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ABSTRACT

In the field of combinatorial optimisation, per-instance algorithm
selection still remains a challenging problem, particularly with re-
spect to streaming problems such as packing or scheduling. Typical
approaches involve training a model to predict the best algorithm
based on features extracted from the data, which is well known to be
a difficult task and even more challenging with streaming data. We
propose a radical approach that bypasses algorithm-selection alto-
gether by training a Deep-Learning model using solutions obtained
from a set of heuristic algorithms to directly predict a solution from
the instance-data. To validate the concept, we conduct experiments
using a packing problem in which items arrive in batches. Experi-
ments conducted on six large datasets using batches of varying size
show the model is able to accurately predict solutions, particularly
with small batch sizes, and surprisingly in a small number of cases
produces better solutions than any of the algorithms used to train
the model.
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1 INTRODUCTION

The per-instance algorithm selection problem (ASP) was first in-
troduced by Rice [22] over forty years ago. Informally, it can be
stated as follows: given a problem space # containing a potentially
infinite sized set of instances for a given problem domain, a feature
space ¥ describing a set of characteristics extracted from P, an
algorithm space A containing the set of algorithms available to
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Figure 1: The traditional schematic of the Algorithm Selec-
tion Problem [22], with proposed modifications shown in
green

solve the problem instances, a performance space Y that maps each
algorithm in A to a set of performance metrics, find a mapping
that maps the problem characteristics in # to an algorithm space
A that maximises the performance metrics in Y.

For a representative set of problem instances, the algorithm
selection process normally includes three main tasks: (1) extract-
ing useful features; (2) determining/designing good algorithms(s);
(3) selecting an appropriate mapping technique S (¥(X)). How-
ever, it is well known that obtaining useful features is not an easy
task and often requires expert input which is not always available
[10, 17, 20, 23]. This is even more challenging with problems that
have a temporal nature, for instance job-shop scheduling [14, 30]
and online bin-packing [13, 21], where tasks/items continually ar-
rive to be assigned to a machine or packed in a particular bin in
the same sequence that they arrive. In such cases, features should
capture the temporal information present in the sequence, which
cannot be achieved using classical statistical approaches for feature
definition. Step (2) (determining/designing algorithms) is gener-
ally more straightforward, particularly given recent advances in
the field of automated algorithm design [24], for instance using
genetic-programming or grammatical-evolution to design new algo-
rithms and heuristics. However, the final step of learning a mapping
between the feature-space # and the algorithm-space A is also
non-trivial, usually involving feature-selection and tuning of a clas-
sification model.
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Although the difficulties associated with feature-selection can
be partially mitigated by recent proposals to bypass the feature-
extraction task by capturing the temporal information implicit in a
sequence and using this as direct input to a Deep-Learning algo-
rithm to learn a mapping from instance to algorithm [1], here we
propose a more radical solution: train a Deep-Learning algorithm
to directly predict the solution to an instance from the instance-data
itself. The approach is illustrated in figure 1, which shows Rice’s
original diagram modified according to our proposal. Rather than
constructing a feature-space from the instance-data and then map-
ping this to the algorithm-space, our approach learns a mapping
directly from problem to solution for a given performance metric.
The model is trained using solutions obtained by greedy selection
of the best algorithm from the algorithm space A (which does not
require the construction of the feature-space ).

To learn this direct mapping, we make use of a deep-learning
technique known as an Encoder-Decoder LSTM! which has re-
ceived much attention in the natural-language domain in tasks
such as text-translation which generate a translated sentence di-
rectly from an input consisting of a stream of words [5, 25]. To prove
the concept is viable, we provide results on a simplified version of
a streaming problem in the domain of bin-packing, in which items
arrive in batches. Once a batch is packed, the next batch is treated
as a new sub-problem. The approach represents a paradigm-shift
in the way in which we approach algorithm-selection, in remov-
ing the need to select an algorithm altogether, and instead directly
returning the best solution.

We investigate the following questions:

(1) To what extent can an Encoder-Decoder LSTM directly pre-
dict an optimised solution from a stream of data describing
a problem-instance?

(2) To what extent are the results influenced by the length of
the stream?

(3) To what extent is the accuracy of the model influenced by
the diversity of algorithm-space (and therefore implicitly the
solution-space) used to train the model?

