the

utilities of the options can be considered fixed or they vary with the choices, thus

representing an interaction amongst the choice makers. This is discussed before

considering the aggregation of the choice model results that is the problem of

obtaining the overall pattern of choice for a certain population from models

predicting the probability of choice of an individual choice maker.

2.4.2 Choice Set Definition and Specification of a Choice Model

The choice set definition and specification stage consists of characterising a choice

set, a particular choice behaviour and a functional specification of the model
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representing the choice behaviour. It is carried out mainly on the basis of a priori

knowledge of the modelled choice phenomenon, although confirmed by statistical

information on the significance of the model obtained at the calibration stage, and on

resource and data availability and is of major importance to obtain a sound model.

The choice set is often defined a priori, if it is small, by considering the problem

under study and characterising the alternatives available to the decision makers.

However, in some cases the choice set is not straightforward to characterise. This is

the case in traffic assignment where the choice set, that is the set of routes between

each origin and destination pair, is typically formed with suitable algorithms (see

chapter 4).

Employing a random utility choice model implies the relevant underpinning choice

behaviour outlined in section 2.2.

Deciding the specification of a random utility choice model means specifying the

functional form of the utilities and choosing a particular distribution of the error

terms in (2.1). As seen above, the latter implies a description of the way variability

and correlation of the alternatives' utilities are perceived by the decision maker and

the substitution pattern modelled. Ultimately this results in the sort of choice model

used.

The specification of the utilities and of the random errors involves selecting the

relevant attributes of the users and of the facilities that will be included and how they

will appear. The systematic part of the utility is commonly defined by a linear

combination of suitable measures of the considered attributes or of their functional

transformations as (2.2).

The issue of the specification of the models has different aspects depending on

whether the model of interest is used directly for choice forecasting, as could happen

in traffic assignment, or is being calibrated.

In traffic assignment the systematic term of the utilities is generally given by the

performance function of each element of the network (see chapter 4). These are

normally defined and calibrated separately. The variability and, if the model
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accounts for it, the similarity of the alternatives are typically defined by some

suitable characteristics of the network, although their scale needs to be defined.

When a model for a general choice situation is being specified prior to being

calibrated the situation is more complex. Where possible (and sensible) different

patterns of substitution and different models including also different sets of attributes

are assumed. The calibration stage will return the statistics necessary to choose the

pattern of substitution which best replicates the calibration data and the attributes

which are actually important in the model.

In defining the possible specifications of the model it must be taken into account

that, whilst the models are usually expressed in terms of utilities it is necessary to

consider that the data to calibrate them (attributes and choice for each surveyed

decision maker) give information about a process where the differences of the

utilities rather than the utilities themselves determine the outcome (as results from

the behaviour assumed in random utility models) (see e.g. Bunch, 1991). The

utilities, in fact, are scalable as, according to the random utility theory, they are only

used to rank the alternatives. Consequently, when specifying the functional form it is

necessary to bear in mind that only the parameters that can be retrieved uniquely

from the choice model written in difference with respect to a reference alternative

can be estimated. This issue poses limitations on the possible specifications of both

the deterministic and the random part of the utility that depend on the sort of model.

Those for the MNP are briefly reviewed in section 6.2. Moreover when many choice

options are considered the number of defined parameters related to the random term

tends to increase very quickly and this applies particularly to models allowing for

general choice structures such as the MNP and the ML. Synthetic though significant

ways to capture the correlation amongst the options with few parameters, such as

factor analytic structures for the covariance matrix, have been developed to deal with

this issue (Bolduc, 1992; Ben-Akiva and Bierlaire, 1999).
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2.4.3 Calibration of Discrete Choice Models

Once a model is specified, the parameters appearing in it have to be estimated or

calibrated using relevant surveyed data and the statistical significance of the

estimates evaluated.

Discrete choice models are most often calibrated using the maximum likelihood

method, that produces the parameters with which the model best replicates the

sample of data used. This method, in fact, consists of calculating the parameter

values that maximise the likelihood function. Since the likelihood function is the

probability density function of the calibration data as a function of the parameters of

the model, maximising it results in producing the parameter values using which it is

most likely that the model returns the calibration data. The maximum likelihood

estimates of the parameters are consistent, asymptotically Normal and

asymptotically efficient (see e.g. Ben-Akiva and Lerman, 1985).

The maximum likelihood problem is solved with optimisation algorithms chosen on

the basis of the choice model used. For some choice models, as the MNL, the

evaluation of the choice function and of its derivatives, and therefore of the

likelihood function and of its derivatives, is straightforward so a Newton-Raphson

algorithm can be used to obtain the maximum likelihood parameters.

In other cases the evaluation of the derivatives is more complex or possible only

numerically. An example of this case is the MNP, whose derivatives evaluation is

not straightforward, and which is usually calibrated as in the work reported in

chapter 6 with quasi-Newton methods building second order information from

function values and first derivatives only.

With most models there is also the issue of possible multimodality of the likelihood

function, but it is often disregarded in practical applications.

The calibration of the choice model delivers also data on the statistical significance

of the attributes and on the goodness of fit of the model to the data allowing

comparisons between different model specifications, that are employed to choose the

actual model to use.
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2.4.4 Validation of Discrete Choice Models

The validation of a choice model consists of comparing the choice predicted by the

model using the parameters obtained in calibration with those in a set of sample data

(known as the "hold out" sample since these data are not used for calibration but

saved for the validation stage). The attributes used for predicting the choices are

those relative to the choice data in the hold out sample.

The validation is to confirm that the choices made in the specification stage and the

parameters obtained in the calibration stage are effective and make sure that the

model can produce reliable forecasts.

2.4.5 Simple Forecasting and Equilibrium Forecasting

Forecasting consists of applying the choice model, with the coefficients determined

in the calibration stage, to real or hypothetical situations, described by sets of

attributes, to determine the resulting pattern of choice. It can be carried out with

fixed or variable attributes.

Forecasting with fixed attributes is referred to here as simple forecasting. In this case

the application of the choice model using the given constant values of the attributes

defining the choice situation yields directly the choice pattern. Simple forecasting is

used in transportation when the attributes are not influenced by the choices or such

influence is assumed to be of limited importance (in general or because of the time

span of the model) as e.g. for modal split studies.

However when many decision makers compete for the use of options of limited

availability there is an interaction between user's choices that can be described by

the utilities of the options being dependent on the options' usage. Thus, when the

utilities of the alternatives change, the demand may be reshaped because users

respond to the changes modifying their choices according to the behavioural

principle assumed by the model (utility maximisation, here). In turn, when choices

change, options' utilities may change. In transportation this interaction between

demand (the users) and supply (the transportation system) is referred to as

congestion.
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Congestion is normally accounted for in traffic assignment models in which the

network performance and sometimes also the overall demand (i.e. the number of

trips made) are functions, respectively, of the demand on the elements of the network

and of the network performance, rather than being fixed.

Modelling choices in such a case is more difficult than when alternatives' utilities

are fixed. The models considered in the remainder of the thesis account for

congestion within the equilibrium framework. This means assuming that, over the

analysed period, utilities and demand are consistent. In practice, in equilibrium

models the attributes that change with options' usage are calculated simultaneously

to the usage. The concept of equilibrium in traffic assignment is at the basis of the

models and algorithms investigated in chapter 4 and 5.

2.4.6 Aggregation of Discrete Choice Model Results

Whether applied to simple or equilibrium choice decisions, discrete choice models

give the probabilities that an individual decision maker would choose each of the

alternatives in a choice set. However in transportation what is of interest is the whole

pattern of choices made by a known population of choice makers. This entails

different cases depending on whether such a population is homogeneous or not.

A population of decision makers is homogeneous if it is made up of individuals with

the same characteristics who, therefore, can all be described in the model by the

same attributes (the possible variability of the coefficients of the models is accounted

separately using taste variations). In this case the predicted probabilities of choice

for each of the individuals in the population are the same and the overall pattern of

choice is the same predicted by the model for the single individual.

When the population of choice makers is not homogeneous, different techniques can

be employed to aggregate the results that is to account for how the attributes are

distributed across the population and obtain the overall pattern of choice starting

from information on the choice of the individuals.
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If the choices, or the probabilities of choice, of all the individuals in the population

were known, the overall pattern of choice could be obtained simply by considering

them together. But usually, in practice, this is not the case. In general the part Yi of

the population choosing an option i can be written as (see e.g. Daganzo, 1979):

Yi =8 f f... f~(8,a)f(a)da (2.20)

where P;{8, a) is the result of a choice model, the probability that an individual

would choose the option i, a is the vector of attributes with e elements distributed

f(a) across a population of size 8 for which the vector of parameters 8 can be

assumed to be constant.

The integral (2.20) expresses the aggregate result of the choices but it is generally

difficult to calculate directly. However it can be estimated approximately with

aggregation methods such as the naive or average individual method, the market

segmentation or classification method, the sample enumeration method and the

artificial sample method (see e.g. Ben-Akiva and Lerman, 1985; Ortuzar and

Willumsen, 1994).

Aggregation, in the reminder of this thesis, is relevant to the Multiple User Classes

traffic assignment problems considered in chapter 5 where the market segmentation

aggregation technique is applied within the equilibrium framework. The market

segmentation aggregation method consists of dividing the population of choice

makers in sets (market segments) with homogenous characteristics and summing the

results of the choice model for each set after they have been referred to the size of

the sets. In traffic assignment models this is done as a part of the equilibrium

calculations, as detailed in chapter 5, so no further aggregation calculation is needed.

2.5 Conclusions

This chapter has introduced the random utility modelling framework, on which many

choice models are based and has outlined the main characteristics of the Multinomial

Probit model, the model on which the work developed in this thesis is based, as well
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as those of the most important alternative choice models currently III the

transportation literature.

The review has underlined the flexibility of the MNP model, which is also

theoretically appealing as it is underpinned by the Central Limit Theorem, and in

particular its suitability for route choice modelling and its ability to accommodate a

wide range of substitution patterns. Other choice models have been reviewed (MNL,

NL, GEV, CNL, PCL, C-logit, ML) amongst which there are several closed form

choice models that have been recently devised and that extend the modelling

capabilities of the models of the logit family. It has been noted that similar

capabilities are also provided, and in some cases represented in a perhaps more

intuitive way by the MNP.

The Mixed Logit model, which has recently received much attention III

transportation and econometrics, provides high flexibility similarly to the MNP but

can also accommodate non-Normal disturbances which is of advantage when random

terms must be strictly of one sign.

Both the MNP and the ML model, along with the high flexibility, share the

impossibility to write in a closed form their choice functions. In fact, their

application has been recently favoured by developments in simulation methods.

However, the MNP choice function can also be approximated analytically with

numerical integration and approximation methods that are discussed in chapter 3. In

fact the rest of the thesis explores the use of such MNP analytical solution methods,

that provide repeatable results, and their use as the basis for optimised methods for

traffic assignment and model calibration. The use of analytical approximations to

non-closed form choice models can be seen as a different approach to obtaining

tractable and very flexible choice models, as opposed to the approach of extending

the capabilities of closed form logit-related models.

The chapter closed with a short review of the stages in the application of a choice

model to introduce equilibrium forecasting, used in traffic assignment, and model

calibration, which are the problems examined respectively in chapter 4 and 5 and in

chapter 6.
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3. METHODS FOR THE EVALUATION OF THE

MULTINOMIAL PROBIT CHOICE FUNCTION

3.1 Introduction

The present chapter discusses the different methods that can be used to evaluate the

Multinomial Probit (MNP) choice function. The problem is introduced expanding on

the discussion of the MNP given in the previous chapter, showing the alternative

formulations of the MNP choice function and mentioning some applications of the

MNP integral and of the related MVN integral in disciplines different from

transportation.

A brief account of the most important simulation methods for the solution of the

MNP choice function is given but most of the chapter is devoted to analytical

methods. The numerical integration method of Genz is introduced and a number of

approximation methods are treated in detail explaining the principles on which they

are based and assessing their accuracy and computational cost. Techniques to

improve the accuracy of the results of some approximation methods are also

investigated.

The next section, besides introducing the problem of evaluating the MNP choice

function, sets out the notation used throughout the rest of the chapter.

3.2 The Multinomial Probit Choice Function

The choice function is the function expressing the probability that an option in the

choice set is chosen according to a given choice model. The multinomial probit

(MNP) choice model describes the choice amongst a set of J mutually exclusive

options whose utility U is assumed to be distributed MVN(V,!:) with:
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v= L=
2 (3.1)

Vi 2 2 2
O"il O"i2 O"u O"u

VJ
2 2 2 2

O"n O"n 0" Ji 0"JJ

Given the distribution of the utilities (3.1), the MNP choice function can be written

in several alternative but equivalent fOTITIs. It can be written using directly (3.1) as

the probability Pi that the utility U, of an option i is the largest among those of the J

options in the choice set:

(3.2)

The choice function for any option i can also be written reducing of one the

dimension of the problem by considering the J-l dimensional distribution of the

utilities in difference with its utility Z(i)=MVN(W(i),Q(i)). Z(i) is still MVN distributed

as MVN distributions are invariant under summation (see e.g. Johnson and Kotz,

1972). Its mean vector and covariance matrix are:

WI(i) VI -Vi

W2(i ) V2-~

Wei) =~(i)V = ~-I,(i) =
Wi+I,(i)

V. I-V.,- I

Vi+1 -Vi

(3.3a)
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COI,I CO I,2 COj,} COI,J_I
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Q(i) =Ll( i )LLl (i )
T

(3.3b)= 2 2
CO

2
.

2
CO },I CO },2 J,J CO },J-I

2 2 2
CO

2
COJ_I,I CO J-I,2 CO J-I,} J-I,J-I

(the subscript referring to the reference alternative is omitted from the co2
k to

J,

simplify the notation). The matrix ~i) used above to obtain W(i) and QU) has been

first proposed by Daganzo (1979) and is a J-1 xJ matrix formed as an identity matrix

of dimension J-1 xJ-1 with an added column of -1 in position i, the position of the

utility used as reference, and whose choice probability is calculated.

Then the probability that the utility of option i is the largest amongst those of the J

options in the choice set corresponds to the probability that the difference between

each utility, except that of option i, and that of option i is not greater than O. This is

written expanding on (2.5) as:

(3.4)
'\Ij i= i ; i, j E J

Or writing the integral explicitly:

(3.5)

1

=.J . j. ... j. ... I[C2Jr) J - I!n (i) jf2 eXP[-~(Z(i)-W(iJn(i)-1(Z(i)-W(iJ]dZldZ2 ...dz}"".dZJ_l
-t --00':'2 _-00.;, j _-co ""J_l--OO

where <Pn(.) indicates the MVN integral of dimension n.

A further equivalent way of writing this integral, that is the starting point of some of

the calculation methods reviewed in the next sections, is by using the MVN

distribution of the utilities in difference W.r.t. that of option i in standardised form.
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The standardised utility difference distribution Y(t) is then distributed MVN(O, Pet))

with:

2 2 2

I
0)1,2 O)I,j O)I,J-I

2
0)1,10)2,2 0)1,10) j,j 0)1,1 0) J-I,J-I

2 2 2
0)2,1

I
0)2j 0)2,J-l

0)2,20)1,1 0)2,20) j,j 0)2,20) J-l,J-1

P(i)= 2 2 2
0) j,1 0) . ? 0) j,J-IJ,- I

0) j,jO)I,1 0) j,j0)2,2 O)j,jO)J_I,J_I

2 2 2
O)J_I,I 0) J-I,2 0)J-I,j

I
0)J-I,J-I 0)1,1 0) J -1,J _10) 2,2 0) J-l,J-1 0) j,j (3.6)

I Pl,2 PI,j Pl,J-1

P2,1 I P2,j P2,J-I

P j,l P j,2 I P j,J-I

PJ-I,I P J-l,j I

Due to the standardisation, the mean of each variate is 0 and the upper limits of

integration are no longer 0 but are defined by the vector B:

-WI,(i) -VI +Vi

BI,(i)
0)1,1 0)1,1

B2,(i)
-W2,(i) -V2 +Vi

B(i) = 0)2,2 0)2,2

B J-I,(i) - WJ-I,(i) -vJ +vi

0) J-I,J-I 0) J-I,J-l

(3.7)

The MVN integral can then be written as:

(3.8)
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1

=1J::.J::.]~n)J.' Ipu,If' exp[ - ~ (Y",Ypu,·'(Y", l]dY,dy, ...dyr·dy J.'

To explain some of the methods introduced in this chapter it is also useful to rewrite

(3.5) or (3.8) in terms of independent Normal variates using the Cholesky

factorisation of the covariance matrix of the integrand. In particular, focusing on

(3.8), p(i) can be rewritten as:

(3.9)

where C is the Cholesky decomposition of P(i), a uniquely defined lower triangular

matrix.

The variate Y(i) can then be written as a function of a vector X of unidimensional

standard Normal variates with the same dimension ofY(i) as:

(3.10)

Following e.g. Genz (1992) and considering (3.10), the product of matrices in the

exponential of the integrand of (3.8) can be rewritten as:

(3.11)

and, substituting this expression, (3.8) can be rewritten as:

P; (~(i) ,o,P (i))= <1> J-I (~(i) ,O,P(i))=

(3.12a)

where:

(3.12b)

and Cjk is the entry ofpositionjk in the Cholesky matrix C.
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The main difficulty of working with the probit model is that the above equivalent

integrals (3.2), (3.5), (3.8), (3.12) cannot be rewritten in closed form. Therefore their

evaluation can only be approximate and is generally not straightforward.

A univariate Normal integral can be calculated with generally available computer

routines (e.g. the methods in Abramowitz and Stegun, 1972). Bivariate Normal

integrals can also be calculated with routines available in the computational literature

(e.g. Donnelly, 1973). The test cases considered in the remainder of this chapter

include MNP models with up to 15 options but the description of the methods

reported here is more general and refers to techniques for solving MNP problems

and MVN integrals of even larger dimension.

There are a limited number of cases in which the evaluation of a MVN integral can

be carried out rather simply. For instance, when the covariance matrix has a product

correlation structure or when all the covariances or the correlations are equal, the

multivariate integral reduces to a one-dimensional one that can be solved with

standard numerical integration methods. These cases are illustrated e.g. in Johnson

and Kotz (1972) and in Tong (1990) but, since they are particular instances of the

problem that are not generally encountered in transportation, they are not considered

further here.

Several methods to solve approximately the probit choice function in general cases

have been put forward in the literature, and they can be broadly divided into

simulation and analytical methods. Analytical methods can be further divided in

methods using numerical integration and analytical approximations.

Simulation reduces the problem to the evaluation of the frequency with which a

suitable randomly drawn vector satisfies the conditions defining the problem.

Numerical integration calculates the hypervolume defining an integral, the MVN

integral here, by approximating the surfaces with suitably defined polynomial

functions and refining the determination of such functions until a satisfactory

precision is reached. Analytical approximation methods reduce the problem to a
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simpler one, or more specifically for the present case, to a series of simpler ones

obtained making some approximate assumptions.

Methods of each type have been used in transportation but, recently, simulation

methods have received most of the interest both in research and in practical

applications. This could partly be due to the availability of commercial software for

simulated MNP traffic assignment and to the availability of MNP calibration code

with one of the most recent simulation techniques, the GHK simulator (Borsch

Supan and Hajivassiliou, 1993), illustrated in the following.

Numerical integration of (3.5) or (3.8) is generally disregarded for practical

applications since it is usually considered feasible only for small dimensions of the

problem (3-4 options) within which it has had limited use in the past (see e.g.

Andrews and Langdon, 1976; Hausman and Wise, 1978). Mention should also be

made of a tabulation method, based on numerical integration, proposed for up to

trinomial probit models by Sparmann et al. (1983) (see also Sheffi et aI., 1982).

Approximation methods have had limited use perhaps as an effect of the lack of

information about their accuracy or as an effect of the low precision expected by the

best known method, due to Clark (1961), after the results published by Horowitz et

al. (1982).

Because of their different nature, each type of method, and each particular method,

has a different performance in terms of accuracy of the results and computational

time necessary to solve the problem.

The accuracy of simulation methods may depend, amongst other factors, by the

suitability of the method for the problem at hand (see e.g. the comment in the

literature and reported in section 3.3 on the crude frequency simulator method for the

MNP choice problem) and from the number of repetitions of the random vector

sampling. The result will also depend, at least to some extent, on the seed used to

generate pseudo-random numbers.
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The accuracy of numerical integration methods depends on the suitability of the

particular method for the problem to solve (see e.g. the points on the difficulty

encountered by many integration methods in evaluating MVN integrals, made by

Genz (1992) and reported in section 3.4) and on the ability of the chosen polynomial

approximation to replicate the surface of the integrand function.

The accuracy of the approximations depends on the validity of the assumptions on

which they are based.

Generally the accuracy of a method varies with the problem at hand. For instance

with the magnitude of the result (e.g. in crude frequency simulation, see section 3.3)

or with the complexity of the problem (e.g. with the correlation of the variates in

approximation methods).

The computational expense depends in all cases on the dimension of the problem and

on the complexity of the operations required. Moreover, for simulation methods it

increases with the number of replications of the random vector sampling and for

numerical integration methods with the precision required.

The focus of this thesis is on analytical methods, and particularly on approximations,

on the grounds that they give repeatable results and allow the development of the

optimised methods considered in chapter 4 and 5 for traffic assignment. Simulation

implicitly does not ensure repeatability of results (in fact, simulation results depend,

to an extent, on the simulation convergence and on the pseudo-random numbers

employed). Van Vuren (1994), discussing the effect of using simulated probit in

traffic assignment (with a method related to crude frequency simulation, mentioned

in the remainder of this chapter), remarked that since transportation models' results

are typically used in comparisons amongst different scenarios, "noise" and non

repeatability typical of simulation should be avoided. Also, trying to reduce these

influences by averaging the results of several runs may entail long computational

times, longer than those usually accepted in transportation practice.
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Integrals of the form of the MNP choice function (3.2) or the corresponding MVN

integrals (3.5) and (3.8), expressing the multivariate Normal cumulative distribution,

recur in a number of applications in different disciplines. For instance, the MNP

integral (3.2) is used to express choices in transportation (see e.g. Daganzo, 1979;

Ben-Akiva and Lerman, 1985), econometrics (see e.g. Lerman and Manski, 1981;

Geweke et al., 1994), political studies (see e.g. Alvarez and Nagler, 1994, Alvarez et

al., 1999), policy assessment (see e.g. Bolduc et al., 1996; Frolich et al., 2000). It is

also used in activity scheduling (PERT network programming: see Clark, 1961; Guo

et al., 2001). The MVN integral (3.5) or (3.8) is used e.g. in civil engineering to

study limit states of structures (see e.g. Melchers, 1999), in communications for

signal processing (see Thompson, 1974; Pattison and Gossink, 1999), in biometrics

for the study of inheritance of traits or diseases (see e.g. Rice et al., 1979), and, in

general, in statistical applications it is used for parameter estimation, hypothesis

testing, classification and discriminant analysis (Tong, 1990).

There is a rather good exchange of methods between transportation and

econometrics. However, in other fields where the MVN integral is used, besides

being sometimes dealt with using well known simulation methods, it is solved in

some cases with analytical techniques that have received little or no attention for

transportation applications. Some of those, and also some methods already used in

transportation, are considered and tested in the remainder of this chapter to assess

their suitability for transportation applications.

First the simulation methods are briefly reviewed with particular focus on the crude

frequency simulator (Lerman and Manski, 1981) and the GHK probability simulator

(Borsch-Supan and Hajivassiliou, 1993). Then, a survey of some numerical

integration methods appeared in the literature for the solution of the MVN integral

precedes an introduction to the method of Genz (1992, 1993), used in this work. A

detailed description of the several approximation methods investigated follows.
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3.3 Calculation of the MNP Choice Function by Simulation

In recent years most of the research and applications of the MNP model have been

based on simulation methods. Research oriented calibration software is available on

the internet (see the code for the GHK method, developed by Vassilis Hajivassiliou,

used e.g. by Munizaga et al., 2000). Simulation is also the only MNP calculation

method included in commercial software for traffic assignment (e.g. SATURN, Van

Vliet and Hall, 1993; TRIPS, MVA, 1994).

The simplest way to solve the MNP by simulation has been put forward by Lerman

and Manski (1981), and is actually a method that can be adapted to choice models

with any distribution of utilities. It has become generally known in econometrics as

"crude frequency simulation" (CFS). The principle on which it relies is to draw the

utilities of the options in a choice set from their distribution a number of times,

recording each time which option has the largest utility and finally approximating the

choice probability of each option by its resulting relative choice frequency.

Alternatively, only the times that the alternative of interest is chosen are recorded to

obtain its choice frequency.

This frequency simulator is applied to (3.2) or (3.5) using the Cholesky factorisation

of the covariance matrix as in (3.10). For instance to solve (3.2), at each simulation

draw, an instance of the vector X of independent univariate Normal variates is

drawn, then it is multiplied by the lower triangular matrix resulting from the

Cholesky factorisation of L, thus being transformed in the random vector of the

utilities U. This, summed to their deterministic part V, gives the utilities. These are

compared and the option with the higher utility is recorded as chosen.

Whilst simple to implement, the CFS has some drawbacks, remarked on in Daganzo

et al. (1977), Sheffi et aI.(1982), Geweke et al.(1994), due to difficulties with low

probability alternatives and to the fact that the frequencies are not continuous. The

first sort of problem is due to the possibility of recording no successes, that is no

cases in which an option with actual low probability is chosen, during the simulation

process (see Sheffi et al., 1982). Continuing the simulation until a satisfactory value

is obtained for all options and using an adjustment to account for low choice

probabilities introduce bias in the results (Sheffi et al., 1982). Also, the error of the
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results depends on the number of successes, making the method less precise in case

of small probabilities. The lack of continuity of the derivatives W.r.t. the parameters

of the choice model origins from the frequency of successes being a step function

and thus having points of discontinuity. This latter problem is relevant especially to

the use of the method in model calibration. As any simulation method, the CFS gives

results that are not strictly repeatable unless the same seed for pseudo-random

number generation is used.

Notwithstanding these drawbacks, the CFS still enjoys much attention (see e.g. Liu

and Mahmassani, 2000, and Garrido and Mahmassani, 2000, who used the program

of Lam, 1991). It should also be mentioned that the crude frequency simulation

method had independently been used also for solving MVN integrals outside

transportation and econometrics: Thompson (1974), for instance, put it forward for

signal processing problems for communications applications. The method is still

used nowadays in the same field (see Pattison and Gossink, 1999).

The CFS is also the method used in traffic assignment to solve the MNP choice

function but in that case the procedure to simulate the utilities is different from that

reported above as it exploits the network structure of the problem and the assumption

that the utilities of the routes between an origin and a destination, which are the

choice options, are given by the sum of the utilities of the links that they traverse.

With the assumption that the link utilities are independently Normally distributed

and with the additivity assumption just mentioned, the utilities of the routes between

an origin and a destination are, as a result, MVN distributed. In practice a simulation

draw is obtained by drawing the utilities of the links of the network. The utilities of

the routes do not need to be calculated explicitly: a shortest route algorithm

characterises the route with the highest utility (in the assignment case actually the

one with minimum cost or disutility) that is then the option chosen in the simulation

draw. This process is repeated a number of times and the traffic between an origin

destination pair is loaded according to the frequency of choice of the paths. On this

concept are based the approximated probit stochastic network loading method of

Burrell (1968), that uses uniform, rather than Normal, link utilities, and the probit

stochastic network loading method by Daganzo and Sheffi (1977) and Sheffi and

Powell (1981). Methods based on this principle (although not performing a total
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solution of the choice function, as illustrated in chapter 4) have been used by Sheffi

and Powell (1981, 1982) and Nielsen (1996) for the calculation of the stochastic user

equilibrium traffic pattern. Further versions of these methods have more recently

been used in research (see e.g. Nielsen et al. 1998; Cantarella and Binetti, 1998) and

in practical applications as they are available in commercial software for assignment.

A number of alternative MNP simulation methods have been developed in

econometrics or other disciplines. Several such methods are due to Genz (1992), and

use the transformation he used also to propose his numerical integration method (see

section 3.4). Deak (1980, 1986) proposed a method based on the problem expressed

using the Cholesky factorisation of the covariance matrix and on a transformation to

spherical coordinates. Somerville (1998) proposed a method partially based on

simulation and partially involving numerical integration. He built on a previous

simulation method (Somerville and Wang, 1994) that obtained the integral of a

MVN distribution over a convex integration region including the origin by working

in the space of uncorrelated variates and sampling the distance of the integration

limit in a number of randomly chosen directions. The method proposed by

Somerville (1998) uses numerical integration to calculate the integral of a function of

the distribution of the distance of the origin of the reference system and the limits of

the integration region, obtained by sampling such distance in a number of random

directions. None of these methods has been used in transportation.

A notable attempt to produce a simulator with results continuous in the parameters is

due to McFadden (1989) who developed a smooth MNP probability simulator that

processes the utilities sampled as in the CFS through a logit function. The

development of that simulator has led to the resurgence of interest in the Mixed

Logit model, introduced in chapter 2.

At present the most important, and widely used, MNP simulation method is the

Geweke-Hajivassiliou-Keane (GHK) probability simulator (see e.g. Borsch-Supan

and Hajivassiliou, 1993). It is based on expressing the distribution of the utilities in

difference with respect to the option of interest, as in (3.8). The resulting n
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dimensional MVN integral is then transformed as in (3.12), employing the Cholesky

factorisation of the covariance matrix, and the integral (3.12) is solved by applying

simulation to the n conditional univariate Normal integrals into which it can be

decomposed.

To explain how the GHK simulator works, it is useful to reconsider (3.12) and its

limits of integration, whose general expression is in (3.12b). Rewriting them

explicitly it is clear that the first one is independent of the variate X:

(3.13)

whilst the limit of integration of any other variate, say i. depends on the variates of

the vector X up to that of placei-I. Thus for instance ~z depends on Xl:

(3.14)

Similarly ~3 depends on Xl and Xz:

(3.15)

and so on.

Considering this, the integral (3.12) can also be written:

and can also be expressed as a product of marginal conditional probabilities:

(3.17)

Since the variates in X are Normally distributed, this can be further re-written as:

(3.18)
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The GHK simulator solves (3.8) by taking a number N of draws from X for which

(3.18) is satisfied and assuming that Pi is:

1 N

~ ';i;. -L.fcn)i (3.19)
N n=1

where j(n)i is the value assumed by (3.18) for the nth draw of the random vector X:

(3.20)

The conditional integration limits are obtained by drawing from an inverse truncated

Normal. For instance W2 conditional on XI<WI is obtained by substituting in (3.14) a

value XI drawn from the distribution of XI truncated at WI that is computed as

<v-I (u<v(~~)) where uis drawn from an uniform variate defined over [0,1].

The GHK, being a probability simulator rather than a frequency simulator, does not

give the problems with small probabilities encountered with the CFS. Moreover, as

the result of the simulation is not a step function but a continuous one, it is

continuous in the parameters. There remains, as in any simulation based method, the

issue of result repeatability.

The GHK probability simulator has been used in a number of recent transportation

studies. Munizaga et at. (1997) and Munizaga et at. (2000) used it in a calibration

program to investigate the ability of the probit model to represent heteroscedasticity

in the utilities' distribution. Bolduc (1999) proposed an improved calibration

program based on the GHK simulator including for the first time the analytical

calculation of the MNP likelihood function derivatives, obtained exploiting the

structure of the simulator.

3.4 Calculation of the MNP Choice Function by Numerical

Integration

Numerical integration methods for calculating the MNP choice function are

discussed separately from approximation methods here although, strictly, both these

sorts of methods are analytical as opposed to simulation ones. The methods in the

literature are mainly from outside transportation and, in particular, no application of

this type of method has been proposed for traffic assignment.
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An example of an early attempt to solve MVN integrals by numerical integration can

be found in Milton (1972) who used the Simpson rule. Andrews and Langdon (1976)

considered the trinomial probit case and the associated bivariate Normal integral

reducing it, with a series of variable transformations, to an integral in one dimension,

that they solved numerically. Hausman and Wise (1978) also worked on the

trivariate probit problem and, starting from the related bivariate Normal integral,

suggested a transformation to write it as an integral in one dimension, solved by

numerical integration.

Other numerical integration methods have been developed more recently for the

evaluation of the MVN integral (e.g. Schervish, 1984, who used locally adaptive

integration based on a Simpson rule; Drezner, 1992, who used a Gaussian integration

rule). They have been reviewed e.g. in Genz (1992) and appear to be oflittle interest

for transportation applications as they require long calculation times and can be

applied only to problems oflimited dimension. For instance in Genz (1992), where

comparison of different MVN evaluation methods are carried out on problems of

dimension up to 20, the method of Schervish (1984) is not used for more than 4

dimensions because it requires too long a calculation time.

Although for trinomial problems the numerical integration calculations for the MNP

choice function have been reduced to a univariate integral, for larger dimensions of

the problem there are difficulties for applying multidimensional numerical

integration routines that are sometimes referred in the literature as the "curse of

dimensionality". Genz (1992) explained that the difficulty of applying numerical

integration to the MVN integral is due to the peaked shape of the integrand function

and to the infinity limits of integration. The former requires suitable integration

methods and the latter either a suitable truncation of the integration domain or a

transformation of the integrand.

On the basis of these considerations, Genz has proposed a new numerical integration

method (Berntsen et al., 1991; Genz, 1992 and 1993), not yet introduced in

transportation, that can solve a MVN integral for a large dimension of the problem

and to a specified degree of precision in relatively short calculation times. Genz's
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method relies on a functional transformation presented in Genz (1992, 1993) that

changes the MVN integral expressed as in (3.8) into one of one less dimension over

a unit hypercube, so that the infinite integration limits are eliminated. This new

formulation of the problem is then solved using an algorithm for subregion adaptive

numerical integration well known in the relevant literature and developed by

Berntsen et al. (1991) that can recognise the peakedness of the integrand. Adaptive

numerical integration algorithms evaluate the integrand at points whose number and

position depends on the integrand shape, as opposed to non-adaptive integration

methods, where only the number of evaluation points is related to the nature of the

integrand while their position is determined with a fixed rule.

In the method of Genz (1992, 1993), the integral (3.8) is rewritten using the

Cholesky decomposition of the integrand covariance matrix as in (3.12) that is

reported here:

r. (~(i) ,0,P (i)) = <I> J-l (~(i) ,0,P (i)) =

Genz suggested that (3.12) should be further transformed by letting:

Therefore:

-r , ( 2}1 -) s
<I>(x.)=- Jexp -- s

J ~ -00 2

From which it can be derived that:

(
2J1 x.

dz. =--exp __J_ dx.
J ~ 2 J

Considering (3.23), (3.12a) can be rewritten with a change of variable as:

(3.12a)

(3.21)

(3.22)

(3.23)
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el e2 (ZI) eJ_1(ZI ,Z2 "",ZJ-2)

t; = f f··· fdzldz2 ...dzJ_l
o 0 0

where:

(3.24)

(3.25)

Genz applied a further transformation to simplify the integration region for use with

numerical integration software by letting:

(3.26)

therefore:

1 1 1

~ =e1 fe2(w). .. feJ-l (w) fdwldw2 ...dwJ_l
000

where:

(3.27)

(3.28)

(3.29)

The dimension of the original MVN integral (3.12) is reduced by one since the

innermost integral in (3.28) is equal to one and the problem becomes:

11 1

~ = f f... fele2(wJ...eJ_2(wl' w2,···, WJ_JdWldw2···dwJ_2
o 0 0

(3.30)

It should be noted that this presentation of the transformation of Genz (1992, 1993)

refers to single sided integrals. The more general case of double sided integrals,

possibly including also some infinite integration limits, is illustrated in Genz (1992).
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Following the sorting of variables proposed by Schervish (1984), Genz suggested

that the integration is more easily and quickly computed if the variates are ordered so

that the innermost ones have the largest upper integration limits (referred to the

integration limits appearing in 3.8) so that their values are closer to one. This way

the overall variation of the integrand is reduced and the integration algorithm works

more efficiently (Genz 1992, 1993).

Applying Genz's method to the calculation of the MNP model, the choice

probability of each option in a choice set is obtained by calculating the relevant

MVN integral in difference (3.8).

3.5 Calculation of the MNP Choice Function Using Analytical

Approximations

3.5.1 Introduction

This section considers a number of numerical approximations methods for solving

the MNP choice function by transforming the MNP or MVN integral in a series of

simpler operations not based, or not completely based, on numerical integration.

The approximations considered resulted from a literature search in different

disciplines, where the MNP or the MVN integral is employed. The paragraphs

describing each approximation give a brief account of the use of the approximations

in the disciplines where they have been developed along with the relevant references.

A short description of the principles at the basis of the approximation precedes a full

description, formulae and calculation details. All methods rely on established

algorithms for calculating univariate Normal integrals that are readily available in

the literature (see e.g. Abramowitz and Stegun, 1972).

It should be noted that some approximations calculate the choice probabilities

separately for each option, therefore they might not sum exactly to one. In these
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cases the choice probabilities are normalised to their sum. Alternatively, the value of

the choice probabilities for all options except one could be calculated and the

difference from I could be assigned to the remaining one but this alternative method

would arbitrarily treat differently one of the options whilst normalising is preferred

since it redistributes the inaccuracies proportionally amongst all the options. When

only the choice probability of one alternative is required, as in model calibration, this

is sometimes used directly as obtained from the approximation without

normalisation to save on the computational cost of calculating the other choice

probabilities.

3.5.2 The Approximation of Clark

The approximation of Clark (1961) was originally developed for the solution of

PERT programming problems and has been introduced in transportation by Daganzo

and Sheffi (1977) and Daganzo et al. (1977) respectively for use in traffic

assignment and in MNP calibration. It has also recently been used by Maher (1992)

and Maher and Hughes (1997a) in traffic assignment.

Clark obtained the formulae for the first four moments of the maximum of two

Normal variates, which he suggested to approximate as Normally distributed, and the

formula expressing the correlation between that maximum and any third Normal

variate. The application to choice models of his method uses only the formulae for

the first two moments of the maximum and the formula for the correlation.

If the utility distribution under study is written as in (3.1) and therefore the original

utility U, has mean ~ and variance cr/ and the correlation with a different utility Uj

is denoted by Pu the maximum of two Normal utilities Uj and U, can be

approximated as a Normal having mean VMAX and variance cr2
MAX given by:

(3.31)

(3.32)

where:
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(3.33)

(3.34)

where <D(.) is the cumulative standard Normal distribution function, <p(.) is the standard

Normal density function and:

v. - v.
Yij = I }

illij

Moreover, the expressions:

(3.35)

(3.36)

(3.37)

(3.38)

can be seen as the marginal probabilities of choice respectively ofoption i and option}.

The correlation between MaxiU«, OJ) and any third variate U, is then calculated with

the following formula:

(3.39)

This set of formulae can be used recursively by taking into account one more variate

at a time to approximate the maximum of n jointly Normally distributed variates. In

fact, they can be used to write (see e.g. Sheffi, 1985):

(3.40)
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The formulae of Clark can be used to solve the MNP integral (3.2) directly or as

MVN integral of the utilities in difference (3.4). The description reported here refers

to the direct solution of the MNP integral.

There are two possible ways to implement the Clark approximation to solve the

MNP choice problem: one is referred to here as "improved Clark" and is correct,

whilst the other, called here "simple Clark", is simpler but is a heuristic.

The improved Clark method consists of approximating the MNP choice function

(3.2) for each alternative in the choice set using recursively the formulae of Clark.

As the probabilities for each option are calculated separately they might not sum

exactly to one. In such a case they are normalised to their sum.

The calculation of each option's probability is started by finding the mean and

variance of the maximum of the utilities of a pair of options in the choice set, that is

approximated as Normal, and obtaining its correlation with the utilities of all the

remaining options. Then such maximum is considered along with a further utility,

their maximum is again approximated as Normal using the formulae of Clark and its

correlation with the remaining utilities is calculated. The calculations proceed in this

fashion including one more option at a time as in (3.40) above, until the maximum of

all the utilities except that of the option whose probability of choice is being

calculated is obtained. The probability that the utility of the remaining option, say i,

is larger than the maximum of the others, that is equivalent to its MNP integral, is

obtained as an unidimensional Normal integral:

(3.41)

where Vi is the mean utility of option i, VM is the mean utility of the maximum of all

the other options and (f)iM is the standard deviation of the difference of the utilities

whose mean values appear in the numerator.

Carrying out one further maximum calculation it is possible to approximate as

Normal the distribution of the maximum of the utility of all the options in the choice
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set thus obtaining also the expected maximum utility of the choice set, known as the

satisfaction, which is particularly useful e.g. in equilibrium calculations (see chapters

4 and 5).

Alternatively, the simple Clark procedure consists of calculating the MNP integral as

in the improved Clark method for one option only and obtaining the choice

probabilities for the other options by using the intermediate results in the recursive

calculations as conditional probabilities that each option is chosen. In fact, each time

a new option is considered in the application of (3.40) its marginal probability of

choice and the marginal probability that it is not chosen are calculated according to

(3.37) and (3.38). Thus the probability that the last option accounted for is not

chosen may be divided between the probability that the penultimate option

accounted for is chosen and the alternative event that the maximum of the previous

ones is chosen. The latter is in turn similarly divided and the calculations proceed in

a similar way until all the options have been assigned a choice probability.

However, as noted by Langdon (1981), the simple Clark method is a heuristic. In

fact, when calculating the marginal split between two options any choice whose

probability has already been obtained should be accounted for as it conditions the

distribution of the utilities of the remaining options (similarly to the procedure in the

method of Langdon, see section 3.5.4). Thus, for instance, when splitting the

probability that the last option is not chosen, the split calculated as discussed in the

previous paragraph is not the correct one to use as it is obtained with utilities that are

not conditional on the fact that the last option is not chosen. Similar considerations

apply all the times the probability that an option is not chosen is divided. Therefore

in the simple Clark method the probability of choice of the option entered last in the

calculations is calculated correctly but the method to obtain the probabilities for the

others is a heuristic and the results should not be expected to be necessarily accurate.

Also in this case it is possible to approximate the distribution of the maximum and

obtain the value of the satisfaction function as explained for the improved Clark
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case. The results obtained with the simple Clark method do not need normalisation

as they are obtained together and sum to one.

The order in which the variates are processed in either implementation of the Clark

approximation might have an effect on the results. This has been considered in the

literature and investigations on such matter have concerned the improved Clark

method but have only suggested that the results vary little with the order of

calculation and no preferable calculation order has been determined (see Daganzo et

al., 1977; Lerman and Manski, 1981; Langdon, 1984a,b).

3.5.3 The Approximation of Mendell and Elston

The method of Mendell and Elston solves MVN integrals and, whilst originally

developed in biostatistics (Mendell and Elston, 1974, Rice et al., 1979), it has been

introduced in transportation by Kamakura (1989) for the calibration ofMNP models.

Substantially the same approximation has been developed independently by Terada

and Takahashi (1988) for bivariate or trivariate Normal integrals in structural

reliability applications, and has been employed by Pandey (1998 a, b) to solve larger

problems still in the structural reliability context.

Given an n dimensional MVN integral, whose integrand is expressed in the

normalised form as in (3.8), and given a truncation of one of the correlated Normal

variates of the integrand, the formulae of the Mendell-Elston approximation

calculate the conditional variance and correlation of the remaining n-l variates,

whose conditional distribution is approximated as standardised MVN, and their

conditional limits of integration. Thus, if the truncation of the variate Yi is

considered, the conditional variance ajj? of one ofthe remaining variates Jj results:

a 2

1
. =1- p2.a.(a.+ R..)

} I Jl I I J-'l

(3.42)

where Pji is the correlation between Jj and option Yi, fJi IS the upper limit of

integration for Yi and a, is given by:
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(3.43)

The conditional correlation Pmnli between two variates Ym and Yn different from i is

given by:

(3.44)

The distribution defined by these parameters is approximated as MVN and its

conditional standardised limits of integration result:

(3.45)

A MVN integral can be calculated using the approximation formulae recursively

until it is reduced to the product of a series of unidimensional Normal integrals. At

each stage the marginal integral of the truncation of one variate is calculated and,

using the approximation formulae, the conditional distribution of the remaining

variates is approximated as MVN and the conditional integration limits obtained.

Such approximated conditional MVN integral is treated similarly at the next stage.

These operations are repeated until all the variates have been considered and the

value of the MVN integral is given by the product of the univariate Normal integrals.

This procedure can be summarised as:

<I>J~,O,p) =

(3.46)

The MNP choice probability of each option in the choice set is calculated by

obtaining the value of the relevant MVN integral in difference. As they are

calculated separately, the choice probabilities might not sum exactly to one, thus

they are normalised by dividing each by their sum.
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The possible effect on the results of the order in which the variates are introduced in

the calculations of the MVN integral has not been considered in the paper ofMendell

and Elston (1974). Rice et at. (1979), however, noticed the importance of the variate

processing order. Working with positively equicorrelated variates and cornmon

integration limits they noticed that the accurate results obtained when integration

limits giving small marginal integrals were used, could be explained by the reduction

of the conditional correlation amongst the remaining variates which, in that case,

they bring about. They suggested, as a conjecture, that considering the variates

giving the smallest marginal integral first could be of advantage also for more

general MVN integrals with different correlation amongst the variates.

Kamakura (1989) did not mention the order suggested by Rice et al. (1979) and

proposed, instead, that to obtain more precise results, the variates should be

considered in the order devised by Langdon (1984a,b) for his approximation: that is

the variates with the smallest variance should be considered first. This particular

calculation order is such that skewness and kurtosis of the distribution approximated

as Normal are as close as possible to those of the Normal distribution.

Terada and Takahashi (1988) and Pandey (1998a,b) did not discuss the calculation

order issue.

3.5.4 The Separated Split Approximation of Langdon

Langdon (1984 a, b) put forward expressly for use in transportation the "separated

split" method. It relies on calculations for the conditional distributions similar in

principle to those of the Mendell-Elston method, but the problem can be analysed

directly in terms of utility distributions thus solving directly (3.2). There are also

equivalent formulae to work in terms of utility differences. The structure of the

calculations is such that all the choice probabilities are calculated at the same time.

This makes the separated split calculations more complicated but assures that the

probabilities of the different options sum exactly to one.
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The basic operation of the method consists of considering the marginal choice

between two options in a choice set and splitting the population of choice maker into

those who have chosen each option and for whom the other option becomes

irrelevant. For each of these two parts of the population, the mean, the variance and

the correlation of the utility of all the options in the choice set (except the discarded

one) conditional on the choice made are obtained using the formulae devised by

Langdon and the distribution of such utilities is approximated as MVN. For instance

if two options, say i and}, are considered in a set of J whose utilities are MVN

distributed and assuming that i is chosen over}, its marginal probability of choice is:

~(ij) = <D(Y ij )

where Yij is:

and

The conditional mean of the utility of i Viii, results:

where R I , is:

The conditional variance of option i is:

2 2 (cr~ - cr~) ( )cr··I· =cru- 2 RI R] +Yy"
lIZ CO ..

Y

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

Moreover, the conditional mean of any other remaining utility m (except that of) that

is discarded as not chosen) results:
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(3.53)

and its variance is:

(3.54)

The covariance between i and any of the remaining conditional utilities can be

obtained as:

( 2 2X2 2)
2 = 2 _ cr ii - cr ij cr im - cr jm R (R )

c imli o im 2 1 1 +Yij
illij

(3.55)

whilst the covariance between any two other utilities (not including that of the

chosen option i) is:

(3.56)

The formulae for the case in whichj is chosen over i can be obtained by symmetry.

A MNP choice problem is solved by applying recursively to pairs of options' utilities

these operations until all possible marginal choices are explored. Each time a choice

between a pair of options is considered two separate sets of conditional utilities are

calculated and approximated as MVN, one for each of the options in tum considered

as chosen. As mentioned above, this can also be seen as a split of the population into

two groups according to the choice made. At the next stage each of the groups is

then faced with the choice between the option previously chosen and one of the

remaining ones. The two groups are thus further split according to the new choices

and the calculations proceed repeating choice, group split and utility updating for all

the population groups until all the alternatives have been considered. The final

choice probability of each option is the sum of the probabilities that each of the

population groups resulting in the last stage of the calculations would choose it.
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Fig. 3.1 depicts an example of the structure of the separated split calculations in a

case with 4 options labelled 1, 2, 3 and 4 (a similar graph can be found for a case

with 5 options in Langdon, 1984a). Each square with single border represents the

conditional marginal choice between the options indicated (the top square, however,

represents only a marginal choice) and the calculation of two conditional sets of

utilities and the consequent split of the population in two subgroups. The final

probability of choice for each option is obtained by summing the resulting

probabilities at the bottom of the calculation "tree". These are in tum obtained by

multiplying all the marginal conditional probabilities on the squares leading to the

final square considered. For instance, the total choice probability of the option 1 is

given by PI which is in tum given by PI(l,2) . PI(I,3) . PI(l,4) (the indices in brackets in

the subscripts indicate the relevant conditional marginal choice set whilst the index

outside the brackets indicates the chosen option). The total probability of choice of 2

is obtained similarly whilst that for 3 is the sum of PI(l,2) . P3(l,3) . P3(3,4) and P3(I,2) .

P3(3,2) . P3(4,3).

It is evident that the structure of the calculations tends to get complicated as the

number of options increases.

Fig. 3.1 - Example ofstructure of the calculation with the method ofLangdon in a

case with 4 options.
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One of the variables used in the calculations is the utility of each option conditional

on it being chosen (3.50). Continuing the calculations one step beyond what is

necessary to obtain the utilities, it is possible to calculate the final utility of each

option conditional on it having been chosen over each of the others. As noted by

Langdon (1981), summing these conditional utilities weighted by the relevant

probability of choice gives the value of the satisfaction of the choice set, the

expectation of the maximum of the utilities.

Langdon (1984 a, b) also investigated the effect of the order in which the alternatives

are included in the calculations by considering the effect of the characteristics of the

utilities on the skewness and the kurtosis of the conditional distribution. As the

conditional distribution is approximated as Normal, the best calculation order (in

terms of results' accuracy) is such that the skewness and kurtosis of the distribution

being approximated as Normal are as close as possible to those of the Normal

distribution. Langdon suggested that more precise results are obtained by including

at each stage the pair of utilities with the smallest variance of the difference and, in

case of a tie and with a minor effect on the results, the pair containing the largest

utility.

3.5.5 The Approximations of the FOMN Group

The FOMN (First Order MultiNormal) is a group of three approximations developed

in civil engineering for use in structural reliability analysis (see e.g. Melchers, 1999).

The approximation of this group devised first is known as "crude FOMN" and is due

to Hohenbichler and Rackwitz (1983). Hohenbichler refined it proposing the

"improved FOMN" approximation (as reported in Tang and Melchers, 1987) and,

more recently, Tang and Melchers (1987) built on those previous methods putting

forward the "generalised FOMN" method. None of these approximations has been

previous considered for use in transportation.
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All the FOMN approximations have a similar calculation structure and differ only in

a part of the procedure that, however, is important for the quality of the results and

for the computational effort involved in obtaining them. A first difference between

the methods is that the crude and improved FOMN involve the use of

unidimensional Normal integral calculations only whilst the generalised FOMN

includes also the use of bivariate Normal integral calculations. The direct calculation

of bivariate Normal integrals is possible thanks to computer routines from the

literature (e.g. Donnelly, 1973; see also Genz, 2001).

All the FOMN methods calculate a MVN integral like (3.8) as the product of

univariate Normal conditional marginal integrals, and a bivariate Normal conditional

marginal integral in the generalised FOMN case, obtained in stages.

At each stage the marginal integral of the truncation of one of the variates in the

MVN distribution is calculated and the conditional distribution of the remaining

variates is approximated as a standardised MVN, and the relevant new integration

limits obtained. Then the MVN approximating the conditional distribution is

considered and the process is repeated. The calculations proceed in this way

considering one variate at a time. In the generalised FOMN method, when only a

bivariate Normal integral remains, it is solved directly with a suitable algorithm. The

J dimensional MVN integral is then calculated as the product of J univariate

marginal Normal integrals in the crude and improved FOMN cases or, in the

generalised FOMN case, as the product of the J-2 univariate Normal integrals and of

a bivariate Normal integral.

To approximate the conditional MVN distribution and the new integration limits, the

original n dimensional MVN integral <pn(13,O,P) is expressed in terms of n

independent standard Normal variates Xi using the Cholesky factorisation of the

correlation matrix P=CCT
, as specified also in (3.9). The region of integration of

(3.8) can therefore be written in vector form as:

y= CX:s;; 13

or, in expanded form, as:

(3.57)
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n

~ =L:>jkXk :s; Pj
k=l

for each line j (3.58)

where Cjk is the entry of position jk of C.

This expression characterises a semispace in the space of the n independent Normal

variates delimited by hyperplanes, each one defined by each equation (3.58) when

only the equality sign is considered.

Considering the truncation of a variate Xl, its conditional distribution XIll=(XI I

Xl:S;Pl) can be written as:

(3.59)

The region of integration conditional on the truncation of Xl can be written

substituting (3.59) for Xl in each of the (3.58) above. This introduces a non-linearity

in the (3.58) and the surfaces delimiting the semispace are no longer hyperplanes.

The idea of the crude FOMN approximation consists of linearising each of these

expressions by replacing it with that of the hyperplane tangent to the surface it

describes at the point closest to the origin, which is also the point with highest

probability density along that limiting surface.

This point can be found by minimising a program whose objective function is the

distance between the origin and the point sought and the point is constrained to be on

the surface.

Following Tang and Melchers (1987) the problem of linearising one of this n

dimensional surfaces can be reduced to a problem in two dimensions as the

conditioning on Xl introduces a non-linearity only in one of the terms of (3.58). So if

(3.58) for line j is rewritten:

(3.60)

letting:

(3.61)

63



(3.60) becomes:

j

cj1h(Xj )+LCjkXk ::;;~j
k=2

the part that remains linear can be compacted in a single variable by letting:

(
2 JI2U 2 = l-c j l

and rewriting (3.60) as:

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

Thus the original problem defined for each line of(3.60) or (3.62) is recast into a two

dimensional problem. The closest point to the origin ~/ can then be calculated

solving the program:

(3.67)

subject to (3.66) re-written with the equality sign.

Keeping on following the method suggested by Tang and Melchers (and coded in the

program used in the experiment reported later in the chapter) if (3.66) is solved for Vj

and substituted in (3.67), the program becomes:

(3.68)

where:

(3.69)
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The solution is then given by the point where the first derivative of (3.68) w.r.t. Xl is

zero, which is when:

(3.70)

where h' is the first derivative of h W.r.t. Xl . The derivatives of h and of (3.70) can

be calculated analytically as detailed in Tang and Melchers (1987) that suggested to

find the solution for (3.70) with a Newton-Raphson algorithm.

Once ~j* is determined, the linearisation of the surface at that point is obtained by

calculating the direction cosines of the outward Normal vector to the surface at the

point of tangency. These determine the new linear combination coefficient Cjkll that

are also the Cholesky factors giving the correlation matrix of the conditional n-1

dimensional standardised distribution approximated as MVN.

The direction cosines are obtained as the vector of components:

'Ilk (3.71)

normalised to its length.

To summarise, the components of the unit vector parallel to (3.71) form the new

linear combination coefficient CjklI for the approximating hyperplane and the ~/

gives the ~j for the new hyperplane expression.

This procedure is carried out for each line in (3.58). Finally, the new Cholesky

coefficients give the covariance matrix of a standardised distribution of one less

dimension the than the starting one and such distribution is approximated as Normal.

The improved FOMN method (Hohenbichler, 1981, cited in Tang and Melchers,

1987) uses the direction cosines determined with the procedure outlined above but

introduces a modification to ~/. The ~/ of the crude FOMN method approximates

the probability content behind the non-linear curve (when the problem is re-written

in two dimensions as above) resulting from the conditioning with that contained

65



behind the straight line tangent to it at the point closer to the origin. The correction

introduced by the improved FOMN considers the asymptotes to the actual non-linear

limit of integration and corrects the ~j* so that it represents the union of the

probability contents behind the approximating straight line and behind the

asymptotes. The direction cosines are not changed so the approximating straight line

is simply shifted parallel to itself to adapt its distance from the origin to the new ~j*.

The modified ~/ is obtained by calculating the union of the probability content

behind the approximating line and the two asymptotes. If the approximating straight

line, the right hand side asymptote and the left hand side asymptote are respectively

written as:

g-* =0j , g-R =0j, (3.72 a, b, c)

the union ofthe probability content of the space behind them is:

p. =p(g. * ::;; 0)+ p(g -* ~ 0 (I g. L ::;; 0)+ p(g. * ~ 0 (I g. R ::;; 0)
j j, j, j , i, j, (3.73)

The first term in this expression is simply the univariate Normal integral with

integration limit ~/ and the others can be obtained as bivariate Normal integrals,

reduced to univariate ones in the original method, according to the formulae detailed

in Tang and Melchers (1987). The improved ~/ is then simply obtained as the

inverse Normal cumulative distribution ofP, in (3.73):

R =<D-1(p')
I-'jll,impr j

(3.74)

Tang and Melchers (1987) suggested a different modification of the crude FOMN

algorithm to improve the determination of the conditional integration limits. Their

generalised FOMN method entails calculating exactly the conditional probability:

(3.75)
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thus working directly with the original variables, their integration limits ~j and ~l

and their correlation plj, to write (3.75) as:

P = pl(1j ~~j)(l(~ ~~I)J= <D2(131;~j;Plj)
j,EX p(~ ~ ~I) <D(~I) (3.76)

where the numerator is calculated using a routine for the bivariate Normal integral.

The new limit of integration for each row j is then obtained as:

~ jll,GEN = <D -I (Pj,EX ) (3.77)

With any of the FOMN approximations, the probit choice function for each

alternative in a choice set is calculated by obtaining the integral (3.8) for each option

and normalising the resulting probabilities to their sum if they do not sum exactly to

one.

The literature on the FOMN methods (Hohenbichler and Rackwitz, 1983; Tang and

Melchers, 1987; Melchers, 1999) does not seem to discuss the possible effects

related to the calculation order although Tang and Melchers pointed out that the

approximations are less precise when the surface approximated with an hyperplane is

closer to the origin, because of the high probability density in such a region.

3.5.6 The Taylor Approximation

The use of the first, second or higher order Taylor series approximation for

evaluating MVN integrals has been suggested by Cox and Wermuth (1991) who

considered bivariate and trivariate Normal integrals only, and by Olson and

Weissfeld (1991) that independently but focusing on biostatistics applications as

well, considered mainly bivariate and trivariate integrals but investigated the method

also for the evaluation MVN integrals of up to 20 dimensions. In fact, the basic

method they proposed can be generalised to any number of variates and, as noted by

Olson and Weissfeld, is also applicable to integrals of other functional forms.
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The method is based on reducing a MVN integral to a univariate Normal integral and

a sequence of factors that are Taylor series approximations of expectations of

marginal conditional probabilities. These reduce to univariate Normal integrals in the

first order series case.

Starting from a MVN integral as in (3.8), the marginal integral of one of the variates

is obtained, then the contribution of the integral of a second variate is accounted as

the Taylor series approximation of the expectation of its marginal integral

conditional on the truncation of the first variate. Considering one more variate at a

time and obtaining similarly their contribution as the expectation of the marginal

integral of each of them conditional on the truncation of the variates previously

included, the MVN integral is reduced to a series of factors.

The formulae used can be explained by considering the first two variates in a MVN

distribution. The marginal integral of the first variate will be:

(3.78)

The contribution ofthe second variate is obtained considering that:

(3.79)

To elaborate on this expression it should be recalled that the variate Yz conditional on

Y1=y will be Normally distributed with mean and variance respectively:

(3.80)

(3.81)

The mean and variance of any third variate can be obtained similarly, and their

correlation will be:
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(3.82)
Pij - PnPjl

Pijll =~ 2 ~ 2
1- Pn 1- Pjl

(these are general results for multivariate Normal distributions, see e.g. Johnson and

Kotz, 1972).

Moreover, the distribution of Y1 conditional on its truncation has mean and variance

that are, respectively:

(3.83)

(3.84)

Finally, the Taylor series approximation to the expectation of a function can be

written (in this case writing the terms up to the second order) as:

(3.85)

where I.l is the mean ofX

Returning to (3.79), in the present case g(X) is the conditional integral of the second

variate that can be written as:

(3.86)

Thus, using the first order Taylor approximation, (3.79) can be rewritten:

(3.87)

that can also be seen as the Normal integral for the distribution conditional on the

first variate being equal to its mean when its truncation is considered.
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Considering one more variate at a time in this fashion, a MVN integral is reduced to

the product of a sequence of univariate Normal integrals.

This method appears similar, numerically, to that proposed by Mendell and Elston,

but, without considering the different rationale, they differ in the way the covariance

matrix of the distribution of the variate conditional on the truncation of one of them

is obtained.

The Taylor series of the contribution of each variate can also be expanded beyond

the first term to improve the accuracy of the method as suggested by Olson and

Weissfeld (1991). This can be carried out at little additional computational expense

as few added quantities are necessary for writing additional terms.

Here it is considered also the approximation derived by using the second term

expansion, already used by Cox and Wermuth for evaluating bivariate Normal

integrals. The expression (3.79) can be re-written with its second term Taylor series

as:

(3.88)

Thus in the second order case the contribution of each variate other than the first is

obtained with a expression similar to (3.88).
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The MNP choice function of each option III a choice set can be obtained by

calculating the relevant MVN integral in difference (3.8) for each option with the

approximation extended to the relevant order and normalising the results to their

sum, as they are not calculated simultaneously and therefore their sum could be not

exactly one.

Both Olson and Weissfeld (1991) and Cox and Wermuth (1991) recognised the

importance of the sequence in which the variates are considered on the accuracy of

the final results. Olson and Weissfeld (1991) suggested a simple rule for determining

the calculation sequence that can be used with MVN integrals of any dimension (and

is applicable with any Taylor series order): they suggest to use at each stage as

conditioning variate the one giving the smaller marginal integral, that is the one with

the smaller integration limit in the case considered here. The rationale for this order

is that the smaller the conditioning integral the smaller will be the second and higher

terms of the Taylor series expansion. In other words, assuming that the Taylor series

expansion converges, it does so more quickly than with a different calculation order,

and disregarding higher order terms has a lower impact on the final result.

Cox and Wermuth (1991) suggested the same calculation order for trivariate Normal

integrals and a more elaborate rule for bivariate ones. The rationale suggested by

Cox and Wermuth (1991) for their order rule is that it introduces lower non-linearity

in the conditional terms than other possible orders, which coincides with the

rationale of Olson and Weissfeld (1991).

3.5.7 The Solow-Joe Approximation

The method of Solow (1990), as extended by Joe (1995), is based on a formula to

approximate the conditional integral of a variate in a MVN distribution given a

truncation of all the others. Solow proposed the method for one-sided MVN integrals

with equal integration limits. Joe extended it to two sided integrals, different

integration limits and considered the calculation order issue. No further application

ofthis method resulted from a literature survey.
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As described by Joe (1995), the approximation is based on a formula analogous to

the exact formula to obtain the expected value of a Normal variate given the

truncation of a correlated one. In the bivariate case the latter formula is:

(3.89)

where /-lj is the mean of the variate j and the other symbols are as for (3.8). This is

the formula used in the approximation of Taylor. The (3.89) can be generalised to the

multivariate case, that is to the case when the expected value of one variate

conditional on a number of others having a fixed value with the following:

(3.90)

where P ll P21 are partitions of the correlation matrix P delimited by the conditioning

and conditioned vectors

(3.91)

The formula proposed by Solow and by Joe, instead of the variables taking a fixed

value, considers the event of the truncation of each conditioning variate and each

pair of conditioning variates. Thus it uses the marginal probability of each

conditioning variate and the bidimensional marginal probabilities of each pair of

conditioning variates. Considering in the notation the unilateral truncation, these can

be written respectively:

(3.92)

(3.93)

According to this approximation method, the conditional marginal integral of the kth

variate in a k-dimensional MVN distribution given the truncation of all the others

can be approximated as:
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where n 21 is the vector of the k-l covariances between the conditional and the

conditioning events:

COV(Ik,Il)

COV(Ik,I2 )
=

E(Ik ,11 ) - E(Ik )E(II)

E(Ik'12) - E(Ik)E(I2)

E(Ik' I k-1 ) - E(Ik )E(Ik_l)

(3.95)

and nIl is a k-l x k-l matrix of covariances between the conditioning events:

cov(IpII) cov(II ,12) cov(IpIk_l)

nIl =
cov(I2,I1 ) cov(I2,IJ cov(I2,Ik_l) (3.96)=

cov(Ik-I , II ) COV(Ik_1 ,12) cov(Ik-I' I k-l )

=

1

E(I2,IJ- E(IJE(IJ

E(II,I2)- E(II )E(I2)
1

E(II ,Ik-I )- E(II )E(Ik-l )

E(I2,Ik-l)- E(I2 )E(Ik-l)

1

Thus the integral of an n-dimensional MVN distribution can be reduced to the

product of a bivariate marginal integral, calculated directly with a bivariate Normal

integration routine, and of the remaining n-2 conditional univariate marginal

integrals, each of them obtained with the approximation formula (3.94). First the

bivariate marginal integral is calculated, then the (3.94) is applied to compute the

marginal integral of a third variate conditional on the truncation of the first two.

Next, the (3.94) is applied to the calculation of the marginal integral of a fourth

variate conditional on the first three, and so on, until all the variates are accounted

for.

With the Solow-Joe approximation, the value of the MNP choice function for each

option in a choice set is obtained by calculating the relevant MVN integral of the
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utility distribution in difference, and normalising the final results to their sum if this

is not exactly one.

Joe (1995) remarked on the existence of the calculation order issue: the result of the

approximation depends on the order in which the variates are considered. He also

claimed that the mixed quality of the results previously obtained by Solow was due

to the lack of consideration of this issue and suggested to circumvent the problem by

obtaining the final value of a MVN integral by averaging the results obtained

considering a number of the possible permutations of calculation orders. In particular

for a MVN integral of up to 6 dimension he suggested averaging over all the possible

permutations and averaging the results from a sample of them (100-10000) for

higher dimensions. The size of such a sample should be determined by the user of

the approximation based on information on the standard deviation of the mean of the

probability resulting from different sample sizes.

Joe (1995) pointed out that his method does not use approximations to the

conditional distributions and therefore can be used not only in the MVN case but

also with other distributions whose multivariate integral is difficult to evaluate but

for which univariate and bivariate integrals can be readily calculated.

3.5.8 The Extended Approximation of Joe

Joe (1995) extended the idea on which the Solow-Joe approximation, illustrated in

the previous section, is based to calculate MVN integrals using the values of one

dimensional to four-dimensional marginal integrals of the conditioning variates to

write the approximating expression of a marginal conditional integral in a MVN

distribution. Such an extended method thus solves by numerical integration the

MVN integrals of dimension up to four and employs both numerical integration and

analytical approximation for integrals of larger dimension. No further use of such

approximation resulted from a literature survey.
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This approximation, called by Joe (1995) second order improved approximation, is

based on a formula similar to (3.94) but including as events the truncation of each

conditioning variate and of groups of 2, 3 and 4 of them. Such a formula allows us to

obtain the conditional marginal integral of a variate in a MVN distribution given the

truncation of at least four others, which includes marginal MVN integrals of

dimension up to 4 calculated directly with a suitable routine or with a numerical

integration program.

The integral of an n-dimensional MVN distribution (with n greater than four) is

approximated by reducing it to the product of a quadrivariate marginal integral,

obtained directly with a numerical integration routine (Joe included in his program

the numerical integration method of Schervish (1984) since he found it quicker than

the method of Genz for quadrivariate integrals), and of the remaining n-4 conditional

univariate marginal integrals obtained with the approximation's formula. First the

approximation is applied to compute the marginal integral of a fifth variate

conditional on the truncation of the first four. Then the approximation is applied to

obtained the marginal integral of a sixth variate conditional on the first five, and so

on, until all the conditional marginal integrals of all the variates are accounted for.

Thus rather than an approximation method similar to those previously illustrated, the

extended approximation of Joe can be seen as a hybrid between numerical

integration and analytical approximation.

As in other methods approximating the MVN integral rather than directly the MNP,

the value of the MNP choice function for each option in a choice set is obtained by

calculating the relevant integral of the utility distribution in difference (3.8), and

normalising the final results to their sum if they do not sum to one.

Whilst the order of calculation for the quadrivariate and trivariate integrals is dealt

with inside the numerical integration routine the order in which the variates are

selected to calculate their conditional marginal integral can affect the final result.
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Also in this case Joe suggested to circumvent the problem by averaging the results

obtained by considering a number of the possible permutations of calculation orders.

In particular for MVN integral with up to 6 variates he suggested averaging over all

the possible permutations and averaging the results from a sample of them for higher

dimensions, whose size should be determined by the user of the approximation based

on information on the standard deviation of the mean of the probability resulting

from different sample sizes.

The remark of Joe (1995) reported in the previous section, about the applicability of

that method to other multivariate distributions with univariate and bivariate integrals

being easy to calculate and higher order integrals difficult to obtain is valid also for

this approximation. However, in this case the integrals of dimension up to four need

to be easy to obtain to make viable the use of the method.

Before closing the illustration of the approximation methods of Joe, is should be

mentioned that Joe (1995) proposed a third approximation for calculating MVN

integrals based on the moment generating function of the truncated MVN

distribution. This approximation, however, is not described here as it has not been

included in the following series of investigations.

3.6 Investigations on Accuracy and Computational Cost of

Approximations for Solving the MNP Choice Function

3.6.1 Introduction

This section presents the results of a series of numerical tests carried out to assess the

accuracy and the computational cost of some of the probit approximation methods

introduced in the previous part of this chapter.

For practical applications, approximations are required to be as precise as possible

but the computational time they take to solve the MNP choice function is a rather
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important element in their applicability: choice calculations are carried out a large

number of times in algorithms for traffic assignment and for model calibration.

Therefore, the overall calculation time, and, consequently, the practical applicability,

of such algorithms depends strongly on the calculation time of the MNP method

employed. A trade-off between accuracy and computational time might be required

and the investigations carried out here aim at assessing the suitability of the methods

for transportation applications by weighting those two elements.

The tests have been carried out focussing on the application of MNP for traffic

assignment and therefore representing test choice situations as choices of paths

through networks. The probabilities calculated are those of each of the path's cost

being minimum amongst all the costs of the paths between the same origin

destination pair. This is a problem equivalent to maximising options' utilities: the

costs, in fact, are negative utilities, or disutilities.

The methodology and the test networks used in the investigations are described in

the next two sections and graphical and numerical results are reported in the

following ones.

3.6.2 Methodology

The accuracy of the approximation methods has been tested by comparing the choice

probabilities they give in a large series of choice situations represented as choices of

paths through a network with the probabilities obtained with the numerical

integration method of Genz (1992, 1993). The numerical integration method ofGenz

has been chosen as reference method because of the published results guaranteeing

its good accuracy (see Genz, 1992 and 1993) and because ofthe possibility of setting

the required accuracy of the results at the outset of the calculations. To obtain the

reference probabilities used in the tests, the calculations were carried out requiring

an absolute precision for each path probability of 0.00005.

The data on the computational costs have been obtained from the calculation times

on the same series of test cases working on a Pentium II 350MHz desktop computer.
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Although the results are relative to the computer and programs used, they should

give a fair comparison of relative calculation efforts involved.

To carry out the tests, FORTRAN routines for each approximation method have

been included in a path-based assignment program. The routines for most methods

have been specially written during the research work. The only exceptions were the

routine for the numerical approximation methods of Genz (1992) and the routines for

the Solow-Joe (Joe, 1995) and the extended approximation of Joe (1995).

The code for the numerical integration method of Genz has been adapted (only to the

extent needed to include it in the programs used for this project) from that publicly

available on Alan Genz's web page:

http://www.math.wsu.edu/math/faculty/genz/homepage. Such code can solve MVN

integrals with up to 20 dimensions. The subregion adaptive numerical integration

method supplied with the MVN integration program is an intermediate program

between ADAPT of Genz and Malik (1980) and DCUHRE of Bemtsen et al. (1991)

but it is closer to the latter (Genz, 2000).

The codes for the Solow-Joe and the extended Joe approximation have been obtained

from those publicly available at ftp.stat.ubc.ca/pub/hjoe/mvnapp. The changes made

to the original codes were mainly to include the programs in the path-based

assignment program and for allowing different calculation orders.

For uniformity, the approximations coded use the routine for the calculation of the

univariate Normal probability distributed with the Numerical integration program of

Genz which provides results accurate to 10-15 and is based on an algorithm by Hart et

al. (1968) (Genz, 2001). A limited series of tests carried out with less precise

routines (e.g. with precision 10-7) showed no substantial influence on the quality of

the results. Bivariate Normal integrals calculated directly within the analytical

approximation routines are obtained with the algorithms of Donnelly (1973).

The only cases in which a different univariate Normal routine is used are the Solow

Joe and the extended Joe approximations, in which the routine for univariate Normal

integration due to Hill (1973) and, for the extended Joe approximation only, the
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numerical integration method (Mulnor of Schervish, 1984), included in the original

programs have been kept.

Two series of numerical tests have been carried out, using choice situations

described by a large number of small artificial networks. Details on the networks

used and on how they have been obtained are given in the following section.

For each choice situation the choice probabilities have been calculated and compared

with the reference ones numerically and graphically. Two sorts of graphs have been

used: one depicting the percentage errors against the actual choice probabilities and

the other plotting the cumulative relative frequency of the percentage errors for

values between -20% and +20% grouped in bins of width 1%. Numerical results

include absolute and percentage errors and summary statistics (means and variances

of the errors) both over the whole range of probabilities for each experiment and

binned.

3.6.3 Test Networks

Two series of accuracy tests have been performed on small artificial networks whose

topology has been designed so that 3,6,9, 12 and 15 paths could be enumerated.

The number of paths through the test networks has been chosen to be representative

of the most likely dimensions of the choice sets in traffic assignment and in MNP

calibration. Practical experiences suggest that the number of actually used paths

between each origin-destination (OD) pair is generally limited. Cascetta et al. (1996)

in a model of interurban assignment used choice sets with a maximum of 8 paths.

Again Cascetta et al. (1997), calibrating a path enumeration model in an urban

context and therefore a choice set building model for traffic assignment, reported

obtaining the best results with their assignment program with 6-8 paths per OD and

underlined that increasing the number of paths did not necessarily imply a an

improvement in the assignment results. In a further urban assignment model

Cantarella et al. (1999) reported having used only 5 paths per OD pair.

In calibration applications the number of options is generally limited as well, with

often less then 10 option being considered. An example of a practical case with a
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relatively large number of options is that in Bolduc (1999) who considered MNP

with 9 options where, however, not all the options are available to all users and

therefore the actual dimension of the choice problem considered for each sampled

user is smaller than the overall choice set.

The topology of the networks used in the experiments has been designed to consider

sets of paths with different degrees of overlapping. For instance, the networks for 9

paths include networks with 9 independent paths, with 6 independent and 3 partially

overlapping paths, with 3 independent and 6 partially correlated paths and with 9

partially overlapping paths. A summary of the different degrees of overlapping

considered is provided in table 3.1 whilst fig. 3.2 reports the sketches of the network

topologies used in the cases of 6 paths. It should be noted that networks with

independent paths and therefore MVN utility distributions with no correlation have

however a MVN utility distribution in difference with correlated variates.

Each of the paths enumerated on a network is made up by the same number of links

that is equal to the number of paths enumerated (for instance, on the networks

designed to enumerate 9 paths, all the paths are made up of9links).

No. of

paths
Topologies employed

3 3 i.p. 3 p.c.p.

6 6 i.p. 3 i.p.+ 6p.c.p.

3 p.c.p.

9 9 i.p. 6 i.p.+ 3 i.p.+ 9p.c.p.

3 p.c.p. 6 p.c.p.

12 12 i.p. 6 i.p.+ 3 i.p.+ 12 p.c.p.

6p.c.p. 9 p.c.p.

15 15 i.p. 9 i.p.+ 6 i.p.+ 3i.p.+ 15 p.c.p.

6p.c.p. 9p.c.p. 12p.c.p.

Table 3.1- Summary of the network topologies employed (legend: i.p.: independent

paths; p.c.p.: partially correlated paths).
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Fig. 3.2 - Sketches ofthe topologies ofthe networks with 6 paths (not to scale).

The networks used in the two series of experiments differ for the link and path costs

used.

The networks for the first series of experiments have links whose mean costs are

drawn from a uniform distribution with extremes 5 and 10. The variances of the link

costs are obtained by multiplying the mean cost by a fixed coefficient of 0.5. The

networks in this series of experiments can be thought as representing the situation of

stochastic network loading on free flow costs at the beginning of the calculation of a

stochastic user equilibrium assignment.

The networks of the second series of experiments are obtained from those for the

first series. They retain the variances of the link costs used in the first series of

experiments whilst each mean link cost is obtained by multiplying that used for the

first series of networks by a coefficient drawn from an uniform distribution with

extremes 1 and 2. These networks are intended to replicate the conditions

encountered during a Stochastic User Equilibrium (SUE) calculation away from the

start.

From each base network topology 30 actual networks have been obtained for the first

series of experiments and 30 for the second series. The total number of networks for

each series of experiments and each number of paths is reported in the following

table 3.2.
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First series Second series

3 paths 60 60

6 paths 90 90

9 paths 120 120

12 paths 120 120

15 paths 150 150

Total 540 540

Table 3.2 - Number oftest networks for each number ofpaths andfor each series of

experiments.

Figures 3.3 to 3.7 depict the cumulative relative frequencies of the reference choice

probabilities obtained by numerical integration for the two series of artificial

networks. Except in the 3 option case, most choice probabilities are in the range 0

30%, although the probabilities for the second series of networks are spread over a

larger range than those for the first series. This is due to the higher variability of the

deterministic costs. Also, as the number of options increases the choice probabilities

tend to have smaller values for both network series.
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Fig. 3.3 - Cumulative relative frequencies of the reference choice probabilities for

the 3 path networks ofthe first series (left) and for those ofthe second series (right).
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Fig. 3.4 - Cumulative relative frequencies of the reference choice probabilities for

the 6 path networks ofthe first series (left) and for those ofthe second series (right).
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Fig. 3.5 - Cumulative relative frequencies of the reference choice probabilities for

the 9 path networks ofthefirst series (left) and for those ofthe second series (right).
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the 12 path networks of the first series (left) and for those of the second series

(right).
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Fig. 3.7 - Cumulative relative frequencies of the reference choice probabilities for

the 15 path networks of the first series (left) and for those of the second series

(right).

The following sections report aggregate results together or separately for the first and

the second series of networks. However, also the numerical results for 3 particular

cases, respectively with 3, 6 and 9 choice options, taken from the second series of

experiments are reported to give some disaggregate information on the

approximations' quality.

The first case, with 3 partially correlated options, is defined by the vector C I of costs

and the covariance matrix LI, that give the vector PI of numerical integration choice

probabilities:

r
15

.
86lC I = 17.97

14.41 r
5.35 1.97 0 l

L I = 1.97 5.49 1.52

o 1.52 5.12 r
O

.

3117lPI = 0.0365

0.6519

(3.97)

The second example considers the choice amongst 6 options characterised by the

vector C2 of costs and covariance matrix L2, where 3 options are partially correlated

and 3 are independent. The choice probabilities resulting from numerical integration

are reported in P2•

35.11 11.57 4.02 0 0 0 0

32.53 4.02 11.19 4.48 0 0 0

30.80 0 4.48 10.67 0 0 0
C - L 2 = (3.98a)2 -

38.70 0 0 0 11.49 0 0

34.29 0 0 0 0 11.43 0

36.91 0 0 0 0 0 11.54
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0.0824

0.2058

0.5127

0.0134

0.1461

0.0396

(3.98b)

A third example considers 9 choice options, all of which are correlated with some of

the others, with costs C3 and covariance matrix L3, that result in the choice

probabilities in P3, obtained with numerical integration.

50.90

50.53

47.18

47.98

C 3 = 48.68

49.06

51.32

49.63

50.04

0.0544

0.0285

0.3246

0.1582

P3 = 0.0950

0.1029

0.0146

0.1032

0.1186

16.23 11.96 10.57 9.19 7.41 5.00 3.74 1.74

11.96 15.89 12.36 10.97 9.20 6.79 5.52 3.52

10.57 12.36 15.19 12.39 10.61 8.21 6.94 4.94

9.19 10.97 12.39 16.08 12.47 10.06 8.80 6.80

L 3 = 7.41 9.20 10.61 12.47 15.69 11.70 10.42 8.43

5.00 6.79 8.21 10.06 11.70 16.02 12.82 10.82

3.74 5.52 6.94 8.80 10.42 12.82 16.89 13.17

1.74 3.52 4.94 6.80 8.43 10.82 13.17 16.44

o 1.79 3.20 5.06 6.69 9.09 11.43 13.25

o
1.79

3.20

5.06

6.69

9.09

11.43

13.25

16.67

(3.99)

The examples have been taken from the second series of networks as they give a

good spread of reference choice probabilities, as (3.97), (3.98) and (3.99) show, but

do not include reference probabilities smaller than 10-3, that have been generally

excluded from the analysis of the results.
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3.6.4 Results on Approximation Accuracy

3.6.4.1 Accuracy of the Simple Clark Approximations

Before reporting the results on the simple Clark approximation it should be recalled

that it is a heuristic method, as explained in section 3.5.2. The results presented have

been obtained without following any particular order for including the options in the

calculations as no such order is suggested in the literature: the variates are simply

processed in the order they have been coded in the computer program input file.

Observing the results relative to the examples reported in tables 3.3, 3.4 and 3.5 it

can be seen how using this heuristic typically leads to large percentage errors that

can affect probabilities of different magnitude but are particularly relevant to options

with actual small choice probabilities (see e.g. the second option oftable 3.3 or the

seventh option of table 3.5). Examples of larger actual choice probabilities affected

by large percentage errors are e.g. those of the third and of the eighth option in table

3.5.

The moderate percentage errors for the last options in the tables can be explained

considering that such options are also the last ones entered in the calculations, and

consistent with the considerations in section 3.5.2, the ones for which the probability

is calculated using the Clark approximation in an exact way and for which a better

accuracy should be expected a priori.

Option Num.Int. CS ~CS%

1 0.3117 0.2789 -10.50%

2 0.0365 0.0746 +104.58%

3 0.6519 0.6464 -0.83%

Tab 3.3 - Comparison of Simple Clark (CS) and reference results for the three

alternative example. .,1% obtainedfrom the non-approximated values ofthe results.
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Option Num.Int. CS t1CS%

1 0.0824 0.0747 -9.40%

2 0.2058 0.2232 +8.42%

3 0.5127 0.4951 -3.43%

4 0.0134 0.0186 +38.68%

5 0.1461 0.1479 +1.28%

6 0.0396 0.0406 +2.42%

Tab 3.4 - Comparison of Simple Clark (CS) and reference results for the six

alternative example. L1% obtained from the non-approximated values ofthe results.

Option Num.Int. CS t1CS%

1 0.0544 0.0249 -54.21%

2 0.0285 0.0307 +7.63%

3 0.3246 0.2518 -22.43%

4 0.1582 0.1583 +0.07%

5 0.0950 0.1173 +23.47%

6 0.1029 0.1301 +26.44%

7 0.0146 0.0401 +174.66%

8 0.1032 0.1315 +27.45%

9 0.1186 0.1153 -2.74%

Tab 3.5 - Comparison of Simple Clark (CS) and reference results for the nine

alternative example. L1% obtained from the non-approximated values ofthe results.

The complete set of results from the numerical experiments on artificial networks

confirm the trend of errors suggested by the three example cases. A selection of

graphical results are reported in figures 3.8-3.16 where the approximation is marked

CS. Low choice probabilities are mainly overestimated whilst high choice

probabilities are more frequently underestimated. The errors for low choice

probabilities are those of largest percentage importance. Although both

overestimation and underestimation of low choice probabilities occur in the
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experiments, especially with a large number of options, the underestimation has

lower percentage importance. For very low choice probabilities there are cases as

those excluded from figure 3.10 and 3.14 of very high percentage overestimation.

Figure 3.12 reports several such cases. Figure 3.11 and 3.13 show the high relative

frequency of overestimation errors greater than +20% that, as can be seen by

comparing figs. 3.9, 3.11 and 3.13, increases with the number of options.

~.~...~~~~
0.6 0.8 1

o

-100 -'-------------------

ref. probability

Fig. 3.8 -Percentage errors of the probabilities calculated by the simple Clark

method on the 3 option cases of the first and second series of artificial networks

plotted against the reference probability. Only the cases with reference probability

not less than 0.001 are depicted.
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Fig. 3.9 - Cumulative relative frequencies of the percentage errors of the Simple

Clark approximation on the 3 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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Fig. 3.10 - Percentage errors of the probabilities calculated by the simple Clark

method on the 6 option cases of the first and second series of artificial networks

plotted against the reference probability. Only the cases with reference probability

not less than 0.001 are depicted. The graph excludes 4 data points that, for choice

probabilities ofthe order of10-3 give errors larger than 500%.
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Fig. 3.11 - Cumulative relative frequencies of the percentage errors of the Simple

Clark approximation on the 6 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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Fig. 3.12 - Percentage errors of the probability calculated by the simple Clark

method plotted against the reference probability for the nine path networks of the

first and second series ofexperiments. Only the cases with reference probability not

less than 0.001 are depicted.
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Fig. 3.13 - Cumulative relative frequencies of the percentage errors of the Simple

Clark approximation on the 9 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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The sensitivity of the accuracy to the correlation of the alternatives is high, as can be

seen from figs. 3.14, 3.15 and 3.16. Fig. 3.14 reports results for the extreme cases of

6 independent and 6 correlated paths in the first and second series of experiments

together and show that the accuracy tends to be lower for more correlated options

(i.e. more overlapping paths). In fact, the simple Clark is the approximation whose

results are most sensitive to the variation of path overlapping amongst those

examined. Figure 3.15 depicts the percentage inaccuracies for the cases with 12

options on the first series on networks and fig. 3.16 reports the same data for the

second series of networks. They show the enlargement of the envelope of the

possible errors for larger choice sets as well as the same effect when correlated

options are considered, instead of independent ones. It can also be noted that the

errors, particularly for large choice probabilities, typically have larger importance in

the second series of networks.

In the simple Clark approximation the probabilities of choice are calculated together,

thus they always sum to one.

500 t
400

300
.... 0

e
Qj 200

::R0

100

0

-100

ref.probability

Fig. 3.14 - Detail ofthe graph ofthe percentage errors ofthe probability calculated

by the simple Clark method on the 6 correlated and not correlated option cases of

the first and second series of artificial networks plotted against the reference

probability. Only the cases with reference probability not less than 0.001 are

depicted. The graph excludes 4 data points that for choice probabilities of the order

of10-3 give percentage errors larger than 500%.
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Fig. 3.15 - Percentage errors of the probability calculated by the simple Clark

methodplotted against the reference probability for the networks ofthe first series of

experiments with 12 independent paths and 12 correlated paths. Only the cases with

reference probability not less than 0.001 are depicted.
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Fig. 3.16 - Percentage errors of the probability calculated by the simple Clark

method plotted against the reference probability for the networks of the second

series of experiments with 12 independent paths and 12 correlated paths. Only the

cases with reference probability not less than 0.001 are depicted.

92



3.6.4.2 Accuracy of the Improved Clark Approximation

The accuracy of the Clark approximation, in the implementation referred to here as

improved Clark, has been investigated extensively (Clark, 1961; Daganzo and

Sheffi, 1977; Horowitz et al., 1982; Kamakura, 1989; Langdon, 1984a,b). The work

in the literature suggests that its accuracy is satisfactory when the variables have not

very different variances and means not very close to each other and that positive

correlation should to improve the results. Also cases with few alternatives are more

accurately approximated. The overall results seem to vary, but little, with the order

of calculation (Daganzo et al., 1977; Lerman and Manski, 1981; Langdon, 1984a,b).

However, when the above conditions are not met the approximation has been found

to give incorrect results and, in general, it tends to overestimate low choice

probabilities.

Since the literature does not suggest a particular order of calculation, the results

reported in the first part of this section (where the approximation is marked CI in

graphs and diagrams) have been obtained carrying out the calculations with the

alternatives considered simply in the order they have been coded in the input file to

the program. In the second part of the section the possibility of an optimal variate

processing sequence is considered.

The results for the examples with 3, 6 and 9 options, reported respectively in table

3.6, 3.7 and 3.8 show, although in a limited way, the general tendency of the

inaccuracies of this approximation: small actual probabilities are mainly

overestimated and larger actual probabilities tend to be underestimated. The errors

are however of much smaller percentage importance than with the heuristic simple

Clark method.

This trend can be seen, for instance, by observing the overestimation of option 2 in

table 3.6 and the underestimation of the two other choice probabilities. The choice

probabilities of option 1, 2, and 7 in table 3.8 that have actual low choice

probabilities are overestimated, particularly in the cases of option 2 and 7, but option

with larger choice probabilities have them mostly underestimated.
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Option Num.int. CI L).CI%

1 0.3117 0.3086 -0.98%

2 0.0365 0.0399 9.27%

3 0.6519 0.6515 -0.05%

Tab 3.6 - Comparison of Improved Clark and reference results for the three

alternatives example defined in section 3.6.3. L1% obtained from the non

approximated values ofthe results.

Option Num.Int. CI L).CI%

1 0.0824 0.0849 2.93%

2 0.2058 0.2036 -1.09%

3 0.5127 0.5095 -0.62%

4 0.0134 0.0145 8.35%

5 0.1461 0.1467 0.47%

6 0.0396 0.0408 3.06%

Tab 3.7 - Comparison of Improved Clark and reference results for the six

alternatives example defined in section 3.6.3. L1% obtained from the non

approximated values ofthe results.

Option Num.Int. CI L).CI%

1 0.0544 0.0669 +22.8577

2 0.0285 0.0435 +52.5141

3 0.3246 0.2856 -12.0063

4 0.1582 0.1419 -10.2549

5 0.0950 0.0924 -2.7619

6 0.1029 0.1108 +7.7239

7 0.0146 0.0287 +96.6074

8 0.1032 0.1159 +12.2677

9 0.1186 0.1143 -3.58173

Tab 3.8 - Comparison of Improved Clark and reference results for the nine

alternatives example defined in section 3.6.3. L1% obtained from the non

approximated values ofthe results.
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Considering all the results for the first and second series of experiments on artificial

networks (see the selection of graphical results reported in figs. 3.17, 3.18, 3.19 and

3.20), the tendency towards the overestimation of low choice probabilities is clear

and accompanied mainly by the underestimation of the high ones that is, however, of

much smaller percentage importance. This trend of errors is in accordance with the

results on the accuracy of the improved Clark method in the literature (see e.g.

Langdon, 1984a, b). Also graphs like 3.18 and 3.20 show that most underestimation

errors are of limited percentage importance whilst a large proportion of the

overestimation ones have larger percentage importance. Comparing the same graphs

also shows that the proportion of larger percentage overestimation errors increases

with the number of choice options. Going back to the corresponding figures 3.17 and

3.19, however, it is also clear the many large percentage errors affect very small

actual choice probabilities.

The approximation results decrease in accuracy as the correlation between the

alternatives increases as can also be seen from fig. 3.21, which reports results for the

extreme cases of independent and completely correlated paths. In fact, this trend is

even clearer in figs. 3.22 and 3.23 that report the same sort of data separately for the

first and second series of networks in the nine path case. The accuracy of most

approximations examined is in some way sensitive to the variation of path

overlapping but the Clark improved approximation shows a very important such

sensitivity. Comparing figures 3.22 and 3.23 shows that the inaccuracies reported for

the first series of artificial networks are smaller than those for the second series. This

behaviour is common to all approximations tested.

95



... .d....~I..~I~.~ <> <> ~

0.6 0.8

::t
300

...

200 te
Q;
~0

100~
t I a0- ms

-100 1 0.2 0.4

ref. probability

Fig. 3.17 - Percentage errors of improved Clark approximation on the six option

cases from the first and second series of artificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.18 - Cumulative relative frequencies ofthe percentage errors of the improved

Clark approximation on the 6 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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Fig. 3.19 - Percentage errors of improved Clark approximation on the 12 option

cases from the first and second series of artificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.20 - Cumulative relative frequencies ofthe percentage errors ofthe improved

Clark approximation on the 12 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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Fig. 3.21 - Percentage errors of the probability calculated by the improved Clark

method plotted against the reference probability for the networks of the second

series of experiments with 6 independent paths and 6 correlated paths. Only the

cases with reference probability not less than 0.001 are depicted.
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Fig. 3.22 - Percentage error of the probability calculated by the improved Clark

method against the reference probability for the networks of the first series of

experiments with 9 independent paths and 9 correlated paths. Only the cases with

reference probability not less than 0.001 are depicted.
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Fig. 3.23 - Percentage error of the probability calculated by the improved Clark

method against the reference probability for the networks of the second series of

experiments with 9 independent paths and 9 correlated paths. Only the cases with

reference probability not less than 0.001 are depicted.
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3 0.9962 0.0037 1.0045 0.9867

6 0.9890 0.0074 1.0177 0.9709

9 0.9915 0.0107 1.0242 0.9599

12 1.0063 0.0221 1.0543 0.9797

15 1.0159 0.0346 1.1102 0.9788

Table 3.9 - Table ofmean, standard deviation, maximum and minimum values ofthe

sum of the choice probabilities prior to normalisation for the improved Clark

approximation on the first and second series ofartificial networks.

The final improved Clark results presented are obtained by normalising to their sum

the results directly given by the approximation. The importance of such

normalisation has been tested collecting the data on the difference from unity of the

sum of the non-normalised results. The larger is the error in the sum of the

probabilities the more important is the correction the normalisation brings about and,

possibly, the errors it introduces, although the absolute correction is proportional to

the value of the probability that is corrected. The percentage importance of the

correction is the same for all options as it is determined by the error in the sum. A
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summary of the statistics for the errors in the sum for the improved Clark

approximation are shown in table 3.9. Although, on average, the sum of non

normalised probabilities is not too different from one, it varies over a rather wide

range, especially for the cases with choice sets of 12 and 15.

The literature on the improved Clark method suggests that the order in which the

variates are processed has a very limited effect on the results and does not offer a

possible optimal processing order. Here a number of processing orders defined by

simple rules has been tested to try to reduce the inaccuracies given by the

approximation especially for small choice probabilities.

The overall accuracy of the results depends on how good the Normal distribution is

as an approximation to the maximum of two Normal variates each time the

approximation is applied. Langdon (1984a), considering the case of a pair of

correlated Normal variates, compared the actual shape of the maximum distribution

with the approximating Normal distribution resulting form the Clark approximation

and noted that the approximation is often not good. The work of Clark (1961)

provides a direct means to check the goodness of the Normal approximation to the

maximum of two Normal variates by giving the formulae for their skewness and

kurtosis. However these formulae are rather complex and it is difficult to use them to

characterise a single parameter to inform a criterion for a processing order.

Therefore a number of candidate orders have been selected considering previous

results in the literature on the viability of the Normal as an approximation of the

maximum of two Normal variates. In particular, it has been considered processing

first the variates with the smallest variance of the difference as these elements should

improve the near-Normality of the actual maximum. Moreover, it has been

considered processing first the variates with the maximum ratio of the absolute

difference of the means over the absolute difference of the variances, a measure that

tries to capture the variates with the closest variances and the most different means.

Alternatively is has been considered processing independent variates first followed

by those with largest correlation, as in the first case the approximation of Clark is

exact and in the latter its accuracy should be improved according to the consideration

100



of Daganzo et al. (1977). Finally, it has been considered processing first the variates

with the largest absolute difference of the mean, as the approximation should work

better with means not very close to each other, or the opposite: those with the

minimum absolute difference of the means are processed first to check the contrast

of the orders. The latter orders were included in the investigations although in the

test cases used in this work the means of the utilities of the options rather similar to

each other, thus they should be expected to have a limited effect.

The analysis of the results obtained on the two series of artificial networks employed

in these investigations showed little variation of the envelope of the percentage

errors with the variate order and little difference from the envelope obtained by

processing the variates simply in the order they have been coded in the input file to

the program. This confirms the result in the literature that the effect of rearranging

the variates is very limited and does not allow suggesting a possible optimal

processing order. Examples of the effects of the variate reordering are given in

graphical form in figures 3.24 and 3.25 that depict a selection of the results obtained

with the first and the last order mentioned above, marked respectively il and is.
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Fig. 3.24 - Percentage error of the probability calculated by the improved Clark

method with an instance of random order (ci) and when the variates with the

smallest variance of the difference (il) against the reference probability on the 6

option cases ofthe first and second series ofartificial networks. Only the cases with

reference probability not less than 0.001 are depicted. The percentage errors larger

than 100% (recorded for small choice probabilities) have been excluded from the

graph.
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Fig. 3.25 - Percentage error of the probability calculated by the improved Clark

method with an instance of random order (ci) and when the variates with the

minimum absolute difference of the means are processed first (is) against the

reference probability on the 6 option cases ofthe first and second series ofartificial

networks. Only the cases with reference probability not less than 0.001 are depicted.

The percentage errors larger than 100% (recorded for small choice probabilities)

have been excludedfrom the graph.

3.6.4.3 Accuracy of the Mendell-Elston Approximation

The results on the accuracy of the Mendell-Elston approximation in the literature

suggest that, when it is used for evaluating MVN integrals, its precision should

decrease when the variates of the MVN distribution are correlated. This was

remarked by Rice et al. (1979) noting that with larger correlations the assumption of

Normality of the conditional distribution is less tenable. Terada and Takahashi

(1988), made the same remark independently, examining the departure from

Normality of the conditional distribution of one of the variates in a bivariate Normal

distribution given a truncation of the other.

The accuracy of the approximation in cases with a limited number of options (3 or 5)

has also been discussed by Kamakura (1989), introducing the Mendell-Elston

approximation in transportation, who found it more precise than the method of

Clark. The rationale for the good accuracy of the Mendell-Elston approximation,

especially as compared to the method of Clark, is suggested by the discussion of

Langdon (1984b) on his method, that approximates as Normal the same type of
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distribution: the Normal distribution is generally a better approximation to the

distribution of a variate in a MVN conditional on the truncation of one of the others

than to the maximum of a two Normal variates (which is the way it is used in the

Clark method).

As discussed in the description of the approximation, two alternative optimal

processing orders have been suggested in the literature. Kamakura (1989), proposing

the approximation for use in econometric applications, borrowed the order suggested

by Langdon for his method. Rice et al. (1979), after tests on positively equicorrelated

variates, suggested that including in the calculations the variate giving the smallest

marginal integral first could be of advantage. Here this processing order is

considered in general cases as a heuristic. The results obtained with the Kamakura

(1989) order are presented first (and are marked ME-K in tables and figures), then

they are briefly compared to those obtained with an instance of a random order

(marked ME non-opt) and, finally they are compared with those from the heuristic

order suggested by Rice et al. (marked in tables and figures ME-R).

The data for the three examples used throughout this chapter, are reported in tables

3.10, 3.11 and 3.12 and suggest that with the order put forward by Kamakura, the

ME approximation gives very moderate errors.

Option Num.Int. ME-K L\ME-K%

1 0.3117 0.3130 +0.44%

2 0.0365 0.0362 -0.66%

3 0.6519 0.6507 -0.17%

Tab 3.10 - Comparison of reference results with those of the Mendell-Elston

approximations for the three alternatives example defined in section 3.6.3. L1%

obtainedfrom the non-approximated values ofthe results.

103



Option Num.Int. ME-K L1ME-K%

1 0.0824 0.0833 +0.99%

2 0.2058 0.2055 -0.14%

3 0.5127 0.5113 -0.26%

4 0.0134 0.0136 +1.12%

5 0.1461 0.1463 +0.20%

6 0.0396 0.0400 +0.95%

Tab 3.11 - Comparison of reference results with those of the Mendell-Elston

approximations for the six alternatives example defined in section 3.6.3. L1%

obtainedfrom the non-approximated values ofthe results.

Option Num.Int. ME-K L1ME-K%

1 0.0544 0.0539 -0.87%

2 0.0285 0.0284 -0.61%

3 0.3246 0.3207 -1.18%

4 0.1582 0.1562 -1.26%

5 0.0950 0.0946 -0.43%

6 0.1029 0.1044 +1.49%

7 0.0146 0.0148 +1.49%

8 0.1032 0.1053 +2.02%

9 0.1186 0.1217 +2.63%

Tab 3.12 - Comparison of reference results with those of the Mendell-Elston

approximations for the nine alternatives example defined in section 3.6.3. L1%

obtained from the non-approximated values ofthe results.

The general pattern of inaccuracies can be observed from the aggregate data from the

experiments on the test networks shown in the following figures. Percentage

inaccuracies are smaller in the first series of networks and larger for the second

except in the cases of 12 and 15 paths, where the errors are of similar importance.

However, they are generally of limited percentage importance and larger percentage

errors are reported for small choice probabilities as in figs. 3.26 to 3.29.

In fact, most often the trend of percentage errors for the first series of tests has the

shape of a wedge with the large end towards the low choice probabilities: these are
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mainly overestimated whilst larger probabilities are mainly underestimated.

Underestimation of low choice probabilities is shown for cases with 12 and 15

uncorrelated options.

The second series of tests showed, besides a similar wedge shaped trend, also the

underestimation of very low choice probabilities for the cases with 6 and 9 choice

options. The wedge shaped trend is repeated in the cases with 12 and 15 choice

options where only in cases of uncorrelated options the overestimation of low choice

probabilities changes into underestimation.

The quality of the results improves when the choice options are less or not

correlated, which also causes the general wedge trend of percentage errors to be

substituted by underestimation of limited importance of low choice probabilities that

is hidden by errors in other cases. This change of trend is particularly evident in the

cases of 12 and 15 options, where the errors for low choice probabilities are mainly

of underestimation in less correlated cases and tend to be mainly overestimation

errors when the options are correlated. As in figure 3.30 the dispersion of the points

marking the percentage errors against the reference choice probabilities generally

increases with the correlation of the paths in the test networks as does the percentage

importance of the envelopes of the errors.
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Fig. 3.26 - Percentage errors of the Mendell-Elston approximation with the

optimised order of Kamakura (ME-K) on the 6 option cases from the first and

second series ofartificial networks plotted against the reference probabilities. Data

points for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.27 - Cumulative relative frequencies ofthe percentage errors ofthe Mendell

Elston approximation with the optimised order ofKamakura (ME-K) on the 6 option

cases from the first and second series of artificial networks. Data for reference

probabilities smaller than 0.001 are not included.
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Fig. 3.28 - Percentage errors of the Mendell-Elston approximation with the

optimised order of Kamakura (ME-K) on the 12 option cases from the first and

second series ofartificial networks plotted against the reference probabilities. Data

points for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.29 - Cumulative relative frequencies ofthe percentage errors ofthe Mendell

Elston approximation with the optimised order of Kamakura (ME-K) on the 12

option cases from the first and second series of artificial networks. Data for

reference probabilities smaller than 0.001 are not included.
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Fig. 3.30 - Percentage error of the probability calculated by the Mendell-Elston

approximation with the optimised order ofKamakura (ME-K) against the reference

probability for the networks of the first series of experiments with 9 independent

paths and 9 correlated paths. Only the cases with reference probability not less than

0.001 are depicted.
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The results presented are obtained by normalising the results directly given by the

approximation to their sum. As shown in table 3.13, that reports the summary

statistics on the sum of the probabilities calculated before normalisation, the

importance of the normalisation increases with the number of options in the choice

set.

CJl
~o.-......
0..
o

3

6

9

12

15

1.0008

1.0071

1.0116

1.0213

1.0234

0.0020

0.0056

0.0097

0.0114

0.0138

1.0084

1.0288

1.0468

1.0533

1.0667

0.9978

0.9956

0.9871

0.9860

0.9840

Table 3.13 - Table of mean, standard deviation, maximum and minimum values of

the sum of the choice probabilities prior to normalisation for the Mendell-Elston

approximation with the Kamakura order (ME-K) on the first and second series of

artificial networks.

The effectiveness of the optimised order suggested by Kamakura for carrying out the

calculations is shown in figure 3.31 that is an example of comparison between the

results obtained with the optimised sequence and those obtained when the variates

are processed following the order in which they are listed in the input file to the

program performing the calculations, an instance of a random order. The non

optimised processing sequence results in a larger envelope of inaccuracies and

particularly in larger inaccuracies for low choice probabilities that are more

underestimated as can be seen also from figure 3.32 depicting the cumulative relative

frequencies of the percentage errors.
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Fig. 3.31 - Percentage errors of the Mendell-Elston approximation with the

optimised order ofKamakura (ME-K) and with an instance of random order (ME

non-opt) on the 9 option cases from the first and second series ofartificial networks

plotted against the reference probabilities. Data points for reference probabilities

smaller than 0.001 are not depicted.
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Fig. 3.32 - Cumulative relative frequencies ofthe percentage errors ofthe Mendell

Elston approximation with the optimised order of Kamakura (ME-K) and with an

instance of random order (ME non-opt) on the 9 option cases from the first and

second series of artificial networks. Data for reference probabilities smaller than

0.001 are not included.
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The alternative ordering suggested by Rice et al. is considered here as a heuristic but

it is also interesting as it parallels that proposed for the Taylor series expansion

approximations that have similarities with the Mendell-Elston approximation.

Moreover there is an interesting difference between the method of Langdon, from

which Kamakura borrowed his processing sequence, and that of Mendell-Elston. In

the method of Langdon when a binomial choice is considered the conditional

distributions of the utilities for both options considered as chosen are important since

they will be used in later stages of calculation (see the description in section 3.5.4).

The method of Mendell and Elston can be thought of as working, for each option,

only along one of the two outer branches of the tree used to describe the method of

Langdon. Each time a marginal normal integral is computed, which corresponds to a

binomial choice computation in the method of Langdon, only the distribution of the

remaining variates conditional on a variate being lower than a threshold is

considered but not the opposite.

The calculation order resulting from the observation of Rice et al. has been tested for

accuracy by applying it to the same test cases used throughout this chapter. Also the

opposite order and the order opposite to that suggested by Kamakura have been

tested. The results of the calculations with the orders opposite to those tested as

optimal are not reported as they merely underlined the importance of using these

elements as parameters to determine the calculation order by giving worse trends of

percentage errors (especially for low actual choice probabilities, approximately less

than 10%) than in the optimised order cases, similar to those obtained using as

instance of a random order that in which the options have been coded in the input file

to the program.

The alternative optimal order outperformed, although in a limited way, the order of

Kamakura. The tables below reconsider part of the ME-K order results already listed

in tables 3.10-3.12 and compare them with those of the heuristic Rice et al. order

(marked ME-R) in the corresponding cases.
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Option Nurn.Int. ME-R ~ME-R% ~ME-K%

1 0.3117 0.3119 +0.08% +0.44%

2 0.0365 0.0366 +0.27% -0.66%

3 0.6519 0.6515 -0.05% -0.17%

Tab 3.14 - Comparison of reference results with those of the Mendell-Elston

approximations for the three alternatives example defined in section 3.6.3. .1%

obtained from the non-approximated values ofthe results.

Option Nurn.Int. ME-R ~ME-R% ~ME-K%

1 0.0824 0.0832 +0.95% +0.99%

2 0.2058 0.2056 -0.13% -0.14%

3 0.5127 0.5113 -0.27% -0.26%

4 0.0134 0.0135 +1.00% +1.12%

5 0.1461 0.1465 +0.27% +0.20%

6 0.0396 0.0399 +0.84% +0.95%

Tab 3.15 - Comparison of reference results with those of the Mendell-Elston

approximations for the six alternatives example defined in section 3.6.3. .1%

obtained from the non-approximated values ofthe results.

Opt Nurn lnt ME-R ~ME-R% ~ME-K%

1 0.0544 0.0547 +0.55% -0.87%

2 0.0285 0.0285 -0.06% -0.61%

3 0.3246 0.3229 -0.51% -1.18%

4 0.1582 0.1569 -0.77% -1.26%

5 0.0950 0.0946 -0.44% -0.43%

6 0.1029 0.1035 +0.62% +1.49%

7 0.0146 0.0148 +1.59% +1.49%

8 0.1032 0.1042 +0.94% +2.02%

9 0.1186 0.1198 +1.06% +2.63%

Tab 3.16 - Comparison of reference results with those of the Mendell-Elston

approximations for the nine alternatives example defined in section 3.6.3 . .1%

obtained from the non-approximated values ofthe results.
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From the tables there seem to be little to choose between the two orderings, although

the ME-R seems to give marginally better results in several cases. However,

comparing the aggregate results for both series of test networks the trend of the

errors for the ME-R is contained in that of the ME-K order (see figures 3.33 to 3.36)

and the effect of the ME-R is that of reducing the underestimation of low choice

probabilities and the dispersion of the percentage errors. The first effect is lost,

however, as the number of options and the number of times the approximation is

applied increase (compare figure 3.33 and 3.35). It should be noted that, although

this cannot be noticed from the figures reported, the improvement in the quality of

the approximation is particularly evident for the networks of the second series. The

comparison on the cumulative relative frequency distribution of the percentage errors

reported in figures 3.34 and 3.36 shows that the importance of the errors for the ME

R order is slightly but consistently lower than for the ME-K one.
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Fig. 3.33 - Percentage errors of the Mendell-Elston approximation with the

optimised order ofKamakura (ME-K) and with the Rice et at. order (ME-R) on the 6

option cases from the first and second series ofartificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.34 - Cumulative relative frequencies of the percentage errors of the Mendell

Elston approximation with the optimised order ofKamakura (ME-K) and with the

Rice et al. order (ME-R) on the 6 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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Fig. 3.35 - Percentage errors of the Mendell-Elston approximation with the

optimised order ofKamakura (ME-K) and with the Rice et al. order (ME-R) on the

15 option cases from the first and second series ofartificial networks plotted against

the reference probabilities. Data points for reference probabilities smaller than

0.001 are not depicted.
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Fig. 3.36 - Cumulative relative frequencies ofthe percentage errors ofthe Mendell

Elston approximation with the optimised order of Kamakura (ME-K) and with the

Rice et al order (ME-R) on the 15 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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Fig. 3.37 - Percentage error of the probability calculated by the Mendell-Elston

approximation with the optimised order ofRice et al. (ME-R) against the reference

probability for the networks of the first series of experiments with 9 independent

paths and 9 correlated paths. Only the cases with reference probability not less than

0.001 are depicted.
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approximated by the Normal distribution than the distribution of the maximum of

two Normal variates (that is used in the Clark method).

The separated split approximation has been implemented usmg the optimised

processing order suggested in Langdon (1984a,b) with the next option to consider in

the calculations chosen before each conditional marginal choice. The results are

marked SP in the following tables and figures.

The results for the three examples used throughout this chapter, reported in tables

3.18,3.19 and 3.20, show a good agreement with the reference values.

Option Num.Int. SP Ll SP %

1 0.3117 0.3151 +1.12%

2 0.0365 0.0365 +0.02%

3 0.6519 0.6484 -0.53%

Tab 3.18 - Comparison of reference results with those of the Langdon

approximations for the three alternatives example defined in section 3.6.3. L1%

obtained from the non-approximated values ofthe results.

Option Num.Int. SP Ll SP %

1 0.0824 0.0833 +0.99%

2 0.2058 0.2057 -0.03%

3 0.5127 0.5123 -0.07%

4 0.0134 0.0138 +2.52%

5 0.1461 0.1448 -0.88%

6 0.0396 0.0402 +1.47%

Tab 3.19 - Comparison of reference results with those of the Langdon

approximations for the six alternatives example defined in section 3.6.3. L1%

obtained from the non-approximated values ofthe results.
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Option Num.lnt. SP ~SP%

1 0.0544 0.0547 +0.45%

2 0.0285 0.0287 +0.47%

3 0.3246 0.3247 +0.06%

4 0.1582 0.1578 -0.25%

5 0.0950 0.0946 -0.36%

6 0.1029 0.1026 -0.32%

7 0.0146 0.0152 +3.95%

8 0.1032 0.1016 -1.57%

9 0.1186 0.1202 +1.37%

Tab 3.20 - Comparison of reference results with those of the Langdon

approximations for the nine alternatives example defined in section 3.6.3. Ll%

obtained from the non-approximated values ofthe results.

The aggregate results for the first and second series of experiments confirm the good

quality of the approximation and highlight the tendency to produce larger percentage

errors for lower actual probabilities (due both to overestimation and underestimation

with the overestimation being typically of larger percentage importance) as shown in

figs. 3.38, 3.39, 3.40 and 3.41. High probabilities are often slightly underestimated.

However, except with very small actual probabilities the percentage errors are of

rather limited importance.

The separated split approximation is sensitive to the correlation of the options as

shown by the envelopes of the errors reported in figures 3.42 and 3.43 that depict

results for cases with 9 options. The same figures show how the importance of the

errors tends to be larger for the second series of networks.
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Fig. 3.38 - Percentage errors of the separated split approximation (with optimised

and non-optimised calculation order) on the 6 option cases from thefirst and second

series of artificial networks plotted against the reference probabilities. Data points

for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.39 - Cumulative relative frequencies ofthe percentage errors ofthe separated

split approximation on the 6 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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Fig. 3.40 - Percentage errors ofthe separated split approximation on the 12 option

cases from the first and second series of artificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.41 - Cumulative relative frequencies ofthe percentage errors ofthe separated

split approximation on the 12 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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Fig. 3.42 -Percentage errors of the separated split approximation on the 9 option

cases from the first series of artificial networks plotted against the reference

probabilities. Only the data points for the networks with uncorrelated path (SP not

carr) and correlated paths (SP carr) are plotted. Data points for reference

probabilities smaller than 0.001 are not depicted.
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Fig. 3.43 -Percentage errors of the separated split approximation on the 9 option

cases from the second series of artificial networks plotted against the reference

probabilities. Only the data points for the networks with uncorrelated path (SP not

carr) and correlated paths (SP carr) are plotted. Data points for reference

probabilities smaller than 0.001 are not depicted.
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In the Langdon approximation case the choice probabilities are obtained together so

they sum to one and do not need normalisation.

The results presented so far have been obtained by processing the variates in the

optimal order suggested by Langdon. Figures 3.44 and 3.45 refer to the networks

with 9 choice options and compare the results obtained with the optimal processing

order with those obtained by processing the variates in a non-optimised order

(marked SP (n opt) in the figures), an instance of the many possible random

processing orders. The envelopes of the errors in this case are not too different but

the optimal processing order gives smaller percentage errors. This has been

confirmed also looking at data resulting from other non-optimal processing orders.
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Fig. 3.44 - Percentage errors of the separated split approximation (with optimised

and non-optimised calculation order) on the 9 option cases from thejirst and second

series of artificial networks plotted against the reference probabilities. Data points

for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.45 - Cumulative relative frequencies ofthe percentage errors ofthe separated

split approximation (with optimised and non-optimised calculation order) on the 9

option cases from the first and second series of artificial networks. Data for

reference probabilities smaller than 0.001 are not included.

3.6.4.5 Accuracy of the FOMN Family of Approximations

The results for the crude and generalised FOMN methods are presented together in

this section (the tests for the improved FOMN approximation have not been carried

out). They confirm the ranking of the approximations found in the literature (Tang

and Melchers, 1987): the crude FOMN method is less precise than the generalised

FOMN, which gives very accurate results.

The results presented in the first part of this section have been obtained by writing

the program for these approximations as described in Tang and Melchers (1987)

except for the use of a bivariate Normal routine to solve the eventual bivariate

conditional marginal integral in the crude FOMN method as in the generalised

FOMN method. In particular, no optimal processing order for the variates entering

the MVN integral calculation is followed: the program simply processes them in the

order they are coded in the input file. This non-optimised processing order has been

considered because the literature presenting the FOMN approximations does not

seem to discuss the processing sequence. However, the use of a possible optimised

order is discussed later in the section.

In tables and figures the crude FOMN method is marked CRD and the generalised

FOMN method is marked GEN.
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The following tables 3.21 and 3.22 present the results obtained on the examples from

the second series of artificial networks. The data for the three option example are

omitted as in that case all the approximations of this group, in the implementation

used here, employ a routine to calculate directly the bivariate Normal integral.

Opt NumInt CRD L1CRD% GEN L1GEN%

1 0.0824 0.0788 -4.44% 0.0819 -0.60%

2 0.2058 0.2112 +2.60% 0.2054 -0.19%

3 0.5127 0.5292 +3.23% 0.5132 +0.11%

4 0.0134 0.0108 -19.48% 0.0133 -0.91%

5 0.1461 0.1362 -6.77% 0.1465 +0.29%

6 0.0396 0.0339 -14.46% 0.0396 +0.08%

Tab 3.21 - Comparison of reference results with those of the crude FOMN (CRD)

and generalised FOMN (GEN) approximations for the six alternatives example

defined in section 3.6.3. .1% obtained from the non-approximated values of the

results.

Opt NumInt CRD L1CRD% GEN L1GEN%

1 0.0544 0.0504 -7.36% 0.0537 -1.30%

2 0.0285 0.0277 -3.03% 0.0282 -1.25%

3 0.3246 0.3508 +8.08% 0.3213 -1.01 %

4 0.1582 0.1623 +2.59% 0.1575 -0.40%

5 0.0950 0.0932 -1.84% 0.0954 +0.45%

6 0.1029 0.0987 -4.04% 0.1040 +1.08%

7 0.0146 0.0120 -17.76% 0.0148 +1.40%

8 0.1032 0.0967 -6.27% 0.1045 +1.28%

9 0.1186 0.1082 -8.76% 0.1205 +1.68%

Tab 3.22 - Comparison of reference results with those of the crude FOMN (CRD)

and generalised FOMN (GEN) approximations for the nine alternatives example

defined in section 3.6.3. .1% obtained from the non-approximated values of the

results.

The crude FOMN method shows moderate inaccuracies both in the six and in the

nine option case. In the six option case the largest percentage errors refer to two
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options with the smallest actual probabilities whilst in the nine option case there are

noticeable percentage errors also for options, like 3 and 9, with larger actual

probabilities. The generalised FOMN method gives very precise results on both

examples with the worst errors just over 1% in the nine option case.

The difference in precision and especially the very good results of the generalised

FOMN approximation are evident also from the following figures which report a

selection of the aggregate results obtained on the two series of artificial networks.

Examining envelopes of the errors as those reported in figures 3.46, 3.49 and 3.51 it

is clear that the crude FOMN approximation applied to the MNP problem tends to

underestimate the small choice probabilities and overestimate larger ones. This

tendency is amplified in magnitude as the number of options, and therefore the

number of times the approximation is applied, increases as can be seen by comparing

those figures.

The graphs depicting the generalised FOMN results show a much smaller magnitude

of the percentage errors, that confirms the very limited extent of possible errors

suggested by the tables on the two example cases. This is evident from the graphs

reporting the percentage errors against the reference probability (figs. 3.47, 3.50,

3.51) and also from those depicting the cumulative relative frequency of the

percentage errors (figs. 3.48, 3.52).

The envelope of the errors is, generally, wedge shaped, presenting both

underestimation and overestimation of low choice probabilities. The width of such

wedge shaped envelope, and thus the magnitude of the possible errors, becomes

larger as the number of choice options increases (compare figs. 3.47, 3.50, 3.51).

However, the errors remain of much smaller magnitude than in the crude FOMN

case, as shown in figs. 3.51 and 3.52.

A difference of the FOMN methods from the other approximations is that the width

of the envelope of the errors for a given number of options does not vary

significantly with the overlapping of the options. However, with increasing

overlapping the errors points in the graphs are more scattered. Examples of
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comparison of the inaccuracies for different overlapping of the paths are given in

figure 3.49 for the crude FOMN case and in figure 3.50 for the generalised FOMN

case. In the generalised FOMN case the wedge shaped envelope shown in cases of

correlated paths changes to a trend of underestimation of low probabilities and

overestimation of larger ones when there is no correlation between the paths.
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Fig. 3.46 - Percentage errors of the crude FOMN approximation on the 6 option

cases from the first and second series of artificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.47 - Percentage errors of the generalised FOMN approximation on the 6

option cases from the first and second series ofartificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.48 - Cumulative relative frequencies ofthe percentage errors ofthe crude and

generalised FOMN approximation on the 6 option cases from the first and second

series ofartificial networks. Datafor reference probabilities smaller than 0.001 are

not included.
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Fig. 3.49 - Percentage errors of the crude FOMN on the 15 option cases from the

first and second series of artificial networks plotted against the reference

probabilities. Only the data point for the networks with uncorrelated path (CRD

uncorr) and correlated paths (CRD corr) are plotted. Data points for reference

probabilities smaller than 0.001 are not depicted.
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Fig. 3.50 - Percentage errors ofthe generalised FOMN on the 15 option cases from

the first and second series of artificial networks plotted against the reference

probabilities. Only the data point for the networks with uncorrelated path (GEN

uncorr) and correlated paths (GEN carr) are plotted. Data points for reference

probabilities smaller than 0.001 are not depicted.
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Fig. 3.51 - Percentage errors ofthe crude and generalised FOMN approximation on

the 12 option cases from the first and second series of artificial networks plotted

against the reference probabilities. Data points for reference probabilities smaller

than 0.001 are not depicted.
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Fig. 3.52 - Cumulative relative frequencies ofthe percentage errors ofthe crude and

generalised FOMN approximation on the 12 option cases from the first and second

series ofartificial networks. Datafor reference probabilities smaller than 0.001 are

not included.

The probabilities of each of the options are calculated separately in the methods of

the FOMN group and are thus normalised to their sum. Tables 3.23 and 3.24 detail

mean, standard deviation, maximum and minimum difference from one of the sum of

the probabilities obtained in the experiments organised by number of choices

respectively for the crude FOMN and the generalised FOMN approximations.

The numbers reported in the 3 option cases are due to the fact that probabilities are

obtained directly from a bivariate Normal routine and sum precisely to one.

It is evident that the normalisation has a large importance on the crude FOMN results

and that it increases with the number of options in the choice set. The normalisation

effect, as shown by the maximum and minimum values, is always that of amplifying

the magnitude of the calculated probabilities, as the sum of the original probabilities

is always smaller than one. This general tendency of the approximation to

underestimate the correct results (before normalisation) has been observed also in

Tang and Melchers (1987) and Pandey (1998a,b). However, in structural reliability

the tendency towards underestimation is a safe behaviour as it results in estimating

conservatively the reliability of a structure.
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The normalisation effect in the generalised FOMN method is, instead, of very small

importance, although of the same order of magnitude of the inaccuracies shown by

the approximation and it increases with the number of options concurrently with the

decrease in accuracy of the approximation. In this case, rather than underestimation

of the sum of the probabilities, there is most often overestimation and the final

probabilities are slightly smaller than the original ones.

(/)

l=: ;;0 §
~ ~ ~ ~

....... Q) :><: l=:......
Q) '"Ci co0- .......

0 ::E o ...... o ::E u ::E o(/)

3 1.0000 0.0000 1.0000 1.0000

6 0.9113 0.0328 0.9973 0.8552

9 0.8448 0.0544 0.9961 0.7474

12 0.7463 0.0420 0.8594 0.6655

15 0.6942 0.0468 0.8282 0.5994

Table 3.23 - Table of mean, standard deviation, maximum and minimum values of

the sum of the choice probabilities prior to normalisation for the crude FOMN

(eRD) approximation on the first and second series ofartificial networks.

(/)

l=: ;;.9 § Z Q) Z :><: Z l=: Z......
Q) ~ '"Ci ~ co ~ ~0- .......

0 ::E CJ ...... CJ ::E CJ ::E CJ(/)

3 1.0000 0.0000 1.0000 1.0000

6 1.0070 0.0048 1.0211 0.9999

9 1.0184 0.0095 1.0458 1.0001

12 1.0371 0.0138 1.0814 1.0104

15 1.0510 0.0202 1.1015 1.0046

Table 3.24 - Table of mean, standard deviation, maximum and minimum values of

the sum ofthe choice probabilities prior to normalisation for the generalised FOMN

(GEN) approximation on the first and second series ofartificial networks.

Although the results reported above, as well as some of those reported on the next

pages, have been obtained with no particular processing order of the variates,

experiments to establish a possible preferred order were carried out. The literature on
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this family of approximations seems to have no discussion of a possible preferential

processing order. A possible optimised order has been obtained by analogy with the

Mendell-Elston and the Taylor series approximations where more precise results are

obtained if the calculations are started with the variate with the smallest marginal

integral. Such order gives improved results that are particularly interesting for the

generalised FOMN approximation and that suggest to propose it as an optimal

processing order for the approximations of this family. The opposite order, tested to

check the importance or the ordering criterion gave much larger errors, not better

than those from the random order examined above.

The following tables and pictures are a selection of the comparisons of the results

obtained with the heuristic optimal order suggested and with the original non

optimal order. The results obtained with the variate reordering are marked crd (opt)

and gen (opt), respectively for the crude and generalised approximations. The results

obtained with the non-optimal ordering are marked as before.

1:J ----- 'cf(.... 'cf('cf( 0..l=i ...... 0 <1 <1
0 S <1 '-"

-----.......
l=i l=i ........ -e -e 'cf(0.. Z l-< l-< 0 0 0..

0 U U <1 0 0 0
'-"

1 0.0824 -4.44% -4.37% -0.60% -0.18%

2 0.2058 +2.60% +1.12% -0.19% -0.02%

3 0.5127 +3.23% +1.69% +0.11% +0.09%

4 0.0134 -19.48% -10.26% -0.91% -0.50%

5 0.1461 -6.77% -2.16% +0.29% -0.06%

6 0.0396 -14.46% -7.10% +0.08% -0.25%

Tab 3.25 - Comparison ofreference results with those of the crude and generalised

FOMN approximations obtained considering the alternative calculation orders

described in the text for the six alternative example defined in section 3.6.3. .,1%

obtainedfrom the non-approximated values ofthe results.
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1 0.0544 -7.36% -4.40% -1.30% -0.06%

2 0.0285 -3.03% -4.51% -1.25% -0.15%

3 0.3246 +8.08% +2.84% -1.01 % +0.34%

4 0.1582 +2.59% +1.63% -0.40% -0.03%

5 0.0950 -1.84% -0.64% +0.45% -0.25%

6 0.1029 -4.04% -1.49% +1.08% -0.14%

7 0.0146 -17.76% -10.14% +1.40% -0.76%

8 0.1032 -6.27% -1.09% +1.28% -0.22%

9 0.1186 -8.76% -2.78% +1.68% -0.15%

Tab 3.26 - Comparison ofreference results with those ofthe crude and generalised

FOMN approximations obtained considering the alternative calculation orders

described in the text for the nine alternative example defined in section 3.6.3. ..1%

obtainedfrom the non-approximated values ofthe results.

Tables 3.25 and 3.26 re-examine the 6 and 9 alternative examples presenting the

percentage errors with the optimal reordering and without. In most cases there is a

reduction of the absolute importance percentage error. However, in some cases there

is a change in sign of such inaccuracies that goes together with a reduction in

absolute importance (see e.g. the generalised results for options 5 to 9 in table 3.26)

or in one of the cases (option 6 in table 3.25) with an increase. Looking at more than

the data reported in the tables, these changes are partly due to different accuracy of

the non-normalised results and partly to the normalisation of the probabilities to their

sum.

Looking at the overall trend of percentage errors and at their relative frequency (figs.

3.53 to 3.56) it is evident that the reordering brings about a reduction in the likely

spread of percentage errors. Whilst each approximation with reordering of the

variates performs better than its corresponding version without reordering, the

generalised FOMN method continues to give much smaller errors than the crude

FOMN. Also, the spread of percentage errors increases with the number of options

as is the case without reordering.
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The change of processing order did not change the shape of the envelope of the

crude FOMN errors. In the generalised FOMN errors the trend is no longer wedge

shaped but shows underestimation of low choice probabilities and some

overestimation of larger ones, although of limited magnitude.
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Fig. 3.53 - Percentage errors of the crude FOMN approximation (with optimised

and non-optimised calculation order) on the 9 option cases from the first and second

series of artificial networks plotted against the reference probabilities. Data points

for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.54 - Cumulative relative frequencies of the percentage errors of the crude

FOMN approximation (with optimised and non-optimised calculation order) on the

9 option cases from the first and second series of artificial networks. Data for

reference probabilities smaller than 0.001 are not included.
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Fig. 3.55 - Percentage errors of the generalised FOMN approximation (with

optimised and non-optimised calculation order) on the 9 option cases from the first

and second series of artificial networks plotted against the reference probabilities.

Data points for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.56 - Cumulative relative frequencies of the percentage errors of the

generalised FOMN approximation (with optimised and non-optimised calculation

order) on the 9 option cases from the first and second series of artificial networks.

Datafor reference probabilities smaller than 0.001 are not included.

When different correlations of the paths are considered, the crude FOMN shows the

same trend of underestimation and overestimation present when data from all test

networks are considered. An increase in the correlation increases the dispersion of

the percentage errors but not substantially the upper and lower limit of the arch trend

they make, as shown in fig. 3.57. In the generalised FOMN case, the trend of the

percentage errors is again almost unchanged by the variation of overlapping amongst
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the paths, but when paths are more correlated the data points are more scattered as in

figure 3.58.
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Fig. 3.57 - Percentage errors ofthe crude FOMN with variate reordering on the 15

option cases from thefirst and second series ofartificial networks plotted against the

reference probabilities. Only the data point for the networks with uncorrelated path

(CRD(optjuncorr) and correlated paths (CRD(optjcorr) are plotted. Data points for

reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.58 -- Percentage errors of the generalised FOMN with variate reordering on

the 15 option cases from the first and second series of artificial networks plotted

against the reference probabilities. Only the data point for the networks with

uncorrelated path (GEN(opt)uncorr) and correlated paths (GEN(opt)corr) are

plotted. Data points for reference probabilities smaller than 0.001 are not depicted.
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Tables 3.27 and 3.28 detail mean, standard deviation, maximum and rmmmum

difference from one of the sum of the probabilities obtained in the experiments with

the approximations using the optimal order organised by number of choices

respectively for the crude FOMN and the generalised FOMN approximations.

As without variate reordering, in the crude FOMN case, the normalisation has

always the effect of increasing the original choice probabilities. In other words the

original approximation always underestimates the sum of the probabilities. However,

comparing table 3.27 with table 3.23, the importance of such effect is reduced by the

variate reordering. The lesser accuracy when the choice set is larger is shown also by

the reduction of the accuracy in the estimation of the sum of the probabilities. In the

generalised FOMN case the effect of the normalisation is, instead, to reduce the

original choice probabilities, but its importance is even smaller than in the case

without optimal reordering.
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3 1.0000 0.0000 1.0000 1.0000

6 0.9301 0.0299 0.9991 0.8720

9 0.8877 0.0498 0.9988 0.7800

12 0.8084 0.0388 0.9110 0.7113

15 0.7729 0.0467 0.8994 0.6477

Table 3.27 - Table of mean, standard deviation, maximum and minimum values of

the sum of the choice probabilities prior to normalisation for the optimised order

crude FOMN (CRDopt) approximation on the first and second series of artificial

networks.
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3 1.0000 0.0000 1.0000 1.0000

6 1.0017 0.0013 1.0066 1.0000

9 1.0036 0.0024 1.0108 1.0000

12 1.0074 0.0028 1.0168 1.0015

15 1.0092 0.0043 1.0270 1.0012

Table 3.28 - Table of mean, standard deviation, maximum and minimum values of

the sum of the choice probabilities prior to normalisation for the optimised order

generalised FOMN (GENopt) approximation on the first and second series of

artificial networks.

3.6.4.6 Accuracy of the Taylor Series Approximations

The Taylor series approximation has been tested in the literature in its original

application to solve MVN integrals rather than MNP problems by Olson and

Weissfeld (1991) and Cox and Wermuth (1991), who proposed it. Most of the tests

carried out by Olson and Weissfeld are on the solution oftrivariate Normal integrals

and compare the first order Taylor approximation with the Mendell and Elston one

(for which they did not mention using a preferred calculation order). Their results

show little difference from the Mendell-Elston ones and, in general, they found that

the Taylor approximation gives accurate results but its accuracy diminishes when the

correlation amongst the variates increases and when the integrals have a large actual

value. Olson and Weissfeld also tested the first order Taylor approximation in cases

with up to 20 variates (considered equicorrelated and with the same integration

limit). The results they reported show that the approximation becomes noticeably

less accurate with dimensions of the integral larger than 7. Cox and Wermuth tested

the first and second order approximation for the solution of bivariate Normal

integrals and the first order only for the solution of trivariate Normal integrals

obtaining in all cases results with good precision as long as their optimal calculation

order was followed.
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The Taylor approximation has been tested here considering its first and second order,

marked respectively Tl and T2 in the following tables and graphs. The calculations

have been carried out by considering the variates in the order suggested by Olson

and Weissfeld (1991) and Cox and Wermuth (1991), that, as mentioned in 3.5.6

consists of including in the calculations at each stage the variate giving the smallest

marginal integral first.

The results obtained are in accordance with those on the limited set of cases with

large dimension explored by Olson and Weissfeld and show that, although the

precision is good for a small number of variates, it deteriorates quickly for larger

dimensions of the problem.

A first impression on the precision of this method can be obtained observing the 3

cases taken from the second series of artificial test networks reported respectively in

tables 3.29, 3.30 and 3.31.

The results are rather good and, in most cases, the second order approximation gives

errors of lower percentage importance, although in the cases of six and nine

alternatives they are not too dissimilar. The tendency of the percentage errors to

increase with the number of options is not evident from these examples although

there are higher percentage errors in the nine alternative example for option 7, whose

actual choice probability is of the order of one percent. In two cases of the same

example, the percentage importance of the second order approximation error is

higher than that or the first order one: this is an effect of the normalisation to the sum

of the raw results that also reduces the percentage importance of the errors for each

approximation.

Opt NumInt Tl L1Tl% T2 L1T2%

1 0.3117 0.3110 -0.19% 0.3117 +0.01%

2 0.0365 0.0360 -1.30% 0.0366 +0.20%

3 0.6519 0.6529 +0.17% 0.6517 -0.07%

Tab 3.29 - Comparison of reference results with those of the Taylor series

approximations for the three alternatives example defined in section 3.6.3. ,1%

obtained from the non-approximated values ofthe results.
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Opt Num Int T1 ~T1% T2 ~T2%

1 0.0824 0.0806 -2.18% 0.0808 -1.96%

2 0.2058 0.2035 -1.11% 0.2049 -0.45%

3 0.5127 0.5149 +0.45% 0.5188 +1.20%

4 0.0134 0.0129 -3.49% 0.0130 -3.42%

5 0.1461 0.1488 +1.86% 0.1435 -1.75%

6 0.0396 0.0392 -1.10% 0.0390 -1.43%

Tab 3.30 - Comparison of reference results with those of the Taylor series

approximations for the six alternatives example defined in section 3.6.3. .,1%

obtained from the non-approximated values ofthe results.