Experimental results using our model are very encouraging. The
model achieves an accuracy of 85% - 99% on unseen instances in
term of predicting the best solution for small batch-size, although
accuracy decreases as batch-size increases and/or the diversity of
heuristics used to create solutions for training increases. It also
returns a high percentage of valid solutions (92% - 99%) on the
smaller batches. Finally, we show that in some cases it is also capable
of providing better solutions than any of the algorithms on which it
was trained: interestingly, there appears to be a trade-off between
accuracy and “creativity”, suggesting a ripe avenue for further work.

2 RELATED WORK

The vast majority of previous work in the ASP domain follows the
cycle first outlined by Rice [22], shown in figure 1 and discussed
in the previous section [11], in which an important first step is the
extraction of a feature-set. However, as Rice himself, noted: “The
determination of the best (or even good) features is one of the most
important, yet nebulous, aspects of the algorithm selection problem.”.
Extracting good features that correlated to algorithm performance
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remains a complex and hard task [10, 17, 20, 23]. Specifically within
combinatorial optimisation, significant attention has been made
to defining useful feature-sets in popular domains such as TSP
[20] (who define 287 features), other domains remain more elusive,
although Kerschke et al note that there is significant potential to
derive new features from recent work on fitness landscapes [18].

In addition to the issues associated with feature-extraction, a fur-
ther challenge arises with respect to the need to deal with streaming
data within combinatorial optimisation, particularly given the many
practical applications that fall into this category (e.g. in scheduling
and packing). A recent survey article describing the state-of-the-art
in algorithm-selection [11] highlights both the necessity of develop-
ing ASP methods for learning in the context of streaming data and
the difficulties associated with this. Specific challenges include the
fact that the order of data points cannot be changed; the potentially
large size of streams; the fact that data points can be evaluated
once then are discarded; and that the underlying distribution of the
data points in the stream can adapt over time. Only a few selection
approaches have been proposed. This includes supervised-learning
approaches [26, 27] and unsupervised-learning approaches such as
stream-clustering which identify, track and update clusters over
time [3, 7]. However, due to the huge space of parameter and algo-
rithm combinations, clear guidelines on how to set and adjust them
over time are lacking [2, 4, 16]. A recent paper addressed both the
issue of feature-extraction and that of streaming data in proposing
a deep-learning approach (RNN-LSTM) that learned from implicit
temporal information present in the problem instances to predict
the best performing heuristic [1]. This algorithm was “feature-free”,
i.e. it did not require the design and selection of features to describe
an instance. The algorithm was shown to provide promising results
in the domain of 1-d bin-packing.

The approach proposed in this paper goes beyond that of previ-
ous authors in further pursuing the goal of abandoning the need to
derive features in describing a model that directly predicts a solution
from the instance data rather than the algorithm that best solves it.
It takes inspiration from the natural-language processing field in
which an Encoder-Decoder LSTM model has been demonstrated
to give state-of-the-art performance on tasks such as text transla-
tion [5, 25], image captioning [29], conversational modelling [28],
learning to execute programs [32] and movement classification [9].

3 STREAMING DATA INSTANCES

We consider a streaming version of a 1-d bin-packing problem in
which items arrive in fixed-size batches. Items have to be packed
into a set of empty bins. We use a subset of the datasets that were
recently described by [1] which have 120 items per instance that are
initialised with item sizes drawn from two different distributions as
shown in table 1. These instances are concatenated then split into
batches with different window sizes. Note that these instances were
specifically evolved by Alissa et al. [1] to maximise the difference
between the fitness of the best-solving heuristic and the next best
heuristic, therefore each subset of instances that are best-solved
by a particular heuristic are likely to have similar characteristics.
To generate solutions to these instances to use as training data for
the model, we consider the 4 heuristics that were used by Alissa
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et al. [1] (BF, FF, NF, WF)2 which pack one item per time-step in the
order they arrive, plus 2 additional heuristics Best-Fit-Descending
(BFD) and First-Fit-Descending (FFD) [15] that consider each batch
in its entirety.

Table 1: Data set details. Bin Capacity is fixed at 150 [1]

DS  nitems Distribution total

DS1 120
DS2 120

Lower - Upper Bounds

[40-60]
[20-100]

Gaussian 4000
Uniform 4000

For the specific type of streaming problem considered, we split
each instance into batches of size 6, 12 and 18 items per batch. Each
batch is solved using each of n chosen heuristics (depending on the
experiment). The solution with the best fitness according to the
Falkenauer fitness [6] given in equation 1 is added to a training set.

. o filly g

Fitness = Z(—) +n (1)

=
For reference, table 2 shows the percentage of the solutions
solved best by each heuristic under investigation on DS[1,2] with
window sizes 6, 12 and 18. The table also highlights the single-best-
solver (SBS), i.e the heuristic that ‘wins’ more solutions than any
other heuristic in the set. BF and BFD are the SBS in DS1 and 2

respectively, regardless of batch size.

Table 2: Percentage of solutions solved best by each heuristic
per dataset and per batch size. Values in bold show the single-
best-solver in the related dataset

DS-#H-W.S. H1 H2 H3 H4 H5 Heé
BF FF NF WF BFD FFD
DS1-6H-6 34.85% 0.03% 0.14% 2.08% 62.89% 0.00%
DS1-6H-12  39.77% 0.33% 2.14% 7.75%  50.02% 0.00%
DS1-6H-18  44.60% 1.00% 3.28% 13.58% 37.54% 0.00%
DS2-6H-6 32.63% 1.21% 2.09% 1.08% 62.98% 0.02%
DS2-6H-12 12.95% 1.69% 2.87% 2.24%  80.16% 0.09%
DS2-6H-18 7.72% 191% 1.93% 2.89% 85.48% 0.07%

4 ENCODER-DECODER LSTM
ARCHITECTURE FOR SOLUTION
PREDICTION

This section describes the proposed model for providing a mapping
from instance-data directly to a solution. Predicting a solution
for a given problem instance is what is commonly known as a
sequence-to-sequence problem (or seq2seq). These problems are
challenging due to the fact that the number of items in the input and
output sequences can be arbitrary and even from different spaces
(e.g. in example statistical machine translation). However, Seq2Seq
problems have been tackled in other domains using a deep-learning
architecture known as an Encoder-Decoder LSTM [5, 33] that has
proven very effective and achieved state-of-the-art performance.

2Best-Fit;First-Fit;Next-Fit;Worst-Fit [1]
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An Encoder-Decoder LSTM architecture contains two models as
shown in Fig 2. The encoder is used for mapping an input sequence
into a vector of fixed dimensionality, and the decoder for outputting
a predicted sequence based on the encoder output. The Encoder-
Decoder LSTM uses a training technique known as teacher forcing
[8]. This has been shown to train RNNs quickly and effectively
where the decoder model receives the ground truth output y; as
input at time t + 1 as shown in Fig 2. This approach was originally
described and developed as an alternative technique to BackPropa-
gation Through Time (BPTT) for training RNNs architecture that
have lack hidden-to-hidden connections [8, 31]. A detailed expla-
nation of the model is outside the scope of this paper. However, we
provide a brief outline of how it works and how we have adapted
for use as a solution predictor.

4.1 Training

Fig 2 provides a conceptual overview of how the Encoder-Decoder
LSTM works. During training, the encoder produces a vector that
represents the input sequence (window of items) to initialise the
state of the decoder. Triggered by the encoder’s state, the decoder
produces each item’s index in the output sequence in a one-shot
manner (i.e. rather than recursively), as the entire solution (target
sequence) is known during training. Training data is represented
as a fixed-length list of item-sizes in a batch, e.g. [52, 57, 53, 53, 51,
55].

4.2 Testing

Similar to training, the encoder provides a fixed vector from the
input. As shown in Fig 3, the main difference with testing phase is
that the whole solution is not known beforehand, so the decoder
will be called recursively for each item’s index until the end of
the solution. Using the encoder’s state and the starting sequence
value (SS), the decoder starts to predict the first item’s index in the
solution and feed the first predicted index with the first decoder
unit’s cell back to the next time step unit. This process will end when
reaching the maximum size of solution. If the network predicts a
solution before reaching the maximum size then it will predict the
End Sequence (ES) value until reaching the max solution size. For
a batch of size n, the network output is of the form shown below,
which indicates which item in the batch is placed in which bin:
e Solution = [2, 6, Sep, 3, 4, Sep, 1, 5, ES]

The output is interpreted as follows: place the 2nd and 6th items
in bin 1, the 3rd and 4th items in bin 2, and the 1st and 5th items in
bin 3. A separator value is used to indicate breaks between bins. ES
refers to the end of the sequence. Any values outside the range 1
to n (where n is the batch-size) could be chosen to represent the
separator and ES. Here we select ES = 152 and Sep = 0; ES is a large
value to make it out of the batch-size range, and the difference
between the ES and Sep values is maximised to make it easier for
the network to learn.