Opt Num Int T1 ~T1% T2 ~T2%

1 0.0544 0.0552 +1.58% 0.0542 -0.33%

2 0.0285 0.0283 -0.79% 0.0282 -1.35%

3 0.3246 0.3298 +1.62% 0.3329 +2.56%

4 0.1582 0.1583 0.09% 0.1579 -0.16%

5 0.0950 0.0941 -0.91% 0.0905 -4.75%

6 0.1029 0.1029 -0.01% 0.1044 +1.46%

7 0.0146 0.0131 -9.95% 0.0133 -8.98%

8 0.1032 0.1011 -2.08% 0.1018 -1.37%

9 0.1186 0.1171 -1.25% 0.1169 -1.43%

Tab 3.31 - Comparison of reference results with those of the Taylor series

approximations for the nine alternatives example defined in section 3.6.3. .,1%

obtainedfrom the non-approximated values ofthe results.

Figures 3.59, 3.60, 3.61 and 3.62 report two examples of aggregate comparison of

the accuracy between the two orders of approximation. The inspection of the

dispersion and of the envelope of the percentage errors plotted against the reference

probabilities shows that the inaccuracies given by the two orders of approximation

are very similar. In fact, although the second order approximation generally gives

less disperse percentage errors, there are only minor differences between the

inaccuracies especially as the number of alternatives increases. Both approximations

show a decreasing accuracy for larger number of alternatives and this is mirrored by
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the data about the normalisation of the results (see table 3.32), whose effect becomes

of larger importance with more alternatives.
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Fig. 3.59 - Percentage errors of the first and second order Taylor approximations

on the six option cases from the first and second series ofartificial networks plotted

against the reference probabilities. Data points for reference probabilities smaller

than 0.001 are not depicted.
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Fig. 3.60 - Cumulative relative frequencies of the percentage errors of the first and

second order Taylor approximations on the 6 option cases from the first and second

series ofartificial networks. Datafor reference probabilities smaller than 0.001 are

not included.
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Fig. 3.61 - Percentage errors of the first and second order Taylor approximations

on the 12 option cases from the first and second series ofartificial networks plotted

against the reference probabilities. Data points for reference probabilities smaller

than 0.001 are not depicted.
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Fig. 3.62 - Cumulative relative frequencies of the percentage errors of the first and

second order Taylor approximations on the 12 option cases from the first and second

series ofartificial networks. Datafor reference probabilities smaller than 0.001 are

not included.
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The figures above show also that the trends of overestimation and underestimation

are similar for both approximation orders. Except for the case with only 3 options,

there is mainly a tendency to underestimate small probabilities and overestimate

larger ones. In the three option case this happens for the first order approximation

but the second order one tends to overestimate lower choice probabilities.

Examining the aggregate data for different amount of path overlapping, it is clear

that the dispersion of the percentage errors increases with the correlation between the

paths (see figure 3.63 and 3.64): the plots have an arch shaped trend for non

correlated paths which changes to a wedge shaped one (with prevailing

underestimation of low choice probabilities) for more correlated options. Thus the

underestimation-overestimation trends are more defined for less correlated options,

whose errors are less disperse. The percentage importance of the overestimation of

the large probabilities remains similar with increasing correlation of the paths whilst

lower ones have larger percentage errors.

ref. probability

Fig. 3.63 - Percentage errors ofthe first order Taylor approximation on the 6 option

cases from the first and second series of artificial networks plotted against the

reference probabilities. Only the data points for the networks with uncorrelated path

(t1 uncorr) and correlated paths (t1 corr) are plotted. Data points for reference

probabilities smaller than 0.001 are not depicted.
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Fig. 3.64 - Percentage errors of the second order Taylor approximation on the 9

option cases from the first and second series ofartificial networks plotted against the

reference probabilities. Only the data points for the networks with uncorrelated path

(t2 uncorr) and correlated paths (t2 corr) are plotted. Data points for reference

probabilities smaller than 0.001 are not depicted.

The results on the normalisation of the choice probabilities mirror those on the

accuracy of the percentage errors of the probabilities: as the number of options, and

therefore of MVN integrals to solve increases, so does the difference of their sum

from one. Table 3.32 reports mean, standard deviation, maximum and minimum

difference from one of the sum of the probabilities obtained in the experiments

organised by number of choices.

en ,...... N ,...... N ,...... NI:: ~ ~ :> :> ~ ~ ~ ~0 § § Il) ,...... Il) N
~.- '"c::l ~ '"c::l ~ K I:: I::......

A Il) Il) .;..i .;..i C\l .-
~0 ;;E ;;E en en ;;E ;;E ;;E

3 1.0129 0.9992 0.0068 0.0009 1.0289 1.0008 1.0002 0.9964

6 1.0405 1.0132 0.0195 0.0168 1.0910 1.0637 1.0023 0.9798

9 1.0543 1.0250 0.0371 0.0359 1.1381 1.1133 0.9506 0.9228

12 1.0785 1.0491 0.0701 0.0703 1.1756 1.1489 0.8999 0.8718

15 1.0818 1.0537 0.0919 0.0930 1.2539 1.2052 0.8339 0.8086

Table 3.32 - Table of mean, standard deviation, maximum and minimum values of

the sum of the choice probabilities prior to normalisation for the first (Tl) and

second (T2) order Taylor approximation on the first and second series of artificial

networks.
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To verify the importance of using the optimal calculation sequence suggested by

Olson and Weissfeld (1991) and Cox and Wermuth (1991), the tests on the artificial

networks were also carried out using as calculation sequence the order in which the

options are coded as input data to the computer program, an instance of the many

possible random orders. Figures 3.65, 3.66, 3.67 and 3.68 are examples of

comparisons of percentage errors between cases with such order and with optimised

order. The reduction of the percentage errors with the use of the optimal order

suggested in the literature is clearly significant, and is particularly important in the

second series of networks. Moreover, comparing plots similar to those reported for

both approximation orders, it is clear that using a correct calculation sequence

(designed to reduce the importance of the disregarded Taylor series terms) is more

important than refining the Taylor series including higher order terms for obtaining

more accurate results.
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Fig. 3.65 - Percentage errors of the first order Taylor approximation (with

optimised and non-optimised calculation order) on the 9 option cases from the first

and second series of artificial networks plotted against the reference probabilities.

Data points for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.66 - Cumulative relative frequencies ofthe percentage errors ofthe first order

Taylor approximation (with optimised and non-optimised calculation order) on the 9

option cases from the first and second series of artificial networks. Data for

reference probabilities smaller than 0.001 are not included.
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Fig. 3.67 - Percentage errors of the second order Taylor approximation (with

optimised and non-optimised calculation order) on the 15 option cases from the first

and second series of artificial networks plotted against the reference probabilities.

Data points for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.68 - Cumulative relative frequencies of the percentage errors of the second

order Taylor approximation (with optimised and non-optimised calculation order)

on the 15 option cases from the first and second series of artificial networks. Data

for reference probabilities smaller than 0.001 are not included.

3.6.4.7 Accuracy of the Solow-Joe Approximation

Tests on the accuracy of this approximation are reported by Joe (1995), who

extended to the case relevant in choice modelling the approximation originally

devised by Solow (1990). In its original application for solving MVN integrals, this

approximation resulted in more precise estimates for lower correlation of the

variates. Joe (1995) gave no percentage error indication but mentioned that the errors

recorded were typically in the third decimal place and the maximum ones were in the

second decimal place.

The Solow-Joe approximation has been tested here by averaging the results obtained

from several calculation sequences as proposed by Joe (1995). Such results are

marked SJ in the following tables and pictures. Although Joe suggested to use only a

sample of calculation sequences for MVN integrals larger than 6, here all the

permutations of the variates have been included for up to 9 options and a sample of

1000 has been used for the 12 and 15 option cases.

The results on the excerpt of cases from the second series of artificial networks are

reported in tables 3.33 and 3.34 with the exception of the case with 3 options as this
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approximation solves them by employing directly a routine for the bivariate Normal

integral. The inaccuracies appear in all cases to be of moderate importance. Small

choice probabilities in table 3.34 show larger percentage errors, suggesting the

general trend of the errors of this method that can be noticed from the aggregate data

reported later.

Option Num. Int. SJ ~SJ%

I 0.0824 0.0813 -1.38%

2 0.2058 0.2065 +0.34%

3 0.5127 0.5159 +0.63%

4 0.0134 0.0126 -6.41%

5 0.1461 0.1458 -0.16%

6 0.0396 0.0379 -4.31%

Tab 3.33 - Comparison of reference results with those of the Solow-Joe

approximation with averaging (SJ)for the six alternatives example defined in section

3.6.3. L1% obtained from the non-approximated values ofthe results.

Option Num. lnt. SJ ~SJ%

I 0.0544 0.0506 -7.03%

2 0.0285 0.0265 -7.11%

3 0.3246 0.3328 2.54%

4 0.1582 0.1610 1.81%

5 0.0950 0.0955 0.51%

6 0.1029 0.1033 0.43%

7 0.0146 0.0133 -8.92%

8 0.1032 0.1022 -0.97%

9 0.1186 0.1148 -3.21%

Tab 3.34 - Comparison of reference results with those of the Solow-Joe

approximation with averaging (SJ) for the nine alternatives example defined in

section 3.6.3. L1% obtained from the non-approximated values ofthe results.

The following pictures show a sample of the aggregate graphical results obtained. To

assess the importance of the averaging effect, figure 3.69 and 3.70 report also the

data obtained following a single random order (the results are marked SR in the
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pictures). As with the other approximations, the order resulting from the sequence in

which the options have been coded in the input files has been used as an instance of

a random order.

It is clear from figs. 3.69 and 3.70, that the random order gives results that are much

less accurate than those obtained averaging over all the permutations. The same

consideration is valid for cases of larger choice sets also when the averaging is

carried out only over a large sample of the possible permutations.

As figures 3.69 and 3.71 show, this approximation tends to underestimate the low

choice probabilities and in particular the very small ones. Higher probabilities are

typically slightly overestimated.

Examining the envelopes of the percentage errors for different amount of

overlapping and number of paths suggests that the trend of underestimation of low

choice probabilities and overestimation of larger ones is always present, although

more correlated options result in data points that are more scattered, as shown in

figure 3.73.
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Fig. 3.69 - Percentage errors ofthe Solow-Joe approximation with averaged results

(SJ) and with random order (SR) on the six option cases from the first and second

series of artificial networks plotted against the reference probabilities. Data points

for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.70 - Cumulative relative frequencies of the percentage errors of the Solow

Joe approximation with averaged results (SJ) and with random order (SR) on the 6

option cases from the first and second series of artificial networks. Data for

reference probabilities smaller than 0.001 are not included.
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Fig. 3.71 - Percentage errors ofthe Solow-Joe approximation with averaged results

(SJ) on the twelve option cases from the first and second series ofartificial networks

plotted against the reference probabilities. Data points for reference probabilities

smaller than 0.001 are not depicted.
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Fig. 3.72 - Cumulative relative frequencies of the percentage errors of the Solow

Joe approximation with averaged results (SJ) on the 12 option cases from the first

and second series of artificial networks. Data for reference probabilities smaller

than 0.001 are not included.
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Fig. 3.73 - Percentage errors ofthe Solow-Joe approximation on the 9 option cases

from the first and second series of artificial networks plotted against the reference

probabilities. Only the data points for the networks with uncorrelated paths (SJ

uncorr) and correlated paths (SJ corr) are plotted. Data points for reference

probabilities smaller than 0.001 are not depicted.

Aggregate data on the importance of the normalisation on the results can be seen

from table 3.35 that reports mean, standard deviation maximum and minimum sum

of the probabilities before normalisation. The accuracy of the sum of the raw

probabilities decreases for larger choice sets thus making more important the effect

of the normalisation for the final results. It should be noted that for the 12 and 15
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option cases larger errors could be explained by the averaging over only a sample of

the permutations.

Options Mean st.dev. MaxSJ MinSJ

SJ SJ

3 1.0000 0.0000 1.0000 1.0000

6 0.9977 0.0051 1.0126 0.9869

9 0.9860 0.0083 1.0104 0.9626

12 0.9702 0.0130 1.0003 0.9384

15 0.9488 0.0154 0.9985 0.9160

Table 3.35 - Table of mean, standard deviation, maximum and minimum values of

the sum of the choice probabilities prior to normalisation for the averaged Solow

Joe approximation (SJ) on the first and second series ofartificial networks.

Although averaging the results over all or a subset of the permutations of the variates

is useful to reduce the inaccuracies, it would be convenient to be able to use an

optimal calculation order, at least as a heuristic. This is not only to avoid the

averaging process but also because, investigating possible optimal calculation

sequences with other approximations, processing orders different or opposite to the

possible optimal ones were tested and those results, although not reported here,

confirmed that using, for instance, the order opposite to the optimal one gives errors

that may be large. Averaging the results from all the possible calculation orders, or a

large number of random permutations, will therefore mean including also very

inaccurate results while spending computing time to obtain them.

Possible optimised single sequences have been tested as heuristics. The possibility of

obtaining good accuracy results by selecting the calculation order on the basis of the

marginal Normal integral has been considered because of the analogy between the

Solow-Joe and the extended Joe approximation with the Taylor approximation.

Reordering the variates to include either the variate with the largest limit of

integration first (marked in the figures as SA) or with the smallest one first (marked

in the figures as SB) gave unsatisfactory results. Figures 3.74 and 3.75 show an

example of the envelopes of percentage inaccuracies obtained that are evidently

much larger than those due to the original approximation.
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Fig. 3.74 - Percentage errors ofthe Solow-Joe approximation with full enumeration

(sj) and with sa and sb calculation orders (see text) on the 9 option cases from the

first and second series of artificial networks plotted against the reference

probabilities. Data points for reference probabilities smaller than 0.001 are not

depicted.
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Fig. 3.75 - Cumulative relative frequencies of the percentage errors of the Solow

Joe approximation with full enumeration (sj) and with sa and sb calculation orders

(see text) on the 9 option cases from the first and second series ofartificial networks.

Datafor reference probabilities smaller than 0.001 are not included.

Although none of these two calculation sequences can be taken as effective, their

opposite trends, that are evident in the data presented as well as in the others

obtained, suggested to try to use the average of their results as a possible heuristic

method to approximate the results from averaging a larger number of orders.
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A selection of the results obtained for this method (marked SC in table and figures)

is reported in figure 3.76 and 3.77, and the probabilities for the two example

networks are compared with those of the original approximation in tables 3.36 and

3.37.

Option Num. Int. SC ~SC% ~SJ%

1 0.0824 0.0811 -1.65% -1.38%

2 0.2058 0.2063 +0.24% +0.34%

3 0.5127 0.5172 +0.90% +0.63%

4 0.0134 0.0128 -4.34% -6.41%

5 0.1461 0.1446 -0.97% -0.16%

6 0.0396 0.0379 -4.35% -4.31%

Tab 3.36 - Comparison of reference results with those of the Solow-Joe

approximation in the SC version (see text) and with averaging (SJ) for the six

alternative example defined in section 3.6.3. .<:1% obtained from the non

approximated values ofthe results.

Option Numlnt SC ~SC% ~SJ%

1 0.0544 0.0520 -4.40% -7.03%

2 0.0285 0.0274 -3.91% -7.11%

3 0.3246 0.3340 +2.92% +2.54%

4 0.1582 0.1623 +2.64% +1.81%

5 0.0950 0.0960 +1.10% +0.51%

6 0.1029 0.1033 +0.45% +0.43%

7 0.0146 0.0134 -8.18% -8.92%

8 0.1032 0.1003 -2.84% -0.97%

9 0.1186 0.1111 -6.27% -3.21%

Tab 3.37 - Comparison of reference results with those of the Solow-Joe

approximation in the SC version (see text) and with averaging (SJ) for the nine

alternative example defined in section 3.6.3. .<:1% obtained from the non

approximated values ofthe results.
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The results in the tables are in good accordance with the numerical integration ones

and with those from the averaging of the possible variate permutations. Thus they

appear to have the same range of likely errors given by the original approximation.

This impression is confirmed by graphs such as those in figures 3.76 and 3.77 that

show the good accordance of the envelopes of the errors of the original

approximation and of the heuristic modification considered here. Graphs depicting

the percentage error envelopes for different amount of overlapping and number of

paths are not reported here but, again, their trend is similar to that of the original

approximation: the trend of underestimation of low choice probabilities and

overestimation of larger ones is constant for different overlapping of paths and more

correlated options result in data point that are more scattered.

Table 3.38 reports the data on the importance of the normalisation for the SC

modification of the Solow-Joe approximation. Also these data are very similar to

those for the original Solow-Joe approximation.

Although no theoretical support is put forward here for this modification of the

approximation it seems a viable alternative to the original method.

Options Mean st.dev. Max MinSC

SC SC SC

3 1.000 0.0000 1.0000 1.0000

6 0.9963 0.0049 1.0062 0.9790

9 0.9859 0.0111 1.0153 0.9596

12 0.9769 0.0215 1.0455 0.9317

15 0.9677 0.0280 1.0643 0.9106

Table 3.38 - Table of mean, standard deviation, maximum and minimum values of

the sum of the choice probabilities prior to normalisation for the Solow-Joe

approximation in the SC implementation (see text) on the first and second series of

artificial networks.
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Fig. 3.76 - Percentage errors ofthe Solow-Joe approximation with full enumeration

(sj) and with sc calculation order (see text) on the 9 option cases from the first and

second series ofartificial networks plotted against the reference probabilities. Data

points for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.77 - Cumulative relative frequencies of the percentage errors of the Solow

Joe approximation with full enumeration (sj) and with sc calculation order (see text)

on the 9 option cases from the first and second series ofartificial networks. Data for

reference probabilities smaller than 0.001 are not included.
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3.6.4.8 Accuracy of the Extended Joe Approximation

This approximation has been tested for the evaluation of MVN integrals by its author

(Joe, 1995) who remarked that it is typically very accurate and that its accuracy

decreases with the correlation of the options. He suggested that, for its precision, it

could be used for MVN integral of dimension 12 and over as the typical expected

errors should be in the fourth decimal place whilst the maximum ones in the third.

He also compared it with the Solow-Joe approximation and with the Mendell-Elston

approximation (for which he did not mention using a preferred order) finding it more

precise.

The experiments reported here were carried out usmg the original program

developed by Joe and therefore obtaining the results before normalisation by

averaging those resulting from all the possible orderings of the variates, for 6 and 9

options, or from a sample of 1000 of them, for the cases of 12 and 15 options.

The data obtained confirmed the good accuracy of this method that, however, should

be seen to some extent separately from the other ones as it uses up to quadrivariate

MVN integrals calculated exactly by numerical integration, whilst the other methods

employ either only univariate or only univariate and bivariate Normal integrals

calculated directly.

The results for the two examples with 6 and 9 options used throughout this chapter,

reported in tables 3.39 and 3.40, where the extended Joe approximation data are

marked EJ, confirmed the good accuracy of this method. It should be noted that in

the six option example the approximation is applied only once for each option (and

each variate ordering).
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Option Num.Int. EJ ~EJ%

1 0.0824 0.0823 -0.23%

2 0.2058 0.2059 +0.03%

3 0.5127 0.5131 +0.09%

4 0.0134 0.0134 -0.39%

5 0.1461 0.1459 -0.08%

6 0.0396 0.0396 -0.38%

Tab 3.39 - Comparison ofExtended Joe and reference results for the six alternative

example. .1% obtainedfrom the non-approximated values ofthe results.

Option Num.Int. EJ ~EJ%

1 0.0544 0.0539 -0.99%

2 0.0285 0.0283 -0.73%

3 0.3246 0.3259 +0.42%

4 0.1582 0.1586 +0.29%

5 0.0950 0.0952 +0.18%

6 0.1029 0.1029 +0.04%

7 0.0146 0.0145 -0.53%

8 0.1032 0.1028 -0.36%

9 0.1186 0.1178 -0.63%

Tab 3.40 - Comparison of Extended Joe and reference results for the nine

alternative example. .1% obtainedfrom the non-approximated values ofthe results.

The figures 3.78, 3.79, 3.80 and 3.81 present a selection of the data obtained and

give a further confirmation of the precision of this method which shows increasing

inaccuracies for small actual probabilities and as the number of choice options

increases. However, such inaccuracies remain oflimited percentage importance.
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Fig. 3.78 - Percentage errors of the first and extended Joe approximations on the 6

option cases from the first and second series ofartificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.79 - Cumulative relative frequencies of the percentage errors ofthe Extended

Joe approximation on the 6 option cases from the first and second series ofartificial

networks. Datafor reference probabilities smaller than 0.001 are not included.
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Fig. 3.80 - Percentage errors ofthe first and extended Joe approximations on the 12

option cases from the first and second series ofartificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.81 - Cumulative relative frequencies ofthe percentage errors ofthe Extended

Joe approximation on the 12 option cases from the first and second series of

artificial networks. Data for reference probabilities smaller than 0.001 are not

included.
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The correlation of the options seems to have limited effect on how important are the

percentage errors reported by this approximation as shown in fig. 3.82. However, as

shown in the picture, the envelope of the percentage errors for networks with

uncorrelated paths has a more defined arch trend that spans a slightly larger range

than the envelope of the percentage errors for the cases with correlated options.
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Fig. 3.82 - Percentage errors of the extended Joe approximation on the 9 option

cases from the first and second series of artificial networks plotted against the

reference probabilities. Only the data points for the networks with uncorrelated path

(EJ uncorr) and correlated paths (EJ corr) are plotted. Data points for reference

probabilities smaller than 0.001 are not depicted.

Table 3.41 shows the very limited influence of the normalisation on this

approximation's results in the cases examined that is in accordance with the good

precision already remarked. The data for the three option cases are due to the fact

that in those cases the approximation uses directly a routine for bivariate normal

integrals that gives precise results.
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3 1.0000 0.0000 1.0000 1.0000

6 0.9993 0.0003 1.0001 0.9986

9 0.9956 0.0017 0.9999 0.9918

12 0.9902 0.0027 0.9962 0.9833

15 0.9843 0.0043 0.9947 0.9742

Table 3.41 - Table of mean, standard deviation, maximum and minimum values of

the sum of the choice probabilities prior to normalisation for the Extended Joe

approximation on the first and second series ofartificial networks.

The effectiveness of the averaging device put forward by Joe for avoiding possible

inaccuracies due to unfavourable variate processing sequences is demonstrated in

figs. 3.83 and 3.84 that compare the percentage errors obtained by averaging the

approximation results over all the possible permutations with those obtained using a

single processing order (here that resulting from the sequence in which the options

have been coded in the input file to the computer program).
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Fig. 3.83 - Percentage errors ofthe Extended Joe approximation (with averaging of

the results from all possible permutations -EJ- and a single non-optimised

calculation order - JR) on the 9 option cases from the first and second series of

artificial networks plotted against the reference probabilities. Data points for

reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.84 - Cumulative relative frequencies ofthe percentage errors ofthe Extended

Joe approximation (with averaging of the results from all possible permutations 

EJ- and a single non-optimised calculation order - JR) on the 9 option cases from

the first and second series of artificial networks. Data for reference probabilities

smaller than 0.001 are not included.

Similarly to the case of the Solow-Joe approximation, the use of the simple

processing sequence rules has been tested to try to obtain final results as precise as

those from the averaging process without resorting to such device. Two possible

orders were considered as heuristic methods (and were suggested by their effect with

the Solow-Joe approximation): reordering the variates so that those with the smallest

marginal integrals are processed first, or in the opposite order. Both gave very

similar results that seem not better than those obtained using the instance of a

random order considered here (see figs. 3.85 and 3.86 that compare results from one

such order with those of the random one) and much more inaccurate than those

obtained from the original approximation as shown in figure 3.87 and 3.88.

Averaging the results obtained with those two opposite variate reorderings gives no

particular advantage as is expected observing their common trend and, more

importantly, does not give an envelope of errors as good as that of the original

approximation. Thus no particular processing order can be put forward, even as a

heuristic, after the investigations carried out.
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Fig. 3.85 - Percentage errors of the extended Joe approximation with the variate

giving the largest marginal integral processed first (JB) and with an instance of

variate processing order (JR) on the 9 option cases from the first and second series

of artificial networks plotted against the reference probabilities. Data points for

reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.86 - Cumulative relative frequencies of the percentage errors of the extended

Joe approximation with the variate giving the largest marginal integral processed

first (JB) and with an instance ofvariate processing order (JR) on the 9 option cases

from the first and second series of artificial networks. Data for reference

probabilities smaller than 0.001 are not included.
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Fig. 3.87 - Percentage errors of the extended Joe approximation with full

enumeration (EJ) and with the calculation orders processing the variates with the

smallest marginal integral first (JA) on the 9 option cases from the first and second

series of artificial networks plotted against the reference probabilities. Data points

for reference probabilities smaller than 0.001 are not depicted.

rIlliIllJIIlll .... lIIl11i1lJlillllllllillllllllillllllllil

/r
.;I" I

~~

1.0

0.9

0.8

0.7

0.6 I : CJ I'0.5 _JA
0.4

0.3

0.2

0.1

0.0
% error (from-20% to +20%;bin width 1%)

Fig. 3.88 - Cumulative relative frequencies ofthe percentage errors of the extended

Joe approximation with full enumeration (EJ) and with the calculation orders

processing the variates with the smallest marginal integral first (JA) on the 9 option

cases from the first and second series of artificial networks. Data for reference

probabilities smaller than 0.001 are not included.
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3.6.5 Summary and Comparison of Accuracy and Calculation Time Results

The accuracy of the different MNP approximation methods, illustrated so far

separately for each approximation or approximation group, IS compared in this

section using the same sort of graphs employed in the previous paragraphs and

presenting some additional summary statistics on their precision along with time

calculation summary data.

The graphs reported in this section are all relative to the cases of 12 paths in the first

and second series of networks. Although it was mentioned that the actual number of

paths used in traffic assignment could be smaller and the errors produced by the

approximations for smaller choice sets are of lower importance, the figures are

intended to provide a common and rather demanding ground of comparison between

the approximations.

Tables 3.42, 3.43, 3.44 report summary statistics about the approximations' precision

obtained from the results on the first and second series of networks: they list the

average percentage error and, in brackets, its standard deviation, organised by

approximation and by number of options. The three tables proposed exclude the

errors for reference choice probabilities under three different thresholds to evaluate

the approximations also considering that, in general, the biggest percentage errors

are encountered for the smallest choice probabilities. The zero values for the

approximations ofthe FOMN group, the Solow-Joe and the extended Joe in cases of

three choice options are due to the fact that in those cases those approximations use

simply a routine for numerical integration therefore the results agree with the

reference ones.

The time calculation data gathered during the experiments are reported in aggregate

form in tables 3.45 and 3.46 that list average and standard deviation of the

calculation time for all the experiments on the first and second series of networks,

organised by approximation and number of options in the choice set. The timings

reported have been obtained on a Pentium II 350 MHz PC and are thus relevant to

that computing equipment and the programs employed, but should give a fair

comparison of the relative computation expenses of the approximations examined.
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The generalised FOMN method with the heuristic optimised processing order

proposed and the approximation of Mendell-Elston (especially with the heuristic

processing order suggested by Rice et al.) and the extended Joe method can be

characterised as the most precise approximations amongst those investigated both

looking at the statistics reported and, more simply, looking at the graphs of their

percentage error envelopes.

An example of how the Mendell-Elston approximation (with the Rice et al. order)

compares with the optimised order generalised FOMN is given in figure 3.89. With

fewer options the inaccuracies are smaller but the trends are similar. In general the

Mendell-Elston method tends to have more disperse results and mainly

overestimates the low probabilities whilst underestimating larger ones. The opposite

trend of the generalised FOMN method comes with inaccuracies of even smaller

percentage importance. It should be noted, though, that the FOMN method uses

direct calculation of bivariate Normal probabilities whilst the Mendell-Elston does

not. The employment of such a routine as part of an enhanced Mendell-Elston

approximation could possibly improve its results further.

The better performance of the generalised FOMN approximation entails, however, a

higher computational cost than that necessary for the Mendell Elston method: the

average calculation times shown on table 3.45 are about five times longer than those

for the Mendell-Elston (except in the three option case). The comparison with the

calculation times of the Mendell-Elston approximation with the Kamakura order

gives similar results.

The generalised FOMN approximation without optimised order gives results of

similar precision to the Mendell-Elston method (see the example in fig. 3.90)

although it presents underestimation of some low choice probabilities that is not

present for the Mendell-Elston with Rice et al. order (see fig 3.91). The generalised

FOMN approximation without variate reordering requires, as its optimised order
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version, longer calculation times, between three and four times longer than the

Mendell-Elston (except in the three option case). This is probably due to the need to

solve the internal optimisation problems described in section 3.5.5 several times at

each application of the approximation. Comparing the data reported in table 3.45 for

the timings of the FOMN approximation with and without optimised order, suggests

that reordering the options in the desired sequence implies calculation times that are

about 1.4 times those without reordering. This proportion is confirmed when

comparing the data for the crude FOMN method in the versions with and without

optimised order. It should be remarked once more that the approximation without

optimised order has been considered as this is the way it is presented in the relevant

literature. However, it is preferable to perform the calculations according to a set

order since a random order as that considered here could give results of varying

precision depending on how favourable it is.

An example of the trend of inaccuracies given by the extended approximation of Joe

is reported in figure 3.92, that compares it with the trend of percentage errors of the

Mendell-Elston method with the Rice et al. order. The two approximations have

opposite trends of the errors but the absolute values of the inaccuracies are similar.

In fact, the extended Joe approximation has a trend of the errors similar to that of the

generalised FOMN approximation with optimised processing order (it tends to

underestimate low choice probabilities and overestimate larger ones) but with larger

inaccuracies. However, the results of the extended Joe approximations come at a

high computational cost: the times obtained in the experiments are, on average, three

orders of magnitude larger than the Mendell-Elston ones for the cases of 6 options,

and even larger for larger choice sets. Table 3.45 also shows that the extended Joe

calculation times are much higher than those for the generalised FOMN

approximation. Such long calculation times are due to considering results obtained

from different permutations of the variates but also to the calculation of a number of

up to four-variate marginal Normal integrals, as explained in the description of the

method.
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Fig. 3.89 - Comparison of the percentage errors due to the Mendell-Elston method

with Rice et al. ordering (ME-R) and the optimised order generalised FOMN method

(GEN opt) on the twelve option cases from the first and second series of artificial

networks plotted against the reference probabilities. Data points for reference

probabilities smaller than 0.001 are not depicted.
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Fig. 3.90 - Comparison of the percentage errors due to the Mendell-Elston method

with Kamakura ordering (ME-K) and the generalised FOMN method without

optimised order (GEN) on the twelve option cases from the first and second series of

artificial networks plotted against the reference probabilities. Data points for

reference probabilities smaller than 0.001 are not depicted.

167



10 -,----------------------

0.6 1<> GEN I
lICME-R

,-------------------

5

-10 -t.------------------

... 0g
Q)

<f'. -5

-15 L- _

ref. probability

Fig. 3.91 - Comparison of the percentage errors due to the Mendell-Elston method

with Rice et al. ordering (ME-R) and the generalised FOMN method without

optimised order (GEN) on the twelve option cases from the first and second series of

artificial networks plotted against the reference probabilities. Data points for

reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.92 - Comparison of the percentage errors due to the Mendell-Elston method

with Rice et al. ordering (ME-R) and the extended Joe approximation with result

averaging (EJ) on the twelve option cases from the first and second series of

artificial networks plotted against the reference probabilities. Data points for

reference probabilities smaller than 0.001 are not depicted.
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There are a number of approximations that give rather satisfactory results but are

rather less accurate than those mentioned above. Amongst these is the separated split

approximation. An example of how it compares with the generalised FOMN

approximation with optimised order is given in figure 3.93.

In the papers putting forward the separated split approximation, Langdon (1984a,b)

warned about the exponential increase of calculation time resulting from the

extension and complexity of the computation structure of the approximation for large

choice sets. In fact, the calculation times recorded for all the approximations grow

more than linearly with the number of options in the choice set but the times required

by the separated split method have a much steeper increase than some others beyond

a certain number of alternatives. For instance, from the data presented in table 3.45 it

can be seen that this happens beyond 9 choice options when the Mendell-Elston or

the Taylor series expansion approximation are compared with the separated split, or

beyond 12 options when the comparison is against the optimised order generalised

FOMN method.

The approximations based on the Taylor series give very similar results as seen in

the section that reports their accuracy data. There it was noted, however, that the

second order approximation should be preferred. In practice, both orders of the

Taylor approximation require the same computational effort, as shown by table 3.45

and as should be expected since the difference in the operations carried out is

minimal. It should also be noted that the Taylor series approximations require

substantially the same computational times as the Mendell-Elston method (with

either optimised order). This is consistent with the similarity of the calculation

structures and with the minimal practical differences between the operations carried

out each time the approximations are applied. The precision reached by the Taylor

series methods is similar to that of the separated split method, as shown by figures as

3.94: the two methods have opposite error trends but, in absolute value the

inaccuracies are rather similar.
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The trend and the magnitude of the percentage errors of the Taylor senes

approximations are similar to that of the Solow-Joe approximation, although the

latter gives larger percentage underestimation of low choice probabilities, especially

for smaller choice sets. Figure 3.95 is an example of comparison of the trends of

such approximations. However, the calculation times required by the Solow-Joe

approximation when all or a sample of the results from different permutations of the

variates are averaged to give the final result are much longer than those required by

the Taylor series approximation, as can be seen from table 3.45. For instance in the 6

option cases (with averaging of the results for all possible variate permutations) they

are, on average, about 50 times larger than the calculation times required by the

Taylor approximation.

The difference in calculation times is more favourable when the proposed heuristic

averaging of the results over two permutations only is considered. The times are,

however, approximately 3 to 4 times larger than those required by the Taylor series

approximation for a similar precision (and than those required from the Mendell

Elston approximation for a higher precision). An example of how the results from

the heuristic limited averaging version of the Solow-Joe approximation compare

with the Taylor ones is given in fig. 3.96.

To close the discussion on the relative precision of the Solow-Joe approximation it is

interesting to note in plots as that in figure 3.97, the difference in accuracy between

the Solow-Joe and the extended Joe approximation, both based on the same idea but

refined to a different order.

The crude FOMN method with heuristic optimal processing order is much less

precise than the corresponding generalised FOMN method, as seen in the section on

their accuracy, and is also less precise that the generalised FOMN without optimal

processing sequence. In fact, the accuracy and the trend of the crude FOMN method

can be approximately compared with those of the Taylor series or the Solow-Joe

method (see the example in figure 3.98), although the crude FOMN has a marked

tendency to overestimate actual high probabilities that is not present in the other

approximations. It should be noted, though, that the time required to carry out the
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crude FOMN calculations with reordering is, on average, three or four times that

required by an approximation using the Taylor series (and that of the Mendell

Elston, that is much more precise), except for the three option cases. However, the

crude FOMN with reordering is, on average, slightly faster than the heuristic limited

averaging Solow-Joe approximation (except in the 6 option cases).

The percentage inaccuracies of the methods seen above are moderate when

compared with those of the very fast improved Clark method, that tends to give large

percentage errors especially for options with real choice probability of about less

than 10%, as shown in figure 3.99 (although it should be noted that the largest

percentage errors are observed for very small actual choice probabilities). Not

including variate reordering, the improved Clark method requires calculation times

that are shorter than with other approximations and increase more than linearly with

the number of options, but at a lower rate than in most other cases.

In fact, the only method whose increase in calculation time with the number of

options is less pronounced is the heuristic simple Clark method, the fastest but also

the least precise amongst the methods presented. The comparison with the improved

Clark method in fig. 3.100 shows large percentage errors also for large choice

probabilities. The particularly short calculation times and the fact than they increase

only slightly more than linearly with the number of options are due to the absence of

variate reordering (no optimised order is proposed in the literature or was tried here)

and to the fact that the number of times the approximation calculations are carried

out grows only linearly with the number of options whilst in many other cases

(except with the separated split, the Solow-Joe and the extended Joe approximation)

it grows approximately with the square of the number of options.
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Fig. 3.93 - Comparison of the percentage errors due to the separated split method

(SP) and the optimised order generalised FOMN method (GEN opt) on the twelve

option cases from thefirst and second series ofartificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.94 - Comparison of the percentage errors due to the separated split method

(SP) and the second order Taylor approximation (T2) on the twelve option cases

from the first and second series of artificial networks plotted against the reference

probabilities. Data points for reference probabilities smaller than 0.001 are not

depicted.
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Fig. 3.95 - Comparison of the percentage errors due to second order Taylor

approximation (T2) and the Solow-Joe approximation (SJ) on the twelve option

cases from the first and second series of artificial networks plotted against the

reference probabilities. Data points for reference probabilities smaller than 0.001

are not depicted.
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Fig. 3.96 - Comparison of the percentage errors due to second order Taylor

approximation (T2) and the Solow-Joe approximation with heuristic limited

reordering (SC) on the twelve option cases from the first and second series of

artificial networks plotted against the reference probabilities. Data points for

reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.97 - Comparison of the percentage errors due to the Extended Joe method

(EJ) and the Solow-Joe approximation (SJ) on the twelve option cases from the first

and second series of artificial networks plotted against the reference probabilities.

Data points for reference probabilities smaller than 0.001 are not depicted.
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Fig. 3.98 - Comparison of the percentage errors due to the crude FOMN method

with optimal reordering (CRD opt) and the second series Taylor approximation (T2)

on the twelve option cases from the first and second series of artificial networks

plotted against the reference probabilities. Data points for reference probabilities

smaller than 0.001 are not depicted.
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Fig. 3.99 - Comparison of the percentage errors due to the improved Clark method

(CI) and the Mendell-Elston approximation with the Rice et al. ordering (ME-R) on

the twelve option cases from the first and second series ofartificial networks plotted

against the reference probabilities. Data points for reference probabilities smaller

than 0.001 are not depicted.
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Fig. 3.100 - Comparison of the percentage errors due to the simple Clark method

(CS) and the improved Clark approximation (CI) on the twelve option cases from the

first and second series of artificial networks plotted against the reference

probabilities. Data points for reference probabilities smaller than 0.001 are not

depicted.

175



The accuracy results reported clearly point at the methods already mentioned

(generalised FOMN with heuristic optimal processing sequence, Mendell-Elston and

extended Joe) as the best ones to be employed for the practical calculation of the

MNP choice function. The consideration of the calculation times, however, suggests

that the generalised FOMN and the Mendell-Elston approximations should certainly

be preferred. In particular, the shorter calculation times reported for the Mendell

Elston method characterise it as the approximation giving the best trade-off between

accuracy and calculation time. Moreover, it should be noted that to limit the

calculation times required by the extended Joe method with large choice sets, it is

necessary to use only a sample of the results from the different possible permutations

of the variates, thus introducing an element of non-repeatability, when part of the

interest in using analytical approximations is to ensure that results are repeatable.

Amongst the approximations giving an intermediate quality of the accuracy results,

the Taylor series one and the separated split seem to be those giving better results

with limited calculation time. The heuristic reordering of the Solow-Joe

approximation, the crude FOMN with optimal reordering and the original Solow-Joe

approximation (listed in order of increasing typical calculation times) do not improve

noticeably on the quality of the Taylor series and of the separated split

approximations and require always longer calculation times than the Taylor series

methods and often longer calculation times than the separated split approximation.

Moreover, the same point raised above on the non-repeatability of the results due to

averaging only a part of the probabilities from different possible permutations of the

variates applies to the Solow-Joe method, although in this case it is possible to

obviate it using the heuristic reordering proposed.

The very fast improved Clark approximation gives large errors for low choice

probabilities, and its heuristic variation seems to give large percentage errors over

the whole range of possible probabilities, though the worst results are obtained for

low choice probabilities.
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Numerical integration has been used here only to obtain reference data by specifying

a high required precision of the results giving the high computation times reported in

table 3.46. These are possibly also due to the computing equipment employed. In

fact, the times reported by Genz (1992) using a different class of computer are much

lower. The feasibility of the direct use of the numerical integration method of Genz

on a computing equipment with higher specification and with a lower requested

precision of the results should be verified. It should, however, be expected that

approximations as the generalised FOMN and the Mendell-Elston would remain

competitive both for precision and calculation time.
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Opt. CS CI ME-K ME-R SP TF TS

3 7.26 (40.50) 2.14 (3.92) -0.03 (0.95) 0.08 (0.17) 0.35 (1.53) -0.17 (0.71) 0.06 (0.18)

6 20.91 (102.99) 4.32 (18.16) -0.04 (1.58) 0.23 (0.51) 0.70 (3.43) -1.31 (2.57) -0.88 (1.93)

9 25.88 (75.59) 11.23 (33.31) -0.09 (1.94) 0.34 (0.76) 1.10 (4.65) -2.31 (4.07) -1.81 (3.52)

12 20.60 (59.14) 12.05 (31.92) 0.30 (1.32) 0.34 (1.03) 0.72 (3.10) -3.04 (5.31) -2.61 (4.89)

15 23.48 (66.18) 18.87 (51.61) 0.26 (1.76) 0.29 (1.26) 0.88 (3.76) -4.03 (6.37) -3.57 (5.99)

Opt. CRD(opt) GEN GEN(opt) SJ SC 11

3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

6 -2.42 (3.81) -0.02 (0.53) -0.11 (0.21) -1.66 (3.65) -1.60 (3.56) -0.12 (0.28)

9 -4.14 (5.42) -0.08 (1.26) -0.30 (0.49) -4.35 (7.13) -3.35 (5.81) -0.70 (1.25)

12 -4.51 (6.45) -0.29 (1.59) -0.43 (0.76) -3.23 (5.93) -1.37 (3.84) -0.53 (1.09)

15 -6.08 (7.63) -0.62 (1.93) -0.71 (1.09) -5.10 (8.31) -1.55 (4.60) -1.03 (1.72)

Table 3.42 - Average percentage error and standard deviation (in brackets) for MNP approximations in cases with reference probability at least

0.001. The first column indicates the number ofoptions in the choice set. The approximations are marked as in the rest ofthe chapter.
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Opt. CS CI ME-K ME-R SP TF TS

3 2.59 (12.44) 0.68 (2.39) 0.05 (0.29) 0.08 (0.17) 0.19 (1.02) -0.16 (0.71) 0.06 (0.18)

6 9.20 (28.24) 2.13 (6.96) 0.11 (0.91) 0.21 (0.50) 0.27 (1.47) -1.13 (2.30) -0.76 (1.73)

9 10.83 (37.29) 4.86 (15.07) 0.15 (1.28) 0.28 (0.72) 0.43 (2.24) -1.84 (3.65) -1.46 (3.17)

12 12.47 (39.99) 7.41 (21.53) 0.30 (1.27) 0.27 (0.92) 0.46 (2.64) -2.53 (4.87) -2.16 (4.48)

15 12.58 (41.42) 9.17 (27.75) 0.27 (1.63) 0.25 (1.12) 0.48 (3.08) -3.15 (5.63) -2.75 (5.28)

Opt. CRD(opt) GEN GEN(opt) SJ SC 11

3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

6 -1.92 (3.31) 0.01 (0.48) -0.09 (0.17) -1.02 (2.22) -0.99 (2.17) -0.08 (0.17)

9 -3.06 (4.56) -0.01 (1.03) -0.23 (0.41) -2.46 (4.27) -1.97 (3.76) -0.42 (0.77)

12 -3.66 (5.61) -0.20 (1.46) -0.34 (0.66) -2.43 (4.90) -1.13 (3.58) -0.45 (0.98)

15 -4.66 (6.49) -0.37 (1.60) -0.53 (0.87) 3.59 (6.71) -1.35 (4.25) -0.79 (1.48)

Table 3.43 - Average percentage error and standard deviation (in brackets) for MNP approximations in cases with reference probability at least

0.01. The first column indicates the number ofoptions in the choice set. The approximations are marked as in the rest ofthe chapter.
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Opt. CS CI ME-K ME-R SP TF TS

3 1.41 (9.12) 0.20 (0.96) 0.03 (0.19) 0.04 (0.12) 0.06 (0.36) -0.14 (0.71) 0.05 (0.16)

6 2.42 (16.79) 0.60 (3.52) 0.15 (0.64) 0.12 (0.47) 0.01 (0.99) -0.60 (1.82) -0.38 (1.37)

9 0.39 (18.79) 0.09 (5.62) 0.16 (0.98) 0.09 (0.55) -0.04 (1.47) -0.48 (2.51) -0.35 (2.16)

12 -1.78 (21.60) -0.89 (8.76) 0.12 (1.14) 0.03 (0.69) -0.16 (1.86) -0.13 (3.25) -0.04 (2.95)

15 -4.08 (20.14) -3.05 (10.28) 0.05 (1.33) -0.04 (0.73) -0.26 (2.19) 0.52 (3.34) 0.52 (3.13)

Opt. CRD(opt) GEN GEN(opt) SJ SC Jl

3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

6 -0.88 (2.39) 0.03 (0.39) -0.04 (0.12) -0.29 (1.13) -0.31 (1.20) -0.03 (0.09)

9 -0.78 (2.88) 0.09 (0.75) -0.06 (0.24) -0.39 (2.14) -0.45 (2.21) -0.09 (0.40)

12 -0.16 (3.33) 0.13 (1.01) -0.01 (0.38) -0.08 (3.08) -0.15 (2.89) -0.04 (0.63)

15 0.54 (3.69) 0.23 (0.94) 0.04 (0.46) 0.52 (3.85) 0.04 (3.31) 0.04 (0.86)

Table 3.44 - Average percentage error and standard deviation (in brackets) for MNP approximations in cases with reference probability at least

0.05. The first column indicates the number ofoptions in the choice set. The approximations are marked as in the rest ofthe chapter.
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Opt. CS CI ME-K ME-R SP TF TS

3 4.7 (0.1) 16.1 (0.5) 12.5 (0.3) 13.4 (1.0) 6.8 (0.2) 12.8 (0.4) 13.9 (0.3)

6 7.5 (0.2) 35.1 (0.7) 53.9 (0.6) 52.8 (1.9) 32.5 (2.8) 54.0 (0.6) 57.5 (0.6)

9 10.2 (0.2) 73.0 (1.5) 211.1 (2.2) 197.0 (12.6) 230.3 (11.6) 206.1 (2.1) 213.7 (2.0)

12 13.7 (0.4) 133.9 (3.2) 601.6 (6.6) 550.3 (46.7) 1740.1 (41.8) 585.1 (4.7) 599.2 (4.7)

15 17.9 (0.6) 227.6 (6.2) 1387.6 (14.6) 1264.7 (115.2) 13920.9 (291.1) 1355.0 (11.8) 1377.2 (11.9)

Opt. CRD(opt) GEN(non-opt) GEN(opt) SJ SC Jl

3 17.3 (2.1) 17.3 (2.1) 17.3 (2.1) 17.3 (2.1) 17.3 (2.1) 17.3 (2.1)

6 200.4 (11.1) 188.7 (9.2) 265.8 (17.6) 3012.2 (187.3) 254.6 (13.8) 7.5* 104 (1.5* 104
)

9 869.9 (39.2) 809.0 (26.8) 1192.8 (65.1) 2.3*10 6 (4.1*104
) 773.7 (46.1) 2.7*106 (2.5*10 5

)

12 2379.4 (43.4) 2198.4 (57.5) 3242.8 (72.1) 2.7*105 (1.4*10 3
) 1804.2 (35.9) 1.7*107 (1.1*106

)

15 5346.3 (87.9) 5044.6 (80.0) 7232.8 (148.5) 6.0*10 5 (1.7* 103
) 3781.5 (78.3) 8.6*107 (4.7*10 6

)

Table 3.45 - Average calculation times and standard deviations (in brackets) required by the MNP approximations for the first and second

series of experiments for different sizes of the choice set. Times in seconds *10-5. Experiments carried out on a Pentium II 350 MHz desktop

computer. Thefirst column indicates the number ofoptions in the choice set. The approximations are marked as in the rest ofthe chapter.



Opt. Numerical Integration

3 0.028 (0.006)

6 0.090 (0.026)

9 0.999 (0.538)

12 14.582 (7.140)

15 552.812 (571.667)

Table 3.46 - Average and standard deviation (in brackets) of the calculation times

for the numerical integration method of Genz with a required precision for the

probabilities of5*10-5. Times in seconds. Experiments carried out on a Pentium II

350 MHz desktop computer. The first column indicates the number ofoptions in the

choice set.

3.7 Issues in the Practical Application of the MNP Choice Model

3.7.1 Semidefinite Covariance Matrices

The presentation of the MNP problem and of the related MVN integral at the

beginning of this chapter assumed that the MVN distribution of the utilities has

positive definite covariance matrix (to allow its inversion in (2.7) and thus in (3.2),

(3.5) and (3.8)). In MNP calibration the covariance matrices are restricted to be

positive definite. However, in traffic assignment it is possible to encounter cases in

which the covariance matrix of the utilities is positive semidefinite and so are the

covariance matrices of the MVN distributions in difference.

Consider, for instance, the network depicted in fig. 3.101: next to each link is the

variance of the Normal distribution of the link cost. Six paths can be enumerated

between point A and point B as sketched in figure 3.102, that also gives the codes of

the paths.
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Fig. 3.101 - Simple network with 6 paths with semidefinite covariance matrix of the

distribution ofthe path costs.

2 3 4 5 6

l~l~~L
Fig. 3.102 - Schematic representation of the 6 possible paths between A and B in

figure 3.101.

If the path costs are considered additive, the covariance matrix of their MVN

distribution results in:

a-vb-v e «l a+l a l 0 0

a-v l a+d+g+l a+d g+l 0 0

a a+d a+d+i+n 0 i-s n n

l g+l 0 c+f+g+l c+ f
(3.100)

c

0 0 i-vn c+f c+f+i+n c+n

0 0 n c c+n c+h+m+n

(where line and column 1 correspond to path 1 and so on).

It can be seen that line (and column) 4 of this matrix can be expressed as a linear

combination of lines 2, 5 and 3: line 4 is obtained summing lines 2 and 5 and

subtracting line 3. Therefore, one of the eigenvalues of the matrix is zero and the

matrix is positive semidefinite, rather than positive definite. In other words, the rank

of the matrix is smaller than its dimension.
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The networks used to test the precision of the approximations in the previous part of

this chapter had positive definite covariance matrices but positive semidefinite

covariance matrices may occur in real networks.

It is important to note that the presence of a positive semidefinite covariance matrix

does not affect the calculations of the approximations of Clark, ofMendell-Elston, of

the separated split method of Langdon, and of those of the FOMN family that have

been examined. However, the covariance matrices need to be positive definite to

solve the MNP problem with the numerical integration method of Genz and with the

approximations based on the Taylor series expansion. Moreover, Joe in the code for

the Solow-Joe and extended Joe approximations remarks that semidefinite matrices

may cause problems.

In general, the a MNP choice problem with semidefinite covariance matrix can be

reduced to an equivalent one with full rank covariance matrix as suggested for

instance in Pattison and Gossink (1999), who recalled that, by definition, a Normal

variate X with covariance matrix with rank r smaller than its dimension n is related

to at least a Normal variate Y of dimension r and with full rank covariance matrix

with a transformation like:

X=AY+b (3.101)

where A is a [nxr] matrix. This transformation can be used to obtain the image of the

original variate in the space generated by the eigenvectors of its covariance matrix

corresponding to non-zero eigenvalues. The limits of integration for Y can be found

using again the transformation (3.101).

Alternatively, heuristic methods can be used to eliminate the issue. For instance,

Clark and Watling (2002) in a work on sensitivity analysis of SUE probit traffic

assignment models avoided the issue in an approximate way by excluding from the

path sets the path or paths causing the semidefiniteness of the covariance matrix.

Such paths were chosen so that the remaining paths carry most of the traffic between

the relevant OD pair.
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However, an exact method to solve the problem with the numerical integration

method of Genz has been proposed by Genz and Kwong (2000). This method

consists of reducing the dimension of the covariance matrix by using the generalised

Cholesky decomposition carried out by the algorithm of Healy (1968) and rewriting

the integration limits. The generalised Cholesky decomposition of Haley allows us to

decompose singular matrices and produces triangular matrices with columns of zeros

corresponding to the null eigenvalues, thus eliminating the redundant variates from

the MVN integral expressed as the combination of a number of univariate Normal

distributions. The integration limits are then redefined in the space of the necessary

univariate Normal distributions, proceeding then to write the redefined MVN

integration problem so that it results in an integration problem over a unit hypercube,

following the method ofGenz (1992, 1993) described in section 3.4.

3.7.2 The Evaluation of the Satisfaction Function

3.7.2.1 Introduction

An aggregate measure of the utility of a set of options is given by the mean of the

distribution of the maximum of their utilities. This is referred to as satisfaction (see

e.g. Daganzo, 1979; Sheffi, 1985; Ben Akiva and Lerman, 1985) and can be used in

choice models applied to traffic assignment as a measure of the cost to reach a

destination. It is part of the equivalent objective function that allows us to solve for

the Stochastic User Equilibrium traffic pattern on a network, as explained in detail in

chapter 4, and of the objective function and the elastic demand functions (that

determine the number of trips made between each origin and destination on a

network) used in the elastic demand models considered in chapter 5.

The satisfaction, S, due to the J options in a choice set is:

(3.102)

In traffic assignment models, where disutilities or costs rather than utilities are used,

the satisfaction is, correspondingly, the expected minimum value of the costs of the

options in a choice set (the J paths between an OD pair):
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(3.103)

The satisfaction has a relative rather than an absolute meaning, unless the scale of

the model is somehow fixed, since it is based on the utilities, that are scalable. Sheffi

(1985) reports a number of properties of the satisfaction function.

In the multinomial probit model case (3.102), similarly to the choice function, cannot

be written in closed form and needs to be evaluated approximately (Daganzo, 1979;

Sheffi, 1985).

There is limited literature on the evaluation of the satisfaction function with the

probit choice model. No method relying on numerical integration has been suggested

and simulation is not normally used. Two of the approximation methods seen above

allow the direct, though approximate, calculation of the satisfaction. They can also

be used to form hybrid algorithms as outlined below. A further method to

approximate analytically the satisfaction function is also suggested.

3.7.2.2 Evaluation of the Satisfaction Using the Approximation of Clark

The method of Clark can be applied recursively to calculate the maximum of a

number of Normal (or approximated as Normal) variates as explained in section

3.5.2. It was also noted that the simple application of the Clark approximation one

more time than strictly needed for the calculation of the choice probabilities allows

us to obtain the value of the satisfaction with either the simple Clark method or the

improved Clark method.

With the simple Clark method one value of the satisfaction is obtained directly for

the calculations, whilst with the improved Clark method a number of satisfaction

evaluations equal to the number of options can be obtained, and possibly the average

value can be used.

The simplicity of the Clark approximation and its very high computational efficiency

suggests the use of hybrid algorithms to calculate the satisfaction with MNP

approximations that do not calculate it directly: the choice probabilities can be

calculated with the relevant approximation and the satisfaction with the method of

Clark.
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3.7.2.3 Evaluation of the Satisfaction Using the Approximation ofLangdon

The method suggested by Langdon (1981) for the calculation of the satisfaction is

based on his approximation for solving the MNP integral. It relies on the fact that, to

obtain the choice probabilities, the separated split approximation calculates the

means, variances and covariances of the reduced utility distributions (the utilities of

the different options as perceived by the decision makers who have made a certain

choice, in the terminology used by Langdon).

The satisfaction for each set of options can be obtained by carrying out one more

reduced utility distribution calculation after those necessary for the choice

probabilities, thus computing the means of the reduced utility distributions of each

option for those who have chosen it. Summing the mean of the utility of each finally

chosen option as perceived by those who chose it, weighted by its choice probability,

the satisfaction of the set of options is obtained.

Langdon (1981) underlined that such satisfaction value is obtained without

assumptions on the distribution of the maximum of the utilities. In fact, as in the case

of the probability calculations, the method assumes that the reduced utility

distributions are Normal.

Also in this case, hybrid algorithms can be proposed e.g. for the Mendell-Elston and

the Taylor series approximations to carry out, in parallel to the approximation's

probability calculations, the calculations for obtaining the utility of each option for

those who chose it, as in the approximation of Langdon. The calculation of the

reduced utility proceeds similarly to that in the original approximation along one of

the outer branches of the pictorial example of computational structure in figure 3.1.

The satisfaction is obtained summing each of the final reduced utilities weighted by

the relevant choice probability obtained with the approximation used.

3.7.2.4 Evaluation of the Satisfaction Using the Normal Approximation

A further method to obtain the value of the satisfaction, which may be used with any

MNP choice function evaluation method, can be developed by assuming that the

distribution of the maximum of the utilities can be approximated as Normal. This is
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similar to the assumption made by Clark but only III the assumption on the

distribution of the total maximum.

The approximate values of the mean and of the vanance of the maximum

distribution may be calculated considering, separately, two dummy choice options

and performing the relevant two additional choice calculations.

First, a dummy alternative, not correlated with the real ones, with any mean and

variance, is considered along with the real ones and its choice option is calculated

with the relevant approximation. Then a second uncorrelated dummy alternative,

with a mean different from that of the first dummy alternative but with the same

variance, is considered along with the real ones and its choice probability is

calculated.

The mean and variance of the maximum of the utilities, assumed to be Normal, can

be obtained by considering that the choice probability of each of the dummy

alternatives is the same as the probability that they are chosen over the maximum of

all the real ones. Thus, the approximate mean and variance of the maximum can be

calculated considering that the dummy alternatives are not correlated with it (since

they are not correlated with any of the other real alternatives) and considering two

binary choices between the maximum of all the real alternatives and each of the

dummy ones.

If Va, Vb and (52 are respectively the utilities of the dummy alternative a, of the

dummy alternative b and their common variance, their separate probabilities of

choice over the real options are P; and Pi, and can be written as:

( ) rn.[ Vb - Vmax ]r, =P u, >Umax =-v ~ 2 2

(5 + (5 max

Therefore it is also possible to write:

(3.104)

(3.105)
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v -v
a max =<I>-I(p )=k

~ 2 2 a ac + crmax

v -v
b max = <I> -I (p, )= k

~ 2 2 b bc + crmax

The system of equations (3.106) and (3.107) can be solved to give:

(3.106)

(3.107)

(3.108)

(3.109)

Although it is rather simple, this method may be rather time consummg as it

introduces two additional choice calculations of one dimension larger than those in

the original choice problem.

3.8 Conclusions

This chapter has discussed the problem of the evaluation of the multinomial probit

choice function. A number of different methods have been described, dividing them

into methods relying on simulation, methods using numerical integration and

methods using analytical approximations. The analytical approximation methods that

have recently received limited attention in the transportation literature have been

described and examined in more detail. The ground breaking numerical integration

method of Genz (1992, 1993), that allows us to calculate MVN integrals of large

dimension in relatively limited computing times, has been used to obtain the

reference results for testing the accuracy of most of the approximation methods

described. Experiments have been carried out with the approximation of Clark (in

the heuristic simple Clark implementation and in the exact improved Clark method),

the approximation of Mendell-Elston, the separated split method of Langdon, the

crude and generalised FOMN methods, the approximation derived from first and

second order Taylor series expansions, the Solow-Joe approximation and the

extended approximation of Joe. These approximations have been developed in

different disciplines and, in particular, the FOMN methods, the Taylor
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approximations, the Solow-Joe and the extended Joe approximation, as well as the

numerical integration method of Genz, had been applied previously only for the

evaluation of MVN integrals and were introduced here in the calculation of the MNP

choice function. The accuracy tests have been carried out on artificial test networks

intended to replicate choice situations encountered in traffic assignment. Besides

allowing us to compare the quality of the results of the approximations and their

typical inaccuracies, such tests have also allowed the collection of information on the

computational time they require.

An analysis of the possible inaccuracies given by each approximation as well as an

overall comparison of the methods based on accuracy and computational cost have

been presented. The analysis of the results of each approximation showed that they

all tend to give larger percentage error in the evaluation of small choice probabilities

and underlined the importance of using optimal processing orders of the variates

within the approximation calculations to maximise the accuracy of the results. In

particular, heuristic optimal processing orders were proposed and tested for the

FOMN methods examined and for the Solow-Joe approximation and a further

heuristic processing order, suggested by a remark in the literature, has been tested for

the Mendell-Elston approximation.

The approximation of Mendell-Elston (with the processmg order suggested by

Kamakura and with the heuristic processing order of Rice et al.), the generalised

FOMN approximation (with heuristic optimal processing order) and the extended

approximation of Joe resulted in the most precise methods amongst those examined.

The extended Joe method, however, showed long calculation times due to

calculating up to four-variate integrals and to the averaging device suggested by its

author to obviate the inaccuracies due to variate ordering. The generalised FOMN

method with optimal processing order is the most precise method amongst those

examined but required calculation times that were about five times those required by

the Mendell-Elston method which, thanks to its good precision and limited

calculation time, is the method offering the best trade-off between precision and

computational time.

The approximation of Clark, in either of its implementations, resulted in the fastest

but the least precise of the methods, whilst the other methods are more precise than
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the Clark ones but less than those mentioned above and are, generally, of satisfactory

precision except for small choice probabilities.

The results obtained can be summarised in the following table 3.47 that reports a

qualitative judgement on the precision and the calculation time of the

approximations examined.

Approximation Accuracy Calc. Time

Generalised FOMN
Very good Medium

(heuristic optimised order)

Mendell-Elston
Very good Low

(heuristic Rice et al. order)

Mendell-Elston
Very good Low

(Kamakura order)

Extended Joe

(complete averaging)
Very good Very high

Taylor series
Medium Low

(optimised order)

Langdon
Medium Medium-low

(optimised order)

Solow-Joe
Medium Medium-low

(heuristic order)

Solow-Joe
Medium High

(complete averaging)

CrudeFOMN
Medium-low Medium

(heuristic optimised order)

Improved Clark
Low Very low

(non-optimised order)

Simple Clark
Very low Very low

(non-optimised order)

Table 3.47 - Qualitative summary ofprecision and calculation time results for the

MNP approximations examined. The methods are listed following an approximate

decreasing order of accuracy. The Mendell-Elston is the method giving the best

trade-offbetween accuracy and calculation time.
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Two issues in the application of MNP solution methods to transportation problems

have also been mentioned: the possibility that the utilities have a semidefinite

covariance matrix and the evaluation of the satisfaction function, the expected

maximum utility of a choice set. On the first subject it has been remarked that the

calculations with most approximations examined are not affected by positive

semidefinite covariance matrices and that for the numerical integration method of

Genz a solution method has been proposed in the literature. On the second subject, it

has been recalled that the satisfaction can be evaluated directly with the MNP

approximations of Clark and of Langdon, and it has been suggested that these can be

used to implement hybrid algorithms when the choice probabilities are calculated

with other methods. A further approximate method to calculate the satisfaction has

been suggested.
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4. MULTINOMIAL PROBIT STOCHASTIC USER

EQUILIBRIUM PATH-BASED TRAFFIC

ASSIGNMENT

4.1 Introduction

This chapter is concerned with the solution of the Stochastic User Equilibrium

(SUE) traffic assignment problem using two of the analytical methods for the

solution of the multinomial probit (MNP) choice model discussed in chapter 3 but

considering methods that can be employed also with other approximations or choice

models solved analytically.

The chapter opens with a brief introduction to the traffic assignment problem,

followed by a note on the specification of the path sets and a review of link-based

and path-based models and algorithms for User Equilibrium (UE), Stochastic

Network Loading (SNL) and Stochastic User Equilibrium.

The core of the chapter deals with the solution of the multinomial probit path-based

Stochastic User Equilibrium problem when the path sets are fixed at the outset of the

assignment, explicit account of both link and path flows is taken and the equivalent

program due to Sheffi and Powell (1982) is used. The efficiency of solution

algorithms with different line search methods and search directions is compared

using the multinomial probit approximations of Mendell and Elston (1974) and of

Clark (1961) in the implementation described in chapter 3 as improved Clark.

4.2 The Traffic Assignment Problem

4.2.1 Generalities

The traffic assignment problem consists of calculating the traffic pattern resulting

from the route choices made by a known population of drivers travelling between

their origins and destinations (OD) on a road network of known characteristics. As
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results from this definition and as mentioned in chapter 2, traffic assignment is an

applied choice problem.

The traffic assignment problem has been widely studied in the literature and can be

posed in several different ways depending on the theoretical framework used. The

models and the related algorithms proposed in the literature to solve it differ on

several crucial points, amongst which:

- the choice model employed;

the way routes through the network are considered;

- the set of costs used;

- whether the interaction between drivers is considered;

whether the system is modelled in a static situation representative of a period of

time or the evolution of the system during a period of time is explicitly

represented.

Following the framework set out in chapter 2, a description of traffic assignment

models as choice models should start from the specification stage (definition of the

theoretical choice framework, of the choice set and of the actual functional

specification of the model).

The models discussed here and used in practice for traffic assignment deal with route

choices within the random utility framework outlined in section 2.2. Drivers are

assumed to be utility maximising decision makers. In assignment, the choice

problem is posed in the equivalent form of disutility (cost) minimisation, rather than

in terms of utility maximisation, since the costs of travelling along alternative routes

between the same origin destination pair are considered.

The choice set is formed by paths between the origin-destination (OD) pairs in the

network. It is generally not feasible to characterise and consider in the calculations

all such paths, even only all the elementary paths, which are those without loops,
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between each OD pair. Moreover, not all the possible paths between an OD pair are

necessarily relevant choice options for the travellers. Traffic assignment models

differ on the actual sets of paths included in the choice sets and on how they are

represented. Paths can be considered in the models (and represented in the solution

algorithms) either directly, using path related data, or implicitly, using only link

data. Models of the first sort are known as path-based whilst the others are referred

to as link-based. The situations modelled on a network, like User Equilibrium and

Stochastic User Equilibrium, are defined referring directly to the paths between the

OD pairs as these are the actual choice options. However, algorithmic

considerations, including difficulties of enumerating suitable path sets and storing

and manipulating them in the computer memory, traditionally led researchers to

prefer link-based models both in research and in applications. Recently, some of the

issues related to the use of path-based models have been partially overcome and path

based models are increasingly being used.

Route disutilities or costs are derived considering the criteria on which, as it results

from empirical studies, drivers choose their routes such as, for instance, minimising

expected journey time and route length (see e.g. Ben-Akiva et al., 1984; Thomas,

1991; Ornizar and Willumsen, 1994, for lists of possible criteria). Such criteria are

taken into account using suitable quantitative descriptions that are transformed into

homogeneous units and combined into a single measure of travel disutility known as

generalised cost, which usually is a weighted sum of the most important factors only

(journey time and cost, for instance).

Route costs are commonly assumed to be additive, i.e. the cost of a route is the sum

of the costs of the links that it traverses. Also link costs are often assumed to be

separable, that is the cost on a link is a function of the traffic on that link only. The

first assumption needs to be relaxed when path-related costs are taken into account

which, except in special cases, can be done only using explicit path treatment (see

Gabriel and Bernstein, 1997). The assumption of separable link costs is relaxed

when e.g. explicit account of costs at intersections is taken, using either formulations
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of the problem able to include it or algorithmic modifications as the heuristic

diagonalisation algorithm (see e.g. Sheffi, 1985).

The specification of a particular choice model within the random utility framework

entails assumptions about how users perceive route disutilities, consistently with the

discussion on choice models in chapter 2.

Using the deterministic model implies that users make choices on the systematic

value of the route disutilities as specified by the analyst, therefore that they have

perfect information on network conditions and at the same time that the analyst has

fully accounted for all the factors affecting route choice in the generalised cost

expression.

With stochastic route choice models, drivers' decisions are modelled as made on

perceived travel costs including the random effects mentioned in section 2.2, rather

than on their systematic value only. However, different choice models will have

different abilities to capture the topology of the network and therefore different

suitability for traffic assignment, as noted in chapter 2.

The costs on the network, however defined, can be considered fixed or assumed to

vary with the traffic.

When the costs on the network are considered constant independently of the traffic

on it and the deterministic choice model is used, all the traffic between each OD pair

is assigned to one path only (the path with the minimum deterministic disutility) and

the resulting model is therefore known as "all or nothing" (AoN). Models

considering constant costs but stochastic choice split the traffic amongst a number of

paths between each OD pair and are referred to as Stochastic Network Loading

(SNL) models.
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However, considering constant network costs is not realistic, as in reality the limited

capacity of the elements of a network makes their costs vary with their usage,

causing the interaction between the choices known as congestion. In the models

considered here, this phenomenon is accounted for in the static equilibrium

framework, which entails assuming that, over the analysed period, the costs on the

network and the traffic pattern are consistent. Nevertheless, network loading models

remain important since, rather than on their own, they are used as building blocks for

the algorithms calculating the equilibrium flows.

Accounting for congestion within the static equilibrium framework implies

modelling a single representative situation of the traffic system during a

representative period of time, usually the peak hour or the peak period. Alternatively

the congestion can be accounted for following its evolution during a given time

period with dynamic models.

When the deterministic choice model is used within the static equilibrium framework

the resulting assignment model is known as User Equilibrium (UE). Stochastic

User Equilibrium (SUE) models result when a stochastic discrete choice model is

employed with the static equilibrium framework. Using different stochastic choice

models gives different traffic patterns and thus different traffic assignment models.

The User Equilibrium condition over a network is described by the first principle of

Wardrop (1952):

no user can improve his journey time by unilaterally changing route

which is equivalent to saying:

the journey times on all routes used are equal, and less than or equal to those

which would be experienced by a single vehicle on any unused route.

The definition of the SUE concept has been given by Daganzo and Sheffi (1977):

at SUE no user can improve his perceived travel cost by unilaterally

changing route.
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SUE can be seen as a generalisation of UE and, dually, UE can be seen as a

particular case of SUE.

UE models are often used on the grounds that, in practice, the networks usually

modelled are congested and in such conditions the results given by a SUE model

should be very close to those of the simpler UE one (see e.g. Sheffi and Powell,

1981), as the systematic component of the path costs prevails over the stochastic

effects. However, it can be argued that a SUE model is more flexible and, since

congestion on networks is not necessarily uniform, SUE models can deal correctly

with areas of a network with different levels of congestion, accounting mainly for

the deterministic effects where these prevail and including stochastic effects when

they are important. Thus, in general, SUE models should be preferred.

Traffic assignment models differ also on the mathematical formulation that

determines which effects can be accommodated and which solution algorithms can

be used. The traffic assignment problems considered in this thesis are analysed with

equivalent mathematical programmes, but in the literature they have also been

expressed e.g. as fixed point problems or using variational inequalities (see

respectively e.g. Daganzo, 1983, and Smith, 1979)

A discussion of the sets of paths actually accounted for in link and path-based

models in the literature is reported in the next section and is followed by a review of

models and algorithms for UE, SNL and SUE.

4.2.2 A Review of Traffic Assignment Models in the Literature

4.2.2.1 A Discussion on the Specification ofPath Sets

Before giving a survey of traffic assignment models it is interesting to consider

separately the path specification issue. As seen above, the definitions of the UE and

SUE conditions are expressed in terms of paths but it is practically infeasible, and
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very likely not useful, to enumerate all possible paths on a real network. In path

based models, path enumeration techniques are employed to obtain limited but

relevant and sufficient sets of paths. In link-based models there is often less

emphasis on the implicit rule that defines which paths are actually considered but

different models have different enumeration rules. However, both in path-based and

link-based models, the matter is equally important and delicate as the results of the

models depend on the paths considered.

Until recently, implicit representation of the paths has been preferred for both

deterministic and stochastic models. This was due to the problems brought about by

dealing directly with paths on a network of realistic size and complexity:

• the number of paths between each OD pair increases very rapidly with the size of

the network, even when only the elementary paths are considered, and their

complete enumeration is possible only on small networks. This can be seen for

instance considering the formula to obtain the maximum number of paths

between each pair of nodes as a function of the number of nodes in the network

and the number oflinks building the paths reported by Huang and Bell (1998);

• typically, many of the possible paths between an OD pair are not actually

relevant to the traffic travelling between that OD pair: if enumerating all the

possible paths were practically possible, many of the routes that would result

would probably be too involved or illogical;

• path data storage and manipulation require more computer memory and time

than link data, and large networks path data may require very large quantities of

them.

Over the last ten years much interest and research effort has been concentrated on

path-based models because of the possibility to obtain directly additional traffic data

(as e.g. path-related information, turning movements) and because of possible

computational advantages (see e.g. Jayakrishnan et al. 1994).

Moreover, the issues related to path-based algorithms listed above have become less

stringent. Techniques to enumerate a limited but relevant and sufficient number of

paths between each OD pair have been developed and tested, although research in
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this particular area is still on-going. On computer memory grounds, path-based

algorithms are nowadays employable on medium sized networks thanks to less

expensive computer RAM and to devices such as virtual memory. The practical

feasibility of these methods for algorithms designed to work on desktop computers is

shown, for instance, by the introduction of path based methods in the commercial

software SATURN (see Kupiszewska and Van Vliet, 1999).

It is worth mentioning in more detail which are the methods to explicitly enumerate

paths currently in the literature although, in some cases, it is difficult to separate

such techniques from the assignment algorithms in which they are implemented.

Path enumeration for stochastic loading is carried out prior to the loading whilst for

equilibrium traffic assignment it can be carried out before or during the assignment.

Path enumeration carried out during the assignment calculations is referred to as

column generation and consists of running a shortest path algorithm at each iteration

of the traffic assignment algorithm on the current set of generalised costs or

augmented link costs (the latter used to account for constraints as in the PFE of Bell

et al., 1997, or to account for the entropic part of the objective function as in the

Frank-Wolfe logit SUE model of Bell et al., 1993). The path thus characterised is

added to the current set of paths, if it is new, and considered by the choice model to

assign the traffic.

Several algorithms have been considered in the literature to define prior to the traffic

assignment a set of paths that is kept fixed during the assignment calculations.

Examples of this sort of algorithm are the label approach of Ben-Akiva et al. (1984)

using a simple shortest path algorithm, the essentially least cost path algorithm of

Hunt and Kornhauser (1996), the heuristics of Huang (1995) to filter the paths

resulting from a STaCH enumeration (Dial, 1971), the method of Huang and Bell

(1998) to enumerate elementary paths excluding those using nodes not visited by UE

flows (to reduce their total number), the reasonable path algorithms of Park and

Rilett (1997) that can include the heuristic of De La Barra et al. (1993), the exact k

shortest path algorithms with filtering of the results to avoid excessive overlapping

of paths (Cascetta et al., 1997), the STaCH3 rule proposed by Leurent (1997a,b) to

enhance and stabilise the STaCH rules of Dial, the algorithm for non-additive path
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costs of Scott and Bernstein (1997), the methods proposed by Dial (1996) and by

Leurent (1994, 1995, 1996b) to enumerate paths when the value oftime of the users

is a random variable, and the paths that can be obtained using a shortest path

algorithm on costs sampled from their distributions as in the assignment algorithms

ofBurrell (1968) and of Sheffi and Powell (1981).

Each of these algorithms is defined on a particular cost set: generalised cost (free

flow, randomly drawn, DE, current during an assignment) or special costs to

characterise individually different criteria that define route choice (e.g. minimum

travel time or minimum distance) as in the label approaches of Ben-Akiva et al.

(1984) and ofCascetta et al.(1997).

The variety of techniques to enumerate sets of paths suggested in the literature and

the ongoing research to test such algorithms might suggest that it is still convenient

to use link-based algorithms. However, it is important to remark that there are

differences and limitations also amongst implicit path enumeration techniques used

with well known link-based models.

Few link-based models consider all the possible paths (including those with loops)

between each Of) pair and leave it to the choice model to define which are actually

relevant: the logit models of Bell (1995) and of Akamatsu (1996) and the probit

SAM model of Maher and Hughes (1997a). The other link-based models in some

cases consider implicitly all the elementary paths (i.e. the paths without loops)

between the Of) pairs (as in Burrell-like SNL and SUE models or in link-based UE

models) whilst in other cases only subsets of the elementary paths between the OD

pairs are considered. This is the case, for instance, in the STaCH model of Dial

(1971). In particular the definition of "efficient paths" put forward by Dial (1971)

limits the set of possible paths using a rule with a behavioural meaning but is

devised to allow the algorithm to work and can be quite restrictive, as remarked by

Maher (1992).
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4.2.2.2 Link-Based Models and Algorithms for VE

Heuristic methods such as the hard speed change method, the soft speed change

method and the incremental loading method were initially used to model the VE

traffic pattern (see e.g. Thomas, 1991). Those methods were ineffective and the

exact calculation of the VE link flow pattern over a complex network became

possible after Beckmann et at. (1956) posed the VE problem as the following

mathematical program whose objective function is minimised by the VE link flows:

Xi

ZUE =L fcJu)dU
I 0

subject to:

(4.1a)

Lfrsp = «;
p

and with:

Vrs

Vrs,p

(4.1b)

(4.1c)

Xi =Lfrsp8~ Vi
rsp

(4. 1.d)

where Ci is the cost of travelling along link i which is assumed separable and

therefore depends only on the flow Xi on the same link, qrs is the flow between the

OD pair rs and !rsp is the flow along p, one of the paths between the OD pair rs.

Finally, 8rs
iP is 1 when link i is part of path p between the OD pair rs and zero

otherwise.

The solution to the program of Beckmann et at. (1956) can be efficiently found with

link-based techniques employing the Frank-Wolfe algorithm (Frank and Wolfe,

1956), also known as the convex combination algorithm, or one of its variations.

The Frank Wolfe algorithm has the basic structure of many optimisation algorithms:

it starts from a feasible set of flows and progresses towards the solution by iterations.

At each iteration the current solution is updated by moving by a suitable step length

along a descent direction given by the vector linking the current and the auxiliary
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solution. The latter is the feasible flow vector that minimises the linearisation of the

programme's objective function at the current solution point and, in the case of the

DE programme, it is the result of an All or Nothing loading on the network with the

current costs. The search vector also bounds the step length whose actual value is

found minimising the programme's objective function along the search direction.

The DE point is described by a set of unique link flows but the DE path flows are not

unique (see e.g. Sheffi, 1985; Bell and Iida, 1997).

4.2.2.3 Path-Based Models and Algorithms for DE

Path-based models for DE have been developed mainly in the last ten to fifteen years

and implement a number of different algorithms, many of which are more efficient

than the link-based Frank and Wolfe, which becomes slow near the optimum (see

e.g. Larsson and Patriksson, 1992, Sun et al., 1996).

Schittenhelm (1990) proposed the "equilization" algorithm based on the iterative

direct check of the DE conditions for all the elementary paths between each OD pair

which are enumerated by means of column generation. Larsson and Patriksson

(1992) solved for the DE flows using column generation and the disaggregate

simplicial decomposition algorithm. Their approach was further considered by Hicks

and Ham (1997) who studied its application to large networks. Jayakrishnan et a!.

(1994) and Sun et al. (1996) proposed using column generation and a gradient

projection algorithm (with different variants) for real time applications. Kupiszewska

and Van Vliet (1998, 1999) put forward a path-based improvement of the Frank

Wolfe algorithm, the Social Pressure algorithm, which is to be used in the

commercial software package SATURN (Van Vliet and Hall, 1993). Gabriel and

Bernstein (1997) considered path-based DE for the first time with non-additive path

costs (i.e. path costs that are not simply the sum ofthe costs ofthe links traversed by

the path), addressed the problem with a non-linear complementarity formulation and

put forward a solution algorithm involving column generation. Bell (Bell and Iida,

1997, pp. 99-102) noted how, knowing the set of used paths and using the result of a

link-based assignment, the most likely path flows can be obtained using a maximum

entropy formulation.
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4.2.2.4 Link-Based Models and Algorithms for SNL and SUE

Several link-based logit loading methods assuming fixed path costs and differing for

the set of paths implicitly considered have been put forward in the literature. The

best known logit loading method is due to Dial (1971) and includes only paths

complying with his algorithmically effective, but quite restrictive, definition of

"efficient paths". Efficient paths, as defined by Dial, are either those including only

links taking us further away from the origin and closer to the destination (according

to the rule named STOCHl) or, in a less restrictive definition, those including only

links taking us away from the origin (rule STOCH2). The algorithm, in a forward

pass moving away from the considered origin calculates the link "weights" which

contain all the information on upstream efficient links that are necessary for the

assignment. Traffic destined to or leaving each node is assigned in a backward pass

proportionally to the weights calculated for each efficient link entering each node.

More recently new logit link-based loading techniques have been put forward by

Bell (1995) and Akamatsu (1996) whose models consider all the paths between each

OD pair, including also those with infinite loops, and Maher and Hughes (1996b),

who proposed methods to account implicitly for paths without loops, with loops of

some order or with infinite loops.

The logit choice model is possibly the most widely used in traffic assignment

because it is convenient and simple to use and because of the availability and

efficiency of its implementations although it has been known since the 1970s (see

e.g. Florian and Fox, 1976; Sheffi and Daganzo, 1977) that it is not entirely suitable

for traffic assignment. In fact, as mentioned in chapter 2, assuming that the random

parts of the path costs are independently and identically distributed results,

respectively, in not taking account of route overlapping and in route choices made

only on absolute differences of costs thus causing biased loading.

Stochastic loading methods with logit model "extensions" proposed in the literature

are path-based and are described in the next section.

There are, however, link-based algorithms for the probit model which, although

traditionally less used than the logit, has a sound theoretical basis in the Central
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Limit Theorem (see Daganzo and Sheffi, 1977) and is suitable to model route choice

since route overlapping and non-identically distributed random parts of the path

costs are considered through the path-cost covariance matrix. In particular, when

path costs are considered additive, the variance of the cost of a path is equal to the

sum of the variances of the costs of the links that it traverses (since link costs are

assumed to be independent) and the covariance between the costs of two paths is the

sum of the variances of the costs of the common links.

As mentioned in chapter 2 the most widely used method to solve the probit model is

simulation. Probit SNL link-based simulation models have been put forward by

Burrell (1968) (in an approximate implementation), Sheffi and Powell (1981) and

Nielsen (1997), all considering implicitly all the elementary paths between each OD

pair.

These methods perform a SNL by drawing the costs of the network's links from their

distribution a number of times and each time loading the demand between each OD

pair on the resulting shortest path. The SNL is then obtained by averaging the flows

obtained over the number of draws, thus performing something similar to a crude

frequency simulation algorithm. However, such a complete SNL is not carried out

when calculating SUE, for which a "streamlined" procedure, described later in this

chapter, has been devised by Sheffi and Powell (1981).

Probit loading models using the approximation of Clark (1961), rather than

simulation, have been put forward by Daganzo and Sheffi (1977), whose model was

not included in a practical algorithm, and Maher (1992), whose SAM model can

account implicitly for paths without loops, with loops of some order or with infinite

loops.

The Stochastic Assignment Model (SAM) of Maher has been developed using the

Clark approximation to the MNP model, but it is not strictly based on it. In fact, it

can embed any approximation to the MNP able to solve the choice function and give

the value of the satisfaction function for a choice set. SAM loads the network in two

stages. In a "forward step", carried out for each origin in tum, the distribution of the

costs to reach each node in the network and the expected value of its minimum (the

satisfaction) are calculated along with the probability that the flow reaching a node
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will travel along each entering link, as it results from the distribution of the costs. In

a "backward step", for each origin in turn, the nodes are processed in an order

opposite to that followed in the forward step, moving from the one furthest away

from the origin considered, towards such origin, and the flow destined to each node

is calculated (summing the flow actually destined to the node and those leaving it

through the exit links) and loaded on the entering links according to the splits

obtained in the forward step. An important feature of the model is how it resolves

"deadlocks". These occur in the forward step when the distribution of the costs

reaching each node cannot be obtained because of cycles in the networks. Four ways

to deal with the issue have been put forward, ranging from a method eliminating all

cycles according to the technique proposed by Dial (1971) for logit loading to a

method to include infinite cycles, and are treated in detail in Hughes (1998).

Two mathematical programs to calculate SUE flows have long been established in

the literature. Fisk (1980) devised the following objective function for logit based

SUE:

1 ~

ZSUElogit =-8 LLfrsp logfrsp + L fCi(U)du
RS P I 0

(4.2a)

wherehsp is the flow on path p, belonging to the set P of paths between the OD pair

rs, 8 is the logit dispersion parameter, Xi is the flow on link i belonging to the set Iof

links of the network and c, is the separable cost on link i. This objective function is

minimised at the logit SUE point for a network and is subject to the following

constraints:

i.; 2:: 0 Vrsp

Vi

(4.2b)

(4.2c)

(4.2d)
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Modifications to (4.2) have been proposed by Bekhor and Prashker (1999) to extend

the same formulation of the SUE problem to choices modelled using the cross-nested

and the paired combinatoriallogit model.

Sheffi and Powell (1982) proposed to solve for SUE by minimising the following

objective function:

Xi

ZSUE (x) = - L fc;(u)du + LX;c;(x;)- LqrsSrJx)
I 0 I RS

(4.3)

where the symbols are as for (4.2) and qrs and Srs are respectively the total flow ad

the satisfaction between the OD pair rs. This programme, which assumes separable

and strictly increasing link costs and additive path costs, can be used with any choice

model and does not include constraints since the non-negativity of path and link

flows and the consistency between flows on the set of paths between each OD pair

and the total flow are directly satisfied at the solution.

Alternatively, the program (4.3) can be rewritten with a change of variable as a

function of the link costs:

c,

zsuAc) =L fC;l(U)du- LqrsSrs(c)
I 0 RS

(4.4)

This second version of the objective function has been used by Sheffi and Powell

(1982) and Daganzo (1982) to show that, given separable and strictly increasing cost

functions, at SUE link flows and costs are unique.

The discussion on the uniqueness of the SUE solution has been taken forward by

Bell (Bell and Iida, 1997) showing that, at SUE, also path flows are unique.
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Several link-based algorithms have been proposed for calculating the SUE point for

a network. The most used is the Method of Successive Averages (MSA) introduced

as an heuristic by Sheffi and Powell (1981) and later theoretically justified again by

Sheffi and Powell (1982) proposing their objective function. They used the MSA

both in the probit and in the logit case. Leurent (1997a,b) used the MSA along with a

modification of the loading method of Dial (1971) devised to make such logit

loading method stable in SUE calculations.

The MSA can be summarised in the following 5 steps:

1. Initialisation. Set the iteration number n to O. Obtain an initial flow pattern x(O)

(usually by carrying out a stochastic loading on the network's free flow costs).

2. Calculation of the search direction. Increment the iteration number n by 1.

Calculate the costs on the network due to the current flows and carry out a

stochastic loading on such costs. The resulting flows v'" are known as

"auxiliary" flows. The search direction is the vector y(n)_x(n) linking the current

and the auxiliary flows.

3. Calculation of the step length. Obtain the step length as 1/(1 +n).

4. Calculation of the new current flow pattern. The new current flow pattern x(n) is

obtained by moving along the search direction by the above step length.

5. Convergence check. If the convergence check is satisfied terminate the

calculation: the current flows solve the problem. Otherwise return to step 2.

The MSA is the only method suitable with simulation. In fact it converges also when

the search direction is a descent direction only on average, as is the case with a

simulation model (see Sheffi, 1985). This is relevant in particular when the

"streamlined" version of the probit SNL proposed by Sheffi and Powell (1982) is

employed. This modification of the algorithm assumes that in step 2 above a simple

all or nothing loading on the sampled shortest path between each OD pair substitutes

for the full stochastic loading of the network to generate the auxiliary solution.
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In case of loadings calculated analytically, the MSA is a convenient method of

performing the optimisation, as it is simple and does not require the direct use of the

objective function. However, the MSA is not fast to converge because it reduces the

step during the optimisation whilst in SUE there is no a priori reason for the step

length to decrease since, as the algorithm gets close to the optimum, the current and

the auxiliary solution get near to each other until they coincide. In fact, the distance

between the current and the auxiliary solution can be used to perform the

convergence check at step 5 above. This was remarked by Maher and Hughes

(1997a).

A number of more efficient algorithms, alternative to the MSA, have been proposed

in the literature. Chen and Alfa (199Ib) retained the search direction used in the

MSA algorithm but proposed to calculate the step length for the logit SUE problem

by performing a line search using the deterministic part of the Fisk (1980) objective

function. They also suggested a way to use the complete objective function but Bell

et al. (1993) pointed out that such a method may result in path flows that are not

consistent with the OD demand constraints. Akamatsu (1996) proposed a link-based

method using the Fisk objective function that can be employed only with his logit

loading method considering all the possible paths. Maher and Hughes (1996b,

1997a) used the search direction ofthe MSA but calculated the step lengths using the

Sheffi and Powell (1982) objective function both in the probit and in the logit case,

putting forward the most efficient methods in the literature. They proposed to carry

out the line search by approximating the function along the search vector as a

quadratic or as a cubic and take the optimal step as the point where the

approximating function is minimised. They noticed that line searches carried out

once only or until an improved objective function or gradient are found are more

efficient for the overall convergence than line searches refined in a subinterval to a

pre-set precision.

Maher (1998) investigated, in the logit case, the performance of algorithms using the

same line search methods but along with the unconstrained and the constrained

quasi-Newton DFP-BFGS search directions (see e.g. Scales, 1985). Although quasi

Newton methods are expected to be the most efficient optimisation techniques, in

this case they resulted less efficient than those using the MSA search direction.
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4.2.2.5 Path-Based Models and Algorithms for SNL and SUE

Several path-based techniques for stochastic network loading have been proposed in

the literature. Ben-Akiva et. at. (1984) used pre-assignment path-enumeration for a

nested-logit model of uncongested interurban route choice. De la Barra et at. (1993)

put forward a modified logit SNL model that tries to account for path overlapping.

Yai et at. (1997) considered probit loading with the GHK simulator (Borsch-Supan

and Hajivassiliou, 1993) on small sets ofroutes enumerated in advance.

A number of other path-based SNL methods have been proposed as part of SUE

models.

All the path-based SUE models in the literature use the logit model or one of its

extensions that account for path overlapping. Bell et at. (1993) proposed a variation

of the Frank and Wolfe algorithm for UE to solve the Fisk logit SUE program

enumerating the routes by means of column generation. Huang (1995) proposed a

method to calculate logit SUE using paths enumerated in advance and an algorithm

using the MSA search direction but performing line searches using the Fisk objective

function. Leurent (1996a) calculated the logit SUE with two path-based

formulations, one using the MSA technique and one using an extension to SUE of

the UE "equilization" algorithm of Schittenhelm (1990) using paths fixed prior to the

assignment. Damberg et at. (1996) considered column generation and extended the

use of the disaggregate simplicial decomposition approach already employed by

Larsson and Patriksson (1992) for UE, to solve for SUE using the Fisk objective

function. Huang and Bell (1998) proposed a SUE logit model based on the Van Vliet

(1981) formula to calculate link choice probabilities and employing the MSA to find

the equilibrium solution.

Cascetta et at. (1996, 1997) proposed the C-logit model, a modified logit SNL model

that accounts effectively for path overlapping with an added path cost that is a non

linear function of the overlapping among the paths between the same OD. The C

logit model has been introduced in section 2.3.3.7. They also solved the C-logit SUE

problem using MSA and paths enumerated in advance.
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Bell et al. (1996, 1997) developed the PFE (Path Flow Estimator) a quasi-dynamic

model for real-time use, based on the C-Iogit model. It divides the modelled time

period into "slices" in which the traffic condition is approximated with SUE

calculated with column generation and with the Fisk objective function with added

constraints accounting for available data on the network situation (such as actual link

flows). A second version of the PFE (Bell and Cassir, 1998), for the calculation of

SUE without using real time information, uses MSA and column generation.

Vovsha and Bekhor (1998) and Prashker and Bekhor (1998) adapted for traffic

assignment the cross-nested logit model of Vovsha (1997), introduced in section

2.3.3.4. In their application, the model is referred to as a link-nested logit model

since the nests are the links and the elemental options are the paths that are

enumerated in advance. They also obtained a link-based version of their model and

used it with the MSA to solve the related SUE problem.

4.3 Algorithms for Multinomial Probit Path-Based Stochastic

User Equilibrium

4.3.1 Introduction

The remaining part of this chapter is concerned with solving the multinomial probit

path-based SUE problem (MNP PB SUE) using an analytical approximation method

and considering the set of paths between each OD pair given and fixed at the

beginning of the calculations. Several algorithms, some taken from the literature and

some new in the traffic assignment context, are described and tested.

The algorithms studied have been obtained building on the work of Maher and

Hughes (1997a) for solving for SUE using the analytical SAM model.

In particular, the MNP PB SUE flow and cost patterns are calculated minimising the

objective function of Sheffi and Powell (1982):
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(4.3)

where i is one of the I links of the network, Xi is the flow on the link and clJ is the

strictly increasing and separable cost function for link i returning the travel cost on

it; qrs is the flow between rs, one of the RS OD pairs and Srs is the satisfaction, the

expectation ofthe minimum cost of travel between the OD pair rs.

The path costs have been considered additive and no path-specific costs have been

included. The assumption of separable and strictly increasing link costs allows us to

show that the solution to (4.3) is equivalent to the SUE condition on a network. In

fact, as shown by Sheffi and Powell (1982) a term of the gradient of (4.3) results:

(4.5)

which is zero only when the current and the auxiliary solutions coincide, since the

performance functions are strictly increasing, that is when the SUE conditions are

verified. The objective function (4.3) is not generally convex, as discussed by Sheffi

and Powell (1982), although it is so at the solution point. The uniqueness of its

solution has been proved by rewriting it with a change of variable in terms of link

costs (see (4.4)) and showing that the gradient of (4.4) and (4.3) vanish at the same

point but the Hessian of (4.4) is positive definite everywhere. Because of the one to

one correspondence between link flows and costs the minimum of (4.3) as well as

that of (4.4) is a global one.

While Sheffi and Powell (1982) established the uniqueness of the SUE solution in

terms of link flows and costs, Bell proved that at the SUE point also path flows are

unique (Bell and Iida, 1997).

The uniqueness of the path flows and costs, assuming a given set of paths, can also

be seen considering that, given the unique link flows and costs and a set of paths

between each origin-destination pair, the path costs are also uniquely defined, as

they are the sum of uniquely defined costs. For a given set of costs ofthe options, the

stochastic choice model used will return a unique set of choice probabilities and, as

the OD flows are fixed, they will result in a unique set ofpath flows.
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Although (4.3) does not express the problem in terms of paths it has been considered

to solve the problem with explicit consideration of the paths because it is convenient

to use and has a proven unique solution and because of the correspondence of the

solution in path and link terms.

The rest of this section is organised as follows. After discussing the methodology

and the test cases used, the algorithms already proposed in the literature and on

which this work builds are described and tested. Then the results from the two

strands of work that have been followed to try to obtain more efficient algorithms are

reported. First algorithms using alternative step calculation methods are described

and their efficiency is assessed. Then the rationale for a family of possible

alternative search directions is given. Finally, algorithms employing alternative

search directions based on the rationale illustrated are described and tested.

4.3.2 Test Methodology and Test Bed

4.3.2.1 Algorithm Test Methodology

The efficiency of the algorithms illustrated in the following sections has been tested

by applying them to calculate the SUE traffic pattern on some test networks. During

the calculations the progress of a convergence statistic has been recorded as well as

the number of iterations, the number of loadings and the time required to obtain such

progress. The algorithms have been compared on the computational cost required to

reach a pre-set level of convergence.

The convergence statistic employed has been adapted from Maher and Hughes

(1997a) to consider path flows, and is given by:

lnRMSnd =In (4.6)
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where xp and YP are respectively the current and auxiliary path flow for path p and P

is the number of paths included in the statistic which are those for which either the

current or the auxiliary solution is at least 0.1% of the relevant OD flow. Such

limitation has been introduced to avoid conditioning the convergence on paths

carrying very small amounts of the total OD flow.

The InRMSnd is the natural logarithm of a non-dimensional measure of distance

between the current and the auxiliary solution, the latter resulting from a stochastic

network loading on the current network costs. As the equilibrium is approached the

two flow patterns tend to get near to each other until they coincide when the

equilibrium is reached. Thus the measure of their distance will tend to zero and its

logarithm to -00. The logarithmic transformation is used to make the convergence

trend more evident, especially as the algorithms tend to the solution, as discussed in

Hughes (1998) and as verified for this work.

The convergence performance of an algorithm is assessed by evaluating the number

of stochastic loadings it requires to reach the solution defined by a target level of the

RMSnd statistic that here is set at 10-4, corresponding to a InRMSnd value of-9.21.

Iterations cannot be used as a reference for evaluating the computational effort since

with different algorithms they require different number of stochastic network

loadings and time, depending on the algorithms used.

The number of stochastic loadings has been chosen as the reference elementary

operation to avoid referring directly to the computational time that is computer

related and as they seems representative of the computational effort required by the

algorithms. This has been verified by comparing the time taken by different

algorithms when the time used for obtaining and writing ancillary data is eliminated.

Also when comparing algorithms with different search directions it has been verified

that the additional computational time required to obtain search directions different

from that referred to in the following as the traditional search direction (the MSA

one) is ofvery limited importance compared to the time to carry out a loading.
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Therefore the smaller the number of loadings required by an algorithm to reach a

pre-set threshold of the statistics InRMSnd, the more efficient the algorithm.

The tests have been carried out using two MNP approximation methods: the

improved Clark (1961) approximation and the Mendell-Elston (1974) approximation

with the optimised calculation order ofKamakura (1989).

4.3.2.2 Algorithm Test Bed

The algorithms investigated in this study have been tested on three networks: the

network used by Chen and Alpha (1991a), the Sioux Falls network (used e.g. in

LeBlanc, 1975; Vythoulkas, 1990) and the central Headingley network (used e.g. in

Maher et al., 1999). Their main characteristics are summarised in table 4.1.

Links Nodes Centroids Active ODs

Chen and Alpha 34 12 4 4

Sioux Falls 76 24 24 528

Headingley 188 73 29 240

Table 4.1 - Characteristics ofthe test networks. The active ODs column indicates the

number ofOD pairs between which the flow is positive.

The links on the networks have BPR performance functions (US BPR, 1964) that

can be written as:

(4.7)

where COi is the link free flow cost, cap, is referred to as the capacity of the link, Pi

and Ui are further coefficients of the function. However, the Headingley network

includes some connectors (links with fixed costs) therefore, on such network, the

application of the algorithms investigated here should be considered heuristic.
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On the network of Chen and Alpha, the set of routes fixed at the outset of the

assignment is given by the ten simple paths between each OD. The original OD

matrix has been multiplied by 0.5.

For the Sioux Falls and Headingley networks, two sets of paths have been

enumerated on each network using a simple heuristic enumeration method applied

on the free flow network costs (the costs of the links when there is no traffic on

them) and on the costs resulting from a user equilibrium assignment.

The k-shortest path heuristic employed consists of repeating a number of times (300

in the cases considered) a procedure similar to the operations required to carry out

stochastic network loading by simulation (see e.g. Sheffi, 1985): the link costs are

sampled from their distributions and the shortest path between each OD pair,

according to the sampled costs, is calculated with the algorithm of Dijkstra (1959)

and recorded. At the end of the calculations, a list of shortest paths and the number

of times they have been recorded is obtained. The n paths between each OD required

at the outset of the enumeration (here n=10) are obtained as the n most sampled

paths. Of course, if less than the required paths have been enumerated between an

OD pair, those obtained are considered. This path enumeration technique is not

intended to replicate exactly the methods used in the practical applications reviewed

above but rather to obtain in a simple way sets of paths to test the algorithms.

Table 4.2 summarises the data for the sets of routes considered for the Sioux Falls

network whilst those for Headingley are reported in table 4.3. It can be readily noted

that the use of the DE costs reduced the size of the path sets.

Name Link costs Max no. of Aver. No.

paths/OD ofpaths/OD

Sl free flow 10 2627

S2 DE 10 2009

Table 4.2 - Names and characteristics of the path sets on the Sioux Falls network

used to test the assignment algorithms.
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Name Link costs max no. of Aver. No.

paths/OD ofpaths/OD

HI free flow 10 830

H2 DE 10 545

Table 4.3 - Names and characteristics of the path sets on the Headingley network

used to test the assignment algorithms.

4.3.3 Application of Algorithms in the Literature

4.3.3.1 The Method of Successive Averages (MSA)

The simplest and most common technique to minimise program (4.3) is the Method

of Successive Averages (MSA) put forward by Sheffi and Powell (1981, 1982). It

moves by a predetermined step along the search direction determined at each

iteration as it has been detailed in section 4.2.2.4 and thus requires carrying out one

stochastic loading only at each iteration.

The search vector is limited by two feasible flow patterns, the current and the

auxiliary flows and, because of the convexity of the flow set, is always a feasible

search direction.

Sheffi and Powell (1982) noted that the MSA is the only method that can be used to

solve the SUE problem when the flows are obtained by simulation and therefore the

search direction is a descent direction only on average.

Even not using a simulation-based loading method, the MSA is a convenient method

of performing the optimisation, as it does not require the direct use and calculation

of the objective function: the SUE point can be obtained using only network

loadings.

However, when the choice model is solved analytically, alternative methods not

using a fixed step generally converge faster. This has been shown in the link-based

logit and probit case e.g. by Maher and Hughes (1997a). They remarked that this is
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also because, in the MSA, the step is reduced during the optimisation whilst in SUE

there is no reason for the step length to decrease since, as the algorithm gets close to

the optimum, the current and the auxiliary solution get near to each other until they

coincide.

Typical convergence behaviours of the MSA algorithm are shown in the figures

included in the next and the following sections: e.g. in fig. 4.3 for the Chen and

Alpha network, in fig. 4.6 for a case on the Sioux Falls network and 4.8 for a set of

paths on the Headingley network. Those figures compare the MSA with some of the

algorithms described in the next section, showing that, as found e.g. in Maher and

Hughes (1997a), the MSA is outperformed (except at the beginning of the

calculations) by other algorithms in the literature.

In fact, here the MSA is considered as a base algorithm against which to compare

alternative ones and also as it can offer advantages during the first iterations of

algorithms employing other step calculation methods, as suggested again by Maher

and Hughes (1997a), and as confirmed by the examples proposed in the figures.

4.3.3.2 Quadratic and Cubic Interpolation Methods

Maher and Hughes (1997a), in their work on the solution of SUE with the SAM

network loading model, devised a number of algorithms for optimising (4.3) using

the same search direction as the MSA (referred to in the following as the traditional

search direction) but finding the steps by minimising the objective function (4.3)

along it, rather than using a fixed step length as in the MSA. Such a minimisation of

the function along the search direction is carried out by fitting a quadratic or a cubic

function to it and taking as the estimate of the optimal step the point where the fitted

function is minimised.

A quadratic can be fitted to the objective function along the search direction using

the values of its gradient at the two extremes of the search direction (these two

points directly bracket the minimum).

Considering the search direction at iteration n, (yCn)_xCn~, a point xCII,) along it can be

written as:
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(4.8)

(this expression is valid referred to both link and path flows).The gradient of the

objective function (4.3) at X(A) along the search direction, for separable link costs

functions, can be obtained as:

dZSUE _ L OZSUE dx?)
--- ----

dA I OX(A) dA
I

(4.9)

where Xi is the flow on link i. As shown by Sheffi and Powell (1982) and reported in

(4.5):

OZSUE =(X~A) _ ~A){dCi(X)J
a (A) , y, dx

Xi X=X!A) (4.10)

where y/A) is the auxiliary solution obtained considering the costs consistent with the

flows X/A). A component of the derivative of (4.8) w.r.t. Ais:

dx(A)
zzs.: =(y~n)_x~n))

dA t I

Substituting (4.10) and (4.11) in (4.9) gives:

(4.11)

(4.12)

The value of the gradient go at the current solution x(n), and therefore at A=O, can be

obtained by substituting the current and the auxiliary solution in (4.12) respectively

for X/A) and y/A) thus using the same data employed to determine the search direction.

At the auxiliary solution s", for A=1, the gradient gl, can be obtained by considering

in (4.12) the auxiliary solution as X/A)and the flow resulting from a further loading on

the costs consistent with the auxiliary solution as y/A).

Fitting a quadratic to the objective function corresponds to fitting a linear function to

the gradient between the two extremes of the search direction. The point A* at which
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the function fitted to the gradient is zero is then taken as the estimate of the point

where the objective function is minimised, and is given by:

(4.13)

Maher and Hughes (1997a) proposed to fit a cubic to the objective function along the

search direction by using the values of the objective function Zo and Zj at the

extremes of the search vector along with the values of the gradient. This corresponds

to fitting a quadratic to the gradient. The estimate A* of the point where the objective

function is minimised is again as the point where the gradient of the fitted function is

zero, which is given by:

(4.14)

These interpolation methods can be simply applied once along the search vector, in

which case the information needed to use them requires carrying out two stochastic

loadings, one at the current solution (which is also the loading used to determine the

search direction) and one at the auxiliary solution, as also discussed above when

illustrating how to determine the gradient at the two extremes of the search direction.

Maher and Hughes (1997a) and Hughes (1998) tested also the effect of refining the

line search in subintervals chosen so that they contain the minimum. The refinement

of the line search in subintervals is carried out with the same method used in the

original interval until the newly found point corresponds to an improved gradient

(when compared to the one at the current solution) in the quadratic interpolation case

or to a smaller value of the objective function in the cubic interpolation case.

Alternatively the line search can be refined to a given precision, that is until the

improvement in the refinement of the step is under a certain threshold. Refining the

step requires carrying out a further stochastic loading each time a new subinterval is

considered.

Considering the possibility of refining the step in subintervals, the line search

methods proposed by Maher and Hughes in their work on SAM for SUE can be

summarised in the following six:
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• quadratic interpolation, simple;

• quadratic interpolation, refined in subintervals until an improved gradient IS

found;

• quadratic interpolation, refined in subintervals to a given precision;

• cubic interpolation, simple;

• cubic interpolation, refined in subintervals until an improved objective function

is found;

cubic interpolation, refined in subintervals to a given precision.

The quadratic interpolation method requires only flow data to calculate the gradients,

therefore when used with the probit model it can be used directly with any

approximation method, including those not providing the value of the satisfaction

function.

With the cubic interpolation, it is necessary to know the value of the satisfaction

function, along with the link flow data, to calculate the value of the objective

function (4.3). As seen in chapter 3, only with the method of Clark, in either of its

implementations, or with the method of Langdon can the satisfaction be calculated.

Therefore the cubic interpolation can be used directly with these approximations.

Moreover, the method used in the Langdon approximation to obtain the satisfaction

can be adapted for use with the Mendell-Elston approximation. To use the cubic

interpolation method with other approximations, one of the methods to approximate

the satisfaction suggested in chapter 3 should be used.

In the remainder of the present chapter the hybrid method suggested in chapter 3 is

used with the Mendell-Elston approximation: the path choice probabilities are

calculated with the Mendell-Elston approximation but the expected value of the

minimum of the costs is obtained with the approximation of Clark. This device has

no effect on the final solution since the algorithm switches from the cubic

interpolation method to the quadratic one as soon as the solution is in the vicinity of

the SUE solution and the result is fully consistent with the Mendell-Elston

approximation.
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Fig. 4.1 - SUE objective function and gradient (on two different scales) with the

quadratic (q) and cubic (cb) approximations to the SUE objective function and the

resulting approximated gradients along a search direction close to the start of the

optimisation (the function is approximated evaluating the satisfaction with the

method ofClark). Sioux Falls network, path set S1, Mendell-Elston approximation.

-+--gradient
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Fig. 4.2 - SUE objective function and gradient (on two different scales) with the

quadratic (q) and cubic (cb) approximations to the SUE objective function and the

resulting approximated gradients away from the start of the optimisation (the

function is approximated evaluating the satisfaction with the method of Clark).

Notice the inconsistency between the SUE objective function and its gradient. The

actual gradient and the gradient obtained by quadratic interpolation coincide. Sioux

Falls network, path set S1, Mendell-Elston approximation.

In fact, at the beginning of the optimisation, the SUE objective function is well

approximated by a cubic function (see the example in fig. 4.1). However, as the
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solution is approached, the objective function and its gradient become inconsistent,

due to the approximate evaluation of the satisfaction, as shown in fig. 4.2. Maher and

Hughes (1997a), noting this inconsistency, suggested to complete the optimisation

using gradient information only, and thus the quadratic interpolation, to ensure that

the point at which current and auxiliary solutions are identical is found (see also

Hughes, 1998).

The results ofMaher and Hughes (1997a) and Hughes (1998) showed that the rate of

convergence improves dramatically when an algorithm with an optimised line search

is used instead of the MSA. Their experiments showed clearly that algorithms with

quadratic and cubic line searches carried out once or respectively until an improved

gradient or objective function is found improve on the convergence performance of

the MSA. With the networks they used, the cubic search gave the better overall

performance and they also found that refining the line searches to a pre-set level of

precision is less efficient than moving to the next search direction after obtaining a

step giving an improved objective function or gradient, although it is generally faster

than the MSA.

The application of the algorithms of Maher and Hughes to the cases considered here

gave results similar to those in the literature.

An inspection of the convergence trends of the algorithms with one interpolation

only and refined until a better gradient or objective function is found, showed that

they coincide, both with the Clark and with the Mendell-Elston approximation,

except in some cases on the Headingley network.

In fact, the trends given by the two approximation methods on the same set of paths

are rather similar and the hybrid device for the cubic interpolation with the Mendell

Elston approximation seems to work well.
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In accordance with the results of Maher and Hughes, refining the line searches to a

pre-set level of precision gives convergence trends more efficient than the MSA but

not as efficient as with the corresponding interpolation when the step is calculated

with one interpolation only or checking for improvement. Examples of this

behaviour are provided in figure 4.3 for the Chen and Alfa network and in figure 4.4

for a set of paths enumerated on the Sioux Falls network. The behaviour on the

Headingley network is less clear: in some cases algorithms with refined step do as

well as the algorithms checking for gradient improvement but not as well as those

performing one line search only. In other cases the algorithms with refined line

search do less well than the others. An example of the results on the Headingley

network is given in fig. 4.5.

Considering all the results it seems therefore worth focussing on the algorithms not

refining the step search, consistent with what was suggested by Maher and Hughes.
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Fig. 4.3 - Comparison of the MSA, the quadratic (TRq) and the quadratic with

refined step (TRq(power of ten of the precision required)) interpolation methods.

Chen and Alpha network, Mendell-Elston approximation.
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Fig. 4.4 - Comparison of the MSA, the quadratic (TRq) and the quadratic with

refined step (TRq(power of ten of the precision required)) interpolation methods.

Sioux Falls network, path set S1, Clark approximation.
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Fig. 4.5 - Comparison of the MSA, the quadratic (TRq) and the quadratic with

refined step (TRq(power of ten of the precision required)) interpolation methods.

Headingley network, path set H2, Clark approximation.

Algorithms carrying out the quadratic line search once or until an improved

objective function is found are more efficient that the MSA. Examples of the results

obtained are reported again in figs. 4.3, 4.4 and 4.5 and also in figs. 4.6 and 4.7.

The cubic search algorithms show a similar behaviour: examples of their

convergence trends are provided in figure 4.6 for the Sioux Falls network and 4.7

and 4.8 for the Headingley network. Those figures also compare the convergence

trends of the corresponding cubic and quadratic line search methods and show that
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which is the best performing is less clear cut than in the cases examined by Maher

and Hughes. According to the results obtained here, on the Chen and Alfa and the

Sioux Falls network (see fig. 4.6) the cubic does better, whilst on the Headingley

network the quadratic method provides the most efficient convergence trend on one

set of paths (compare figs. 4.7 and 4.8).
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Fig. 4.6 - Comparison of the MSA and the quadratic (TRq) and cubic (TRcb)

interpolation methods. Sioux Falls network, path set S2, Clark approximation.
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Fig. 4.7 - Comparison ofthe MSA and the quadratic (TRq(1) one interpolation, TRq

with gradient improvement) and cubic (TRcb) interpolation methods. Headingley

network, path set Hi, Mendell-Elston approximation.
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Fig. 4.8 - Comparison ofthe MSA and the quadratic (TRq(l) one interpolation, TRq

with gradient improvement) and cubic (TRcb) interpolation methods. Headingley

network, path set H2, Clark approximation.

The data for all networks examined show that the MSA tends to be more efficient

that the optimised step methods at the start of the calculations, although after a few

iterations its convergence trend, as shown in figures 4.3 to 4.8, tends to flatten out or,

anyway, becomes less efficient than the optimised line search methods.

The initial efficiency of the MSA is due to the fact that it requires a single loading

per iteration whilst the other methods require at least two. After a number of

iterations, spending a higher computational effort in determining the step becomes

more effective whilst the MSA runs out of steam as it gives too small a step.

This behaviour was characterised also by Maher and Hughes who suggested to

obtain more efficient algorithms by using hybrid algorithms, starting with some

MSA iterations before employing optimised line search. Such hybrid algorithms

have also been tested here (a selection of results is reported in figs. 4.9, 4.10, 4.11)

and, consistently with the results of Maher and Hughes, some of them are more

efficient than those using optimised search directions from the start. Again the trends

for hybrid algorithms with step refined until an improved gradient (for the quadratic

case) or objective function is found (for the cubic case) coincide and do so also for

the Headingley network suggesting that the differences between the methods are

concentrated in the behaviour during the first iterations.
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Fig. 4.9 - Comparison of the MSA, the cubic interpolation method (TRcb), and

hybrid algorithms based on TR cb started with the number ofMSA indicated. Chen

and Alpha network, Mendell-Elston approximation.
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Fig. 4.10 - Comparison of the MSA, the cubic interpolation method (TRcb), and

hybrid algorithms based on TR cb started with the number ofMSA indicated. Sioux

Falls network, path set S1, Clark approximation.

The tests on hybrid algorithms have been carried out starting with 5, 10, 15 and 20

MSA iterations. It is difficult to suggest a generally valid best number of initial MSA

iterations, since the same number can have different effects on different networks, as

can be seen from the figures. It seems, however that in many cases few MSA

iteration (5-10) are enough to give a good improvement over the algorithms using

lines search from the start.

228



o-,-I----r----.,---~---~--_

-1 ~_.;;=:===:==:~~O
-2 +-
-3 t---br~~=--~==::::::::::::::..

-g -4 +-----\-\------=+=I~---------

~ -5 +-----&----\--k--------
0::
E -6 +------\lilC----~+---'"1~-------

-7 +------'lrr-~ ----1r_---"~~----

-8 +------\---V---\o~-----=l>6.~---

-9 +---------=~~,..__-____\"".__---~~-

-10 -'-------------"'----------

loadings

--MSA

-TRq

--5MSA+TRq

--1OMSA+TR q

-15MSA+TRq

---20MSA+TR q

Fig. 4.11 - Comparison of the MSA, the quadratic interpolation method (TRq), and

hybrid algorithms based on TR q started with the number of MSA indicated.

Headingley network, path set H2, Mendell-Elston approximation.

4.3.3.3 Conclusions

The results obtained here with the MSA and with the algorithms of Maher and

Hughes confirm, in general, those of Maher and Hughes (1997a). The MSA, widely

used to solve the SUE problem, is outperformed by algorithms using the same search

direction as the MSA (the traditional search direction) but with an optimised step.

Refining the step determination to a pre-set precision is not effective in most cases

examined and it is better to use a less expensive estimate of the step length,

interpolating only once or until a better gradient or objective function is found, and

moving to the next search direction, as in the investigations reported in Hughes

(1998).

Interpolating once or seeking a gradient or objective function improvement gave the

same results, except on the Headingley network, where results are less clear cut, and

generally not refining the step gives a better convergence behaviour.

Although generally less efficient than other methods, the MSA typically outperforms

them at the beginning of the calculations. The hybrid algorithms suggested by this

behaviour, started with some MSA iterations before turning to seek optimal steps

along the search direction, often give more efficient convergence trends, although

different number of initial MSA iterations may have a different effect on the overall

efficiency of the algorithms on different networks.
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4.3.4 Algorithms with Alternative Step Calculation Methods

4.3.4.1 Introduction

The investigation about possible alternative step calculation methods to be used with

the traditional search direction concentrated on pre-determined step methods and

alternative gradient interpolation methods since, as in the SUE case gradient

information is readily available, interval reduction methods such as the bisection

algorithm should not be of advantage.

One pre-determined step calculation method has been considered, the Method of

Weighted Averages (MWA), whose performance is evaluated in the next section.

The following sections discuss three alternative optimised step methods: the regula

falsi, the rational interpolation and the partial step quadratic methods.

4.3.4.2 The Method ofWeighed Averages (MWA)

The MSA can be modified considering a different but as simple and inexpensive

mechanism to obtain the step length. In fact, as remarked by Sheffi (1985, p.328),

the MSA is a particular case of a general algorithm whose step, at each iteration, is:

'A: ..»:
b+n

(4.15)

where a is a positive number, b a non-negative number and n is the number of the

current iteration. The coefficients a and b should be such that the sequence of steps

obtained complies with the following requirements:

(4.16)

(4.17)

where (4.16) ensures that the algorithm does not stop because of the step length and

(4.17) is a condition required in a simulation based algorithm (where the search
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direction is a random variable) to minimise the variance of the results (see Sheffi,

1985).

The MSA is obtained when a and b are set to 1, whilst if a and b take different

values the step determination rule referred to here as the Method of Weighed

Averages is obtained. The MWA name is suggested from the fact that the different

auxiliary solutions will have different weights in the final solution whilst in the MSA

case they all have the same importance.

A step calculation method of the MWA sort has also been used for the MNP

calibration problem by Sheffi et al. (1982) with a=10 and b=4.

The interest of the MWA lies in that it retains the inexpensive determination of the

step typical of the MSA (it requires carrying out one stochastic loading only at each

iteration) but could obviate its slow convergence speed.

Using a larger than b is not considered here as the resulting steps, during the first

iterations would be larger than 1, whilst it is known that the current and auxiliary

solutions bracket the minimum. Having a smaller than b may result, in early

iterations, in steps smaller than those returned by the MSA. A number of cases with

a = b are investigated. Nine different steps, and therefore nine different algorithms,

are tested by considering a and b to take each integer value between 2 and 10

included. The higher is a, the smaller is the effect of n on the step and the more the

algorithm will take new solutions close to the auxiliary solution, especially at the

beginning of the calculations. As the algorithm progresses and the step becomes

smaller, the effect on the step length of having chosen a different a=b becomes less

important, but the step remains longer than the one given by the MSA would be for

the same iteration.

The tests on the networks gave mixed results: in general the MWA converges more

efficiently than the MSA but which particular MWA performs better seems to

depend on the characteristics of the problem considered. For instance, observing

figure 4.12 it is clear that in that case (and, indeed in general on the Sioux Falls

network) the MWAs with large values of a=b like 8-10 give very good convergence
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trends, that are practically as efficient as those given by optimised line search

algorithms. MWAs with similar coefficients are also the most efficient ones on the

small Chen and Alfa network. It is also interesting to note that the convergence

trends for different MWA with large values of a=b are very close to each other.

However, as shown in fig. 4.13, on the Headingley network the best convergence

trends are obtained with smaller a=b like 2-4 and the convergence trend oscillates

noticeably. Because of this and because in the Sioux Falls case the MSA does better

at the beginning of the calculations or there is little to choose between MWA and

MSA it seems that the MWAs examined do not provide a better starting method than

the MSA for employment in hybrid algorithms of the sort suggested by Maher and

Hughes.

Thus MWAs, in general, are more efficient than the MSA and in some cases also of

optimised step algorithms but which particular MWA performs best seems to depend

on the network on which it is applied.

2
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Fig. 4.12 - Comparison of the MSA, the quadratic interpolation method (TRq), the

cubic interpolation methods (TRcb), a hybrid algorithms based on TR cb and MWA

algorithms with the coefficients indicated in brackets. Sioux Falls network, path set

S1, Clark approximation.
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Fig. 4.13 - Comparison of the MSA, the quadratic interpolation method (TRq), a

hybrid algorithm based on TR q and MWA algorithms with the coefficients indicated

in brackets. Headingley network, path set H2, Clark approximation.

4.3.4.3 The Regula Falsi Method

The regula falsi method is an alternative to using the quadratic interpolation method

of Maher and Hughes for approximating the objective function as a quadratic in the

vicinity of the current point and determining an estimate of the step length.

This method is an approximate version of the Newton line search: it uses go, the

gradient of the objective function along the search direction at the current point, and

an estimate of the second derivative ho to approximate the point Iv* where the

objective function is at a minimum (and its derivative is 0) as:

(4.18)

The reason for using an estimate of ho rather than its exact value is that calculating

the latter involves obtaining the Hessian of the objective function, which in tum

requires the calculation of the Jacobian of the path-choice probabilities (as detailed

in Sheffi, 1985, p.319 and reported in 4.3.5.2). This can be carried out in the path

based case considered here but it is rather computationally demanding, especially if

the calculations are carried out numerically. The analytical derivation procedure

suggested in chapter 6 could be applied to this case, although this is not done here.
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As with the quadratic interpolation method the estimate of the step can be refined to

make sure that an improved gradient is found at the new solution point or until the

step is determined to a given precision. The latter method is not considered as it has

already been checked that it results in algorithms that are typically less efficient than

those spending less computational effort in the step determination (this was also

confirmed for the regula falsi interpolation case by investigations not reported here).

Therefore this algorithm can be implemented as:

• regula falsi, simple;

• regula falsi, refined in subintervals until an improved gradient is found.

The estimate of ho, the second derivative of the objective function, is obtained by

calculating gr; the gradient of the objective function along the search direction at a

point close to the current solution by using a second loading at that point (in the

algorithm considered here at a distance 8 of 0.001 the length of the search direction),

and considering it along with the gradient at the current point go to obtain:

(4.19)

As the step to obtain the second derivative is fixed, this algorithm is partially a

heuristic: a precise method should determine the optimal distance for the second

derivative calculation at each iteration on the basis of the relevant error. But this has

not been considered here, as it would involve possible additional loadings, thus

undermining the efficiency of the algorithm.

Thus, if the interpolation is applied once at each iteration, it requires two loadings.

Two more loadings are required each time it is refined in a subinterval.

The trend for the algorithms performing only one iteration and those checking that

an improved gradient has been found before moving to the next search direction

coincide in both the Clark and the Mendell-Elston cases, except in some cases on the

Headingley network.
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On the Chen and Alpha network, the regula falsi is seen to be slightly more efficient

than the quadratic interpolation method in the literature at the beginning of the

assignment, as can be seen from fig. 4.14, suggesting that using information taken at

the present solution captures better the non linear trend of the objective function

gradient at the beginning of the assignment. However, there is little to choose

between the optimised step algorithms in the literature and the regula falsi on the

overall convergence trend.

Compared to the quadratic method in the literature, the regula falsi does slightly

better with one set of paths on the Sioux Falls network and slightly worse with the

other, the data for the latter being reported in figure 4.15. However, the differences

are limited, and there seems to be little to choose between the original quadratic

method and the regula falsi. The same figure shows that, on the Sioux Falls network,

the regula falsi does not reach the efficiency of the cubic interpolation method.

On the Headingley network the algorithms with step calculated once and those

obtaining it after checking that it gives an improved gradient do not coincide and the

algorithm returning the step without refining it gives a faster convergence.

Especially the latter, used from the start performs better than or as well as the

algorithms in the literature, as shown in fig. 4.17, except on one set ofpaths.

The use of a hybrid algorithm starting with a number of MSA iterations before using

the regula falsi method improves on the original algorithm, as it happens with other

interpolation methods. However, although some MSA iterations to start are

beneficial, the number to obtain the best overall efficiency seems to vary from case

to case.

This can be seen for instance from the results on the Chen and Alpha network: five

and ten MSA iterations improve the overall efficiency of the algorithm while more

make it less efficient. Also with some MSA to start there is little to choose between

the optimised step algorithms in the literature and the regula falsi, as shown again in

fig. 4.14.

The convergence trends for the Sioux Falls network, as the one reported in fig. 4.16,

show that the regula falsi does as well as the quadratic interpolation method. With a
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large number of MSA iterations to start it has a convergence trend that cannot be

distinguished from that of the cubic or of the other linear interpolation methods, but

in some cases the cubic prevails.

On the Heading1ey network, some MSA iterations to start make the algorithm with

one interpolation only and those checking on the gradient improvement coincide. In

hybrid algorithms started with more than 10 MSA iterations the regula falsi step

gives a convergence trend that is as efficient as the other methods based on the

quadratic interpolation. With less MSA iterations it gives variable results, being

sometimes less sometimes more efficient than the quadratic and cubic method in the

literature (see fig. 4.17). The use of the MSA to start improves on the efficiency of

the algorithm except in one case where the use of the algorithm without

improvement check from the start gives a very fast convergence trend (this is again

the case depicted in fig. 4.17).

Thus the regula falsi method, although it gives interesting convergence trends on the

Heading1ey network, seems to add very little to the quadratic method already in the

literature and can be proposed as a possible alternative interpolation method, but

does not deliver an improved performance.
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4.3.4.4 The Rational Interpolation Method

A further way to try to fit closely the actual trend of the objective function's gradient

during the first iterations of the calculations consists of fitting a rational function to

the gradient of the objective function along the search direction. Visual inspection of

the gradient and the rational function trends confirm their good agreement (see the

example in fig. 4.18). Moreover, as the actual gradient trend becomes linear

approaching the solution the rational function follows it, as shown in fig. 4.19.

Calculating the gradient at three points in the search interval (here at the two

extremes and at the middle point) by performing a stochastic loading at each ofthose

points the coefficients of a rational function such as:

r(A)= a+A
b-vc);

(4.20)

can be retrieved and the estimate of the step length is obtained as the zero of such

function, namely as:
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(4.21)

where go, gO.5 and gl are respectively the values of the gradient of the objective

function (4.3) at the beginning, at halflength and at the end ofthe search interval.
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Fig. 4.18 - Comparison of trend of the SUE objective function gradient along the

search direction and of its rational function approximation when the SUE algorithm

is away from the solution. Sioux Falls network, path set S2, Mendell-Elston

approximation.
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As with other optimised step algorithms, the calculations can be refined in

subintervals. Refining the step to a given precision gives convergence trends similar

to those for the line search methods suggested by Maher and Hughes (1997a) and is

not considered further. Therefore there are 2 different possible implementations of

this algorithm:

Rational, simple;

• Rational, refined in subintervals until an improved gradient is found.

In the present implementation, the refinement in subintervals is carried out using a

quadratic interpolation to limit the number of loadings at each iteration, as it requires

only one additional loading per interpolation rather than the two needed for the

rational function. Moreover, although the rational function can adapt to a linear

trend, to save on computational effort, the search in the main interval is switched to

the quadratic one described in section 4.4.3 as soon as the gradient is detected to be

almost linear. The gradient is considered almost linear when the value of gO.5 is

within 5% of the linear interpolation of the gradients at the extremes of the search

interval.

The tests on the networks suggested that the rational interpolation method can be

almost seen as a variation of the quadratic interpolation method as, except in the

Chen and Alpha network, after a few iterations with the rational interpolation the

gradient satisfies the condition above and the algorithm switches to the quadratic

method. This near linearity is consistent with the trends observed when plotting the

gradient of the objective function when an algorithm is away from the start.

The trend for the algorithms performing only one iteration and those checking that

an improved gradient has been found before moving to the next search direction

coincide in both the Clark and the Mendell-Elston cases on all networks employed.

On the Chen and Alpha network there seems to be little to choose between the

quadratic interpolation and the rational interpolation method except at the beginning,
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when it does marginally better, as it was intended. An example ofthis behaviour can

be appreciated in fig. 4.20. On the Sioux Falls network the rational interpolation

gives mixed results: its performance is approximately similar to that of the quadratic

but in some cases better, in others slightly worse. Figure 4.21 is relative to a case

when they are equivalent whilst fig. 4.23 depicts a case where it does better.

However convergence trends such as the ones reported in figs. 4.22 and 4.24, show

that this is not the case on the Headingley network.

Investigating hybrid algorithms on the Chen and Alpha network shows that starting

the rational interpolation method with 5 or 10 MSA iterations gives a more efficient

convergence trend than when it is used from the beginning. However, as can be seen

in fig. 4.20, in those cases the rational interpolation method does marginally worse

than the quadratic method of Maher and Hughes (due to the extra loading needed to

obtain the step).

Hybrid algorithms typically Improve the efficiency of the rational interpolation

algorithm applied to the Sioux Falls and the Headingley network as well. Figs. 4.22

and 4.23 show such an improvement but also that, in most cases, there is little to

choose between the quadratic interpolation and the rational one when they are used

within hybrid algorithms. Altogether is seems that the intended better gradient

interpolation to be obtained with the rational interpolation is not effective in

improving on the quadratic convergence trend.

Thus, although the rational interpolation method can be proposed as a method

alternative to those in the literature, it does not deliver any general efficiency

improvement on those and in some cases it does worse that them.
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(4.22)

which for ~=l reduces to (4.14). Values of ~ of 0.33 and 0.50 have been used in the

tests performed.

In the algorithm actually implemented, if the line search returns a point out of the

present search vector such a solution is discarded and a quadratic search using the

gradient at the present and at the auxiliary solution is carried out instead.

As with the other optimised line search algorithms, the step can be refined in

subintervals chosen to contain the minimum, by using the gradients at the extremes

of such intervals.

Algorithms refining the search until a given precision is met are not considered as it

has already been ascertained that limiting the effort to characterise the step sizes

gives more efficient trends. Thus, two types of line search methods result, depending

on whether the gradient improvement is checked:

• Partial step quadratic simple;

• Partial step quadratic refined in subintervals until an improved gradient is found.

The first type of algorithm requires only two loadings per iteration. The second type

requires one additional loading each time the step is refined in a subinterval, except

if the subinterval is bracketed for the first time also by the auxiliary solution, when

two additional loadings are needed (one at the point resulting from the previous

interpolation and one at the auxiliary solution).

In general the numerical tests showed that the partial step quadratic methods perform

better than the MSA and in some cases significantly better than the cubic and

quadratic interpolation algorithms in the literature, but this improvement is not

consistent across the tests investigated.
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The trend for the algorithms performing only one iteration and those checking that

an improved gradient has been found before moving to the next search direction

coincide in both the Clark and the Mendell-Elston cases, except in a few cases on the

Headingley network. The latter network, once more, gives different and less clear

cut results than those obtained on the Chen and Alpha and the Sioux Falls network.

The tests on the Chen and Alpha network suggest that there is little to choose

between different ps. In particular, observing data such as those depicted in figure

4.25, it seems that the algorithms using either intermediate point do as well as the

cubic interpolation method at the beginning of the assignment but there is little to

choose between the cubic interpolation and partial step quadratic interpolation as the

solution gets close. It is however interesting to note that they perform better than the

original quadratic interpolation method.

On the Sioux Falls network the partial step quadratic methods do as well or better

than the original quadratic method at the beginning of the assignment. Altogether, on

one set of paths both partial steps improve on the original quadratic method (though

not outperforming the cubic interpolation method) but on the other set of paths only

the partial step 0.5 improves or does as well as the original quadratic method (see

fig. 4.26) whilst the other does as well or worse than the original quadratic step

method (depending on the approximation used).

On the Headingley network the results given by the two different partial step lengths

are mixed. Fig. 4.29 reports a case in which the partial step 0.33 does better than the

other and of the quadratic. But in other cases they are less efficient than the quadratic

methods.

From these results it is not possible to characterise the best intermediate point at

which it is better taking the gradient information, although considering only the

Chen and Alpha and Sioux Falls cases using 0.5 should be better.

Employing the partial step quadratic methods in hybrid algorithms (started with a

number of MSA iterations before determining the step by interpolation) on the Chen

and Alpha network, improves the overall efficiency of the algorithms when 5 or 10
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MSA iterations are used but it worsens it if more MSA iterations are used (a set of

results showing this is reported in figure 4.28). Moreover, when hybrid algorithms

are considered there is little to choose between the quadratic interpolation method of

Maher and Hughes and those using a partial step started with the same number of

MSA iterations.

On the Sioux Falls network, when the algorithm is started with some MSA iterations

there is, as well, little to choose between the two partial step quadratic methods and

the original quadratic method and with few MSA iterations they are all outperformed

by the cubic method, as can be seen in the example reported in fig. 4.29.

On the Headingley network, the device of starting the algorithms with some MSA

steps improves on the efficiency of the original algorithms, and in some cases started

with 5 and 10 MSA iterations the partial step quadratic methods do better than both

the corresponding cubic and quadratic method in the literature (one of these cases is

reported in fig. 4.30). When more than 10 MSA iterations are used to start the

algorithms the convergence trends due to different optimised steps practically

coincide.

Although designed to capture the non-linear trend ofthe gradient at the beginning of

the optimisation, the partial step method does not outperform consistently the

methods in the literature when applied directly, and there is often little to choose

between them and the original quadratic method when the calculations are started

with a number of MSA iterations, which is not surprising since, close to the solution,

the gradient tends to have a linear trend. Therefore, with the results obtained here,

the partial step quadratic methods do not seem to add much to the efficiency of the

quadratic method in the literature.

247



0
15 20 25 30 35 40

-2

-4 --MSA i
""C -e-TRqc
(J)

-6 ---er- TR cb::2:
0::
E: ---*-TRq03

-8 _TRq05

-10

-12

loadings

Fig. 4.25 - Comparison of the MSA and algorithms using the quadratic (TRq), the

cubic (TRcb), the quadratic partial step /3=0.33 (TRq03) and the quadratic partial

step /3=0.5 (TRq05) interpolations. Chen and Alpha network, Clark approximation.

1
0

-1 ==--40 60 80 100 120

-2 --MSA
""C -3 -e-TRqc

-4(J)
--TRcb::2:

0:: -5
E: -6

-TRq03

-7
-TRq05

-8

-9

-10

loadings

Fig. 4.26 - Comparison of the MSA and algorithms using the quadratic (TRq), the

cubic (TRcb), the quadratic partial step /3=0.33 (TRq03) and the quadratic partial

step /3=0.5 (TRq05) interpolations. Sioux Falls network, paths set S2. Mendell

Elston approximation.

248



o I

-2 ~
20 40 60 80 100

-4
""C

--MSA
c

C/)
-6

-TRq
::2:
0:: --.-- TRq03
..5

-8 -TRq05

-10

-12

loadings
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quadratic partial step [3=0.33 (TRq03) and the quadratic partial step [3=0.5 (TRq05)

interpolations. Headingley network, path set H2, Clark approximation.
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Fig. 4.28 - Comparison of the MSA an algorithm using the quadratic partial step

[3=0.5 (TRq05) interpolation and hybrid algorithms based onTRq05 started with the

number ofMSA iterations indicated. Chen and Alpha network, Clark approximation.
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13=0.33 (TRq03) and the quadratic partial step 13=0.5 (TRq05) interpolations. Sioux

Falls network, path set S1, Clark approximation.
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Fig. 4.30 - Comparison of the MSA and hybrid algorithms starting with 10 MSA

iterations before using the quadratic (TRq), the cubic (TRcb), the quadratic partial

step 13=0.33 (TRq03) and the quadratic partial step 13=0.5 (TRq05) interpolations.