The process of prediction starts when the encoder initiates the
decoder state with a vector representing the problem instance.
Given the encoder state, alongside a trigger to indicate the start of
a sequence (SS), the first decoder unit tries to predict the index of
the first item in the solution, to provide the first decoder unit state.
The first decoder unit state, along with the first predicted item in



GECCO ’20, July 8-12, 2020, Canciin, Mexico

the solution then feed back into the second decoder unite to predict
the second solution item, thus providing the second decoder unit
state and so on. Note that once all items are packed, the network
will predict ES until the end of the sequence is reached.

5 METHODOLOGY

We use the Keras functional API 3 implementation of an LSTM
where the input is a list of item weights and the output is a so-
lution. The input and output are both one-hot encoded [33]. As
the predicted solutions vary in length due to the variable number
of separator tokens used to delineate bins, we pad solutions to a
fixed length by repeatedly appending the value End sequence ES
= "152". Experiments are conducted on Google Colab* with GPU
run-time used to execute the experiments. A preliminary empirical
investigation was conducted to tune the Encoder-Decoder LSTM
architecture and hyper-parameters using the ranges shown in table
3. The "Adam" optimiser [12] was used in all tuning experiments
due to its reported accuracy, speed and low memory requirements.
Note that further preliminary investigation considered various op-
tions for the representation of the output other than that described
in the previous section. These included predicting the list of items
per bin at each time step and predicting the size of the item to be
packed per time step. However, based on these early experiments,
it was clear that predicting the item’s index per time step using
separators to delineate bins provided the most promising results.

Each dataset was split into a training set (80%) and test set (20%).
Training sets were created for batches of size (6,12,18). Each train-
ing set contains a list of input-output pairs in which the input is
a list of item-sizes in the batch, and the output is a solution rep-
resented as a list of indices of items, with a separator delineating
bins. For training, the solution associated with an input is the best
solution found from greedily applying h heuristics, according to
Falkenauer’s fitness function. Experiments were conducted that
varied both the size and composition of the set of H heuristics used
to select a solution. All experiments were repeated five times. For
each experiment, we save the model that provides the lower error
from the training phase. We test the trained models on the test set,
and additionally on two new random datasets RDS[1,2] each of
which includes 800 instances created from the same properties of
the original datasets, see Table 1.

To evaluate the results, we make use of the following metrics:

e Accuracy: The percentage of solutions that are exactly the
same as the solutions in the test set.

e Validity: The percentage of solutions that are valid in the
sense that (1) all items in the batch are represented exactly
once in the solution and (2) no constraints regarding bin-
capacity are broken.

e Bilingual Evaluation Understudy (BLEU): This metric is
commonly used in the natural language processing field for
evaluating the quality of translated text [19]. It measures
the overlap between the predicted solution and the ground
truth, returning a value between 0 and 1.

e LSTM >BSS: How many valid solutions are better than the
Best Solver Solution (BSS) (in terms of the Falkenauer fitness

Shttps://github.com/fchollet/keras
“https://colab.research.google.com/notebooks/welcome.ipynb
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metric). This metric provides insight into whether the model
is ‘creative’ in the sense that it can produce novel, high-
quality solutions not generated by the heuristics used in
training.

e LSTM <BSS: How many valid solutions are worse than the
Best Solver Solution (BSS) (in terms of the Falkenauer fitness
metric).

6 RESULTS

This section describes the results to the questions posed in the
introduction in turn.

6.1 Encoder-Decoder LSTM performance

The first experiment conducted uses the simplest possible training
set in which only one heuristic is used to create solutions for a batch,
i.e. the model only has to learn a mapping between instance and the
solutions generated by a single specific heuristic. This is motivated
by the idea that a given heuristic follows the same pattern in solving
a set of instances, and therefore provides a simpler task for the
model to learn. We use the BFD heuristic in these experiments as it
wins the majority of instances in each dataset (table 2). Results are
shown as experiment #1 in Tables 4 and 5.

The results show that Encoder-Decoder LSTM model can be used
as a learner to predict an accurate solution for a given problem
instance obtaining 98% and 88% accuracy for DS1 and DS2 respec-
tively. One notices that the results from experiments on DS2 (Table
5) are lower than the ones on DS1 (Table 4). One reason might be
that the DS2 instances are created using a wider range of item-size
values [20, 100] compared to the DS1 instances which have item-
sizes in the narrower range [40, 60]. This wider range makes the
problem instances more difficult for the encoder to summarise and
thus potentially the model requires more encoder layers.