Headingley network, paths set H1, Mendell-Elston approximation.
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4.3.4.6 Conclusions

The Method of Weighted Averages gives convergence trends that are in all cases

more efficient than those of the MSA and, in some cases, outperform the algorithms

optimising the step along the search direction although not their hybrid versions. The

tests on the Headingley network gave, as with other step calculation methods, results

that are not in accordance with those on the other networks. In particular they

suggest the possibility of important oscillations of the convergence trend and

characterise different MWA as the best performing ones. The MWA with a low

value for the coefficient a=b seems, however, to present small oscillations and

improve on the MSA in all the cases examined although not necessarily on the

algorithms optimising the step, and can be suggested as a valid alternative to the

MSA.

The tests on the three interpolation methods considered allow us to discard the

rational interpolation method as it does only as well or worse than the methods in the

literature.

The regula falsi and the partial step methods can be used as alternatives to the

interpolation methods in the literature but do not bring substantial and consistent

improvements over those.

The regula falsi seems to perform well on the Headingley network, where also the

quadratic method does well, but there seems to be little to choose between the

original quadratic method and the regula falsi on the other networks. The inclusion

in hybrid algorithms results in a similar situation.

The partial step quadratic methods give satisfactory results but, agam, do not

improve consistently on the methods in the literature, also when started with some

MSA iterations. Moreover, the tests on the Chen and Alpha and Sioux Falls network

suggest that a partial step of 0.5 could be the best choice but those obtained on the

Headingley network are less clear.
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4.3.5 Algorithms with Alternative Search Directions

4.3.5.1 Introduction

An alternative way to try to develop efficient SUE algorithms is to use search

directions different from the traditional one, used in the MSA.

The alternative search directions proposed and tested in the following sections have

been devised interpreting the traditional search direction as steepest descent

direction for a preconditioned problem. For clarity, before describing the new search

directions proposed, the subject of preconditioning is briefly introduced and the

proposed interpretation of the traditional search direction is explained.

4.3.5.2 Preconditioning Optimisation Problems

Preconditioning is a technique used in optimising quadratic and non-quadratic

functions to improve the behaviour of the solution algorithms. It corresponds to a

change of coordinates aimed at reducing the condition number of the Hessian of a

quadratic objective function or of the Hessian of the local quadratic approximation

when non-quadratic functions are optimised (see e.g. Gill et al., 1981, or

Shewchuck, 1994, on which much of the following discussion on preconditioning is

based).

The condition number of a matrix is the ratio between the magnitudes of the largest

and the smallest of its eigenvalues. It gives summary information about the shape of

the function, if this is a quadratic, or of its local quadratic approximation, and, more

importantly, about the likely efficiency of solution algorithms.

Taking the case of a scalar quadratic function that can be written as:

(4.23)

a Hessian matrix A with condition number equal to one implies that all the

eigenvalues are equal and that the function is an hypersphere. In this case a steepest

descent algorithm (with precise line search) would find the solution in one iteration.
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The more distant is the condition number from one, the more the function is different

from an hypersphere (and, in two dimensions, the contour lines look like ellipses

rather than circles) and, consequently, the more difficult it is for an algorithm

employing the steepest descent direction to locate the minimum. In fact, when the

condition number is large, a steepest descent algorithm will be subject to a large

amount of zigzagging unless it is started along one of the eigenvectors of the Hessian

matrix and is used together with a precise line search. The difficulty of solving a

problem as a function ofthe condition number of the Hessian matrix is discussed e.g.

in Scales (1985) and Shewchuck (1994).

Preconditioning the problem (4.23) consists of applying a change of coordinates so

that the condition number of the Hessian matrix in the transformed space is as small

as possible and, when feasible, as close as possible to one.

Assuming that a positive definite matrix P is defined as a preconditioning matrix, the

transformation of coordinates is obtained by writing Pas:

(4.24)

by Cholesky decomposition.

Q defines the change of coordinates that, writing the entities in the transformed

space with a dash and those in the original space without, is characterised by the

transformation:

x'=Qx

and by the inverse transformation:

In the transformed space the gradient ofthe function (4.23) results in:

, dx o'g =-g= g
dx'

and differentiating once more yields:

(4.25)

(4.26)

(4.27)
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(4.28)

If the eigenvalues of the matrix A' are clustered and give a smaller condition number

than those of A, the problem in the modified space is simpler to solve, for the same

algorithm, than in the original space.

The choice of a good preconditioning matrix is crucial to the simplification of the

problem. Ideally, the preconditioning matrix should be the Hessian of the problem,

so that a preconditioned Hessian with condition number one will result. In practical

problems the diagonal of the Hessian or an approximation to it are often used as they

are typically easier to obtain and work with.

When a quadratic function is preconditioned, the preconditioning matrix is constant,

as is the Hessian of the function. In the case of non-quadratic functions solved

considering them as locally quadratic, the preconditioning applies to the Hessian of

the local approximation. Therefore, in the non-quadratic case both the approximated

quadratic function and the preconditioner change at each iteration, but the advantage

resulting from trying to solve the relevant optimisation problem with this

modification is typically retained as the behaviour of the local quadratic

approximation to the function is improved, making the problem locally simpler to

solve.

4.3.5.3 An Interpretation of the Traditional Search Direction

The search direction used in the MSA and in the other algorithms tested in the

previous sections is referred to, here, as the traditional search direction. It is not the

steepest descent search direction for (4.3): this, in fact, would be the vector with

components (4.5). However, as shown by Sheffi and Powell (1982) it is always a

descent direction and its modulus reduces to zero when the solution is reached.

Sheffi (1985) noted that the vector linking the current and the auxiliary solution can

be read as the steepest descent vector for the program (4.4). However, that is correct

when optimising the objective function in terms of costs as in one of the MSA

algorithms proposed by Cantarella (1997) rather than, as in the case proposed by
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Sheffi (1985), solving the program (4.3) that is the SUE equivalent program in terms

of flows.

The traditional search direction for the SUE problem seems to be particularly

effective. Even when compared with constrained and unconstrained quasi-Newton

search directions based on the function (4.3), that are theoretically known to give

good results, it is still the most efficient (Maher, 1998).

The efficiency of the traditional search direction for the SUE problem can be

justified if it is seen as an approximate Newton search direction in which the actual

Hessian of the local approximation to the objective function is approximated by the

Jacobian of the link costs. Equivalently, but in operative terms more interestingly,

the traditional search direction can be interpreted as a preconditioned steepest

descent direction for the objective function (4.3) where the preconditioner is the

Jacobian of the link cost functions, which, having assumed separable and increasing

link costs, is diagonal and positive definite.

This interpretation can be explained by building on the discussion on

preconditioning in Gill et al. (1981) and in Tronrud (1982) and considering that

preconditioning with I n, the Jacobian of the link cost function at iteration n, is

1

equivalent to introducing a change of coordinates defined by the matrix J n"2 • Having

assumed that the link costs are separable and increasing, their Jacobian is diagonal

and positive definite and its inverse I n-
1 exists. Writing the entities in the original

space without dash and the entities in the preconditioned space with a dash, the

preconditioning of the (local approximation to) the Hessian matrix with the matrix I n

is equivalent to writing:

1

X' =J "2xn n n
(4.29)

(4.30)
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! !
H' =J -"2H J -"2

n n n n

The inverse transformations are:

!

x =J -"2x'n n n

! !

H =J "2H' J"2n n n n

(4.31)

(4.32)

(4.33)

(4.34)

An iteration of an algorithm in the transformed space can be written expressing the

next solution x'n+1 as the sum ofthe present solution x'n and of the search vector d'n

multiplied by the step length An:

X' -X' +'\ d'n+! - n fl.,n n

Substituting (4.29) in (4.35) yields:

! !

J n2Xn+! =J n2x n +And~

!

and multiplying by J n 2 gives:

!

x n+! =X n + AnJ n-2d~

(4.35)

(4.36)

(4.37)

Assuming that the search direction in the transformed space is the steepest descent

direction, that is taking:

!

d' =-g' =-J -2gn n n n

and substituting it in (4.37) gives:

(4.38)

(4.39)

Thus, rewriting the algorithm working along the steepest descent direction in the

modified space as a function of entities of the original space the search direction is:
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d -_J-1
n - n gn

The gradient of the SUE function (4.3) is:

which, substituted in (4.40), gives:

(4.40)

(4.41)

(4.42)

which is the traditional search direction for SUE in the original space of the flows.

The Hessian matrix of the SUE objective function (4.3), given by Sheffi and Powell

(1982), is:

ifi=j

(4.43)

ifi;r=j

The actual effectiveness of the Jacobian ofthe link costs, which, as can be seen from

(4.43), is a component of the diagonal of the Hessian of the SUE objective function,

as a preconditioner for the SUE problem has been investigated verifying numerically

the evolution of the condition number of the Hessian of the SUE objective function

and of its preconditioned version with the iterations of a SUE algorithm using the

traditional search direction.

Table 4.4 reports such condition numbers for an assignment on the Chen and Alpha

network and table 4.5 for an assignment on the Sioux Falls network with the set of

paths referred to in table 4.2 as S2. The path choice probabilities have been

calculated with the Mendell-Elston approximation and their derivatives have been

obtained numerically with the method ofRidders (see Press et al., 1992).

257



Iteration c.no. of c.no. of local

Hessian precond.

Hessian

1 * *
2 * *
3 3.350. 104 10.481

4 2.087.104 6.440

5 1.632· 104 4.923

6 1.487· 104 4.551

7 1.410. 104 4.333

8 1.376. 104 4.251

9 1.354. 104 4.194

10 1.344.104 4.169

11 1.340.104 4.149

12 1.355 . 104 4.145

13 1.333 . 104 4.146

14 1.333 . 104 4.146

Table 4.4 - Condition number (c.no.) of the Hessian of the SUE problem and of the

locally preconditioned Hessian at each iteration of an assignment carried out with

the traditional search direction on Chen and Alpha network, ME approximation. The

* indicate the cases in which the Hessian is not definite.

In both cases it is evident the difference of the condition numbers between the two

cases at each iteration. The condition number of the actual objective function, which

would control the convergence of a steepest descent algorithm and influence the rate

of convergence of algorithms as those explored in Maher (1998), remains large

throughout the optimisation process. The condition number of the preconditioned

objective function, for the sample of cases tested, is small compared to the other.

This may explain the ability of the traditional search direction to solve efficiently

SUE problems.
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Itn. c.no. of c.no. of local

Hessian precond.

Hessian

I * *
2 5.620.105 196.81

3 5.727.105 38.526

4 1.428. 105 14.181

5 1.108.105 11.631

6 8.023 . 104 9.859

7 7.185 . 104 9.243

8 6.543 . 104 8.757

9 6.275.104 8.541

10 6.060.104 8.408

11 5.960. 104 8.367

12 5.906.104 8.344

13 5.870.104 8.301

14 5.862. 104 8.305

15 5.860 . 104 8.273

Itn. c.no. of c.no. oflocal

Hessian precond.

Hessian

16 5.860.104 8.273

17 5.876.104 8.258

18 5.875· 104 8.259

19 5.875 . 104 8.257

20 5.892. 104 8.257

21 5.892.104 8.258

22 5.873 . 104 8.256

23 5.890. 104 8.254

24 5.890.104 8.260

25 5.890. 104 8.259

26 5.890. 104 8.259

27 5.890. 104 8.259

28 5.890.104 8.259

29 5.890 . 104 8.259

Table 4.5 - Condition number (c.no.) ofthe Hessian ofthe SUE problem and of the

locally preconditioned Hessian at each iteration (itn.) ofan assignment carried out

with the traditional search direction on the Sioux Falls network, path set S2, ME

approximation. The * indicate the cases in which the Hessian is not definite.

The data used to obtain tables 4.4. and 4.5 also show that the Hessian matrix of the

problem has, at the beginning of the solution, some negative eigenvalues and is

therefore not definite. This could be expected from the analysis of the Hessian

carried out by Sheffi and Powell (1982) who pointed out that, although the Hessian

is positive definite at the optimum, its sign is not generally known since the sign of

one component of the Hessian matrix depends on the difference between the current

and the auxiliary flows.

The full significance of this result and its effect on the algorithms should be

investigated further.
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However, the effectiveness of the traditional search direction for SUE and its

interpretation as a preconditioned steepest descent direction suggest the use of

algorithms known to improve on the steepest descent direction and working in the

same local change of coordinates.

Different sorts of search directions may be considered as e.g. conjugate gradient

search directions, quasi-Newton search directions and limited memory quasi-Newton

search directions (see Scales, 1985; Gill et al., 1981). All these methods, on a

quadratic function, build conjugate search directions (the latter method in an

approximate way) using different mechanisms.

In this thesis preconditioned conjugate gradient search directions are considered as

they allow us to work with vectors of link flows rather than matrices which is

generally simpler and make them suitable also for large problems. Moreover they

allow us to follow the evolution of the current solution both in terms of path and link

flows as, for a fixed set of paths, the search direction can be calculated equivalently

in either ways and the same optimal step applies.

The next section gives an introduction to conjugate gradient algorithms in general

and to the actual algorithms used.

4.3.5.4 Preconditioned Conjugate Gradient Search Directions

On a general function, a steepest descent algorithm works along successive

directions that are, by definition, orthogonal to each other and therefore may explore

directions along which it has already worked at previous iterations. This results in

the characteristic zigzagging behaviour it shows at any point of the solution and in

the fact that also for quadratic functions the number of iterations necessary to reach

the solution cannot be guaranteed unless the algorithm works along eigenvectors of

the quadratic function being minimised, in which case it should be expected to

converge in a number of iterations equal to the dimension of the problem. Moreover

the steepest descent algorithm does not use information on the shape of the function

obtained in previous iterations.

260



A conjugate gradient algorithm is known to improve on a steepest descent one (see

e.g. Scales, 1985). In the case of a quadratic function, a conjugate gradient algorithm

works iteratively along directions that are conjugate to the Hessian of the function.

The conjugate gradient directions are obtained at each iteration simply as a

combination of the present gradient and of the previous search directions (the

Hessian is not used directly). Such previous directions are linearly independent,

therefore once the minimisation along a direction is performed, the gradient during

the following iterations will remain orthogonal to that direction. Since a point in the

n dimensional space can be reached by a suitable linear combination of at most n

linearly independent vectors, in theory and with precise line searches, the optimum

of a quadratic problem of dimension n can be found in n iterations.

The general iteration of a conjugate gradient algorithm can be written as that of any

other iterative algorithm:

(4.44)

where Xn+l is the solution obtained after the present iteration by moving from the

current solution x, along the conjugate gradient direction d, of a step length An.

The conjugate gradient search direction is:

(4.45)

where dn-l is the previous search direction that is combined with the present gradient

gn according to the coefficient Yn. The search direction at the first iteration (or when

the algorithm is restarted) is simply the steepest descent direction:

(4.46)

The coefficient Yn can be obtained according to different formulae that characterise

the different conjugate gradient methods. Two of the possible formulae generally

proposed in the literature are the formula ofFletcher and Reeves (1964):
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(4.47)

and the formula ofPolak and Ribiere (1969):

(4.48)

The two fonnulae are equivalent in the case of a quadratic function but are not so

when the conjugate gradient algorithm is applied to a non-quadratic function.

In fact, with a non-quadratic function the conjugacy of the search directions IS

referred to the variable Hessian of the local quadratic approximation to the objective

function. This, potentially, reduces the efficiency of the algorithms (the more

variable is the Hessian, the less the algorithms have the local properties they show

with quadratic functions) and may introduce problems. For instance, as mentioned

by Scales (1985), the search direction resulting from (4.47) might become

orthogonal to the local gradient in which case the ¥n of Fletcher and Reeves would

combine such search direction to the local gradient whilst the method of Polak and

Ribiere would yield a ¥n equal to zero thus restarting the algorithm and preventing it

from possibly getting stuck.

The Fletcher-Reeves method is tested here knowing that it might not be entirely

suitable for non-quadratic functions. The Polak-Ribiere formula should give better

results and is used with a modification suggested in the relevant literature to ensure

its convergence for non-quadratic functions: if the coefficient ¥n is not positive it is

taken as zero, that is the algorithm is restarted. Other restarting techniques such as

restarting the algorithm periodically (for instance, each time a number of iterations

multiple of the dimension of the problem is reached) are not considered here.

Since the aim is to improve on the traditional search direction for solving the SUE

problem that has been interpreted as a steepest descent direction in a modified space,

conjugate gradient algorithms in a similarly preconditioned space are considered.
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As in the previous section, the preconditioning matrix is I n, the Jacobian of the

increasing and separable link costs at iteration n, and the matrix defining the change

1

of coordinates is J n"2, the diagonal matrix with the ith diagonal entry equal to

~dcJXJ from the flows x at iteration n. The transformation of coordinates defined
dx,

by this matrix has been given in formula (4.29) and the inverse transformation in

formula (4.32). The resulting relationships between the gradient in the original and

in the transformed space are given by (4.30) and (4.33) and the corresponding

Hessian transformations are given by (4.31) and (4.34).

The formulae of the preconditioned conjugate gradient algorithms in the transformed

space can be written as:

, , 'I d'x n+1 =x n + I\,n n

d ' , 'd'n =-gn + Yn n-l

with Y: given by:

in the Fletcher-Reeves case, and by:

in the Polak-Ribiere case.

(4.49)

(4.50)

(4.51)

(4.52)

Substituting the transformations (4.29) and (4.30) in the above formulae allows us to

write the preconditioned conjugate gradient algorithm as a function of entities of the

original space and, ultimately, to write an algorithm that works in the original space.

These transformations have been suggested by the discussion on preconditioning in

Gill et al. (1981) and by the work of Tronrud (1992), who used the Fletcher-Reeves

algorithm and analogous transformations for an optimisation problem with a large

number of variables in macromolecular crystallography.
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The (4.49) can be readily rewritten in the original space assuming that, consistent

with (4.32):

1

d' =J 2"dn n n

which, substituted along with (4.32) in (4.49), gives:

1 1 1

I n "2 x n+1 =In"2x n +A n J n"2d n

(4.53)

(4.54)

1

and, multiplying by J n -"2 , the iteration of the algorithm is rewritten in the original

space:

(4.55)

Considering (4.30), the formula (4.50), giving the search direction in the transformed

space, can also be rewritten as:

1
d' J -- , d'

n =- n 2gn +Y n n-I

1

which, multiplying by J n -"2 , yields:

1 1 1 1

J n -"2d: =-J n -"2J n -"2g n +y:J n -"2d:_1

Recalling (4.53), this can be rewritten as:

(4.56)

(4.57)

(4.58)

which gives the search direction expressed as a function of vectors in the original

space except for the coefficient Y:+I that can be also written in the original space

applying the same transformations. For the Fletcher and Reeves formula this results

Ill:
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(4.59)

whilst for the Polak-Ribiere method it results:

(4.60)

Thus formulae (4.55), (4.58) and one of the (4.59), (4.60), allow us to use a

preconditioned conjugate gradient algorithm working in the original space of the link

flows on the network.

It is interesting to notice that although the Yn must be calculated using quantities

referred to the links, the search directions can be expressed either in terms of link

flows or path flows (for a predefined and fixed link-path incidence matrix), thus the

algorithm can produce updates of the solution both in terms of path and link flows.

However, the algorithms used here to account for path and link flows can be used

also for pure link-based models.

To ensure the conjugacy of the search directions, conjugate gradient algorithms

should be implemented with precise line search. This is valid also when non

quadratic functions are optimised. However, the two preconditioned conjugate

gradient algorithms described above have been tested not only with precise line

searches carried out with the quadratic interpolation method but also using line

searches refined until an improved gradient or objective function is found and

algorithms performing one line search only at each iteration similarly to the cases

discussed for the traditional search direction. Using unrefined line searches may

introduce a further element of approximation to the conjugacy of the search

direction, adding to the effect of solving non-quadratic functions with a method

ideally for quadratic functions, but it is included to save on overall computational

effort. Moreover, as a safety device, the dot product of the gradient and of the new
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direction is calculated at each iteration and, if it is not negative, the preconditioned

conjugate gradient direction is discarded and restarted.

From the point of view of the practical application of the algorithms it should be

noted that links with possible zero flows will give a zero contribution to the Jacobian

of the link costs thus giving problems with the application of the method. Using a

fixed set of paths, however, allows us to exclude from the optimisation the links not

traversed by any paths (but this is not necessary in the cases examined). Moreover,

using a stochastic choice model, the flows on all paths should be greater than zero

and thus should be the flows on all links traversed by at least one path. It should be

recalled that the application of these algorithms to the Headingley network is

heuristic as this network contains connectors that have been excluded from the

calculations ofy'n-

4.3.5.5 Application of the Precise Preconditioned Fletcher-Reeves and Polak

Ribiere Search Directions

Numerical tests applying the precise Fletcher-Reeves (ppFR) and Polak-Ribiere

(PpPR) search directions have been carried out using the quadratic line search

introduced in section 4.3.3.2. The results confirm that algorithms using such search

directions explore the solution space of the problem examined better than the

corresponding ones using the traditional search direction as a smaller number of

iterations is required to reach the same convergence threshold. Figures 4.31, 4.32

and 4.33 report examples of the convergence trends obtained and show that, either

the convergence trends of the ppFR and ppPR practically coincide or there is little to

choose between the two especially in comparison with the traditional search

direction.

Looking at the number of equivalent loadings necessary to reach the same

convergence threshold, which give a more correct indication of the computational

effort, the Fletcher-Reeves and the Polak-Ribiere search directions with precise steps

calculation are still more efficient than the corresponding algorithms working along

the traditional search direction and refined to the same precision.
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The actual number of loadings employed by the algorithms refining the steps to a

given precision depends on such precision, but looking at steps refined to 10-3
, these

algorithms result in some cases as efficient or even more efficient than algorithms

that do not refine the step determination along the traditional search direction.

The results are different on different networks, as shown in the examples reported in

figures 4.34, 4.35 and 4.36.

On the simpler Chen and Alpha network not refining the step along the traditional

search direction is clearly the best strategy amongst those compared, both overall

and at the start of the calculations. On the Sioux Falls network the new algorithms

improve on some of those examined in the previous parts of this chapter but often

cannot outperform hybrid algorithms starting with a number of MSA iterations.

Moreover the precise step ppFR and ppPR algorithms do not improve on the others

at the beginning ofthe assignment, as shown in figure 4.35.

On the Headingley network in many cases the ppFR and ppPR algorithms improve

on both the algorithms working along the traditional search direction with non

refined line search used from the beginning and hybrid algorithms. Moreover, the

ppFR and ppPR algorithms typically improve on the convergence trend of the others

from the beginning.

The results on the efficiency in terms of loadings, although giving indications not

consistent across the networks, suggest that the precise preconditioned conjugate

gradient algorithms could be, at least in some cases, an efficient method to solve the

SUE problem and encourage an attempt to look into alternative ways of

implementing them such as those explored in the next sections.
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Fig. 4.31 - Comparison of the convergence trend for algorithms using different

search directions (TR: traditional; ppFR: precise preconditioned Fletcher Reeves,

ppPR: precise preconditioned Polak Ribiere) and step determined to a precision of

10-3. Chen and Alpha network, Mendell-Elston approximation.
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Fig. 4.32 - Comparison of the convergence trend for algorithms using different

search directions (TR: traditional; ppFR: precise preconditioned Fletcher Reeves,

ppPR: precise preconditioned Polak Ribiere) and step determined to a precision of

10-3 on the Sioux Falls network, path set S2, Mendell-Elston approximation.
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I 0-3 on the Headingley network, path set HI, Clark approximation.

2

0
60 80 100

-2
l-pTR

"0
c -4 , -ppFR(f)

~ -e-ppPR0:: -6.s -TR+q05
-8

-10

-12 I

loadings

Fig. 4.34 - Comparison of the convergence trend of algorithms using different

search directions (TR: traditional; ppFR: precise preconditioned Fletcher Reeves,

ppPR: precise preconditioned Polak Ribiere) and step determined to a precision of

IO-3 and of an algorithm working along the traditional search direction and

calculating the step with the partial step quadratic interpolation method (TR q05).

Chen and Alpha network, Mendell-Elston approximation.
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Fig. 4.36 - Comparison of the convergence trend of algorithms using different

search directions (TR: traditional; ppFR: precise preconditioned Fletcher Reeves,

ppPR: precise preconditioned Polak Ribiere) and step determined to a precision of

10-3 (prefix p), an algorithm working along the traditional search direction and

using the quadratic (TRq) interpolation method and a hybrid algorithm based on

TRq. Headingley network, path set H1, Clark approximation.
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4.3.5.6 Application of the Approximate Preconditioned Fletcher-Reeves Search

Direction

As mentioned above conjugate gradient search direction algorithms should be

applied with a precise line search to guarantee the conjugacy of the successive

search directions. However, such conjugacy in the cases examined here is

approximate as the preconditioner changes at each iteration, at least at the beginning

of the assignment and until the flows on the links become more stable.

The algorithms tested in this section, and referred to as approximate preconditioned

Fletcher-Reeves (apFR), use line searches with step calculation carried out once or,

alternatively, until a gradient or objective function improvement is ensured along the

search direction given by the preconditioned Fletcher-Reeves formula. Using such

line searches may introduce a further element of approximation, although checking

that an improved gradient or objective function has been found should be expected

to be beneficial to the algorithm behaviour.

All the function interpolation methods tested for the traditional search direction have

been tested and compared (quadratic, cubic, regula falsi, rational, partial step

quadratic).

The convergence trends resulting from algorithms finding the step length

interpolating once only or returning it only after an improved gradient or objective

function is found, coincide on the Chen and Alpha and on the Sioux Falls network,

with both MNP approximations employed. However, there are cases for which the

trends do not coincide on the Headingley network but, from the results obtained,

there seem to be little difference between the trends of the two types of algorithm.

Thus, the algorithms checking for an improvement are considered in the following

comparisons on the grounds that they are more consistent with the requirements of

the line search to be implemented in a conjugate gradient algorithm.

On the Chen and Alpha network, the apFR algorithms with alternative line search

methods give similar trends as shown in fig. 4.37, with the exception of the

algorithm with quadratic line search which gives an oscillating behaviour that delays

the eventual convergence. Fig. 4.37, also suggests that the rational interpolation
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method is less efficient that the others, due to the additional loading it requires at

each iteration. A comparison between the apFR algorithms and the corresponding

ones using the traditional search direction shows that the latter ones are

outperformed from the start of the optimisation. A small selection of these

comparisons is reported in figs. 4.42 and 4.43.

Also on the Sioux Falls network and on the Headingley network the apFR algorithm

used with any of the optimised step lengths investigated above (quadratic, cubic,

regula falsi, rational, partial step quadratic) performs consistently better than the

corresponding algorithms employing the traditional search direction as can be

noticed in the examples in figs. 4.38 and 4.39.

Some convergence plots, such as the quadratic one reported in fig. 4.38 and the

cubic in fig. 4.41, show that in some cases the algorithms using the cubic and the

quadratic line search show an oscillating trend before eventually converging,

especially on the Headingley network. The cause of these oscillations has not been

further investigated in this study, but it is interesting to note that line search methods

using information taken closer to the present solution are not subject to such

problems. Moreover these oscillations can be easily avoided by restarting the

algorithm, that is anyway approximated, each time one such oscillation of the

convergence trend is detected. This device has not been applied to the algorithms

whose results are reported.

The regula falsi and partial step quadratic are the most efficient line search methods

in most cases on both the Sioux Falls and the Headingley network, although

sometimes only marginally. A selection ofthe comparisons with the other methods is

reported in figs. 4.39, 4.40 and 4.41. However, the fact that they have not been

subject to the possible oscillation mentioned above suggests them as the best

performing algorithms with this search direction. It is interesting that the use of

information gathered close to the current solution to perform the approximation

leads both to safer and more efficient algorithms.
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Fig. 4.37 - Comparison ofthe MSA and algorithms using the apFR search direction

(q: quadratic, cb cubic, rt: rational, if regula falsi, q03 quadratic partial step 03,

q05 quadratic partial step 05). Chen and Alpha network, Clark approximation.
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Fig. 4.38 - Comparison of algorithms using the traditional (TR) and the apFR

search direction (q: quadratic, cb cubic, q05 quadratic partial step 0.5). Sioux Falls

network, path set S2, Mendell-Elston approximation.
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approximation.
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(q: quadratic, cb cubic, rt: rational, rf regula falsi, q03 quadratic partial step 03,
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approximation.

As with the traditional search direction, the initial good efficiency of the MSA

suggests the development of hybrid algorithms, started with a number of MSA

iterations, then performing an iteration along the traditional search direction to start

the apFR algorithm and continuing with the latter. Algorithms started with 5, 10, 15

and 20 MSA iterations have been tested.

On the Chen and Alpha network a limited number of MSA iterations to start (five,

and in some cases ten) improve on the convergence behaviour of the apFR

algorithms employed from the start as shown in the examples in figs. 4.42 and 4.43.

The initial oscillatory behaviour recorded with the quadratic search on the apFR used

from the outset is obviated by starting the algorithm with some MSA iterations

(compare figs. 4.37 and 4.44).

A comparison of the different line search methods shows that, on the Chen and

Alpha network, those based on the linear approximation to the gradient behave very

similarly to each other, and are marginally more efficient than those based on the

cubic and rational interpolation. In particular the rational interpolation method gives

less efficient convergence trends although the difference is of very few loadings,

consistent with the results obtained using the traditional search direction.
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Also on the Sioux Falls and on the Headingley network starting with some MSA

iterations is beneficial to the efficiency of the algorithms with all line search

methods. Figures 4.45, 4.46 report a selection of the results supporting these

considerations. Moreover hybrid algorithms reduce or eliminate the oscillations

recorded in some cases using the quadratic or cubic line search methods as can be

seen from the same figures. Once more it is difficult to indicate a general number of

MSA iterations to start the algorithms with. However, the experience gathered from

these investigations suggests that starting with 5 or 10 MSA iterations might not give

the best possible performance but generally improves on the use of line search from

the outset.

It is also interesting to note that, using hybrid algorithms on the Sioux Falls and on

the Headingley networks, the best performing line search methods are those

interpolating the gradient as linear but using data taken close to the present solution:

the regula falsi and the partial step quadratic methods typically give the most

efficient convergence trends, as shown in the examples in figs. 4.45, 4.46, 4.47 and

4.48. However, when a large number of MSA (15 or 20) is used to start the

algorithms there is little to choose between the different line search methods,

although the rational interpolation method, requiring one more loading at each

iteration performs slightly worse than the others.

Also when started with a number of MSA iterations the apFR algorithms perform

better than the corresponding ones using the traditional search direction as reported

in figs. 4.47 and 4.48. The improvement is clear with any number ofMSA to start on

the Chen and Alpha and the Sioux Falls network whilst, on the Headingley network,

when more than 10 MSA are used, the methods using the different search directions

have practically the same efficiency.

Before closing the discussion on the apFR algorithms, it should be noted that the

apFR without refined step do better than those with the refined step on the Chen and

Alpha and the Sioux Falls networks and do similarly to the refined step algorithms

on the Headingley network.
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277



O-,--..-~~~~~~~~~~~~~~~~~

-1 \iI---~--\-_e_~~_'ItJ_~~_l!T_~~..;ffi_~~~~~_30

-2 +-~-....-~~~~~~~~~~~~~~-

-3 +-~~~--=~ =-~~~~~~~~~~-

"0 -4 +----~~~===::::::::::::==---==_
fiJ -5 +-~~~~~------'~~~~~~~~~~~-

~ -6 +-~~~~~~~'IIIk'A~k--~~~~~~~-
c- -7 +-~~~~~~~~--""-''''----'''~~~~~~-

-8 +-~~~~~~~~~~~----".~~~~~-
-9 +-~~~~~~~~~---'\-'\:~~~~~~-

-10 +-~~~~~~~~~~---"-~-~~~-
-11 -,-I~~~~~~~~~~~~~~~~~~

--MSA

--5MSA+apFR q

- 5MSA+apFR cb

- 5MSA+apFR rt

-e-- 5MSA+apFR rf

- 5MSA+apFR q03

- 5MSA+apFR q05

loadings

Fig. 4.44 - Comparison of the MSA and hybrid algorithms started with 5 MSA

iterations before using the apFR search direction (q: quadratic, cb cubic, rt:

rational, if regula falsi, q03 quadratic partial step 03, q05 quadratic partial step

05). Chen and Alpha network, Clark approximation.

i

E~~~~~!:=~~~~~~~~~~GO ~-----~M-SA~~~~-
-apFRq

-apFrcb

-apFRq05

-a-1OMSA+apFR q

--1OMSA+apFR cb

--10MSA+apFR q05 ,

loadings

Fig. 4.45 - Comparison ofthe MSA, algorithms using the apFR search direction (q:

quadratic, cb cubic, q05 quadratic partial step 0.5) and corresponding hybrid

algorithms started with 10 MSA iterations. Sioux Falls network, path set S5, Clark

approximation.

278



2
1
o

-1
-2

"0 -3
c

Cf) -4
~ -5
oS -6

-7
-8
-9

-10
-11

r:
ll\.- i \

ou au IU

"\ ~/\ ... \
i i ~ .......
\ \\ \ I \
~ III ~ "\. ~ ~

\. "' '\
\ \ .... 'L ~
). ~~ "- -~

~ \ .. .~
,

I!I

o -MSA

-+-apFRcb

-apFRrf

-apFRq05

-6-5MSA+apFR cb

--&-5MSA+apFR rf

-e-5MSA+apFR q05

loadings

Fig. 4.46 -Comparison of the MSA, algorithms using the apFR search direction (q:

quadratic, rf regula falsi, q05 quadratic partial step 0.5) and corresponding hybrid

algorithms started with 5 MSA iterations. Headingley network, path set Hi,

Mendell-Elston approximation.

~ ~.,,--=-,-----.--------,---,----
-1 100 ---5MSA+TRq
-2 __5MSA+TR cb

-3 _ 5MSA+TR rf

-g -4 __5MSA+TRq05
~ -5 ~----1l!k--\c------""".--------
e::: +-----llII...__---':...------""'<;9 -a- 5MSA+apFR qoS -6

-7 +- ~~-----:~-_ -5MSA+apFR cb

-8 - 5MSA+apFR rf

-9 -5MSA+apFR q05
-10+-------~---------
-11 L.- _

loadings
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Elston approximation.
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4.3.5.7 Application of the Approximate Preconditioned Polak-Ribiere Search

Direction

The algorithms tested in this section combine the search direction given by the

preconditioned Polak-Ribiere algorithm with line search methods interpolating once

only or checking that an improved gradient or objective function has been found

before returning the step. The algorithms thus obtained are referred to as

approximate preconditioned Polak-Ribiere algorithms (apPR). All the function

interpolation methods tested for the traditional search direction have been tested also

with the apPR search direction (quadratic, cubic, regula falsi, rational, partial step

quadratic).

Notwithstanding the possible approximation introduced by not refining the line

searches it has been checked that, on the test networks employed, the apPR

algorithms typically perform better than refined step methods (the verification has

been limited to the quadratic and cubic interpolation cases).

Also in the apPR case, on the Chen and Alpha and on the Sioux Falls networks, the

methods returning the step after a single interpolation and those checking that an

improved gradient or objective function is found, give coinciding convergence
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trends. They are different in some cases on the Headingley network, as noted already

with other search directions. There seem to be typically minor differences between

the behaviour of the two sorts of algorithms and, as in the apFR case, those checking

for the improvement are considered in the following comparison on the grounds that

they are more consistent with the requirements of conjugate gradient algorithms.

Observing the convergence trends on the Chen and Alpha network, the methods

based on the partial step quadratic interpolation perform slightly better than the

others from the outset, though the differences are small, as can be seen from the data

reported in figure 4.49. The same figure shows how the quadratic interpolation

method is outperformed by all the others but does not show the oscillating trend seen

in the apFR case.

Moreover, on the Chen and Alpha network, the apPR algorithms are seen to be more

efficient than the corresponding algorithms working along the traditional search

direction. Two examples of these different convergence trends are reported in figure

4.50 and 4.51.
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Fig. 4.49 - Comparison ofthe MSA and algorithms using the apPR search direction

(q: quadratic, cb cubic, rt: rational, rfregula falsi, q03 quadratic partial step 0.33,

q05 quadratic partial step 0.5). Chen and Alpha network, Mendell-Elston

approximation.
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(TR) and the apPR search direction (q05 quadratic partial step interpolation) and
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Looking at the data for the two larger networks (Sioux Falls and Headingley), a

comparison of the different step determination methods suggests that in all cases

those based on the quadratic interpolation perform best (see fig. 4.52). The rational

interpolation consistently performs worse that the other algorithms.

Also on the Sioux Falls and on the Headingley network the algorithms using the

apPR search direction perform consistently better than those using the traditional

search direction from the start of the calculations. Examples of convergence trends

showing this are given in figures 4.53, 4.54 and 4.55. There are cases of minor

oscillations of the convergence trends, that are of lesser importance that in the apFR

case, but they do not hamper the convergence. In fact fig. 4.54 shows one such case

where the apPR regula falsi algorithm, although showing some oscillations, does

better than the corresponding method using the traditional search direction. The

absence of the oscillations that had been recorded for the apFR convergence trends,

can probably be explained by the ability of the PR algorithm to restart itself when

the gradient is orthogonal to the search direction or when y' is negative.
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Fig. 4.52 - Comparison ofthe MSA and algorithms using the apPR search direction

(q: quadratic, cb cubic, rt: rational, ifregula falsi, q03 quadratic partial step 0.33,

q05 quadratic partial step 0.5). Sioux Falls network, path set S2, Mendell-Elston

approximation.
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Fig. 4.54 - Comparison of the MSA and corresponding algorithms using the

traditional (TR) and the apPR search direction (q: quadratic, rf regula falsi, q03

quadratic partial step 0.33, q05 quadratic partial step 0.5). Headingley network,

path set HI, Clark approximation.
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The figures above and other similar results show that the MSA also does better than

the apPR methods during the first iterations. Once more, this suggests the use of

hybrid algorithms that begin to solve the problem with a number of MSA iterations,

then perform an iteration along the traditional search direction to initialise the actual

apPR algorithm used. Algorithms started with 5, 10, 15 and 20 MSA iterations have

been tested.

On the Chen and Alpha network, with the cubic and the partial step quadratic

methods the improvement given by the use of hybrid algorithms is absent or very

limited (this is shown for the partial step quadratic in fig. 4.51 and for the cubic in

fig. 4.56), whilst with the other line search methods a limited number of MSA

iterations to start is beneficial, as shown in figure 4.52, although using more than 10

initial MSA iterations leads to slower convergence trends than with the original

algorithms.

This behaviour is also suggested by the fact that the MSA does better than the other

algorithms only for very few iterations, although the effectiveness of starting the

algorithms with some MSA iterations does not seem to be related in a simple way to

how good a convergence statistic the initial MSA iterations produce.
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Still on the Chen and Alpha network, there is little to choose amongst the different

apPR methods started with the same number of MSA iterations although the rational

interpolation does slightly less well. Moreover, hybrid algorithms including the

apPR search direction do better than the corresponding ones based on the traditional

search direction (see figs. 4.50 and 4.51).

On the Sioux Falls and Headingley networks, the use of some MSA iterations to start

the algorithms eliminates the oscillations recorded in some cases when the apPR

direction is used from the beginning (see fig. 4.57). The effect of the MSA start

device on the efficiency seems limited or absent in many cases on the Headingley

network, as shown in fig. 4.58 but is clearly important from the tests on the Sioux

Falls network, as shown by fig. 4.59. The numerical tests also showed that, with

some MSA iterations to start, the best performing methods are those based on

quadratic interpolation, although there is little to choose except for the rational

interpolation performing consistently slightly worse than the others.

The remark on the difficulty to determine a best number of MSA iterations to start

the hybrid algorithm is also relevant here, although, as mentioned before, five or ten

iterations eliminate the oscillation problems and generally give an improved

convergence.

However, it has been found that hybrid apPR algorithms perform consistently better

than hybrid algorithms using the traditional search direction as shown in fig. 4.60

and 4.61.
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4.3.5.8 Comparison of Approximate Preconditioned Conjugate Gradient

Algorithms and Conclusions

The figures reported above and the other results collected showed that using either

approximate preconditioned conjugate gradient search directions improves

significantly on the convergence trends given by the traditional search direction.

Looking at the overall convergence efficiency of the different methods with the

different search directions on the Chen and Alpha network, there is little to choose

between the apFR and the apPR search directions, although the latter performs

slightly better especially when the partial step quadratic interpolation method or the

cubic interpolation methods are used. It is also interesting to note that, when the

apFR and apPR algorithms are started with a number of MSA iterations their trends

practically coincide, which shows that the initial MSA steps, on this network, take

the algorithms through the part of the calculation where the function is less easily

approximated by a quadratic.

Comparing the convergence trends of the algorithms using the traditional and the

apFR and apPR search directions for the Sioux Falls and the Headingley network,

show that both the preconditioned conjugate gradient methods improve significantly

on the traditional search direction. There would be little difference between the two

preconditioned conjugate gradient methods if the apFR were not prone to

oscillations in some cases. This suggests that the apPR should be preferred. When a

number of MSA iterations is used to start the algorithms, and the oscillation problem

is eliminated, the difference in performance between the preconditioned conjugate

gradient methods is much smaller than that between them and the traditional search

direction.

It is also interesting to note that the line search methods based on the quadratic

interpolation perform consistently well for all the cases investigated. In some cases

on the Headingley network good performances are also obtained using cubic

interpolation. However, the good convergence efficiency obtainable with the

quadratic and the regula falsi methods and, particularly, with the partial step

quadratic methods can be verified in all cases.
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Since the advantage of using the apFR and, especially, the apPR search direction is

consistently present also when the algorithms are started with a number of MSA

iterations (although in this case it is reduced in general and lost for the rational

interpolation method) it is possible to suggest that, in general it is of advantage over

the other methods investigated in this thesis to implement an algorithm using an

unrefined line search based on the linear interpolation of the gradient along

directions obtained with the apPR algorithm.

4.4 Conclusions

This chapter has looked at methods for the solution of the stochastic user equilibrium

(SUE) multinomial probit traffic assignment problem in a path based

implementation, when the paths are fixed at the outset of the assignment.

An introduction to the traffic assignment problem has described the main differences

between different models for traffic assignment, also defining SUE. A review of the

models in the literature for UE, SNL and SUE both in the link: based and the path

based framework has followed a review of the actual path sets considered in such

models, which has been included as, often, one criticism to path-based models

concerns the way paths through networks are chosen.

Several algorithms for traffic assignment have been tested on three test networks.

First, the Method of Successive Averages (MSA) and the algorithms proposed by

Maher and Hughes (1997a) have been tested finding, as in the results given by

Maher and Hughes, that the MSA is outperformed by methods using the same search

direction but optimising the step length along it by interpolating the objective

function with a quadratic or a cubic function either once or until a better gradient or

objective function is found. The results obtained with the Mendell-Elston and the

improved Clark approximation have been found to be rather similar. In general it

seems that algorithms started with a number of MSA iterations before using

optimised step lengths are the best performing ones, again consistent with the results

ofMaher and Hughes.
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To explore the possibility of improving on the efficiency of the methods of Maher

and Hughes, a number of alternative step calculation methods have been

investigated. The MWA, Method of Weighted Averages, which is a variation of the

MSA, gave interesting results, outperforming the MSA and in some cases also the

optimised step algorithms. However, which one of the different MWAs investigated

performs best seems to depend on the particular problem.

Three alternative step interpolation methods have been proposed, two of them, the

regula falsi and the partial step quadratic method, approximate the gradient of the

objective function by a linear function along the search direction, whilst the other

approximates it with a rational function. All of these methods could be used as

alternatives to those proposed by Maher and Hughes, but the tests carried out do not

give any indication that they are able to do consistently better. Thus they cannot be

proposed as an improvement on the algorithms in the literature.

To try and obtain more efficient algorithms it has been proposed to read the

traditional search direction, used in the MSA and in the other algorithms just

mentioned and given by the vector linking the current and the auxiliary solution, as a

steepest descent direction in a preconditioned space, that is after the problem is

considered with a change of coordinates defined by the square root of the Jacobian

of the link costs. Starting from this interpretation of the traditional search direction,

two preconditioned conjugate gradient algorithms, using respectively the formula of

Fletcher and Reeves and the formula of Polak and Ribiere, have been proposed and

tested. Used with line search determining the step to a given precision they resulted

more efficient than the corresponding algorithms using the traditional search

direction, but not always more efficient than the algorithms using the traditional

search direction and unrefined line search and related hybrid algorithms.

Approximate preconditioned Fletcher-Reeves and Polak-Ribiere algorithms using

unrefined line search have then been tested. The efficiency results obtained are

interesting for both types of algorithms but the ones obtained using the Fletcher and

Reeves formula present some instabilities of the convergence trends, due to the

unrefined line searches and possibly to the fact that such an algorithm is less suitable

for not exactly quadratic functions. The instabilities are obviated by starting the

algorithm with some MSA iterations but, more importantly, they are less important
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or absent when the Polak and Ribiere formula is used, which has a built-in ability to

restart when it runs into problems. The results obtained with the Polak and Ribiere

formula are consistently better than those using the same optimised line search

methods with the traditional search direction, also when the algorithms are started

with a number of MSA iterations. Thus this sort of algorithm, which performs well

especially when used along with line search methods that interpolate the gradient as

linear, can be proposed as a possible efficient alternative to the optimised step

algorithms in the literature.

In closing this chapter it should be noted that, although the investigations have been

carried out with multinomial probit approximations and in a path-based case with

paths fixed from the outset of the assignment, they could be used also with other

choice models solved analytically (and the MWA also when they are solved by

simulation) and in a link-based framework. Their performance in such cases,

however, should be further verified.
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5. EXTENSIONS OF SUE: MULTIPLE

CLASSES AND ELASTIC DEMAND

USER

5.1 Introduction

The Stochastic User Equilibrium (SUE) models considered in the previous chapter

rest on the assumption that all the drivers have the same characteristics and perceive

the network costs in the same way, except for the variations accommodated by the

choice model error terms, and model only the choice of route through a network. The

present chapter considers models with a more detailed representation of the drivers

by including multiple user classes and models employing elastic demand to account

in an aggregate way for transport related choices other than that of route.

The chapter is organised as follows. First, the inclusion of Multiple User Classes

(MUC) in SUE models is discussed, with a review of the literature, the description of

the objective function and of the algorithms that can be used to solve the MUC SUE

problem, followed by the results of the tests of the algorithms proposed. Then, SUE

with elastic demand (SUE ED) is introduced by a review of the literature, a new

objective function is proposed and discussed and algorithms are suggested. The latter

are not tested in the SUE ED case but similar algorithms are tested in the Multiple

User Classes Stochastic User Equilibrium (MUC SUE ED) case, introduced next, for

which objective functions are derived and solution algorithms, that are extensions of

those for SUE ED, are proposed and tested. In all cases, paths are accounted

explicitly and enumerated at the outset of the assignment. However, the same

objective functions and similar algorithms can be applied to the link-based case.

Moreover, the results reported have been obtained using the algorithms with the

Mendell-Elston and the Clark approximation for MNP but they could be applied also

using other choice models solved analytically.
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5.2 Stochastic User Equilibrium Models with Multiple User

Classes (MUC SUE)

5.2.1 Introduction

The SUE models considered in chapter 4 deal with drivers that are assumed to

perceive network costs according to the same distribution. Thus, the drivers

modelled constitute a homogeneous group with respect to their choice behaviour or,

in other words, a single user class. This is a fairly common assumption in modelling

practice.

However, III some applications it is important and possible (in terms of data

availability) to distinguish amongst several classes of users (that are groups of

users), each with different cost functions and/or different cost variability perceptions.

For instance, models with multiple user classes have been used to assess the effect of

having drivers making decisions on the basis of information of different accuracy as

when only a proportion of them has vehicles equipped with route guidance devices

(see e.g. Van Vuren and Watling, 1991; Maher and Hughes, 1996a). Furthermore,

using different cost functions allows us to consider not only different sorts of drivers

(e.g. drivers attaching a different weight to elements of the generalised cost) but also

limits on network usage imposed on some users or on some sorts of vehicles (as e.g.

HGVs).

Multiple User Classes (MUC) models include two or more groups of users (or

market segments, according to the choice model terminology introduced in section

2.4.5), each representing a homogeneous group with respect to the definition of the

perceived generalised costs and each separately in equilibrium. The MUC-SUE

conditions can be simply expressed as the SUE ones (given by Daganzo and Sheffi,

1977):

at (MUC)SUE no user can improve his perceived travel cost by unilaterally

changing route

since this definition accommodates also different groups ofperceived costs.
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5.2.2 MUC SUE Models in the Literature

Several studies in the literature are concerned with MUC within the SUE framework.

Van Vuren and Watling (1991) considered, at the same time, classes in User

Equilibrium, User Optimum and logit SUE in a link-based model backed

theoretically by the results of Daganzo (1982). They solved the model using an

adaptation of SATURN (Van Vliet and Hall, 1993) to carry out the stochastic

network loadings and the MSA algorithm to find the equilibrium point.

Maher and Hughes (1996a) proposed an analytical link-based probit model

accounting for any number of user classes each with a different perception error of

the costs or with the same perception error but costs that are multiples of each other

(the two settings are equivalent because of the scalability of random utility choice

models). They used it to assess the effect ofhaving drivers with different perceptions

of the variability of the costs because of the introduction of route guidance devices.

Their model is solved using an extension of the Sheffi and Powell (1982) objective

function for SUE that is minimised using optimised line search techniques similar to

those implemented for SAM with a single user class (Maher and Hughes, 1997a).

Although the model has been implemented with the Markovian link based SAM

probit model, it can be used with any choice model and also in a path-based setting.

In fact, Maher (1998) suggested applying the same ideas to link-based logit MUC

SUE.

A more general MUC SUE model has been proposed by Daganzo (1982) and is

reviewed in detail in the next section since it provides the framework on which the

algorithms proposed here and the elastic demand case treated in section 5.4 are

based.

5.2.3 The MUC SUE Model of Daganzo (1982)

Daganzo (1982) considered a rather general MUC SUE setting with users subject to

different costs, not necessarily multiples of each other, and different perceptions. He

proposed an objective function assuming separable link costs and suggested solving

the probit MUC SUE problem using simulation and the MSA. In a later paper
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Daganzo (1983) extended further this framework to include non-separable link costs

and elastic demand using a fixed-point formulation rather than an equivalent

mathematical program.

The MUC framework put forward by Daganzo (1982) considers K user classes each

with its Ol) matrix and cost distribution. In addition to the link flows by user class,

Daganzo considered also standardised link flows, similar to those used in traffic

engineering to account for vehicles of different characteristics. The standardised

flow Vi on link i is:

(5.1)

where a(k) is the positive coefficient to standardise the flow of vehicles of the user

class k and Xi(k) is the flow of the vehicles of class k on link i.

The cost Ci(k) on a link i and for the user class k is defined as:

(5.2)

that is as the sum of a fixed part COi(k), if need be different by class, and a flow

dependent part obtained as the product of a positive coefficient ~(k), typical of each

user class, and a strictly increasing function b/vJ common to all user classes and

depending on the standardised flow Vi. The link costs are assumed separable and

such an assumption is maintained here. Moreover, path costs are assumed to be

additive.

Using the above definitions of flows and costs Daganzo (1982) suggested to solve

for MUC SUE by minimising the objective function:

(5.3)

where k is one of the K user classes, rs is one of the RS Ol) pairs, qr/) is the flow of

class k between the Of) pair rs, Srs(k) is the satisfaction (the expectation of the

minimum perceived cost) for a user of class k travelling between rand s, and a(k),
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~(k), are as defined for (5.1) and (5.2). Z(b) is a scalar function whose gradient is the

vector of the inverse ofthe common link costs b.

The objective function (5.3) is independent of the choice model used and the related

optimisation program can be solved as unconstrained as the flow conservation

constraints are naturally satisfied at equilibrium. It can be explicitly written in two

alternative forms, depending on whether a formulation based on common link costs

or on standard link flows is preferred.

When the formulation in terms of common link costs is used, which is also suggested

by the definition ofZ(b) given by Daganzo, (5.3) becomes:

(5.4)

where i is one of the I links, s:'((0) is the inverse of the link cost function blzJ

appearing in the link cost expression, Ci(k) and COi(k) are as defined for (5.1) and (5.2)

whilst the other symbols are as for (5.3). The upper integration limits for the

integrals of the inverse of the link cost function are the same for all the user classes

on a link, so in the objective function they are expressed using the values relative to

the first user class, which is always present.

Alternatively, with a change of variable, (5.3) can be written in terms of standard

link flows:

(5.5)

where the symbols are as for (5.4).

As can be easily verified, when only one user class with link costs as in (5.2) is

considered, the MUC SUE objective function becomes equivalent to the SUE

objective function of Sheffi and Powell (1982) in the corresponding formulation

(link flows or link costs).
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The equivalence of the minimum of the MUC SUE objective function to the MUC

SUE conditions for a network and its uniqueness are discussed and proved in

Daganzo (1982).

However, the proof of equivalence is also given in the next section, as it is useful to

introduce the derivation of the search directions considered in this chapter. Also the

proof of the uniqueness of the MUC SUE solution is given in the following sections

analysing the Hessian of the two versions of the objective function, similarly to the

analysis carried out in the SUE case by Sheffi and Powell (1982), as it is important

to establish the uniqueness of the minimum of (5.5) that here is used to develop

solution algorithms. Daganzo (1982) deduced the convexity of (5.4) simply from the

convexity of its components but did not extend the discussion to a programme in

terms of standardised flows.

5.2.3.1 The Gradient of the MUC SUE Objective Function

Working along the lines of the derivation of the gradient of (4.4) reported in Sheffi

and Powell (1982) it is possible to derive the gradient of the MUC SUE objective

function (5.4) with respect to b the vector of common parts of the link costs.

To organise the discussion, the objective function (5.3) can be rewritten as the sum

oftwo terms:

, "
Z MUCSUE =Z + Z

where, consistent with (5.3),

(k),_"a " (k)S(k)z - - L..J A (k) L..J qrs rs
K J-l RS

(the independent variable for the satisfaction is omitted to simplify the notation)

cP)-c~;)

~

Z" =L fbi-1(CO)dco
[ 0

(5.6)

(5.7)

(5.8)
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Starting by considering z' the derivative with respect to a link common cost b, is:

az' a(k) ( ) as(k)
"'" "'" k rs

ab
i
=-"7 ~(k) ~qrs ab

i

(5.9)

and the derivative of the satisfaction of travelling between the Of) pair rs with

respect to b, can be obtained using the chain rule as:

as(k) as(k) ae(k)
_rs_ _ ""'_rs P_

abo - L..i ae(k) abo
I P P I

where e/k) is the cost of path p between the Of) pair rs for user class k.

(5.10)

The derivative of the satisfaction of travelling between the Ol) pair rs with respect to

the costs of travelling on any of the paths between them is simply:

as (k)
_rs_=p(k)

a (k) rspep

(5.11)

where Prsp(k) is the choice probability of path p between rand s for the user class k,

as results from the properties of the satisfaction function (see e.g. Sheffi, 1985, pp.

269-270).

The costs of travelling along path p for the users of the class k (considering additive

path costs) can be written explicitly as:

(5.12)

therefore its derivative with respect to b, is:

(5.13)

Thus, considering (5.11) and (5.13), (5.10) can be rewritten as:

(5.14)
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which, substituted in (5.9), yields:

a ' (k)
~=_~~~q(k)~ p(k)p.(k)8 . =_~a(k)~q(k)~ P(k)8 .
Bb LJ p. (k) LJ rs L..J rsp I-' pi LJ LJ rs LJ rsp pI

i KI-' RS P K RS P (5.15)

Considering the second term z", its derivative W.r.t. one of the common components

of the link costs is:

(5.16)

therefore the ith component of the gradient of ZMUCSUE(b) with respect to the vector

of common costs on links, is:

a ((I) (I)J'ZMUCSUE = _~ a(k)~q(k)~ P(k)8 . +b-:-I ci -COi

Bb LJ LJ rs LJ rsp pt I p'(I)
i K RS P I-'

(5.17)

where the first term is the weighted summation of the auxiliary flows of class k on

link i, i.e. the auxiliary standard flow on link i, and the second term is the current

standard flow on link i.

The ith component of the gradient of the MUC SUE objective function in terms of

standard link flows (5.5) can be obtained by considering (5.17) and applying the

chain rule or, equivalently, by differentiating (5.5) directly (as reported in appendix

AI) to obtain:

BZMUCSUE =(_ ~a(k)~q(k)~ P(k)8 .+ .]dbi(Vi)
~. LJ LJ rs LJ rsp pi V, d
UV i K RS P Vi

(5.18)

(5.17) or (5.18) are zero only when the auxiliary standardised link flows are

consistent with the current common part of the costs and standardised flows, that is

for the MUC SUE conditions on the network. In fact, the consistency of the

standardised link flows implies the consistency of the common part of the link costs

and of the link costs by user class and, given a set of paths between each OD for
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each class, the consistency of the path costs. The latter implies also the consistency

the pattern of choice and, therefore, of the path and link flows by user class.

5.2.3.2 Shape of the MUC SUE Objective Function and Uniqueness of Flows and

Costs

Similarly to the SUE case, the MUC SUE objective function (5.5) expressed in terms

of standard link flows is not convex everywhere, although it is so at equilibrium. In

fact, the Hessian of such version of the objective function (derived in appendix AI)

is given by:

V 2 Z MUCSUE (v) =V .b + RV ~b +

+"'" a (k)r:~Jk) "'" q (V bf:,.Ck) X- V pCk)Xv bf:,.Ck»)TL..J I-' L..J rs v rs elk) rs v rs
K RS

(5.19)

where the first term is the Jacobian of the common part of the link costs, which is

diagonal and positive definite by the definition of the link costs. The second term is

the product of the diagonal matrix R of the differences between the current and

auxiliary standardised flows by the Hessian of the common part of the link costs. As

the matrix R is made up of elements that can take any sign, the sign of this term is

not generally known. The third term is a summation of quadratic forms similar to

those appearing in the Hessian of the SUE objective function (see Sheffi, 1985).

V e(k) Pr~k) is the Jacobian of the choice probabilities for class k, which is negative

definite by definition (the strict definiteness is valid with choice models, like the

MNP, that assign a positive probability to each option for finite values of the costs,

otherwise it is only semidefinite (see Sheffi, 1985) but this does not alter the

conclusion of the present discussion). Its opposite is therefore positive definite and

the quadratic form that includes it is positive semidefinite (because of the definition

of the link-path incidence matrix).

Since, in general, the tenn including R can take any sign, so may V2ZMUCSUE(V).

However, at equilibrium R is 0 and V2ZMUCSUE(V) reduces to the sum of a positive

definite matrix and of a number of positive semidefinite matrices, thus resulting
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positive definite and establishing the local convexity of the function. This is similar

to what is known about the SUE objective function (see Sheffi, 1985).

The objective function rewritten in terms of common link costs (5.4), however, is

always convex. In appendix A2 it is shown that its Hessian is:

\72 z (b)= "a(k)R.(k)"q(k)A(k)(_\7 p(k)\A(k)T +\7 b"
MUCSUE L..J I-' L..J rs rs e(k) rs P rs b

K RS

(5.20)

where the first term is the summation, as above, of a number of positive semidefinite

matrices as it includes quadratic forms of positive definite matrices. The second and

last term, is the Jacobian of the inverse of the common part of the link costs and by

definition it is diagonal and positive definite. Thus, this Hessian is the sum of a

number of positive semidefinite matrices and of a positive definite matrix and it is

always positive definite. The function (5.4) is then always convex and its minimum

is a global minimum.

Because of the one to one correspondence between standard link flows and costs,

implied by the strict convexity of the common part of the link costs, the uniqueness

of the minimum of (5.4) implies also the uniqueness ofthe minimum of(5.5).

The (5.19) and (5.20) show that the solution is unique in terms of standard link flows

and common part of the costs. Daganzo (1982) states that there is no uniqueness in

terms of class flows and costs. However, as discussed above, a unique pattern of

common link costs corresponds to a unique pattern of class link costs, as class link

costs are simply the sum of a constant and of the common cost multiplied by a

coefficient. If a set of paths is given, the additive class path costs are uniquely

defined, as are the resulting choice probabilities by user class, when a stochastic

choice model is given. In fact, if the choice probabilities were not unique it would

mean that a stochastic choice model could give different results for the same set of

utilities, which is not true. Since choice probabilities are unique and the OD flows by

user class are fixed, the path flows, standard and by user class, are unique and so are

the resulting link flows by user class.

Therefore, the MUC SUE conditions on a network correspond to unique link costs,

for the common part and by user class, and standardised link flows, and, given a set
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of paths, to unique path flows, standardised and by user class, and unique path costs

and link flows by user class.

5.2.4 Algorithms for the Probit Path-Based MUC SUE Problem

5.2.4.1 Introduction

This section describes briefly a number of algorithms that can be used to solve the

MUC SUE problem by minimising (5.5). The algorithms are extensions of those

proposed and examined in the SUE case in chapter 4, adapted to include multiple

user classes and are tested in the next section.

As in the SUE case the algorithms have been used to obtain the solution in terms of

both path and link flows, considering a set of paths given and fixed from the outset

of the assignment calculations. The algorithms used are therefore path-based and the

formulation (5.5) of the problem, although link based, is employed because it is

convenient to use and has a proven unique solution.

5.2.4.2 The MSA Algorithm for MUC-SUE

The MSA algorithm for MUC SUE is a simple extension of the one for a single user

class reported in section 4.3.3.1.

The step is again the fixed MSA step (1+nrl where n is the iteration number. The

function optimised is different from the SUE one and the search direction is changed

accordingly: in the MUC SUE case it is given by the vector linking the auxiliary

standard link flows and the current ones. So it is a vector with a general term that can

be written as:

(5.21)

The auxiliary standard link flows Wi, analogously to the SUE case, are obtained

loading the network on the costs consistent with the current standardised flows.

Given a set of paths between each OD, the search direction expressed in terms of

paths corresponds uniquely to the search direction expressed in terms of link flows
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as in (5.21). This allows us to work with algorithms accounting in parallel for the

solution in terms of links and ofpath flows.

Similarly to the SUE case, the MSA search direction for MUC SUE is referred to

here as the traditional search direction and is, numerically, the opposite of the

gradient (5.17). However, as mentioned in section 4.7.2 for the SUE case, the

traditional search direction cannot be associated with that gradient as it is used to

solve the problem in the flow space and is simply a vector that defines always a

descent direction for the problem. This can be easily verified by taking its dot

product with the gradient of the objective function (5.5). This product will always be

negative as the link performance functions are assumed to be strictly increasing.

The extension of the MSA to multiple user classes also requires the accommodation

of the MUC data structure, more computer memory demanding than the SUE one as

the path sets and covariance matrices may differ amongst user classes.

5.2.4.3 MUC SUE Algorithms with Traditional Search Direction and Optimised

Line Search

Algorithms using the same search direction as the MSA but moving with steps

obtained at each iteration from information on the local shape of the objective

function (5.5) can be obtained similarly to the SUE case using the value of the

objective function and its gradient.

All the interpolation methods suggested in chapter 4 can be applied to the MUC SUE

problem (quadratic, cubic, rational, regula falsi, partial step quadratic) using the

values of the gradient of the objective function along the search direction at the

points indicated in the description of each method in chapter 4, and the values of the

objective function at the two extremes of the search direction for the cubic

interpolation method.

In this chapter, rather than companng different step calculation methods, the

assignments are performed using the quadratic interpolation method devised by

Maher and Hughes (1997a) and described in section 4.3.3.2. This method has proved
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to be robust and using only one method allows us to focus on comparing the merits

of different search directions.

As in the SUE case, the quadratic interpolation method for the determination of the

step corresponds to a linear interpolation of the gradient of the objective function

between its two extremes. Thus it requires the values of the gradient along the search

direction at those points, which can be obtained from loading data.

The calculation of the gradient along the search direction can be explained in more

detail by writing the components of a point vl" along the search direction at iteration

n as a function of the step 'A taken along the search direction as:

(5.22)

where v/n
) is the current standard flow on link i at iteration n, w/n

) is the standard

auxiliary flow on link i at iteration n.

Then, exploiting the chain rule of derivation, the derivative of the MUC SUE

objective function (5.5) along the search direction can be written as:

dz MUCSUE =I 8zMUCSUE dv,
d'A I ov, d'A

From (5.18) the first factor in the summation in (5.23) is:

8zMUCSUE =(_ (A) (A)) db i
(A) Wi +Vi (A)av i dv;

whilst it is simple to see from (5.22) that the second factor is:

thus (5.23) can be rewritten as:

dZMUCSUE = ,",,(_W(A) +V(A)) db i (w(n) _v~n))
d): Lr I I dV;A) I I

(5.23)

(5.24)

(5.25)

(5.26)
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The gradient at the current point can be obtained by substituting the current and

auxiliary solution in standardised flows for yeA) and w(A) whilst the gradient at the

extreme of the search direction is obtained by substituting the auxiliary flows for yeA)

and the auxiliary flows resulting from a further stochastic loading on the costs

consistent with yeA>, for w(A).

db.
The actual form of -' depends on the sort of function used to describe the standard

dv,

cost of travelling along a link. For instance, in the case of power or BPR

performance functions (US Bureau ofPublic Roads, 1964) the b, can be written as:

(5.27)

and therefore results in:

(5.28)

The quadratic interpolation can be carried out once or refined in subintervals

containing the zero of the gradient until an improved gradient is found or to a given

precision. The latter method is referred to, in the following sections, as precise or

refined whilst the other methods are referred to as unrefined.

As in the SUE case, the quadratic interpolation method has been included as the

second part ofhybrid algorithms started with a number ofMSA iterations.

5.2.4.4 MUC SUE Algorithms with Alternative Search Directions

The MUC SUE search direction used in the algorithms described above can be

interpreted in conjunction with the MUC SUE objective function (5.5) as the

transformation into the space of the flows of a steepest descent search direction

defined in a space related to the flow space by a non-linear change of coordinates

given by the square root of the Jacobian of the common part of the link costs. In fact,

the discussion on the interpretation of the traditional MUC SUE search direction
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parallels the one given in 4.3.5.2 for the traditional SUE search direction with the

difference that the preconditioning matrix I n, in the MUC SUE case is the Jacobian

of the common part of the link costs and the standardised flows should be substituted

for the flows appearing the SUE case, as can be seen by comparing the respective

expressions of the gradient of the objective function.

Continuing the parallel with the interpretation of the traditional search direction

presented in chapter 4, it possible to write algorithms working along preconditioned

conjugate gradient directions. The final formulae can be written in the space of the

standardised flows and are identical to (4.55), (4.58), (4.59) and (4.60) except for the

fact that the link flows should now be intended as standardised link flows, the

preconditioner I n is the Jacobian of the common part of the link costs and the

gradient of the objective function refers now to the MUC SUE function (5.5).

As in the SUE case, although the coefficient combining the previous search direction

with the current traditional search direction must be calculated using quantities

referred to the links, the search directions can be expressed either in terms of link

flows or path flows (for a predefined and fixed link-path incidence matrix), thus the

algorithm can produce updates of the solution both in terms of path and link flows.

Moreover, similar algorithms can be used for pure link-based models.

The tests reported in the following sections have been carried out with the

preconditioned Polak-Ribiere and the preconditioned Fletcher-Reeves search

directions. From the SUE tests the latter is expected to perform less well. If fact, the

MUC SUE problem is solved simply as a SUE problem in the standardised flows

and a similar behaviour of the algorithms should be expected (allowing for the

differences in the corresponding problems due to the different congestion induced by

the flows).

The extremes of the search direction described for the MSA define always a vector

in the space of the feasible flows. If the preconditioned gradient search vector

extends into the semispace of the negative flows it is shortened so that no flow is less

than zero.
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Also with the preconditioned conjugate search directions the tests are carried out

only using the quadratic interpolation method described in the previous section.

Formulae (5.22)-(5.26) can be adapted to the present case by simply recalling that

the extreme of the current search direction is now given by u/n), the point returned by

the preconditioned conjugate gradient algorithm, rather than by the auxiliary

solution, thus (5.22) should be modified as:

V~A) =v(n) + IJU ~n) _ v~n) )
1 1 ~ 1 1

and it is immediately seen that (5.26) results in:

8zMUCSUE =,,(_ W~A) + V~A») dbi (u(n) _ v~n»)
8'A Lr I I dV(A) ~ I I

I

(5.29)

(5.30)

Once more, the gradient at the current point can be obtained by substituting the

current and auxiliary solutions in standardised flows for V(A) and W(A) whilst the

gradient at the extreme of the search direction is obtained by substituting u(n) for V(A)

in the first bracket and the auxiliary flows resulting from a further stochastic loading

on the costs consistent with u(n>, for W(A).

The interpolation is carried out once, or until an improved gradient is found or to a

given precision. The algorithms not implementing precise line search are used to try

and save on computational effort although the approximate line search may

introduce a further element of approximation (beside the changing preconditioner

and the fact that the function is not exactly quadratic) to the conjugacy of the search

direction. In the sections reporting the results, the preconditioned Fletcher-Reeves

algorithms are marked ppFR when they implement a line search carried out to a

given precision and apFR when they implement a line search carried out once or

until an improved gradient is found. The corresponding preconditioned Polak

Ribiere algorithms are coded respectively ppPR and apl'R.

As a safety device, the dot product of the gradient of the objective function and of

the new direction in terms of link flows is calculated at each iteration and, if it is not

negative, the preconditioned conjugate gradient direction is discarded and restarted.
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As in the SUE case, the preconditioned conjugate gradient search directions have

been included as the second part of hybrid algorithms started with a number of MSA

iterations.

5.2.5 Performance of the Algorithms for the MUC SUE Problem

5.2.5.1 Introduction

This section presents the results of the numerical tests carried out by solving for

MUC SUE with the algorithms described above. The results are described separately

for each of the test networks used after introducing the test methodology and the test

bed. The section closes with a summary of the test results.

5.2.5.2 MUC SUE Algorithm Test Methodology

The algorithms examined have been tested for efficiency with a methodology similar

to the one used for SUE and discussed in chapter 4.

Solving for MUC SUE on test networks the number of loadings and iterations and

the computing time necessary to reach a certain level of convergence of the solution

have been recorded.

The stochastic network loading (here intended as the loading of all the user classes

being assigned) has been taken as the elemental operation performed by the traffic

assignment algorithms. The reason for choosing the number of loadings is the same

as explained in chapter 4 for the SUE case: iterations cannot be used as a cost unit as

an iteration with different algorithms requires different operations and number of

loadings and, thus, a different computational effort. The number of loadings seems to

reflect the largest part of the computational time involved in the computation also

when a search direction different from that used in the MSA, described above, is

employed. Moreover, it allows us to avoid referring directly to the computational

time that is machine specific.
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The level of convergence reached by an algorithm is measured as a function of the

distance between the current and the auxiliary solution at an iteration since, as the

equilibrium is approached, the current and auxiliary solutions get close to each other

until they coincide, as has been remarked above on the discussion on the gradient of

the objective function, written in either possible ways. The plots in the following

sections display the natural logarithm of a non-dimensional measure of the distance

between the current and the auxiliary solution, which can be written as:

lnRMSnd =In (5.31)

where the current and the auxiliary solution, respectively xp and YP' are in terms of

standardised path flows and P is the number of paths included in the statistic (those

for which either the current or the auxiliary solution is at least 0.1% of the

standardised flow between the relevant OD).

As the equilibrium is approached the current and the auxiliary flows tend to coincide

and the statistic (5.31) tends to -00.

The statistic (5.31) is considered here to compare the algorithms because it provides

an aggregate measure of convergence for all user classes that is convenient to use for

comparing different algorithms and because the corresponding measures by user

class, that can be used as an alternative, have a similar trend as shown in the example

in fig. 5.1. In practical applications the statistic for the user class that converges last

should probably be considered before closing the calculations.

The smaller the number of loadings required by an algorithm to reach a pre-set

threshold ofthe statistic (5.31), the more efficient is the algorithm. In the test results

reported here the solution is considered reached for a target level of the RMSnd

statistics of 10-4, corresponding to a value of lnRMSnd of -9.21. This is the same

criterion to compare the algorithms used in the SUE case. As when comparing SUE

algorithms in chapter 4, the plots employed, similar to fig. 5.1, allow us also to

appreciate the relative performance of the algorithms during the calculation, rather

than simply the final computational effort.
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The tests have been carried out using the same two approximation methods used in

chapter 4, the Mendell-Elston approximation (Mendell-Elston, 1974) with the

optimised calculation order of Kamakura (1989) and the improved Clark

approximation (Clark, 1961), that have been described in chapter 3.
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-class 1
-tz-class 2

-e-c1ass 3
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~ -5+----------~~~ ------
c
- -6 +-----------~~~~;:__----
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-8 +--------------~~--""~--
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loadings

Fig. 5.1 - Example of convergence trend obtained plotting the statistic (5.31) and

similar statistics disaggregate by user class against the number ofMue stochastic

network loadings for a case with 3 user classes.

5.2.5.3 MUC SUE Algorithm Test Bed

The algorithms for MUC SUE have been tested on modifications (to accommodate 2

and 3 user classes) of the networks of Chen and Alfa (1991a), on the Sioux Falls

networks (used e.g. in LeBlanc, 1975; Vythoulkas, 1990) and on the Headingley

network (used e.g. in Maher et al., 1999) that have been used already in chapter 4.

Their main characteristics are summarised in section 4.3.2.2.

On each network the tests have been carried out considering two and three user

classes. The OD matrix for each user class has been obtained as a portion of the

original OD matrix used for the experiments in chapter 4. Tables 5.1, 5.2 and 5.3

report the portion P of the OD flows considered in the SUE case assigned to each

user class for each network.

The same sets of paths used in chapter 4 and discussed in section 4.3.2.2 have been

used for all user classes. This assumption has been made for simplicity but the

312



algorithms can be used also when different sets of paths are specified for each user

class.

For each user class and on each network, different free flow costs, coefficients a and

~ (appearing in eq. (5.1) and (5.2.)) and, in some cases, ratio of the variance to the

free flow cost of each link have been considered.

The free flow costs of the first user class on each network are the original ones

whilst those for the remaining classes have been obtained by multiplying the cost for

each link by a factor drawn at random from a uniform distribution [0.50; 1.00] or

[0.75;1.25].

The coefficients a and ~ and ratio of the variance to the free flow cost used in each

test are detailed in the following tables 5.1, 5.2, 5.3. They have not been chosen to

replicate a particular situation but simply to test the algorithms.

C+A UCI UC2

P 0.85 0.15

a 1.00 1.50

~ 0.80 1.20

ri/ffcost 0.50 0.40

C+A UCI UC2 UC3

P 0.80 0.10 0.10

a 1.00 1.00 2.00

~ 0.80 1.20 1.00

cr2/ff cost 0.50 0.40 0.50

Table 5.1 - Proportion P, coefficients a and f3 and ratio of the variance to the free

flow costs ofthe links used in the cases of2 and 3 user classes (UC) on the Chen and

Alpha network.

Sioux F UCI UC2

p 0.25 0.75

a 1.20 0.90

~ 0.70 1.25

(i/ffcost 0.50 0.40

Sioux F UCI UC2 UC3

P 0.75 0.10 0.15

a 0.90 1.50 0.90

~ 0.70 1.20 0.70

cr2/ff cost 0.50 0.50 0.10

Table 5.2 - Proportion P, coefficients a and f3 and ratio of the variance to the free

flow costs of the links used in the cases of 2 and 3 user classes (UC) on the Sioux

Falls network.
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Hdngly UC1 UC2

P 0.75 0.25

a 1.00 0.80

~ 0.80 1.20

(i/ffcost 0.70 0.70

Hdngly UC1 UC2 UC3

P 0.60 0.30 0.10

a 1.00 1.00 1.00

~ 1.00 1.10 0.80

(i/ffcost 0.50 0.40 0.50

Table 5.3 - Proportion P, coefficients a and f3 and ratio of the variance to the free

flow costs of the links used in the cases of 2 and 3 user classes (U'C) on the

Headingley network.

It should be recalled again that the Headingley network contains connectors, which

are links with fixed costs leading in and out of centroids, which are not accounted for

in the formulation of the problem being used. Thus the application of the algorithms

proposed to the Headingley network is heuristic.

5.2.5.4 Test Results for the Chen and Alpha Network

Before discussing the results it is important to note that the selection of figures

reported for this and for the other test networks refer alternatively to the Mendell

Elston or to the Clark approximation because typically no substantial differences

were found using the same algorithm on the same test case with either

approximation. For the same reason the comments reported refer to the algorithms

applied with either approximation.

The tests on the Chen and Alpha network show that the MSA is outperformed by the

algorithm using the traditional search direction and optimising the step by quadratic

interpolation, as in fig. 5.2 and 5.3, respectively for cases with 2 and 3 user classes.

However, as seen already in the SUE case, the MSA outperforms the optimised step

algorithm at the beginning of the optimisation.

The convergence trends for the algorithms with step calculated with one

interpolation and those returning it after checking that an improved gradient has been

found, coincide and, as in the SUE case, these algorithms outperform those with the

step refined to a given precision.
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Fig. 5.2 - Comparison of the MSA, the algorithm using the traditional search

direction (TR) and hybrid algorithms started with the number of MSA iterations

indicated. Chen and Alpha network, Mendell-Elston approximation, 2 user classes.
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Fig. 5.3 - Comparison of the MSA, the algorithm using the traditional search

direction (TR) and hybrid algorithms started with the number of MSA iterations

indicated. Chen and Alpha network, Clark approximation, 3 user classes.

The initial good performance of the MSA suggests the use, again as in the SUE case,

of hybrid algorithms starting with a number of MSA iterations before calculating an

optimised step along the traditional search direction. The tests with hybrid

algorithms started with 5, 10, 15 and 20 MSA iterations gave results as those

reported again in fig. 5.2 and 5.3: the hybrid algorithm outperforms the MSA and the

optimised step algorithm and there is rather little to choose between the different

number of starting MSA when the final performance is considered.
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Using the preconditioned Fletcher-Reeves search direction with precise

detennination of the step (ppFR) improves on the corresponding algorithms

employing the traditional search direction both in terms of iterations and in terms of

loadings (see the example in fig. 5.4). If the step is only refined to 10-2 the ppFR

performs as well (but not from the start) as the algorithms using unrefined line

search along the traditional search direction. In the other cases they require more

loadings than the algorithms without refined line search.

--MSA

---ppTR

----o-ppPR

-ppFR

35----40)---4-9---4§-----29----225---30

1,---------------------

04-Jll,...----.---,---.--~--~-~---,--~
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E -6 +------'i.-------.l~------------

-7 +------------l~---'~-----------
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-9 +------------!~----""'---------

-10 -'--------~-------------

iterations

Fig. 5.4 - Comparison ofthe MSA and algorithms refining the step to a precision of

10-3 along the traditional search direction (PpTR), the preconditioned Polak-Ribiere

search direction (PpPR) and the preconditioned Fletcher-Reeves search direction

(PpFR). Chen and Alpha network, Mendell-Elston approximation, 2 user classes.

The algorithms using the approximate preconditioned Fletcher-Reeves (apFR) search

direction along with a quadratic interpolation to determine the step carried out once

or until an improved gradient is found, coincide in all examples and with both

approximations employed.

The algorithm using the unrefined optimised step from the start shows oscillations of

the convergence trend similar to those reported for the SUE case, that delay the

convergence (an example of this is reported in fig. 5.5). This unsatisfactory

behaviour is obviated if the apFR is implemented as part of hybrid algorithms started

with a number of MSA iterations. Such hybrid algorithms with the apFR search

vector show no such oscillations and improve on the convergence trend given by the
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corresponding hybrid algorithms using the traditional search direction as shown in

fig. 5.6 and 5.7. They also do better than ppFR algorithms.
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-9 Xx:x
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Fig. 5.5 - Comparison of the MSA, the algorithm using the traditional search

direction with step obtained to give an improved gradient (TRq) and corresponding

algorithms using the preconditioned Fletcher-Reeves (apFR) and the preconditioned

Polak-Ribiere (apPR) search direction. Chen and Alpha network, Clark

approximation, 2 user classes.
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Fig. 5.6 - Comparison of the MSA, the algorithm using preconditioned Fletcher

Reeves (apFR) search direction and hybrid apFR algorithms started with the number

ofMSA iterations indicated. Chen and Alpha network, Clark approximation, 2 user

classes.
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Fig. 5.7 - Comparison of the MSA, and hybrid algorithms using the traditional

(TRq) and the approximate preconditioned Fletcher-Reeves (apFR) search direction

started with the number of MSA iterations indicated. Chen and Alpha network,

Mendell-Elston approximation, 3 user classes.

Using the Polak-Ribiere search direction with precise determination of the step gives

trends similar to those of the ppFR both when the costs are considered in terms of

iterations and in terms of loadings. An example of the comparison between the two

precise preconditioned conjugate gradient directions and the traditional search

direction in terms of iterations is given in fig. 5.4, which shows, as found in the SUE

case, that preconditioned conjugate gradient directions are more effective than the

traditional one in exploring the solution space.

The algorithm using the apPR search direction with step obtained by checking that a

point corresponding to an improved gradient has been found does not show the

oscillations of the apFR and improves noticeably soon after the start on the

corresponding algorithm using the traditional search direction, as can be seen from

the examples reported in figs. 5.8 and 5.9. Moreover, the apPR algorithm also does

better than the corresponding algorithms using precise line search.
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Fig. 5.8 - Comparison of the MSA, the algorithm using the traditional search

direction (TR q), the algorithm using the approximate preconditioned Polak-Ribiere

(apPR) search direction and hybrid algorithms started with the number of MSA

iterations indicated. Chen and Alpha network, Mendell-Elston approximation, 2 user

classes.
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Fig. 5.9 - Comparison of the MSA, the algorithm using the traditional search

direction (TR q), the algorithm using the approximate preconditioned Polak-Ribiere

(apPR) search direction and hybrid algorithms started with the number of MSA

iterations indicated. Chen and Alpha network, Clark approximation, 3 user classes.

The MSA, at the beginning of the calculations, outperforms also the apf'R. Hybrid

algorithms with the apPR (tested, as before, starting with 5, 10, 15 and 20 MSA

iterations) improve on the corresponding hybrid algorithms employing the traditional

search direction but there is no practical difference between the trend of the hybrid

apFR algorithms and those of the hybrid apl'R.
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With this search direction not all the numbers of starting MSA iterations improve on

the apPR used from the outset: 5 or 10 iteration, however, ensure a higher efficiency,

as shown in figs. 5.8 and 5.9.

5.2.5.5 Test Results for the Sioux Falls Network

On the Sioux Falls network the convergence trend for steps along the traditional

search direction obtained with one interpolation or checking that an improved

gradient is obtained coincide in all cases.

Using the traditional search direction refining the step to a given precision results in

convergence trends less efficient than when the step is not refined, as shown in the

example in fig. 5.10. The MSA does, on the whole, worse than using an optimised

step but, as seen in many other cases, performs well at the beginning (see again the

example in fig. 5.10). Using hybrid algorithms, started with 5, 10, 15, 20 MSA

iterations before turning to seeking the step by interpolation, results in some cases in

noticeable efficiency improvements as in fig. 5.11, although in other cases the

improvement is minor or there is little to choose between the original algorithm and

the hybrid ones, as in the example in fig. 5.12. In that case, starting with 5 MSA

iterations improves on using the optimised step at the beginning of the calculations

but does not as well on the whole.

Using the preconditioned Fletcher-Reeves search direction with precise line search

(algorithm ppFR) improves on the corresponding algorithms using the traditional

search direction both in terms of loadings and iterations, showing once more the

effectiveness of such search direction. Moreover, using precise line search does not

bring about the instabilities that are recorded in several cases when the Fletcher

Reeves search direction is used with step determined by simple interpolation or

making sure that an improved gradient has been found (algorithm apFR).

This oscillating convergence trend is not present in any case when the apFR is used

in hybrid algorithms after a number ofMSA iterations, as shown in fig. 5.13. All the
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hybrid algorithms, besides preventing the oscillations, give a better performance than

the algorithm with line search from the start. Fig. 5.14 depicts a typical result

obtained with apFR hybrid algorithms: they improve in all cases on the

corresponding algorithms using the traditional search direction.

--MSA

----e-TR q

-TRq(-2)

-TRq(-3)

-TRq(-4)

200

1~-------------------

o

-1~~~~~~-2~
"0 -3 +-----""'I---~----'~~--------
ffJ -4 +-------"i!;<~------''''''--,:,,)(.

~ -5 +------~----=:J>".--~lC:-:-~;__-----
c
- -6 +-----------.:~---'~~~~------

-7 +---------'1I;,---.a..---"'lf--~-----
-8 +--------~;__--"""'---=-;>b_~~---

-9 +---------~----'~---''''v_~---
-10 -L.- _

loadings

Fig. 5.10 - Comparison of the MSA and algorithms refining the step along the

traditional search direction (TRq). The number in parenthesis gives is power of ten

of the precision required. Sioux Falls network, path set Sl, Mendell-Elston

approximation, 3 user classes.
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Fig. 5.11 -- Comparison of the MSA, the algorithm using the traditional search

direction (TR) and hybrid algorithms started with the number of MSA iterations

indicated. Sioux Falls network, path set Sl, Clark approximation, 3 user classes.
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Fig. 5.12 - Comparison of the MSA, the algorithm using the traditional search

direction (TR) and hybrid algorithms started with the number of MSA iterations

indicated. Sioux Falls network, path set S2, Mendell-Elston approximation, 3 user

classes.
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Fig. 5.13 - Comparison of the MSA and hybrid algorithms using the approximate

Fletcher-Reeves search direction (apFR) started with the number ofMSA iterations

indicated. Sioux Falls network, path set S2, Mendell-Elston approximation, 3 user

classes.
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Fig. 5.14 - Comparison of the MSA, and hybrid algorithms using the traditional

(TRq) and the approximate preconditioned Fletcher-Reeves (apFR) search direction

started with the number ofMSA iterations indicated. Sioux Falls network, path set

S2, Clark approximation, 3 user classes.

The preconditioned Polak-Ribiere search direction, when coupled with a line search

refined to a given precision (algorithm ppPR) , gives a convergence trend that is

similar to that of the preconditioned Fletcher-Reeves search direction (on which it

slightly improves in some cases) but improves noticeably on the convergence

behaviour of the corresponding algorithms using the traditional search direction.

This can be noticed both when analysing the convergence trends in terms of loadings

and in terms of iterations.

Using the preconditioned Polak-Ribiere search direction with optimised steps

obtained making sure that an improved gradient has been obtained (algorithm apPR)

is more efficient that refining the step and is more efficient than using the

corresponding algorithm working along the traditional search vector or the

preconditioned Fletcher-Reeves search direction (when the latter does not give the

previously mentioned oscillating trends), though the improvement on the traditional

one is more noticeable, as shown in fig. 5.15. Moreover the apPR algorithm never

shows instabilities.
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Fig. 5.15 -Comparison of the MSA and algorithms refining the step to obtain an

improved gradient value along the traditional search direction (TRq), the

preconditioned Fletcher-Reeves search direction (apFR q) and the preconditioned

Polak-Ribiere search direction (apPR q). Sioux Falls network, path set S2, Clark

approximation, 2 user classes.
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Fig. 5.16 - Comparison of the MSA, algorithms using the traditional (TRq) and the

approximate preconditioned Polak-Ribiere (apPR) search direction and hybrid

algorithms started with the number of MSA iterations indicated. Sioux Falls

network, path set S2, Mendell-Elston approximation, 2 user classes.
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Fig. 5.17 - Comparison of the MSA, algorithms using the traditional (TRq) and the

approximate preconditioned Polak-Ribiere (apPR) search direction and hybrid

algorithms started with the number of MSA iterations indicated. Sioux Falls

network, path set Sl, Mendell-Elston approximation, 3 user classes.

The results obtained by starting the apPR algorithm after 5, 10, 15 and 20 MSA

iterations showed that, in most cases, this device improves on the performance of the

apPR used from the start. Moreover such algorithms are always more efficient than

the corresponding ones using the traditional search direction, and for low number of

starting MSA iterations, also slightly more efficient than the hybrid apFR ones

(though the difference disappears when more than 10 stating MSA iterations are

used). This can be seen observing again the examples in fig. 5.16 and 5.17.

5.2.5.6 Test Results for the Headingley Network

On the Headingley network the algorithms using the MUC SUE version of the

traditional search direction and returning the step after a single interpolation or

checking that an improved gradient has been found do not give identical

convergence trends in all cases and in some cases with 3 user classes the algorithms

not performing the improvement check show instabilities that can be explained by

the higher congestion forced by the presence of the three user classes. In fact these

instabilities are absent when the same network and user classes are considered with

elastic demand. However, it is important to note that algorithms checking for an

improved gradient as well as those refining the step to a given precision are robust

also in this case.
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As shown in figs. 5.18 and 5.19, also in this case the MSA does well at the

beginning of the calculations before being outperformed by the methods using the

traditional search direction and an optimised step. Using hybrid algorithms improves

on the convergence performance of the optimised step algorithm used from the start,

although in some cases more than 10 starting MSA iterations are necessary to bring

about an improvement, as shown again in figs. 5.18 and 5.19. The use of hybrid

algorithms also eliminates the instabilities recorded for algorithms that do not check

for gradient improvement.

Using steps refined to a given precision results, in some cases, in algorithms that are

less efficient than those checking only that an improved gradient has been found, but

in other cases refined step algorithms perform as well or slightly better. However

they do not perform better than hybrid algorithms.
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Fig. 5.18 - Comparison ofthe MSA, the algorithm using the traditional (TRq) search

direction with step returned after finding an improved gradient and hybrid

algorithms started with the number of MSA iterations indicated. Headingley

network, path set HI, Mendell-Elston approximation, 3 user classes.
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Fig. 5.19 - Comparison ofthe MSA, the algorithm using the traditional (TRq) search

direction with step returned after finding an improved gradient and hybrid

algorithms started with the number of MSA iterations indicated. Headingley

network, path set H2, Clark approximation, 2 user classes.

Algorithms working along the preconditioned Fletcher-Reeves search direction and

refining the step to a given precision (algorithms ppFR) do better than the

corresponding algorithms working along the traditional search direction as depicted

in the example in fig. 5.20.

Moreover, using refined steps does not result in instabilities of the convergence trend

which are instead recorded in a few cases and especially when the gradient

improvement is not checked. The device of using hybrid algorithms to eliminate the

instabilities works in all cases although, for some, at least ten MSA iterations to start

are necessary. This proves again the lack of robustness of the algorithms which do

not check for gradient improvement and also suggest that the preconditioned

Fletcher-Reeves search direction applied approximately to the solution of the MUC

SUE problem may be prone to instabilities, just as it was in the SUE case.

Using the apFR algorithm after a number of MSA iterations gives convergence

trends that improve on those of the corresponding algorithms using the traditional

search direction as shown in fig. 5.21.
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Fig. 5.20 - Comparison of the MSA and algorithms refining the step to a precision

of ](;-3 along the traditional search direction (PTR), the preconditioned Fletcher

Reeves search direction (PFR) and the precondition Polak-Ribiere search direction

(PPR). Headingley network, path set H2, Clark approximation, 2 user classes.
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Fig. 5.21 - Comparison of the MSA, and hybrid algorithms using the traditional

(TRq) and the approximate preconditioned Fletcher-Reeves (apFR) search direction

started with the number ofMSA iterations indicated. Headingley network, path set

H1, Clark approximation, 2 user classes.

There is little to choose between the convergence trend of the preconditioned Polak

Ribiere algorithm with step refined to a given precision (ppPR) and the

corresponding preconditioned Fletcher-Reeves algorithms as shown in fig. 5.20,

which plots the measure of convergence reached by the algorithm against the

number of loadings.
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Not refining the step and simply checking that an improved gradient has actually

been found is, however, the best strategy to obtain the best performance from this

search direction. This algorithm does at least slightly better than the corresponding

Fletcher-Reeves and noticeably better than the one using the traditional search

direction (see the examples in figs. 5.22 and 5.23).

Also using a number of MSA iterations before using the optimised line search is

generally of advantage over using an optimised line search from the start, as can be

seen again in figs. 5.22 and 5.23. Different numbers of MSA to start may have

different degrees of effectiveness in accelerating the rate of convergence of the

algorithm but the improvement over the corresponding algorithms using the

traditional search direction is always noticeable, whilst there is little to choose

between hybrid apFR and apPR algorithms, especially with more than 10 MSA

iterations to start.
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Fig. 5.22 - Comparison of the MSA, the algorithm using the traditional search

direction (TR q), the algorithm using the approximate preconditioned Polak-Ribiere

(apPR) search direction and hybrid algorithms started with the number of MSA

iterations indicated. Headingley network, paths set H2, Mendell-Elston

approximation, 2 user classes.
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Fig. 5.23 - Comparison of the MSA, the algorithm using the traditional search

direction (TR q), the algorithm using the approximate preconditioned Polak-Ribiere

(apPR) search direction and hybrid algorithms started with the number of MSA

iterations indicated. Headingley network, paths set HI, Clark approximation, 3 user

classes.

5.2.6 Conclusions

The multiple user classes framework proposed by Daganzo (1982) provides a

flexible way to include users perceiving different costs in traffic assignment models.

The objective function suggested by Daganzo (1982) can be elaborated to obtain the

equivalent programme for MUC SUE (5.5) in terms of standardised costs that,

although defined by an objective function that is not convex everywhere, has a

unique solution.

Solution algorithms that are extensions of those for SUE studied in chapter 4 have

been proposed to solve the MUC SUE problem using the objective function (5.5).

The search direction linking the current and the auxiliary standardised link and path

flow solutions, that is the equivalent of the traditional search direction in the MUC

SUE problem, can be used in algorithms with fixed step and with step length

obtained by interpolation. An MSA algorithm based on this search direction and an

algorithm finding the step by quadratic interpolation of the objective function have

been proposed and tested. Interpreting the previous search direction as a

preconditioned steepest descent search direction, the idea of using preconditioned

conjugate gradient algorithms has been put forward and in particular the
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preconditioned Polak-Ribiere and Fletcher-Reeves algorithms, finding the step by

quadratic interpolation of the objective function, have been suggested.

The numerical tests suggested no substantial differences between the cases when the

algorithms were used with the improved Clark and with the Mendell-Elston

approximation. The results showed that the MSA is outperformed by the other

algorithms although its good initial efficiency supports the development of a hybrid

algorithm starting with a number of MSA iterations before employing one of the

other methods.

Refining the step along a search direction was found to be not efficient and the best

strategy seemed to interpolate until an improved gradient is found, which in most

cases coincided with carrying out a single interpolation. The algorithms using the

traditional search direction with this step determination strategy were outperformed

by those using the preconditioned Polak-Ribiere search direction, whilst those using

the preconditioned Fletcher-Reeves showed some instabilities.

Starting these algorithms after a number of MSA iterations, that is using them in

hybrid methods, gave the best overall performances. In particular, the algorithms

using the traditional search direction are again outperformed by those using the

preconditioned Polak-Ribiere one, which have efficiency similar to those using the

preconditioned Fletcher-Reeves search direction.

5.3 Stochastic User Equilibrium Models with Elastic Demand

(SUE ED)

5.3.1 Introduction

Elastic demand (ED) models refine the SUE framework by considering, in an

aggregate way, drivers' responses to changes in network costs different from re

routeing. The SUE and MUC SUE models considered so far, in fact, are known as

fixed demand models since the OD matrix assigned is fixed and independent of the

network conditions and, when the costs on the network change, the modelled drivers

may only change the route they travel along.
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However, two reports in the recent literature, one of which was issued by SACTRA

(1994) and the other produced by MYA (1997), respectively concerned with "Trunk

roads and the generation of traffic" and the "Impact of highway capacity reduction",

remarked on the need to model variable demand for obtaining more realistic results.

Although it is rather common practice to assume the demand fixed and independent

of the network conditions, several possible, and sometimes dramatic, changes in

transportation demand may be brought about by variations of transportation facility

provision and availability and may take place in different temporal horizons. The

SACTRA (1994) and the MVA (1997) reports characterised the following possible

changes: route change (re-assignment), change in travel frequency, release of

completely new journeys or suppression of existing journeys, journey re-timing,

travel to new destinations (trip re-distribution), change in modal split, change in

vehicle occupancy, and change in land use pattern.

The SACTRA suggested that future models should be extended to account for the

complex and interrelated sets of land use and travel decisions that encompass, as the

final stage, the choice of route through a network. While these more comprehensive

models are being developed, the SACTRA report suggested using elastic demand

modelling to account for some of those responses.

In Stochastic User Equilibrium assignment with Elastic Demand (SUE ED) the OD

matrix entries are related to the network conditions between the relevant OD pair

through an elastic demand function such as, for instance, the power function:

D =D (SorsJers Ors S
rs

(5.32)

where Drs is the demand between the OD pair rs, Dors the relevant base value of the

demand, Srs the present expectation of the minimum perceived cost of travelling

between rand s (the satisfaction), SOrs its base value and e the elasticity. In (5.32) the

current satisfaction Srs is used as a summary measure of the cost of travelling

between the relevant OD pair and determines the level of demand travelling.

Assuming a positive elasticity (5.32) gives a decreasing level of demand with

increasing current costs.
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The power elastic demand function (5.32) is used in the present work as it is widely

employed in the economic literature and uses a constant elasticity. However the

models discussed are independent of the functional form of the demand functions.

Other forms of elastic demand function can be used, as long as they are invertible.

The commercial software SATURN (Van Vliet and Hall, 1993), for instance, allows

also the use of logit or closed exponential function, of the exponential and of the

elastic exponential or semi-log function (Hall et al., 1992). Different sorts of elastic

demand functions and their effect on trip suppression or release of long and short

trips are discussed in Emmerson (1992).

Including elastic demand in an equilibrium traffic assignment model entails

modelling an equilibrium situation where the traffic pattern is consistent with the

network costs (as in the models in chapter 4) and also the level of traffic between

each OD pair is consistent with the relevant cost of travelling (the deterministic cost

between the OD pairs in the UE case and the expectation of the minimum perceived

cost, the satisfaction, in the SUE case).

5.3.2 Elastic Demand Models in the Literature

Before looking at the Elastic Demand models in the literature it should be mentioned

that they are not the only possible way to complement traffic assignment with

aggregate models that vary the number of trips between each OD pair depending on

the network conditions. In fact, also a number of heuristics used for this aim has

been reviewed by the European Commission (1996) which, however, underlined that

they account only for trip suppression due to congestion and lack a behavioural

basis. The same report remarked that elastic demand models should be preferred as,

beside being behaviourally sound, they account both for suppressed trips (in the case

ofworsening ofnetwork conditions) and for released trips (when network conditions

improve).
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In the deterministic User Equilibrium case the Elastic Demand problem is well

studied and efficient algorithms exist in commercial software (see e.g. Hall et al.

1992, for a study on using the SATEASY module of SATURN for elastic demand).

In fact, it had been studied already by Beckmann et al. (1956) and can be solved in

an elegant way by network representation: it is reduced to a UE traffic assignment

problem (and therefore can be solved with an UE algorithm) on an extended network

where an added dummy link between each OD pair, with a cost function obtained as

the inverse of the ED function, carries the demand not assigned to the real network

(see e.g. Sheffi, 1985).

Within the SUE framework, the ED problem has not been reduced to an assignment

problem on an extended network. However, as shown recently in the research work

on the extension to ED of the SAM-SUE model (Maher and Hughes 1997b, 1998b;

Hughes, 1998; Maher et al., 1999 and Maher and Zhang, 2000), it can be solved with

algorithms closely related to the ones for SUE traffic assignment with fixed demand.

The methods proposed in that research work are described in the remainder of this

section and have been the starting point for the algorithms and formulation discussed

in the following sections.

Maher and Hughes (1998b) suggested solving the problem, in either the logit or the

probit case, by solving separately but simultaneously for the equilibrium of the flows

and of the demand. They posed the problem as one of minimising simultaneously the

objective function for SUE:

Xi

zsuAx) =- L fc;(u)du + LX;c;(x;) - LqrsSrs(x)
I 0 I RS

(5.33)

proposed by Sheffi and Powell (1982) and introduced already in chapter 4, and an

objective function for elastic demand:

q"

ZED(X,q)= LqrsSrs(x)- L fD~l(q)dq
RS RS qo"

(5.34)
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where rs is one ofthe RS Ol) pairs on the network, qrs is the current flow between rs,

Srs is the satisfaction for the drivers travelling between rs, and D-1rs(.) is the inverse

demand function for the Ol) pair rs. Calculating the gradient of ZED (5.34) w.r.t. the

Of) demands qrs, it is possible to verify that a stationary point of this function is the

point at which Srs(x) = D-1rs(qrs) , that is the ED equilibrium point, since the network

costs and the demand are consistent with each other. Thus, the point at which both

(5.33) and (5.34) are minimised is the SUEED equilibrium point for a network.

Simultaneous minimisation of (5.33) and (5.34) can be carried out as unconstrained

as the solution satisfies the non-negativity of link and path flows and the consistency

of the flows on the paths between an OD pair and those resulting from the elastic

demand functions.

Maher and Hughes (1997b) proposed two algorithms working along the traditional

search direction for solving (5.33) (as in SUE, see chapter 4) and along the vector

linking the demands obtained from the current costs and the current demand for

function (5.34).

The algorithms find the solution by moving iteratively of a step along each of the

search directions:

(5.35)

(5.36)

where x(n) and q(n) are respectively the current link flows and the current OD

demands and s" and t(n) are their auxiliary counterparts, while '" /n) and ",/n) are the

steps along the different search directions.

The two algorithms proposed by Maher and Hughes (1997b) differ in the way the

step lengths are obtained. One algorithm is based on the MSA and both the steps are

1/(1+n) at each iteration. The second algorithm optimises the step length at each

iteration by approximating the gradients of the two functions as linear in both the

step lengths and obtaining the step lengths as the point along each search direction at

which the relevant approximated gradient is zero. Numerical tests on a link based
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case (Maher and Hughes, 1997b) showed that the second algorithm, named the Twin

Step Algorithm (TSA), is more efficient than the MSA and it can be even more

efficient if started with some MSA steps.

Maher and Hughes (1998b) proposed for the SUE ED problem the Balanced

Demand Algorithm (BDA) which owes its name to the fact that at each iteration it

finds the SUE solution along a search direction defined by two points satisfying the

demand conditions, therefore with demand and network costs in balance. The

algorithm is also based on the assumption that the points along that search direction

satisfy approximately the demand conditions. The first of the two points satisfying

the demand conditions and defining the search direction is given by the current link

flow pattern and by the demand consistent with the satisfactions due to the current

link flow pattern. The auxiliary set of link flows is found by loading such demand on

the network according to the costs due to the current flow pattern. The auxiliary

solution and the demand consistent with the corresponding costs give the point

defining the other extreme of the search direction. The SUE objective function (5.33)

is interpolated between these two points (by fitting a quadratic function, in the

algorithm proposed) and the minimum point of the interpolating function is taken as

optimal step length.

Maher and Hughes (1998b) remarked also that an alternative algorithm keeping the

assigned flows in balance, rather than the demands, could be used. However, they

did not consider it further as the computational costs of keeping the flows in SUE

would be higher than the cost ofkeeping the demand in balance.

Also the BDA has been found to perform well in numerical tests, and its efficiency

improves when it is started with a number ofMSA iterations.

Maher et. al. (1999) devised a single objective function for SUE ED that IS

independent of the choice model:
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X;

ZSUEED(X,q) =- L fc;(u)du + LX;c;(x;) - LSrJx)Drs (s, (x))+
I 0 I RS

q"

+ LD~l(qrs».(s; (x))+ L fD~l(q,Jdq - LqrsD~l(qrJ
RS RS qo" RS

(5.37)

where i is one of the I links, c, and Xi are respectively the cost and the traffic flow (of

the unique user class considered in this case) on link i. The vector x includes the

flows of all links of the network, whilst qrs and Srs are respectively the total number

of trips between the OD pair rs (one of the RS OD pairs of the network) and the

expected minimum travel cost for the drivers travelling between that OD pair. The

base value of the demand is qOrs. Furthermore Drs(.) is the strictly increasing demand

function for the trips between the OD pair rs (the objective function can

accommodate different demand functions or different parameters of the demand

functions for different ODs, if necessary) and D-1rs(.) is its inverse.

The objective function (5.37) can be optimised as unconstrained, as the solution will

satisfy the non negativity of path and link flows and the consistence of the sum of

the path flows between an OD pair and the flows given by the elastic demand

functions.

The minimum of the function (5.37) is the SUE ED point for a network as can be

seen obtaining its gradient as in Maher et al. (1999). A term of the gradient with

respect to the link flows results:

8z ( " «.»: JdC j
,,( -l() )8Drs-a = Xj - ~Drs s; ·~PrspO pj dx +c: Drs «; -Srs -a-

'Xj RS P j RS 'Xj
(5.38)

whilst differentiating with respect to the OD flows yields the following general term:

(5.39)

(5.38) and (5.39) are both zero only at the SUE ED point that is when the current

flows and demands are consistent with the current costs.
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Maher and Zhang (2000) showed that (5.37) is locally convex around the solution,

thus proving that the latter is a local optimum.

It is interesting to note that, when the demand is in balance the gradient (5.38) and

(5.39) of the SUEED objective function reduces to the gradient (4.5) of the SUE

objective function. This gives a theoretical framework for the use of the BDA.

5.3.3 A New Objective Function for SUE ED

This section proposes a new equivalent program for SUE ED that provides an

alternative interesting framework for the BDA and can be obtained by modifying the

SUE program ofSheffi and Powell (1982) written in terms of link flows or costs.

The equivalent SUE ED program is given by the objective function, which IS

minimised for the SUE ED link flows:

Xi s,,(x)

ZSUEED (x) = - L Jc; (co)ico + LX;c;(x;)- L JDrs(SrJdSrs
I 0 I RS So"

(5.40)

or, by the equivalent objective function, which is minimised by the SUE ED link

costs:

Ci S,,(c)

ZSUEED(C)= L JC~I(CO)iCO- L JDrs(SrJdSrs
I co; RS So"

(5.41)

Both objective functions can be minimised as unconstrained and the equivalence of

their solution to the SUE ED point for a network can be shown by writing a typical

term of their gradient. For (5.40), written in terms of link flows, assuming separable

link costs and additive path costs, a term of the gradient can be obtained as detailed

in appendix A3 and results in:

BzSUEED (x) =(X. _"D (S )" P 8. Jdc; =(x. _ y. ) dc;a I L... rs rs L... rsk ik dx I I dx
!X; RS K i i

(5.42)

where x; is the ith component of the current link flow vector and y; is the ith

component of the balanced auxiliary flow vector, the vector of link flows obtained
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by loading the demand consistent with current costs on the choice pattern consistent

with the same costs. Assuming strictly increasing link cost functions, (5.42) is zero

only when the flows obtained by assigning the result of the demand functions due to

the current costs are consistent with the current flows. This corresponds to the

SUEED conditions. In fact, the SUE conditions ca be written as the consistency of

the link flows on the network (Sheffi, 1985):

Xi - Iqrs IPrskDik =0 Vi
rs k

and the demand equilibrium as:

(5.43)

Vrs (5.44)

Assuming that the demand equilibrium condition is satisfied, as it is implied by

programme (5.40), the SUE ED condition can be written as:

Xi - I Drs (SrJIPrskDik =0 Vi
rs k

which is the term in brackets in (5.42).

(5.45)

A typical term of the gradient of the function (5.41) written in terms oflink costs is

derived in detail in appendix A4 and is:

(5.46)

where the symbols are as for (5.42) and is, agam, zero when the flows on the

network and the demands (through the costs) are consistent and (5.45) is satisfied,

that is at the SUE ED point.

The solution to the program (5.40) or (5.41) is unique in terms of link flows, link

costs and demands and, when a set of paths between each OD is given, in terms of

path flows and costs.
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The uniqueness of the solution to (5.40) and (5.41) in terms of link flows and costs

can be seen considering the respective Hessian matrices.

The Hessian of (5.40), obtained in appendix A3, is:

(5.47)

+LDrs(Srs Xv xC~rs X- VePrs Xv xC~rs y
RS

Similarly to the SUE case, in general it is not possible to characterise the sign of this

Hessian, though it is positive definite at equilibrium. The first matrix in the

expression of the Hessian is the diagonal Jacobian of the link costs and is positive

definite thanks to the assumption of strictly increasing link costs. The second matrix

is the product of the Hessian of the link costs by the diagonal matrix R of differences

between the auxiliary and the current link flows. The components of the matrix R

can take any sign but will be zero at equilibrium, where this component vanishes.

The third term is the summation of positive semidefinite terms built up by a positive

number (the opposite of the derivative of the demand function, which is negative by

definition) and a positive semidefinite matrix (it is only semidefinite due to the

definition of ~rs). The fourth and last term is the summation of positive semidefinite

components given by the product of the demand (a positive number) and a quadratic

form applied to a positive definite matrix (the opposite of the Jacobian of the path

choice probabilities). At the solution point the Hessian (5.47) is given by the sum of

a positive definite matrix and a number of positive semidefinite matrices and is thus

positive definite. The minimum of (5.40) is therefore a local optimum.

The Hessian of(5.41), obtained in appendix A4, is, in matrix form:

(5.48)

+LDrs(Srs X~rs X- V.e, X~rsY
RS
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The first term is positive definite, according to the definition of the link costs

assumed. The second term is the summation of elements given by a positive number,

the opposite of the derivative of the demand function and by a positive semidefinite

matrix as it can be seen as a quadratic form. The third term is a summation of

positive semidefinite matrices, as the Jacobian of the path choice probabilities is

negative definite. Therefore the Hessian (5.48) is the sum of a positive definite

matrix and of a number of positive semidefinite ones and is thus always positive

definite and the function (5.41) is convex in all its domain and its minimum is a

global minimum.

The one to one correspondence between link flows and costs means that also the

solution to (5.40) is unique although that function is not necessarily convex away

from the solution.

The analysis of Hessian (5.48) shows the global uniqueness in terms of link flows

and costs. Given a set of paths, the uniqueness of the link costs entails the

uniqueness of the satisfaction between each OD pair and therefore also of the

demand. It also entails the uniqueness of the path costs, and thus of the path choice

pattern between each OD pair and, as a result of the uniqueness of the demands, also

the uniqueness of the paths flows.

When the demand is fixed, the objective functions (5.40) and (5.41) reduce to

objective functions equivalent to those for SUE. In fact, in that case they differ from

the SUE ones by a constant term (irrelevant for the optimisation) that is the

summation, over all OD pairs, of the constant demand by the reference satisfaction.

The new objective function (5.40) gives an alternative framework for the Balanced

Demand Algorithm proposed by Maher and Hughes (1998b). In fact, the relation

between the BDA and (5.40) parallels the one between the traditional SUE search

direction and the SUE objective function (4.3). The BDA search direction is the

opposite of the term in brackets in (5.42) therefore the dot product of (5.42), the

gradient of the new SUE ED objective function (5.40), and of the BDA search
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direction is always negative, thus ensuring that the BDA search direction is always a

descent direction for the SUE ED problem.

5.3.3.1 Relationship Between SUE ED Objective Functions

The objective function of Maher et al. (1999) and the new objective function (5.40)

for SUEED proposed in the previous section are related by the demand balancing

and by a change of variable.

The first two terms of (5.37) and (5.40), referring to the current flows and costs, are

the same in the two expressions.

The demand considered in (5.40) is in balance with the current costs, as the integral

with upper integration limits Srlx) implies. This entails that the following two

expressions are satisfied:

(5.49)

(5.50)

Considering the demand as being in balance, the third and fourth terms in (5.37)

which are:

- LSrJx)D(sjx)) + LD~I(qJD(Srs(x))
RS RS

can be rewritten substituting (5.50) for Srs in the first term:

- LD~I(qJD(Sjx))+ LD~I(qJD(Srs(x))
RS RS

(5.51)

(5.52)

which is equal to zero. An equivalent result is obtained substituting (5.49) for qrs in

the second term.

Furthermore, considering (5.50) and writing:

(5.53)
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the third term in (5040) can be written as a function of qrs=DrlSrlx)):

s,,(x) q,,(x) dD;.l(ro)
- L fDrs(SrJdSrs = - L f co di»

RS So" RS qo" de:

Integrating this by parts gives:

q,,(x) dD-1(ro)-L f co rs di»=
RS di»

qOrs

q,,(x)

- LD;'l(qrs(x)kr,(x)+ LD;'l(qorskors + L fD;'l(ro)dro
RS RS

(5.54)

(5.55)

The second term of (5.55) is a constant and can be disregarded as it does not change

the point at which the objective function is minimised. The other two terms coincide

with the fifth and sixth term in (5.37). Therefore (5040) can be read as a section of

(5.37) obtained when the demand is in balance.

5.3.4 Algorithms for the Probit Path-Based SUE ED Problem

5.304.1 Introduction

Building on the studies in the literature outlined above and on the new objective

function proposed in section 5.3.3, a number of algorithms solving the SUE ED

problem by minimising the objective function (5040) can be put forward for path

based probit, and similar methods could be used also in link-based cases and with

other choice models solved analytically.

The algorithms suggested in this section are presented without reporting on

numerical tests. Information on the performance of such algorithms can be, however,

inferred (at least to an extent) from the efficiency data for similar algorithms adapted

for solving the MUC SUE ED problem, studied later in this chapter, as that problem

is an extension of the SUE ED one and is solved with algorithms that are extensions

of those suggested here.

With all the algorithms, the value of the satisfaction function, or expected minimum

cost between an origin-destination pair, must be determined, not only to drive the
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algorithms, but also to calculate the variation of the demand as a function of the

network conditions, as it is the independent variable of the elastic demand functions.

In chapter 3 a number of alternative ways to approximate the value of such function

have been delineated.

5.3.4.2 SUE ED Path-Based Algorithms with BDA Search Direction

Building on the discussion on the algorithms for SUE and for MUC SUE, the BDA

search direction can be used along with methods for determining the step length

according to a predefined rule or by using information on the local shape of the

objective function.

The first type of algorithm includes the MSA, that gives the step as (l +nyl where n

is the current iteration number, and similar methods such as the MWA proposed in

chapter 4. An MSA working along the BDA search direction has already been

proposed by Maher and Hughes (l998b).

The second type of algorithms couples the BDA search direction with anyone of the

optimised line search method tested in chapter 4. When the objective function is

approximated with a quadratic along the search direction using the values at its two

extremes, the original version of the BDA algorithm put forward by Maher and

Hughes (l998b) is obtained.

The interpolation methods presented in chapter 4 use the values of the gradient and,

in the cubic case, of the objective function at different points along the search

direction. The objective function (5.40) can be readily evaluated especially as in

SUE ED problems the values of the satisfaction between each OD pair are used also

to perform the balanced stochastic loadings.

The value of the gradient of (5.40) along a search direction can be calculated

working along the same lines followed to obtain the gradient of the SUE and of the

MUC SUE objective functions along a search direction. In more detail, the

components of a point Xj(A) along the search direction at iteration n can be written as a

function of the step Ataken along the search direction as

344



X~A) =X(n) + 'A(y~n) _ X~n»)
1 Z Z I

(5.55)

where xt) is the current flow on link i at iteration n, yt) is the auxiliary flow on link

i at iteration n, obtained performing a balanced loading on the network costs due to

the flows x/n) , consistent with the definition of the balanced demand search direction.

Then, exploiting the chain rule of derivation, the derivative of the MUC SUE

objective function (5.40) along the search direction can be written as:

dz SUEED =2: az SUEED dx,
d): I aXi d'A

(5.56)

The first term is simply the gradient of the SUE ED objective function, already

obtained in (5.42), that is rewritten here as taken w.r.t. Xi(A):

aZSUEED _ (_ (A) (A») dCia (A) - Yi + Xi dx(A)
Xi i

The definition ofxP') above gives immediately

dx(A)
_'_._ = yen) _ x(n)

d): ' ,

thus (5.56) can be rewritten as:

dz SUEED ="" (_ y~A) + X~A») dC i (y~n) _ x~n»)
d'A ~ , 'dX~A)' I,

(5.57)

(5.58)

(5.59)

The gradient at a point along the search direction is obtained by substituting the

flows defining that point and the relevant auxiliary solution for x().) and y().).

Therefore, whilst the MSA requires simply a balanced demand loading to determine

the search direction, using one of the interpolation methods proposed in chapter 4

will require one additional balanced loading for each point along the search direction

at which function and gradient information are evaluated. In the case of the quadratic

interpolation carried out once, two loadings are necessary at each iteration (including

the one necessary to determine the search direction). If the interpolation is refined in
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subintervals one more loading will be required for each additional subinterval

examined.

As in the SUE and MUC SUE case algorithms calculating the step by interpolation

can be used as the second part of hybrid algorithms, after starting solving the

problem with a number ofMSA iterations.

5.3.4.3 SUE ED Path-Based Algorithms with Alternative Search Directions

The parallel between the BDA search direction for the SUE ED problem and the

traditional search direction for the SUE problem mentioned in 5.3.3 can be taken

forward by interpreting the BDA search direction as a preconditioned steepest

descent direction for the SUE ED problem expressed by the objective function

(5.40).

Considering the gradient (5.42) of the objective function (5.40) the BDA search

direction t can be written as:

t =y-x =JJ-1(y-x) =J-1V xz(x) (5.60)

Where J is the Jacobian of the link costs, defined as in the SUE case. The (5.60) is

similar to (4.35) that showed an analogous relationship for the SUE case. Recalling

the consideration in 4.3.5, the BDA search direction can be analogously seen as the

expression, in the space of the link flows, of the steepest descent search direction in

the space given by the change of coordinates defined by the square root of the

Jacobian of the current link costs.

Then, similarly to the SUE case, preconditioned search directions for the SUE ED

problem can be put forward. For instance preconditioned conjugate gradient search

directions similar to those considered in chapter 4 can be used. The final formulae

for determining, for instance, the preconditioned Fletcher-Reeves and Polak-Ribiere

search direction for (5.40) are identical to (4.55), (4.58), (4.59) and (4.60) except for

the fact that the gradients now refer to (5.40) and the auxiliary solutions are balanced

auxiliary solutions.
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When calculating the value of the gradient of the objective function along a search

direction different from the BDA one for the computation of the optimal step, (5.58)

should be changed by substituting y(n) with the flows at the extreme of the modified

search direction.

Also the algorithms using modified search directions can be used after starting to

solve the SUE ED problem with a number ofMSA iterations.

5.3.5 Conclusions

Elastic Demand models can include in traffic assignment models transportation

choices different from the one of route by representing them in an aggregate way.

Their use has been encouraged until more complex models, accounting explicitly for

the many transportation choices affected by changes in network costs, are available.

In the User Equilibrium case the elastic demand problem is well studied and solved

reducing it to an assignment on an extended network and only recently the SUE ED

problem has been posed so that it can be solved with algorithms closely related to

the ones for SUE traffic assignment with fixed demand (Maher and Hughes, 1998b).

The study in this section built on the work of Maher et al. (1999) and proposed a

new equivalent programme that reduces the SUE ED problem to one in terms of link

flows or link costs, which has a unique solution. The relationship between the new

programme and the one ofMaher et al. (1999) has been explained.

A number of algorithms have been proposed, building on those already put forward

by Maher et al. (1999) and basing them on the formulation of the problem proposed

in this section.
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5.4 Stochastic User Equilibrium with Multiple User Classes and

Elastic Demand (MUC SUE ED)

5.4.1 Introduction

SUE with multiple user classes (MUC) and elastic demand (ED) can be considered

together by integrating the frameworks and the algorithms presented in the previous

sections. For each user class, the resulting MUC SUE ED models assign OD flows,

that are a function of the costs of travelling between each OD pair for each user

class, on the path choice pattern resulting from the costs perceived by that user class.

At the MUC SUE ED point for a network, flows, costs and demands for each of the

user classes modelled are separately in equilibrium. In other words at the MUC SUE

ED point no user can improve his perceived cost by changing route or deciding not

to travel in the modelled period.

5.4.2 MUC SUE ED Models in the Literature

The MUC SUE ED problem has been considered in the literature by Daganzo (1983)

who expressed it as a fixed point problem and solved it with the MSA, to consider

also non separable link costs, within the MUC cost and flow structure already

appeared in Daganzo (1982) and explained in 5.2.3.

Maher and Zhang (2000) considered the MUC SUE ED problem when the costs for

the different user classes are separable and multiples of each other or when they

perceive the same systematic cost but with different perception errors (constant

across the network), as these settings are equivalent for the scalability of the choice

models. They considered the case of separable link costs and put forward objective

functions, which are extensions of (5.37) that they devised for SUE ED. They also

proposed to solve the problem using algorithms that are extensions of those they

used for the SUE ED problem, which are described in section 5.3.
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5.4.3 An Objective Function for MUC SUE ED

A MUC SUE ED programme for the multiple user classes framework of Daganzo

(1982) and for separable link costs and additive path costs can be written by

considering together the programmes for MUC SUE (5.3) and SUE ED (5.37). The

resulting programme can be optimised as unconstrained since at the solution path

and link flows will satisfy the non-negativity constraints and the path flows between

each OD pair will be consistent with those resulting from the elastic demand

functions.

The MUC SUE ED programme is expressed by the minimisation of the following

objective function:

(k) (k) q;;)

+~~~ D(kl-I{q(kl)o(kl(S(kl(v))+~~~ fD (kl -1(cr)dcr +
L.... A(k) L.... rs ~ rs rs rs L.... A(k) L.... rs
K J-' RS K J-' RS q;;J

(k)
_~~~q(kl D(kl-1{q(kl)

L.... A(k) L.... rs rs ~ rs
K J-' RS

(5.61)

where the control variables are the standardised link flows v (defined in 5.1) and the

OD flows q. The subscript (k) refers to the user class k of the K present, uCk) and pCk)

are as for (5.1) and (5.2), D;:l(.) and D;:l-I(.) are the demand function and its

inverse for the OD pair rs and class k and S;:l is the corresponding satisfaction.

If one user class only is considered, the (5.61) is equivalent to the objective function

for SUE ED (5.37). Similarly, if no elastic demand is considered (5.61) becomes

equivalent to the objective function for MUC SUE in terms of link flows. Finally,

(5.61) becomes equivalent to the objective function for SUE in terms of link flows if

MUC and ED are excluded.

The characteristics of (5.61) are those of the SUE ED programme of Maher et at.

(1999): it is independent of the choice model, it can be used with any elastic demand
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function and also with different elastic demand functions or different parameters for

the functions for each Ol) pair and user class.

The equivalence of the solution of (5.61) to the MUC SUE ED problem can be

shown by considering the MUC SUE ED conditions for a network written in terms

of standardised link flows and Ol) flows by user class:

V. - "a(k)"q(k)" P(k)8 . =0 Vi
I ~ ~ rs ~ rsp pi

K RS P
(5.62)

q (k) -D(k)(S(k))=O
rs rs rs Vrs,k (5.63)

(5.63) is also equivalent to:

D(k)-I(q(k))_S(k) =0
rs rs rs Vrs,k (5.64)

The typical terms of the gradient of(5.61) are obtained in detail in appendix A5 and

result in:

OZMUCSUEED =( ._" (k)"D(k)(S(k))I"P(k)s:(~)Jdbi
VI ~ a ~ rs rs ~ rsp U pI +

oVi K RS P dv,

(5.65)

a (k) dD(k)-1 ( (k))
ZMUCSUEED =~(D(k)(S(k))_ (k)) rs ~qrso (k) f.l.(k) rs rs qrs d (k)s; I-' «;

respectively w.r.t. the standardised link flows and the Ol) trips by class.

(5.66)

The gradient terms (5.65) and (5.66) are both zero when (5.62) and the equivalent

(5.63) and (5.64) are satisfied, that is at the MUC SUE ED point for a network.

Considerations analogous to those presented by Maher and Zhang (2000) for the

SUE ED programme can be used to show that the Hessian of (5.61) is positive

definite at equilibrium and, therefore, that such point is a local optimum. The

differences between the two proofs are due to the introduction of several user

classes.
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The Hessian of (5.61) at equilibrium can be obtained as detailed in appendix A5. It

can be written in partitioned form as:

V
2

ZMUCSUEED =
[

8 2Z MUCSUEED ]

8q(k)8q(l)
rs tu

[
82ZMUCSUEED ]

8q(k)8v.
rs I (5.67)

The expressions of the general terms of each of the four submatrices are reported in

appendix A5.

Similarly to the case analysed by Maher and Zhang (2000), the positive definiteness

of (5.67) can be shown considering it as a Hermitian matrix, since a real Hermitian

matrix is a real symmetric matrix. A Hermitian matrix, partitioned as [:' ~] with

A and C being square matrices, is positive definite if and only if A is positive

definite and C-BTA-1B is positive definite (this theorem is reported e.g. in Hom and

Johnson, 1990).

Taking as A, Band C the corresponding submatrices in (5.67), A is the diagonal

matrix given by (see appendix A5):

[

a,(k) dD(k)-I{q(k))]
2 • rs ~ rs

A =V q Z MUCSUEED =diag - (k) (k)
B dqrs

(5.68)

and is positive definite since the inverse demand functions are strictly decreasing

thus the elements of the diagonal are all positive.

The inverse of A is:

-I _ . [_ B(k) dD~:) (S~:))]
A - diag (k) (k)

a, as; (5.69)
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and is positive definite since all its diagonal terms are positive.

The matrix B is a rectangular matrix with general term given by:

(5.70)

(see again appendix AS for the derivation). The product BTA-1B is complicated, with

respect to that for the SUE ED objective function considered by Maher and Zhang

(2000), by the presence of the multiple user classes. It results in a matrix that can be

shown to have general term:

(5.71)

In matrix form this can be written as:

The submatrix C, again from appendix AS, is:

2 " (k)A (k)" ( (k) X (k) X (k»)TV yZ MUCSUEED =V yb + LJ a I-' LJ q rs V ybL\rs - V e(k) Prs V ybL\rs +
K RS

Thus C_BTA-1B can be written by subtracting (5.72) from C, which results in:

C - B T A -IB =V b +"a (k)A(k) "q (V bL\(k) X- V p(k) Xv bL\(k»)T +
v LJ I-' LJ rs v rs e(k) rs v rs

K RS

(k) 1 (dV(k) J]a (k). rs V (k) T
+L ("k)(V YSrs diag --(k-) (YSrs)

K ~ dS~

(5.72)

(5.73)

(5.74)

This matrix is positive definite since it is the sum of a positive definite matrix and a

number of positive semidefinite matrices. In fact, the first matrix building it up is the
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Jacobian of the common part of the link costs, which is positive definite by

definition. The second term is a summation of matrices given by quadratic forms of

positive definite matrices (the opposites of the Jacobians of the path choice

probabilities for each user class) that result positive semidefinite (due to the

definition of the link-path incidence matrix). Similarly, the third term is the

summation of quadratic forms of positive definite matrices, that result positive

semidefinite.

Thus, since both A and C_BTA-1B are positive definite, the Hessian of (5.61) is

positive definite at equilibrium and such point is a local minimum.

5.4.4 An Alternative Objective Function for MUC SUE ED

A further equivalent programme for MUC SUE ED can be developed in the vein of

the programme (5.40) or (5.41) proposed for SUE ED, considering the MUC

framework of Daganzo (1982), separable link costs an additive path costs.

The MUC SUE ED flows for a network can be found by minimising the objective

function:

(5.75)

Alternatively the MUC SUE ED link costs and OD flows on a network can be

obtained by minimising the equivalent objective function (linked to the previous one

by a change ofvariable):

(5.76)

As with the objective function (5.61), the cases when either elastic demand or

multiple user classes or both are not considered can be seen as particular cases of

this formulation. So (5.75) and (5.76) reduce to a function equivalent to the (5.5) and

(5.4) when the demand is fixed, to (5.40) and (5.41) when there is only one user
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class (for link costs defined in both cases as in (5.1», and to (4.3) and (4.4) when

one user class only and fixed demand are considered.

The MUC SUE and demand equilibrium conditions for a network have been

reported above in (5.62) and (5.63). They can be combined, if it is assumed that the

demand equilibrium is always satisfied, as it is implied by the objective functions

above, to obtain the MUC SUE ED condition:

v. - ~a(k)~ D(k){S(k»)1" p(k)(j . =0 Vi
I L..J L..J rs \ rs :L.. rsp pi

K RS P

(5.77)

This point is the MUC SUE ED point for the network. In fact, the consistency of the

standardised link flows implies the consistency of the link costs by user class. Given

a set of paths for each class between each OD pair, the consistency of the link costs

by user class entails the consistency of the choice pattern and of the satisfaction (and

thus of the demand) between each OD pair and for each user class. Thus each user

class is in equilibrium.

The equivalence of the solution to (5.75) and (5.76) to the MUC SUE ED point for a

network can be verified by calculating their gradient.

A term of the gradient of (5.75) w.r.t. the standard link flows can be obtained as

detailed in appendix A6 and results in:

8zMUCSUEED(v) =(v. _~ a(k)~ D(k) {S(k»)1" P(k)(j~k)Jdb; =(v. _w.)db;
~ • I L..J L..J rs \ rs :L.. rsp ip d I I d
u~ K M P ~ ~

(5.78)

where the Wi are the auxiliary link flows resulting from loading the demand

consistent with the current costs on the path choice pattern resulting from the current

costs and the derivatives of the common part of the link costs are strictly positive as

the link performance functions are assumed to be strictly increasing.

Differentiating (5.76) w.r.t. the common part of the link costs (as reported III

appendix A7) yields the general term of the gradient:
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8ZMUCSUEED(b) =V. _ "'aCk)'" DCk)(SCk))~pCk)8~k) = . _ .
8b I L... L... rs rs L... rsp ip V, W,

i K RS P
(5.79)

In both cases the gradient will be zero only when the current standardised flows

coincide with the auxiliary standardised flows obtained by loading the demand

consistent with the current costs on the choice pattern resulting from the current

costs for the relevant user class that is when the MUC SUE ED condition (5.77) is

satisfied.

The analysis of the Hessian of the two versions of the objective function, and

therefore of their convexity, parallels that of the Hessian of the SUE programme of

Sheffi and Powell (1982) and ofthe programme (5.40) or (5.41) for SUE ED.

The Hessian of(5.75) is (the derivation is detailed in appendix A6):

(5.80)

+ '" a(k)A(k)", D Ck)(SCk) Xv bl1Ck)X-V . pCk) Xv bI1Ck))TL... I-' L... rs rs v rs e(k) rs v rs
K RS

and is positive definite at the equilibrium point although its sign elsewhere is not

known a priori. This can be seen analysing each of the terms building it up. The first

term is the Jacobian of the common part of the link costs, and is diagonal and

positive definite thanks to the assumption of separable and strictly increasing costs.

The sign of the second term is conditioned by the sign of R, the diagonal matrix of

the difference between the present and the auxiliary balanced solution in terms of

standardised link flows, which can take any sign in general but will be zero at

equilibrium. The third term is the summation of a number of products of a positive

number (the opposite of the derivative of the demand function) by a positive

semidefinite matrix. The fourth term is positive semidefinite as it includes the

quadratic form of a positive definite matrix (the opposite of the Jacobian of the path

choice probabilities) and as the quadratic form includes the link-path incidence

matrices. Thus, when R vanishes at equilibrium, the Hessian is positive definite as it
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is the sum of a positive definite matrix and a number of positive semidefinite

matrices.

This means that, although nothing can be said about the shape of (5.75) away from

the solution, it is convex at the solution and the MUC SUE ED point is a local

minimum. To show that it is also a global minimum, it is necessary to look at the

Hessian of the demand function in terms of common parts of the link costs.

Differentiating once more the gradient defined in (5.79) W.r.t. the common part of

the link costs yields the Hessian of (5.76) that results in:

V2z (b) =V b-1 +~a(k)~(_ dD~;l ](,1.(klP(klX,1.(klP(kl)T +
MUCSUEED b L..J L..J dS k rs rs rs rs

K RS rs

+ ~a(k)R.(k)~ D(k)(S(k)'J,1.(kl(_V p(kl\A(klT)
L..J )J L..J rs rs Jv.. rs e(k) rs ? rs

K RS

(5.81)

This Hessian is derived in detail in appendix A7 and is positive definite over all the

domain of the function, which is therefore convex and has a unique solution.

To check the positive definiteness of (5.81) consider that its first term is diagonal

and positive definite (because of the definition of the common part of the link costs:

separable and strictly increasing) and the other terms are positive semidefinite. In

fact the second term is the product of a positive number (the opposite of the

derivative of the demand function) and a positive semidefinite matrix. The third term

is the summation of products of positive numbers by a number of positive

semidefinite matrices, since the opposite of the Jacobian of the path choice

probabilities is positive definite and is included in a quadratic form defined by the

link-path incidence matrix.

The one to one correspondence between link flows and costs ensures that the

solution to either problem is unique in terms of common link costs and flows.

Moreover, the uniqueness of the common part of the link costs implies the

uniqueness of the link costs by user class. Given a set of paths for each class

between each OD pair, the uniqueness of the link costs by user class entails the

uniqueness of the choice pattern and of the satisfaction (and thus of the demand)
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between each OD pair and for each user class. Thus, demands between each OD

pair, path flows and path costs are unique for each user class.

5.4.5 Algorithms for the Probit Path-Based MUC SUE ED Problem

5.4.5.1 Introduction

This section describes alternative algorithms that can be used for the solution of the

MUC SUE ED problem and that are tested in the next section.

The algorithms proposed solve for MUC SUE ED by minimising (5.75) and are

introduced by referring to the description of the corresponding algorithms for SUE

reported in chapter 4 as they are extensions of those proposed for SUE, MUC SUE

and suggested for SUE ED. They allow us to follow the evolution of the current

solution in terms of both path and link flows and as in the SUE, MUC SUE and SUE

ED cases they can be also be used in link-based implementations and with other

choice models that can be written in closed form or approximated analytically.

The programme defined by the objective function (5.75) has been used to solve the

problem in a path-based case, although it refers to link data, as it is convenient to use

and has a proven unique solution.

5.4.5.2 The MSA Algorithm for MUC SUE ED

The MSA algorithm for MUC SUE ED is an extension of the corresponding

algorithms for SUE ED.