99% and 95% of the predicted solutions are valid in DS1 and 2
respectively. On both datasets, the BLEU metric returns values in
between the accuracy and validity values. Perhaps surprisingly, a
very small number of ‘creative’ solutions are produced, i.e solutions
which outperform the heuristic used to generate the training set;
however, the models also produce some solutions that are lower in
performance than the BSS.

6.2 Impact of Training with Diverse Heuristics

Experiments #2 to #5 in Tables 4 and 5 aim to study how the various
metrics are influenced by the diversity of the heuristics used to
create the training set, i.e. whether training on a dataset created
using multiple diverse heuristics makes it harder or easier to learn
an effective model. We consider 4 different heuristic sets:

e (BF, BFD): this set contains two heuristics that have very
different characteristics (the former packing a single item in
the order of appearance, the latter sorting the entire batch
before packing).

o (BF, WF): these heuristics have similar characteristics, both
packing a single item.

o (BF, FF, NF, WF): all the heuristics that pack a single item in
order of appearance.

o (BF, FF, NF, WF, BFD, FFD): all heuristics.
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Table 3: Range of values that used in the Encoder-Decoder LSTM hyper-parameters tuning; the table also shows the final

selected values

#Epoch  Batch Size #Layer Memory Unites Optimiser LR Loss Function
Range [50,200] [32, 2048] [1_1-4_1,2_2,3_3] [32, 20438] adam [0.0001, 0.001] categ_crossentropy
Best 100 128 3_1 + Full-Connect Layer 1024 adam 0.001 categ_crossentropy

Note that as (BF, FF) produce very similar results we did not test
this combination (with the same applying to (BFD, FFD)). Also, the
combination (BF, NF) is not evaluated given that NF solves only a
few of the instances.

We find that training with solutions created from diverse heuris-
tics that have different characteristics in terms of the methods they
use to create a solution reduces the ability of the learner to predict
accurate and valid solutions (e.g. comparing experiment #2 to #1 )
— a learner with more memory units is likely required to cover this
diversity. In contrast, solutions that are created using heuristics

with similar characteristics (experiments #3,4) obtain similar results
to experiment #1.

From the evaluation metrics perspective, we find that accuracy
and validity appear correlated. The decrease in accuracy for experi-
ment #2 (c.f. experiments #1,3,4) is accompanied by a small increase
in the number of new solutions found that are better than any pro-
duced by the heuristics used to create the test data®. However, this

Obviously a model that generates novel solutions that are better than those contained
in the test set must have reduced accuracy as this metric measures the percentage of
solutions that are identical to those in the test-set.



GECCO ’20, July 8-12, 2020, Canciin, Mexico

T e
0.8 4
13
0
206+
ic — — = —
0.4 4
0.2 -
T 1
VBS Encoder_Decoder_LSTM
Heuristic

Figure 4: Evaluating Encoder-Decoder LSTM predictor VS
VBS for DS1

L0 e e
0.8 o
13
173
206+
2
0.4 4
PR S
02 -
T 1
VBS Encoder_Decoder_LSTM

Heuristic

Figure 5: Evaluating Encoder-Decoder LSTM predictor VS
VBS for DS2

also appears to be accompanied by a significant increase in the
number of solutions obtained that are worse than the best solver
used to create the test data.

Fig 4 and 5 show the performance distributions achieved by
the VBS (i.e. the greedy selection of the solution created using
the best heuristic for each batch) and by our Encoder-Decoder
LSTM learner for all valid solutions on the test sets DS[1,2], using
batch-sizes of 6 items and considering 4 heuristics (i.e. experiments
#4). For these two experiments, our learner obtains very similar
performance to the VBS. A paired t-test confirms that we cannot
reject the null hypothesis that the VBS and Encoder-Decoder LSTM
achieve the same results on DS1 (p-value = 0.11), while for DS2, the
null hypothesis is rejected (p-value = 6.1 x 10781).

6.3 Effect of batch-size

Experiments #4, #6 and #7 in tables 4 and 5 aim to analyse the effect
of the batch size on the solution prediction. We use batches of size 6,
12 and 18 items per instance®. These experiments are trained using
solutions obtained from the set of 4 heuristics [1-4] given that this
setting returned the best result in the previous experiments.