As in general in the MSA, the step is predetermined and given, at each iteration, by

(1+nyl where n is the iteration number. The difference from the other MSA is in the

search direction, consistent with the fact that the function optimised is (5.75). The

search direction is similar to the one used in the Balanced Demand Algorithm but

with the inclusion of multiple user classes and standardised flows. It can be termed

the MUC BDA search direction and its ith component is:
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(5.82)

(5.82) can also be seen in connection with the short objective function for MUC

SUE ED (5.75) as corresponding to the traditional search direction for SUE. As with

the SUE traditional search direction, taking the dot product with the gradient of

(5.75) it is possible to show that (5.82) is always a descent direction.

Given a set of paths between each OD, the search direction expressed in terms of

paths corresponds uniquely to the search direction expressed in terms of link flows

as in (5.82) therefore the same step applies and the progress of the solution can be

followed in either link or path flow terms.

5.4.5.3 MUC SUE ED Algorithms with MUC BDA Search Direction and

Optimised Line Search

The MUC BDA search direction (5.82) can be used in conjunction with any of the

optimised step calculation methods described and tested in chapter 4. It is considered

here only with the quadratic interpolation method to calculate the step, to focus on

the comparison between search directions rather than between different step

calculation methods, also having seen from chapter 4 that the quadratic method is

robust and that, in many cases there is little to choose between different step

calculation methods.

The quadratic interpolation corresponds to a linear interpolation of the gradient and

is carried out using the value of the gradient of the objective function at the two

extremes of the search direction. The step is given by the point at which the

interpolated gradient is zero. It can be calculated performing only one interpolation

along the search direction or refining it in subintervals chosen to contain the zero of

the gradient. The refinement can be carried out to ensure that an improved gradient

is found or until the step is calculated to a given precision.

The calculation of the gradient follows the same procedure explained in the MUC

SUE case in (5.22)-(5.26) with the only difference that the auxiliary solutions

employed must now be intended as balanced auxiliary solutions.
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5.4.5.4 MUC SUE ED Algorithms with Alternative Search Directions

The MUC BDA search direction used in the algorithms described above can be

interpreted in conjunction with the MUC SUE ED objective function (5.75) and its

gradient as in the SUE and MUC SUE cases. Thus it can be seen that the

transformation into the space of the standardised flows of a steepest descent search

direction in a space related to the flow space by a non-linear change of coordinates,

the latter defined by the square root of the Jacobian of the common part of the link

costs. In fact, the discussion parallels the one given in 4.3.5.2. with the difference

that the preconditioning matrix I n, in the MUC SUE ED case is the Jacobian of the

common part of the link costs, as it was in the MUC SUE case and as can be seen by

comparing the respective expressions of the gradient of the objective function.

Moreover, in the present case, the auxiliary solution must be intended as a balanced

standardised auxiliary solution.

Continuing the parallel with the interpretation of the traditional search direction

presented in chapter 4, it is possible to write algorithms working along

preconditioned conjugate gradient directions. The final formulae can be written in

the space of the flows and are identical to (4.55), (4.58), (4.59) and (4.60) except for

the fact that, as mentioned in the previous paragraph, the preconditioner I n is the

Jacobian of the common part of the link flows and the gradient of the objective

function refers now to the MUC SUE ED function (5.75).

As in the SUE and the MUC SUE cases, although the coefficient combining the

previous search direction with the current MUC BDA search direction must be

calculated using quantities referred to the links, the search directions can be

expressed either in terms of link flows or path flows (for a fixed link-path incidence

matrix) and the algorithm can produce updates of the solution both in terms of path

and link flows. Moreover, similar algorithms can be used for pure link-based models.

The algorithms tested in the following sections employ the preconditioned Polak

Ribiere and the preconditioned Fletcher-Reeves search directions. The extremes of

the MUC BDA search direction define always a vector in the space of the feasible

flows. The preconditioned gradient search vector might extend into the semispace of

the negative flows, in which case it is shortened so that no flow is less than zero.
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Also with the preconditioned conjugate search directions the tests are carried out

only using the quadratic interpolation method described in the previous section with

step calculated interpolating once, or until an improved gradient is found or to a

given precision. The algorithms not implementing precise line search are used to try

and save on computational effort although the approximate line search may

introduce a further element of approximation (beside the changing preconditioner

and the non-linearity of the function) to the conjugacy of the search direction. In the

following sections the algorithms refining the line search to a given precision are

referred to as ppFR and ppPR (precise preconditioned Fletcher-Reeves and precise

preconditioned Polak-Ribiere, respectively), whilst the others are marked as apFR

and apPR (approximate preconditioned Fletcher-Reeves and approximate

preconditioned Polak-Ribiere, respectively).

The gradient along the search direction is calculated similarly to that described in the

previous section. The gradient formula in the present case is (5.30) where the

auxiliary solution employed must now be intended as a balanced auxiliary solution.

As a safety device, the dot product of the gradient and of the new direction is

calculated at each iteration and, if it is not negative, the preconditioned conjugate

gradient direction is discarded and restarted.

5.4.6 Performance of the Algorithms for the MUC SUE ED Problem

5.4.6.1 Introduction

This section is structured as in the MUC SUE case: it opens by introducing the test

methodology and the test bed. Then the results of the numerical tests carried out by

solving for MUC SUE with algorithms described above are presented separately for

each test network used.

5.4.6.2 MUC SUE ED Algorithms Test Methodology

As for the MUC SUE case, the algorithms have been tested with a methodology

similar to that employed in chapter 4.
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Solving for MUC SUE ED on test networks, the number of loadings and iterations

and the computation time necessary to reach a pre-defined level of convergence have

been recorded.

The stochastic network loading (here intended as the balanced loading of all the user

classes being assigned) has been taken as the elemental operation performed by the

traffic assignment algorithms as it seems to reflect the largest part of the

computational time involved in the computations, also when the different search

directions considered here are applied. Moreover it allows us to avoid referring

directly to the computational time that is machine specific.

The statistic used to measure the level of convergence is the same as the in the MUC

SUE case (adapted from Maher and Hughes, 1997a):

(5.83)

where Xp and YP are respectively the current and the auxiliary standardised flow on

path p at the iteration where the statistic is evaluated and P is the number of paths

loaded (the paths receiving at least 0.1% of the standardised flow between the

relevant OD are included in the statistic).

This convergence statistic in path flow terms captures the convergence also in terms

of demand consistently with the balanced demand concept. In fact the auxiliary

solution YP is obtained by considering the demand in balance with the current costs

therefore a measure of its distance from the current solution reflects also the

convergence in terms of OD demand.

As the equilibrium is approached the statistic (5.83) tends to -00. In fact, in general,

the current and the auxiliary flows will not coincide both because of the result of the

assignment procedure and of the calculation of the demand consistent with the

current cost. As the equilibrium is approached demand and network costs become

consistent as well as path choices and network costs and the square root in (5.83),

which is a non-dimensional measure of the distance between the auxiliary and the
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current flows, tends to zero. The logarithm is considered to make the progress of the

convergence trend clearer.

As in the MUC SUE case, separate statistics similar to (5.83) could have been

considered.

The progress of the algorithms is monitored by plotting the evolution of the statistic

against the number of multiple user class loadings. The overall convergence speed of

an algorithm is assessed by evaluating the number of MUC stochastic loadings it

requires to reach the solution defined by a target level of the RMSnd statistics that

here is assumed as 10-4 corresponding to a value of InRMSnd of-9.21.

The tests have been carried out using the same two approximation methods used in

chapter 4, the Mendell-Elston approximation (Mendell-Elston, 1974) with the

optimised calculation order of Kamakura (1989) and the improved Clark

approximation (Clark, 1961), that have been described in chapter 3.

5.4.6.3 MUC SUE ED Algorithms Test Bed

Also in the MUC SUE ED case the test bed has been obtained by modifying the grid

network of Chen and Alfa (1991), the Sioux Falls network (used e.g. in Vythoulkas,

1990) and the Headingley network (used e.g. in Maher et al., 1999) to accommodate

2 and 3 user classes.

The modifications of the networks have been obtained as described for the MUC

SUE case. Tables 5.4, 5.5 and 5.6 report the coefficients a and ~ (appearing in (5.1)

and (5.2.)) and the ratio of the variance to the free flow cost of each link for the

different user classes considered. The power function has been considered as the

elastic demand function for all user classes and all OD. Tables 5.4, 5.5 and 5.6 also

report the elasticities that apply to each class.

Once more it is recalled that the Headingley network contains connectors that are not

accounted for in the formulation of the problem being used. Thus the application of

the algorithms proposed to the Headingley network should be seen as heuristic.
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C+A UCI UC2

P 0.85 0.15

a 1.00 1.50

~ 0.80 1.20

cr2/ff cost 0.50 0.40

E1 0.70 0.70

C+A UCI UC2 UC3

P 0.80 0.10 0.10

a 1.00 1.00 2.00

~ 0.80 1.20 1.00

cr2/ff cost 0.50 0.40 0.50

E1 0.70 0.80 0.80

Table 5.4 - Proportion P, coefficients a and fJ, elasticity and ratio ofthe variance to

the free flow costs used in the cases of2 and 3 user classes (UC) on the Chen and

Alpha network.

Sioux F UCI UC2

p 0.25 0.75

a 1.20 0.90

~ 0.70 1.25

cr2/ff cost 0.50 0.40

E1 0.70 0.70

Sioux F UCI UC2 UC3

P 0.75 0.10 0.15

a 0.90 1.50 0.90

~ 0.70 1.20 0.70

cr2/ff cost 0.50 0.50 0.10

E1 0.70 0.80 0.70

Table 5.5 - Proportion P, coefficients a and fJ, elasticity and ratio ofthe variance to

the free flow costs used in the cases of2 and 3 user classes (UC) on the Sioux Falls

network.

Hdng1y UCI UC2

P 0.75 0.25

a 1.00 0.80

~ 0.80 1.20

cr2/ff cost 0.70 0.70

E1 0.70 0.70

Hdng1y UCI UC2 UC3

p 0.60 0.30 0.10

a 1.00 1.00 1.00

~ 1.00 1.10 0.80

cr2/ff cost 0.50 0.40 0.50

E1 0.70 0.80 0.80

Table 5.6 - Proportion P, coefficients a and fJ, elasticity and ratio ofthe variance to

the free flow costs used in the cases of2 and 3 user classes (UC) on the Headingley

network.
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5.4.6.4 Test Results for the Chen and Alpha Network

The tests on the Chen and Alpha network, with 2 and 3 user classes show that, in

general the convergence trends given by an algorithm with the Mendell-Elston and

the Clark approximations are similar. This is the case also on the other networks

discussed in the following sections, thus the comments reported refer to the results

with both approximations and a selection of figures referring to either approximation

has been included.

The results obtained show, once more, that the MSA does well at the beginning of

the calculations but, on the whole it is outperformed by the algorithm using the

MUC BDA search direction and the quadratic interpolation, as in the examples

reported in figs. 5.24 and 5.25. Here the algorithms performing the line search once

and those checking for the improvement of the gradient have convergence trends that

coincide whilst those refining the step to a given precision are less efficient.

Algorithms started with 5, 10, 15 and 20 MSA iterations before using an optimised

step length have been tested and in all cases they improve on the algorithm using the

line search from the outset as well as on the MSA. Examples of this behaviour are

reported again in figs. 5.24 and 5.25.

40
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g -5 +-~~~~--2v--=>,,---1r-"l..--~~~~~
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-7 +-~~~~~~~~~~.,-~~=---~~-

-8 +-~~~~~~~~------'~..--'&-=--~-=~~-

-9 +-~~~~~~~~~~-"')(~'\!l;:-~~""",-

-10 L-~~~~~~~~~~~~~~~~-

loadings

I-MSA

-BDAq

-5MSA+BDAq

--10MSA+BDA q

--15MSA+BDA q

--20MSA+BDA q

Fig. 5.24 - Comparison of the MSA, the algorithm using the BDA search direction

and hybrid algorithms started with the number of MSA iterations indicated. Chen

and Alpha network, Clark approximation, 2 user classes.
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Fig. 5.25 - Comparison of the MSA, the algorithm using the BDA search direction

and hybrid algorithms started with the number ofMSA iterations indicated. Chen

and Alpha network, Mendell-Elston approximation, 3 user classes.

The preconditioned Fletcher-Reeves search direction used with line search refined to

a given precision (ppFR) show convergence trends that outperform from the start of

the calculations those of the corresponding algorithms using the traditional search

direction, as in the example in fig. 5.26. In fact, the algorithms with step refined to

10-2 do as well as those using the traditional search direction with unrefined step.

Using the Fletcher-Reeves search direction coupled with step calculations not

refined to a given precision (apFR) gives, also in this case, instabilities of the

convergence trends. This behaviour has not been investigated further in the present

work but it is interesting to note that this problem is absent when a precise line

search is used and when the apFR search direction is not used from the outset but the

algorithm is started with a number of MSA iterations. It seems reasonable to infer

that the problem with the apFR arises from the information inherited from the first

iterations, during which using unrefined line search does not seem to be robust. The

instabilities could possibly be obviated by restarting the algorithm when they are

detected, though the algorithm with this added safeguard has not been tested here.

Hybrid apFR algorithms started with 5, 10, 15 and 20 MSA iterations, outperform in

all cases and from the point the apFR search direction is used the corresponding

algorithms using the traditional search direction. Figures reporting the convergence

trends are not included as they practically coincide with those of the hybrid apPR

algorithms reported below.
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Fig. 5.26 - Comparison of the MSA, the algorithm working along the BDA search

direction and returning the step when an improved gradient has been found (BDA q)

and algorithms refining the step to a precision of 10-3 along the BDA direction

(PBDA), the preconditioned Polak-Ribiere search direction (PpPR) and the

preconditioned Fletcher-Reeves search direction (PpFR). Chen and Alpha network,

Mendell-Elston approximation, 2 user classes.
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Fig. 5.27 - Comparison of the MSA, the algorithm using the BDA search direction

(BDA q), the algorithm using the approximate preconditioned Polak-Ribiere (apPR)

search direction and hybrid algorithms started with the number of MSA iterations

indicated. Chen and Alpha network, Clark approximation, 3 user classes.
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Fig. 5.28 - Comparison of the MSA, and hybrid algorithms using the BDA search

direction (BDA q) and the approximate preconditioned Polak-Ribiere (apPR) search

direction started with the number of MSA iterations indicated. Chen and Alpha

network, Mendell-Elston approximation, 2 user classes.

Algorithms refining the step to a given precision along the preconditioned Polak

Ribiere search direction (ppPR algorithms) are more efficient than the corresponding

algorithms using the traditional search direction and marginally more efficient than

the corresponding ppFR ones (see for instance the convergence plot in fig. 5.26).

Determining the step length so that an improved gradient is found (algorithms apPR)

is more efficient than calculating it to a given precision and the resulting

convergence trends do not show the oscillations given by the corresponding apFR

algorithm. This algorithm improves also on the one using the BDA search direction

from the outset of the calculations, as can be seen from figs. 5.27 and 5.28 which

show also that hybrid apPR algorithms improve on the apPR algorithm (although if

they are started with 20 MSA iterations in this test case there is little to choose) and

on the corresponding algorithms using the BDA search direction. Although not

shown in the figures, it is interesting to note that the hybrid algorithms using the

apFR and the apPR search direction give practically coincident convergence trends.

367



5.4.6.5 Test Results for the Sioux Falls Network

Testing the algorithms on the Sioux Falls network showed again a good initial

behaviour of the MSA using the MUC BDA search direction. As well as in other

cases using optimised steps gives a better overall efficiency and working along the

MUC BDA search direction using the MSA step for a few iterations gives an even

improved convergence trend. This is shown in the two examples reported in fig.

5.29. The algorithms using the MUC BDA search direction and refining the step to a

given precision along it are less efficient than those working with the step obtained

with one interpolation or checking that an improved gradient is found, and of the

hybrid algorithms. The two types ofunrefined line search give the same convergence

trends.
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Fig. 5.29 - Comparison of the MSA, the algorithm using the BDA search direction

and hybrid algorithms started with the number ofMSA iterations indicated. Sioux

Falls network, path set S2, Mendell-Elston approximation, 2 user classes.
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Fig. 5.30 - Comparison of the MSA, the algorithm working along the BDA search

direction and returning the step when an improved gradient has been found (BDA q)

and algorithms refining the step to a precision of 10-3 along the BDA direction

(PBDA), the preconditioned Polak-Ribiere search direction (PpPR) and the

preconditioned Fletcher-Reeves search direction (PpFR). Sioux Falls network, path

set S2, Clark approximation, 2 user classes.

Also the ppFR algorithms, using the pFR search direction and refining the step to a

given precision, are more efficient than the corresponding ones working along the

BDA search direction (see the example in fig. 5.30). Not refining the step, that is

using an apFR algorithm, also in this case causes instabilities of the convergence

trends that are not present when the apFR search direction is used as part of hybrid

algorithms started with a number ofMSA iterations. Algorithms starting with 5, 10,

15 and 20 MSA iteration have been tested and, in all cases, they improve on the

corresponding algorithms using the BDA search direction. Results for this sort of

hybrid algorithms are not reported as their trends are very similar to those obtained

with hybrid apPR algorithms, that have been depicted in figures reported below.

Using the preconditioned Polak-Ribiere search direction along with precise line

search (algorithm ppPR) is as efficient as using the corresponding algorithms

working along the ppFR search direction (there are slight improvements but there is

little to choose between the two). Limiting the step search to a point where an

improved gradient is found, that is using an apPR algorithm, gives in most cases

even more efficient convergence trends, and certainly more efficient than using the

MUC BDA search direction, although in a few cases ppPR algorithms with step
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refined only to 10-2 are as efficient overall and more efficient at the beginning of the

calculations. The hybrid algorithms obtained starting with a number of MSA

iterations improve in all cases on the pure apPR algorithm and on the corresponding

hybrid methods employing the BDA search direction, as shown in figs. 5.31 and

5.32. As mentioned above there is little to choose between hybrid apFR and apPR

algorithms in the test cases examined, since in most cases they practically coincide.
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Fig. 5.31 - Comparison of the MSA, the algorithm using the BDA search direction

(BDA q), the algorithm using the approximate preconditioned Polak-Ribiere (apPR)

search direction and hybrid algorithms started with the number ofMSA iterations

indicated. Sioux Falls network. Path set S2, Clark approximation, 2 user classes.
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Fig. 5.32 - Comparison of the MSA and hybrid algorithms using the BDA search

direction (BDA q) and the approximate preconditioned Polak-Ribiere (apPR) search

direction started with the number ofMSA iterations indicated. Sioux Falls network,

path set S1, Mendell-Elston approximation, 3 user classes.
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5.4.6.6 Test Results for the Headingley Network

Finally, the tests on the Headingley network suggest results similar to those obtained

above in other cases.

Once more, the MUC BDA MSA does well at the beginning of the optimisation but

using an optimised step along the same search direction takes the algorithm to the

required level of convergence much faster. Combining the initial good performance

of the MSA and the later better behaviour given by calculating the steps results in

hybrid algorithms that in the cases investigated (with 5, 10, 15 and 20 MSA

iterations to start with) improve always on the MSA and in some cases improve on

using the interpolation throughout, whilst in other cases they do so at the beginning

of the calculations but there is little to choose between the hybrid algorithms and the

one using interpolation throughout, as can be seen comparing figs. 5.33 and 5.34.

This discussion refers to cases where the interpolation of the gradient is carried out

only to obtain a step ensuring a better value of the gradient than at the present

solution, which, in the cases examined, coincide with carrying out a single

interpolation. Using interpolation refined to give precision results in algorithms that

are less efficient from the start.
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Fig. 5.33 - Comparison of the MSA, the algorithm using the BDA search direction

and hybrid algorithms started with the number of MSA iterations indicated.

Headingley network, path set HI, Clark approximation, 3 user classes.
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Fig. 5.34 - Comparison of the MSA, the algorithm using the BDA search direction

and hybrid algorithms started with the number of MSA iterations indicated.

Headingley network, path set H2, Mendell-Elston approximation, 3 user classes.

The improvement due to using a ppFR algorithm, that is using the preconditioned

Fletcher-Reeves search direction with refined line search, against using the same

method with the MUC BDA search direction is shown in fig. 5.35. Not refining the

step also in this case results in instabilities of the algorithm, that, again as in other

cases, are avoided if the algorithm is part of an hybrid started with some MSA

iterations. The latter sort of algorithms, tested starting with 5, 10, 15 and 20 MSA

iterations as in other cases, improve noticeably on the corresponding algorithms

using the MUC BDA search direction, from when the apFR search direction is

employed. Results for these algorithms are not reported, as they are very similar to

those obtained with the corresponding hybrid apPR reported below.

Working along the preconditioned Polak-Ribiere search direction and determining

the step to a given precision improves further on the corresponding algorithms using

the ppFR direction, as shown again in fig. 5.35. However, the most efficient strategy,

as shown in the tests, is to avoid performing further interpolations in subintervals

unless an improved gradient has not been found. The algorithm implementing this

line search strategy does not show instabilities, probably thanks to its ability to self

restart, and starting it with a number of MSA iterations generally gives an

improvement of the algorithm efficiency from the beginning of the calculations,

although in most cases on this test case there is little to choose between the apPR

algorithm and an hybrid apPR algorithm started with 20 MSA iterations. The
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noticeable improvement over the corresponding algorithms using the MUC BDA

search direction is shown in figs. 5.36 and 5.37.
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Fig. 5.35 - Comparison of the MSA and algorithms refining the step to a precision

of I 0-3 along the BDA direction (pBDA q), the preconditioned Polak-Ribiere search

direction (ppPR q) and the preconditioned Fletcher-Reeves search direction (ppFR

q). Headingley network, path set HI, Mendell-Elston approximation, 3 user classes.
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Fig. 5.36 -Comparison of the MSA, the algorithm using the BDA search direction

(BDA q), the algorithm using the approximate preconditioned Polak-Ribiere (apPR)

search direction and hybrid algorithms started with the number of MSA iterations

indicated. Headingley network, path set H2, Clark approximation, 2 user classes.

373



60

I "'C
C

~ -61------~~rl~~~=__----
.E

-10 +----------\------~"'lIIi___~

-12 -L- _

loadings

--MSA

-BDAq

--15MSA+BDA q

- 20MSA+BDA q

-a-apPRq

--15MSA+apPR q

--20MSA+apPR q

Fig. 5.37 - Comparison of the MSA, the algorithm using the BDA search direction

(BDA q), the algorithm using the approximate preconditioned Polak-Ribiere (apPR)

search direction and hybrid algorithms started with the number of MSA iterations

indicated. Sioux Falls network, path set HI, Clark approximation, 3 user classes.

5.4.7 Conclusions

The MUC SUE ED model studied in this section provides a general formulation of

which the SUE, MUC SUE or SUE ED can be seen as particular cases.

The work presented has built on the multiple user class framework of Daganzo

(1982) and on the work on SUE ED discussed in the previous section. An extension

of the SUE ED objective function of Maher et al. (1999) to the MUC SUE ED case

has been proposed and an alternative equivalent programme, that reduces the

problem to one in terms of either standardised link costs or link flows, has been put

forward.

The uniqueness of the solution of the new programme has been discussed and

algorithms based on the objective function in terms of standardised link flows have

been proposed. These included an MSA working along a Balanced Demand search

direction expressed in terms of standardised flows and an algorithm performing line

searches along the same search direction by interpolating the objective function as

quadratic. The MSA search direction has also been used as a starting point to
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propose preconditioned conjugate gradient algorithms based on the conjugate

gradient formulae ofFletcher and Reeves and ofPolak and Ribiere.

The comparisons of the performance of the algorithms on three test networks gave

results that resembled those for the corresponding algorithms in the SUE and MUC

SUE cases.

The MSA was overall uncompetitive but was more efficient than other methods at

the beginning of the calculations and was included in hybrid algorithms that start

with a number of MSA iterations before completing the solution of the problem with

other methods.

Algorithms working along different search directions and refining the interpolations

to determine the step length to a given precision were less efficient than those

interpolating only until an improved gradient was found, which, in most cases, meant

carrying out a single interpolation. The algorithms using the BDA search direction

and finding the step by interpolating until an improved gradient was found were

outperformed by the corresponding algorithms working along the preconditioned

Polak-Ribiere search direction, whilst those using the preconditioned Fletcher

Reeves search direction showed some instabilities.

Hybrid algorithms, started with a number of MSA iterations, gave the best overall

performances and also in this case the algorithms working along the BDA search

direction were outperformed by those using the preconditioned Polak-Ribiere one,

which gave results similar to those using the preconditioned Fletcher-Reeves search

direction.
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5.5 Conclusions

This chapter has discussed the extension of Stochastic User Equilibrium models to

include Multiple User Classes (MUC) and Elastic Demand (ED), both separately and

together.

The discussion on MUC SUE models started by reviewing the relevant work in the

literature. The rest of the study has been based on an objective function suggested by

Daganzo (1982) that has been detailed also to solve the problem in terms of

standardised link costs. The equivalence of its solution to the MUC SUE conditions

and the uniqueness of the solution have also been discussed before proposing a

number of algorithms to solve the problem.

The algorithms proposed are extensions of those seen for the SUE case in chapter 4

and include an MSA algorithm and algorithms working along the search direction

linking the current and auxiliary solution for the MUC SUE problem. This search

direction has then been interpreted as a preconditioned steepest descent search

direction, extending the analogous discussion for the SUE case and preconditioned

conjugate gradient algorithms based on the formulae of Fletcher and Reeves and

Polak-Ribiere have been proposed.

Numerical tests on three networks have shown that the preconditioned Polak-Ribiere

search direction outperforms the extension of the traditional search direction to the

MUC SUE problem. The preconditioned Fletcher-Reeves search direction gave,

when applied without refining the step, instabilities that should be further

investigated but question its robustness in this application. The most efficient

solution strategy, as in the SUE case, resulted from the use of hybrid algorithms

started with a number of MSA iterations before the preconditioned Polak-Ribiere

search direction with line search refined only until an improved gradient is found is

used. Algorithms with either the Mendell-Elston or the Clark approximation applied

to the same test case showed a similar behaviour.
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The section on Stochastic User Equilibrium with Elastic Demand (SUE ED) models

has been introduced by a review of the relevant literature and of the motivations for

including elastic demand in assignment models. The SUE ED problem has been

discussed proposing a new equivalent programme that reduces the problem to one in

terms of link costs or of link flows. The equivalence of its solution to the SUE ED

conditions as well as its uniqueness have been shown. Moreover, the relationship

between the new programme and the programme put forward by Maher et al. (1999),

has been given.

A number of algorithms based on using the Balanced Demand search direction and

on using preconditioned conjugate gradient algorithms have been suggested without

testing them numerically.

The last section of the chapter has been concerned with solving the SUE assignment

problem when both Multiple User Classes and Elastic Demand are included. An

extension of the SUE ED objective function of Maher et at. (1999) to the SUE ED

problem has been suggested but the following discussion has been based on a new

programme for MUC SUE ED that has been put forward, which reduces the problem

to one in terms of link flows or costs.

After analysing the equivalence and uniqueness of the new programme in either of

its versions, the expression in terms of standardised link flows has been used to

propose a number of solution algorithms that are extensions of those for MUC SUE

and for SUE ED. An MSA algorithm, algorithms working along the Balanced

Demand search direction for the MUC problem and preconditioned conjugate

gradient algorithms based on the Fletcher-Reeves and Polak-Ribiere formulae have

been used. The latter type of algorithm has been derived by interpreting the BDA

search direction as a preconditioned steepest descent direction for the MUC SUE ED

programme in terms of link flows.

The results of the numerical tests mirrored those of the corresponding tests for SUE

and MUC SUE: the preconditioned Polak-Ribiere search direction outperforms the

extension of the traditional search direction to the MUC SUE ED problem whilst the
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preconditioned Fletcher-Reeves search direction, unless applied with precise

calculation of the step or within a hybrid algorithm, gave instabilities. The use of

hybrid algorithms, starting with a number of MSA iterations before the

preconditioned Polak-Ribiere search direction with unrefined line search is

employed, appears to be the most efficient solution method. Also in this case, using

either the Mendell-Elston or the Clark approximation within the same algorithm on

the same test case gave similar behaviours.
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6. CALIBRATION OF MULTINOMIAL PROBIT

CHOICE MODELS

6.1 Introduction

The present chapter deals with the application of the multinomial probit (MNP)

choice model in the context of simple choices, in the sense defined in chapter 2, that

is when the attributes of the options are fixed and do not change as an effect of the

choices made. In particular, this chapter is concerned with issues related to the

calibration of the MNP model, when an analytical approximation is used to solve the

choice function.

The calibration of choice models has been introduced in chapter 2. At the calibration

stage the choice model has been specified (or a number of alternative possible

specifications have been defined) and data about actual choices are available from

surveys along with those data about the characteristics of the decision makers and of

the options that will be possibly used to define the latent utilities. The calibration of

a choice model consists of estimating the parameters appearing in the model using

such surveyed data and evaluating the statistical significance of the estimates. The

latter type of information can also help the analyst to choose amongst different

specifications of the choice models as, for instance, which attributes of the choice

maker and of the alternatives are statistically relevant to model the choice process.

Discrete choice models are most often calibrated using the maximum likelihood

method (see e.g. Daganzo, 1979; Ben-Akiva and Lerman, 1985; Ornizar and

Willumsen, 1994), which is also used in the present work and produces the

parameters with which the model best replicates the sample of choice data. This

method in fact, consists of calculating the parameters that maximise the relevant

likelihood function. The latter describes the probability distribution of the calibration

data as a function of the parameters of the model, thus maximising it yields the

parameters using which the model is most likely to return the calibration choice data.

The maximum likelihood estimates of the parameters are consistent, asymptotically

Normal and asymptotically efficient (see e.g. Ben-Akiva and Lerman, 1985).
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The actual expression of the likelihood function depends on how the data have been

obtained (see e.g. Ben-Akiva and Lerman, 1985). In the case of random sampling,

that is the only one considered in this chapter, the likelihood function results:

L(S)=TI p(c(s)la(spS)
s=!

(6.1)

where S is the sample size, that is the number of decision makers whose choices and

attributes have been surveyed, and P(.) is the probability that the option c(s) actually

chosen by the decision maker s results in being chosen in the model as a function of

the attributes a(s) and of the parameters S.

In practice the calculations are usually carried out by maximising the logarithm of

the likelihood function which has the same maximum, since the logarithm is a

strictly monotonic function, but is easier to work with. The log-likelihood function

resulting from (6.1) is:

log L(S) =:tlog p(c(S) la(s), S)
s=!

(6.2)

(6.2) can be maximised using e.g. quasi-Newton algorithms that employ the value of

the function and of its gradient. With a choice function that cannot be written in

closed form, as in the MNP case, the gradient can be calculated numerically. In fact,

only in two cases in the literature, one using simulation and the other employing

numerical integration, is the gradient of the MNP log-likelihood function obtained

analytically (Bolduc, 1999; Sheffi et al., 1982).

When using the probit model solved with approximation methods it is interesting to

develop a practical technique to calculate the analytical derivatives of the log

likelihood function with respect to the coefficients to calibrate exploiting the

formulation of the approximations. In fact, a procedure maximising the logarithm of

the likelihood using analytical derivatives should be expected to be more efficient

than one using numerical ones.
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In this chapter, a method for obtaining analytical derivatives with the Mendell-Elston

approximation is presented and employed to develop a MNP calibration computer

program. The program is also tested on some examples.

The rest of the chapter is structured as follows. Section 6.2 reviews the issues related

to correctly specifying the MNP model, referring to the limited literature on the

subject. Section 6.3 gives an account of methods for MNP calibration that have

appeared in the open literature. Then, section 6.4 describes the calibration program

developed for the present work and discusses in detail the algorithm used to obtain

analytical derivatives with the MNP approximation of Mendell-Elston, mentioning

how it may readily be expanded for use with other approximations. Finally, section

6.5 presents results from numerical tests of the algorithms exploring the ability of the

model to retrieve accurately the parameters of some known specifications of the

choice problem and comparing the time required to solve the calibration problem by

algorithms using different ways to obtain the derivatives. The work presented in the

chapter is summarised and discussed in section 6.6 that also suggests possible further

work on the subject.

6.2 Specification of the Multinomial Probit Model

The specification of choice models, that is of their structure and of the parameters

that can actually be estimated, is subject to restrictions that exist because the models

are usually considered in terms of utilities but the data to calibrate them, attributes

and choice for each surveyed decision maker, give information about a process

where the differences of the utilities rather than the utilities themselves determine the

outcome (see e.g. Bunch, 1991). The utilities, in fact, according to random utility

theory, are only used to rank the alternatives. If a constant is added to all utilities, or

they are multiplied by a positive constant, their ranking is unaffected, as is the

resulting choice. Consequently only the parameters that can be retrieved uniquely

from the choice model written in difference with respect to a reference alternative

can be estimated (see e.g. Bunch, 1991; Bolduc, 1992).
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In multinomial logit models this means that alternative specific constants or socio

economic "dummies" may be used in the specification of the systematic utility of all

options except one, to fix the level of the utilities of the model. The multinomial

logit covariance matrix does not introduce specification issues, as it is fixed and

diagonal. In fact its scale, which is its only possible parameter, cannot be

distinguished from the parameters in the expression of the systematic utilities (see

e.g. Ben-Akiva and Lerman, 1985).

In multinomial probit models the same limitations mentioned for logit models apply

to the systematic utility parameters. Moreover, Keane (1992) warned against the

"fragile identification" brought about by not excluding from at least one alternative's

utility each of the attributes that have the same value for all alternatives (typically

the choice maker's attributes). This exclusion is not required to obtain formal

identification but avoids the problems in retrieving the parameters due to the

systematic utility coefficients having effects similar to those of the covariance matrix

elements.

The covariance matrix of a multinomial probit model needs particularly careful

specification. Detailing the general principle reported above, due to the fact that the

outcome of the choice process is determined by the differences of the utilities, only

the parameters that can be retrieved uniquely from the covariance matrix of the

utilities written in difference with respect to the utility of a reference alternative can

be estimated. In general this means that, for n choice alternatives, the covariance

matrix of the utilities will have n(n+ 1)/2 entries but the covariance matrix in

difference with respect to a reference alternative (referred to, in the following, as the

covariance matrix in difference) will have n(n-1)/2 parameters and therefore this is

the maximum number of parameters that can be specified in the covariance matrix.

This number actually reduces to [n(n-1 )/2]-1 as the scale of the model must also be

defined and this can be achieved by fixing an entry of the matrix in difference to a

constant. This scaling issue is similar to that of the logit model for which the

parameter related to the variance of the Gumbel variates is not distinguishable from

the average utility parameters.
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One way to deal with this covariance matrix specification issue, which is also the

method used in this chapter, is to estimate the covariance matrix in difference w.r.t. a

reference alternative, as it contains only the parameters that are actually estimable,

after fixing the scale of the model by assuming that one of its diagonal entries is

equal to a constant.

Alternatively, the original covariance matrix can be estimated but care should be

taken to make sure that the free parameters appearing in it are actually estimable.

Working with the covariance matrix in difference is the method most suggested and

commonly used in the literature (see e.g. Dansie, 1985; Bunch, 1991; Weeks, 1997;

Train, 2002). In particular, Dansie (1985) and Bunch (1991) suggested this method

mentioning also that it is in accordance with the original development of choice

models, that were initially referred to utility differences, rather than to the more

intuitive utilities.

The results presented later in this chapter have been obtained usmg the first

alternative as reference alternative and fixing its first diagonal entry to a constant.

The same method is suggested also by Train (2002) but, clearly, other equivalent

assumptions are possible. For instance, Bolduc (1999) fixed the first diagonal entry

of the covariance matrix in difference W.r.t. the last alternative. Alternatively the

scale can be determined by fixing an attribute coefficient appearing across all the

systematic utilities, but this is not the general practice.

Once the choice model in difference has been calibrated, obtaining the covariance

matrix of the utilities presents the same problems that arise when one defines a

covariance matrix of the utilities and uses it directly in the calibration process: only

some parameters can be correctly assumed to be estimable, and understanding which

is not straightforward, whilst the other entries must be set to zero thus making

assumptions about the structure of the problem at hand. This was seen by Bunch

(1991) as a restriction of the flexibility of the probit model, to some extent as in

Nested Logit models, where the nesting structure is predetermined.
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The issues arising in the definition of the covariance matrix can be illustrated by

considering the example used by Dansie (1985) and also by Bunch (1991) to show

that different covariance matrices of utilities may correspond to the same covariance

matrix in difference. Dansie showed that the matrices:

~'+J2
2

cr~J
(J12

1

0

~B=[+
2

~]
(J12

1

0

[1 0 0ls, = 0 1 0

o 0 (J~3

(6.3a)

(6.3b)

(6.3c)

are equivalent, although the first one is not identifiable (his paper remarked that L:A ,

used in numerical experiments on the accuracy of the approximation of Clark by

Horowitz et al., 1982, was not identifiable). In fact, calculating the covariance

matrix in difference w.r.t. a reference option for each of the (6.3) it can be seen that

they all correspond to the same covariance matrix in difference T:

(6.4)

which Dansie suggested to use in model calibration as it includes the only free

parameter of this model and is uniquely identifiable.

The example of Dansie shows both issues mentioned above: the need to make

assumptions about the actual structure of the problem and the importance to check

the correctness of the structure chosen.

In fact, the same matrix in difference (6.4) corresponds to a matrix with

homoscedastic errors and correlation between two options and to a matrix with no

correlation amongst alternatives but one option's variance different from the other

two (excluding the unidentified matrix ~A). The choice between the two
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specifications will not have an effect of the outcome of the calculated choices, so the

flexibility of the MNP is not actually affected, but the interpretation of the choice

situation is subject to assumptions made by the analyst.

The fact that LA in (6.3a) is non identifiable although it contains only two free

parameters, that is the maximum number of parameters that can be specified in a

trinomial probit covariance matrix, underlines the need to check the specification of

the covariance matrix of the utilities. A number of ways to carry out this operation

has been suggested in the literature. Bunch (1991) gave a test method based on

checking the invertibility of the composite transformation mapping the vector of

possible parameters to estimate in the covariance matrix to the vector of unique

entries in the covariance matrix in difference w.r.t. a reference alternative via the

vector of unique entries of the covariance matrix of the utilities. If the Jacobian of

this composite transformation has full rank, the transformation is invertible and the

parameters assumed for the covariance matrix of the utilities are actually estimable.

Bolduc (1992) put forward a further rank condition, which includes that of Bunch,

based on obtaining the transformation matrix that maps the vector of possible

parameters to estimate in the covariance matrix to the vector of unique entries of a

reference covariance matrix in difference. If the matrix that defines the

transformation has rank equal to the number of proposed parameters they are

actually estimable.

Equivalently, and more simply, Train (2002) suggested to check explicitly that each

parameter in the covariance matrix of the utilities can be uniquely retrieved from

those in the covariance matrix in difference by writing their relationships, as spelt

out in the general rule. However, when several choice options are included in the

model, the number of covariance parameters may become very large and the latter

method becomes cumbersome to use.

Independently of any identification problem, the increase in the dimension of the

choice set can bring about problems with calibrating the covariance parameters, that
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are the most difficult ones to obtain (see e.g. Sheffi et al., 1982), and problems with

their interpretation.

The latter issue was remarked upon by Horowitz (1991) who was particularly

concerned that the potentially large number of estimable elements in a general

covariance matrix would bring about problems in testing a model's specification

(due to free covariance matrices possibly making up for errors in the systematic

utility specification, thus hiding them) and would give models containing high

uncertainties due to the difficulty of estimating the covariance matrix entries with the

sample sizes commonly used in practice and to the difficulty of assigning the

covariance entries for new choice options.

To overcome this type of objections and limit the actual number of parameters used

to define the covariance matrix, the use of structured matrices has been recently

introduced.

Ben-Akiva and Bierlaire (1999) mention the possibility of using a factor analytic

formulation that defines the vector U ofn utilities as

U=V +E=V +F~ (6.5)

where ~ is a vector of standard Normal variables of dimension m and the [nxm]

matrix F maps the random factors to the n utilities. A particular instance of this

formulation is the case in which ~ has dimension nand F is the Cholesky

factorisation of the covariance matrix. Another important instance of the factor

analytic structure (6.5) is the one resulting in a first order autoregressive error,

proposed for use with the MNP by Bolduc (1992). In this case the utilities can be

written as

U=V+E with E=pWE+T~=(I-pWtT~ (6.6)

where W is a matrix of weights that determines the influence of each error

component on the others, p is a parameter (restricted to ]-1; 1Dand T is a diagonal

matrix of standard deviations applied to the standard Normal vector ~. Bolduc

suggested that the matrix W, describing the correlation among the alternatives and
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that could be seen as a matrix of measures of contiguity of the alternatives, can be

built up of estimable parametric functions but can also reduce to a simple Boolean

matrix.

Bolduc (1999) used this formulation for a choice situation with a total number of 9

alternatives which, potentially, implied the need to estimate 35 parameters in a

totally free covariance matrix. Using a first order autoregressive structure, the choice

problem was described with a maximum of 9 free parameters (8 of which were

standard deviations) employing a contiguity matrix W defined a priori as a Boolean

matrix written considering the characteristics of the problem.

An alternative method of structuring the covariance matrix is to use a network

description of the problem. This technique has been employed by Yai et al. (1997)

and Yai and Shimizu (1998): they analysed a route choice problem and exploited its

natural network representation to obtain the structure of covariance matrices, which

are then defined by few parameters. It is a procedure very similar to that used in

multinomial probit traffic assignment, where the problem's covariance matrix is built

as mentioned in chapter 4 (see also Sheffi, 1985).

6.3 Multinomial Probit Calibration Methods in the Literature

The literature on MNP calibration can be classified according to the sort of method

used to evaluate the choice function: analytical or simulation based. Analytical

approximations and numerical integration have been used in the past but most recent

works are based on simulation, following the introduction of the GHK simulator (see

e.g. Geweke et al., 1994) illustrated in chapter 3. Quasi-Newton optimisation

algorithms are generally used to solve for the parameters corresponding to the

maximum likelihood.

The Clark approximation and the maximum likelihood method have been used in the

two software packages CHOMP and QUAIL (cited respectively in Daganzo, 1979,

and Kamakura, 1989) and Kamakura (1989) used the Langdon and the Mendell

Elston approximations in a maximum likelihood program. In particular, in CHOMP
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numerical derivatives were used along with the Davidon-Fletcher-Powell (DFP)

optimisation method (see Scales, 1985).

Numerical integration has been used for 3 choice options, but actually reducing the

MNP integral to a unidimensional one, by Hausman and Wise (1978). Sheffi et al.

(1982) discussed a transformation of the trivariate probit integral that reduces it to a

univariate integral and illustrated a method for obtaining analytical derivatives of the

likelihood function based on the transformation they proposed. This method was

used in the development of the program TROMP (Sparmann and Daganzo, 1982,

cited in Sheffi et al., 1982 and Sparmann et al., 1983), for the calibration oftrivariate

probit models.

Simulated maximum likelihood was first used by Lerman and Manski (1981) with

their crude frequency simulator described in section 3.3. A further program based on

a similar frequency simulator coupled with a quasi-Newton algorithm has been

implemented by Lam (1991) (cited by Liu and Mahmassani, 2000) and further

developed by Liu and Mahmassani (2000) who included a first stage of the

parameters' optimisation performed with a genetic algorithm.

In most recent works on simulated maximum likelihood probit calibration the choice

probabilities are calculated using the GHK simulator described in chapter 3 (Geweke

et al., 1994; Munizaga and Ortuzar, 1997; Munizaga et al., 1997; Yai et al., 1997;

Yai and Shimizu, 1998; Bolduc, 1999; Munizaga et al., 2000). In particular Bolduc

(1999) used simulated maximum likelihood and the GHK simulator calculating

analytically, rather than numerically, the first derivatives of the log-likelihood

function used to solve the problem with a BHHH quasi-Newton optimisation

algorithm (see Scales, 1985). The GHK simulator has also been used to calibrate the

probit model with the method of simulated moments (McFadden, 1989; Geweke et

al., 1994).
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6.4 Multinomial Probit Calibration Using the Mendell-Elston

Approximation: Method

6.4.1 Introduction

A program for MNP calibration including the Mendell-Elston approximation has

been developed and employed to carry out the numerical tests presented in this

chapter.

The program maximises the logarithm of the MNP likelihood for a given set of

choices and attributes by varying the parameters of the model. Random samples of

data are assumed to be available for the calibration and therefore the log-likelihood

function (6.2) is used.

The MNP choice function is solved by expressing it as a MVN integral in difference

that is calculated using the analytical approximation of Mendell-Elston with a

routine written for this application. The Mendell-Elston method is implemented with

the calculation order suggested by Kamakura (1989), discussed in chapter 3. Only

the probability of the chosen option for each sample data entry is calculated to save

on computational effort. Thus the probabilities obtained are not normalised.

The maximisation of the likelihood function is carried out with a DFP-BFGS quasi

Newton method, although the simpler DFP method and the steepest ascent method

may also be used, being simplifications of the DFP-BFGS.

The DFP-BFGS is the most efficient variable metric method in the literature (see e.g.

Scales, 1985). As the other optimisation methods considered in this thesis, it finds

the solution to the optimisation problem by moving iteratively by a suitable step

along a search direction, from the current solution point to the next one, until a

convergence criterion is satisfied. The search vectors pn are generated similarly to

the those for the Newton method as:
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(6.7)

where gn is the gradient of the objective function at iteration nand H, is an

approximation to the inverse of the Hessian of the quadratic approximation to the

objective function at the same iteration. H, is not obtained directly (as it would in

the Newton method) but is calculated using information on the function values and

its gradient at each point explored. The method to approximate this inverse Hessian

is what characterises the DFP-BFGS method (for details see Scales, 1985) which has

quadratic convergence rate on quadratic functions. A particular point of interest is

that this method generates an approximation to the inverse Hessian matrix at the

solution point that may be used to evaluate the significance of the parameters

estimated.

The partial derivatives of the likelihood function with respect to the parameters

being calibrated are calculated numerically with the method of Ridders (as proposed

by Press et al., 1992) or analytically, according to the algorithm developed for this

work and described in section 6.4.2.

The optimisations along the search directions are carried out by first characterising

an interval containing the maximum of the log-likelihood function and then

localising it by quadratic interpolation.

As mentioned above, to simplify the specification issue, the program calibrates MNP

models expressed in terms of differences of the utilities with respect to the first

choice option. Therefore, the estimates directly obtained from the calculations are

those of the coefficients appearing in the systematic utilities and those of the

elements of the covariance matrix of the model in difference with respect to the first

choice option. The first diagonal entry of such reference covariance matrix in

difference is not calibrated but set to a fixed value specified in the input to determine

the scale of the model. The transformation of the model in difference into a possible

version in terms of utilities is not considered here as it may have different solutions

depending on the problem at hand and as it can be performed separately from the

calibration of the model in difference.
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To ensure the positive definiteness of the covanance matrix retrieved by the

calibration algorithm, functional transformations of its terms, so that correlations

would be within the interval ]-1;1[ and variances would be strictly positive, have

initially been considered in the program. However, such transformations may

increase the complexity of the problem. Rather than calculating directly the

covariance matrix in difference, the simpler device of calibrating its Cholesky

decomposition has been eventually adopted and has been used to obtain the results

reported in this chapter.

The program developed here does not include the possibility of considering different

choice sets for different choice makers in a sample. Such different structure of the

choice problem, however, can be readily included using the method given in Bolduc

(1999).

6.4.2 Analytical Derivatives for the Mendell-Elston Log-Likelihood

6.4.2.1 Introduction

This section describes the method used to obtain the analytical derivatives of the

MNP choice probability and of the resulting log-likelihood for a randomly sampled

data set with the Mendell-Elston approximation and mentions how the same method

can be adapted for use with other MNP approximations.

In solving an optimisation problem, analytical derivatives of the objective function

are normally preferable to their numerical counterparts as they should be more

precise and more efficiently calculated.

The calculation of the numerical derivatives entails an iterative process, potentially

requiring several evaluations of the objective function (which, in the case of the

MNP log-likelihood, is a relatively expensive operation), that stops when the

derivatives are evaluated within a certain pre-specified precision.
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The analytical derivatives of the MNP log-likelihood function calculated with the

Mendell-Elston approximation can be obtained by exploiting the structure of the

approximation calculations and can be computed along with the objective function at

each point explored by an optimisation algorithm.

Given a set of parameters, the calculation of the contribution to the log-likelihood

function of each data point in the set of observations used to calibrate the model can

be divided in the following four main stages:

PI. Calculation of the utilities and of the covariance matrix of the utilities in

difference w.r.t. the utility of the alternative chosen (the covariance matrix of

the utilities and the covariance matrices in difference w.r.t. each of the utilities

are actually fixed for all data points).

P2. Normalisation of the utility differences and of the covanance matrix III

difference.

P3. Recursive application of the approximation of Mendell-Elston and calculation

ofthe probability of choice ofthe option actually chosen.

P4. Calculation of the contribution of the data point to the value of the 10g

likelihood function.

The contributions to the derivatives of the log-likelihood function due to each data

point are calculated analytically together with the probabilities according to the

following stages:

D1. Calculation of the derivatives of the probability of choice of the option actually

chosen w.r.t. the parameters appearing at the beginning of the application of the

Mendell-Elston approximation.

D2. Calculation of the derivatives of the probability of the option actually chosen

w.r.t. the parameters being calibrated i.e. the control variables of the

optimisation.

D3. Calculation of the contribution of the data point to the derivatives of the 10g

likelihood function w.r.t. the control variables of the optimisation.

392



The differentiation calculations at point D I are carried out along with the operations

at point P3 whilst the others follow. The description of the calculation method

reported here is organised according to the three stages D1, D2, D3 listed above.

6.4.2.2 Calculation of the Derivatives of the Probability of the Option Actually

Chosen W.r.t. the Parameters Appearing at the Beginning of the Application

ofthe Mendell-Elston Approximation

The initial parameters of the Mendell-Elston calculations are, for each data point,

those appearing in the MVN integral corresponding to the MNP choice function for

the option actually chosen ch:

(6.8)

(the notation is as for (3.8) in section 3.2). The parameters appearing in (6.8) are the

initial upper limits of integration pj of the integral of the normalised MVN

distribution Y=MVN(O,P) and the correlations Pji between the utilities in difference

w.r.t. the one of the actually chosen option, which is taken as reference for the

Mendell-Elston calculations. In the discussion that follows these parameters are

indicated respectively as PjlO and PjilO where the addition to the subscript remarks that

they are the parameters at the beginning of the calculation of (6.8) with the Mendell

Elston method. Moreover they are referred to collectively as the vector

y = ~JIO"."PJ-1IO' PI2!O" " ' PJ-l,J-2IoJ and anyone entry ofy is generically referred to as

Ym.

The derivatives of the Mendell-Elston MNP probabilities w.r.t. these parameters can

be obtained by applying the chain rule of differentiation to the parameters entering

the calculations at each stage of the application of the approximation. To clarify the

differentiation method and what is meant by the parameters entering the calculations
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at each stage, it is useful to recall the way probabilities are obtained in the Mendell

Elston approximation.

Given the MVN integral (6.8), the Mendell-Elston method considers the distribution

of the integrand and the marginal integral of one of the variates, say Yi, <I>WD, and

approximates as multivariate Normal the conditional distribution of the remaining

variates.

The standard deviation of one of the remaining variates, say Yj, conditional on Yi < ~i

results in:

(6.9)

The correlation between any two of the remaining variates, say Yj and Yk, conditional

on y, < ~i is:

(6.10)

Considering a normalised conditional distribution, the integration limit of any of the

remaining variates, say Yj, conditional on Yi < ~i , is calculated directly from its

conditional mean as:

(6.11)

Thus a n dimensional MVN integral can be calculated approximately by reducing it,

in stages, to the product of n marginal univariate Normal integrals, by applying the

approximation repeatedly.

The MNP choice probability for the chosen alternative in a choice set is given by the

relevant MVN integral in difference (6.8). The approximated choice probability Pch
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obtained with the Mendell-Elston approximation (without considering the

normalisation of the probabilities to their sum), results in:

(6.12)

where ~jlj-l are the upper integration limits for the univariate Normal integrals

obtained according to the Mendell-Elston formula (6.11) and J is the dimension of

the MNP choice problem, that corresponds to a MVN integral of dimension J-l. In

the rest of this section, each of the marginal univariate Normal integral calculations

and the related conditioning and approximation as MVN of the remaining variates, if

any, is referred to as the stage or conditioning level in the calculations. The subscript

for ~jlj-l and other parameters, in (6.12) as well as in the rest of this section,

indicates the conditioning level at which they are used (j) and the last level on which

they are conditioned (j-l). Level 0 is the starting point: that is when no conditioning

has been applied yet.

It follows from the rules of differentiation that the derivative of (6.12) W.r.t. a

parameter Ym is:

(6.13)

The <I>~ jlj-l) are obtained as part of the process to calculate the choice probabilities

. a<I>~ jlj-l) b lculated . h hai 1 d 1· .whilst each of the can e ca cu ate usmg t e c am ru e an exp oitmg
arm

the structure of the approximation calculations as described in the rest of this section.

At each stage ofthe Mendell-Elston calculations, <I>(~jlj-l) is only a function of ~jlj-l.

Therefore it is:
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(6.14)

while the derivatives w.r.t. the other parameters of the MVN integral for this

conditioning level are O.

If j-1 is zero, this is the first level of conditioning, that is the first time the

approximation is applied to the MVN integral being calculated. Thus ~jlj_1 is ~llothat

is the upper integration limit appearing in (6.8) for the first variate included in the

Mendell-Elston calculations and (6.14) is the only non-zero element ofthe vector of

the derivatives a<I>~llo). The calculation of the derivatives of <I>WII 0) W.r.t. y is thus
Oym

complete.

If this is not the first time the approximation is applied, it can be seen from (6.11)

that ~jlj_1 is in turn a function only of some of the parameters defining the MVN

integral at the previous conditioning level, namely only of ~j Ij-2, that is the limit of

integration, at the previous conditioning level, of the variate whose marginal integral

is considered at level j, of ~j-Ilj-2 the limit of integration of the variate whose

marginal integral has been taken at the previous level, and of Pj,j-Ilj-2 the correlation,

at the previous level, between those two variates. To apply the chain rule of

differentiation it is necessary to know the value of the relevant derivatives, that can

be obtained considering (6.9) and (6.11) and are:

a~ )1)-1
=

a~ )1)-2

1
(6.15)

a~ )1)-1 _ P),)-11)-2(j)1)-1B)_I + O.5~)1)_IP~,)_II)_2D)_1

a~ )-11)-2 - (j~I)_1

a~ )1)-1 _ (j)1)-1 A)_I + ~ )I)-IP),)-II)-2C)-1

ap),)-11)-2 - (j~IJ-I

where:

(6.16)

(6.17)
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A. I = cp~ j-Ilj-z)

r: ~$ j-Ilj-z)

B. = aAj-I = - Pj-Ilj-Z cp~ j-Ilj-Z }D~ j-I!j-Z )- (cp~ j-Ilj-Z )f
j-I ap j-Ilj-Z (<D~ j-Ilj-Z ))z

C. = A. (A. + A ) = cp~ j-Ilj-Z ) [ cp~ j-Ilj-z) + J
j-I j-I j-I t-' j-Ilj-Z <D~..) <D~. . ) Pj-Ilj-Z

l-' j-Ilj-Z l-' j-Ilj-Z

ec.;
D. I = =2A. lB. I + B . IA . I' + A. Ij- aA r: Jr r: l-' j-I j-Z r:

t-' j-Ilj-Z

(6.18)

(6.19)

(6.20)

(6.21)

The derivatives of Pj Ij-2 w.r.t. the other parameters conditional on level}-2 are zero.

If} is 2 and level}-2 is level 0, applying the chain rule once using the (6.14) and the

[
a<D(PZ1I)]

(6.15)-(6.17) allows us to obtain the vector By m of the partial derivatives of

<D~zll) w.r.t. the parameters in y:

aPZ1I
apJio
apz1I

apzllo
apZ!1

apz10

T T

aPz1I
apl10
aPz1I

apzllo
ap

aP 2ID

(6.22)

If <D~zll) is obtained as part of calculations involving more than two variates, i.e.

more than two conditioning levels, there will be further entries in the column vector

in (6.22) whose value will be zero because they will be referred to parameters in y

that have an effect only at further conditioning levels.
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If the level of conditioning considered is at least the third, which means that this is

the third time that a marginal integral is calculated, andj in ~jlj-l is equal to 3 or

more, the parameters W.r.t. which the derivatives are taken in (6.15), (6.16) and

(6.17) are a function of those at the previous level of conditioning. In particular, ~jlj-2

and ~j-llj-2 are function of parameters at the previous level of conditioning similarly

to ~j Ij-l above (therefore according to formulae similar to 6.11) and can thus be

differentiated according to formulae similar to (6.15), (6.16) and (6.17). The pjj-ljj-2 is

a function of pjj-ljj-3, Pj-lj-2jj-3, PjJ-2jj-3 and ~j-21j-3 as can be seen considering formulae

(6.10) and (6.9). The corresponding derivatives are:

OPj,j_1Ij_2 1

OPj,j_1Ij_3 O"j,jlj_P>l,j_1Ij_2

OPj,j_1Ij_2 _ C [ - P j-1,j-2Ij-3 P j,j-2Ij-3]
~ - j-l + Pj,j-1Ij-2 2
U " , 0"",0", . . 0",.
'Pj,j-2Ij-3 j,jlj-2 j-l,j-1Ij-2 jlj-2

(6.23)

(6.24)

(6.25)

Op j,j-1Ij-2
=

O~ j-2Ij-3

P j,j-2Ij-3 P j-l,j-2Ij-3 D j-l
---'------'----+

(J j,jlj-2 (J j-l,j-1Ij-2

(6.26)

The derivatives of Pjj-ljj-2 W.r.t. other parameters conditional on levelj-3 are zero.

Thus, iflevel j-3 is level 0 aud the vector [i)<!J::12 J] ofpartial derivatives of <I>~*J

w.r.t the parameters y appearing at conditioning level 0 is being calculated, the

formulae above can be used to apply the chain rule as follows:
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[~::I')]~

T

aP312 aP211 ap211 aP211 ap211 aP211 ap211

_ d<1>~*)
ap211 apllO ap2110 ap

2IO ap3110 ap3210 ap
3IO

ap* ap3211 ap3211 ap3211 ap3211 ap3211 ap3211

dP* ap3211 apiJo ap2110 ap2IO ap3110 ap3210 ap3IO
ap* aP311 aP311 aP311 aP311 aP311 aP311
aP311 apiJo ap2110 ap

2IO ap3110 ap3210 ap
3IO

(6.27)

ap3IZ
T

aP211 ap211 aPz11
0 0 0

aP211 ap110 apz1lo a~21O

=<P~3IZ
ap3IZ ap3zII ap3zI I

0
ap3zI I ap3zII

0
ap3zII ap110 apz1lo ap3110 ap3zIo
ap3IZ a~311

0 0
aP311

0
a~311

aP311 ap110 ap3110 ap3IO

If <1>~*) is used as part of a calculation with more than three conditioning levels its

derivatives W.r.t. the parameters appearing in y but not in (6.27) will be zero.

Ifj in Pjlj-l is four or more, and therefore the derivatives of <1>~413)' <1>~514)' and so

on, are being calculated w.r.t. the parameters y = ~llo"",PJ-IIO,P12IO"",PJ-I,J-ZloJ at

level 0, the chain rule can be applied similarly to above. In general, the vector of

derivatives [a<lJ~:j_' ~ can be written using the cbain rule for all relevant levels as:

[ a<1>~ jlj-I )] = d<1>~ jlj-I) IT E
;+., dP.. . . k=j-I klk-I
vy m I-'11;-1

(6.28)

where Eklk- 1 is the matrix of derivatives of the parameters at level k w.r.t. the

parameters at level k-l. The differentiation formulae, (6.15) to (6.17) and (6.23) to

(6.26), cover all the cases necessary to form the non-zero entries of any of the

matrices Ek1k-1•
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For each conditioning level, the order in which the parameters are included in the

matrices of derivatives Eklk-l is as they would be in a vector stacking the unique

entries of a symmetric matrix which has as diagonal entries the Pklk-l for the variates

whose marginal integral has not yet been taken at level k and, as the off-diagonal

entries, the correlations between those variates at level k.

This structure of the matrices of derivatives is the one used in the implementation of

the procedure in the computer program developed. The actual coding of the

procedure is complicated by the fact that the order in which the variates are included

in the calculations may vary to improve the precision of the result (see 3.5.3) so it is

also necessary to keep track of which are the parameters, at each level of

conditioning, relevant to the calculations at further conditioning levels. Although the

details of the implementation of the routine are not discussed here, it is worth

mentioning that part of the calculation effort is saved by observing that some entries

of the matrices of derivatives at each stage can simply be taken from the matrices of

[ acD~ 01
0 I)]

derivatives used to write (6.28) to calculate the vector &y:J- at previous

stages. This can be seen from the description above by observing that the vector of

derivatives appearing as the second term in the product in (6.22) gives also the first

three entries of the first line in the [3x6] matrix in (6.27) which are also all the non

zero terms of that line. In fact, if there are three levels of calculations the column

vector in (6.22) is a column vector with three added entries equal to zero and that

vector gives the whole first line of the [3x6] matrix in (6.27).

Similarly, if there were a 4th level of calculations and a cD~413) to differentiate, the

[3x6] matrix in (6.27) would be all that is necessary to form the first 3 lines of the

[6xlO] matrix constituting the fourth and last element of the product (6.28) (because

the remaining entries on those lines are zero), and the [lx3] matrix in (6.22) would

form the first 3 entries of that [3x6] matrix (the other entries on that line are again

zero).
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[ a<I> ~ -I" 1)]
Once all the vectors of &y:J- for a data point have been obtained using the

procedure illustrated above and the <I>~ jlj-l) have been calculated as part of the

process to compute the probability of the option chosen for that data point, the

entries of the vector [~:] of the derivatives of the non-normalised probability of

the option actually chosen with respect to the parameters y at the beginning of the

Mendell-Elston calculations can be obtained according to formula (6.13).

6.4.2.3 Calculation of the Derivatives of the Probability of the Option Actually

Chosen W.r.t. the Control Variables of the Optimisation

At this point in the calculations the derivatives of the probability of the option

actually chosen still need to be referred, using again the chain rule, to the control

variables of the calibration problem, that are the coefficients appearing in the

systematic utilities of the alternatives and the Cholesky factors of the reference

covariance matrix in difference. The derivatives w.r.t. the coefficients appearing in

the systematic utilities can be obtained immediately with one additional chain rule

step whilst the others require more calculations.

In the previous section PjJj-l referred to the variate entering the calculations at levelj.

If the processing order is optimised the variate entering the calculations at level j is

not necessary that ofplacej in the vector of utilities in difference w.r.t. the utility of

the chosen option. However, for simplicity, in the description that follows it is

assumed that the variates are processed in the order in which they appear in the

vector of utilities in difference w.r.t. the chosen option. Thus PjJj-l corresponds also

to the jth variate in the vector of utilities in difference W.r.t. the chosen option and,

similarly, PijJi-l corresponds to the covariance of place ij in the covariance matrix of

the utilities in difference. In the program actually coded the processing order of the

variates is optimised and the present differentiation step is used to refer the

derivatives to the parameters as they are ordered in the vector of utilities in

difference W.r.t. the chosen option by knowing which corresponds to the variate

entered in the calculations at each step.
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This last part of the procedure is similar to the procedures suggested by Sheffi et al.

(1982) and Bolduc (1999), when allowance is made for the different formulations of

the problem, as they also proposed procedures to obtain analytical derivatives based,

as is necessary, on the chain rule, but for numerical integration and for the GHK

simulator.

The integration limits and correlations of the normalised MVN distribution in (6.8)

will have been obtained from the distribution of utilities in difference w.r.t the

chosen alternative as:

2
_ OOij(ch)

Pijla -
OOii(ch)00jj(ch)

(6.29)

(6.30)

where the subscript ch indicates the chosen option and the subscript I indicates the

option whose utility in difference is on line j of the vector of utilities in difference

w.r.t. the utility of the chosen option. aOi is the alternative specific constant for

option I, a; is the coefficient for attribute e, ae/ is the value of the attribute e for

option I and 00
2

ij(ch) is the entry of position ij of the covariance matrix of the utilities

in difference W.r.t. the chosen option.

Starting from the derivatives [::] of the probability of the chosen option obtained

with (6.13) and applying once more the chain rule considering (6.29) allows us to

obtain the derivatives of the probability of the option actually chosen for the data

point W.r.t. the parameters appearing in the systematic part of the utility.

In fact, if aOk is an alternative specific constant (ASe):
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8~ jlO
=

8u Ok

1

co jj(ch)

1

ro jj(ch)

if U Ok is the ASC of option 1(k = I)

if U Ok is the ASC of the option whose

prob. is being calc. (k =ch)
(6.31)

o otherwise

If o; is a coefficient of an attribute:

8~j10 = bechaech -belae l

8ue co jj(ch)
(6.32)

where be I is the Kronecker delta indicating whether o; appears in the systematic

utility of alternative I, and a; I is the attribute for o; in alternative I.

As can be seen from (6.30) the derivatives of Pylo W.r.t. any of the parameters in the

systematic utility will be zero.

The vector [
8P

Ch] of derivatives of the probability of the option actually chosen
8u e

w.r.t. the coefficients in the systematic utilities of the alternatives are thus finally

obtained as:

(6.33)

where [::] was obtained as described in the previous section and the matrix

[Orm] is obtained by calculating its entries with (6.31) and (6.32).
8ue

Both ~j 10 and Pji I0 are functions of the elements of the covariance matrix III

difference w.r.t. the chosen alternative. ~jlo has a derivative that is non-zero only

when differentiated W.r.t. ro2
jj (ch) . In this case the derivative is:
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8~j10

8CD~(ch)

_~r:h -~
2 CD~j(Ch)

(6.34)

Pji! 0 has a derivative different from zero when differentiated W.r.t. CD
2ji(ch)

, CD2U(chJ,

CD
2
jj(Ch) . The first of those derivatives is simply:

8p jilO _ 1

8CD~i(Ch) CD jj(ch)CDii (ch)

and the others are:

(6.35)

8Pj il O _

8CD~(Ch)

8Pj il O

8CD~j(Ch)

2
1 CD (h) =__1 Pj"I"IOji c

2 CDii(ch)CD~j(Ch) 2 CD~j(ch)

(6.36)

(6.37)

Thus the derivatives of the probability of the option actually chosen for the data

point referred to the unique entries of the relevant covariance matrix in difference

can be obtained by multiplying the vector [::] of derivatives referred to the initial

Mendell-Elston parameters y by a matrix [ aym ] of the derivatives of those
8CD jk(ch)

parameters W.r.t. the parameters of the covariance matrix in difference obtained with

the formulae (6.34)-(6.37):

(6.38)

The derivatives [ 8:h
] still need to be referred to the elements of the reference

8CD j k(ch)

covariance matrix (that here is the one in difference with w.r.t. the first alternative) if

they are not already, and then to the actual control variables of the problem: the
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Cholesky factors of the reference covariance matrix in difference, except the one in

position (1,1) that is fixed. If alternative control variables are considered, the latter

step must be altered accordingly.