These sizes are chosen as on average each bin can fit two or three items

Mohamad Alissa, Kevin Sim, and Emma Hart

The results show that the larger batch-size in both DS[1,2] re-
duces the ability of the learner to produce accurate and valid so-
lutions: a more complex encoder( i.e. more layers) is required to
address this. However, although the accuracy is decreased with
the larger batches, we see a corresponding increase in the mod-
els’ creativity, i.e. its ability to produce better solutions than the
heuristics it was trained on. As in previous experiments, this is also
accompanied by a significant increase in solutions which are worse
than BSS however. Unlike in experiments #2 to #5, the Bleu metric
has better values than accuracy and validity in experiments #6 and
#7 which means although the solutions do not map exactly to those
produced by the training heuristics, there is good overlap with the
original solutions.

6.4 Generalisation to new instances

The final series of experiments investigates the ability of the trained
models from the experiments in tables 4 and 5 to generalise to a
new dataset of unseen instances. These instances are generated
at random from a distribution with the same parameters as DS1,
DS2 respectively. However, recall that the instances in DS1, DS2
were specifically evolved to maximise the difference between the
fitness of the best-solving heuristic and the next best heuristic, so
are likely to have particular characteristics that are not apparent
when a random ordering of items is used to generate the instance.

Tables 6 and 7 show the results of testing the previously trained
models on new unseen instances. Experiments #1 to #6 in these
tables show that the models trained on the non-random datasets
DS1 and DS2 have excellent ability to generalise over the new
problem instances RDS1 and RDS2, obtaining results that only
deviate by a maximum of 2% in terms of accuracy when compared
to the previous results presented in tables 4 and 5. Experiments #7
and #8 using the larger batch-size show accuracies that are reduced
by up to 7% in comparison to the non-random datasets, although we
note that these models performed relatively poorly on the original
datasets.

7 CONCLUSION

In order to tackle the Algorithm Selection Problem in the context
of streaming data, we have proposed a radical solution which uses
a deep-learning model to directly predict a solution from instance-
data. This bypasses the typical processes of ASP first defined by
Rice [22] in which features need to be derived from instances and
mapped to an algorithm-space via a learner of some kind.

In order to show the potential benefits of pursuing this line of
research more deeply, we have evaluated the approach on a simple
type of streaming problem in the packing domain in which items
arrive in batches, and each batch must be packed before moving to
the next. We have provided the first description of a model that is
capable of predicting a solution and then studied two questions in
depth. The first concerns the influence of batch-size on performance,
while the second aims to understand whether the diversity of the
heuristics used to create the training data influences performance.

Experiments showed that the proposed approach is able to pre-
dict very accurate solutions with smaller batches, particularly using
solutions produced by heuristics with similar characteristics. Fur-
thermore, and perhaps surprisingly, all of the trained models were
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Table 4: The mean and std results of repeated five times the approach on DS1 (120-N-40-60) using different combinations of
the heuristics H[1-6]

# Window size #Heuristics Heuristics Acc Valid BLEU LSTM >BSS LSTM <BSS
1 6 1 Hs 98.08% 99.08% 98.53% 1 149
(+/-0.24% ) (+/-0.16%) (+/-0.18%)  (+/-2) (+/-20)
é 6 2 H[1, 5] (+/9-161.1i<;%%) (+/9-56§59?%) (+/9-26?37;%%) (+f3) (+7—757)
3 6 ) H[1, 4] (+/9-86§77?%) (+/9-96?73?%) (+/9-96?§?%) (+/?3) (+/:3712)
4 6 4 H[1-4] (+/9-86?96f%) (+/9-96?76?%) (+/9-96ff%) (+/?1) (+/—6(;8)
> 6 6 H[1-6] (+/9-1£72?%) (+/9-56§ZU%) (+/9-26?2?%) (+/-9 3) (+7—813)
6 12 4 H[1-4] (+f—2516?%) (+f—16?§?%) (+/7_9¢7§Z’%> (+/f8) (ﬁilz)
7 18 4 H[1-4] (+/2-7ff?%) (+i76?g?%) (+/6-0£:D%) (j-os) (+/8-8:3)

Table 5: The mean and std results of repeated five times the approach on DS2 (120-U-20-100) using different combinations of
the heuristics H[1-6]

# Window size #Heuristics Heuristics Acc Valid BLEU LSTM >BSS LSTM <BSS
: ) ; - 88.42% 94.90% 91.95% 7 968
(+/-0.29% ) (+/-0.34%) (+/-0.16%)  (+/-4) (+/-51)
2 6 2 H[1, 5] (+/6-86(.)Z?%) (+/8-76‘.172?%) (+/7-76?;?%) (+/3-25) (+?-512364)
3 6 2 H[1, 4] (+/8-56f(?%) (+/9-26?27?%) (+/8-9£?%) (+/‘i1) (+1/?9319)
4 6 4 H{1-4] (+/%46§27?%) (+/9.3(f§f%) (+/8.9£§?%) (+/2.65) (+/l-211;5)
> 6 6 H[1-6] (+/6-56§i?%) (j-é(fg?%) (+/7-56?§?%) (+/2-84) (j?f;)
6 12 4 H[1-4] (+/2-76?§<?%) (+/5-Sé§g?%) (+/5-96?61f%) (+/1-1f7) (+/2-li224)
7 18 4 H[1-4] (+/il'§.i‘79;%) (+/2-O;j?%) (+;4-16§97?%) (+/3-24) (+/7-3§7)

able to produce a small number of novel solutions that had better
performance according to the Falkenauer fitness metric than any
of the heuristics used to train the system.

Clearly, the work presented here only represents the first steps
into this new paradigm. Further work is required to modify the
approach to deal with more general versions of streaming problems,
and to evaluate its potential when trained on solutions generated
using a greater variety of optimisation algorithms, including meta-
heuristic as well as hyper-heuristic approaches. Feeding dynamic
information about the current state of partial solutions into the
networks is also likely to be of benefit. Despite this, we suggest
that the method provides a promising new direction for research
within ASP that is ripe for further exploration.
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Table 6: The mean and std results of the trained models on DS1 (120-N-40-60-Random) using different combinations of the
heuristics H[1-6]

# Window size #Heuristics Heuristics Acc Valid BLEU LSTM >BSS LSTM <BSS
1 6 1 Hs 97.33% 98.69% 97.91% 1 199
(+-0.25%)  (+/-0.19%) (+/-0.17%)  (+/-1) (+/-16)
2 6 2 H[1, 5] (j-gé(.)sg?%) (+/9-46L.1g:0%) (+/9-06?f;%%) (+/? 4) (+/6-8§3)
3 6 2 H[1, 4] (+/9-8£Z%) (+/9-96?7l?%) (+/9-96(.)§f%) (+/?3) (jés)
4 6 4 H[1-4] (+286?3?%) (+/9—9(.)?67;%%) (+/9-96?3?%) (+/?3) (+/-6(;1)
> 6 6 H[1-6] (+;‘-86?sgf%) (+/9-4(.)‘.1::U%) (+206?§j%) (+/? 3) (+/7-0;)9)
6 12 ! Hi1-4] (j-l(')%sé(?%) (+/7—8(.)?61?%) (+/7-96%563i%%) (+/6-07) (+1/?531)
7 18 i Hi1-4] (+/2-35§Z)%) (jzi(.);?%) (+7—964.1§f%) (+/5-25) (j-l 17)

Table 7: The mean and std results of the trained models on DS2 (120-U-20-100-Random) using different combinations of the

heuristics H[1-6]

# Window size #Heuristics Heuristics Acc Valid BLEU LSTM >BSS LSTM <BSS
1 6 1 Hs 89.24% 94.81% 92.70% 7 834
(+-056%) (+/-057%) (+/-031%)  (+/-2) (+/-51)
66.76% 85.77% 76.81% 30 2505
2 6 2 HILSE (G 044%) (/-075%) (+-039%)  (+/-5) (+/-69)
84.80% 91.92% 89.74% 65 1029
3 6 2 HILAL (L 018%) (+/-040%) (+-0.05%)  (+/-9) (+/-100)
84.04% 91.64% 89.11% 33 1115
4 6 4 HO-41 056%)  (1/-095%) (+-037%)  (+/-2) (+/- 66
5 6 6 H[l—6] 63.69% 84.74% 74.57% 28 2811
(+/-057%) (+/-057%) (+/-0.48%)  (+/-6) (+/-89)
20.26% 47.75% 55.93% 113 2065
6 12 4 HO-4T a1 (/- 4.02%) (+-088%)  (+-14)  (+/-200)
2.58% 13.97% 39.69% 24 518
7 18 4 H[1-4] (+/-0.36%) (+/-2.08%) (+/- 1.00% ) (+/-4) (+/- 81)
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