If the chosen option for a data point is not the reference one, option one, the vector

of derivatives [ a:h ] is multiplied by the matrix [am~:(Ch)] of the derivatives of
am jk(ch) ampq(l)

the unique entries of the matrix in difference used in the calculations w.r.t. the

unique elements of the reference matrix in difference. Each column of [am~:(Ch)]
ampq(l)

corresponds to a unique element of the reference matrix in difference and each row

[am
2

]to a unique element of the current matrix in difference. There is a matrix j;(Ch)

ampq(l)

for each option except the reference option. Since they are fixed, they have been pre

written in the calibration program developed. They have been obtained simply by

considering the operation to transform the covariance matrix 0(l) of the utilities in

difference w.r.t. the utility of the reference option into the covariance matrix O(n) of

the utilities in difference W.r.t. a different option:

(6.39)

where r(n) is the matrix that allows us to change a problem in difference W.r.t. option

one to a problem in difference W.r.t. option n. It has been described by Bunch (1991)

and is obtained by simply taking the matrix .6cn) described in chapter three, and

deleting the column of the reference option, option one in this case. The elements of

[ am~ ]the column of J:(Ch) for an element of 0(1) are obtained from (6.39) as the
ampq(l)

unique elements of O(n) when instead of 0(1) a matrix 0(l) with entry 1 in the

position of the element of O(l) of interest and 0 in the other places is used.

Once the vector [ a~h ] of derivatives of the probability of the option actually
ampq(l)

chosen for the considered data point W.r.t. the unique entries of the reference
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covariance matrix in difference is obtained, these derivatives are further referred to

the Cholesky factors Cij(l) of such a covariance matrix, that are used as control

variables of the likelihood maximisation problem. The vector [
8P

Ch ] of those
8Cij(l)

derivatives IS calculated simply by multiplying the vector [ 8;h ] of the
8COpQ(I)

derivatives of the probability w.r.t. the unique elements of the reference covariance

matrix in difference by the matrix [8CO~Q(I)] of the derivatives of the elements of the
8Cij(l)

latter w.r.t. the elements of its Cholesky factorisation. This matrix is fixed at each

solution point explored.

The final result of the operations described in this section are the vectors [8PCh
] and

8a e

[ 8~h ] of the derivatives of the Mendell-Elston choice probability of the option
8Cij(l)

actually chosen for a data point w.r.t. the control variables of the calibration

problem.

6.4.2.4 Calculation of the Derivatives of the Log-Likelihood Function W.r.t. the

Control Variables of the Optimisation

Finally, the derivatives of the log-likelihood function for a set of surveyed data and

for a set of model parameters can be obtained by knowing the choice probabilities of

the chosen options and their derivatives, as calculated above.

The notation used in the previous section can be compacted by writing together the

control variables of the optimisation as the vector

0= (aop ... , a eN , C I2(1)"'" C N-I N-I(IJ. Thus, the derivative of the log-likelihood

function (6.2) w.r.t. ai, one ofthe control variables ofthe problem, is:
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aL(e) =~(£IOg~ (e)1 =£~(logPs (e)) =£_1- aps(e)
ae; ae; s e-l ) s=1 ae; s=1 t; (e) ae; (6.40)

where Pie) is a short expression for the probability of choice of the option actually

chosen by the choice maker s in the sample of data expressed as a function of the

vector e whilst aps (e) is its derivative W.r.t. the control variable ei, obtained aseo,
described in the previous sections.

6.4.2.5 Extension of the Method to Consider Probabilities Normalised to Their Sum

The method proposed above and the program used for the experiments reported in

this chapter do not include the normalisation of the probabilities to their sum, thus

limiting the calculations to the choice probability of the option chosen for each

sample data point.

Alternatively, indicating with a dash the probabilities normalised to their sum,

expressed as:

P' = ~h
ch J

LfJ
j=1

(6.41)

where j is one of the J options in the choice set, their derivatives w.r.t. the control

variables of the log-likelihood optimisation problem should be consistently obtained

as:

ap:h(e)=~
eo, eo,

~h(e)
J

LfJ(e)
j=1

= (6.42)

This formula requires the calculation of the choice probabilities and of the

derivatives for the non-chosen alternatives, some of which may have a very small

choice probability, approximated as zero by the program. In such cases the

derivative could be approximated as zero. This device is currently adopted in the
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program coded to deal with points in the solution space particularly far from the

optimum (that have, however, not been encountered in the calculations to obtain the

results reported later) and assumes, approximately, that in the neighbourhood of a

point where the probability is negligible its variation is also negligible. This heuristic

procedure seems to work well in practice and the goodness of the assumption and of

the approximation obtained are also confirmed when comparing the analytical

derivatives thus calculated with the numerical ones obtained for the same points.

6.4.2.6 Analytical Derivatives with Other Approximations

The method of application of the chain rule of differentiation discussed in section

6.4.2.2 to obtain the derivatives ofthe probability of the chosen option exploiting the

structure of the Mendell-Elston approximation can be adapted for use with other

approximations.

For instance, the method described can be readily applied when the (6.8) is solved

using the Taylor series approximation. Focussing on the first order Taylor series

approximation, the differentiation can be organised similarly according to the levels

of conditioning. The entries of the matrices of derivatives Eklk-l in (6.28) can be

calculated with formulae different from those for the Mendell-Elston case only

because the conditional covariance matrices do not depend on the limit of integration

of the conditioning variate. This can be readily seen by comparing the formulae for

the Mendell-Elston and for the Taylor series approximations reported in chapter 3.

When the improved Clark approximation is used to solve the MNP choice function

posed as in (3.5), the chain rule can be applied similarly but considering the different

structure of the approximation. The compact formula for the application of the chain

rule is again as (6.28) but the levels or stages in the calculations are defined by the

approximation as Normal of the maximum of two variates, rather than by a

conditioning as in the Mendell-Elston case. Observing the formulae of the

approximation, the dependence of the parameters used at a calculation level on those

at the previous calculation level can be readily characterised. Thus the formulae for

the derivatives necessary to obtain the matrices corresponding to the Eklk-l in (6.28)

can be obtained. Since in this case the formulation of the MNP choice function (3.5),
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rather than the (6.8), is solved the following calculations to refer the derivatives to

the control variables of the optimisation problem are simplified.

6.5 Multinomial Probit Calibration Using the Mendell-Elston

Approximation: Numerical Tests

6.5.1 Introduction

The computer program for MNP calibration implementing the Mendell-Elston

approximation and using either numerical derivatives or the analytical derivative

calculation method described in section 6.4, has been employed to carry out

experiments to confirm the efficiency of using analytical derivatives and to test the

ability of the MNP solution method used and of the likelihood framework to retrieve

the parameters of known models as a function of the sample size in cases with 3 and

4 choice options.

An in depth study of the second subject would require extensive numerical tests and

the results presented here are intended simply to give a first idea of the results that

could be obtained.

6.5.2 Test Methodology

The efficiency of using analytical derivatives compared to using numerical ones and

the retrieval accuracy of the MNP model solved with the Mendell-Elston

approximation have been tested by recording the calculation time and comparing the

calibration results in a number of test cases with 3 or 4 choice options.

To carry out the tests, a number ofmodel structures have been characterised, then for

each model structure the "true" parameters have been set and 10 artificial data sets

consisting of the choice made and the values of the attributes appearing in the model

for 10000 instances of choice have been generated with a computer program. These

data sets are intended to replicate the data that would be collected in a survey.
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The data generation program obtains the attributes of the options as the product of a

base data drawn from a specified uniform distribution for each individual (i.e. for

each data point) and the ratio between the attribute and the base data, which is drawn

from a different specified uniform distribution. Once calculated, the attributes

appearing in each alternative's utility are weighted according to the set model

coefficients and summed to form the systematic parts of the utilities. It should be

noted that the attributes are all option specific, that is attributes for the same

coefficients have been drawn from different distributions for each choice option.

The random terms of the utilities are drawn from their distribution as specified in the

input and summed to the systematic part of the utilities. The utilities are then ranked

and the resulting choice is provided as output along with the value of the

corresponding attributes used.

For each of the ten data sets generated for each true model, calibrations were carried

out using subsets of 500, 1000, 2500, 5000, 7500 and 10000 data points. Thus for

each structure, 10 models have been calibrated for each sample size.

The calibration results presented later in the chapter include the average calculation

time for each model structure and sample size and the aggregate calibration results,

meant to represent the likely range of estimates retrievable for each sample size.

Although an analyst will normally have some initial idea about the sign of the

coefficients appearing in the systematic utility, the calibrations have been started

with systematic utility parameters set to zero and Cholesky factors of the covariance

matrix in difference with the first utility all set to one except that in position (1,1)

that is fixed for scale identification and set to the corresponding value used in

generating the data so that the retrieved parameters are directly comparable with

those used for data generation.

Such a starting point without use of prior information has been used to leave the

determination of the coefficients completely to the calibration procedure.
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The convergence criterion to terminate the calibration calculations is based on the

norm of the gradient of the log-likelihood function: when it is less than 10-2 (a

threshold that may be changed from the program input) convergence is assumed to

be achieved. Also additional secondary checks on the variations of the log-likelihood

and of the parameters are performed along with the gradient check, to confirm the

agreement of the gradient and the function.

The Mendell-Elston approximation employed follows the calculation order of

Kamakura (1989) discussed in chapter 3. To avoid instabilities in the calculations,

the order is fixed at each iteration to the one followed at the current solution. This

means that the same order is used to perform the line search and compute the

numerical derivatives, which, this way, are consistent with the analytical ones, as

verified. The calculation order is fixed also across iterations when final convergence

is approached. This is detected by observing again the gradient norm. For the

experiments whose results are reported here, the order is fixed when the gradient

norm is less than 10.

The calculation times have been measured on a desktop computer Pentium II, 350

MHz.

6.5.3 Test Bed

All true models used to obtain the artificial data for the experiments reported in this

chapter are MNP models. The covariance matrices calibrated from the data are those

of the utilities in difference w.r.t. the utility of the first option and are indicated for

each model structure. Also indicated, but only for reference, are the true covariance

matrices of the utilities to which they correspond.

Three model structures have been employed for the 3 choice option cases.

First, data obtained from a very simple MNP model with one attribute and identical

and independent errors have been generated. The model structure, referred to as 3ai,

is:
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v; = (XI + (X3 XII

V2 = (X3 X12

V3 = (X2 + (X3 X13

o

o
(6.43)

n(l) is, in this case as the following ones, the covariance matrix of the utilities in

difference w.r.t. that of the first option, which is the covariance matrix that is

actually estimated directly from the calculations. To simplify the notation, in (6.43)

and in the rest of the chapter the indication of the reference option has been omitted

from the subscripts of the elements of n(l).

The parameters used to generate the data are listed in the following table 6.1.

Parameter Value

(XI -0.5

(X2 -1.0

(X3 -1.5

Parameter Value

cr 2 1.0

2 2 2.00011 =00 22

2 1.000\2

Table 6.1 - Parameters/or the model structure 3ai.

A second test case with three options has been obtained by including three attributes

in the systematic utility of each option and using again an i.i.d. covariance matrix:

v; = (XI + (X3 XII + (X4 X21 + (XSX31 [IT'
0

~lV2 = (X3 X12 + (X4 X22 + (XSX32 L= ~ cr 2

V3 = (X2 + (X3 X13 + (X4 X23 + (XSX33 0 cr 2

(6.44)

[ , ffi~, ]
0011

n(l) = 2
0021 0022

The actual parameters used to generate the data for this test case (referred to as 3ci)

are listed in table 6.2.
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Parameter Value

a 1
-2.0

a 2
-1.0

a 3
-1.0

a 4
-0.05

Parameter Value

as -0.25

0"2 2.0

2 _ 2 4.0COli -C022

2 2.0C012

Table 6.2 - Parameters for the model structure 3ei.

Finally, a set of choice data for a three option case with the following structure has

been considered:

~ =a 1 + a 3X 11 + a 4 X 21 + a SX 31

V2 = a 3X 12 + a 4 X 22 + a SX 32

V3 =a 2 + a 3X 13 + a 4 X 23 + a SX 33 (6.45)

and the choice data have been generated using the true parameters reported in table

6.3. This case is referred to in the following as 3cb.

Parameter Value

0. 1
-2.0

a 2
-1.0

0. 3
-1.0

a 4
-0.05

as -0.25

2 2.50"11

Parameter Value

2 0.80"12

2 20"22

2 20"33

2 2.9COli

2 1.7CO 12

2 4.5CO 22

Table 6.3 -Parameters for the model structure 3cb.

Two, similar, four options cases have been included in the tests.
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First, a model referred to as 4ci, with 3 attributes entering the systematic utility of

each option according to the following structure has been used:

~ = a l + a 4 X ll + a SX 21 + a 6X 31 a
2 0 0 0

V2 = a 4 X I2 + a SX 22 + a 6X 32 0 a
2 0 0

L=
V3 = a 2 + a 4 X 13 + a SX 23 + a 6X 33 0 0 a

2 0

V2 = a 3 + a 4 X I4 + a SX 24 + a 6X 34 0 0 0 a
2

(6.46)

[ 2

2

ro;, ]<Dll <Dl2

n(l) = <D~I
2

<D 22 <D32
2 2

<D31 <D32 <D33

The ten sets of choice data have been generated using the parameters listed in table

6.4.

Parameter Value

a l
-2.0

a 2
-1.0

a 3
-1.5

a 4
-1.0

as -0.05

Parameter Value

a 6
-0.25

a
2 1.0

2 2 2 4.0<D I I = <D 22 = <D 33

222 2.0<D l2 = <D 13 = <D 23

- -

Table 6.4- Parameters for the model structure 4ci

Then a structure similar to the previous one but with option's utilities partially

correlated has been used:

~ = a l + a 4X I I + a SX 21 + a 6X 31
2 2 0 0all a l2

V2 = a 4 X I2 + a SX 22 + a 6X 32
2 2 0 0

L=
a l2 a 22

V3 = a 2 + a 4 X I3 + a SX 23 + a 6X 33 0 0 2 2
a 33 a 34

V2 = a 3 + a 4 X 14 + a SX 24 + a 6X 34 0 0 2 2
a 34 a 44 (6.47)

[,
2

ro;,J<Dll <Dl2

n(J) = <D~I
2

<D22 <D32
2 2

<D31 <D32 <D33
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The true parameters used in the ten instances of choice data generated for this

structure are reported in table 6.5.

Parameter Value

a l
-2.0

a 2
-1.0

a 3
-1.5

a 4
-1.0

as -0.05

a 6
-0.25

(J2 _(J2 211 - 22

Parameter Value

2 1.0(J12

2 2 2.5(J33 = (J44

2 1.2(J34

2 2.00)11

2 2 4.50)22 = 0)33

2 2 1.00)12 = 0)13

2 3.20)23

Table 6.5 - Parameters for the model structure 4cb

6.5.4 Calculation Time Results

The calculation times required by algorithms employing analytical and numerical

derivatives to perform the calibration of the models described in the previous section

using subsets of 500, 1000, 2500, 5000, 7500, 10000 choice data have been recorded

to obtain confirmation that using the analytical differentiation technique explained

earlier in the chapter is actually less computationally expensive than using numerical

differentiation.

Figures 6.1-6.5 show clearly the important difference of the calculation times

employed by the Mendell-Elston procedure when the gradient at each iteration is

calculated analytically and when it is calculated numerically.

The times reported in fig 6.2 and 6.3 and in fig 6.4 and 6.5 are rather similar for

corresponding differentiation method and sample size as was expected considering

the similarity of the problems and the corresponding number of calibrated

parameters.

The more than linear increase in calculation time showed in fig 6.4 for the numerical

differentiation procedure in cases with 10000 observations is due to difficulties with
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the calculations of the derivatives very close to the solution that, however, occurred

very rarely. These problems were never encountered when using analytical

differentiation.
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Fig 6.1 - Comparison ofcalculation times for the model structure 3ai.
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Fig 6.2 - Comparison ofcalculation times for the model structure 3ci.
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Fig 6.3 - Comparison ofcalculation times for the model structure 3cb.
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Fig 6.5 - Comparison ofcalculation times for the model structure 4cb.

6.5.5 Parameter Retrieval Results

The results on parameter retrieval are presented by model structure. It should be

remarked that the results obtained by solving the log-likelihood maximisation with

analytical and numerical derivatives are consistent, as should be expected of a

correct procedure, thus only the results obtained from one of the procedures are

presented.

The results reported, such as those in figure 6.6, refer to the average quality of the

parameter estimates obtained from the ten calibrations performed for each model

structure and sample size. In fact, fig. 6.6 and the following similar ones report the

mean of the estimates and the extremes of its 95% confidence interval from the 10
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calibration exercises against the sample size used. The confidence intervals are

obtained by assuming that the estimates of the parameters are Normally distributed.

This is, asymptotically, the case for the coefficients in the systematic utility but not

for those in the covariance matrix that are obtained as the product of Cholesky

factors directly estimated. Testing the Normality of the covariance matrix entries

estimates for each sample size was not totally conclusive but did not exclude the

Normality assumption. The relevant graphs reported should therefore be intended as

indicative and resulting from an approximate assumption. Also the lines connecting

the markers for the data points are only indicative.

The parameters of the simple model 3ai are estimated in all cases with the correct

sign. Observing figures 6.6-6.10 it is evident that the quality of the estimates,

especially of those of the covariance matrix entries, improves when the sample size

is 2500 or more. In fact, it should be particularly noted the lower accuracy in

estimating the alternative specific constants and the covariance matrix entries for

lower sample sizes.
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Fig. 6.6 - Estimates of alternative specific constant u j and true value against

sample size for model 3ai.
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Fig. 6.8 - Estimates ofcoefficient (X3 (jar the only attribute) and true value against

sample size for model 3ai.
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Fig. 6.9 - Estimates ofentry CO~2 of the reference covariance matrix and true value

against sample size for model 3ai.
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Fig 6.10 - Estimates ofentry ro;2 ofthe reference covariance matrix and true value

against sample size for model 3ai.

Figure 6.11-6.17 show that also in the 3ci case the quality of the results improves

when the sample size exceeds 2500, although in all cases the parameters are

recovered with the correct sign. The estimates of the alternative specific constants do

not always include the true value in the 95% confidence interval but they are close

estimates of them. A similar consideration is valid for two of the estimates of the

other parameters in the systematic utility, reported in figs. 6.13-6.15. The small

confidence interval width reported in the figures for the coefficients of the attributes

suggests, as seems to be the case also in the other examples, that they are easier to

estimate correctly.
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Fig. 6.11 - Estimates of alternative specific constant (Xl and true value against

sample size for model 3ci.
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Fig. 6.12 - Estimates of alternative specific constant o: 2 and true value against
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Fig. 6.13 - Estimates ofcoefficient u 3 (jor the first attribute) and true value against

sample size for model Sci.
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Fig 6.14 - Estimates of coefficient u 4 (jor the second attribute) and true value

against sample size for model Sci.
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against sample size for model Sci.
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Figures 6.18-6.24 show the mean and the 95% confidence interval of the mean of the

estimates from the ten calibrations for each sample size for model structure 3cb.

The sign of the parameters is correctly estimated except in one case with sample size

500 when the off-diagonal covariance matrix entry is incorrectly estimated as

negative. The 95% confidence intervals include the true values of the parameters but

their widths suggest the difficulty of estimating the model with the smaller sample

sizes. In particular, as in the previous cases, the estimates are consistently of better

quality when the sample size exceeds 2500.
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Fig. 6.18 - Estimates of alternative specific constant 0. 1 and true value against

sample size for model 3cb.

0
2500 5000 7500 10000

-0.5
2
Cll

-true value IE
~ -1

-mean I(]) -
(jj I -uci95% IE -1.5

I -I ci 95%~
Clla.

-2

-2.5

sample size

Fig. 6.19 - Estimates of alternative specific constant a 2 and true value against

sample size for model 3cb.
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Fig. 6.20 - Estimates ofcoefficient a 3 (for the first attribute) and true value against

sample size for model 3cb.
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Fig 6.21 - Estimates of coefficient a 4 (for the second attribute) and true value

against sample size for model 3cb.
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Fig 6.22 - Estimates of coefficient as (for third attribute) and true value against

sample size for model 3cb.
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Fig. 6.23 - Estimates ofentry CO~2 ofthe reference covariance matrix and true value

against sample size for model 3cb.
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Fig 6.24 - Estimates ofentry CO;2 ofthe reference covariance matrix and true value

against sample size for model 3cb.

Figures 6.25-6.36 show that, on average, the calibration program estimates correctly

the magnitude of the coefficients for the 4ci model, although with sample sizes of

500 and 1000 the confidence intervals are particularly large for both alternative

specific constants and entries of the reference covariance matrix. This is also due to

estimates of the wrong sign in a small number of cases with 500 and 1000

observations. The width of the confidence interval of the estimates seems to vary

very little in all cases with sample sizes of 2500 and over. It is interesting to notice

the difficulty of estimating the covariance matrix entries with sample sizes of less

than 5000. On the other hand, even with small sample sizes that cause a large

variation of the estimates of the parameters retrieved, the estimates of the attribute

coefficients are rather good.
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Fig 6.26 - Estimates of alternative specific constant 0,2 and true value against

sample size for model 4ci.
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Fig 6.27 - Estimates of alternative specific constant 0,3 and true value against

sample size for model 4ci.
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Fig 6.29 - Estimates ofcoefficient as (for second attribute) and true value against

sample size for model 4ci.
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Fig 6.30 - Estimates of coefficient 0,6 (for third attribute) and true value against

sample size for model 4ci.
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Fig 6.31 - Estimates ofentry 0)~2 ofthe reference covariance matrix and true value

against sample size for model 4ci.
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Fig 6.32 - Estimates ofentry 0);2 ofthe reference covariance matrix and true value

against sample size for model 4ci.
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Fig 6.34 - Estimates ofentry 0)~3 ofthe reference covariance matrix and true value

against sample size for model 4ci.
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Fig 6.35 - Estimates ofentry 0);3 ofthe reference covariance matrix and true value

against sample size for model 4ci.

-true value

-mean

-&-u ei 95%

--lei 95%

1000075005000

sample size

2500

5,--------------------

4.5 I~§~~~~~§§~~~~~§~~~~~2 4
~ 3.5
~ 3
Q)

Q; 2.5+-~------------------
Q) 2+--------------------
E
~ 1.5 +--------------------
~ 1+-------------------

0.5 +-------------------
0+-----,------,------,-------,

o

Fig 6.36 - Estimates ofentry 0)~3 ofthe reference covariance matrix and true value

against sample size for model 4ci.

The results for the case 4cb, that differs from the previous one only for the

covariance matrix, are reported in fig. 6.37-6.47 and confirm the difficulties of

estimating the model with sample sizes not exceeding 2500 when all the possible

coefficients are left free to vary. In particular, the estimates of the elements of the

reference covariance matrix obtained are of very poor quality with small sample

sizes and, although they improve with larger sample sizes, their precision seems to

remain limited. An increase in quality of the estimate could probably be achieved by

introducing restrictions to the covariance matrix (even imposing simply 0)~2 = 0)~3 ,

through the corresponding Cholesky factors).
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In some cases with sample size 500 and 1000, the off diagonal entries of the

reference covariance matrix, and in particular co~z and CO~3 are estimated as negative

(which implies a negative correlation between the corresponding variates). These

results are clearly incorrect, and need further investigation, but do not introduce

negative elements in the other covariance matrices in difference and are not

encountered with larger sample sizes.
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Fig 6.37 - Estimates of alternative specific constant u j and true value against

sample size for model 4cb.
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Fig 6.38 - Estimates of alternative specific constant U z and true value against

sample size for model 4cb.
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Fig 6.43 - Estimates ofentry OO~2 ofthe reference covariance matrix and true value

against sample size for model 4cb.
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Fig 6.44 - Estimates ofentry 00;2 ofthe reference covariance matrix and true value

against sample size for model 4cb.
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Fig 6.45 - Estimates ofentry CO;3 ofthe reference covariance matrix and true value

against sample size for model 4cb.
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Fig 6.46 - Estimates ofentry CO~3 ofthe reference covariance matrix and true value

against sample size for model 4cb.
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Fig 6.47 - Estimates ofentry coi3 ofthe reference covariance matrix and true value

against sample size for model 4cb.
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6.5.6 Conclusions

The data presented, although not obtained from an extensive series of tests, confirm

the efficiency of using analytical derivatives for calibrating multinomial probit

choice models solved with the Mendell-Elston approximation.

The calibration results reported refer to average estimates from ten calibrations for

samples of different sizes and aimed at suggesting the possible confidence intervals

of the estimates that can be expected when all the model's parameters are left free to

vary. An analyst calibrating a model will probably have an initial idea of the sign

and of the possible magnitude of the coefficients but here the systematic utility

coefficients have been started from a value of zero and the entries of the reference

covariance matrix in difference have been left free to vary to check to what extent

the model can retrieve them.

It was generally observed, in the cases with 3 and 4 options calibrated, that samples

with 2500 data or less give, on average, estimates of poor quality especially for the

alternative specific constants and for the covariance matrix entries. The quality of

the estimates improved with larger sample sizes. The need to use large sample sizes

to obtain results of good quality is in agreement with previous findings on models

with 3 options where the utility covariance matrix was estimated (Maher et a!.,

1999) and with other results reported in the literature on probit model calibration: for

instance, Keane (1992) used a sample size of 8000 for a small trinomial probit

example, Munizaga and Ornizar (1997) had to use a sample size of 8000 to obtain

correctly a correlation, the only parameter they calibrated in the utility covariance

matrix of a model with four alternatives, although they needed only 2000 data when

they calibrated only a variance. Similar smaller sample sizes were used in other

cases e.g. Bolduc (1999) used a sample of 1299 observation but estimated a model

with a structured covariance matrix.

Investigations introducing restrictions on the covariance matrix estimated were not

carried out here since the main objective of the chapter is the introduction of the

analytical differentiation procedure, although it is likely that they would result in

improved precision of the estimates for the same sample sizes. However, the

calibration results obtained let us conclude that the flexibility of the multinomial
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probit model comes at the cost of needing large samples of data to calibrate it if all

parameters are free to vary and the analyst is trying to use the model to reveal the

structure of the choice situation.

6.6 Conclusions

This chapter was concerned with the calibration ofmultinomial probit choice models

when an analytical approximation method is used to solve the choice function. The

calibration problem has been introduced by recalling its presentation given in

chapter two and the likelihood method to calibrate a choice model has been

described. The introduction to the problem has included a review of the issues

related to the specification of the models to be estimated, focussing in particular on

the specification of the covariance matrix and on the techniques to check it.

After recalling the basic formulae of the Mendell-Elston approximation, a method

developed for calculating analytically the derivatives of the Mendell-Elston MNP

probabilities and log-likelihood function has been described. It exploits the structure

of the Mendell-Elston approximation and can be extended to other approximations

with similar calculation structure.

The correctness and the efficiency of the differentiation method developed have been

tested by implementing it in a computer program that has been used to calibrate a

small number of artificial test models of known characteristics with 3 or 4 choice

options.

Comparing the calculation time data with those obtained with the same program

when it uses numerical derivatives confirmed the efficiency of using analytical

differentiation. The correspondence of the derivatives at a point in the solution space

and of the final results confirmed the correctness of the analytical differentiation

procedure.

The same test calibrations were used to obtain a picture of the dependence of the

accuracy of the results on the sample size suggesting the need to use large sample

sizes for calibrating a multinomial probit model with all possible parameters free to

vary.
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The work presented here could be developed in several ways. For instance the

calibration program written could be extended to consider normalised probabilities

and other approximations as well as to include the numerical integration method of

Genz (1992, 1993), used in chapter 3 to obtain reference data, and to deal with more

choice options. To save on computational effort, the extension to consider

normalised probabilities could probably solve a first approximation of the problem

without the normalisation of the probabilities and use it only to pinpoint the solution.

Moreover, experiments on retrieval accuracy similar to those proposed here could be

carried out also with larger choice sets and on a larger range of model structures,

building a database of information about the precision with which results can be

obtained. This work could be used to study the problem of optimising the design of

the sample of data for a required accuracy of the estimates, also when the sample is

not simply random but is organised in strata.

One more issue that can be studied using an extension of the program employed in

this chapter is the possible multimodality of the likelihood of multinomial probit

models. As it is difficult to obtain general results on this matter, an extensive series

of experiments on different series of model structures could be used to investigate

numerically the existence of multiple log-likelihood optima also trying to

characterise the causes of such multiple optima. Very little work in the literature

(Daganzo, 1979; Sparmann et aI., 1983; Liu and Mahmassani, 2000) is concerned

with this problem and none offer a general comprehensive treatment of it. The

possible multimodality of the MNP log-likelihood function is often disregarded in

practice but is important to make sure that the parameters resulting from a model

calibration are not different from the real maximum likelihood ones, otherwise the

resulting model is inherently incorrect.
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7. SUMMARY AND CONCLUSIONS

This chapter closes the thesis by summarising the main points on the work and the

results presented and suggesting further work that could be carried out on the

subject.

The first chapter introduced transportation models and their application for the

evaluation of changes of transport systems. It was remarked that many phenomena

studied in transportation are the result of the choices ofmany individuals and that, as

a consequence, transportation models are often applications of choice models.

The importance of using a sound choice model for obtaining reliable results from a

transportation model was underlined and it was stated the intention to study the

application to traffic assignment and model calibration of analytical solutions to one

such model, the multinomial probit choice model, that is well known but not widely

used.

The multinomial probit choice model and the main alternative choice models based

on the random utility framework used in transportation were reviewed in the second

chapter. This survey, especially focussed on models for mode choice and traffic

assignment, showed that, although the best known and simplest models like the

multinomial logit and the hierarchical logit are widely used, much recent research

work has tried to extend the flexibility and the applicability of the models available.

Two strands of work in this direction can be characterised in the literature. One is

based on extending the choice situations that can be analysed with models whose

choice function is written in closed form and that are related to the logit model.

Examples of this type ofnew models are those obtained as particular instances of the

GEV model (e.g. the paired combinatoriallogit and the cross-nested logit model) or

of the mother logit model (as the C-Iogit model). These models have been applied to
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traffic assignment to obviate the well known inability of the multinomiallogit model

to account correctly for network topology.

The second strand of published work, that has appeared very recently, focuses on the

development and the application of the mixed logit model, that has been shown to be

able to approximate all the other choice models, but can only be solved by

simulation, using procedures initially developed for the multinomial probit model.

The discussion in chapter two recalled that the mixed logit model has an advantage

over the multinomial probit only when non-Normal random effects need to be

modelled. It also remarked that the new models developed in the first stream of work

characterised in the literature try to extend the capabilities of closed form models to

match those already available in the multinomial probit model, whose choice

function cannot be written in closed form.

Thus, the idea of working on analytical approximations to the multinomial probit

model can be seen as a way of obtaining the same result sought in the work in the

literature on new closed form models (a flexible choice model that can be solved

analytically) starting from a different point, that is trying to solve a flexible model

that cannot be written in closed form with an approximate, but analytical,

formulation. Since the work in this thesis is mainly concerned with traffic

assignment applications, it was also remarked that having a choice model solved

analytically is convenient also as it allows us to develop and employ efficient

solution algorithms such as those discussed in chapters four and five, devoted to

traffic assignment. The use of analytical multinomial probit methods is also

convenient for the calibration problem as it obviates the need to choose the number

of simulation replications.

In fact, the analytical approach to the solution of the multinomial probit choice

function is not new and the most notable attempt at it has been the introduction of

the Clark approximation in the late 1970s. The more recent limited interest enjoyed

by such approach in the transportation literature is, perhaps, due to doubts about the

precision of the approximations after the limited precision of the method of Clark

was noted in the literature.
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Therefore, the first step to pursue the analytical treatment of the multinomial probit

model has been to compare the precision and the computing cost of a number of

alternative analytical methods including that of Clark. The results of this work have

been reported in chapter three where it was explained that the multinomial probit

choice function can be solved directly or as an equivalent multivariate Normal

integral. The latter problem recurs in several disciplines and analytical solution

techniques borrowed from some of them have been compared with others already

used in transportation on a series of artificial case studies devised to replicate traffic

assignment choice situations. The comparisons showed that the likely precision

varies with the methods used although all give less precise results for actual low

choice probabilities. Comparing the precision and the calculation time it was

suggested that the analytical solution of the multinomial probit model with good

accuracy is feasible and the best methods to carry it out are two of those

approximating the multivariate Normal integral: the approximation of Mendell

Elston and the approximation of Tang and Melchers, the first originally developed in

biostatistics and the second initially put forward for structural reliability

applications.

The results in chapter three can be used for choosing the best method to employ in

traffic assignment but are not necessarily readily transferable to cases where only the

MVN integral is used, as they have been obtained by normalising the single

probabilities to their sum.

One interesting general point from the results presented is the importance of the

processing order of the variates within an approximation method for obtaining

accurate results. In fact, the approximations examined are, in all cases, iterative

applications of a basic approximation that is employed as many times as the

dimension of the problem requires and the order in which the variates are included in

the approximation seriously influences the results. The tests for the Taylor

approximation also showed that refining the elemental approximation is less

effective than optimising the calculation order. Therefore should other
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approximations be considered for practical use it is important that their optimal

calculation order, if any can be devised, is characterised.

Chapter three was mainly concerned with the viability of analytical approximations

different from numerical integration but a further important point resulting from it is

that the use of numerical integration in transportation applications is worth pursuing

further. The numerical integration method of Genz, that was used to obtain reference

data, could be employed directly by requiring a smaller precision of the results.

Although also with this setting it will probably remain more time consuming than

most approximation methods, it overcomes the problems that limited the application

ofpreviously published integration methods to cases with up to 4 options.

In closing the comments on the work reported in chapter three, it should be said that,

although the comparisons were based on an extensive set of choice situations, it

could be interesting to extend them further to include comparisons of the final results

of traffic assignment models on real networks and of the final results of calibration

algorithms, also considering results obtained from the probit solution methods by

simulation currently mostly used.

The fourth chapter investigated different algorithms for the solution of the

Stochastic User Equilibrium traffic assignment model. Two multinomial probit

approximation methods were used in the implementation of the algorithms but the

same algorithms can be used also with other analytical approximations and choice

models solved analytically. In fact, they are based on the direct use of the value of

the SUE objective function of Sheffi and Powell (1982) and of its gradient, thus

requiring those quantities to be evaluated correctly and not from simulation.

The investigations on different ways to determine the step length along the MSA

search direction showed that there is little scope for improvement on the

interpolation methods in the literature (that approximate the function as a cubic or a

quadratic along the search direction) by using similar methods that employ

information taken at different points but requiring the same number of stochastic

loadings. The interesting results obtained using predetermined steps different from
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the MSA were undermined by the possibility of different performances on different

networks whereas methods obtaining the steps by interpolation should adapt to the

problem at hand. Any of the interpolation methods studied can be used in a practical

algorithm and none of them should probably be expected to perform systematically

better than the others.

When the possibility of using different search directions was considered to obtain

more efficient algorithms, the interpretation of the MSA search direction as a

preconditioned steepest descent direction for the objective function of Sheffi and

Powell was put forward. Building on this way of reading the traditional search

direction, two preconditioned conjugate gradient algorithms, based respectively on

the formula of Fletcher and Reeves and on the formula of Polak and Ribiere, were

proposed and tested.

Both algorithms improved on the corresponding ones using the traditional search

direction but only the algorithm of Polak and Ribiere proved to be robust when used

with a line search refined only to obtain an improved objective function gradient,

which is generally the most efficient strategy. Although the problems showed by the

Fletcher and Reeves algorithm deserve further analysis, it had been expected from

the literature on optimisation that the method ofPolak and Ribiere would prove to be

more suitable for non-quadratic problems.

Possible further work extending that presented III chapter four could involve

analysing the performance of those algorithms on larger networks and when the set

of paths is built by column generation, rather than being given at the outset of the

assignment, and is therefore not fixed until close to the solution.

The effectiveness of the preconditioned conjugate gradient search directions, is an

interesting result also as it underlines the importance of looking at the objective

function of the problem at hand to devise more effective algorithms. Only a limited

investigation on the shape of the objective function has been carried out by

observing its Hessian matrix and has been reported before testing the algorithms, and

more investigations on this subject in a larger number of test cases would be

interesting also to understand better the effect of using the traditional search
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direction at the beginning of the problem calculations, when, as in the cases

examined, the Hessian matrix ofthe SUE objective function is not positive definite.

However, the results reported suggested that the original problem is ill-conditioned

and can be simplified by a preconditioning like the one inspired by the traditional

search direction.

The simple preconditioning given by the Jacobian of the cost functions can be used

also to develop further preconditioned algorithms such as quasi-Newton and limited

memory quasi-Newton algorithms. With these types of algorithms, however, it

would not be possible to keep track of the current solution in path flow terms as the

simple relationship between search direction in path and link flow terms exploited in

this thesis would not hold. They could be used for link based algorithms. However,

since the Fletcher-Reeves preconditioned steepest descent algorithms encountered

difficulties when not applied with a precise determination of the step length or not

started with a number of MSA iterations, it is likely that a quasi-Newton algorithm

would encounter the same difficulties in the same circumstances. Limited memory

quasi-Newton algorithms, that are typically restarted after one or few iterations,

should obviate these difficulties but would not take full advantage of the information

they gather when they are closer to the solution, where the objective function seems

to be better behaved.

The experiments in chapter five confirmed the results on the performance of the

algorithms investigated for the SUE problem also for the multiple user class

extension, where the algorithms actually solve a SUE problem in terms of

standardised flows, and for the more complex MUC SUE ED problem, where the

algorithms work again on a problem in terms of standardised flows but this is made

more difficult by the possible variation of the demand.

The new objective functions for the SUE ED and MUC SUE ED cases, proposed in

chapter five, simplify noticeably the SUE ED formulation in the literature and the

MUC SUE ED formulation that can be directly taken from it. It is interesting that,

thanks to those formulations, the extensions of the SUE problem studied can be
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reduced to a problem very similar to SUE, both in terms of formulation and of

algorithms and ultimately that they can be reduced to a problem in terms of link

flows. Moreover, the formulations proposed allowed a better understanding of the

programmes by the analysis of their Hessian matrix which showed that the

programmes for the extended problems keep the properties of the corresponding

SUE ones.

Objective functions for other extensions of the SUE problem with the same cost

structure (separable link costs and additive path costs) could be devised and analysed

similarly by starting from the idea of a gradient reducing to the difference between

present and auxiliary (balanced) link flows. Given the results obtained in chapter

four and five, it could be expected that algorithms similar to those explored in this

thesis applied to further extensions of the SUE problem formulated as those

examined in chapter five, would perform similarly.

Further work to support the practical application of the probit solution to elastic

demand assignment could involve the satisfaction function, or more generally of the

distribution of the minimum of the perceived costs. The methods suggested at the

end of chapter three to determine the satisfaction include a way to obtain it

consistently with the Mendell-Elston approximation but a better understanding of the

possible distribution of the minimum of the perceived costs would be of interest.

The work in chapter six considered the problem of calibrating a multinomial probit

model solved analytically by focussing on the use of the Mendell-Elston

approximation. To develop an efficient calibration procedure, the chapter presented

an algorithm for obtaining analytical derivatives exploiting the structure of the

Mendell-Elston approximation calculations. The method was coded in a program

that can alternatively use numerical derivatives and the feasibility and efficiency of

calculating analytical derivatives with the method developed was shown by

comparing the calculation times required by the two differentiation techniques in a

number of test cases. It was also remarked that a differentiation procedure similar to

the one used in the Mendell-Elston case can be applied with other approximations.
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The calibration results from the same test cases, built by generating artificial data

from known models, showed that the maximum likelihood program developed can

capture the real parameters and structure of the models but the quality of the results

depends, as expected, on the size of the sample of data used.

Further work on multinomial probit calibration can be suggested building on that

presented in chapter six: for instance, the implementation of other multinomial probit

solution methods and the comparison of the results they would give on a series of

test cases, to extend to the calibration problem the accuracy tests reported in chapter

three. Similar numerical investigations extended to a large number of model

structures and sample sizes could be used to develop a database of information on

parameter retrievability which would show merits and limitations of the model and

could provide helpful information for survey design. The possible multimodality of

the multinomial probit likelihood function, an issue often disregarded in the

literature and difficult to investigate analytically, could also be explored with an

extensive series of numerical tests carried out calibrating a number of models from

different starting points that would provide guidance on what model structures may

bring about this issue.
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APPENDIX A

At Gradient and Hessian of the MUC SUE Objective Function

in Terms of Standardised Link Flows

The MUC SUE objective function in terms of standardised link flows (obtained from

the formulation ofDaganzo (1982)) is:

(ALI)

A typical term of its gradient can be derived by using the chain rule starting from the

gradient w.r.t. the common component of the link costs, reported in 5.2.3.1.

Alternatively (AI. 1) can be differentiated directly to write:

aZMucsuAv) __"a(k)" (k)aS;:) b() dbi -b( )
- L..JQ(k)L..Jqrs + i Vi + Vi i Vi

aVi K 13 RS aVi dv,

Recalling that, from the properties ofthe satisfaction (see, Sheffi, 1985), it is:

as
(k)

_rs_=p(k)

a
(k) rspep

that the path costs by user class are additive:

and that link costs by user class are separable and defined as:

it is:

as(k) as(k) ae(k) as(k) ae(k) de. db.
_rs ="_rs_P ="_rs_P__' = "p(k)A(k)8. _'

::l... L..J a (k) ::l... L..J a (k) a d L..J rsp tJ 'p d
UV i pep UV i pep < Vi p Vi

(A1.2)

(A1.3)

(AlA)

(A1.5)

(A1.6)
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Substituting (AI.6) in (AI.2), it results in:

8ZMUCSUE(V) =(_ "a(k)"q(k)" p(k)'b . +v.]dbi(V;)av L..J L..J rs L..J rsp pi I d
i K RS P Vi

(Al.7)

The general term of the Hessian is obtained by differentiating (Al.7) once more

W.r.t. a generic standardised link flow:

8ZMUCSUE(V) =~((-" a(k)" (k)" p(k)'b . +v.] dbi(vi)J
;l... ;l... ;l.. • L..J L..J q rs L..J rsp pI I d
uviuv j uV j K RS P Vi

This results in:

(AI.8)

(AI.9)

where 'by is I whenj=i and is zero otherwise, since the link costs are separable. The

second term can be rewritten by considering that the part in brackets is the difference

between the auxiliary and current solution, respectively Wi and Vi, and the third term

can be developed by considering that the choice probability of a path is a function of

the path costs e;k). Thus, considering these relationships and tidying up, it gives:

and recalling (AlA) and (Al.5) it is possible to write:

8e(k) 8e(k) 8C\k) db.
_m_ =_m J_ = 'b .f.l.(k)_J

8 8 (k) av mJf-I dv j c j j v j

(Al.lO)

(Al.lI)
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Thus, the general term of the Hessian of (AI.l) can finally be expressed as:

OZMUCSUE(V) _ dbi s: (_ )d
2b

i s:
- o., + W. +V. 2 o., +

~.::::l d ij I I d ij
UviuV j Vi Vi

_ "'a(k)R(k)"'q(k)",,,,OPr~~) 8 . dbi 8 . dbj

L... I-' L... rs L...L... ::::l (k) pi d mj d
K RS P M uern Vi V j

In matrix form V2Z MUCSUE (V) can be written as:

+ Ia(k)~(k)Iqrs (VvbL1~) X- Ve(k)Pr~k) XvvbL1~))
K RS

(A1.l2)

(A1.B)

where R is the vector of differences between the current and the auxiliary link flows

and Ve(k)Pr~k) is the Jacobian of the path choice probabilities for class k and for the

paths between rand s.
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A2 Gradient and Hessian of the MUC SUE Objective Function

in Terms of Common Link Costs

The MUC SUE objective function expressed in terms of common link costs

(obtained from the formulation ofDaganzo (1982)) is:

(A2.I)

The gradient of(A2.I) is obtained in detail in 5.2.3.1 and its ith component is:

(A2.2)

A general term of the Hessian of the MUC SUE objective function in terms of

common link costs can be written by differentiating (A2.2) w.r.t. a component of the

vector of common parts of the link costs, thus writing:

(A2.3)

Recalling that the path costs by user class are additive:

(A2A)

and that the link costs are defined by:

the derivative of the first term is:

( J
8P(k).s: _"a(k)"q(k)" P(k)8. =_"a(k)"q(k)"~ .

8b ~ ~ rs ~ rsp pi ~ ~ rs ~ 8b pi
j K RS P K RS P j

(A2.5)

(A2.6)
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ap(k) k ap(k)
_ "a(k)"q(k)""~ ae mO. =_" a(k)R(k)"q(k)""~O .0 .

L.J L.J rs L.JL.J a (k) ab pi L.J f.I L.J rs L.JL.J a (k) ml p:
K RS P M em j K RS P M em

The second term is simply:

where oij is 1 whenj=i and is zero otherwise, since the costs are separable.

The general term ofthe Hessian is thus:

a
2

Z MUCSUE (b) =_" a (k)R(k)" (k)"" aPr~;) 0 .0 . +
ab ab L.J I-' L.Jq rs L.JL.J a (k) mt pt

i j K RS P M em

(A2.7)

(A2.8)

Equivalently V2ZMUcsuAb) , the Hessian of(A2.1), can be written in matrix form as:

v 2Z (b)= "a(k)R(k)"q(k)A(k)(_V p(k)\A(k)T +V b-1
MUCSUE L.J I-' L.J rs rs e(k) rs Prs b

K RS
(A2.9)

where A~;) is the link-path incidence matrix for class k and v.»: is the Jacobian

of the path choice probabilities for class k and for the paths between rand s.
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A3 Gradient and Hessian of the SUE ED Objective Function in

Terms of Link Flows

A typical term of the gradient of the SUE ED function in terms of link flows:

Xi S~(x)

ZSUEED(X)=-L fc; (co}ico+ Lx;c;(xJ- L fDrs(SrJdSrs
[ 0 [ RS So~

can be obtained by writing:

aZSUEED(X) =_ .(.) .(.) . dc; _"~(S~f(XD) (S )dS Jasrs(x)c, x, +c, X, +x, L..J rs rs rs
ax; dx, RS dSrs S ax;

0"

The asrs(x) can be written as:
ax;

asrs _"asrs aep de,
---L..J------
ax; p aepac; dx,

Thus substituting (A3.3) in (A3.2) it results in:

Recalling that, by the properties of the satisfaction (see Sheffi, 1985), it is:

and that path costs are additive:

and link costs are separable, (A3.4) can be elaborated as:

(A3.1)

(A3.2)

(A3.3)

(A3.4)

(A3.5)

(A3.6)
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3ZSUEED (x) =X. dC i _ "D (S )" P O. dC i

a I d L... rs rs L... rsp ip dx
Xi Xi RS P i

which can be tidied up to give:

3ZSUEED(X) =(X. - "D (s )"P O. JdCi

a I L... rs rsL... rsp tp dx
Xi RS P i

(A3.7)

(A3.8)

The general term of the Hessian of the new SUE ED objective function in terms of

flows is obtained by differentiating the general term of the gradient (A3.8) once

more w.r.t. a link: flow:

3ZSUEED(X) =~( .dC i -" D (S )" P O. dC i )a a a x, dx L... rs rs L... rsp lp dx
Xi X j X j i RS P i

(A3.9)

where oij is I if i=j and 0 otherwise. And, finally,

3zSUEED (x) = (dCi + (x. _ . ) d 2Ci )0" _" dDrs (SrJ" Po. dci " PO. dcj +a a dx I Y, d 2 lJ L... dS L... rsp tp a L... rsm jm a
Xi X j i Ci RS rs P Xi M X j

(A3.1O)

This can be written in matrix form as:
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(A3.11)

+LDrs(Srs Xv xC~rs X- VePrs Xv xC~rs y
RS

Where R is the vector of differences between the current and the auxiliary link flows

and VePrs is the Jacobian of the path choice probabilities for the paths between r

ands.
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A4 Gradient and Hessian of the SUE ED Objective Function in

Terms of Link Costs

The gradient of the SUEED function in terms of link costs:

c, S,,(c)

ZSUEED (c) = L fc~l(m)im-L fDrs(SrJdSrs
I co; RS So"

has a general term that can be derived as:

The BSrs(c) can be written as:
Bc;

BSrs _ '" BSrs Bep
---L..J----
Bc; p Bep Bc;

which, substituted in (A4.2), gives:

Recalling that, from the properties of the satisfaction (see Sheffi, 1985), it is:

and that path costs are additive:

and that link costs are separable (A4.4), can be written as:

(A4.1)

(A4.2)

(A4.3)

(A4.4)

(A4.5)

(A4.6)
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aZSUEED(C) =C:-!(C.)- "" D (8 )"" P 8.a " L.... rs rs L.... rsp tp
ci RS P

(A4.7)

Finally, substituting the current flow for the inverse of the link cost function, (A4.7)

can also be written as:

(A4.8)

Differentiating (A4.7) once more W.r.t. a link cost yields the general term of the

Hessian:

The first term of (A4.9) is simply:

aC;! (c i ) = dc;! (c i ) 5 ..
aC

j
dC

j
IJ

where 5ij is 1 if i=j and is 0 otherwise.

Differentiating the second term, gives:

_ "" aDrs (8rs )"" P 5. _"" D (8 )"" aprsp 5.
L.... a L.... rsp tp L.... rs rs L.... a ip
RS c j P RS P c j

(A4.9)

(A4.10)

(A4.11)

Recalling (A4.5), (A4.6) and that the demand between on OD pair is a function of

the satisfaction between the same OD pair only, the general term of the Hessian

results:

(A4.12)
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Thus, the Hessian of (A4.l) can be written in matrix form as:

+LDrs(Srs X~rs X- V'.r, X~rsY
RS

(A4.13)

where Prs is the vector of the path choice probabilities for the paths between rand s

and V'e Prs is its Jacobian matrix.
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A5 Gradient and Hessian of the MUC SUE ED Objective

Function Derived from the Formulation of Maher et at.

(1999)

The MUC SUE ED objective function derived from the SUE ED one of Maher et al.

(1999) is:

(k) (k) q~)

+~~~ D(k)-l(q(k)P(k)(S(k)(V))+~~~ fD(k)-I(cr)dcr+
L..J R. (k) L..J rs rs rs rs L..J R. (k) L..J rs
K I-' RS K I-' RS q~J

(k)
_ ~~~q(k) D(k)-I(q(k))

L..J R.(k) L..J rs rs ~
K I-' RS

(A5.I)

The gradient of (A5.I) has two typical terms that can be obtained, respectively,

differentiating the objective function W.r.t. the standardised link flows and W.r.t. the

OD flows by user class.

Differentiating (A5.I) W.r.t. a standardised link flow it results:

a db (k) as(k)
ZMUCSUEED =-b.(v.)+b.(v.)+v.-i _ ~~~_rs_D(k)(S(k))+

::l... I I I I I d L..J R.(k) L..J::l... rs rs
U~ ~ K I-' ~ U~

(k) alJ)(k) (k) aD(k)
_ ~~~s(k)_rs+~~~D(ktl(q(k))_rs

L..J R.(k) L..J rs::l... L..J R.(k) L..J rs rs a
K I-' RS UVi K I-' RS Vi

(A5.2)

This expression can be elaborated recalling that path costs by user class e~k) are

additive:

(A5.3)

and link costs by user class are separable and given by:
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Moreover, from the properties of the satisfaction (see Sheffi, 1985), it is:

as(k)
_rs_=p(k)
ae(k) p

p

Thus, it is possible to write (A5.2) as:

8 db
(k) a (k) a (k) d (k)

'ZMUCSUEED =v._i _"~"D(k)(s(k))"~...!!..E..-~+
8v "d L...R(k)L...rs rsL...a(k)a(k)d

i Vi K I-' RS P ep Cp Vi

(k) ( )81 T"\ (k)
+ " ~" D(k)-l (q(k))_ S(k) V rs

L... R(k) L... rs rs rs a
K I-' RS Vi

and finally:

aZMUCSUEED =V. dbi _ "a,(k)" D(k) (S(k))" p(k)O. R(k) dbi +

a
"d L...R(k)L... rs rs L... rs ,pI-' d

Vi Vi K I-' RS P Vi

(k) ( )81T"\ (k)+"~,, D(k)-l(q(k))_ S(k) V rs
L... R(k) L... rs rs rs~.
K I-' ~ UV i

which can be tidied up to give:

aZMUCSUEED =(V. -"a,(k)" D(k) (S(k))" p(k)O. Jdbi +
~. 'L... L... rs rs L... rs tp d
UVi K RS P Vi

(k) ( )81J)(k)+ " ~" D(k)-l (q(k))_ S(k) rs
L... R(k) L... rs rs rs~.
K I-' RS UV i

Differentiating (A5.1) w.r.t. the OD flows by user class it gives:

8 (k) dD(k)-1 ( (k)) (k)
'ZMUCSUEED =~ rs qrs D(k)(s(k))+~D(k)-I(q(k))+

a (k) R (k) d (k) rs rs R (k) rs rss; I-' s: I-'

(A5.4)

(A5.5)

(A5.6)

(A5.7)

(A5.8)

(A5.9)
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(k) (k) d'D(k)-1 ( (k))
_~D(k)-l( (k))_~q(k) rs qrs

A(k) rs qrs A(k) rs d (k)
I-' I-' qrs

which, tidying up, results:

a (k) dD(k)-1 ( (k))
ZMUCSUEED =~(D(k)(S(k))_q(k)) rs qrs

a (k) A(k) rs rs rs d. (k)
q~ I-' q~

(A5.1O)

The derivation ofthe Hessian of (A5.1) at the equilibrium point, can be organised as

in Maher and Zhang (2000) writing the Hessian of the objective function partitioned

in four sub-matrices:

[

a2 ZMUCSUEED ]

aq(k)aq(l)
rs tu

[

a2 Z MUCSUEED ]

aq(k)8v.
rs I

[

a 2Z MUCSUEED ]

avo aq(k)
I rs

[

a 2Z MUCSUEED ]

8v;8v j (A5.11)

_[V~ZMUCSUEED

- V;qZMUCSUEED

V~vZMUCSUEED]

V;ZMUCSUEED

The North-East submatrix can be written deriving once more (A5.10) w.r.t. an OD

flow. Its general entry a2z%~CSUfz~D is different from 0 only if rs=tu and l=k, that is
aqrs aqtu

the submatrix is diagonal with non zero entries equal to:

a2 (k) dD(k)-I( (k)) (k) d2D(k)-I( (k))
ZMUCSUEED =_~ rs qrs +~(D(k)(S(k))_q(k)) rs qrs (A5.12)

(k)2 A (k) d (k) A (k) rs rs rs (k)2
~~ I-' q~ I-' ~~

At the MUC SUE ED point it will be:

(A5.13)

thus, the diagonal entries ofthis submatrix will reduce to:
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a
2 (k) d'D(k)-l ( (k))

Z MUCSUEED _ a rs \qrs

a (k)2 - - R.(k) dq(k)
q~ ~ ~

(A5.14)

The typical entries of the South-East and North-West submatrices of the Hessian

(which are symmetric) are obtained by differentiating (A5.10) once more but w.r.t. a

standardised link flow:

a 2Z a(k) dD(k)-l{q(k)) aD(k) (S(k))
MUCSUEED _ rs ~ rs rs ~ rs

aq(k)av. - R.(k) dq(k) avo
NIP ~ I

Considering that at MUC SUE ED it is:

dD(k) [dD(k)-l Jrs _ rs

dS(k) - dq(k)
rs rs

the (A5.15) can be rewritten as:

a
2 (k) as(k)

Z MUCSUEED _ a rs

aq(k)av. - R.(k) ----a;-
rs I tJ I

(A5.15)

(A5.16)

(A5.17)

Finally, the South-East submatrix of the Hessian can be obtained by differentiating

(A5.8) once more w.r.t. a standardised link flow:

2 (db d
2b J (k) a

2
S(k)a ZMUCSUEED = _i .__i 8.. _ '"~ '"D(k) (S(k)) rs+ V, 2 lj L..J R.(k) L..J rs rs a ~.

aviavj dv, dv; K ~ RS Viuv j

a(k) as(k) dD(k) (S(k)) as(k)
'" '" rs rs rs rs +
L..J R.(k) L..J av. dS(k) av .

K ~ RS I rs J (A5.18)
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Ck) ( )8 2 DCk) (SCk))+"~" DCk)-I{qCk))_SCk) rs rs +
L..J R.ck) L..J rs ~ rs rs ~. ~.
K tJ RS uviuv j

Rearranging the third and the last term, that are equivalent, it gives:

82ZMUCSUEED =(dbi + V. d
2b

i J8 .. _"U
Ck

) " D Ck){SCk))8
2
S;;)

Ov Ov d ' d 2 1J L..J R.Ck) L..J rs \ rs Ov Ov
i j Vi Vi K tJ RS i j

U Ck ) 8S Ck) dDCk) (SCk)) 8SCk)
2" "rs rs rs rs +

L..J R.Ck) L..J Ov. dS Ck) Ov .
K tJ RS, rs ;

Ck) ( )8 2DCk) (SCk))+" ~ " DCk)-1 (qCk))_ SCk) rs rs
L..J R.Ck) L..J rs rs rs ~. ~.
K tJ RS uviuv j

(A5.19)

82SCk)
The last term vanishes at MUC SUE ED, so it can be disregarded. The rs can

OviOvj

be elaborated recalling (A5.3), (A5.4) and (A5.5). It results in:

d 2b 8pCk) db
=_i8.. " p Ck)8. R.Ck) +"~. R.Ck)_i

d 2 1J L..J rsp ,ptJ L..J Ov ,ptJ d
Vi P P j Vi

d 2b 8pCk) db. db
=_i8.. " pCk)8. R.Ck) +"" --!!.L8 .R.Ck)~. R.Ck)_i

d 2 1J L..J rsp ,ptJ L..JL..J 8 Ck) ;itJ d ,ptJ d
Vi P P L e/ V j Vi

(A5.20)

Considering that at MUC SUED ED D;;) (S;;)) can be replaced by q;;) and

substituting (A5.20) in (A5.19), it results in:
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+~~ ap"~;) o. A(k) dbj s. A(k) dbi J+
LJ LJ a (k) ]tI-' d IPI-' d

P L e/ V j Vi

(A5.21)

(k) as(k) dD(k) (S(k)) as(k) (k) ( )a 2D(k) (S(k))
-2~~~ rs rs rs _rs+~~~ D(k)-l( (k))_S(k) rs rs

LJ A(k) LJ avo dS(k) av. LJ A(k) LJ rs qrs rs av.av.
K I-' RS I rs ] K I-' RS I ]

Tidying up, (A5.21) finally results in:

a2ZMUCSUEED = dbi 0.. + (V. - ~a(k)~q(k)~ p(k)O. Jd

2b
i 0.. +

;::l.. ;::l.. d 1J I LJ LJ rs LJ rsp ip d 2 1J
UViUV j Vi K RS P Vi

_ ~a(k)A(k)~q(k)~o. dbi~aPr~;) O. db j +
LJ I-' LJ rs LJ ip d LJ a (k) ]/ d
K RS P Vi L e/ V j

a(k) as(k) dD(k) (S(k)) as(k)
2~ ~ rs rs rs rs

LJ A(k) LJ avo dS(k) av.
KI-' RS I rs ]

In matrix form (A5.22) can be written as:

2 _ ~ (k)A(k)~ ( (k)X (k)X (k))TV'vZMUCSUEED - V'vb +LJ a I-' LJ q rs V'vb~ rs - V'/k) P rs V'vb~ rs +
K RS

(A5.22)

(A5.23)
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A6 Gradient and Hessian of the Short MUC SUE ED Objective

Function in Terms of Standardised Flows

The short MUC SUE ED objective function in terms oflink: flows is:

(A6.1)

The gradient of (A6.1) w.r.t. the standard link: flows is obtained by recalling that

paths costs by user class e~k) are additive:

and link: costs are separable and given by:

and that, by the properties ofthe satisfaction (see Sheffi, 1985), it is:

B,, (k)
_iJ_rs_ =p(k)

B (k) rsp
e p

Differentiating (A6.1) once w.r.t. the standardised flows gives:

BZMUCSUEED(V) =-b. (v.)+b. (v.)+v. dbi _" a(k)" D(k)(S(k))BS~:)
~. " " I d L... A(k) L... rs rs ~.
UVi Vi K I-' RS UVi

db (k) BS(k) B (k)
= V. zzs. _ " ~ " D(k) (S(k) )~_rs~, d L... A(k) L... rs rs 'L... B (k) av

Vi K I-' RS P ep i

db (k) BS(k) Be(k) deCk)_ i"a "D(k) (S(k))'" rs P i
- Vi -d - L... A (k) L... rs rs L..J-B(k) -B(k) -d

Vi K I-' RS pep < Vi

(A6.2)

(A6.3)

(A6.4)

(A6.5)
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Finally, the general term of the gradient of (A6.1) is:

aZMUCSUEED(V) =(V. _ "a(k)" D(k)fS(k))I" P(k)'b~k)J db;av I L.J L.J rs ~ rs 'L...J rsp tp d
i K RS P V;

A typical term of the Hessian of(A6.1) can be derived by writing:

(A6.6)

a2ZMUCSUEED(V) =(db; (. _ .)d
2b;J'b

.. _" (k)"aD(S~:))"p(k)'b~k) db;av av d + v, w, d 1J L.Ja L.J av L.J rsp ip d +
i j Vj v; K RS j P v;

ap(k)
_ "a(k)" D(k) (S(k) )1"~~k) db;

L.J L.J rs rs L.J :::l.. • tp d
K RS P uV j v;

(A6.7)

where 'by is 1 if i=j and 0 otherwise. Considering again (A6.2), (A6.3), and (A6.4),

(A6.7) can be rewritten as:

alJJ (k)(S(k)) as(k) a (k) db
_ "a(k)" rs rs "_rs_~" p(k)'b~k) _; +

L.J L.J as(k) L.J ae(k) av L.J rsp Ip dv,
K RS rs M m bP I

db ap(k) a (k)
_" a(k)" D(k) (S(k))1" 'b~k) zz:,,~~

L.J L.J rs rs L.J tp d L.J a (k) :::l...
K RS P v; M em uv j

=(db; + (v. - w.)d
2b;

J'b .. +
d I I d 1Jv; v;

aD (k) (s (k) ) as (k) db . db
_ "a(k)" rs rs ,,_rs_'b(~)R(k) _J" p(k)'b~k) z:s.+

L.J L.J as (k) L.J a (k) jm f..I d L.J rsp tp d
K RS rs M em V j P v;

(A6.8)
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_" aCklRCkl"DCkl(SCkl)I"[" aPr~;l 8Ck? db j }~kl db;
L...J fJ L...J rs rs L...J L...J a Ckl mj d lp d

K RS P M em V j V;

More succinctly, the Hessian of (A6.1) can be written in matrix form as:

V2 Z MUCSUEED (V) =V.b + RV ~b +

(
dDCkl (SCkl)J+"a(k)R(k)" _ rs rs (V bi1(k)p(k)XV bi1(k)p(k))T +

L...J fJ L...J SCkl v rs rs v rs rs
K RS rs

+"a(k)R(k)" DCkl(SCklXV bi1CklX-V pCklXV bi1Ckl)TL...J fJ L...J rs rs v rs e(k) rs v rs
K RS

(A6.9)

where R is the diagonal matrix of the differences between the present and the

auxiliary standard link flows, Pr~) is the vector of the path choice probabilities for

the paths between rand s and for class k, and Ve(k) p;:l is its Jacobian matrix.
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A7 Gradient and Hessian of the Short MUC SUE ED Objective

Function in Terms of Common Link Costs

The short MUC SUE ED objective function in terms of common parts of the link

costs is:

(A7.1)

A typical term of its gradient is obtained by recalling that path costs by user class

e~k) are additive:

(A7.2)

and link costs are separable and given by:

and that, by the properties ofthe satisfaction (see Sheffi, 1985), it is:

8S
(k)

_rs_=p(k)

8 (k) rspep

(A7.3)

(A7.4)

Differentiating once w.r. t. the common part of the link costs of a link, (A7.1) results

in:

8 (b) ((I) (I)J (k) 8S(k)
'ZMUCSUEED =b~1 c; -co; _" ~"D(k)(s(k))_rs_

8b
I (.l.(I) LJ (.l.(k) LJ rs rs 8b

i fJ K fJ RS i

(k) 8S(k) 8C(k)

"" ex "D(k) (S(k))1" rs P=v; - LJLJ (.l.(k) LJ rs rs LJ~~
K K!-, RS P cp i

(k) 8S(k) 8e(k) 8C(k)
" ex "D(k) (S(k))1" rs P ;

=v; - LJ (.l.(k) LJ rs rs LJ-8(k) 8 (k)~
K fJ RS pep c; i

(A7.5)
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(k)

= V. - ~~~ D(k) (S(k))1" P(k)b~k)p"(k)
I L.,; p.. (k) L.,; rs rs L..J rsp tp f..I

K f..I RS P

which, tidying up, becomes:

OZMUCSUEED(b) = v. _ ~ a(k)~ D(k) (S(k))1" P(k)b~k)
~b I L.,; L.,; rs rs L..J rsp tp
U i K RS P

(A7.6)

The Hessian can be obtained by differentiating (A7.6) once more w.r.t. the common

part of a generic link cost:

2 ( ) [( (I) (I)JJ ~n(k) (S(k))OZ MUCSUEED b =~ b-I ci -COi b .. _ ~ a(k)~ UUrs rs ~ P(k)b~k) +
obiob

j
ob

j
a p(l) 1J "5t 'tr ob

j
~ rsp tp

Op(k)
_ ~ a(k)~ D(k) (S(k))1"~~k)

L.,; L.,; rs rs L..J ~b tp
K RS P U j

(A7.7)

where by is I if i=j and 0 otherwise. Considering again (A7.1), (A7.2) and (A7.3),

(A7.7) can be rewritten as:

2 ( ) [( (I) (I)JJ dV(k) (S(k)) ~S(k)OZ MUCSUEED b =~ b-:-I ci -COi b .. _ ~ a(k)~ rs rs U rs ~ P(k)b~k) +
ob.ob. ob. I p.. (I) 1J L.,; L.,; dS (k) ob. L.,; rsp tp
IJ J f..I K RS rs JP

Op(k) 0 (k)
_ ~ a(k)~ D(k) (S(k))1" b~k)~~~

L.,; L.,; rs rs L..J tp L.,; 0 (k) ob
K RS P M em j

dD(k) (S(k)) OS(k) 0 (k)
_ ~ (k)~ rs ~ rs ~_rs_~~ P(k)b~k) +

L.,; a L.,; dS(k) L.,; 0 (k) ob L.,; rsp tp
K RS rs M em j P

Op(k)
_ ~ (k)~ D(k) {S(k))1" b~k)~~P"(k)b.

L.,; a L.,; rs ~ rs L..J tp L.,; ~ (k) f..I Jm
K RS P M uem

(A7.8)
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and, finally:

d (kl{S(kl)
_ "a(klR'<kl" qrs ~ rs "p(kl(j(~l" p(kl(j(kl +

LJ fJ LJ dS(kl LJ rsm Jm LJ rsp tp
K RS rs M P

8P(kl
_ "a(klA(kl"q(kl(S(kl)1" (j(kl"~(k?

LJ fJ LJ rs rs 'L...J ip LJ 8 (kl mj
K RS P M em

which can also be rewritten in matrix terms as:

\72z(b) =\7 b-1 +"a(kl"(_ dD~;)J(~(k)P(k)X~(k)P(k))T+
MUCSUEED b LJ LJ dS k rs rs rs rs

K RS rs

+" a(klA(kl" D(kl(S(kl \I~(k)(_\7 p(k)\A(k)T)
LJ )J LJ rs rs Iv.. rs e(k) rs Prs
K RS

(A7.9)

(A7.1O)

where Pr~) is the vector of the path choice probabilities for the paths between rand s

and for class k, and \7elk) r: is its Jacobian matrix.
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